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Preface

This thesis is a step towards obtaining controllers with an increased function-
ality. We call these autonomous controllers. The idea is to automate some of
the functions that are manually performed by process engineers and control
engineers and to include these functions in the controller. This thesis deals
with some of the problems which will be encountered in the implementation
of such controllers.

This thesis consists of two parts,

A the paper ‘An Expert system Interface for an Identification Program’
B  the monograph ‘PID Controller Design.’

Part A is the Automatica paper [Larsson and Persson, 1991]. The paper
describes the use of an expert system to supervise and help a user of the
identification program Idpac. The help system is called (ihs), which stands
for Intelligent Help System. The logo indicates that the system was written in
Lisp. The (ihs) system was written in collaboration with Jan Eric Larsson.
Both of us are equally responsible for all parts of the reports and articles
produced in the project.

The project resulting in the Automatica paper was also presented at
the American Control Conference 1986 (ACC 86) as [Larsson and Persson,
1986b]. The system (ihs) is described in detail in the licentiate thesis [Lars-
son and Persson, 1987b]. The thesis contains references to reports describing
all technical details of the system. The paper [Larsson and Persson, 1988a]
was presented at the European Conference on Artificial Intelligence 1988
(ECAI 88) in Miinchen. This is a conference aiming at the computer sci-
ence and Al community. The system was also successfully demonstrated on
a workstation at the conference. Different aspects of the use of expert sys-
tems in identification have been discussed in papers presented at workshops
in Cambridge 1987, see [Larsson and Persson, 1987d], and in Swansea 1988, -
see [Larsson and Persson, 1988b]. The system has also been presented at the
Swedish AI Society’s annual meetings 1986 and 1987 (SAIS 86 and 87) as
the papers [Larsson and Persson, 1986a] and [Larsson and Persson, 1987a].
The research results are published in a more popular version as [Larsson and
Persson, 1987c]|.

Part B is a monograph describing a method for PID controller design.
When the (ihs) project was finished, interest was focussed on other appli-
‘cation areas of expert systems in automatic control. One idea was to write
a self tuning PID controller based on expert system methods. When expert
systems are used there is a need to write down all engineering khowledge of
the problem and all rules of thumb very explicitly.

Automatic tuning has been introduced recently and is a useful step.
However, it turns out that the design methods based on empirical tuning
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rules used in present autotuners are too simplistic. In [Astrém et al., 1992]
it was attempted to improve the heuristic rules. This was not entirely suc-
cessful. The need for further investigations of simple tuning methods for PID
controllers soon became apparent. The Dominant Pole Design principle had
been used earlier, see [Astrém and Higglund, 1985] and [Astrém, 1988]. A
more detailed investigation was now initiated. The results of the investigation
are presented in the monograph ‘PID Controller Design.’

Results leading to the work presented in this thesis have been presented
1989 at the IFAC Workshop on Al in Real-Time Control in Shenyang, China
as [Astrom et al., 1989] and in the Automatica paper [Astrém et al., 1992].
Some of the results in this thesis will be presented at the International Sym-
posium on Adaptive Systems in Control and Signal Processing (ACASP 92)
in Grenoble, see [Persson and Astrom, 1992].
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Introduction

There are many approaches to control system design. It is often assumed
that a model of the process to be controlled is available as a linear system.
If the system is of order n then the controller will be at least of order n,
if we use the standard methods with observers and state feedback. Hence
the complexity of the controller is directly related to the complexity of the
process. However, it has been found empirically that complex processes often
can be controlled quite well by low order controllers. To apply the standard
methods it is then necessary to approximate the system by a model which
complexity is compatible with, e.g., that of a PI controller. It is also possible
to design a complicated controller and then approximate it with an appropri-
ate PID controller. The design method which will be used here has a different
character since it admits design of simple controllers for processes described
by complicated models, e.g., partial differential equations.

In this chapter the goals of this thesis will be presented. The design
method is presented and a number of considerations in PID controller design
will be discussed briefly.

1.1 Background

A lot of work has been done in the area of PID control. In spite of this there
are few comprehensive presentations. There are also few methods published
for designing PID controllers based on general transfer functions. A large
amount of literature has been reviewed to determine what has been done
before and to find out if methods were available that could solve the problem.
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Chapter 1 Introduction

PID controllers have been implemented using many different technolo-
gies. The first systems were based on pneumatics and hydraulics, discrete
electronics and operational amplifiers were introduced later. Today most im-
plementations are based on micro processors. This means that several short
cuts and simplifications that were made previously are no longer necessary.
Another important trend is that many PID controllers developed today has
some kind of facility for autotuning, see e.g. [Astrém and Hagglund, 1988].
To do this well it is necessary to have a deep insight into PID controllers and
their tuning.

Despite the development in control theory PID controllers are the most
used controllers in industry. Recent estimations from manufacturers in Japan
indicate that between 85% and 95% of all control loops in Japanese industry
are controlled by PID controllers, see [Yamamoto and Hashimoto, 1991].

In a plant with several hundred subprocesses and control loops there is
no way to model each of them and custom-design controllers for each one.
There is a need for a single controller structure with few parameters to tune.

A renewed interest in the issue of PID controller tuning has come with
the attempts to use Al in control systems, see [Astrdm et al., 1986] and
[Arzén, 1987]. Systems of this kind gradually collects more and more in-
formation about the process to be controlled. At any stage the supervisory
system tries to select a suitable controller and keep it as well tuned as possi-
ble. The application of such systems will be to keep a large number of loops
reasonably tuned. The controllers will probably be existing controllers, i.e.
PID controllers, and the tuning algorithms will be implemented in the super-
visory system, see e.g. [Moore et al., 1990]. In such systems there is a need
for a simple design method which can handle a broad spectrum of dynamics
uniformly.

1.2 The goal of the thesis

The goal of this work has been to develop methods for PID controller tuning,
based on the knowledge of the transfer function of the plant. The methods
we were looking for should have the property that they could be applied
uniformly to all transfer functions. They should not have too many tuning
parameters and should not require too much computation. In this work we
will assume that the plant transfer function is known. Methods for obtaining
these transfer functions will not be discussed.

- Some investigations will be made on when a PID controller can be used
and when it cannot be used. The benefits of PID controllers compared to PI
controllers will also be examined. We will recognize which demands can be
put on a PID controlled system.

A number of criteria are important in controller design, e.g.,
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1.2 The goal of the thesis

e set point response
e load disturbance attenuation
e low sensitivity to measurement noise

e low sensitivity to plant parameter variations.

The methods which will be presented will mainly try to achieve good
load disturbance attenuation and a moderate sensitivity to plant parameter
variations. It would be nice to take measurement noise into account in the
controller design, but since the PI and PID controllers are controllers of very
simple structure we cannot fulfill too many requirements.

We intend to present and investigate a method for designing controllers,
in particular PI and PID controllers, based on the Dominant Pole Design
(DPD) principle. The properties of this method will be investigated, with
its possibilities and limitations. As a conclusion we will recommend a design
method for a class of systems. Dominant Pole Design is a convenient and in-
tuitively appealing way of parameterizing a linear controller. Given a process
model on transfer function form we can compute the controller parameters
directly, in terms of the dominant poles of the controlled system, without
any form of model approximation, Taylor series expansions, etc. In short
the problem is to determine the location of the dominant poles such that the
closed loop system behaves sensibly. _

This thesis has the aim to devise controller design methods, suitable for
computer computations. To give a detailed analysis of the methods, other
than for the simplest cases, is impossible due to the extreme complexity of
the expressions involved. A large number of methods and examples have
been explored during the work of this thesis. The possibility of doing this
has drawn heavily on easy-to-use software and extensive calculations. The
computations involved would not have been feasible on a VAX 11/780, the
standard computational tool for a control laboratory ten years ago. Most of
the computations have been carried out on a SPARCstation ELC.

We will try to keep as much as possible of the design in the frequency
domain. This gives much less computations and the possibility to handle
more general transfer functions. Simulations will mainly be used to verify
the controller designs.

1.3 Drawbacks of existing methods

The review of the results in literature indicated that none of the methods
published serve the purpose of a good PID controller tuning method.

e Many methods are too simplistic, they do not give closed loop systems
with good performance. In some cases it is because the models used
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Chapter 1 Introduction

are too simple, in other cases because the models of the plants are not
efficiently used.

e Many methods use process pole cancellation by controller zeros as the
design principle. This may cause unnecessarily poor load disturbance
attenuation.

e Many methods lack a good design parameter.

The DPD method uses a plant model on transfer function form for con-
troller parameter computation. Various complexity of the model can be used.
The DPD does not require a rational transfer function. Infinite dimensional
systems as time delays, factors of the form e~V* etc., are allowed, and does
not complicate the design process. In some cases the DPD may acciden-
tally cancel process poles by controller zeros, but there is a great difference
between that and using pole-zero cancellation as a design principle. In the
following, design parameters which have the same impact on a large class of
systems will be presented.

1.4 The contents of the thesis

Chapter 1 contains a short description of the background of the work and
some motivations. In Chapter 2 design considerations are discussed and the
notations used in the thesis will be introduced. Chapter 3 contains a review
of previous work in the field of PID controller tuning. Chapter 4 and Chapter
5 describe the methods, design criteria, and algorithms for controller tuning
which have been developed in this thesis. Chapter 6 discusses, mostly by
examples, which information is needed to get models suitable for PI and
PID controller design with the methods presented in the previous chapters.
Chapter 7 gives examples of the tuning of systems and compares the presented
method with different conventional methods. In Chapter 8 the computer tools
used in the implementation of the methods in the thesis will be presented and
discussed. Chapter 9 contains the conclusions and Chapter 10 contains the
references.
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Design Considerations

In this chapter we will introduce the notations which will be used in this
thesis. Some design considerations will also be discussed.

2.1 Notations

As far as possible the structure of the control system shown in Figure 2.1
will be used. The controller transfer function will be denoted G.(s) and the
plant transfer function will be denoted G(s). The loop transfer function is
L(s) = G(s)G.(s). The signals have the following meaning:

yr(t) is the set point signal, which is supplied by the operator or by another

controller.
v(t)
yr ()
—
_b GC (5)

-1 <&

Figure 2.1 The control system.
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Chapter 2 Design Considerations

d(t) isadisturbance on the input of the process. This is the standard model
of plant disturbances. Physically it may, e.g., be an extra inflow to a
level controlled tank.

v(t) is a model of the process noise. Process noise can, of course enter the
system in many places, e.g. inside G(s), but this is easy for computa-
tions.

y(t) is the actual process output, the signal we want to control.

n(t) is the measurement noise. Notice the difference between measurement
noise and process noise. The measurement noise does only exist in the
controller. The process noise affects the output signal of the plant. Of
course the measurement noise can also affect the process output, but
only indirectly, via the controller.

z(t) is the measurement signal, the signal we feed into the controller.

Laplace transforms are denoted by uppercase letters. The control error
signal is defined as

E(s) = Yo(s) = Y(s). , (2.1)

From the formula

_ G(s)G(s) G(s) P
Yo = 1ramam Y T Tramam PO
1
tTremen W 22)
we get
E(s) V() ifD(s)=0and V(s)=0.  (2.3)

T 1+ G.(s)G(s)

It is seen that V(s) affects Y (s) exactly as Y,(s) affects E(s). It is very
common in the literature to regard a step disturbance at V(s) only, see, e.g.,
[Seborg et al., 1989]. If the response to set point changes is also considered a
load disturbance at V(s) does not add anything to the controller evaluation.
External disturbances may of course act on other points of the controlled
system. In [Weber and Bhalodia, 1979] there is an investigation of the influ-
ence of disturbances acting at different places inside the process, but D(s)
and V(s) represent the extreme cases, and nothing else will be considered.
The sensitivity function of the closed loop system will be denoted

1

S(s) = T (2.4)
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2.1 Notations

‘The maximum of the sensitivity function is defined as
M; = max|S(iw)| = |S(iw,)|- (2.5)

The general form of the PID controller we will consider is

STd
1+ s%‘i

U(s) = ke(BY: () = V() + - (V(s) = V() = 4V (s). (2

This is usually called the PID controller on parallel form. The parameter 3
is the set point weighting factor. It can be used to change the overshoots of
responses to set point changes. This is a two degree of freedom system since
the set point and the measurement signal are treated differently. Some vari-
ants of the PID controller will be discussed in Chapter 3. The conventional
and compact way of writing PID-controllers is

1 k;
Gri(s) = ke T =kt | (2.7)
1 k;
Gpin(s) = k(1 + 7+ sTy) =k + — ska (2.8)
1 STd
Gpmr(s) = ke(1+ T + | T ). : (2.9)

The controller G'pipr(s) has a filter in the derivative part to make the con-
troller physically realisable. This does not cover all aspects of PID con-
trol, since these formulas indicate that measurement and set point values
are treated equally, which is not the case for the normal implementation. In
some cases (e.g., 8 = 1 and T = 0) the compact form Gp1(s) is the same
as the “true” form, (2.9). The controllers Gp1, Gpip, and Gprpp will still be
used frequently since the poles of the closed loop system will be in the same
places as with (2.9). Only a zero of the closed loop system will be affected.
Furthermore, y, and 8 do not affect the response to load disturbances.

2.2 The problem setting

Our goal has been to give a method to tune a standard PID controller, given
the transfer function of the system. When we design controllers we must

‘- consider oo

\
e set point changes

e load disturbances

® noise
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Chapter 2 Design Considerations

'@  sensitivity to process variations.

We will handle load disturbances by minimizing the error integral when
the system is subject to a step load disturbance. To cope with process vari-
ations we will require certain maximum value of the process sensitivity func-
tion. Finally, set point changes will be shaped by set point weighting. The
only thing we do not try to handle explicitly is the noise. However, the noise
comes into the picture when the filter in the derivative part is chosen. As far
as we are concerned, load disturbance attenuation and insensitivity to process
variations will be our main objectives in controller design. Load disturbances
are considered to be the most common disturbance in process industry. This
implies that if we do not get the response that we want for a change in the
set point signal we have to make another design and get a worse response to
load disturbances and plant variations.

This method agrees well with the principles in, e.g., [Horowitz, 1963],
where the feedback is used to handle load disturbances and process uncer-
tainty, and feed forward is used to shape the response to the set point signal.

A PID controller is a simple controller structure and this implies that
there is a limit of what we can achieve with it. This rules out attempts to
get high performance from systems with very low damping or from systems
with multiple resonances.

The systems we can handle successfylly with PID controllers are mainly
plants from process industry, i.e., systems which are dominated by time delays
and non-resonant lags. Furthermore, only single-input-single-output (SISO)
systems will be considered.

Load disturbance criteria

A number of penalty functions have been suggested in optimization of PID
controllers. The most used are
Integrated Error:

o 1
IE = / e(t)dt = = (2.10)
0 ki
Integrated Absolute Error:
IAE = / (1) dt (2.11)
0
Integrated Square Error:
ISE = / e(t)? dt (2.12)
¥~ 0
Integrated Time multiplied Square Error: !
IT?SE = / (te(t))? dt (2.13)
0
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2.2 The problem setting

Integrated Time multiplied Absolute Error:
KME:/ tle(t)] dt. (2.14)
0

The only cost function of these which, in the general case, can be evalu-
ated without numerical solution of differential equations is IE. The transfer
function from load disturbance to process output is

, G(s)
”@:1+@@m@)

D(s). (2.15)

Let G(s) = kgs + k + k;/s and D(s) = 1/s, a step load disturbance. Then
we get from the final value theorem

t G(s) 1
IE tgglo/o y(r)dr Shg}) 51 ISP N R TeT P
1 1 .
h = . , 2.
520 5G=L(s) + ks + ki + kas? K (2.16)
If )
li = » - .
0 G(s) 0, (2.17)

i.e.,if G does not contain any differentiators. This important relation makes it
possible to compute a cost functional by using only the controller parameters.
This relation will be used in the following as an optimization criterion.
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Previous work

In this chapter we will review some of the work which has been done in
the area of PID controller tuning. A number of different approaches to the
tuning of PID controllers have been taken. They have here been divided into
the heuristic, the analytical, the frequency domain, and the optimization
approach.

Most of this work was done between 1940 and 1970. Lately there has
been a renewed interest in PID controller tuning due to the use of expert
systems and smart controllers. When these systems are used there is a need
to automate the tuning of simple controllers. Rules of thumb and control
engineers’ intuition must be formalized and written down as algorithms and
rules. This requires better insight into the design methods, and methods
which can cope with a greater variety of process dynamics.

There has also been a renewed interest in tuning of simple loops due
to new autotuning techniques, see [Astrém and Higglund, 1984].. In these
methods a simple model is estimated by a simple and robust method, the
model is then the base for design of a PID controller.

Since the PID controller is the most common controller in process in-
dustry there has been research in methods for automatic tuning of such con-
trollers. In [Yuwana and Seborg, 1982], [Lee, 1989], and [Lee et al., 1990]
a poorly controlled loop is given a step in the set point signal and an im-
proved controller is computed from the shape of the response. In [Astrém
and Hagglund, 1988]"certain points on the Nyquist curve of a system are
computed from the oscillations obtained when the system is controlled by
relay feedback. The estimated frequency response is then used for controller
design.
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3.1 Heuristic methods

3.1 Heuristic methods

In 1942 Ziegler and Nichols (ZN) published the classic paper “Optimum Set-
tings for Automatic Controllers,” [Ziegler and Nichols, 1942]. For the first
time rules of thumb for tuning a PID controller were published. Some in-
teresting historical notes from an interview with Mr. Ziegler are given in
[Blickley, 1990]. By simple experiments with the process dynamics Ziegler
and Nichols determined suitable values for the parameters of a PID con-
troller for good attenuation of load disturbances. Ziegler and Nichols made
two kinds of experiments. In one experiment they tried to determine the
time constant and time delay from a step response of the open system. The
second experiment was carried out under proportional control and aimed at
finding the ultimate gain and frequency of the system. Quarter amplitude
damping of the response to a step disturbance on the output of the controller
was considered to be the good behaviour of the closed system. The controller
settings were found from experiments on physical processes.

The key idea behind the ZN methods is to characterize the process dy-
namics with a few parameters. Controller parameters are then given as func-
tions of these parameters. Only two parameters are used in the ZN methods.

In the open loop method the parameters are the apparent dead-time and
the maximum slope. In the closed loop method (the self oscillation method)
the parameters are the ultimate gain and the ultimate period. Since a PID
controller has three parameters the additional condition T; = 47} is also used.
The ZN method is very simple and surprisingly effective. It is the basis of
many practical tuning procedures currently used in industry.

The ZN methods give only approximate values of the controller parame-
ters. Often it is necessary to adjust the controllers manually for fine tuning.
For this reason there have been many attempts to improve the ZN tuning
methods. To do this it is necessary to introduce more features. It is also com-
mon to distinguish between stable processes and processes with integration.
Some recent tuning rules of this type are given in [Hang et al., 1991].

3.2 Analytical methods

Most of the tuning methods presented are based on analytical methods. The
‘process is then described by a transfer function. In this section some of the

tuning methods based on analytical methods will be described.
\
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Chapter 3 Previous work

‘Pole placement methods

An early attempt to analyze a process controlled by a PID controller can be
found in [Callender et al., 1936] and [Hartree et al., 1937]. In [Hartree et al.,
1937] the process

e—sL
Gls) =K (3.1)
is studied. A PID controller with the structure
b . 2
U(S) — b18 + 2 . (5} + n9s + n3s E(S), (3.2)

Sﬁ*bl S

is used. By specifying the roots of the characteristic equation of the closed
system, the parameters of the controller can be determined by solving a
nonlinear equation. The poles of the closed loop system were placed in a£10.
The parameters a and ( are chosen so that the load response would go to zero
“as rapid as possible.” We quote from [Hartree et al., 1937]: (the parameters
v1 = n1T? and vo = noT have been introduced) . .

“The best values for the control parameters are those for which
« is fairly high both for the fundamental and for the subharmonic,
and 3 for the subharmonic is not too small. But the neighborhood
of the saddle point should be avoided, as the values for'a and 3 are
there very sensitive to the values of v; and vy so that the control
would not be flexible (in the sense of giving good control over a
range of values of the control parameters).”

It is interesting to note that Hartree et al. realized the importance
of choosing the controller parameters with respect to the robustness of the
closed system.

Hartree gives a diagram with « and 8 on the axes and with v; and
vy contours in it. The vy and v, parameters are the controller parameters.
Changing the controller parameters corresponds to changing o and g, i.e., the
position of the closed loop dominant poles. Changing the process parameters
also corresponds to changing the vy and vy contours. The only thing we
can say for certain from the diagram is how the change of the controller
parameters affects the closed loop dominant poles. This was of course an
important issue when the parameters of the controller could vary with time.

In [Cohen and Coon, 1953] tuning formulas for P, PD, PI, and PID
‘controllers are derived based on the process model (3.1). Cohen and Coon
consider disturbanees~on the process input. In the case of a P controller the
solutions are required to have “quarter amplitude damping” (QAD). The PD
controllers are specified by QAD and minimum offset for a step change in
the reference value. PI controllers are specified by QAD and minimization
of the IE criterion. PID controllers are determined by three poles, two poles
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3.2 Analytical methods

~are placed to get a QAD mode, one real pole is placed on the negative real

axis at the same distance as the two complex ones and the distance of the
poles from the origin is obtained by minimizing IE. As a result of their
investigations Cohen and Coon present a number of formulas for the tuning
of PID controllers. The tuning rules of Cohen and Coon come close to the
ZN rules when L/T is small. The method presented in [Smith and Murrill,
1966] follows the ideas of [Cohen and Coon, 1953].

A number of design methods are based on algebraic manipulations of a
transfer function. The approach taken in [van der Grinten, 1963] is: com-
pute an ideal controller from the desired response and a given model, then
approximate the controller so that it fits into the PID-structure. This often
boils down to cancellation of process poles by controller zeros. Similar ideas
can be found in [Haalman, 1965], where it is assumed that

e controllers and processes can be matched in such a way that the open-
loop transfer function is the same for all combinations

e a purely integral controller yields good control for a purely dead-time
process.

Process poles are then cancelled by controller zeros, so that the resulting
loop-transfer function will be L(s) = ke™*% /s, with k = 2/(3T'). This method
has recently been used in [Rad and Gawthrop, 1991] for autotuning purposes.
The design methods in [Pemberton, 1972] and [Smith et al., 1975] use roughly
the same principles.

The danger of cancelling process poles by controller zeros is that control-
lability is lost which implies that the controller does not act on the modes
corresponding to cancelled poles. The approach is particularly bad if the
process has slow poles. The response to load disturbances is then quite slug-
gish. The drawback of cancellation of process poles has been pointed out
many times [Shinskey, 1988], [Hang, 1989], and [Clark, 1988] but the ap-
proach keeps reappearing in the literature. According to Hang problems may
arise when slow dynamics is cancelled and we have a disturbance acting on
the input of the process. Clark claims that we may get large transient errors
when we have limitations on the control signal. In [Truxal, 1955] pp. 303-305
a number of reasons are given why one should not cancel process poles with
controller zeros.

The ‘Dominant Pole Design’ (DPD) is also a method based on pole
placement. The method was first suggested in [Astrém and Higglund, 1985]
and further explored in [Astrom, 1988]. The idea have been used earlier for
special plants, e.g., in [Cohen and Coon, 1953] and [Hartree et al., 1937], but
not as a general method. The method will be further explored inythis thesis.
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Chapter 3 Previous work

-The internal model principle

The internal model principle, see [Rivera et al., 1986] has also been applied
to the design of PID controllers. Controllers obtained by this method have
the transfer function

eptell

Gc = )
1-G;ala

(3.3)

where G’; is an approximate inverse of the process transfer function and G
is a low pass filter, typically G¢(s) = 1/(1 + sT%). It follows from (3.3) that
controllers of this type will always attempt to cancel poles of the plant. This
is illustrated by an example.

EXAMPLE 3.1-—Internal model principle
For a process with the transfer function

G(s) = e L (3.4)

an approximate inverse is given by

1+ 6T
Gi(s) = B . (35)

With the low pass filter G(s) = 1/(1 + sT) and the approximation e™*L ~
1 — sL the controller becomes

Gel9) = oy (3.6)

which is a PI controller. With the first order Padé approximation

‘ 1 —sL/2
—sL __
N R 5y (3.7)
we get the PID controller
Go(s) = (1+sL/2)(1+sT) (1—|—sL/2)(1+sT). (3.8)

kps(L+ Ty +sT;LJ2) ~ kys(L+ Ty)
This way of apprc;(h;ating transfer functions and controllers isitypical for

IMC and the design methods which are based on algebraic manipulations.
O
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-Modulus and symmetrical optimum

Modulus Optimum (BO) and Symmetrical Optimum (SO) are two methods
for selecting and tuning controllers. The methods are extensively used by
Siemens. The acronyms BO and SO are derived from the German words
Betragsoptimum and Symmetrische Optimum, see [Kessler, 1958a], [Kessler,
1958b], [Frohr, 1967], and [Frohr and Orttenburger, 1982]. In spite of their
names these methods are algebraic pole placement methods. The methods
are based on simple analytical calculations and some heuristic rules. The
methods are interesting because they form a methodology to design simple
controllers.

