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1. Introduction

This manual describes a MATLAB toolbox for computational analysis of piecewise
linear systems. Key features of the toolbox are modeling, simulation, analysis,
and optimal control for piecewise linear systems. The simulation routines detect
sliding modes and simulate equivalent dynamics [2]. The analysis and design
are based on computation of piecewise quadratic Lyapunov functions [6]. The
computations are performed using convex optimization in terms of linear matrix
inequalities (LMIs). This version of the toolbox requires the LMI control toolbox
[1].

The structure of this manual is as follows. Section 2 describes the model repre-
sentation, i.e. how a piecewise linear (PWL) system is defined in this toolbox.
Certain structures of the PWI, systems allow the systems to be defined in a more
automated fashion. These systems, in the sequel referred to as Structured PWL
(sPWL) systems, are handled by an additional set of commands described in
Section 3. Section 4 lists all the commands (with explanations) of the PwiTaL
in two groups. The first subsection contains the generic PWL commands, the
second subsection describes the additional sPWL commands. Section 5 contains
some examples of how to use the toolbox.

Appendix A describes the data structure of a PWL object in MATLAB.

2. Piecewise Linear (PWL) Systems: Model Description

The toolbox is based on piecewise linear systems on the form
x=Aix+a; + Bu
y=Cix+c¢;+Du

for x € X;. (1)

Here, {X;}ic; C R” is a partition of the state space into a number of closed
(possibly unbounded) polyhedral cells, see Figure 1, and I is the index set of
the cells. In order to allow rigorous analysis of smooth nonlinear systems, the
toolbox allows the system dynamics to lie in the convex hull of a set of piecewise
affine systems, see [5]. This is e.g. useful for the analysis of fuzzy Takagi-Sugeno
systems [8].

For convenient notation, we introduce

e[t 3] st i o]

A large part of the analysis results will be concerned with (global) properties of
equilibria. We therefore let Iy C I be the set of indices for the cells that contain
the origin, and I C I be the set of indices for cells that do not contain the origin.
We will assume that @;=0,c;=0for i€ I,

The cells are represented by matrices G; that satisfy

Gi% = 0, if and only if x € X; (2)
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Figure 1 Example of a polyhedron in R2.

Here, the vector inequality z = 0 means that each entry of z is non-negative. We
recognize this as the halfspace representation of a polyhedron, where each row
of G; corresponds to one halfspace. The G-matrix for the polyhedron of Fig. 1
e.g. would be

0 -1 2
- -2 -1 4
G =

0o 1 2

2 1 4

In addition to defining the regions of different dynamics, the G-matrices tell the
PWITL how to partition the Lyapunov functions that are used for the system
analysis. A consequence of this is that one will sometimes divide the state space
in to smaller cells than the ones implied by the system dynamics in order to
increase the flexibility of the Lyapunov function candidate (6].

For the analysis of PWL systems, it is also necessary to specify matrices F, =
[F; f;] with f; = 0 for i € I that satisfy

% = Fji for x € X; N Xj. (3)

These matrices are used to parameterize Lyapunov functions that are continuous
across cell boundaries. !

Note that the F-matrices are not a part of the PWL system definition itself, they
are merely a computational aid in the system analysis such as stability, input
output gain etc. Consequently, the simulation of a PWL system does not require
these matrices.

Also note that Eq. (3) does not unigely define the F-matrices. A more detailed
description of the matrices can be found in [4]. For the inexperienced user, who
might find it difficult to create appropriate F-matrices, Section 3 presents means
to overcome this problem.

IThe computations in [3, 7] use an additional matrix E;. This matrix is derived directly from
the corresponding G;-matrix, and is therefore not requested from the user.



Figure 2 The special structures that are supported in sSPWL package: a) Hyperrectangle
partitions, b) Simplex partitions

3. Structured Piecewise Linear (sPWL) Systems — a
user-friendly concept

As described in the previous section, it may be non-trivial to find the F-matrices
for a system to be analyzed. Moreover, even if one can find matrices that satisfy
the definition (3), they might not be the best ones in utilizing the piecewise
structure of the Lyapunov functions. Thus it is desirable to be able to generate
a good choice of F-matrices automatically.

When making the first attempts to analyze a PWL system, it is often natural
to partition the state space in certain ways. For example when there is a need
for approximating a general nonlinear function without considering a particular
structure of the nonlinearity, one might as a first “quick and dirty” attempt
grid the statespace using a set of hyperrectangles. Doing this, it is desirable to
generate the G-matrices in a more automated fashion, since all the cells are
similar in nature.

The toolbox supports automatic generation of region dependent matrices for
two classes of PWL systems. These systems, called Structured Piecewise Lin-
ear (SPWL) systems, are constrained in the kind of state space partitions that
are allowed, but cover many cases and have the advantage of making the con-
struction of G- and F-matrices easy.

The classes that are supported in the SPWL package are called Hyperrectangle
partitions and Simplex partitions. In a hyper rectangle partition, each state is
split by a number of parallel hyperplanes, cf Fig. 2a. These planes build a set
of hyperrectangles, the outermost rectangles extending to infinity. In a simplex
partition, cfFig. 2b, all cells are simplices, i.e. polyhedra that in an n-dimensional
space are bounded by n + 1 vertices, some of which extend to infinity.



4.1 The PWL Package
The PWL package consists of the functions listed in Table 1-4:

4., Command Reference

Table 1 Model Construction

Command Description

setpwl Initialize the PWL system
addynamics | Add system dynamics
addregion Add system region

getpwl Extract the PWL system

Table 2 Model Analysis and Control Design

Command | Description

gstab Quadratic stability (global)
pgstab Piecewise quadratic stability
pgstabs pgstab with sliding mode
pqobserv | observability

optcstlb optimal cost, lower bound
optcstub optimal cost, upper bound
iogain input output gain

Table 3 Graphic Visualization

Command | Description

pwleval evaluate PWL function
pwllevel plot PWL function
pwgeval evaluate PWQ function
pwglevel plot PWQ function

Table 4 Simulation

Command | Description

pwlsim Simulate PWL system
findnb Find neighbouring cells
findsm Find possible sliding modes

4.2 The Added Structured PWL (sPWL) Package

Many of the commands of the sSPWL package have a corresponding command in
the model construction part of the generic PWL package. It is important not to
mix up the two packages, however, since they use different data structures in
MATLAB. The link between them is part2pwl, that converts the entered sPWL
system to a generic PWII&L obejct. The interconnection between the packages
is shown in Fig. 3.
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Figure 8 How the extra package for generating sSPWL systems relates to the rest of the
toolbox

As told in section 3, there are two kinds of sPWL systems. The commands that
are in common for both structures are listed in Table 5, while Table 6 lists the

Table 5 The general commands of the sPWL package

Command | Description

setpart Initialize partition data structure
addati Specify affine dynamics
getpart Retrieve partition data structure

part2pwl | Convert to pwltools data structure

commands that are specific to a certain structure.

Table 6 The structure specific commands of the sPWI, package

Hyperplane description Simplex description
Command | Description Command | Description
addhp Add hyperplane addvtx Add vertex

addray Add ray
dehcell Define hyperplane cell | addscell Define simplex cell

All of the above commands will be described in detail on the following pages.
Not to mix up the model construction commands, the sPWL commands have
been marked with an (s).



4.3 The input vector “options”

Several of the commands included in PWIT&L use the LMI Control Toolbox to
solve the feasibility problem (find a solution to the LMI system A(x) < 0) or the
linear objective minimization problem (Minimize cTx subject to A(x) < 0). The
commands of the LMI Control Toolbox use a general structure to give access to
certain control parameters, which consists of a five-entry vector. Every command
in PWLEaL that (as a part of its task) solves LML:s like these also has this input
parameter, which is passed to the corresponding LMI Control Toolbox function.
The parameter is named options and consists of the following elements [1]:

e options(1) sets the desired relative accuracy on the optimal value (c%x)
when addressing the linear objective minimization problem. It is not used
for the feasibility problem.

e options(2) sets the maximum number of iterations allowed to be per-
formed by the optimization procedure (100 by default).

e options(3) sets the feasibility radius. Setting options (3)toavalueR >0
further constrains the decision vector x = (x1,...,xx) to lie within the ball

N
Z X < R?,
i=1

i.e. the Euclidean norm should not exceed R. The feasibility radius is a
simple means of controlling the magnitude of solutions. The default value
is R = 10°.

e options(4) helps speed up termination. When set to an integer value
J > 0, the code terminates when a certain minimizer (eg. ¢Tx for the linear
objective minimization problem) does not decrease by more than one per-
cent in relative terms during the last J iterations. This parameter, whose
default value is 10, trades off speed vs. accuracy.

e options(5) = 1 turns off the trace of execution of the optimization proce-
dure. Resetting options(5) to zero (default value) turns it back on.

Setting options(i) to zero is equivalent to setting the corresponding control
parameter to its default value. Consequently, there is no need to redefine the
entire vector when changing just one control parameter.

In each command that accepts options as an input, this input is optional. If
the vector options is omitted, PWII&L searches for the function pwloptions
that should return a vector on the format described above. Writing one’s own
pwloptions is useful when doing many different computations requiring the
same accuracy. If there exists no pwloptions, the default vector of the LMI
Control Toolbox will be used.



addati (s)

Purpose

Specify the matrix variables corresponding to the dynamics in a certain region
of an sPWL system.

Synopsis
dyn = addati(A, a, B, C, ¢, D)

Description

addati? defines new dynamics in the piecewise linear system currently described.
The output dyn is an identifier that can be used for subsequent reference to this
dynamics as for instance when connecting it to the corresponding region using
addhcell or addscell. The arguments are matrices (and vectors) in the affine
system

x=Ax+a+ Bu

y=Cx+c+ Du
All arguments except A can be omitted. If there is a specified argument that

appears to the right of omitted arguments in the list, the omitted arguments
must be replaced by empty matrices ([]) as place holders.

See Also
setpart, addhcell, addscell, getpart

2addati is an abbreviation of “add affine time invariant dynamics”. This is of course what is
done by the command addynamics as well. Another name must, however, be chosen to avoid name
conflicts.



addhcell (s)

Purpose
Add a new cell to the hyperrectangle partition currently described.

Synopsis
reg = addhcell (hprefs, UsedDynamics)

Description

addhcell defines a new cell in the hyperrectangle partition by combining those
(previously entered) hyperplanes that should bound the cell.