The key idea is to shape the loop transfer function L(s) = G.(s)G(s) to

approximate either
2

Ly=—b (3.9)
27 s(s + 2¢w) '
for BO or
w?(2s +w)
bs=520) , (3:10)

for SO. The name symmetrical optimum derives from the fact that the Bode
diagram is symmetrical around s = iw for Ls(s). The motivation for these
choices is to make the closed loop transfer function L/(1+ L) maximally flat
at the origin. The design method corresponds to a pole placement method
with the characteristic polynomial s? + v/2ws 4 w? for BO and (s + w)(s? +
ws + w?) for SO. The SO method gives a command response with quite a
large overshoot. In this case a prefilter is introduced to reduce the overshoot.

The design method consists of two steps. In the first step the process
transfer function is simplified to one of the following forms

1 .
Gi(s) = T (3.11)
1 .
GZ(S) = (1+8T1)(1+5T2)’ T1 > Ty (312)
1
Cla(s) = ) (3.13)
Gals) ! T > T, (3.14)

B s(1+ sT1)(1 + sT3)’

Process poles arevcancelled by controller zeros to obtain the desired loop

transfer function. A slow pole may be approximated by an inte‘egrator and

fast poles may be lumped together. The response to load disturbances is

sometimes poor because process poles are cancelled. A summary of some of
the design rules are given in Table 3.1.
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Table 3.1
Process Controller Remark L Method
1 I Ly, BO
2 PI Cancel T} Ly, BO
2 P 14+sTy =~sTy L; BO
2 PI 1‘+~81H QﬁS]H .L3 SO
3 P Ly, BO
3 PI Ly SO
4 PD Cancel T1 L2 BO
4 PID Cancel T1 L3 SO
4 PD ],+-SJE Qﬁs]& ,Lg SO

These design principles can be applied to other processes as well. If we
want to make the frequency response curve of

G (1w)G(iw) |
1+ G (iw)G(iw)

|Ger(iw)| = | (3.15)

as flat as possible in the origin one can proceed as in Example 3.2.

EXAMPLE 3.2—Time delay and first order lag

For a BO design, cancel as many poles as possible with controller Z€ros,
then use the rest of the parameters to zero out as many coefficients of w as
possible in (3.15). For a SO design do not cancel any poles directly, but
zero out as many coeflicients of w as possible in the Taylor series expansion
of the numerator and the denominator of (3.15). This involves much more
complicated computations. Consider the process

e—sL
G(s) = T (3.16)
controlled by
1
Ge(s) = ke( sT-)' (3.17)

BO for PI control We immediately get T; = T from process pole can-
celling by the controller zero, and k. = T'/(2L) from setting the coefficient of

w? in the denominator of |G ¢y (iw)]| to zero.

SO for PI control The parameters k. and T; are obtained from setting
the coefficient of w? and w* in the denominator of |Gy (iw)| to zero. This
leads to the equations” )

(3.18)

(k2 + 1+ 2k)T; + (—2k,T — 2Lk.) =0
(=L?ke +T% — 2Lk.D)T; + (Lk,. /3 + TL%k.) = 0.
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Ti

Figure 3.1 Controller parameters for 7' = 1 as function of L. Upper figure: ke,
lower figure: T; . C

The parameters k. and 7T; are plotted in Figure 3.1 for the case T' = 1 and
L varying from 0.1 to 2. This method gives reasonable time responses of the
closed loop system. O

3.3 Non parametric frequency domain methods

Most standard text books on control give methods for computing PID con-
trollers from information in Bode or Nyquist diagrams, e.g., amplitude and
phase margins. See, e.g., [Truxal, 1955], [Astrém, 1976], and [Seborg et al.,
1989]. Recently [Lee et al., 1990] has published a method which uses M, as
design specification.
Another way of designing PI controllers can be found in [Buckley, 1964].

The method is quite simple and based on a Nichols diagram: choose controller
‘gain k. to get a reasonable My, then choose T; to get an additional phase lag
of 5° — 10° at the frequency corresponding to the M, peak.

In a recent thesis, [Thomas, 1990], the properties of Nyquist and Bode
curves are used to design PID controllers. Thomas has also made some
analysis on the Ziegler-Nichols design methods.
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3.4 Optimization methods

Many attempts have been made to tune PID controllers with optimization
techniques. A number of different optimization criteria have been used. The
most important are IE, [AE, ISE, ITAE, and IT?SE, as introduced in Chapter
2.

As a part of specifying the optimization criteria it is also important to
specify the disturbances we are optimizing for. Good discussions of the phys-
ical significance of different optimization criteria can be found in [Shinskey,
1988] and [Shinskey, 1990]. Most of the interpretations come from applica-
tions in the process industry, where PID controllers have been widely used.
According to Shinskey the key concerns in PID control are

e efficient load attenuation, this means that disturbances on the process
input should be considered, not responses to set point changes

e minimization of IAE

e minimization of peak deviation, e,, at a load disturbance.

Shinskey gives octane control in gasoline production as a typical example
of when the IAE criterion is relevant. The IE criterion is relevant, e.g.,
when the output of the controlled process leads into a large storage tank (an
integrator) with good mixing and the concentration of the product in the
tank is to be controlled to get a product of a specified quality.

The desire to minimize the total control energy may lead to the use of
ISE criterion. Similar arguments have been used in the LQG literature, see
[Kalman, 1960]. An interpretation of PI design in terms of LQG can be found
in [Athans, 1971] and in [Marsili-Libelli, 1981].

The criteria ITAE and IT?SE have in general no physical significance.

Almost all optimization has been done numerically. It is possible to
find analytical expressions for the cost functional ISE, see [Astrém, 1970]
and [Walton and Marshall, 1984] and the functional IT*SE, see [Zhuang and
Atherton, 1991] and [Zhuang, 1991]. This simplifies the computation of the
integrals, but the actual optimization must, in the general case, be carried
out numerically. The IAE cannot be computed analytically, the cost func-
tional must therefore be computed by numerical solution of the underlying
differential equations. Analytical expressions for IE are easily obtained, and
the minimization of IE can be carried out analytically in certain cases.

Each optimization is carried out for an external disturbance of the pro-
cess. The most common disturbance is a change in the set point signal or a
load disturbance on the process input. Investigations of random loads have
also been carried out. Different results are obtained depending on where in
the process a disturbance acts, see [Weber and Bhalodia, 1979].

In [Ziegler and Nichols, 1943] PID controller settings are made based on

the IAE criterion. Ziegler and Nichols observe that IAE of a load disturbance
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is approximately IAE ~ IE = fooo e(t)dt = 1/k; for a well damped system.

In [Hazebroek and van der Waerden, 1950b] and [Hazebroek and van der
Waerden, 1950a] controllers are designed by minimizing an ISE criterion nu-
merically. Formulas for k., and 7} are obtained as a result. The formulas are
similar to Ziegler-Nichol’s formulas, but the k and 7; are more complicated
functions of L and T'.

In [Wolfe, 1951] the system

(3.19)

controlled by a PI controller was investigated. The same the same pole place-
ment technique was used as in [Hartree et al., 1937]. However, Wolfe chose
the parameters of the controller (or the locations of the poles) by minimizing
the IE criterion, when the system is subject to a disturbance at the input of
the process.

In [Oldenburg and Sartorius, 1954] a number of different optimization
criteria are investigated, e.g., IE, ISE, and fooo J(w?) dw, i.e.,’an integral of
some kind of frequency spectrum.

In [Lopez et al., 1967] computations can be found of standard PI and
PID controllers when a system with the structure of (3.1) is subject to step
load disturbances at the process input, the IAE, ISE, and the ITAE methods
are used in the optimization. A good comparison of these methods can be
found in [Miller et al., 1967]. In [Rovira et al., 1969] similar investigation are
made, but optimized for a step disturbance at the set point input. In [Sood
and Huddleston, 1973] PI controller settings are computed with the IAE
criterion for the case when random disturbances act on the process input.
Their conclusions are

“It is perhaps best not to generalize the results however, other
than to say that if load changes appear in the system at intervals
less than the response time of the system, some of the integral action
of the controller should be substituted by proportional action.”

Various tuning formulas have been represented as ‘tuning maps’ to aid
the process operator in tuning controllers, see, e.g., [Wills, 1962] and material
produced by Foxboro, e.g., [Fox, 1979]. Many of the optimization results were
computed in the sixties with early digital, analog, or hybrid equipment. The
minima of the integral criteria are rather flat, so there may be difficulties
in obtaining accurate-results, if high precision is not used in the numerical
computations. Results from different sources differ slightly, approximately
1 — 5%. The formulas presented for controller parameter settings are least
square approximations of the optimization results. The formulas are only

valid for relatively short time delays, L < T, and should be used with caution.
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In [Harris and Mellichamp, 1985] the optimization of an ‘Index of Per-
formance’ as a design method is proposed. As an example they suggest

M, — M m = Pm
I P pd]+wf/wr+|90 4 dl’

IP = w,,
]\/[pd Pmd

(3.20)

where M), is the resonant peak ratio, and M,4 its desired value, w, is the
resonant frequency, ¢,, is the phase margin and ¢,,q is its desired value.
The parameters w,, and w; are weighting factors. This is, of course, a
very general method. The results are obtained from numerical optimization,
and requires reliable and efficient software. It is impossible to make any
statements about the existence of optima, stability of solutions etc., in the
general case.

3.5 Structures of PID controllers

Several different PID controller structures have been proposed, in addition to
the PID controller presented in Chapter 2. Some are.mere reparametnzatlons
of (2.6). The standard controller can also be written
1 sTé

2 1 + N'
This is called the series form of a PID controller. The standard controller,
(2.6) may have complex zeros in the controller, which cannot happen with

(3.21). Thus (2.6) is more general than (3.21). The relation between the
parameters of the two controllers are

T, + T}

Gpip(s) = k(1 +

k. =k, T (3.22)
T, =T, + T} (3.23)
TT/N'" =T
Ty = =%t ¢ 24
T ON(TI + T (3:24)
TN =T}
= w (3.25)
The inverse transformation is
ki, =27 (3.26)
Z7T;
T! = p (3.27)
(k. — \
T, = TL(%___@_ (3.28)
1
7 = Bl *ZN) Z (3.29)
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where Z is

T;+T;N £ \/(Td -+ TiN)2 — 4TdeN(1 + N)
¢ 2T; N

. (3.30)

Hence for certain values of k, T;, T4, and N, the parameter Z, may become
complex and there is no physically realizable solution on the series form. The
controller structure

(1+ ;—}E)(l + 5Ty)
(1+ %)

—_— fn

c —

(3.31)

has also been suggested.
In [Frank, 1968] the PIS,, controller is suggested for dealing with systems
with time-delays. The PIS,, controller has the structure

kO
Ron(s) = ke + 2+ 3 o, (3.32)

which can be interpreted as an approximation of a Smith predictor.

The modified PID controller

Y, (s) — Y(s)
STi

S(BaY(s) =Y (5)), (g 5

G.(8) = ke(BpYr(s —Y (s
(5) = ke(ByYls) = Y(5) T

+

is examined in [Bitelberg, 1987], [Hippe et al., 1987], and in [Wurmthaler and
Hippe, 1974]. In [Mantz and Tacconi, 1989] these additional degrees of free-
dom are used to obtain a both tracking and regulating controller. Based on
calculations with the Bode integrals Mantz and Tacconi suggest 8, = 0.17 and
B4 = 0.654 as appropriate values. However, there will be a large ‘derivative
kick’ in the control signal, due to the presence of Bq4. In all realistic controllers
we should have B4 = 0. This method can also be interpreted as cancellation
of closed loop oscillating poles with controller zeros. The advantage with the
alternative PID structures is that we can get better performance from the
system. For example, we may get good disturbance attenuation and good
set point following at the same time. The disadvantages are that there are
more parameters to tune and that these control algorithms are not usually
implemented in commercially available controllers. For a good compilation
of properties of commercial controllers, see [Astrom and Hagglund, 1993).

v The alternative PID controllers may have some theoretical interest, but
if one wants to get more performance out of a controller one should not
restrict oneself to PID controllers, but look for more general controllers.
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3.6 Summary of tuning formulas

In this section we present a compilation of many common tuning formulas.
Most of the tuning formulas apply to the process

e—sL
=k ) .
G(s) T (3.34)
We assume that the controller is written as
c — kc 1 . .
Guls) = kel + -+ 5T2) (3.35)

The ultimate period and the ultimate gain of a process is denoted T, and
k., and are defined by arg G(27i/1,) = —n and k, = 1/|G(27¢/T,)|. The
normalized dead time is defined as @ = L /T and the normalized process gain

as Kk = kk,,.

P control

Method k.k

ZN step (%)_1

ZN osc. 0.5k,
Cohen-Coon (%)— + 0.35
ISE 1.411(%)=0917
IAE 0.902(%)~0.985
ITAE 0.490(%&)—1-084
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PI control
Method k.k T;
ZN step 0.9(%)~1 L/0.3
ZN osc. 0.45k,, Tu/1.2
T(0.9%+0.083(%)?)

Cohen-Coon 0.9(%)~" +0.083 527106(E)
ISE load 1.305(%)~0-959 2.0337'(£)0-7°
IAE load 0.984(#%)~0-986 1.644T (£)0-707
ITAE load 0.859(%)=0-977 1.4847T ()08

: L\—0.892 T
ISE set point 0.980(%)~ 3599—0.1T55( L)
IAE set point  0.758(%)~0-861 1.02_0?1323(%)
ITAE set point 0.586(%)_0'916 550 165(E)
Haalman —g—,f; T
Refined ZN ku%(léiﬁgh) Tuz(Er + 1)

PID control
Method k‘ck Ti Td
ZN step 1.2(%)7! 2L 0.5L
ZN osc. 0.6k, Tu/2 T./8
LN—1 1.3540.25 & 0.5

Cohen-Coon 1.35(7)7" +0.25 Lot ;_ T 3
ISE load 1.495(%)0-945 O.917T(%)0 T 0.5607(£)1008
IAE load 1.435(%)~09% 1.139T(&)0-7°  0.482T(£)* 137
ITAE load 1.357(%) 0947 1.176T(%)0-738  0.3817T(£)°-9%

- L \—0.897 T L10.888
ISE set point 1.048(%)~ TT95=0.368(E) 0.489T(F)
IAE set point ~ 1.086(7) "% Go—has 0.348T'()%°1*

: L T L 0.

ITAE set point  0.965(#)7%%° 5756 =0.1165(%) 0.308T'()°92°
Pessen 1 kv /5 T./3 T./2
Pessen 2 k./3 Tw/2 T./3

These formulas have been compiled from [Ziegler and Nichols, 1942],
[Hazebroek and van der Waerden, 1950b], [Cohen and Coon, 1953], [Haalman,
1965], [Miller et al., 1967], [Rovira et al., 1969], and [Hang et al., 1991]. Most
of these formulas .are- valid only for 0.1 < L/T < 1. A number of these
tuning formulas are plotted in Figure 3.2. As can be seen the maih difference
between the different tuning rules are their values for the integration time.
Comparisons and interpretations of different tuning rules will be discussed
further in Chapter 7.
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Figure 3.2 The controller parameters for of G(s) = e *L /(1 + sT'), with ZN
(solid straight line), Cohen-Coon (dashed line), IAE (dotted line), ISE (dashed-
dotted line), and ITAE (solid line). ' ‘
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Pl and control

The most common control algorithm is the PI controller. When a PID con-
troller is used the derivative action is often switched off, and it becomes a PI
controller. In this chapter methods for tuning PI controllers will be devel-
oped. Since a PI controller has two parameters it is natural.to try to specify
the controller by placing two poles of the closed loop system. PD controllers
are not as commonly used as PI controllers, but since PD controllers also
have two parameters they can be tuned in a similar way.

4.1 Limitations of PI control

In this section we will give some examples of the limitations of PI control.

EXAMPLE 4.1—First order system
The closed loop system obtained when a first order system is controlled by a
PI controller is of second order. Its poles can be located arbitrarily. Let

a
G(s) = 4.1
()= (4.)
and .
| (s) = k(1 :
o . Gels) = k(1 + =) (4.2)
then the characteristic equation becomes '
9 ak
s+ (b+ ak)s + 7 = 0. (4.3)

(2
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- From this it is clear that any poles can be obtained by chosing k and T;
properly. Hence for first order systems dynamics is no limitation. Tuning is
instead limited by other factors. O

EXAMPLE 4.2—Systems without integrators

Systems without integrators can always be stably controlled by a PI con-
troller. This can easily be realized from a root-locus argument. Of course
the system may be very slow. The key point is that there is only one inte-
grator in the origin, O

EXAMPLE 4.3—System with double integrator
A PI controller has a phase lag between 0° and 90°. This means that any
process with a phase lag of 180° or larger cannot be controlled by a PI
controller. PI control will not work for a double integrator, as can be seen
from the following argument. Suppose we have

G(s) =

11
?5@ N (4.4)

with dega(s) = n. The characteristic equation for this system controlled by
a PI controller, G.(s) = k + k;/s, is

s’a(s) + (ks + k;) = 0. | . (4.5)

Since there is no s? term we know for sure that the system cannot be stable
when controlled by a PI controller. O

4.2 Dominant Pole Design

A systematic method for tuning controllers will now be developed, given a
system with transfer function G(s). The idea with Dominant Pole Design
(DPD) is to find a controller such that the dominant poles of the closed loop
system are in specified locations. In general it is possible to place as many
poles as there are free parameters in the controller. Problems may arise
when there are more poles in the closed loop system than the number of free
parameters in the controller. The poles we have specified will of course be
in the right positions, but we have little control of the other poles. Whether
or not the system-wil behave sensibly will depend on where we place the
“dominant” poles. E.g., if we specify what we think are the domlinant poles
too far out in the complex plane, i.e., require too high bandwidth of the closed
loop system, it is very likely that a system of high order will be unstable in
closed loop.
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If the system is of such low order that the order of the system plus the
order of the controller is less or equal to the number of free parameters in the
controller, of course these problems do not arise. Then we may place all the
poles in suitable locations. Similar ideas for tuning simple controllers can be
found in [Hartree et al., 1937], [Cohen and Coon, 1953] and [Wolfe, 1951].
The methods presented here can be seen as developments and generalizations
of their ideas.

The formulation of DPD used in this thesis makes no assumptions of
G(s). We do not require knowledge of poles or zeros of G(s), i.e., we do
not require that it should be possible to write G(s) as a system of ordinary
differential equations. Some problems including flow and heat transfer give
rise to transfer functions including e=VsT see, e.g., [Sundaresan and Krish-
naswamy, 1978]. Unfortunately such systems are difficult to simulate in the
time domain.

Dominant Poles

Intuitively it seems reasonable to say that some closed loop poles are dom-
inating if the closed loop response is well approximated by the contribution
from these poles. Many control systems have a closed loop pole-zero pat-
tern as indicated in Figure 4.1, see [Truxal, 1955]. Sometimes the complex
poles with largest real parts are called the dominating poles, see [Takahashi
et al., 1972]. In Figure 4.1, A and B are the dominating poles according to
this definition. The situation in general is not so simple because the closed
loop response also depends critically on the existence of closed loop zeros,
close to certain poles, like the pole-zero pair C in Figure 4.1. This pole-zero
pair gives rise to a small residual. This pole gives a small contribution to

A
A
X
X % C
-G -
% X
B
¢
X \

Figure 4.1 A typical pole-zero pattern of a closed loop system.
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a time response. Similarly, oscillating poles with small real parts and large
imaginary parts may also be poorly exited by typical commands.

Dominant Pole Placement

Suppose that a plant with transfer function G(s) is given. We want to control
the plant with a controller which transfer function is G.(s). Suppose that
the controller has the structure

G.(s) = bos™ +bys™ T+ 4+ by B(s)
e\s) = st(s™+ars" 4+ ... +ay) stA(s)

(4.6)

Where the constants m,n, and £ are given. There are then m + n + 1 free
constants in the controller. The closed-loop transfer function is

B(s)G(s)

GCL(S) - Sffl(s) -+ B(S)G(S) .

(4.7)

To determine the m+n+1 parameters we require that the closed loop system
must have poles in specified locations p1,...,pminsi. We must solve

pi(PF 4 a1pl Tt + o an) + G0:)(bopT + bipT Tt 4L 4 byy) =0, (4.8)

fori=1,....m+n+1. Let

pt™t o p G(p1)pT* .o G(m)
R = :
pfr_ffr:jl an+n+1 G(pm+n+1>p%+n+1 G(Pm+n+l)(4 9)
Introduce
T
vz[al co. an by ... bm) - (4.10)
T
P=(-pt .. LT (4.11)

The controller parameters are now obtained as solutions of the equation
Rv = P. (4.12)

This requires R to-be-invertible. If p; = p;, ¢ # j then two rows in the R
matrix will be equal and thus R will not be invertible. Problemb may also
arise when we try to place a closed loop pole on the location of an open loop
pole, where G(p;) = 0o, and the equations are not solvable. As special cases
of this method we may get different forms of PID controllers.
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PI conirollers are obtained if m = 1, n = 0 and £ = 1. If we use the
standard form for a Pl-controller

1
) (4.13)

GPI(S) = k(l -+
we get
k = b (4.14)
Ti - bO/bl-

PID controllers are obtained if m = 2, n = 0 and £ = 1. With the
standard parametrization

GPID(S) = k(l -+ T + STd), (4.16)
we get _
k=b ’ (4.17)
T; = by /by (4.18)
Ty = bo/by. _ . (4.19)

PID controllers with derivative filter are obtained if m = 2,n =1,
and £ = 1. If we use the standard form for a PID-controller with a derivative

filter

1 STd
G = k(1 4.2
PIDF ($) (1+ 5T, + o, S%), (4.20)
we get
by 1
T, = — — — 4.21
b ; (4.21)
by T
k = 4.2
- (1.22)
N= o (4.23)
N
T, = . 4.24
4= (4.24)

© An advantage”with this method is that we do not need to hgve a state-
space representation of G/(s). The choice of the poles p; is of course critical.
It may be very difficult to choose many closed loop poles for a high order
system, and get a sensible controller. The choice of only a few poles may be
handled successfully. To place two poles, as in the case of the PI controller,
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is almost always possible. To specify a PID controller by placing three poles
may be problematic

For these reasons it must be stressed that pole placement is not the
way to choose the parameter /V in a PID controller. An attempt to do so
will in most cases give very strange values of N. The parameter N is a
parameter to reduce the noise sensitivity of the controller and more or less
an implementation issue.

4,3 Two Dominant Poles

In case of a PI or PD controller there are two free parameters, thus two poles
must be placed. In this section PI and PD controllers will be derived from
this principle.

PI Control

It is convenient to parametrize the PI controller as

Gc(s):k+']—€3:k(1+ !

- ) (4.25)

The characteristic equation of a system with transfer function G(s) controlled
by a PI controller is then

k;

L+ (k+ —)G(s) = 0. (4.26)

We require the closed loop system to have poles in

pl,QZWQ(—CO iiwl—{&):—a:i:iw, 0<C0 <1. - (427)

It is the task of the designer of the controller to choose (3 and wy. Thus we
must solve the equation

ki

1+ (k+ p—)G(pl) =0 (4.28)
1
for k and k;. If we let w
A=ReG(p1) (4.29)
B =1ImG(p1) (4.30)
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we get the equation
k;
—0 + 1w

1 (bt —)(A+iB) =0, (4.31)

o+ ww

1+ (k + )G(—o +iw) =

By setting real and imaginary parts to zero we can solve (4.31) for k and k;,
and we get

b wA+ocB . V1—CA+ (B (4.32)
C o w(A2+B?) /T (3(A? + B?) '
]{Zi _ (w2 -+ 0'2)B . LUQB ' (433)

“w(A2 +B%) L /1- C2(A? + B?)

If the controller is parametrized as

), / (4.34)

the integration time, 73, is given by

T-—k V1I=(GA+ (B
T T W -

ks oB

(4.35)

If we want to have (; = 1, i.e., a double pole in —wy, both the characteristic

equation and its derivative must have a zero in s = —wy. We get
1 + Gc(—wo)G(——wo) =0 (436)
Gé(—WQ)G(—wo) + GC(—WO)G,<—U)0) = 0. (437)
Let A = G(-wo) and A’ = G'(—wy), then we get the equations
k;
1+ (k- —)A = (4.38)
Wo
k; k;
A= VA = 4.
2 + ( wo) 0, (4.39)
Which have the solution
| At wod! |
k = yE (4.40)
wi A
b= —— (4.41)
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These equations require us to know both G and G’, but G' may be difficult
to estimate accurately from measurement data.
We may also get a double pole by letting (; — 1. In this case G(wo(—(o+

iv/1—(2)) — A, and B — 0 and we get

11 B
k== — — lim ———— 4.42
A 42 Colgl V1= 2 ( )

B
ki = — =2 i (4.43)

—— lim ——.
A? (=1 /1 = (2
In numerical computations this is the easiest way to get a double pole.

A different parametrization To get further insight in the nature of k
and k; we parametrize the equations in another way. This parametrization
will be used later in the analysis of PI design.

Define a(wo) and ¢(wg) by G(weel™™ 7)) = a(wg)et®(“e) where 7 is re-
garded as a constant. However, it must be remembered that a(wy) and ¢(wp)
depend on both wy and «y. For the poles p; we get -

wo(—Co +14/1 —(2) = woe™=7) = wo(— cosy + isin~y). (4.44)
Hence v = arccos {y. Using previously introduced notations we get

A = a(wg) cos p(wp) (4.45)
B = a(wyp) sin ¢(wp). (4.46)

Insert these expressions for 4 and B in (4.33) and we get

L _sin(d(wo) +7)

a(wg) siny (447)
b — _ wp sin ¢(wo) 4.48
a(wg) siny (448)
and ' _

k;  wpsin (wo)
Notice that T; is independent of a(wg). From these formulas we see that
the phase ¢(wp) is important if we want to maximize some of the controller
parameters. oo

When v = 7/2 then G(wpe'™™7)) = G (iw) which is the normal frequency
response. If v < 7/2 then the ‘Nyquist curve’ of G(woed™=7)) will look
different from the normal one. In many cases the difference will be very
significant.
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" EXAMPLE 4.4

Suppose

€~3L

Gls) = T 7
from the formulas for k and k;, (4.32) and (4.33), we get

k= e ol ((2w,T ¢ — 1) coswo Ly /1 — 2+
2
+ (woT4 /1~ & + ———Eﬁ — on——\/%C_—E) sinwoLy/1 — (2 (4.51)
0 0

—wo Lo |

(4.50)

k; = wpe

1 — woT
(woT coswoLy/1 - C& + 9 CO sinwoL\/l — (3. (4.52)

O

EXAMPLE 4.5—Poles with a PI controller
Suppose we have G(s) = 1/(s 4+ 1)*, controlled by a PI controller. It is
the task of the designer of the controller to choose suitable & and T;, or
in our formulation wy and (p. In Figure 4.2 the root locus of the equation
1+ Gp1(s)G(s) = 0 is shown for ¢y = 0.7 and wg = 0.1...2.0. |

For small values of wy the two complex poles closest to the origin domi-
nate the system, and as the complex poles are moved further from the origin
other poles move into the right half plane and causes instability. This is a
very typical situation when designing controllers with this method. In the
following we will suggest methods for choosing wy and (o such that the sys-
tem will behave well. O

PD Control

With the same notations as in the PI case we get the parameters of the PD
controller Gpp(s) = k 4 kgs when we place two zeros of 1+ G(s)Gpp(s) =0
in p1 2 =wo(—Co £i/1 = (2). Introducing A = Re G(p;) and B = Im G(p,)

we get

1= A+ B 453
= A 1 B (4:53)

B
kq = :
T wo/1 - C3(A% ¢ B?)
Define the functions a(wg) and ¢(wo) like in the case of PI control, then

A = a(wp) cos ¢(wy) (4.55)
B = a(wg) sin ¢(wp), (4.56)

(4.54)
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Figure 4.2 Root locus of 1 + Gp1(s)G(s) = 0 with respect to wg for (o = 0.7.
Roots for wg = 0.1 are marked with ‘o’. - o

and the formulas for k& and k; in this parametrization become,

_ sin(¢(wo) — )
k = a'(wo) 7 (4.57)
by — sin ¢(wp) (4.58)

woa(wo)siny

Note that the expressions of k£ and k4 for PD controllers are similar to those
of PI controllers.

Maximizing k;

In Chapter 2 it was shown that IE = 1/k;. Since IE can be used as a criterion
for tuning PI controllers it is interesting to study the properties of k; with
respect to wg and (. From the formula (4.48)

Lo 90 sin ¢(wp)
v o " a(w)siny’

(4.59)

i

it is clear that k; has a maximum if G(0) = 1 and the phase, ¢, of the system
reaches —7, because sin¢ = 0 for ¢ = 0 and ¢ = 7, and wo/a(wy) > 0, Vwy.
Therefore it is necessary to study the phase function ¢(wo).
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‘Monotonicity of the functions a(w) and ¢(w)

Some insight about the controller can be obtained from the functions a(w)
and ¢(w) which describe the amplitude and phase of the transfer function
along the ray woe(™™7), These functions are defined by

G(s) = G(woei(”—")) = G(wo(—Co +iy/1 = (2)) = a(wo)ew(“’“). (4.60)

We say that G(s) has monotonic amplitude and phase on the ray woe(™=7)
if the functions a(wg) and ¢(wo) are monotonic. In the following we as-
sume that 0 < v < 7/2. For v = 7/2 we have G(wee(™ ")) = G(iwp),
which is the frequency response of the system. Systems with monotonic
phase and amplitude for v = 7/2 need not have monotonic phase and am-
plitude for vy < 7/2. It is obvious that if G';1(s) and G2(s) have monotonicly
decreasing phase or amplitude on a ray the composite system G1(5)G2(s) =
a1 (wo)az (wo)ei(d’l(“’oH‘ﬁZ(“’O)) also has monotonicly decreasing phase or ampli-
tude on the ray. Because of the equations (4.48) and (4.57) it is of particular
interest to know if the functions are monotonic at-least for some frequency
interval. /

EXAMPLE 4.6—a(w) and ¢(w) for some simple functions
e G(s)=1/(s+10b),b> 0. In this case we immediately get

1
a(wo) _ (4.61)
S~ o cos )2 + R sin®y
and
— arctan —osiny if wy cosy < b;
. b—wg cosv? 0 T
wn) = ‘ 4.62

From this we see that a(wg) has a maximum for wg = bcosy and ¢(wp)
is negative and monotonicly decreasing. The phase ¢ — —7 4+ v as
wWp — OQ.

e G(s)=s+b,b>0.In this case we immediately get

a(wg) = \/(b — wp cosy)? + w2 sin®y (4.63)
and ¥ g .
" arctan 2> if wocosy <b;
$(wo) = bmwpesyy T EOERT 2 (4.64)
T+ arctan g2, if wg cosy > b.

The phase ¢ is positive, monotonic, and ¢ — 7 — v as wg — o0.
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Figure 4.3 Notations for Exarﬁplﬁé 4.7.

o G(s) = e *L. From this we get G(woel(™™7)) = ewolcosvg—ilwosiny
Thus a(wp) = e*°£°°7 and ¢(wy) = —Lwy siny. We notice that a(wp)
is an exponentially increasing function, while ¢(wp) is linear in wy.

o G(s) = 1/s. C(woe(” 7)) = e~ {™=7) /iy, thus a(wy) = 1/wg and
¢(wo) = —m +

o G(s) = w2/(s* + 2(pwps + wz) 0 < (, < 1. The poles of this transfer
function are located at g1 o = wpe’ i7£8) where cosé = (p.- Let 12 be
defined as in Figure 4.3, then arg G(woe’(7r ) = —(¢1 + b2).

Three cases may be identified:

1. Ifé <y then —(¢1 + ¢2) is a monotonicly decreasing functlon start-
ing in 0 and ending in —2(w — ) for wy = co.

2. Ifé6 =+ then —(¢1 + ¢2) is a monotonicly decreasing function start-
ing in 0 and ending in —2(7 — ) for wy = oo, with a discontinuity
of —m in wy = wy,.

3. If 6> v, the phase starts in 0, has a local negative minimum in the

- interval [0,w,cosé/ cosy], goes through 0 for wy = wpcosb/ cosy
' ‘ and finally ends in 2v for wg = oo. This is realized with some
simple geometry. The phase in this case is not monotonic.

Thus the sine of the phase in this case always has the propetty of being
zero at two points, if v < 7/2. O
From these investigations we see that if a system has all its poles inside
the sector 7e‘®, where 0 < 7 < co and T — v < a < 7 + ~ then the phase

2l
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of G(—wpe™) is decreasing monotonicly. It is very difficult to make any
statement about the monotonicity of the amplitude. Fortunately, for a given
transfer function it is very easy to compute the functions a(w) and ¢(w) and
plot them.

EXAMPLE 4.7
Let G(s) =1/(1+ ). In this case we can determine a(wg) and ¢(wp),

: 1
G(- T = : =
( Wo€ ) (1 - woe_zq/)n
1 .
_— —iny
— —e 4.65
(1 — wo cosy)? + w2 sin®v) % ’ (1.65)
where _
arctan 2221 if wycosy < 1;
’Qb((.do) - ' ° wOZinv . 7 (466)
T+ arctan =2, if wg cosy > 1.
To examine a(wy) and ¢(wy), differentiate the functions, and we get
da(wo) _ n(—wg + cosvy) (4.67)
dwy ({1 —wpcosy)? + w?sin®y)5+! .
and
do(wo) n sin -y (4.68)
dwy 1 — 2w cosy + w2’ '

From this example we see that the amplitude for G(—wpe™*7) has a maximum
for wy = cos vy, and that the phase decreases monotonicly, since 1— 2wq cos v+
wg > 0,Vwy. The ‘normal’ Nyquist curve has a monotonicly decreasing
amplitude and phase for all wy > 0. O

The following example will show the behaviour of G(s) on a ray when
the system has a time delay.

EXAMPLE 4.8
Let G(s) = e™*L/(1 + sT). From the definition G(s) = Gwpe™{™=7)) =
a(wg)et?(w) we get

ewotol
afwo) = V1 — 2wq cosyT + wiT? (4.69)
da(wo) _ woor @B LT? = woT(2QEL +T) + Go(L +T) (470)
dwy : (1 - 2woCoT + w2T?)3 .
and
P(wo) = —woLsiny — ¥ (weT) (4.71)
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where 9(wg) is defined in Example 4.7. Clearly ¢(wo7') is monotonicly de-
creasing Vwo, L,T > 0, and ¢(wg) — —00 as wy — oo.

On the other hand, the behaviour of a(wg) is more complex. As wy —
00, a(wg) — o0, VL, T > 0. From the expression for da(wg)/dwy we see that
if T/L < 2siny then a(wg) is monotonicly increasing, otherwise a(wp) first
increases, reaches a maximum, decreases, reaches a minimum, and finally
goes to infinity as wyg — co. O

Properties of £ and k;

One possible criterion for design of a PI controller is to minimize the inte-
grated error (IE) for a load disturbance at the process input. It was shown in
Chapter 2 that this is equivalent to maximizing k;. Hence there is an interest
in more understanding of the functions k = k(wp, (o) and k; = k;(wo, o).
Rolle’s theorem says that if for a continuous function f, f(a) = 0 and

f(b) =0,3¢: a <& <bwith f/(§) = 0. From the formula

_Wo sin ¢(wo)

a(wp) siny

ki = (4.72)

it is clear that k; has a maximum if 0 < G(0) < oo and the phase, ¢ of
the system reaches —m, because sin¢ = 0 for ¢ = 0 and for ¢ = =, and
wo/a(wg) > 0, Vwy.

Write the formula for k; as k;(wg) = g(wo)sin ¢(wg) where we have
introduced g(wg) = wp/(a(wo)siny). Differentiating then gives ki(wg) =
g’ (wo) sin ¢p(wo) +g(wo)d'(wo) cosp(wg). Setting ki = 0 we get tan dp(wy) =
—g(wo)@'(wo)/g'(wo). A reasonable assumption on the plant is that ¢'(wp) <
0 and ¢'(wo) > 0, which corresponds to monotonicly decreasing phase and
amplitude. From this we see that there is a solution w, such that —7 <
¢(wz) < —m/2. The interpretation is that the point on the curve G(woe™))
corresponding to maximal k; lies in the third quadrant.

A condition on G(s) If G(s) is a rational, stable function with relative
degree n, the phase of G(s) = G(wye!"™7)), approaches —n(r — 7) as wq
approaches infinity if all the poles and zeros of the system lies in the sector
ret® 0 <7 <ooand T —v < a < w++. In that case, if —n(r—7) < —m,ie.,
n > w/(m—7), we are certain that k; has a maximum. Since 0 < v < 7/2, we
see that a relative degree of 2 of the plant and the condition on the damping
of the plant poles guarantees that k; has a maximum.

Composite systems If Gi3(s) = G1(s)G2(s) and we parametrize the
\

transfer functions according to (4.48), then we get

wo sin(¢p1 + ¢2)

a1ag sin vy

ko = —

. (4.73)
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From this formula it is seen that a composite system has a maximum of k; if
the sum of the phases of the components adds to —7 for some wyq.

For a second order system we can compute the maximum value of wo
which give stable closed system. Suppose we have a transfer function G (s) =
G'2(8)Ga(s), where Gy is a second order system and G, denotes some addi-
tional dynamics then k; = —wq sin(¢y + ¢,)/aza, siny. The stability limit is
then the wq for which ¢5(wo) + ¢o(ws) = —7. The stability limit is wplp/Co
for a pure second-order system. From the previous formula we see that the
stability limit is decreased when additional dynamics is introduced if ¢a(wo)
is monotonicly decreasing.

Consequences of T; > 0 If the transfer function of the process is G(s)

and the transfer function of the controller is G.(s), the closed loop system

will be
G(s)Ge(s)

1+ G(8)Ge(s)
Hence the zeros of Gy, are the zeros of the process and the zeros of the
controller. If G¢(s) is a PI regulator we are introducing a zero at —1/7T}.
From the formulas for £ and k; we get 7

k _ sin(¢(wo) +7)
ki N Wo sin qb(wg) '

Ger

(4.74)

T, = (4.75)

A common requirement in PID controller tuning is that 7} should be positive.
In that case we must have

sin(¢(wg) + )

oo sin ¢ > 0. (4.76)
If we assume that ¢(wy) < 0 then we get
-7 < ¢p(wgy) < —7. (4.77)

For most transfer functions ¢(w) is monotonic and negative. The assumption
that T; should be positive and the inequality (4.77) puts limits on the possible
values of wy.

The ki(k) curves The stability regions of a system controlled by a PI
controller is k; > 0 (provided G(0) > 0) and the k;(k) curve obtained with
Co = 0, which corresponds to placing two poles on the imaginary axis. We
get

Re G(ZUJO)

LR (4.78)
ki = ~WT?{Z§S‘[‘QO) (4.79)

Motivations and discussions of this can be found in [Hwang and Chang, 1987].
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'EXAMPLE 4.9—Fk;(k) curves for G(s) = e*L /(1 + sT)

Consider

e~sL

G(s) = T
In Figure 4.4 the k;(k) curves are plotted as functions of wg and (. The
solid lines correspond to constant (y = 0,0.1,...1.0 and the dotted ones to
constant wyg.

In the figure some of the standard PI controller settings are marked.
Settings according to Ziegler-Nichols are marked with 1, Cohen-Coon with 2,
TIAE with 3, ISE with 4, and ITAE with 5. Note that all these settings occur
for an wy which is greater than the wy corresponding to a maximal k; using
the (o which is obtained at the different optimal settings. This fact will later

(4.80)

be used for design procedure recommendations. O
EXAMPLE 4.10—%k;(k) curves for G(s) = e™*L/s(1 + sT)
Consider
e—sL
G(s) = ———. 4.81
(s) s(L+sT) . (4.81)
The curves in Figure 4.5 resemble the curves from Example 4.9. O

EXAMPLE 4.11—Fk;(k) curves for a resonant system

Consider
0.5

(5+05)(s?+2-025 + 1)

Its k;(k) plot can be seen in Figure 4.6.

When curves for higher (; crosses curves for lower (; we know for sure
that there are less damped poles than the poles corresponding to controllers
on the curve with high value of (.

In this example we see that poorly damped poles in the plant implies
that k; may not have a maximum if we require too well damped poles in the
closed loop system. This also puts a limit on the bandwidth of the closed
loop system if we want well damped poles. . O

Systems may also have non-convex k;(k) curves. An example is

G(s) =

(4.82)

e 6—23

:1+3+1+25

G(s) (4.83)
for large values of (y. Systems with several transport delays may be described
with such models.

~Using this paremetrization of the controller it is easily seen from the k;(k)
diagrams what can be done with a PI controller. The diagrams indicate upper
bounds on the bandwidth of the systems, and which settings that correspond
to unstable or poorly damped systems. The rest of our investigations will be
based on such diagrams.
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Figure 4.4 The k;(k) curves for G(s) = e *L /(1 +sT) for L = 0.25, T = 1 and
L =0.75, T = 1. Settings from different tuning rules are marked. Ziegler-Nichols:
1, Cohen-Coon: 2, IAE: 3, ISE: 4, and ITAE: 5.
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4.4 Design choices

4.4 Design choices

For a PI and PD controller we have to choose wg and (3. These basic pa-
rameters can be chosen in many different ways. In this section a number of
methods will be presented and discussed.

When designing a PI or PD controller our task is to choose suitable
places for two of the closed loop poles. Different strategies for doing this can
be used. The simplest strategy is to compute the closed loop poles and zeros
for different values of wy and (p, and choose the set of parameters which give
the desired closed loop pole-zero counfiguration.

The point of using these parameters is that they have an intuitive appeal
to the control engineer. The parameter (y says something about the damp-
ing of the system and wy something about the bandwidth. In this section
principles for choosing wg and (g will be discussed.

Direct tuning of wy and (g

One way of determining wg and (p is to computé the poles. of the closed
system for a fixed (o, choosing wy such that the relative location of the poles
is according to some specification.

As wq is increased normally one or several poles will move into the right
half plane, while two poles will move further into the left half plane. One
specification of the relative location of the poles could be ‘Choose wqy such
that the real part of the three poles closest to the origin is equal.” (If a
pair of complex poles are moving to the right we must require the real parts
of two pairs of poles to be equal.) This method assumes that we can solve
the characteristic equation of the closed system numerically, and find all
relevant roots. This can be difficult numerically for processes described by
non-rational transfer functions. Specifications as the one mentioned here can
also give rise to poorly damped poles. This way of selecting wg and (y will
not be investigated further.

Performance issues

Of the parameters wy and (o it is wg which is most important for the system’s
performance. To get high bandwidth of the system it is desirable to move
the dominant poles as far out as possible, without causing poor stability due
to other poles. Due to this fact, it feels natural to make the choice of wy by
some kind of optimization. In this section a number of optimization criteria
will be discussed. The criteria has been chosen to be suitable for a frequency
domain optimization.

Mazximize k; In the case of Pl and PID control there is an intuitively
~appealing, and often good, way of choosing wy, namely the maximization of
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k;. In Chapter 2 it has been stated that

IE = /oo e(t)dt = %, (4.84)

(2

i.e., maximizing k; is equivalent to minimizing IE. From (4.33) we know that
k; is a function of wg and (y. If we choose wqy such that k; is maximal for a
fixed (o and the system still is stable, we see that the integrated error for a
load disturbance becomes as small as possible, with this prescribed damping.
This method of optimizing a controller can also be found in [Ziegler and
Nichols, 1943], [Cohen and Coon, 1953], and [Wolfe, 1951].

In [Shinskey, 1988] it is pointed out that the IE criterion may be a
physically relevant if the quality of the product flowing into a storage tank
is to be controlled. If the concentration of the product is controlled then the
integrated error [* e(t)dt should be kept as close to zero as possible.

It has also been claimed that the IE criterion is not adequate, e.g., in
[Shinskey, 1990] and [Oldenburg and Sartorius, 1954], because the minimiza-
tion of IE wold give an oscillating system and thus 0 as its cost: In [Shinskey,
1991] we can read:

“Although the cost function is proportional to integrated error,
we can’t tune a controller on the basis of the minimum integrated
error. The loop could be cycling uniformly and still produce the
minimum integrated error, because the positive and negative de-
viations would cancel each other. Therefore, minimizing the IAE
produces an almost identical integrated error, as nearly all of the
response curve lies on one side of set point. Most academics seem to
prefer minimizing the integral square error. But, that seems more of
a mathematical convenience, as it has no recognizable relationship
to operating cost. Later it will be shown that minimizing IAE also
minimizes peak deviation.”

This is certainly true if we allow the poles to be placed on the imaginary
axis. However, if we put a restriction on the location of the poles with (g
and minimizes over wy very good results are obtained for most systems. If
the controller is optimized with respect to both wy and (; the IE criterion
will give (p = 0, and a useless design.

Due to the extremely complicated expressions for k and k; it is not
possible to carry out an analytical analysis for this method of choosing wy
for.other processes-than second and third order systems. On the other hand,
the real strength of this method for choosing wy is that it is véry easy to
handle numerically. The functions k(wg, (o) and k;(wo, (o) can easily and
efficiently be computed for any arguments. It is also very easy to optimize k;
with respect to wg for a given (o, using, e.g., a golden section algorithm, see
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[Luenberger, 1984]. This is how the routines for the numerical optimization
of k; as been implemented.

The existence of a maximum of k; does not imply stability. For systems
with time-delays and poles on the negative real axis there does not seem to
be any problems, i.e., all k;(k) curves lie inside the curve corresponding to
(o = 0 and a maximal k; corresponds to a stable system. In Example 4.12
we show a system and a design case where the maximal k; corresponds to an
unstable closed system. By proper ways of selecting (y such cases can also
be handled, within the natural limitations of a PI controller.

From experience we have noticed that when we design a PI controller
and maximize k;, and thus specify two poles, the pole on the negative real
axis is at such a distance from the origin that the bandwidth will still be
reasonable, if a large enough (y is chosen.

EXAMPLE 4.12—Instability from maximal k;

Consider
Qp

(s +ap)(s? + 2¢ps + 1,.)

with «, = 0.2 and (, = 0.2. Maximizing k; for (; = 0.4 give an unstable
system. In Figure 4.7 the relevant k;(k) curves can be found. Phenomena like
this occur for resonant systems when poles are specified with larger relative
damping than the resonant poles of the plant. - O

From experience we see that systems designed with wo chosen by maxi-
mizing k; give a little too much overshoot in the load responses for a (o com-
patible with those obtained from the integral criteria. Controllers designed
with IAE, ISE, or ITAE behave better in this respect. These controllers
correspond to wy which are greater than the k;-optimal for the correspond-
ing (o. The parameters wy and (o that correspond to the k and k; of the
IAE optimal controller have been computed. The (o values were used to
design a k; optimal controller. The quantity k; 1ag/k:1E was computed for
0.1 < L/T < 1 and was found to be between 0.68 and 0.81. This leads to a
simple rule for modifying a k;-optimal PI controller; compute wy to maximize
k;, then increase wy for constant (g, until k; = 0.8k; max. This is very easy
to implement numerically. This modification works well for processes of high
order or processes with time delays. For processes of low order (2 or 3) the
response is unnecessarily slow.

The point of using IE is that the design computations can be carried out
completely in the frequency domain, without time domain optimizations.

G(s) =

(4.85)

Mazimize the bandwidth of the closed system The bandwidth wp of
the system G(s) is defined as the smallest solution of o

lG(iwb)l__ 1
GO) V2

(4.86)
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1.6 i ! ; ! ! )

Figure 4.7 An example of a system with a maximal k; corresponding to an
unstable system. The solid line is k; (k) for (¢ = 0.4, and the dashed line is the
stability limit.

This is the definition used in [Truxal, 1955], [Horowitz, 1963], and [Astrém,
1976]. This definition of bandwidth does not require stability of the system
G(s). For example, both G(s) = 1/(1 + s) and G(s) = 1/(1 — s) have
wp = 1 according to (4.86). If we want to use this definition for numerical
computations the stability of the result must always be checked. In [Rivera
et al., 1986] the bandwidth of a closed loop system is defined as the first

solution of .

1+ L(z’wb)

where L(s) is the loop transfer function

A very common configuration of the poles of the closed loop system
is when we have two complex poles moving away from the origin as wq is
increased, and one pole moving towards the origin at the same time. These
three poles and possibly zeros from the controller have the greatest impact on
the closed loop bandwidth. In certain cases the bandwidth has a maximum
as wy increases. Thus, one way of choosing wy is to determine the maximum
bandwidth of the controlled system with respect to wg. However, this method
of choosing wy is not altogether unproblematic, as Example 4.13 will show.