Parameters

e hprefs is a vector of indices to the hyperplanes that bounds the cell, each
index being an identifier returned by the function addhp. Each of the in-
dices could be either positive or negative depending on which side of the
hyperplane the cell is situated. Using hp (from addhp) without a minus
sign as an index in the vector means that the cell lies at the same side of
the hyperplane as the normal of the plane, i.e. if the plane was defined as

hpeq [i] =0, then hpeq [316} >0

should hold for all points, x, that belong to the cell. Using -hp as an index
in the vector means that the cell is on the opposite side of the hyperplane
normal.

e UsedDynamics is a reference to one or several dynamics specifications that
shall be used in the region. This corresponds to the identifier dyn that is
returned from addati. If several dynamics specifications shall be used in
one region, UsedDynamics is a vector of corresponding identifiers.

e reg is a label for future reference to the cell.

See Also
addhp, setpart, addati, getpart



addhp (s)

Purpose
Add a hyperplane that shall be used as a boundary of one or several cells.

Synopsis
hp = addhp(hpeq)

Description

addhp defines a hyperplane that shall be used as a cell boundary. The input
parameter hpeq is an (n + 1)-dimensional vector (in the n-dimensional space)
containing the coefficients for the equation of the hyperplane such that

x
h =0
PGQ[l]

on the surface.

The output hp is an identifier that is used for subsequent reference to the plane
when connecting several planes to cells, using addhcell

See Also
addhcell, setpart, addati, getpart



addray (s)

Purpose
Add a ray that shall be used as a boundary for several cellsin a simplex partition.

Synopsis
ray = addray(rdir)

Description

addhp defines a ray that shall be used as a cell boundary. The input parameter
rdir is an n-dimensional vector (in the n-dimensional space) pointing in the

direction of infinite extension.

The output ray is an identifier that is used for subsequent reference to the ray
when connecting several rays and vertices to cells, using addscell

See Also
addvtx, addscell, setpart, addati, getpart

10



addregion

Purpose
Specify the matrix variables corresponding to a certain region of a PWL system.

Synopsis
addregion(G, F, UsedDynamics)

Description

addregion defines a new region in the piecewise linear system currently de-
scribed and links it to some dynamics.

Parameters

The matrix G, corresponding to G in (2), specifies the boundaries of the region.
It is an (m x n + 1)-matrix, such that the inequality

é[j]:o

holds for all x within the region (cf. Eq. 2). Each row of these matrices corre-
sponds to a hyperplane on the region boundary.

F, corresponding to F in (3), is constructed in a way such that

F X
1
is continuous between all regions. The F-matrices are not needed for simulation

(cf. Section 2). When only doing simulations, the input F can be replaced with
an empty matrix ([1) as a place holder.

UsedDynamics is a reference to one or several dynamics specifications that shall
be used in the region. This corresponds to the identifier dyn that is returned
from addynamics. If several dynamics specifications shall be used in one region,
UsedDynamics is a vector of corresponding identifiers.

See Also
adddynamics, getpwl, setpwl

11



addscell (s)

Purpose
Add a new cell to the simplex partition currently described.

Synopsis
reg = addscell(vtxrefs, rayrefs, UsedDynamics)

Description

addscell defines a new cell in the simplex partition by combining those (previ-
ously entered) vertices and rays that should bound the cell.

Parameters
e vtxrefs is a vector of indices to the vertices that bound the cell, each index
being an identifier returned by the function addvtx.

e rayrefs is a vector of indices to the rays that bound the cell, each index
being an identifier returned by the function addray.

e UsedDynamics is a reference to one or several dynamics specifications that
shall be used in the region. This corresponds to the identifier dyn that is
returned from addati. If several dynamics specifications shall be used in
one region, UsedDynamics is a vector of corresponding identifiers.

o reg is a label for future reference to the cell.

As shown in section 3, the number of entries in vtxrefs and rayrefs must sum
up to (n + 1) in an n-dimensional space. There must be at least one entry in
vtxrefs.

See Also
addray, addvtx, setpart, addati, getpart

12



addvtx (s)

Purpose
Add a vertex that shall be used as a corner of several cells in a simplex partition.

Synopsis
Vtx = addvtx(vtxcor)

Description

addvtx defines a vertex that shall be used as a corner of several cells. The input
parameter vtxcor is the coordinate of the vertex.

The output vtx is an identifier that is used for subsequent reference to the ray
when connecting several vertices and rays to cells, using addscell

See Also
addray, addscell, setpart, addati, getpart

13



addynamics

Purpose

Specify the matrix variables corresponding to the dynamics in a certain region
of a PWL system.

Synopsis
dyn = addynamics(A, a, B, C, c, D)

Description

addynamics defines new dynamics in the piecewise linear system currently de-
scribed. The output dyn is an identifier that is used for subsequent reference to
this dynamics when specifying the corresponding region using addregion. The
arguments are matrices (and vectors) in the affine system

x=Ax+a+ Bu
y=Cx+c+ Du

All arguments except A can be omitted. If there is a specified argument that
appears to the right of omitted arguments in the list, the omitted arguments must
be replaced by empty matrices ([1) as place holders. Those of the arguments that
are omitted, will be replaced by zero-matrices of appropriate dimensions.

See Also
addregion, getpwl, setpwl

14



findnb

Purpose

Find the neighbors of the regions of a PWL system.

Synopsis
whereto = findnb(pwlsys)

Description

findnb searches all the G matrices of pwlsys and generates the matrix whereto

such that whereto (i, j) contains t
boundary defined by the i:th row o

See Also

findsm

he number of the region that lies behind the
f G;.

15



findsm

Purpose
Find possible sliding modes of a PWL system.

Synopsis
slide = findsm(pwlsys, whereto)

Description
findsm searches the piecewise linear system pwlsys for possible sliding modes.
findsm returns a square matrix, slide, where slide(i,j) = 1 iff there exist
a sliding mode for any x on the boundary between region i and j. The input
matrix whereto, which contains information about neighboring regions as given
by findnb, is optional. If it is already computed by findnb, those calculations
that have already been made can be avoided in this function.

See Also
findnb

16



getpart (s)

Purpose
Get the internal description of an sPWL system

Synopsis
part = getpart

Description
Having entered the description of a given structured piecewise linear system us-

ing the commands for defining the dynamics and the state partition, the internal
representation is obtained with the command

part = getpart

This MATLAB representation of the sSPWL system can be converted to the generic
PWIIL format using part2pwl. The system can also be extended by calling
setpart and iterating the system building commands again.

See Also
setpart, part2pwl, getpwl?

3The command getpwl is an generic PWL command, described in section 4.1,

17



getpwl

Purpose
Get the internal description of a PWL system

Synopsis
pwlsys = getpwl

Description

After completing the description of a given piecewise linear system with addynamics
and addregion, its internal representation pwlsys is obtained with the command

pwlsys = getpwl

This MATLAB representation of the piecewise linear system can be forwarded to
PwrlepL functions for subsequent processing.

See Also

setpwl, addynamics, addregion

18



iogain

Purpose
Compute an upper bound on the L; induced input output gain of a PWL system.

Synopsis
[gamma, P, NoLMIs, NoVars] = iogain(pwlsys, inp, outp, options)

Description

iogain computes an upper hound on the Ly induced input output gain of the
piecewise linear system pwlsys, by finding a minimal y that satisfies the in-
equality

T T
/0 ly|2dt < 52 /0 ufdt  Vr>0 (4)

For a MIMO system inp and outp allows the user to specify the input and output
signals of interest. The default values are 1. options is an optional five-entry
vector of control parameters (cf. section 4.3).

iogain returns gamma = y. P is a matrix resulting from the LMI calculations (as
outlined in [6]). NoLMIs is the number of LMTI:s needed to solve the problem.
NoVars is the number of decision variables needed for the LMI:s.

19



optcstlb

Purpose
Compute a lower bound on the optimal cost.

Synopsis
[1b, P, NoLMIs, NoVars] = optcstlb(pwlsys, Q, R, xO0, options)

Description

The optimal control problem for piecewise linear systems is (while bringing the
system to x(c0) = 0 from an arbitrary initial state, x(0)) to minimize the cost

J (%o, u) = /Ooo ([TJT Qi) [ﬂ +uTRi(t)u> dt (5)

Here i(¢) is defined so that x(t) € X;() and

Qi) = [Qg" g] ifi(t) € Io (6)

optcstlb computes a lower bound, 1b, on the minimum achievable value of
J (20, u). optcstlb also returns P which is a matrix resulting from the LMI cal-
culations (as outlined in [6]). NoLMIs is the number of LMI:s needed to solve
the problem. NoVars is the number of decision variables needed for the LMI:s.

Parameters
e pwlsys is the piecewise linear system.

e Q, R are three dimensional matrices defining the cost function such that
Qi =Q(:,:,i) and R; = R(:,:,1).

e x0 is the initial state, x(0).
e options is an optional five-entry vector of control parameters (cf. section

4.3).

See Also
pwlctrl, optcstub

20



optcstub

Purpose

Compute an upper bound on the optimal cost when applying a PWL control law
to a PWL system.

Synopsis
[ub, O, NoLMIs, NoVars] = optcstub(pwlsys, Qub, xO0, options)

Description

optcstub computes and returns an upper bound, ub, on the optimal cost when
applying a piecewise linear control law computed by optcstlb and pwlctrl.
The result is an upper bound on the minimum achievable value of the cost
function (cf. Eqs. (5) and (6) on the previous page) applying the control law
given by Eq. (7) on page 26. The function optcstub also returns 0 that is a
matrix resulting from the LMI calculations (as outlined in [6]). NoLMIs is the
number of LMI:s needed to solve the problem. NoVars is the number of decision
variables needed for the LMI:s.

Parameters
* pwlsys is the piecewise linear system.

* Qub is a matrix defining a cost function. This matrix is computed by pwlctrl.
* x0 is the initial state, x(0).
® options is an optional five-entry vector of control parameters (cf. Section

4.3).

See Also
optcstlb, pwlctrl

21



part2pwl (s)

Purpose
Derive a PWL description from partition data.

Synopsis
pwlsys = part2pwl(part)

Description

part2pwl converts the structured PWL system part to an generic PWL repre-
sentation, pwlsys, that can be forwarded to PwilzpL functions for subsequent
processing.

See Also
setpart, getpaft, getpwl4

4The command getpwl is an “ordinary” PWL command, described in section 4.1.

22



Pqobserv

Purpose
Compute bounds on the observability of a PWL system.