1
v (4.87)
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3.5 ; T !

wb and ki

w()
Figure 4.8 The k; (solid) and wy (dashed) for ¢y = 0.4 and (o = 0.6.

EXAMPLE 4.13—The danger of using wy,

Consider the process
1
C6) =i

Let the process be controlled by a PI controller such that two poles will be

placed in wo(~(y + i4/1 — (¢). According to Example 4.21 the additional
pole of the closed system will be located in

(4.88)

p3 = 2(1 — wolo) - (4.89)
and the controller zero in

(wolo — 1)
4&)5(5 - wg - 4(.00C0 +1 '

21:2

(4.90)

In Figure 4.8 k; and w; are plotted as functions of wy. In the case where
Co = 0.6 both k; and wy has a maximum for an w, which corresponds to a
stable system (ks > 0?3. In the case where (; = 0.4 there is no 'maximum
of wy for a stable system. The reason is that in the case of Co = 0.4 the
controller zero and the pole which is moving to the right are very close in

a much larger interval of wy than in the case of (o = 0.6. The poles and
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poles and zeros

w0

Figure 4.9 The pole on the real axis (solid) and the controller zero (dashed)
for (o = 0.4 and (g = 0.6. : '

zeros on the real axis are shown in Figure 4.9. In the case of (, = 0.4 the
behaviour of the closed system will be completely determined by the complex
dominant poles, and the bandwidth criterion will not detect that the system
is becoming unstable.

This example has shown that the criterion of maximizing the bandwidth,
although intuitively appealing, cannot always be trusted due to pole-zero

cancellations. o -

From other examples it has been seen that the optimization of bandwidth
and the optimization of k; give approximately the same controllers if (o > 0.5.
The optimization of bandwidth is 10 to 100 times more computationally
demanding than the k; optimization.

When wy is used in a criterion for determining wy we use the bandwidth

) G.(5)0(5)
s)G(s
Ger = < . 4.91
LY G()G(s) (4.91)
When we use a PID centroller in practice we often make a set point weighting
(‘,6” modification’) and the closed loop transfer function will be

k(B R)G(s)
k(1 + 5)G(s)

Ger (4.92)
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‘Making the 8 modification after a bandwidth optimization with respect to
wo is meaningless, because § affects the bandwidth. This problem could of
course be solved by an optimization in two variables (wo and ), but would
be very computationally demanding and complicated.

For a system with many resonance peaks in its Bode diagram, a common
situation when a time delay is in the loop, there can be doubts of which
solution of (4.88) to choose. For this reason another definition of bandwidth
is proposed. A sensible definition of bandwidth could be the wy which satisfies
the equation

wp . 2
S CIC) (4.93)
Jo 1G(iw)[" dw

0

for an z in the interval 0 to 1. For ¢ = 1/2 we get the same bandwidth for
G(s) = 1/(1 + s) as with (4.88). This method involves more computations
than the standard equation, but can easily be implemented numerically. If
there are reasons for computing bandwidth, this is probably a more robust

method than (4.88).

Minimize e, The e, is defined as the peak value of the control error after
a load disturbance at the process input. According to [Shinskey, 1990] the
minimization of e, is of prime concern. This minimization requires numeri-
cal solution of the equations describing the process, which we try to avoid.
Therefore this criterion will not be considered further.

Conclusions For reasons presented in this section we recommend the max-
imization of k; with respect to wy as a good performance criterion. In certain
cases further improvement of the control can be obtained if wg is modified as
indicated earlier.

Robustness issues

While the parameter wg was chosen to get good performance, (; will be
chosen to get good robustness of the closed system. A number of principles
of chosing (; will be discussed in this section.

Direct choice of (; The step response of a second order system looks rea-
sonable if the relative damping is about 0.7. This may lead us to routinely
choose (p = 0.7, since we are designing systems by specifying two poles. In
Example 4.14 it is shown that this may lead to unnecessarily poor perfor-
mance of the closéd foop system. The parameter (; is not a good design
parameter in itself.
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EXAMPLE 4.14—Design with (g
When servo systems are designed the required behaviour of the closed system
is usually that of a system with two poles with relative damping 0.7.

The two systems

e—sL

— 4.94
Ch 14 sT ( 9>

G — Ot (4.95)
27 (s + wpay)(s? + 2wp(ps + wg) '

with L =T =1 for G; and w, = 1,0, = 3,(, = 0.7 for G5 are given.

If PI controllers are designed with {y = 0.7 and the wy which maximizes
k; the set point and load responses of the controlled system will be those
shown in Figure 4.10.

As can be seen two system designed with the same (4 may behave quite
differently. PI controllers may instead be designed with k; maximized with
respect to wg and (o chosen such that the M, value of the compensated system
is 1.6. The step and load responses are also shown in Figure 4.10. Data of the
two designs are presented in Table 4.1, where the design parameters provided
by the user are written in boldface.

Table 4.1 _
System  wq Co M, k T I IAE
G 1.05 0.70 1.61 0.50 0.96 1.94 2.03
Go 0.70 0.70 1.37 0.16 0.57 3.47 3.52
G1 1.05 0.71 1.60 0.49 097 1.97 2.04
Go 090 043 1.60 0.55 1.02 1.8 2.14

In this case the two controlled systems behave reasonably similar if they
are designed with a prescribed M, value, but differently when they are de-
signed with the same (;. Different systems may react very differently to
the (p parameter. The (; parameter should not be regarded as the relative
damping of the system, but rather as a parameter in the controller by which
we may control the stability and robustness of the closed system. I

Design with specification on M, Define M, as the maximum of the
sensitivity function S(s),

1
M, = max|S(iw)| = max|

— 4,
. w>0 w>0 1+L(z’w)|’ (4.96)

i

where L(s) = G.(s)G(s) is the loop transfer function. Another interpretation
of this is to say that M, is the inverted value of the shortest distance from
—1 to the Nyquist curve of L(s).
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Figure 4.10 The processes G1 (solid line) and G2 (dashed line) controlled by
PI controllers with (g = 0.7 and controlled by PI controllers designed such that

such that M, = 1.6.
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If a system has a certain M, then we also have bounds on the amplitude
and phase margins, namely

M

Ay, >
= M, — 1

(4.97)

Om > 2arcsin

R (4.98)

The controller is now determined by computing k(wq, (o) and k;(wo, (o) such
that for each wy the closed system has the prescribed M, value. This implies
solving

O
1+ G(iw)G(iw)

M, = mjnxl (4.99)
with respect to (o for each wy to get (o = (o(wo, M;). The function k; =
k;(wo, Co{wo, My)) is then optimized with respect to wy for a given M,. In
doing this (o is chosen to fulfill the condition on M, and wqg is the free
parameter. This way of computing wg and (; is extremely computationally
demanding. A nonlinear equation must be solved each time a k; value is
needed in the optimization.

An approximate way to compute the controller is to optimize k;(wo, (o)
for constant {y and choose (o such that the closed system has the prescribed
M. This implies solving (4.99) with respect to (o, when wqy is chosen to
maximize k; for a constant (5. The equation can be solved numerically, e.g.,
with the bisection method. This approximate method requires about 1/10
of the computations in the complete case, and is much more robust with
respect to initial guesses in the equation solving. The following example will
illustrate this approximation.

ExaMPLE 4.15—Controller settings for a given M,
Consider the processes

G(s) = 61; : (4.100)
1
Ga2) = (4.101)

In Figure 4.11 loci in the (k, k;) plane for constant values of M, of the process
G1(s) can be found. Above in the figure M, assumes the values M, = 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 (solid lines). Below in the figure'M, = 1.8,
1.8, 2.0, 2.2, and 2.4. PI designs with the exact method is marked with
‘o’ and the approximate method is marked with ‘4’. Curves for constant
(o corresponding to the (y obtained with the approximate design are shown
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with dashed lines. Points on the M, curves with constant wy are joined by
dotted lines.

In Figure 4.12 loci in the (k, k;)-plane for constant values of M, of the
process G3(s) can be found. The M, assumes the values M, = 1.6, 1.8, 2.0,
2.2, and 2.4. The curve markings are the same as those in Figure 4.11.

As can be seen from the figures the simplified version yields solutions
close to the solutions of the exact problem. O

This way of selecting (y can be applied to all principles of choosing (,
presented in this section. The ‘correct’ way would be: for every wq select a
(o such that the robustness condition expressed in a parameter P, is fulfilled.
This gives (o = (o(wo, P). Then maximize k; = k;(wq, (o(wo, P)) with respect
to wg. The computation of {y(wp, P) can be very complicated and may take
long time.

The approximation which will be used in the following is: optimize k;
with respect to wy for constant (5. Choose (3 such that the condition is
fulfilled at the extremum. This is moderately computationally demanding
and gives reasonably accurate results.

Suppose we want to use the idea for modifying wg, presented before. If
we follow a curve for constant (; when wy is increased the resulting controller
will give a system with a lower value of M, than the system with the k;
optimal controller. Hence, when we do this kind of modification we should
really follow a curve for constant M, instead. This requires, however, much
computation.

The parameter M, cannot be chosen completely freely. By letting (o = 0
the Nyquist curve of the loop transfer function goes through —1 which gives
M; = oco. Thus M, can be made arbitrarily high. For most non resonant
systems we get smaller values of M, at the point corresponding to maximal
k; as (o is increased. The smallest value is normally obtained for (, = 1. At
other points on the k;(k) curve corresponding to {, = 1 the M, value may of
course be even lower.

EXAMPLE 4.16—Possible values of M, — second order system

To get some intuition in how to choose My, consider the loop transfer function
which causes the transfer function from the set point signal to the output
signal to be

2
w
G(s) = : 102
(¢) §2 4+ 2w(s + w? (4.102)
This loop transfer function is
- w2 \
o(s)= ——~ :
() S5 1 200) (4.103)

In Figure 4.13 M, is shown as a function of (. This plot indicates that a
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0.18 5
0.16
0.14
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Figure 4.12 Controller settings for G2 (s). Curves for constant M, = 1.6, 1.8,
2.0, 2.2, and 2.4. Exact PI designs are marked with an ‘o’ and the approximate
design with a ‘4.

choice of M, in the interval 1.1 to 2 would give a second order system with
acceptable behaviour. O

From Example 4.16 one would assume that M, = 1.3 would be a good
choice. However, as more poles are added to the system the M, for a given (g
is increased. This makes the results from Example 4.16 overly conservative.

EXAMPLE 4.17—Possible values of M,
Consider the standard example

e—sL

1+s’

G(s) = (4.104)

In Figure 4.14 are shown the M, values of G(s) controlled by a PI controller.
The PI controller has been designed by maximizing k; for (, = 0.3,...,1.0.
4 From the figure we can see that the minimal M, value increases dramat-
ically when ( is decreased. The M, value does not show that much variation
for long time delays. ‘ O
When there are many control loops interacting in a plant it is often
desired that certain loops should not cause oscillations. To avoid this, loops

which may cause oscillations should be tuned with a smaller value of M,,
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Figure 4.13 M, as function of { for L(s) = w/s(s + 2w().
normally M, ~ 1.6. Loops for which rapid elimination of disturbances is the
key issue should be tuned with a larger M. A good choice is often M, = 2.

Design with specification on M, The M, value of a transfer function
is defined as

G(s)]. (4.105)

M, = max
45

One way of choosing (o could be to make a dominant pole design, e.g., by
maximizing k;, and choose (y such that M, of the closed system will have a
prescribed value. |

Just like in the case of the M, values M, values puts limits on the phase
and amplitude margins, namely

1
A > 1+ — 4.10
21+ o (4.106)

O > 2arcsin

S (4.107)

These values are obtained from the points where the M, circles,

M2
M2 1

M2

2 2 __
)ty = GE -1

ox

(4.108)
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Figure 4.14 M, as function of L for a k; optimal controller for {; = 0.3...1.0.

intersect y = 0 and z? + y? = 1. The values are rather conservative. This is
also discussed in [Seborg et al., 1989] in Chapter 16, where a design procedure
based on M, values is presented.

When the design with specifications on M, is done, we design with re-
spect to the transfer function G.G/(1 + G.G), and assume that 8 = 1. An-
other value of 8 will most certainly change the Mp-value, and the M, used
for design will no longer determine the closed loop set point response. For a
unit feedback system the M, value determines the robustness of the system.
Therefore, using M, as a design parameter may still have a relevance.

Computationally, using M, or M, as specification parameter is approx-
imately equivalent. Both M, (with 8 = 1) and M, can be estimated from
a Nyquist diagram of the loop transfer function. The M, value is strongly
coupled to the set point response which is dependent on 8. The M, value is
much easier to visualize in a Nyquist diagram than the M, value. Therefore
we have chosen to use M, as the design parameter. Later we will propose a
method for choosing the 3 parameter based on M, values.

Design with specification on ¢m One standard measurement of robust-
ness and stability of a controlled system is the phase margin, ¢,,. One possi-
bility to choose (; would be to specify the phase margin of the closed system.

In Example 4.18 we give an example of the drawbacks of using ¢,, as

81




Chapter / PI and PD control

the design parameter. The problem is, of course, that we use only one point
on the Nyquist curve to specify the design. Especially for processes with
integration this method is not good.

EXAMPLE 4.18—Design with specification on ¢,,
Consider the two systems

—38

Gr() = g7 T (4.109)
1

PI controllers were designed for these systems where (, was chosen to get a
specified phase margin for an wy which maximizes k;.

Table 4.2
System  wq Co O, M, kT IE IAE
G1 1.72 080 6344 1.60 0.18 031 1.74 1.76
Go 133 0.73 4188 1.60 1.16 2.15 1.84 1.86
G1 1.73 0.28 40.00 2.83 0.32 0.31 0.96 2.09
Go 1.40 0.66 40.00 1.66 1.23 1.99 1.61 1.64

From Table 4.2 and the simulations in Figure 4.15 we can see that when
©m is the primary design parameter we may get large M, values as well as
relatively small ones, and very different behaviour in the step responses. If,
however, we design with respect to a given M, we get reasonably similar step
responses in both cases. O

Design with specification on A,, Another measurement of robustness
and stability is the amplitude margin, 4,,. One way to specify the behaviour
of the closed system is to prescribe an A,, and choose (y such that this value
of A,, is obtained.

EXAMPLE 4.19—Design with specification on A4,,
Consider the two systems

— 8

- 1
Ga(s) = RIS L (4112)

PI controllers were designed for these systems where {y then chosen to get a
specified amplitude margin for an wg which maximizes k;.
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Figure 4.15 Design of PI controllers for Gy (solid) and G2 (dashed). Design
with specified M; above in the figure and with specified ., below in the figure.
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Table 4.3
System  wy Co A M, k T; IE IAE
G4 1.72 0.80 291 1.60 0.18 0.31 1.74 1.76
Go 1.33 073 701 1.60 1.16 2.15 1.84 1.86
G1 1.70 0.71 2.70 1.67 0.20 0.32 1.61 1.69
Go 233 023 2.70 3.07 237 111 0.47 0.72

The time responses of the controlled system are shown in Figure 4.16.
Just like in the case of design with specification on phase margin, specifica-
tions on the amplitude margin may give very different results when applied
to different processes. O

Optimization

Most optimization criteria give very flat minima, which can be seen from
the level curves of the loss function in the (k,T;) plane, see [Hazebroek and
van der Waerden, 1950b], [Wills, 1962], [Sood and Huddleston, 1973}, and
[Weber and Bhalodia, 1979]. This makes the use of time domain optimization
criteria difficult, since a rather high accuarcy is needed in the integrating
routines to get reliable results.

Controller parameters have been computed for the standard system
G(s) = e™*L/(1 + sT), using various optimization criteria, for details see
Chapter 3. As as soon as another process is given no such results are com-
monly available.

The parametrization in wy and (g, which have been suggested here, could
of course also be used for optimization. One benefit of this parametrization is
that it would probably be easier to get good initial guesses for the optimizer,
than using the standard (k,7;) parametrization. From the study of the stan-
dard system we know roughly where in the stability areas the minima of the
various integral criteria are located.

Design of PD controllers

Lack of integration in the controller makes it impossible to optimize any of
the integral criteria for a load disturbance in the process input. If we have
an integrating process then integral criteria can be used if the disturbance is
a step in the reference signal. To be able to handle loads, the following way
to choose wy can be used.

The choice of wy. Consider the transfer function from reference value and
load disturbance to process output i

)= GG
1L+ Ge(s)G(s)

Yi(s) +

V(s). (4.113)
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* Figure 4.16 In the figure G1(s) (solid) and G2(s) (dashed). Design with spec-
ified M, above, and with specified A, below.
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If we have a PD controller G.(s) = k(1 + s7,4) and we apply steps at y, and
v, we get from the final value theorem

. _ _KkGO) o, GO) o
tl_l_)I{.lo y(t) = —I—Tk_G_(O_)y’" + 1—|—k—G(0)U . (4.114)

We want y to follow y, as close as possible and we want v to have as little
influence on y as possible. Hence it seems natural to require that k& should

be maximal. From (4.57) we see that k and kg of a PD controller depend on
the phase of G(wg(—Co +7+/1 — (2)) in a similar way as a PI controller does.

The choice of (3 For a process with integration the loop transfer function
of the process with a PD controller is similar in structure of that of a process
without integration with a PI controller. Thus it is reasoanble to use the
same principles in determining (o for a PD controller as for a PI controller.

4.5 A design procedure

For reasons presented in this chapter the following method is recommended
for design of PI and PD controllers. Choose wy by maximizing k; in the
formula (4.33). The parameter (, should be chosen by specifying a value of
M, and solving Equation (4.99) with respect to (;. One exact and one ap-
proximate method for determining (3 have been suggested. The approximate
method for determining (y is usually sufficient. Normally M, = 2.0 — 2.2 will
a sensible choice, but if a system with no oscillations is desired M, should
be chosen lower, M, = 1.5 —1.8. This method will be called 2PM (Two Pole
Method).

A certain performace enhancement can be obtained by modifying wyg
according to the procedure described on page 69. This modification may give
time responses rather like the responses obtained with controllers optimized
with the standard methods, IAE, ISE, etc. The method will be called MPI
(Modified PI controller).

The numerical implementation of the design methods will be discussed
in Chapter 8.

™

46 Examples

\
In this section are given a number of analytical and numerical examples
concerning the methods which have been presented earlier in this chapter.
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Analytical Examples

It is necessary to have a good understanding of the method in simple cases
where much can be solved analytically. These examples exhibit phenomena
which also occur for more complex systems.

EXAMPLE 4.20—F'irst order system

If
a
G(s) = o (4.115)
we get
b= 20 2w0k0 (4.116)
a
2
ki = -0, (4.117)
a

We see that k; does not have a maximum. This is quite natural, since the
closed system is of second order and then we can place the two poles wherever
we want with a PI controller. O

EXAMPLE 4.21—PI Controller and second order system

Consider
2
Yp

§2 + 2w,(ps + wg ’

G(s) =

(4.118)

controlled by a PI controller. We want to have the closed loop poles in

wo(—Co £i4/1 — (#). According to (4.33) we obtain

_ —4wg (§ + 4G wpwolo + wi — Wy

k= P 11
2 (4.119)
ky = —2w? wobo - o (4.120)
wp

The characteristic equation is 3(52+2wpg’ps+w§)+w§ (sk+k;) = 0. The closed
loop system will be a third order system with the characteristic equation
(s + b)(52 + 2wo(os + w2) = 0, and we immediately get

s3 + s*(b+ 2woCo) + s(2woCob + wi) + bw?i =

53;}- .5?;22wp§p + s(wg + kwf)) + wgki (4.121)
\
and
w
b= (Jz—)2lﬁ = -—2(&)0(0 — (.L)p(:p). (4122)
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Thus we have two poles which move from the origin as wqg increases, and one
pole which moves to the right on the real axis. The locations of all the poles

are
P12 = wo(=Co £i4/1 = (F) (4.123)

s = —2(wplp — wo(o). (4.124)

With this method it is impossibe to choose an wy greater than w,(, /(o with-
out getting an unstable system.
To find the optimal k;, differentiate k;

dk; : 3woCo — 2wp(p

2, (4.125)

dCU() P

and we have a maximum for k; at wy = 2(,w,/3(o. For this value of wy the
PI parameters will be

BG4 — 96 T

k 4.126
0% (120
8C3w
by = —E 4.12
2102 (4.127)
For the optimal value of wg we get the closed loop poles
2¢, :
P12 = 'Sgwp(—Co +i\/1-(5) =
3Co
2 2 1
= —ggpwp + z—gépwp 2—02— ~1 (4.128)
2
p3 = ——gg’pwp. (4.129)

We see that the k; optimal system in this case has the same real part of all
its poles.

Another way to choose wyg would be to specify the configuration of the
three poles which are closest to the origin. We could, e.g., require that
the three poles should lie in wq(—(o £ i+/1 — (%) and —kwy, and from these

assumptions determine wy. We get the equation

2¢ )
2 — = & = P . 4.130
(wpCp — wolo) = Kwo wo %+ 2Co Wp ( )
Thus, in this case the design parameters are (; and . O
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EXAMPLE 4.22—P1 controller and second order system with real poles

Consider the process
a

G6) = e T (4.131)

From (4.32) and (4.33) we get
b — — (a’ — 2‘”0(0(1 + Z) + wg(4cg — 1) (4.132)
ki = —w? 2wobo —a =1 (4.133)

a

The parameter k; has maximum for wy = (a +1)/3(p, and the characteristic
equation has the roots

atl et yvi=G (4.134)

Pr2— — 3 3G
1 .
ps = —ag : , (4.135)

The real parts of all the three roots of the characteristic equation are equal.

O
EXAMPLE 4.23—PI controller and first order system with integrator
Consider the process
a
= . 4.1
6() = 5 (4.136)
From (4.32) and (4.33) we get
4wyl — 2(ob —
= — 200~ 20b = wo (4.137)
a
2 —b
b = —p b0 b (4.138)

a

The parameter k; has maximum for wy = b/3(y, and the characteristic equa-
tion has the roots

b b VI=G (4.139)

Pre==g =47
o ps =73 . (4.140)

The real parts of all the three roots of the characteristic equation are equal.
(I
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Chapter 4 PI and PD control

"EXAMPLE 4.24—PD control for a third order system
Consider the process

3
W,&p

) = T agop ) (52 T Sl T 03 (4:141)

If we specify a PD controller to give closed loop poles in p; 2 = wo(—(o =+
iy/1 — (§) and choose wg to maximize k;, we get wy = wp(ap,+2¢,) /3. This

results in closed loop poles in

wp(a’p;‘ 2(p) (—1+ Ly IC" Cg) (4.142)
0
wp(ap +2Gp)

P12 =

Note that the real parts of the closed loop poles are equal, like in the PI case
for a second order system. . O

Numerical examples

EXAMPLE 4.25—The relation between wg and wy -
PI controllers were designed for the system

e—sL

G(S) - 1+ sT

(4.144)

with 2PM for M, = 2.0...2.5. The parameter T = 1 and L varies between
0.1 and 1. In the design we compute the parameter wg. The bandwidth was
computed with (4.88), and the ratio wg/wp can be found in Figure 4.17.
The parameter wy varies between 1.1 and 8 in the different designs,
but the wp/wp remain approximately the same. Hence it is reasonable to
take wp as an equally good measure of the ‘bandwidth’ of the system as the
bandwidth computed with (4.88). This is good to know since the parameter
wq is obtained as a by-product in all designs. It also feels natural that the
distance from the origin to the dominant poles is a measure of the bandwidth
of the system. O

4.7 Summary

In this chapter the Dominant Pole Design principle has been investigated for
PI and PD controller design. Methods for the design of PI and PD controllers
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4.7 Summary

w0/wb

/T

Figure 4.17 The wg /wy for the closed loop system where G(s) = e™*% /(1 + sT')
is controlled by a PI controller designed with 2P M.

has been derived and discussed from different points of view. Design proce-
dures have been recommended. Examples of the use of them and comparisons
with other methods will be made in Chapter 7.

Only a few processes can be analyzed completely, due to the complicated
expressions of the controller parameters. A couple of simple processes have
been analyzed analytically.
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PID control

In this chapter we will present and discuss methods for PID controller tuning,
based on the same principles as for PI controller tuning in Chapter 4. Two
methods have been tried. First, direct specification of three poles. This
method is a direct analogy to the methods discussed in Chapter 4. The
second method is based on modification of a well tuned PI or PD controller.

PID control may be needed for two reasons. First, to be able to control
the process at all. Certain processes cannot be controlled by PI control, a
derivative term is needed to stabilize the system. The second reason for PID
control is to get better performance from the controlled system.