Synopsis
[observ, 0, P, NoLMIs, NoVars] = pqobserv(pwlsys, x0, outp, options)

Description
Pqobserv computes a lower and an upper bound on the integral of the output

energy,
oo
/ ly|2dt,
0

when u = 0 and the initial state of the piecewise linear system pwlsys is given by
x0. For systems with multiple output signals, the optional parameter outp spec-
ifies the output signal of interest. The default value is 1. options is an optional
five-entry vector of control parameters (cf. section 4.3).

observ = [lower upper] is a vector consisting of two entries: the lower and
the upper bound. 0, and P are matrices resulting from the LMI calculations (as
outlined in [6]). NoLMIs is the number of LMI-s needed to solve the problem.
NoVars is the number of decision variables needed for the LMI:s.

23



pqgstab

Purpose
Search for a piecewise quadratic lyapunov function to verify stability of a PWL
system, assuming that there are no sliding modes.

Synopsis
[P, NoLMIs, NoVars] = pgstab(pwlsys, options)

Description
pgstab tries to find a piecewise quadratic lyapunov function to verify stability of
the piecewise linear system, pwlsys. If there exist a piecewise quadratic lyapunov
function, it can be written

B [P, 0
x D x » 3
V(x) = [1] P; [1] , x€X;, whereP;= [0‘ 0] ifi € Iy

P will in that case be a vector of matrices such that P(:,:,i) = P;. If no lya-
punov function exist, pgstab will return an empty matrix, P = [1. NoLMIs is the
number of LMI:s needed to solve the problem. NoVars is the number of decision
variables needed for the LMI:s. options is an optional five-entry vector of control
parameters (cf. section 4.3).

See Also
qstab, pgstabs

24



pqstabs

Purpose

Search for a piecewise quadratic lyapunov function, taking the possibility of
sliding modes into account, to verify stability of a PWL system.

Synopsis
[P, NoLMIs, NoVars] = pgstabs(pwlsys, options)

Description
Pgstabs tries to find a piecewise quadratic lyapunov function to verify stability of
the piecewise linear system, pwlsys. If there exist a piecewise quadratic lyapunov
function, it can be written

T
215 [= s _ [P 0] ...
Vix) = ,:1] P; [1} , x€X;, whereP;= [ 0‘ O} ifi el
P will in that case be a vector of matrices such that P(:,:,i) = P;. Ifno lyapunov

function exist, pgstabs will return an empty matrix, P = [1. NoLMIs is the
number of LMI:s needed to solve the problem. NoVars is the number of decision
variables needed for the LMI:s. options is an optional five-entry vector of control
parameters (cf. section 4.3).

pgstabs first uses findsm to check whether there exist any sliding modes. If
there are no possible sliding modes, pgstabs calls pgstab and return the result.
Otherwise it extends the LMI:s to also include sliding modes.

See Also
gstab, pgstab, findsm

25



pwlctrl

Purpose

Create a PWL controller based on the results from a minimization of a cost
function as given by optcstlb.

Synopsis
[pwlc, L, Qub] = pwlctrl(pwlsys, Q, R, P)

Description

Having split the state space into certain regions, optcstlb uses that partition to
give a lower bound on the optimal cost for any control law. pwlctrl uses infor-
mation from optcstlb to compute a piecewise linear control law that achieves a
low cost.

The control law is

u(t) = Li H xEX, (7)

and pwlctrl returns a representation of the closed loop system, pwlc, and a
three dimensional matrix, L, such that L(:,:,1) = L;. Qub consists of data that
is needed to compute an upper bound on the optimal cost (using optcstub) when
implementing this control law.

If several dynamics are linked to one region, the controller will be based on the
nominal (first linked) dynamics of each region.

Parameters

e pulsys is the piecewise linear system.

e Q, R are three dimensional matrices defining the cost function such that
Q; =Q(:,:,i) and R; =R(:,:,1i).

e P is the P matrix resulting from optcstlb.

See Also
optcstlb, optcstub
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pwleval

Purpose
Evaluate a vector field and an output vector of a piecewise linear function.

Synopsis
[xd, y, reg] = pwleval(pwlsys, x, u)

Description

pwleval finds the region, X;, that x belongs to and evaluates xd and y according
to

xqg = Apx+a;+ Bu for x € X; (8)
y = Cix+c;+Du (9)

It also returns reg, which is the number of the region where x is located. pv'rlsys
contains the PWL system to be evaluated. x and u is the state vector and input
vector respectively.

See Also
pwllevel, pwqgeval
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pwllevel

Purpose
Plot the level surfaces of a second order piecewise linear function.

Synopsis
[Z, x1, x2] = pwllevel(pwlsys, A, K, parea, resol, linespec, V)

Description

pwllevel plots the level surfaces of a second order global or piecewise quadratic
function. It returns a matrix containing the function values

Z = KA, m (10)

The vectors x1 and x2, that specify the grid points used for x; and x2 respectively,
can be used with the MATLAB function mesh to plot the entire PWL function.

Parameters

e For a piecewise linear function pwlsys contains a description of those re-
gions that correspond to different linear functions. When plotting a global
linear function, pwlsys can bet set to [].

e A represents the function to be plotted. If A is a three dimensional array,
then for each region, i, the function A(:,:,i)*[x; 1] is evaluated. For
a global linear function, A is a (two dimensional) matrix such that the
function A*x (or A%[x; 1]) is evaluated. If A is an empty matrix, [J, the
first dynamics of each region in pwlsys will be used.

e If K is a scalar, vector component number K (of A*x) will be plotted. If K
is a row vector, [k1 k2], several state variables can be weighted together,
such that the resulting plot is K¥A(:, :,i)*[x; 1].IfK is an empty matrix,
the first vector component will be plotted.

e parea = [xmin, xmax, ymin, ymax] sets scaling for the x- and y-axes on
the plot.

e resol = [resxl resx2] is an optional parameter that specifies the reso-
lution of the grid that is used when evaluating the linear function. These
numbers specify at how many instances the state variables x; and xg re-
spectively will be used. If any of the parameters linespec or V are specified
though resol is not, resol must be replaced by an empty matrix (1) as
place holder.

e The level surfaces are normally drawn black and solid. The optional char-
acter string linespec allows you to specify another color and line type in
the same format as the MATLAB plot function. To omit the plot (when using
this function to get the function values in Z), use the color 'n’ (none).

e V is an optional parameter that is used to plot length(V) contour lines at
the values specified in vector V

See Also
pwleval, pwqglevel
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pwlsim

Purpose
Simulate a PWL system.

Synopsis
(t, x, te, regidx] = pwlsim(pwlsys, x0, tspan)

Description

pvlsim simulates the piecewise linear system, pwlsys, from the initiz%l staf:e
x0. The system will be simulated from time 2o to tfingt Which is specified in
tspan = [t0 tfinall].

pwlsim returns data as follows. Each row in the solution array x correspond‘s to
a time returned in column vector t. regidx is a vector that contains the regions
entered during simulation and te contains the corresponding entry times.

Additional information on the simulation can be found in (2].
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pwqgeval

Purpose
Evaluate a piecewise quadratic function.

Synopsis
[y, regl = pwgeval(pwlsys, Q, x)

Description
pwgeval finds the region, X;, that x belongs to and evaluates

= [’;]TQ,- m for x € X; (11)

It also returns reg, which is the number of the region where x is located.

Parameters

e For a piecewise quadratic function pwlsys contains the regions that cor-
respond to different functions. To plot a global quadratic function, pwlsys
can be set to [].

¢ Q represents the function to be evaluated according to Eq. 11,1.e. Q (:,:,1) =
Q;. For a global quadratic function, Q is a matrix such that the function
values are given by xT Qx.

e x is the state vector

See Also
pvglevel, pwleval
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pwqlevel

Purpose
Plot the level surfaces of a second order quadratic function.

Synopsis
(Z, x1, x2] = pwqlevel(pwlsys, Q, parea, resol, linespec, V)

Description

pwqlevel plots the level surfaces of a second order global or piecewise quadratic
function. It returns a matrix containing the function values

=[]l

The vectors x1 and x2 specify the grid points used for xy and x respectively.
These vectors can be used with the MATLAB function mesh to plot the entire
quadratic function.

Parameters

For a piecewise quadratic function pwlsys contains a description of those
regions that correspond to different quadratic functions. When plotting a
global quadratic function, pwlsys can bet set to []-

U represents the function to be plotted. For a global quadratic function, Q is
a matrix such that the function values are given by 27 Qx. For a piecewise
quadratic function, Q is a vector of matrices such that QC:,:,i) = Q; and
the function values of region i are given by Eq. 12.

parea = [xmin, xmax, ymin, ymax] sets scaling for the x- and y-axes on
the plot.

resol = [resxl resx2] is an optional parameter that specifies the resolu-
tion of the grid that is used when evaluating the quadratic function. These
numbers specify at how many instances the state variables x1 and xg re-
spectively will be used. If any of the parameters linespec or V are specified
though resol is not, resol must be replaced by an empty matrix ([]) as
place holder.

The level surfaces are normally drawn black and solid. The optional char-
acter string linespec allows you to specify another color and line type in
the same format as the MATLAB plot function. To omit the plot (when using
this function to get the function values in Z), use the color 'n’ (none).

V is an optional parameter that is used to plot length(V) contour lines at
the values specified in vector V

See Also
pwgeval, pwllevel
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gstab

Purpose

Search for a global quadratic lyapunov function to verify stability of a PWL
system.

Synopsis
[P, NoLMIs, NoVars] = gstab(pwlsys, options)

Description

gstab tries to find a global quadratic lyapunov function to verify stability of the
piecewise linear system, pwlsys. If there exist a global quadratic lyapunov func-
tion, V(x), then P is the stability matrix such that V(x) = x7 Px. If no Lyapunov
function exist, the function will return an empty matrix, P = [1. NoLMIs is the
number of LMI:s needed to solve the problem. NoVars is the number of decision
variables needed for the LMI:s. options is an optional five-entry vector of control
parameters (cf. section 4.3).

See Also
pagstab
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setpart (s)

Purpose
Initialize the description of an sPWL system

Synopsis
setpart (part)

Description

setpart is called before starting the description of a structured piecewise linear
system. The function could be called in three ways

¢ setpart(’h’) creates a new hyperrectangle partition.

® setpart(’s’) creates a new simplex partition.
To add on to an existing structured piecewise linear system, use the syntax
setpart (part)

where part is the internal representation of the existing system. Subsequent
system building commands will then add new dynamics and partitions to part.