5.1 PID control

Two methods for designing PID controllers based on the dominant pole design
principle will now be considered. The first method uses the fact that a PID
controller has three parameters and can thus be specified by placement of
three closed loop poles, two complex and one on the negative real axis. This is
not a completely general method because there are closed loop systems under
PID control which do not have a pole on the negative real axis. Another way
to design a PID controller is to start with a well tuned PI controller and
add- derivative action. until some design criterion is fulfilled. Modifying a
PI controller is the most natural, because for most plants integral action is
always wanted to handle load disturbances.
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5.1 PID control

Specification of three poles

Let a PID controller be parametrized as

k;
Gels) = h+ = + kas. (5.1)

This form will be used for simplicity. Modifications in the set point weighting
and limitation of the derivative gain will be taken care of later. Three poles
of the closed loop system must be specified to find the parameters k, k;, and

kg. We choose them as
P12 = wo(—Co £i4/1—(3) (5.2)
P3 = —Qowg. (5.3)

Introduce G(p12) = A+ iB, and G(p3) = C. The condition that
1+ G(s)Ge(s) =0 ' (5.4)
should have zeros in py,ps, and p3 gives,

V1= (2006 (A + B?) + (1 + af ) AC) + (af — 1) BC

k= — 5.5
(1 - 200 +af)y/1 - (5(A% + B2)C 5:5)
b = oo (20~ IBO T VTGO —4° ) 56

(1 = 2000 + ag)v/1 = (§(A? + B?)C
k _ (o060 = 1)BC + ag /1 — (§(AC — A* — B?) (5.7)
¢ wo(l—ango—}—a%)\/l —Cé(A2+B2)O ' '

Define a(wp) and ¢(wo) by G(woel™ 7)) = a(w)e*®(“o) | where 7 is regarded
as a constant. For the poles p; » we get

pr2 =wo(—Coxiy/1-(Z) = woe' ™M), (5.8)

hence cosy = (o, and for p3 = —agwy we get v = 0. With this parametriza-
tion we get

v

(wo) cos ¢p(wp) (5.9)

93




Chapter 5 PID control

~where b(wg) is the magnitude function for v = 0. Insert these expressions for
A, B, and C in (5.5), (5.6), and (5.7) and we get

N adb(wp) sin(y + ¢) + b(wg) sin(y — ¢) + aga(wo) sin 2

b= a(wo)b(wo)(ad — 2ag cosy + 1) siny (5.12)
__a(wo)siny + b(wo)(sin(y — ¢) + agsin ¢)

k; = —agwg a(wo)b(wo)(ag " ap cosy + 1) siny (5.13)

kd:__amﬂw@smﬁ“+b@mﬂaoﬁnbﬂ+¢)—shu@. (5.14)

woa(wg)b(wg)(ad — 2ag cosy + 1) siny

As can be seen from these formulas there is no simple connection between
the phase function ¢(wy) and k; as in the PI controller case.

There are a few problems with this approach. This method forces us to
specify a pole on the negative real axis. If we try to specify more than two
poles of the closed loop system and let the others be free, the locations of the
free poles can be very sensitive to where the fixed poles have been located.
This effect is most pronounced for resonant systems.

PID controller based on PI controller
Suppose the controller

Ge(s) =k + —+ kas, (5.15)

is used and it is desired to have two closed loop poles in py 2 = wo(—(o £

iy/1 — (2). Solving

1+ G(s)Ge(s) =0 (5.16)

gives the controller parameters

T2
k= 2kqwo(y — Gob +2 ! COA = 2kqwoo + kp1 (517)
V1= (5(A? + B?)
B
k; = kdwg — =0 = kzdwg + ki,PI) (518)

V1= (4% + B2)

where kpr and k; pr are the controller parameters for a pure PI controller,
according to (4.32) and (4.33). With this parametrization the PID controller
can be written

¥of 1
Gc(5> - GC,PI(S) + kd<32 + 2WOCOS + wg)

T
S

‘ (5.19)

where G, p1(s) is a pure Pl controller, i.e,. G.(s) with kg = 0. The task is
now to choose wgy, (o, and kg such that the system behaves well.
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5.1 PID control

The characteristic equation of the closed loop system becomes

1
14+ G(8)Ge(s) = 1+ G(5)Gep1(s) + G(5)ka(s® + 2woCos + wg); (5.20)
For a system controlled by a PI controller we have
1+ G(8)Gep1(s) = (5% + 2wolos + w§ ) R(s). (5.21)

The zeros of R(s) are the free poles of the system controlled by the PI con-
troller G, pr(s). Thus

1+ G(8)G(s) = (8% + 2wp(os + W) (R(s) + G(s)kd%). (5.22)

The root locus of 1 + G(s)G.(s) with respect to kg will start in the zeros of
R(s) and end in the zeros of G(s) or in infinity.

This parametrization offers a natural way to tune a PID controller: start
with a well tuned PI controller and add derivative action. As kg4 is increased
the parameter wg may have to be modified, e.g., in such a way that IE is
maximized.

5.2 Design choices

In this section the design choices of the PID controller design methods pre-
sented in the previous section will be discussed. Both the method of specify-
ing three poles and the method of modifying a PI controller will be considered.

PID controller based on specification of three poles

Of the three parameters wy, (p, and «g, g is the parameter which has the
smallest influence on the system, at least for systems normally controlled by
PID controllers. The choice of «y will therefore be discussed first. If g is
chosen sensibly we than have a design problem which can be handled like the
design of a PI controller.

The choice of oy The parameter ag specifies the relative location of the
pole on the negative real axis to the two dominant complex poles. A very
simplified model of the control system is now that we have a closed loop
system consisting of three poles. The question is now, how does ‘the pole on
the negative real axis influence the behaviour of the closed loop system. This
is illustrated by an example.
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Figure 5.1 Bandwidth of (5.23) as function of ap for different (.

EXAMPLE 5.1—Bandwidth of third order system
Consider the process

O(o(.t)3

Gls) = (82 + 2Cws + w?)(s + agw) (5.23)

When qq is increased the bandwidth of the system is also increased, but the
system will eventually be dominated by the two complex poles at wo(—(p +
iy/1 — (2). Figure 5.1 shows the bandwidth of system (5.23) as function of
ap for different values of (. In this example we have w = 1. As can be seen
from Figure 5.1 we do not gain very much bandwidth by increasing aq over
1. High bandwidth for small { does not imply a well behaved system. High
bandwidth means only that the system reacts fast in some sense. O

A reasonable a can also be obtained from an optimization criterion, as
is shown in Example 5.2.

EXAMPLE 5.2—Determining «g by optimization

Consider the system

~ e—sL ‘
Gls) = T (5.24)

PID controllers were designed by choosing wy to maximize k;. The parameter
(o was chosen in two different ways. In the first case (; was set constant
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5.2  Design choices

Co = 0.7 and in the second chosen such that M, = 2. The parameter og was
varied. The loss function IAE was computed for a step disturbance on the
process input. In Figure 5.2 the criterion IAE is plotted against ay. As can
be seen the loss function has a minimum for oy ~ 1, but the minimum is
very flat. In Figure 5.3 we see that for processes designed with a specified
M, value we get a minimum for lower values of ay.

Systems with resonances may behave differently. Consider

1

Gls) = (82 +2¢s+1)(s+1) (5-25)

PID controllers were designed for different a so that M, = 2.5, and the loss
function IAE was computed, which can be seen in Figure 5.4. The minima in
this case are obtained for lower values of ag. This must be considered if we
want to design PID controllers for resonant systems with this method. O

Another problem is if a too large ag is chosen. If wy is chosen by maxi-
mizing k; then we may get another pole on the real axis to the right of —QWwo,
which clearly is not what we intended.

EXAMPLE 5.3—The effect of too large «q

Consider the system
1

G(s) = Grom - (5.26)

where n = 3...10.

Controllers were designed by letting (; be constant (;, = 0.5 and by
choosing (y such that M, = 2 and maximizing k; with respect to wqy for
different . The closed loop poles on the negative real axis are shown in
Figure 5.5. The poles are normalized with wy. The straight line corresponds
to the prescribed pole at —ogwy. Systems with large n can tolerate a larger
value of ag without getting a pole to the right of —agwy. A rteasonable ay
gives no extra pole to the right of —apwy. This example suggests that ag
should be chosen in the range 0.5 to 1.3. ‘ O

The choice of wyg and (; Once ag has been specified we have a controller
design problem of the same complexity as the design of a PI controller. The
same methods as in Chapter 4 can be applied.

Modified PI and PD controllers

In most cases we want to gain performance by using PID control instead of
PI control. A naturalsapproach is then to start with a PI controller and to
investigate the gains in performance that can be obtained by adding deriva-
tive action. This can be done by keeping (; from the PI controller in the
PID case, and modify wg and kg to gain performance. This may lead to a
diminished robustness of the PI controller.
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Figure 5.2 Loss function IAE as function of ag when (5.24) with L = 0.2...2.0
is controlled by a PID controller with ag as design parameter. . The system is
designed with constant (o = 0.7.
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Figure 5.3 Loss function IAE as function of ag when (5.24) with L = 0.2...2.0

: 98 is controlled by a PID controller designed with M, = 2.0.




5.2 Design choices

IAE

alpha0

Figure 5.4 Loss function IAE as function of ag when (5.25) with {, = 0.1, 0.2,
0.3, 0.4, and 0.5 is controlled by a PID controller with ag as design parameter.
The parameter (y has been chosen to make M, = 2.5.

Systems with poorly damped poles are difficult or impossible to control
with a PI controller, but can sometimes be stabilized with a PD controller.
In many cases this can be interpreted as a state feedback from some kind of
velocity. The (p of a well tuned PD controller can in the same manner as
the (o of a PI controller be used in a PID controller. In the following will be
presented a method for PID controller design based on the parameters wg,
(o, and k.

The choice of (;, To find a appropriate (5, make well tuned PI or PD
controller with a suitable M. The design procedure will give a {ywhich then
will be used in the PID controller. The parameter (, has the great impact
on the robustness of the system. The M, value used in the design of the PI
or PD controller will be called M,;.

The choice of wy Just as for PI we have IE = 1/k;. Therefore wy will be

chosen to maximize k;.
\

The choice of kg4 A second design parameter is needed to determine k.
Let M, be the desired M, value of the system controlled by the PID con-
troller.
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Figure 5.5 The closed system’s poles on the negative real axis, normalized by
wo. In the figure are shown design with constant {; = 0.7, and design with
M, = 2.0. The straight line corresponds to the prescribed pole at —agwyg.
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The design algorithm is then as follows. Design a PI controller (or PD
controller) such that the system controlled by this controller gets M, = M,;.
Use the value of (p from this controller to design the modified controller.
Keep (p fixed and increase kg, while wq is adjusted to keep k; maximal until
M, = M,5. This requires that a reasonable PI or PD controller can be found.

Unfortunately, any pair of M,; and M, cannot be achieved if wy is
chosen to maximize k;. Possible pairs of M,; and Mo are strongly system
dependent. Suppose that M,; is given. For systems without resonances the
smallest possible M, normally corresponds to (o = 1. As k4 is increased we
see from (5.18) that if k; has a local maximum when kg = 0 this maximum
may disappear for a sufficiently large kg4, and an inflexion point appears. An
example where this does not happen is for a third order system with two
resonant poles and one real pole. As ky is increased the wy corresponding to
a maximal k; is also increased. The maximal value of M4 is obtained for the
ks which give an inflexion point in k;. These claims have been made after
the examination of a number of different systems. They may not be fulfilled
for systems of low degree or for resonant systems. Example 5.4 shows the
possible regions in the (Mg, M,2) plane. L

EXAMPLE 5.4—The M ;—M,o relation
Consider the systems

e”* » |
Gl(S) = ‘1—“_;-;1';, T = 1, 2 (527)
1
GQ(S) — m, n = 4, 8. (528)

Possible values of M ; and M,, are shown in Figure 5.6. As can be seen
from Figure 5.6 the parameter M,y must be chosen close to M, for small
M,,. As M, increases so does Mo, but much more rapidly. When we make
a cautious design, with a low value of M, it will not be possible to use
much derivative action to increase the M, value of the controlled system.
If we want a larger M, of the final system, this should be accomplished by
redesigning the PI controller with a higher value of M,;. O

The function Mgy = M,(ky) is interesting, because it tells us what hap-
pens when we increase kq. To compute M (ky) for a given M,y and kg we
optimize k; with respect to wg and use this controller to compute M,3. Again,
it is impossible to give a general statement that applies to all transfer func-
tions. The typical*cufve is almost flat or decreasing for low kg and rapidly
increasing for larger kg, while wg increases all the time. A typical M,(kq)
function is described in Example 5.5.
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Figure 5.6 Possible regions for M,; and My. In the figure G1(s),T = 1 (solid
line), G1(s),T = 2 (dashed line), G(s),n = 4 (dotted line), and Ga(s),n = 8
(dashed-dotted line).

EXAMPLE 5.5—The M,(k,) function

Consider
3

d 5.29
(s + apwp ) (82 + 20pwps + wg) ( )

QW

G(s) =

with wp, =1 and a, = 1. We design a PI controller with M, = 2.0 and add
derivative action gradually. As kg is increased k; is optimized with respect to
wo. The M, value is then computed for the different controlled systems. The
functions are shown in Figure 5.7, where (, has assumed values between 0.5
and 1. The derivative part decreases the M, value more for systems with low
damping than for systems with high damping. If we want a system with a
specified M, we may increase the derivative part (and wg) more for systems
with large damping than with small damping. From Figure 5.8 we see that
wo also increases when k; is increased.

~_The root locus for the closed loop system with respect to kg is shown
in Flgure 5.9 for Cp = 1. The behaviour of the closed loop poles shown in
this figure is typical for this design procedure. When kg is increased, with
wo adjusted to optimize k;, two real poles of the system become complex and
go towards the imaginary axis. This means that k; will eventually loose its
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Figure 5.9 Root locus for the closed loop system with respect to kg, with
0 < kg <4. : B

maximuim. .

The value of kg where k; pyp ceases to have a maximum is possible to
estimate. Differentiate k; pip = k;pr + w%kd with respect to wg, set the
derivative to zero and we get

dk; p1(wo)

Qwoky = 0. :
o 2woka =0 (5.30)

The maximal k4 which solves (5.30) equation is

dk; 1
l{id = Imax — L ((.U()) .
wo dwo 20)0

(5.31)

This maximum does not necessarily exist for systems with low order dynam-
ics. This assessment of the maximal k; is useful in the numerical computa-
tions when we need to compute the kg which gives a certain M,,.

Modified PD contrbller

The parameter (p is the only parameter from the design of a PD controller
which will be used in the design of a PID controller. The design is completely
analogous to the design of a PID controller from a PI controller.
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5.8 The derivative filter

5.3 The derivative filter

To avoid getting infinite gain for high frequencies, a low pass filter is usually
introduced in the derivative part of a PID controller. Most implementors
have chosen to use a first order filter, but higher order filters can also be
found. This is to diminish the high frequency gain further. The controller’s
transfer function then becomes

1 sTy
(8) = k(1 : -
Gels) = k(U4 T+ o) (5.32)

The filter constant N is a design parameter which should be chosen. The
quantity k(1 + N) is the high frequency gain of the controller. Small values
of N will affect the dynamics of the system considerably but not amplify the
noise. To obtain a good derivative action much phase lead is wanted, hence
a large value of N. A larger value of N moves an additional pole further
from the origin and does not affect the dynamics, but amplifies the noise. To
choose N = 10 seems to be a fairly standard choice in commercial controllers.
In an implementation the derivative part should be replac/ed by

STD

s (5.33)
N

Certain systems may require a negative Ty, and cause an unstable mode
in the controller if the negative T, is used in the derivative filter. From a

physical point of view it is meaningless to have a negative time constant in
a filter.

EXAMPLE 5.6—Root locus with respect to IV

Consider the plant
1

A PID controller was designed with M; = 2.0 and g = 1. In Figure 5.10
is shown the root locus with respect to N when IV assumes the values 2, 5,
10, 15, and 20. For values of N of 10 or greater the dominant poles have not
moved much.

A simulation of the controlled system is shown in Figure 5.11. The
derivative filter constant has been N = 10 and N = 20. Measurement noise
starts acting on the system at ¢ = 40. As can be seen there is no visible
difference in the set pﬁomt and load responses. When noise is acting on the
system the control signal is however twice as large for N = 20 as for N = 10.
The conclusion is that /N should be chosen differently depending on the noise
level in the system, and on how much control action that is allowed. O

G(s) = (5.34)
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Figure 5.10 Closed loop poles of GG(s) controlled by a PID controller designed
with M, = 2.0 and ag = 1. The poles marked with ‘o’ correspond to' N = oo (no
derivative filter), poles marked with ‘X’ correspond to N = 2, 5, 10, 15, and 20.

Taking N into account in the pole placement

Suppose we have a PID controller

1 STd
G = k(1
pIDF($) (1+ o + s

); (5.35)

and a plant G(s). We want to place poles in p; 5 = wo(—(o £ /1 — (3),

Pp3 = —Qpwg given ag,wq, (g, and N. Solving

1 + G(p:)Gripr(p:) = 0, (5.36)

for i = 1,2, 3 gives an equation of the ninth degree in k if we want to take N
into account. We do not get a set of linear equations anymore. The wo(okg
parametrization gives-similarly complicated equations. The problem is not
to solve the equations numerically, but to choose the correct soldtion out of
many possible solutions.

This problem should not be confused with the case where we choose four
poles, compute linear controllers, and then determine, k,T;, Ty, and N. The
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Figure 5.11 Simulation of G(s) controlled by a PID controller, N = 10 (solid
line) and N = 20 dashed line. : o

parameter N should be regarded as a design parameter and should not be
specified by a pole.

However, in a specific case it is easy to solve the problem numerically. In
the three pole case, choose the poles, p1, ps, and ps and the filter constant V.
Compute k, k; and kg with (5.5), (5.6), and (5.7). These parameter values
make good initial values for the numerical solution of (5.36) with respect to
k, k;, and kg for a controller with derivative filter. In case of the wo(oky
parametrization, the poles wo(—(o &+ /1 — (3) and the parameter k; were
considered to be correct, and modified values of k and k; were computed. The
numerical solution was made with routines from the Matlab Optimization
Toolbox, see [MathWorks, 1990a].

EXAMPLE 5.7—Dominant Pole placement with IV

Consider the same sitnation as in Example 5.6. Figure 5.12 shows the root
locus with respect to N when k and k; have been recalculated to keep the
dominant poles in their locations, specified by wg and (3. As can be seen
from the figure there is no big difference for values of IV greater than 10. The
recomputed parameters are shown in Table 5.1 for different values of N. O
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Figure 5.12 Root locus with respect to N with k and k; recomputed to be in
the same locations as without the derivative filter. The poles marked with ‘o’
correspond to N = oo (no derivative filter), poles marked with ‘x’ correspond to

values of N from 2 to 20.

Table 5.1

N

k

T;

2
5
10
15
20

0.6

1.5585
1.7297
1.8028
1.8295
1.8433
1.8867

2.9563
2.7372
2.6849
2.6697
2.6625
2.6424

0.5559
0.6104
0.6327
0.6407
0.6449
0.6580
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5.8 The derivative filter

5.4 Common issues for PI and PID controllers

Set point weighting

By using a PI or PID controller with set point weighting, as defined in Chap-
ter 2, we get the relation

k(sB + 77)G(s)
s+ k(s + %;)G(s)

Y(s) =

Y. (s) (5.37)

between the set point signal Y,.(s) and the output signal Y(s). We see that
the zero located in _ﬁ—% introduced by the integrator can be moved with the
parameter 8. This zero only affects responses to set point changes.

The most important use of the 8 parameter is to reduce the overshoot in
y for a step disturbance in y,.. Setting 8 = 0 is in some cases too conservative,
but it is still the standard choice in some commercial controllers. Instead we
observe that an overshoot in the time domain in most cases correspond to

M, > 1, this is illustrated in Example 5.8.

EXAMPLE 5.8—Relation between overshoot and M,

Consider

e-sL

:1+5T'

PI controllers were designed for G(s) for 0.2 < (o < 0.8 and different L/T.
The parameters 3 was varied between 0 and 1, and corresponding overshoot
values and M, values were computed for the closed systems. In Figure 5.13
the overshoot values are marked against the M, values. The figure was made
to get a feel for how overshoot normally depends on M,,. Similar results were
obtained for other plants. =

This suggests a method for choosing 3. First set 8 = 0, and compute
M,. If M, > 1, we will probably get an overshoot so this is the result of
the B design. If M, = 1, i.e. there is no resonance peak, we increase 2 until
M, becomes greater than 1. Numerically we may solve M,(5) = 1.001 say,
with respect to 8. An example of this way of choosing 8 can be found in
Chapter 7. This method of choosing 8 assumes that an overshoot correspond
to a resonance peak. This is not always the case. In general, the only way
to choose (3 to avoid overshoots is to select 3, simulate and compute the
overshoots numerically. Simulations studies and empirical formulas for 3 in
terms of process characteristics can be found in [Hang et al., 1991].

The advantage of the 8 modification is that the response to set point
changes may be changed to get less overshoot, or faster response, depending
on the system and controller. The set point weighting does not affect the

G(s) (5.38)
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Figure 5.13 Overshoot values marked against M, values.

system’s load attenuation capability. The disadvantage is that we now have
one more parameter to tune. Not all controllers permit change of the 3
parameter. In commercially available controllers (8 is usually set to 0 or
1. Commercial systems with adjustable @ have been reported, one such
system is the Toshiba controller TOSDIC 211D8, see [Shigemasa et al., 1987].
For a compilation of properties of commercial PID controllers, see [Astrém
and Hagglund, 1993]. We do not believe that this is the way to approach
simple controllers; making them more and more complex by introducing more
parameters which should be tuned according to some magical rules of thumb.
Simple controllers should remain simple. |

Overshoots can also be avoided by changing set point values with a ramp
instead of abruptly with a step.

5.5 A design procedure

Two methods for PII2 controller design have been presented and discussed,
the method of specifying three poles and the method of modifylng a PI or
PD controller.

The method of specifying three poles requires two tuning parameters, ayg
and M,. For most well damped systems ag = 1 is a good choice. For resonant
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systems ag should be chosen lower, ag ~ 0.5. The parameter wy is obtained
from the maximization of k;, and (p is chosen to give the closed loop system
a specified M. The method is moderately computationally demanding. This
method will be called 3PM (Three Pole Method).

The method of modifying a PI or PD controller requires two tuning
parameters M, and M. First a well tuned PI controller is designed with
M, as design parameter. The (; obtained from this design is then used in the
modification of the PI controller. The parameter kg is increased, while wy is
changed to keep k; maximal, until My = M 3. To compute maximal possible
interval [M,1; M2) requires much computation. When the method is used for
design, a pair of M, and M,y is usually found without too much difficulty,
by trial and error. However, this method requires much more computations
than 3PM, and does not work well for resonant systems. The method will be
called MCM (Modified Controller Method).

Both 3PM and MCM have M, as design parameter. Setting M, = 2
is a sensible choice for most processes. If a more conservative design with a
higher degree of robustness and with less overshoot is desired, a smaller value
of M should be chosen, 1.6 is usually a good choice. ‘

The time responses for most well damped plants controlled by controllers
designed with the two different methods look very similar. The method 3PM
often gives a significantly larger wy. Normally 3PM gives a slightly smaller
value of (; than MCM, and a smaller overshoot. Although the 3PM at first
seems less general, the ease of using it and the broad spectrum of processes
it can handle makes it a better choice than MCM.

Due to this 3PM will be recommended as the PID controller design
method. This will be illustrated in Chapter 7.

The filter parameter N should be considered as a design parameter and
should not be chosen from pole placement. The value of k(1 + N) is the
controller’s high frequency gain and should be such that the noise present
does not disturb the process too much. From experience with examples it is
seen that there is no need to take N into account when the tuning of k, k;,
and kg is made. In practise NV is often set to 10, which is the value we will
use in the following simulations.
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Chapter 5 PID control

5.6 Analytical examples

The formulas for k, k;, and kg become very complex, and it is not very
rewarding to solve anything but the very simplest case analytically

ExAaMPLE 5.9—PID and second order system

Consider
Wy
G(s) = : 5.39
(5) $2 + 2wp(ps + wz% ( )
With the agwo(p parametrization the controller parameters are
2 2
Wy (2010(0 + 1) - W
k = " P (5.40)
P
3
ky = 0 (5.41)
“p
wo (o + 2¢0) — 2¢pCo
kg = 5 : (5.42)
P
With the wo(okq parametrization the controller parameters are
- 2w2kaqwoo — wi + 4Cpwpwolo + w5 (1 — ¢F) —.3ws (3 (5.43)
— ” .
(kqw?2 + 2wy, — 2wo(o)wi
ki = P pwg : (5.44)

In this case we can place all poles. This is completely analogous to PI control
of a first order system. O

5.7 Summary

In this chapter design methods for PID controllers have been discussed. Two
methods based on the dominant pole principle have been discussed and ex-
amined. In the first method three poles are placed to get the controller
parameters. The second method uses results from a well tuned PI or PD
controller to place two poles and gradually introduce derivative action. The
method based on placement of three poles is recommended.