See Also
addhcell, addscell, addati, getpart
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setpwl

Purpose
Initialize the description of a PWL system

Synopsis
setpwl (pwlsys0)

Description

Before starting the description of a new piecewise linear system with addynamics
and addregion, type

setpwl([])

to initialize its internal representation.

To add on to an existing piecewise linear system, use the syntax
setpwl ([pwlsysO])

where pwlsys0 is the internal representation of this piecewise linear system.
Subsequent addynamics and addregion will then add new dynamics and regions
to the initial piecewise linear system pwlsysO.

See Also
getpwl, addynamics, addregion
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5. Examples of Usage

In order to clarify the usage of the PWLI&L commands, two examples are pre-
sented in this section. These examples contain the complete code, i.e. one should
be able to reproduce the results (when having access to PwrlepL) by entering
the lines marked with the MATLAB prompt (>>) into MATLAB.

Having presented two complete examples using the general PWL package, we
will show a simpler way to enter some of the system matrices of the first example

using the sSPWL package

5.1 The Flower System
In this example, we will study the piecewise linear system

) {Alx(t» 2(6) — (1) > 0

Agx(t),  x2(t)—x3(t) <0
—£ oW —£ [0
S I IR ed
Ci=Cy=[1 0] (13)

where & = 5, w = 1, and ¢ = 0.1. We will do simulations and analyze the
stability and observability of the system.

PWL System Initialization First we must enter the PWL system according
to Egs. (1) - (8).

>> Al = [-0.1, 5; -1, -0.1]; % Enter matrices describing the
>> A2 = [-0.1, 1; -5, -0.1]; % dynamics

>> a = [];

>> B = [];

>>C1l = [1 0];

>> C2 = [1 0];

>> Gl =11 ~1; 1 1]; % Enter the regions

>> G2 = [-11; 1 1];

>>G3 = [-11; -1 -1];

>> G4 =[1 -1; -1 -11;

>> F1 = [G1; eye(2)];
>> F2 = [G2; eye(2)];
>> F3 = [G3; eye(2)];
>> F4 = [G4; eye(2)];

>> setpwl([]); % Set up PWL system

>> dynl = addynamics(Al, a, B, C1);
>> dyn2 = addynamics(A2, a, B, C2);
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Figure 4 Simulation and cell partition of flower system

>> addregion(G1, F1, dynil);
>> addregion(G2, F2, dyn2);
>> addregion(G3, F3, dynl);
>> addregion(G4, F4, dyn2);

>> pwlsys = getpwl; % Extract PWL system

Simulation Having entered the system properly, we can make a simulation.
In this example we will simulate a trajectory starting in x(0) = (1 0)".

>> [t, xv] = pwlsim(pwlsys, [1 0]’, [0 40]1); % Simulate

>> hold on; % Plot phase plane
>> plot(xv(:,1), xv(:,2));

>> plot([-1 1],[-1 1]1,°k:’);

>> plot(-[-1 1],[-1 1],°k:?);

>> grid on

The result of this is shown in Fig. 4.

Stability Analysis Judging from the simulation, it seems as if the PWL sys-
tem is stable. We will now try to prove the stability of this system. Let us first
try to find a global quadratic Lyapunov function:

>> P = gstab(pwlsys)

The P matrix returned from this function is an empty matrix, which indicates
the nonexistence of a global quadratic Lyapunov function. Our next move is to
look for a piecewise quadratic Lyapunov function.
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Figure 5 Level surfaces of the Lyapunov function

>> P = pgstab(pwlsys)

This time we succeed and the P structure returned by the function contains a set
of four matrices, where each matrix corresponds to one of the four regions that
build our system. We can now plot the level surfaces of the Lyapunov function

>> pwqlevel(pwlsys, P, [-1 1 -1 11, [], ’k--?);
and the result is shown in fig 5

Observability Analysis The “degree of observability” can be measured by the
amount of output energy [;*|y|?dt that is generated for different values of the
initial state x(0). This amount can be estimated from a set of LMLs thanks to
the structure of the systems under consideration. PWIE2L allows us to compute
bounds on the integral of the output energy corresponding to a trajectory from
a given initial state:

>>x0 = [10]°;
>> observ = pqobserv(pwlsys, x0)

The function returns
observ =

0.6025 2.5060
which is a lower and an upper bound respectively on the output energy when
using an initial state x(0) = (1,0)". This is a valid but very coarse estimation,
which depends on the state space being divided into (too) few regions. Splitting

up the state space more will lead to narrower bounds (e.g. 32 regions will confine
the estimation to [1.78,1.88].), cf. [6].
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5.2 Sliding mode system

In this example we will show the capability of PWLIZBL to handle sliding modes.
The system that is used for this purpose is

x(t) B {Alx(t), xl(t) >0
T Agx(t),  x(£) <0

0 1 0 0 -2 1
Ai=(0 0 1 A= 0 -1 -1
-1 -2 -1 -1 -2 -3

(14)

PWL System Initialization We start by entering the system as in the former
example.

> A1 = [010; 001; -1 -2 -1];
>> A2 (0 -21; 0-1-1; -1 -2 -3];

>> G1 [1 0 0];
>> G2 = [-1 0 0];

>> Fi [0 0 0; eye(3)];
>> F2 = [G2(1,:); eye(3)];

>> setpwl([]);

>> dynl = addynamics(A1);
>> dyn2 = addynamics(A2);

>> addregion(G1, F1, dynl);
>> addregion(G2, F2, dyn2);

>> pwlsys = getpwl;

Simulation Before simulating the system we try to find a piecewise quadratic
Lyapunov function. Being aware of possible sliding surfaces of this system we
use pgstabs this time. One could of course always use use this function instead
of pgstab. When the system is known not to exhibit sliding modes, however, one
can save some computational load by using pgstab.