¥
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In this chapter we are trying to find out if the design methods described in
the previous chapters can be based on approximate knowledge of the Nyquist
curve of the process. It will also be investigated if knowledge of the Nyquist
curve in a special frequency range is of particular interest. We will assume
that the frequency response of a dynamic system is known in a number of
points. The design methods presented in Chapter 4 and Chapter 5 make use
of G(a+iB), a # 0. The usual frequency domain identification methods give
G(iw). To compute values of the transfer function in an arbitrary point in
the complex plane a model must be fitted to the experimental data. The
investigations in this chapter will be carried out mainly by examples.

Although the approximated transfer function é(zw) may be very close
to the true G(iw) in an interesting frequency interval it is not certain that
G(e“w) is close to G(e"w) in the same interval for v # /2. This may
become very problematic when G has poorly damped complex poles.

The problem of getting a frequency domain model from a time domain
experiment will not be addressed here. For readings in system identification,
see [Ljung and Soderstrém, 1983]. For a survey of simple model estimation
techniques, see [Rakes1980] and [Unbehauen and Rao, 1987).

\
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Nyquist plot
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Figure 6.1 Known points on the Nyquist curve.

6.1 Models from frequency domain data

Suppose we know a few points on the Nyquist curve of a process. These
points may have been obtained from frequency analysis or from some kind of
relay experiments. Relay experiments for obtaining information of transfer
functions are discussed in [Astrém and Higglund, 1988] and have been used
in autotuning of PID controllers. To use the information of G(s) in a few
points in the design computations we need to estimate a model from the
available points. In our investigations it is assumed that the Nyquist curve
is known in 2, 3, 4, 5, or 6 points. The points correspond to the phase lags 0,
n/4, w/2, 3w /4, 7, and 37/2. The points will be used according to Table 6.1.
The points of a typical Nyquist curve is shown in Figure 6.1. For processes
with integrators we will make use of points corresponding to the phase lags
3n/4, w, 5w /4, and 37w /2.
Table 6.1

Number of points  Points in Figure 6.1

2 1,5
3% " 1,3,5 ‘
4 1,2,4,5

5 1,2,3,4,5

6 1,2,3,4,5,6
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6.1 Models from frequency domain data

The results of the approximations will be misleading if the plants are
purely polynomial systems of too low order. The coefficients of the models
will then be estimated with almost 100% accuracy from only a few points.
Therefore we will make use of more complicated transfer functions of higher
degrees or transfer functions with time delays. To be specific, the following
processes will be considered

Gﬂ@:lin,CF:LZJO (6.1)
1

6;2(5) = Zifiigjg (6.2)
6—053

Gs(s) = o racs Ty & = 0% 04,05 (6.3)
e~ s

G(s) = opr T L0 (6.4)

Gs(s) = - T =1,2,10. (6.5)

s(s+1)(sT + 1)’

Processes with and without integration require slightly different approxima-
tion methods, and allow different approximation points. They will therefore
be treated separately.

Processes without integration

In this section the model fitting methods used in the investigation will be
presented. Different methods will be applied in the case where two points
are known and in the case where more than two points are known. The two
point case will be examined more thoroughly first.

Transfer function known in two points Suppose we know the value
of the frequency response in two points, G(0) = go and G(iwy) = goe**. The
parameter gg is easily estimated from the stationary value of a step response
of the plant. Three parameters can be estimated from this knowledge of G(s).
We want the transfer function

e—sL

1+ 8T

to agree with the known data in the two points. Solving the equations
G1(twg) = gae*™ and G1(0) = go for kp, L, and T gives

Gi(s) = kp (6.6)

v o k=90 (6.7)
1 g0 A
T=— /() - .
— 21 (68)
- « + arctan waT. (6.9)
wa
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These formulas require that go/g, > 1. In particular, they work for any point
of a Nyquist curve with monotonicly decreasing amplitude and phase.

The data obtained from a relay experiment or in the Ziegler-Nichols
self cycling method correspond to o« = —m. If the relay has hysteresis then
the estimated point corresponds to « > —m. The nonlinearity suggested in
[Holmberg, 1991] can be used to obtain points on the Nyquist curve cor-
responding to any «. This nonlinearity can be described as a relay with
hysteresis proportional to the amplitude of the input signal to the process,
and gives a describing function with a constant phase.

To examine the influence of «, the following systems were investigated

1

Gar(9) = (e (6.10)
Gon(s) = ﬁ (6.11)
Gasls) = 5y i 1.25 1) (6.12)
G () = ——— (6.13)

(L+s)(1+s)

PI and PID controllers for these systems were designed with 2PM and 3PM
with M, = 2.0 and ap = 1.0. In Figure 6.2 a number of quantities are shown
which are the ratios between the parameters obtained from a design with
a model corresponding to a certain a and the parameters obtained from a
design with the true model.

For PI controllers the ratios are closest to 1 for lower ae. PID controllers
have ratios closer to 1 for higher a. The interpretation is that more high
frequency information is needed for PID controller design than for PI con-
troller design. The M, values were also examined, but showed no significant
changes. Note that for PI control IAE/IAEq < 1 for some systems and some
a. This means that the approximated model gives better control in this re-
spect, than the true model. The purpose of the investigation was to examine
for which « the approximated model gives results as close as possible to the
true model, not to find optimal controllers. Observe that the figures are
differently scaled. The PI controllers parameters from the estimated models
deviate more from the true values than the corresponding PID parameters.
Note also that although the PI parameters for « = —7 may be 50% to 100%
too-large, the corresponding IAE does not deviate more than 30%

The ratios for PID control tend to be close to 1 for a phase lag a little
less than w. This is the frequency range where relay based auto tuners oper-
ate. Thus, a relay experiment can be expected to give good models for PID

controller design, but not so good for PI controller design.
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Figure 6.2 A number of quantities obtained from controller design with a model
estimated from two points, G(0) = k, and G(wa) = gae'®, shown as functions of
a/w. The quantities have been divided by the values obtained for the true model.
Gai (solid line), Goo (dashed line), G43 (dotted line), and G,4 (dashed-dotted
line). The ratios are shown for PI and PID controllers.
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The resonant system (G,3 was the one which was the most difficult to
approximate with Gy. This is seen in Figure 6.1 where the parameters from
estimations of G,3 deviates most from the true parameters.

PI controllers designed with models for small a give results very close
to the results obtained with the true model, but a too small value of a will
make the approximation very sensitive to errors in G(wq). A good choice for
PI controller design is o = —n/2 and for PID controller design o« = —m. To
be able to compare all approximations equally, we will use a = —x for all
controller designs in the following.

Transfer function known in more than two points Suppose we know
the transfer function in m points G(w,), r = 1...m. A method for fitting
transfer functions of structure

_ bos™ + bis™ by, 15+ by,

§he +aysneTt . .+ an, 15+ an,

G(s)

to such data is presented in [Lilja, 1989]. The method requires that 2m >
ng + np + 1. Suppose that we want a pole excess ofﬁp, i.e., ng = ny + p. This
gives np < (2m —p — 1)/2. The design methods proposed in Chapter 4 and
Chapter 5 will give a controller if the pole excessis > 2. We will examine the
cases where p = 2. The values of n, and n, will be those in Table 6.2, where
polynomials of as high degree as possible have been chosen. Models with
p = 3 tended to give poorly damped poles which can be difficult to handle in
the design. Therefore all investigations were carried out for p = 2.

Table 6.2
T

3

a

NI NI VI ol !
OBU(»&-C,QS
e O DN
Oy O o= O

Processes with integration

For processes with integration we can fit similar models, but with slightly
different preconditions.

Integrator gain known and transfer function known in one point
A reasonable assumption is that we know the integration gain and one point
on the Nyquist curve,. Knowing the integrator gain corresponds to knowing
the slope in steady state of the step response of the plant. Now the model

e—sL
G1(5) = ko sy o7 (6.14)
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can be fitted to the given data, G(iwy) = goe'® and k,. Solving the equation
G1(iwe) = gae'® for L and T gives

1 k
T e )21 6.15
i) (6.5
I w2+ oz+warcta,nwaT. (6.16)

These formulas require that k2 > (gawa)®.

Transfer function known in more than two points Assume that G(s)
can be written

B(s)1

—. 6.17
A(s) s (6.17)
To use the routines in [Lilja, 1989], form g, = w,G(iw,) and use the points
gz as inputs to get B(s)/A(s). Here we must know that the plant contains
an integrator. The complete transfer function G(s) = B(s)/(sA(s)) is then

used in the design. :

G(s) =

Results of the investigations

The results of the investigations will be presented in this section. The ap-
proximated models have been used for designing PI and PID controllers. The
PI controllers have been designed with 2PM with M, = 2.0. The PID con-
trollers have been designed with 3PM with M, = 2.0 and oy = 1.0. For the
resonant systems was used in the PI case M, = 2.5, and in the PID case
M, = 2.5 and ag = 0.3.

The results of design of controllers using the different approximated mod-
els are compared to the result of design of controllers using the true models.
The results of the computations are shown in Figures 6.3, 6.4, 6.5, 6.6, and
6.7. In the figures each quantity has been divided by the quantity obtained
from design with the true model. The ratios are plotted against the number
of approximation points. The quantity IAE is the integrated absolute error
when the controlled, true system, gets a load disturbance on the input of
the process. In each figure are given the results of both PI control and PID
control.
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Figure 6.3 Results for Gy, T = 1 (solid line), T' = 2 (dashed line), and T' = 10
(dotted line). Results are shown for PI and PID controllers.
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Figure 6.4 Results for GG3. Results are shown for PI and PID controllers.
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Figure 6.5 Results for G3. The lines correspond to { = 0.3 (solid line), { = 0.4
(dashed line), and ( = 0.5 (dotted line). Results are shown for PI and PID
controllers.
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Figure 6.6 Results for G4, T' = 1 (solid line), T' = 2 (dashed line), and T = 10
(dotted line). Results are shown for PI and PID controllers.
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Figure 6.7 Results for an integrating process G5, T = 1 (solid line), T' = 2
(dashed line), and T' = 10 (dotted line). Results are shown for PI and PID
controllers.
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Conclusions

The aim has been to investigate how different points on the Nyquist curve
affect the design, rather than to find out which points were optimal. Therefore
those estimated models were considered to be ‘best’ which have the ratios
closest to 1.

Non-integrating processes For the systems G'1, Gy, G3, and G4, approx-
imations with 2, 3, 4, 5, and 6 points have been computed according to the
methods presented above. In all two point estimations @« = —7 was used.
No two point estimations were made for the resonant systems. The results
of these computations are presented in Figures 6.3, 6.4, 6.5, and 6.6.

The two point approximations give PID control more close to the PID
control obtained from the true model than PI control to the PI control of the
true model. The reason is that this model is more correct for relatively high
frequencies, and PID controller design uses more high frequency information
than PI controller design. For G the two point estimation, of course, gives
the same result as with the true model. The reason is that the estimated
model and the true model have exactly the same structure, and depend on
only three parameters.

The three point approximation give better relative approximation for PI
controller design than for PID controller design. The emphasis is here on
lower frequencies, which is more important for PI controllers. -

In all cases the 4, 5, and 6 point approximations yield practically identical
results. Information from points with phase lags greater than m do not give
better performance of the closed system.

Integrating processes 'The process G5 was the only integrating process
which was tested. The one point approximation was done for a« = —m. The
results of these computations are presented in Figure 6.7.

Both one and two point estimation gives PI control closer to the PI
control obtained from the true model than PID control to the PID control
from the true model.

For the integrating process the 3 and 4 point approximations give the
same result. For the design of PI and PID controllers for this integrating
system there is no need for information of points with phase lag greater than
57 /4.

PI and PID controllers are controllers with simple structures, hence one
can assume that it is sufficient to have a good model for low frequencies.
- ~When we make the controller design we do not optimize the controller
with respect to IAE, hence it may very well happen that an approximate
model give a better design in terms of [AE than the true model.

The step and load responses from design with information from different
sets of data points do not look very different. From a practical point of view
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a 2 or 3 point estimation is usually sufficient. IAE of PID control was always
less than IAE of PI control.

6.2 Summary

We have investigated how the design of PI and PID controllers depends on
the available information of the frequency response of a plant. The design
methods developed in Chapter 4 and Chapter 5 were used. For the investiga-
tion transfer functions were estimated given points on the Nyquist curve of
known plants. PI and PID controllers were designed for the true system and
for the systems obtained from the model estimations. The ratios between
various quantities from the approximate systems and the true systems are
shown in figures.

This empirical investigation has shown that it is indeed possible to base
the design on ordinary frequency response data. There is a difference be-
tween PI and PID control in requirements of the process information. Not
surprisingly, PI control design benefits from information at lower frequencies.
PID controller design needs information from higher frequencies.

It has been shown that a sufficiently good model for PI and PID con-
troller design can be estimated from information from points with phase lags
w/4, 7/2, 3w /4, and 7. No investigations were made on how to choose these
points optimally.

For non-integrating processes information from points with phase lags
greater than = is of little use. Design of integrating processes requires infor-
mation to a greater phase lag.
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Comparisc

In this chapter we will give some examples of the use of the design methods
presented in the previous chapters. The methods will be applied to a number
of standard systems. Comparisons with methods like Ziegler-Nichols, Cohen-
Coon, IAE, ISE, and ITAE will also be given.

7.1 Examples and comparisons

The methods for design of PI and PID controllers presented in Chapter 4
and Chapter 5 will be used and compared in this section. ,

Design methods

PI controllers will be designed by chosing (5 such that the closed system gets
a prescribed M, value while wy is chosen to maximize k;. This method will
be denoted 2PM (Two Pole Method). In some cases the modified PI design
method will be used. This method means that wg is increased beyond the
maximum of k; ungil &; has been reduced to 0.8k; max. This method will be
denoted MPI (Modified PI). '

PID controllers will be designed by two methods. In the first method
three poles are specified with aq, wg, and (. The parameter oy will be set
to 1 in most cases, except in the case of resonant systems. The parameter wq
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will be chosen to maximize k;, and (o will be chosen to get a prescribed M,
value. This method will be denoted 3PM (Three Pole Method). The second
method starts with a PI controller tuned to have M, = M,q, this controller
is then modified by adding derivative action and recomputing k and k; until
the final controlled system has M, = M,5. The design parameters are M,
and M,y. This method will be denoted MCM (Modified Controller Method).
The design methods are described in detail in Chapter 4 and Chapter 5.

The PI and PID controllers

In this chapter we will use the PID controller on series form, with the deriva-
tive filter constant N = 10. The set point signal has not been differentiated.
The simulations have been made with the simulation package Simnon, see
[SSPA, 1990]. The results of the simulations are shown in figures where the
output signal of the process is in the upper half in the figures and the control
signal is in the lower half. The initial part of the simulation shows the re-
sponse to a step change in the set point signal. At half the simulation time a
constant load disturbance acts on the input of the process. Load disturbance
attenuation is evaluated with the criteria IE and IAE.

The robustness of the controlled system will be investigated by comput-
ing the time responses when a parameter in the process is changed while
keeping the controller constant. Robustness is also evaluated by the sensitiv-
ity M, and the relative damping of the dominant poles.

The response to command signals can be changed by the set point weight-
ing factor 8. By introducing 8 the controller has a two degree of freedom
structure. The parameter 8 is set to 0 in the simulations to get small over-
shoots. To get faster set point responses, and possibly more overshoot, 3
may be increased.

A crude measure of the sensitivity to measurement noise is the high

frequency gain of the controller, for PI controllers k£ and for PID controllers
k(N +1).

The design parameters

M, is the primary design parameter in the methods used here. The following
example is given to get a feel for the meaning of M, as a design parameter.

EXAMPLE 7.1—M, as design parameter

PI and PID controllers were designed for the process

LI 1

GO) = o C (1)

with 2PM and 3PM for M, = 1.5, 2.0, and 2.5. The time responses of the
systems are found in Figure 7.1. As can be seen in the figure we get more well
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Figure 7.1 PI and PID control with different M, values in the design. The
values used were My = 1.5 (solid line), M, = 2.0 (dashed line), and M, = 2.5
(dotted line).

damped systems for lower M, values. Responses with PI and PID controllers
are similar in shape, but PID controllers give a faster response. The TAE
values were in the PI case 12.0, 10.5, and 11.4 and the IE values were 11.8,
7.4, and 6.0. Corresponding values for the PID case were for IAE 8.9, 7.0,
and 7.3 and for IE 8.8, 5.6, and 4.4. The IE values decrease with increased
M. The IAE values become large when IE is large or when IE is small due
to big overshoots, as in the case of M, = 2.5. Sensible values of M, for use
in tuning usually are between 1.5 and 2.2. O
The example shows that parameter M, is a good design variable. Varia-
tion in the responses are easily obtained by changing M,. Responses without
overshoot can often be obtained by choosing M, sufficiently small. In this
thesis we have designed with M, = 2.0 as a standard value. The value was
chosen because it is possible to design almost all plants with M, = 2.0. This
may be considered somewhat high. In many applications this value could
be reduced. Lower M, values can be obtained with more complex controller
structures. v \
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Test processes

Controllers for a number of systems have been designed and investigated. In
this section the following systems will be investigated

—8

e

Gs) = 7oy T=1.4 (S1)
G(s) = 5—3}5—)? n= 4,8 (S2)
6(s) = T3S as)(11+ ey 2S00 (89
G(s) = (11;05‘; 0=02,2 (S4)
G@):(a+8xﬁiﬂgﬁ+1y ¢ =03, a=03,33 (S5)
G(s):—s@i———%s—), T=1,4 (36)

The system S1 is a standard system that has been used for a long time in
the studies of PID controllers. There is no loss in generality to assume that
the dead time is 1, as is shown in Iixample 7.2.

EXAMPLE 7.2
If the plant

e—sL
Gls)= 157 (7.2)
is given, and we introduce s’ = sl and 0 = L/T we get
"(s") = '/L) = e . .
6'(s') = G5/ I) = T (73)
Hence it is sufficient to study
6—3
G(S) - 1 + Szw' (7’4)

Controller parameters for other transfer functions of type (7.2) can be ob-
tained by scaling. O
~_ ~The drawback-of the system S1 is that the high frequency roll-off is quite
slow. With a controller having derivative action the loop transfer function
will have constant gain over a wide range of frequencies. For this reason it
has been claimed that this is an unrealistic process. Still it is often used
as a standard test process. The system S2 is another standard system. It
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is minimum phase and similar to S1 in the sense that both systems have
significant phase lags. System S2 has however much more high frequency
roll-off. The system S3 is also a multipole system where the spread of the
poles is adjusted by parameter «. The system 5S4 is a simple system with a
zero in the right half plane. The system S5 is a system with a resonance. It
represents a system where PID controllers cannot be expected to do so well.
The system S6 is a simple system with integral action.

The open loop process gain is normalized to 1 in all cases, since this
gain only affects k by a constant factor. For processes with several time
constants and time delays it is only interesting to change the ratio between
these constants and delays. Controllers for other changes can be computed
by scaling.

A more thorough examination will be carried out on S1, where formulas
are available for optimal controllers for most integral criteria. Designs of the
other systems will be presented more briefly.

System S1 — G(s) =e™*/(1 + sT)

Design with 2PM, 3PM, and MCM In this section the system S1 will
be investigated. Designs have been made with 2PM, 3PM, and MCM. The
following design parameters were used, in 2PM M, = 2.0, in"3PM a¢ = 1 and
M, = 2.0, and in MCM M,; = 1.8 and M,y = 2.0. Responses to set point
and load changes when the system is controlled by PI and PID controllers
are found in Figure 7.2. Two cases are shown, a) T'=1 and b) 7' = 4. Table
7.1 gives a summary of the simulations.

Table 7.1 Results of designs and simulations of S1

Case k T; Ty W (o 1E IAE

la 2PM  0.6334 0.8882 1.1204 0.4614 1.4022 1.8397
la 3PM  1.0656 1.1724 0.2227 1.7024 0.5452 1.1002 1.1897
la MCM 1.0208 1.0427 0.2335 1.3876 0.5584 1.0215 1.2736
1b 2PM  2.2387 2.1886 0.8524 0.5434 0.9777 1.1176
1b 3PM  3.4359 2.3162 0.2583 1.4186 0.7527 0.6741 0.6760
1b MCM 3.2403 2.1496 0.2343 1.0790 0.6642 0.6634 0.7160

By going from PI to PID control we get a reduction of 35% in IAE in case
a) and 40% in case b). Going from PI to PID control corresponds to a large
increase of k (68% and 53%), but a moderate increase of T; (32% and 5%).
There is little difference between 3PM and MCM. The 3PM forces the closed
loop system to have a pole on the negative real axis. MCM usually ends up
with two pairs of complex poles in the closed system. Systems designed with
3PM usually get a larger wg than with MCM. The double pairs of complex
poles also give a slightly larger overshoot in the set point responses. We get
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smaller TAE for the case 1" = 4 than for the case T' = 1. The reason is that
there is a time delay in the process. During the first time unit after a load
disturbance the system runs in open loop and the error increases faster in
case of T' =1 than for T' = 4.
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Figure 7.2 Simulations of S1 for 7' = 1 and 7' = 4. Controllers designed with
2PM (solid), designed with 3PM (dashed), and with MCM (dotted).
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Figure 7.3 'To the left are shown Nyquist curves for loop transfer functions
with PI controllers designed with 2PM, 7" = 1 (solid line), T' = 4 (dashed line)
and with PID controllers designed with 3PM, T' = 1 (dotted line), T' = 4 (dashed-
dotted line). To the right are shown Nyquist curves fot loop transfer functions
for IAE optimal controllers PI, T = 1 (solid line), T' = 4 (dashed line) and PID
T =1 (dotted line), T = 4 (dashed-dotted line).

Nyquist plots The Nyquist curves of the loop transfer functions are shown
in Figure 7.3. Curves for S1 with PI and PID controllers designed with 2PM
and 3PM are shown in one diagram, and curves for S1 with TAE optimal PI
and PID controllers are shown in the other.

Notice that the curves designed with 2PM and 3PM have similar shape
for different 7' in the interesting frequency interval. Controllers designed
with TAE give rise to very different looking loop transfer functions and are
also much closer to —1 than the other systems. Other design methods, e.g.
Ziegler-Nichols, exhibit similar behaviour. The predicatability of the design
is an advantage of 2PM and 3PM.

Robustness The robustness properties are illustrated by the following ex-
ample. PID controllers were designed for S1 with T' = 2 with 3PM and with
the IAE criterion. Figure 7.4 shows the time responses for the nominal sys-
tem (solid), for the system with 7' = 1.5 (dashed) and 7' = 2.5 (dotted) for
the same controller.

As can be seen from Figure 7.4, the IAE optimal solutions are somewhat

faster, but has very poor robustness. For the IAFE optimal design M, = 3.25,

which is the reason for its poor robustness. With 3PM we have control of
the robustness of the closed loop. ‘
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Figure 7.4 Time responses for S1 for the nominal system T' = 2 (solid), for the
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Design with IAE As a comparison, controllers for S1 have also been
designed with the IAE criterion. As can be seen from Table 7.2 the IAE
optimal controllers give quite high M values, which causes poor robustness.
The time responses with IAE controllers are found in Figure 7.5

Note that the responses of the different systems look very different, e.g.,
compare the set point responses with Pl control with the responses of con-
trollers designed with 2PM in Figure 7.2.

Table 7.2 Results of IAE designs and simulations of S1

Case k T Ty Co M, IE IAE

la PI 0.9840 1.6440 0.3292 2.1835 1.6707 1.6707
la PID 1.4350 1.1390 0.4820 0.1633 3.2964 0.7937 1.0449
1b PI  3.8603 2.4678 0.2082 3.6681 0.6393 0.8729

1b PID 5.1446 1.6130 0.3986 0.2959 3.1719 0.3135 0.4200

Design with MPI In Figure 7.6 the time responses for S1 with T' = 4 are
shown when the plant is controlled by a PI controller designed with MPI. As
comparisons time responses are also shown for the system controlled with a
controller designed with 2PM, and an IAE optimal controller. In this case
2PM used the exact calculation to find the IE optimal controller with specified
M, = 2. The numerical results of the design are found in Table 7.3.

Table 7.3 Results of design with MPI of S1

Case k T; wg Co 1E IAE

MPI 2.6583 3.1883 1.1467 0.4901 1.1994 1.1994
2PM  2.0243 1.9423 0.7380 0.4996 0.9595 1.2549
IAE 3.8603 2.4678 1.2637 0.2082 0.6393 0.8729

The MPI design gives a somewhat faster response to load disturbances
than the 2PM controller, without overshoot. To get substantially faster re-
sponse we need to increase M,. The IAE controller gives M, = 3.67, and

gives s oscillatory response. The high M, value indicates poor robustness of

the system. If a system with no overshoot is wanted, it can be obtained by
using a smaller M, in the design. "

Because of the time delay in the process the closed loop system does not
react on a set point change until 1 time unit after the change. This explains
the sharp edges in the control signal.
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Figure 7.6 'Time responses of S1 controlled by PI controllers. Design methods
were MPI (solid line), 2PM (dashed line), and IAE (dotted line).’
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Figure 7.7 Set point and load responses for § = 1 (sohd line), ,6 = 0 (dashed

line), and G = 0.5 (dotted line).

Set point weighting Large overshoots in the set point responses can be
avoided by using set point weighting. As an example S1 with T = 1 is
designed by maximizing k; for (; = 0.6. The parameter 8 has now been
chosen according to the method proposed in Chapter 5, which gives 8 = 0.5.
The responses to set point and load changes for 8 = 0, 0.5, and 1 are shown

in Figure 7.7.
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System S2 — G(s) = 1/(1 + s)"

Destgn with 2PM, 3PM, and MCM In this section the system S2 will
be investigated. Designs have been made with 2PM, 3PM, and MCM. In
2PM M, = 2.0, in 3PM ag = 1 and M, = 2.0, and in MCM M,; = 1.8 and
M,y = 2.0 have been used. Responses to set point and load changes when
the system is controlled by PI and PID controllers are found in Figure 7.8.
Two cases are shown, a) n = 4 and b) n = 8. Table 7.4 gives a summary of
the simulations.

Table 7.4 Results of designs and simulations of S2

Case k T; Ty wo Co 1E IAE

2a 2PM  0.6914 1.8411 0.5163 0.3580 2.6628 3.8548
2a 3PM  1.8790 2.6363 0.6560 0.8126 0.3293 1.4030 1.7141
2a MCM 2.0981 1.9402 0.9159 0.7646 0.4317 0.9247 1.5158
2b 2PM  0.3975 2.9365 0.2356 0.4156 7.3875 10.5254
2b 3PM  0.8134 4.5403 1.1676 0.3393 0.3965 5.5818  7.0043
2b MCM 0.8476 3.9823 1.5683 0.3114 0.5066 4.6983 6.8461

The relative advantage of using PID over PI control is-larger in case a)
than in case b). Apart from introducing a derivative part in the controller,
we get more than twice as large controller gain in the PID case as in the PI
case. The peak error is diminished less in case b) than in case a) when going
from PI to PID control. We also get larger overshoots with MCM than with
3PM. Their IAE values do not differ significantly.

Robustness As a test of the robustness of the design, the controller for a
system with n equal lags was used for systems with n—1 and n+1 equal lags.
The results of the simulations are shown in Figure 7.9 for the case n = 8.

Design with IAE and MPI Controllers for S2 were also designed with
the MPI and IAE methods. To compute IAF optimal controllers, the simula-
tion program Simmnon with OPTA was used, see [Glad, 1974]. The accuracy
of the results obtained from OPTA is limited. For these design cases only
the first decimal will be the same for different initial guesses of the controller
parameters in the optimization. The results of the computations are pre-
sented in Table 7.5. 4'ime responses are shown in Figure 7.10. In this case
the PI controllers designed with MPI and TAE behave rather sindilarly. The
PI controller designed with MPI gives in this case a smaller peak value of the
load response than the one designed with 2PM. This shows that IAE design
can produce controllers with relatively low M, values.

140




7.1 Ezamples and comparisons

Table 7.5 Results of IAE and MPI designs and simulations of S2

Case k T; Ty wo o M, IE IAE

2a IAE PI 1.660 4.183 0.747 0.183 2.779 2.520 2.796
2a MPI 1.209 4.001 0.693 0.291 2.000 3.308 3.308
2a IAE PID 3.537 1.776 1.460 1.440 0.205 2.627 0.502 0.796
2b IAE PI 0.723 5.793 0.318 0.284 2.174 8.011 8.622
2b MPI 0.694 6.393 0.325 0.308 2.000 9.207 9.207

2b IAE PID 1.046 4.392 2.631 0.514 0.232 2.232 4.201 5.313

As can be seen, systems with PI controllers designed with MPI and IAE
behave similarly. IAE optimal PI and PID controllers have rather high M,
values. In some cases the IAE design can be acceptable, but in other cases
the design yields a far too large M,. With 2PM and 3PM we may get a little

slower system, but we can always get well damped and robust systems.

141




Chapter 7 Fxamples and Comparisons

n —
1.5 T T T ] T T T
>
=}
j=?
=
@)
3 ¥ ?
k= By §
= ¥ :
@] R :
S
O i i 1 I 1 l i
0 10 20 30 40) 50 60 70 80
Time
n —
1.5 T 1 T T T T T T T
o
=]
jo
=
@)
=
S
a]
o
(@]
o
= Time

Figure 7.8 Simulations of S2, with n = 4, and with n = 8. Controllers designed
with 2PM (solid), designed with 3PM (dashed), and with MCM (dotted).
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Figure 7.9 The time responses for perturbed systems, for PI and PID control,
n = 8 (solid line), n = 7 (dashed line), and n = 9 (dotted line).
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System S3 — G(s) = 1/(1+ s)(1 + as)(1 + a®s)(1 + a®s)

Design with 2PM, 3PM, and MCM In this section the system S3 will
be investigated. Designs have been made with 2PM, 3PM, and MCM. In
2PM M, = 2.0, in 3PM oy =1 and M, = 2.0, and in MCM M,; = 1.8 and
M,5 = 2.0 have been used. Responses to set point and load changes when
the system is controlled by PI and PID controllers are found in Figure 7.11.
Two cases are shown, a) a = 0.1 and b) & = 0.2. Table 7.6 gives a summary
of the simulations.
Table 7.6 Results of designs and simulations of S3

Case k T; Ty wo o IE IAE

3a 2PM 9.1136 0.3225 8.5867 0.3576 0.0354 0.0377
da 3PM  175.1807 0.0793 0.0264 43.0934 0.4100 0.0005 0.0005
3a MCM 179.2038 0.0569 0.0283 38.0878 0.4261 0.0003 0.0004
3b 2PM 3.8868 0.5580 3.9843 0.3583 0.1436 0.1651
3b 3PM 27.6872 0.2836 0.0810 11.6362 0.3947 0.0102 0.0106
3b MCM  28.7862 0.2017 0.0893 10.3902 0.4242 0.0070 0.0096

When a = 0.1 the system has poles in —1, —10, —~100, and —1000, and
is dominated by the pole in —1. Because of this, the design method gives
high values of the controller coefficients and wy. A similar system, although
of second order, is examined in Example 4.22, where we see that the wqy in
the design is proportional (1 + 1/a). We also observe that in this case the
derivative part improves the output signals very much. The IAE values are
reduced drastically when going from PI to PID control, in case a) almost two
orders of magnitude. The bandwidth is increased by a factor 5. Increasing
the complexity of the controller made it possible to increase the loop gain
significantly. The control signal and noise sensitivity will be high. In this
case it is the noise level and limitations on the control signal which determine
if PID control can be used.
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Figure 7.11 Simulations of S3, with @ = 0.1, and with « = 0.2. Controllers
designed with 2PM (solid), designed with 3PM (dashed), and with MCM (dotted).
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System S4 — G(s) = (1 — as)/(1 + s)3

Design with 2PM, 3PM, and MCM In this section the system S4 will
be investigated. Designs have been made with 2PM, 3PM, and MCM. In
2PM M, = 2.0, in 3PM a9 =1 and M, = 2.0, and in MCM M,; = 1.8 and
Mo = 2.0 have been used. Responses to set point and load changes when
the system is controlled by PI and PID controllers are found in Figure 7.12.
Two cases are shown, a) & = 0.2 and b) o = 2. Table 7.7 gives a summary
of the simulations.
Table 7.7 Results of designs and simulations of S4

Case k T; Ty wo Co IE IAE

4a 2PM  0.8548 1.5872 0.6902 0.3522 1.8569 2.6155
4a 3PM  2.5537 2.1050 0.5073 1.1522 0.3437 0.8243 0.9490
4a MCM 2.8653 1.4906 0.6764 1.0763 0.4216 0.5203 0.8197
4b 2PM  0.3054 1.6578 0.4255 0.5533 5.4291 7.6456
4b 3PM  0.5446 2.4298 0.6181 0.6794 0.6865 4.4616 5.7751
4b MCM 0.5141 2.2289 0.6025 0.5359 .0.6676 4.3358 6.0569

This is a system with right half plane zeros. In case a) the IAE drops
significantly when we go from PI to PID control. The zero is in this case
located far from the origin and the other poles. The system is almost a pure
third order system. As can be seen from Figure 7.12 the non minimum phase
character of the is not so obvious. In case b) we have a zero close to the
origin. It can be shown that poles and zeros in the right half plane set limits
on what can be done by a controller. The decrease of IAE when PID control
is used instead of PI control is much less than in case a). The overshoot in
the set point response in a) is much less for the 3PM controller than for the
MCM controller. From the time responses in Figure 7.12 we clearly see the
characteristics of a non minimum phase system. In case b) there is not much
reason for using PID control.
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Figure 7.12 Simulations of S4, with a = 0.2, and with a« = 2. Controllers
designed with 2PM (solid), designed with 3PM (dashed), and with MCM (dotted).
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System S5 — G(s) = a/(a + 5)(s* + 2,5 + 1)

Design with 2PM and 3PM In this case it proved to be almost im-
possible to get a decent PI or PID controller with 2PM or MCM, therefore
only PID design with 3PM are shown. The design parameter for 2PM was
M, = 3.7, and for 3PM oy = 0.4 and M, = 2.2. The time responses of the
controlled system are shown in Figure 7.13. In this example {, = 0.3 and
in a) & = 0.3 and in b) a = 3.3. The difference between the two methods is
where on the negative real axis the pole of the plant is located.

Table 7.8 Results of designs and simulations of S5

Case k T; Ty wg o IE IAE

5a 2PM -0.0070 -0.0160 0.7789 0.1231 2.2792 8.3935
5a 3PM 1.7330 2.7300 1.0069 1.5831 0.1790 1.5753 1.6031
5b 2PM 0.2848 0.6513 1.0384 0.0725 2.2865 7.4451

5b 3PM 5.9079 1.7202 0.5829 3.0760 0.2795 0.2912 0.2920

This is a case where PID control is absolutely necessary. The case a) is
the most difficult to handle. The controller coefficients become negative. In
case b) the pole on the negative real axis is so far away that we almost have
a second order system, which can easily be handled by a PID controller.

The designs gave for a) controller zeros with relative damping ¢ = 0.82
and w = 0.60 and for b) and ¢ = 0.86 and w = 1.00. It seems reasonable to
try to compensate the oscillating poles with complex zeros. We also note that
the design method does not try to cancel the oscillating poles. In these cases
PID control gives good results. Note that the control signal is oscillating.
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Figure 7.13 Simulations of S5, with & = 0.3, and with « = 3.3. Controllers
designed with 2PM (solid), designed with 3PM (dashed).
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System S6 — G(s) =e™*/s(1+ T's)

Design with 2PM, 3PM, and MCM In this section the system S6 will
be investigated. Designs have been made with 2PM, 3PM, and MCM. In
2PM M, = 2.0, in 3PM ag = 1 and M, = 2.0, and in MCM M,; = 1.8 and
Mgy = 2.0 have been used. Responses to set point and load changes when
the system is controlled by PI and PID controllers are found in Figure 7.14.
Two cases are shown, a) T'=1 and b) 7" = 4. Table 7.9 gives a summary of
the simulations.
Table 7.9 Results of designs and simulations of S6

Case k T; T, wo o IE IAE

6a 2PM  0.2869 7.8612 0.3427 0.5390 27.4033  29.6996
6a 3PM  0.6716 5.3015 0.8221 0.7436 0.7069 7.8943 7.9257
6a MCM 0.6525 4.8978 0.8150 0.5994 0.6600 7.5067 8.0256
6b 2PM  0.1435 18.7309 0.1507 0.4264 130.5490 140.3130
6b 3PM  1.0303 6.9627 2.0152 0.5561 0.7126 6.7579 6.8322
6b MCM 0.9764  5.8697 1.9689 0.4386 0.5160 6.0114 6.7485

This is a case where derivative action improves the controller perfor-
mance radically.
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= Figure 7.14 Simulations of S6, with T = 1, and with T = 4. Controllers
designed with 2PM (solid), designed with 3PM (dashed), and with MCM (dotted).
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7.2 Achievable performance

A natural question when using PI and PID controllers is: What can we
achieve in a closed loop, e.g., in terms of settling time after a load distur-
bance? It is often desired to express the achievable performance in terms of
the plant dynamics. Unfortunately there is no simple answer to this question.
It is the dynamics of the plant that puts limits on the achievable performance.
To illustrate the problem, the settling times of the controlled systems, S1 to
S6 were crudely estimated from Figures 7.2, 7.8, 7.11, 7.12, 7.13, and 7.14.
The results are collected in Table 7.10.

S3 has open loop time constant = 1, S2a has open loop time constant
~ 4, and S2b has open loop time constant ~ 8. The settling time for S3 is
approximately the same as the open loop time constant or less, while for S2
the settling time is about 4 to 6 times the open loop time constant. Thus,
to determine the settling time of the closed system, more information than
the apparent time constant of the open system is needed. From Table 7.10
we see that the performance is improved dramatically for

e processes with one very dominating pole, and little time delay
e integrating processes

e resonant processes. ,

These are application areas where much is gained by using derivative
action. From Table 7.10 we also see that the product t,wg = 11 for all
processes, except for the resonant and the one with widely spread poles.
This can be used to assess the settling time from data obtained from the

design.
Table 7.10 Settling times for the test processes

PI PID
ls wols ls wols ts,PID /ts,PI
Sla 10 11.2 7 11.9 0.70
S1b 10 8.5 7 9.9 0.70
S2a 25 12.9 15 12.2  0.60
S2b 50 11.8 40 13.6 0.80
S3a 0.7 6.0 0.1 4.3 0.14
S3b 2 8.0 0.5 5.8 0.25
S4a 20 13.3 10 11.5 0.50
S4b 25 10.6 15 10.2 0.60
S5a 50 39 15 24.0 0.30
S5b 100 104 5 15.0 0.05
S6a 40 13.7 15 11.1  0.38 '
S6b 80 12.1 20 11.1  0.25

153




Chapter 7 Ezamples and Comparisons

1.5 T T T T T T T
>
=
=3
L oed
=
©)

T T T ! T T T
=
!
g
fon
5)
@)

O _4‘\3\,,,,__&

0 10 20 30
Time

Figure 7.15 Control of system (7.5). PI control (solid line), PID control
(dashed line), and PD control (dotted line). : Co

7.3 Special systems

Controllers for a number of special systems have also been designed with
methods presented in this thesis. In these cases different values of M, and
o have had to be chosen.

A model for a motor drive

The model
(32 + 2(wis + w%)

(82 4 2(awa s + w?)

is often used as a description of a flexible motor drive. Typically w; = 0.3ws,.
In this example we set (; 2 = 0.1 and wy = 1. This model has a pole excess
of 1. This may cause rather low values of M, for a system controlled by a PI
or PID controller, which do not have much significance for the closed loop
behaviour. For this reason a PID design with direct specification of oy and (o
was tried. PI and PIJ controllers were also designed with a fixed, ¢o. In this
case (o = 0.8 and ag = 1. The simulation of the system is shown in Figure
7.15. This is a case when PID control is not successful. More complicated
controllers are required.

G(s) = (7.5)
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A standard test example

Consider
w2(1 - s)
_ P —S8T
GT(S) - (1 + 3)(32 + 2(.Up<p8 + wg) € (7.6)

with w, = 15, (, = 0.5, and 7 = 0.4. The process Gr(s) has been given in
[M’Saad, 1991] as a benchmark process for adaptive control strategies. As
have been pointed out in [Astrém et al., 1991] this is a process dominated by
the dynamics
(1=5) .

G(s) = 0T e . (7.7)
Hence one can assume that a PI controller will work well, but a PID controller
will probably have too much high frequency gain to do well. Controllers were
designed with 2PM with M, = 2.0 and with MCM with M,; = 1.7 and
Mgy = 1.9. The design parameters were chosen to get no overshoot in the set
point responses. Due to little amplitude roll-off the controller can tolerate
very little derivative action before the condition on M s2 1s met. Hence the
results of control with PI and PID control is similar. The parameters for PI
control were £ = 0.3618 and T; = 0.9794, and for PID control & = 0.3611,
T; = 1.0590, and T; = 0.0568. The PI controller has IAE = 1.7519 and the
PID controller has IAE = 1.8490, and we see that very little is gained by
going from PI to PID control. The peak error is somewhat smaller in the
case of PID control.

The results of the designs are found in Figure 7.16. Design results from,
e.g., [Lundh, 1991] produce similar time responses.

Systems with long time delays

Systems with long time delays are often controlled with little or no derivative
action. Therefore we will often use MCM as design method to have direct
control over the derivative action.

The standard system S1 Let w; and ws be the gain and phase crossover
frequencies, i.e., |L(iw1)| = 1 and arg L(iwy) = —m. The behaviour of the
loop transfer function for frequencies round the bandwidth of the system is
most important for the closed loop system, and wy and wp are normally in
the frequency interval w1, ws|. One way of getting insight into the behaviour
of a. PID controller is to compare the magnitudes of the derivative and the
intégral parts to each other for the frequency wy. Introduce ) defined by

kCU()Td

@= k/(woTs)

= weT;Ty. (7.8)
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Figure 7.16 The process G7 controlled by PI (solid line) and PID (dashed
line) controllers. : '

PID controllers were designed for

G(s) = (7.9)

with MCM with M,; = 1.8 and M, = 2.0. The quantity @ is shown in Figure
7.17. As can be seen the relative influence of the derivative part decreases -
when L is increased. Similar results were obtained for systems of type S2,
where the influence of the derivative action decreases when more ‘dynamics
is added. Design has been carried out with the standard PID controller
Gpip(s). In the case of (7.9) this means that kg is limited to kg < 1—1/M,s.
The elbow in Figure 7.17 occurs when kg = 1 — 1/M,,, i.e., when the high
frequency gain limits the robustness. Derivative action makes most difference
for systems with relatively little dead time. The performance of a controlled
system is always better with PID control than with PI control.

Pure time delay- A pure time delay has the transfer function
: \

G(s) = e~*L. (7.10)
In [Haalman, 1965] it is claimed that a pure time delay is best controlled by
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Figure 7.17 The ratio between integral and derivative action. .

an integrating controller
2

3Ls’
We design a PI controller with 2PM with M, = 1.917, which is the value
obtained by Haalman’s design. The controller parameters were k = 0.235
and T; = 0.288. As can be seen from Figure 7.18 responses to both set point
changes and load disturbances are better with the 2PM design. The IAE
values were 2.125 for Haalman and 1.525 for 2PM. Note that the control
signals have almost identical magnitude. The system designed with 2PM has
faster response, but the same overshoot.

The process (7.10) is special because the process gain is constant for all
frequencies. If a PID controller is used it is necessary to limit the derivative
gain. The design method will not be able to handle the design of a PID
controller for a pure time delay, since the loop transfer function

G.(s) (7.11)

+ sTy)e™® (7.12)

}

™

L —
=7 (s) = k(1 + sT;

has infinite gain for high frequencies. If the derivative part has a filter the
high frequency gain of the loop transfer function is k(1 + N). This means
that the Nyquist curve approaches a circle with radius k(1 + ). Thus we
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Figure 7.18 Time response for a pure time delay controlled by a controller
designed with 2PM with M, = 1.917 (solid line), and accordiig to Haalman
(dashed line).

must have k(1 + N) < 1 to get stability, and k(1 + N) < 1 — 1/M, to fulfill
the robustness criterion. This makes it necessary to take the derivative filter
into account in the design. If we design with MCM and specify M,; as in the
Haalman case we get k = 0.235 for the initial PI controller. The condition on
the PID controller gain is k < 0.478/(1 + N). If k4 is chosen very small the
k and T; of the PID controller will be approximately the same as for the PI
controller and the inequality cannot be fulfilled with controllers from MCM.

Two lags and time delay Another example of systems with long time
delays will be studied. This time we choose a process which has more high
frequency roll-off. Consider

e—sL

Gr(s) = (—HTP (7.13)

= for L =1 and small values of T'. PI controllers were designed with 2PM with
M, = 2.0 and PID controllers with 3PM with M, = 2.0 and ay = 1.0. The
results of investigations for L/T =1, 5, and 15 are shown in Table 7.11.
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Figure 7.19 The time responses of G (s) for long relative time delays. L/T =
5, PI (solid line), L/T = 5, PID (dashed line), L/T = 15, PI (dotted line), and
L/T =15, PID (dashed-dotted line).

Table 7.11

Control L/T & T; Ty Wo o IE IAE

2PM 1 0.6151 1.3318 0.6986 0.4027 2.1652 2.9924
3PM 1 1.3365 1.8628 0.4679 1.1019 0.4630 1.3938 1.5768
2PM 5 0.2902 0.4420 1.3364 0.4700 1.5231 2.0550
3PM 5 0.5241 0.6796 0.1773 1.9157 0.4692 1.2966 1.5420
2PM 15 0.2526 0.3314 1.6430 0.4884 1.3120 1.7393
3PM 15 0.4444 0.5108 0.1363 2.3443 0.4849 1.1493 1.3576

We see that the relative improvement in TAE in using PID control over
using PI control decreases from 0.47 to 0.22 as L/T increases from 1 to
15. The time responses for L/T = 5 and 15 are shown in Figure 7.19.
The improvement in IAE does not motivate the dramatic increase in high
frequency gain when going from PI to PID control.

.~ Better results,of controller design for processes with long dead times can
be obtained with special dead time controllers. As comparison we will show
the design with the PIP controller.

The PIP controller The PIP controller is a dead time controller and is
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Figure 7.20 Systems with a PI controller designed with 2PM (solid line), a
PID controller designed with 3PM (dashed line), and with the PIP deadtime

controller (dotted line).
described in [Higglund, 1991]. The controller has the transfer function

K(1 + sT;
Grip(s) = T -(I— . e—)sL’ (7.14)

and the time domain relation

= (1+ . )e(t)— R(l_'_pTi).)[u(t)—u(t—L)]. (7.15)

ExAMPLE 7.3—Control with the PIP controller
The PIP controller was tested on
e-—-lOs

s+1°

e

v (7.16)

G(s) =

In Figure 7.20 the PIP controller is compared to PI and PID controllers
designed with 2PM with M, = 1.8 and 3PM with M, = 1.8 and ag = 1.0.
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Figure 7.21 Set point and load responses for S1 with T' = 2 with controllers de-
signed with ZN (solid line, little step response overshoot), CC (dashed line), IAE
(dotted line), ISE (dashed dotted line), and ITAE (solid line larger overshoot).

Low values of M, were chosen to get small overshoots. The PIP controller
gives the best performance, but a well tuned PID controller comes close. [

7.4 Other design methods

In this section a few other design methods will be compared with the methods
developed in this thesis. '«

The standard design methods

Comparisons of the standard integral criteria can be found in many textbooks
and articles, see e.g. [Seborg et al., 1989] and [Miller et al., 1967]. To
show how systems behave when controlled by controllers obtained from the
standard design rules, we will study S1 with T' = 2. PID controllers were
computed with ZN; GC IAE, ISE, and ITAE, and the 51mulated set point
and load responses are shown in F1gure 7.21.

In this case the IAE and ITAE methods yield very similar responses. As
can be seen from the figure a wide variety of behaviour can be obtained from
the standard criteria.
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Figure 7.22 Time responses with controller demgned with 3PM (sohd line) and
with pole cancelling (dashed line).