>> [P, NoLMIs, NoVars] = pgstabs(pwlsys);

When the function is called with the PWL system as the only input parameter,
pgstabs will display its computations. Among other text we will find

Possible sliding mode between region(s) no
2-1

which indicates that the vector fields of the system are such that sliding modes
are possible. A nonempty P is returned and we conclude that the system is
stable. We simulate the system when starting in x(0) = (1 2 3)'.
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Figure 6 Trajectories from sliding mode simulation

>> x0 = [12 3]’ % initial state for
% simulation

>> [t, x, te]l = pulsim(pwlsys, x0, [0 20]); % simulate for 20
% time units

>> plot(t, x); % plot the results
>> hold on;
>> V = axis; % mark region transitions

>> for 1p = 1:length(te);
>>  plot([te(lp) te(1p)], [V(3) V(4)1, ’k:’);
>> end

and the result is shown in Fig. 6. The function pwlsim also returns the points of
time where region transitions have occurred. Looking into Fig. 6, one can easily
see when the system has been sliding (when x(t) is zero, e.g. around four time
units). Let us examine the state space trajectory in a three dimensional plot as
well.

>> plot3(x(:,1), x(:,2), x(:,3), ’LineWidth’, 2);

>> hold on;

>> patch([0 0 0 0 0]-0.05,[-1 -1 1 1 -1]%5, [-1 1 1 -1 -1]1*5, [0.95
0.95 0.95]);

>> ee = 0.05;

>> plot3([0 0]+ee, [0 0], [-1 1]%5, ’k--’);

>> plot3([0 O]+ee, [-1 115, -min(5, max(-5, 2*%[~1 1]%5)), ’k--’);

The result is shown in Fig. 7. To be able to see where the system is sliding, we
have added a wall between the two regions of this system. One can see that the
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Figure 8 Simplex partitioning of the flower example.

trajectory gets stuck on this surface at a couple of points and slide for a while
before escaping.

5.3 The Flower System using the sPWL package

As seen from the examples of this section, the system initialization in the generic
PWL package requires the user to enter F-matrices that are used for Lyapunov
computations. In these examples, as well as in many others, this effort can
be avoided by using the sPWL package. We will show below how to apply the
package on the flower system.

The Simplex Interpretation The state space partitioning, with regions X; —
X4, of the flower system is shown in Figure 8.

Instead of defining those regions by entering the G-matrices, we will now use the
simplex notation. Each simplex of Fig. 8 is unbounded and can be represented
by one vertex (the origin) and two rays pointing in the directions of the region
boundaries (denoted r; — r4 in the figure). Thus, the model construction code of
the flower example can be replaced by the following code. (It is assumed that
the dynamics matrices already have been defined.)
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>> addhcell([-h1 -h2], d1);
>> addhcell([-h1 h2], d2);

>> part = getpart; % Extract sPWL system
>> pwlsys = part2pwl(part); % Transform to PWL system

Note that the flower example is rather special — the simplex description and
the hyperplane description are in general not applicable to the same problems.
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Region Dynamics
G(1) F(1) co(1) ldx(1) A(1) a(1) B(1) C(1) c(1) D(1)
G(2) F(2) co(2) Idx(2) A2) a(2) B(2) C(2) c(2) D(2)
G(3) F(3) co(3) Idx(3) A(3) a(3) B(3) C(3) cfs) D(3)
G(4) F(4) co(4) Idx(4) A(4) a(4) B(4) C(4) c(4) D4

G(5) F(5) cof5) ldx(5) ———= A(5) a(5) B(5) C(5) c(5) D(5)
A(6) a(6) B(6) C(6) c(6) D(6)

A@7) a(?) B@7) C(7) c(?) D(7)

Figure 10 Schematic view of the data structure used for representing a PWL system in
MATLAB

A. Data Structure

The PWL systems that this toolbox was designed for can be quite complex, i.e.
they can contain many regions with different dynamics. Regions and dynamics
can also be interconnected in several ways: one type of dynamics can appear
in several regions (the flower system in Section 5 is a simple example of this),
but one might also want to specify several dynamics for one region. The latter
situation would typically appear when bounding a nonlinearity between two
piecewise linear functions.

Since it is not desirable to store the same information in two different places,
pointers are used to link dynamics to regions. A schematic view of the data
structure used in PWITL is shown in Fig. 10. The total piecewise linear system
is represented as a MATLAB-struct that is called pwlsys for future reference. The
matrices describing the dynamics (4;, a;, B;, Ci, ¢;, and D;) are collected into
one struct. The struct pwlsys contains an array of such structs that holds all
the dynamics of the system. In a similar manner the matrices connected to the
state space partition (G;, and F) are collected into one struct. In addition, this
struct contains two other elements. It contains a vector, Idx, that points to the
dynamics-array, and thus tells which dynamics (possibly several dynamics sets)
that is valid in this particular region. I also contains a flag, co, that is set if
the region contains the origin. The struct pwlsys contains a vector of all these

regionstructs of the system.
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