Pole cancelling methods

Consider the plant
1

(s+1)3(10s + 1)

PID controllers were designed with two methods. First with 3PM with M, =
2.0 and ag = 1.0. In the second method T; and T; were chosen to cancel
two process poles in —0.1 and —1, this gave T; = 11 and T3 = 10/11. The
controller gain k was then chosen to get M, = 2. The time responses obtained
with controllers designed with the two methods are shown in Figure 7.22.
The 3PM design corresponds to controller zeros in —0.66 and in —0.25.
We get controller zeros between the process poles. The controller gain with
3PM was 5.9 and in the cancellation case 6.3. The main drawback of the
cancellation method is the slow recovery from a load disturbance. The control
signal becomes larger in the 3PM case. Basing a design method on pole
cancelling is not a good idea. The results get even worse if we try to cancel
poles closer to the origin. References to discussions of this problem can be

found in Chapter 3.

G(s) = (7.17)
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Output, y
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Figure 7.23 Time responses for G(s) with controllers designed with 3PM (solid
line) and Thomas’ method (dashed line) for T' = 2 and T = 10. Only the output

signals are shown.

The Thomas method

A method for PID controller tuning is presented in the thesis [Thomas, 1990].
The method is based on knowledge of the frequency response of the plant. PI
controller design is not considered. For details of the method, see Thomas’

thesis.
The method has been tested on

—8

e
G(s) = ——, T =2,10. 7.18
&)= 17 (7.18)
Controllers were designed with 3PM with M, = 2 and with Thomas’ method.
The time responses for the closed systems are shown in Figure 7.23. Thomas’
method gives good results in many cases, but 7' = 10 is a case where it fails.
A short relative time delay (L/T') gives a far too slow system.
e ¥ ?&‘ ‘

The PIDWIZ method

The American company BST Control delivers a program for hand-held com-
puters (Texas Instruments TI-74), which gives PID controller settings from
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data obtained from a step response. For further information on PIDWIZ, see
[Blickley, 1988].

The following systems were given from BST Control as a test batch for
dominant pole design, [Sanathan, 1989]. PID controller settings according to
PIDWIZ were also given.

10

106 1
G1(s) = 0.5e71° H T s (71)
m=1
e—2s
6—103
Ga(s) = 0.757—. (Z3)

The controller parameters obtained with PIDWIZ and with 3PM for oy =1
and M, = 1.6 are given in Table 7.12. The 3PM design were used with
M, = 1.6 to avoid overshoots.

Table 7.12 PIDWIZ and 3PM controller settings

Case k T; Ty IE IAE M,

Z1 PIDWIZ 0.934 39.244 6.156 42.017 42.017 1.564
71 3PM 0.941 32,917 8.698 34.984 35.480 1.600
72 PIDWIZ 0.150 1.220 0.167 8.130 8.130 1.433
72 3PM 0.212 1.254 0.342 5.917 5.923 1.600
73 PIDWIZ 0.202 3.321 0.000 16.474 16.474 1.428
73 3PM 0.392 4400 1.204 11.236 11.248 1.600

As can be seen from Table 7.12 PIDWIZ makes rather conservative de-
signs in the sense that the M, values of the controlled systems are low. 3PM
gave larger values than PIDWIZ of all controller parameters.

In Figures 7.24 and 7.25 are shown time responses for Z1, Z2, and Z3
with 3PM designed controllers (solid lines) and PIDWIZ controllers (dashed
lines). In all cases 3PM performed better than PIDWIZ.
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Figure 7.24 Time response of 3PM design (solid line) and PIDWIZ design

(dashed line) for Z1 and Z2.
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Figure 7.25 Time response of 3PM design (solid line) and PIDWIZ design
(dashed line) for Z3. ' '

7.5 Interpretation of other methods as DPD

Design of PID controllers with integral criteria has been in use for a long
time. This design method usually give quite good time responses, but has
its drawbacks. In this section we will compare design with integral criteria
with dominant pole design, as presented in the previous chapters. Since the
system S1 is the one most frequently studied, this will be our main example.

PI control

We have shown how the stability region for PI controllers can be computed

from the transfer function. All controller settings corresponding to a stable

closed loop system.must lie inside this stability region. In Figures 7.26, 7.27,

7.28, and 7.29 a number of controller settings will be shown in' the (k, k;)

*  plane of PI controllers. Curves for constant M, and constant (, will also be
shown in the figures. The controller settings have been computed from the
formulas in [Miller et al., 1967].
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Figure 7.26 Controller settings for S1. T = 4. Settings from different tuning
rules are marked in the figure Ziegler-Nichols: 1, Cohen-Coon: 2, IAE: 3, ISE: 4,

and ITAE: 5. L=1.0 T=2.0 Ms=2.0:0.5:6
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Figure 7.27 Controller settings for S1. T = 2. Settings from different tuning
rules are marked in the figure Ziegler-Nichols: 1, Cohen-Coon: 2, IAE: 3, ISE: 4,

and ITAE: 5.
167




Chapter 7 Ezxamples and Comparisons

L=1.0T=1.5 Ms=2.0:0.5:6

LYV

R PP e T Y

RO
i
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rules are marked in the figure Ziegler-Nichols: 1, Cohen-Coon: 2, IAE: 3, ISE: 4,
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Figure 7.29 Controller settings for S1. T' = 1. Settings from different tuning
rules are marked in the figure Ziegler-Nichols: 1, Cohen-Coon: 2, IAE: 3, ISE: 4,
and ITAE: 5.
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In Figures 7.26, 7.27, 7.27, and 7.27 the stability limit, {, = 0, is marked
by a solid line, the dotted lines parallel to the stability limit are curves for
constant (o. The curves are for (; = 0.1 to 0.9 in steps of 0.1. The other
dotted curves are loci for constant wgy. The dashed curves are curves for
constant M. The curves are for M, = 2 to 6 in steps of 0.5.

Statements have been made about of the behaviour of controllers tuned
with IE, IAE, ISE, and ITAE, see [Seborg et al., 1989]. When interpreted in
the dominant pole framework it is clear what happens.

Ziegler-Nichols Systems designed with the Ziegler-Nichols rule have ap-
proximately the same M, value as systems designed with the ITAE rule.
However the wy parameter is larger for ZN. This corresponds to an pole on
the negative real axis closer to the origin than for ITAE. This can make ZN
responses rather sluggish. Especially for long time delays ZN does not do
very well. In these cases the wy is larger than for the other rules.

Cohen-Coon The Cohen-Coon rules are based on systems described by a
first order lag and a time delay. The dominant poles are placed with a fixed
relative damping, ¢, = 0.2155, and maximal k;. The Cohen-Coon rule thus
corresponds to a high M. The fact that the settings in the figures does not
correspond to a maximal k;, is due to the approximations made to get the
simple CC formulas.

TAE The IAE criterion produces time responses relative similar to those
of CC or ITAE. Because of its physical significance the IAE criterion is
recommended in process control literature, see [Shinskey, 1988] and [Shinskey,
1990]. However, the robustness of IAE controllers can be poor.

ISE The ISE criterion is known to produce rather oscillatory systems. The
figures show that the ISE criterion give the largest M, value for all investi-
gated systems. The ISE criterion is unrealistic for practical use. This means
poor robustness.

ITAE 1t is generally agreed on that of all these criteria the ITAE criterion
produces the most robust and well damped systems. The M, values are
between 2 and 3. In [Miller et al., 1967] ITAE is judged to be the best
criterion. We see that ITAE correspond to a moderate M, value, and does
not push wg too high.

Notice that all these design methods lead to high M, values and poor
robustness of the closed loop system.

PID control oo

i

It is more difficult to visualize the controller settings for a PID controller,
since this requires three dimensions. Stability regions for System S1 as func-
tions of PID controller parameters can be found in [Oppelt, 1964]. Because
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of the difficulties of showing the PID settings graphically the results of the
investigations of S1 are displayed in Table 7.13.

Table 7.13
ZN CC IAE
L/T | wg o M, |wo o M, | wo o M,
0.10 | 23.95 0.21 3.42 | 20.27 0.21 4.12 | 19.08 0.39 3.05
0.20 | 12.26 0.20 3.34 | 10.40 0.20 4.02 | 10.59 0.32 3.15
0.30 (836 0.20 3.26 | 7.10 0.20 3.91 | 7.49 0.28 3.19
0.40 |6.40 0.19 3.18 | 5.44 0.19 3.81 | 5.87 0.24 3.23
0.50 |5.22 0.19 3.10 | 4.44 0.19 3.71 | 4.87 0.22 3.25
0.60 |4.43 0.19 3.03 |3.76 0.19 3.61 | 4.18 0.20 3.27
0.70 | 3.86 0.18 2.96 | 3.28 0.19 3.51 | 3.68 0.19 3.29
0.80 |[3.44 0.18 2.89 |2.92 0.19 3.42 |3.29 0.18 3.30
0.90 {3.10 0.18 2.82 | 2.63 0.19 3.33 | 299 0.17 3.30
1.00 | 2.83 0.18 2.76 | 2.40 0.19 3.25 | 2.74 0.16 3.30
ISE ITAE
L/T | wg o M, |wo G M,
0.10 | 24.39 0.13 4.92 | 20.94 0.33 3.02
0.20 | 12.38 0.12 5.19 | 10.62 0.32 3.06
0.30 | 839 0.12 5.25 | 7.25 0.32 3.02
0.40 |6.40 0.11 5.22 | 5.58 0.31 2.94
0.50 | 5.21 0.11 5.13 | 4.58 0.30 2.85
0.60 | 4.42 0.11 5.02 |3.91 0.30 2.77
0.70 | 3.85 0.11 4.89 | 3.43 0.29 2.68
0.80 | 3.42 0.11 4.76 | 3.07 0.29 2.60
090 |3.08 0.11 4.62 | 2.79 0.29 2.53
1.00 | 2.81 0.11 4.48 | 2.56 0.28 2.46

We see the same patterns for PID controllers as for PI controllers. The
ITAE controllers shows the least M, values and ISE controllers show the
highest values. In all cases shown in Table 7.13 the M, values are too high
to fulfill requirements on robustness.

7.6 Summary

PI and PID controllers have been designed for a number of systems. The
design methods were the methods developed in Chapter 4 and Chapter 5.

" The proposed method offers control of the robustness of the controlled
system by the choice of the design parameter M,. Furthermore, the Nyquist
plots of the loop transfer functions, and time responses of the closed loop
systems look surprisingly similar for different processes. This is not the case

170




7.6  Summary

for the standard tuning rules. As a consequence of this, the shape of the
time responses for different systems is also very similar for different systems
designed with the same M,. The great advantage with the proposed methods
is the predictability of the results. For all systems examined in this chapter
it was possible to compute a reasonable PI or PID controller.

If we want optimality in the sense of IAE, ITAE, etc., the only way to
do the design is to determine the controller parameters by numerical opti-
mization. The controllers obtained in this manner tend to have rather high
M, values and thus to be less robust, without giving significantly better time
responses.
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Software Tools

This chapter describes some of the software tools used in the work with this
thesis. The implementation of the design routines will also be discussed.
Computer assistance is absolutely necessary in the kind of research that
is presented in this thesis. Since it is possible to obtain analytical results only
in the very simplest cases most of the investigations have been done numer-
ically. All design algorithms have been implemented in Matlab, see [Math-
Works, 1990b]. All simulations have been done with Simnon, see [SSPA,
1990]. The computer algebra program Maple, see [Char et al., 1988], has
been used to check formulas and to explore what can be done analytically.

8.1 Matlab

Matlab has been the main computer tool in this thesis. The matrix is the
only data structure Matlab can handle. With such a simple structure it
can be difficult to handle general transfer functions. Transfer functions have
therefore been represented as text strings.

ExXAMPLE 8.1—Transfer function definition in Matlab
The transfer function

Ve
Tt Gl = —

- s(sT +1) ‘

could be defined in Matlab as the string ‘gst’
gst = ’exp(-sqrt(s))./s./(sT + 1)’;
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Note that the transfer function should be defined such that it can be evaluated
when ‘s’ is a vector. O

The evaluation of a transfer function represented as a string is done with
the Matlab function ‘evals’, which is defined as

function r = evals(s, str)

%r = evals(s, str)

%Evaluates the function represented by the
hstring str for the argument s.

r = eval(str);

By using this routine we have a safe way of evaluating a function represented
as a string. It can also be done by the following commands

s = sarray;
eval(str);

Here ‘sarray’ is the array of arguments for which we want to evaluate ‘str’.
Here we must remember to assign the argument to ‘s’ before the evaluation.
This may destroy the value of the global variable ‘s’, if there exists one. This
problem can be handled automatically and safely by using Matlab’s lexical
scoping in the functions.

Other operations which are needed for the design routines are a routine
for optimization of functions of one variable and a routine for the solution of
nonlinear equations with respect to one unknown. These routines are called
‘opt’ and ‘solve’.

The routine ‘opt’ is called as follows

[x, f] = opt(x0, str, tol);

The input parameters are: ‘x0’, the interval in which the maximum lies,

‘str’, the function to be maximized (it must be written as a function of ‘x’),
and ‘tol’ is the relative accuracy of the solution. The output parameters are
the = value of the maximum and the value in that point.

The routine ‘solve’ is called as follows

x = solve(y, x0, str, tol);

The input parameters are: ‘y’, the value we are solving the function for,
‘x0’, the interval in which the solution lies, ‘str’, the function to solve for
(it must be written as a function of ‘x’), and ‘tol’ is the relative accuracy of
the solution. The output parameter is the = value of the solution.

; The routines have been implemented by the simplest possible methods.
The optimizer ‘opt’ was implemented by a golden section algorithm and
the nonlinear equatién solver ‘solve’ was implemented with t}}e bisection
method. This was done to be able to handle as general transfer functions as
possible, without having to compute any derivatives, Jacobians, etc.
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The design routines

The basic routine in the design system is ‘dptable’. This routine is called
with

res = dptable(str, regtype, warray, zeta, alpha)

The input parameters are: ‘str’, the transfer function, ‘regtype’, the type
of controller we design (it may be ’pi’, ’pd’, ’pid’, etc.), ‘warray’ a vector
of wg, ‘zeta’ is the parameter (o, and ‘alpha’ is ap. Depending on the value
of ‘regtype’ this routine computes values of the controller parameters from
the formulas (4.32), (4.33), or (4.53), (4.54), or (5.5), (5.6), (5.7). The values
of wg, k, k;, T;, kq, and Ty are returned in the array ‘res’. Effort has been
put into coding this routine efficiently.

EXAMPLE 8.2—Routine for computation of controllers from wy and (y

The PI controller parameters are computed by (4.32) and (4.33) given a
process, wp, and (y. The routine for doing it is implemented as follows.

function [k, ki] = dppi(str, w0, z)
zp = sqrt(l - z*xz);

pl = wO*(-z + ixzp);

tmp = evals(pl, str);

a = real(tmp);

b = imag(tmp);

n = zp*(a."2+b."2);

k = -(b*z+a*zp)./n;

ki = -b.*w0./n;

These routines must accept a vector as ‘w0’. O
The actual design routines now become very simple.

ExaMPLE 8.3—Routines for PI design with specified (g

To design a PI controller with a given (g, and wqy chosen to maximize k;, the
following routine is needed

function r = pidesign(str, warray, zeta)

tmp = [’nthcol(dptable(’’’ str, ’’’, ’’pi’’, x, ’
num2str(zeta) ’), 3)’];

w = opt(warray, tmp, le-5);

res = dptable(str, ’pi’, w, zeta);

In the routine ‘pidesign’ a string describing what we want to optimize is
built, and the optimizer does the rest of the job. The routine ‘nthcol’ picks
out the nth column of a matrix, in this case the third column which contains
k;. O
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ExXAMPLE 8.4—Routines for PI design with specified M,
To design a controller such that the system gets a specified M, value we need
a help routine

function ms = mshelp(str, warr, zs)
ms = [];
for ix=zs,
r = pidesign(str, warr, ix);
ws = linspace(0.1*r(1), 10*r(1), 50);
[w, m] = mscl(ws, setgr(r), str);
ms = [ms; m];
end;

This routine computes the M, values for controllers with maximal k; and for
different (o.

The routine ‘mscl’ computes the M, value, given a frequency interval,
a controller, and a process. The function ‘setgr’ converts the controller
parameters to a transfer function string. The routine ‘pidesignms’ now
becomes

function r = pidesignms(str, warray, ms)

wl = warray(1); nw = length(warray); w2 = warray(nw);

sl = [’linspace(’ num2str(wl) ’,’ num2str(w2) ’,’
num2str(nw) ’)°’]; : '

tmp = [’mshelp(’’’ str, ’’’, ’> sl ’, x)’];

zguess = [0.1:0.1:0.9];

z = solve(ms, zguess, tmp, le-5);

r = pidesign(str, warray, z);

Each time the function ‘mshelp’ is called two optimizations are carried out
for each element in the ‘zs’ vector, one to do the PI controller design and one
to find M,. Depending on ‘warray’ in ‘pidesignms’ the function ‘mshhelp’
may be called many times to get the solution with desired accuracy. O

The code for the other design methods looks very similar. To get read-
able code, the safety net and the default handling normally used has been
stripped off the functions presented here. This way of writing code is very
convenient, but can also be very inefficient numerically. The great advantage
is that it is extremely simple to test new ideas.

Computing statistics

To indicate how computationally demanding the design routines are, some
computing statistics Were made. All programs were run on a SPARCstation
ELC. Four design algorithms were compared.

1.  PI design with a fixed (,
2. PI design with 2PM

175




Chapter 8 Software Tools

3. PID design with 3PM

4. PID design with MCM

The plant G(s) = e™*/(s + 1) was used for the design computations.
The results of the computations are shown in Table 8.1.

Table 8.1 Statistics for a different design methods

PI 2PM 3PM MCM
Tolerance # of Time # of Time # of Time # of Time
Mflops (s) Mflops (s) Mflops (s) Miflops (s)
102 0.0016 1.7 031 52 037 74 0.52 92
103 0.0024 23 039 82 0.48 120 0.69 150
10~4 0.0032 3.2 0.51 120 0.63 180 0.90 230
10~° 0.0040 4.1 0.63 170 0.77 230 1.10 330
106 0.0047 4.5 0.76 230 0.92 300 1.40 440
10~7 0.0065 5.3 092 290 1.10 380 1.70 560
108 0.0063 6.2 1.10 350 1.30 480 2.00 760

The MCM is the most demanding. The computation times and number
of flops are roughly proportional to the logarithm of the tolerance.

Much of these investigations could not have been done without the com-
puting power of the latest generation of workstations. The speed of a stan-
dard VAX 11/780 is about 1/20 of the speed of an SPARCstation ELC. A
tolerance of 1073 is sufficient for the design computations. Smaller tolerances
were needed when computed parameters were plotted against some param-
eter in the design algorithms or in the plant. Too high a tolerance makes
the plots irregular. To wait a couple of minutes to compute the controller
parameters is tolerable. On a VAX 11/780 this would mean waiting for about
half an hour, which is not tolerable. If the design methods were implemented
with concern for time optimality, and were written in a compilable language
the execution times would be reduced.

8.2 Simnon

Matlab is an excellent tool for doing matrix calculations of all kinds, com-
puting frequency responses, plotting etc., but it is limited when it comes to
simulation of dynamical systems. For example, Matlab cannot handle time
delays in simulations. For these reasons the simulation package Simnon, see
[SSPA, 1990], has beén used. Simnon is a general simulation package, but in
this work its capability of handling nonlinear equations have not been used.

One major disadvantage with Simnon is its low accuracy in the simu-
lations. At best it is possible to get results with six digits accuracy from
~ Simnon. Some attempts were made to use Simnon as a computing engine
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for optimization algorithms implemented in Matlab. It may work, but for
systems with flat minima, as those of the integral criteria, there are conver-
gence problems since the gradient computations may give irrelevant results.
Simnon has also been used for optimization of dynamic system, see [Glad,
1974]. This may work for some systems, but the accuracy of the results is
usually low.

Matlab—Simnon connection

To be able to use the controller parameters computed in Matlab conveniently
in Simnon a routine for sending commands from Matlab to Simnon was writ-
ten. Simnon is started with the following Perl script.

#!/usr/local/bin/perl
$pipename = shift;
open(SIMNON, "|simnon") || die '"cannot pipe\n";
select (SIMNON) ;
$1=1;
print "x\\n";
while(open(PIPE, $pipename)){
while (KPIPE>){
if (eof(PIPE)) {close(PIPE);}
print;
if ($_ eq "stop\n") {exit;};
+
}

The programming language Perl is described in [Wall and Schwartz, 1991].
The programs run under a UNIX window system. Simnon is started in one
window with the Perl script, and Matlab communicates with Simnon via two
named pipes. For some reason Simnon refuses to accept commands directly
from a named pipe. This is the reason for communicating via the Perl script.

The basic Matlab function for interacting with Simnon is ‘simcommand’,

as defined by

function simcommand(comstr, pipe)
eval([’!echo *> ’’?’ comstr ’’’° ’ >> ’ pipel);

This routine writes the string ‘comstr’ into a named pipe, which is then read
by the Perl script and sent to Simnon ‘

There are also routines for getting parameter values from Simnon and
assigning them to-Matlab variables, ‘getsimval’. This is done by forcing
Simnon to write the values into a file and then reading the file'in Matlab.
The routine for getting parameter values from Simnon also synchronizes the
two processes. If Matlab has issued a number of commands to Simnon which
do not give any values in return (e.g., plotting commands), and then a call
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to ‘getsimval’, Matlab must wait until Simnon has processed the command
and has sent the return value back to Matlab.

The Matlab-Simnon communication is handled by ten Matlab functions.
Although these routines consist of only a few lines of code they extend the
functionality of Matlab considerably. Simnon can in this way be used trans-
parently from Matlab.

This way of using Simnon is good for ‘production’ simulation. It requires
well tested models. Running Simnon from Matlab while developing models
is pointless, in that case the interactive capabilities of Simnon are needed.
The main drawback with this way of using Simnon and Matlab together is
that there is no way of interrupting Simnon from Matlab without terminating
Simnon.

8.3 Maple

Although numerical calculations are useful and illuminating we can get even
more insight from analytical solutions that show parameterldependencies
explicitly. This has been possible in a few cases. The computer algebra
package Maple, see [Char et al., 1988], has been used to compute some of the
analytical expressions and check the analytical examples.

Maple is very simple to use, but sometimes it may be difficult to get
simple and esthetically appealing results. One easily gets many pages of
meaningless formulas without any structure.

ExAMPLE 8.5—Use of Maple
As an example the Maple code for computing (4.32) and (4.33) is given.

Gr := proc(s) k + ki/s; end; # Define the controller.

pl := wO*(-20 + Ix*sqrt(1-z072)); # Define the closed

p2 := wOx(-20 - I*sqrt(1-z0-2)); # loop poles.

Gl := A + IxB; # Define G(pl) and G(p2).

G2 := A - Ix*B;

tmpl := evalc(l + G1xGr(pl)); # Compute the characteristic

tmp2 := evalc(l + G2*Gr(p2)); # equation.

solve({tmpl, tmp2}, {k, ki}); # Solve the equations for k
# and ki.

As results of these commands we get for k

A (1 -20) + B z0 ‘
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O

Maple have been used to compute and check most of the formulas in

the text of Chapter 4 and Chapter 5. The analytical examples at the end of

Chapter 4 and Chapter 5 have also been computed with Maple, and so has
the examples of SO for PI control in Chapter 3.

8.4 Cooperating programs

Using many programs together requires that the output from one program
should be usable as input to the next program without any manual editing.
It is also desirable to be able to write variables in-aprogram to a file without
any loss of accuracy. These problems have been encountered in using Matlab
and Simnon together. Simnon cannot write its variables on files with full
precision. At least one decimal is lost when a variable is written on the screen
or to a file. This can cause problems if Simnon is used for computings in an
optimization. It should also be possible to signal errors from one program to
another.
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Conclusions

: ”

The problem of synthesizing PID controllers has been considered. A number
of different approaches to PID controller design have been reviewed. None of
them have been entirely satisfactory. A new method for tuning simple con-
trollers, such as PI, PD, and PID controllers has been presented. The method
uses a frequency domain model of the plant. It is based on the assumption
that the behaviour of the system can be characterized by the closed loop poles
closest to the origin. We call this the Dominant Pole principle. The domi-
nant poles are denoted p; o = wo(—(o£iv/1 — (2) and p3 = —agwy. Different
methods for assigning two or three poles of the closed system have been in-
vestigated. The criteria have been to fulfill requirements on performance and
robustness of the closed system. The design methods are frequency domain
methods. They do not assume anything about the structure of the model
of the plant. This means that we are not restricted to rational polynomial
transfer functions, e.g., time delays can easily be handled. Few simple meth-
ods for designing PID controllers with no specified structure on the transfer
function has been published. An example is the Ziegler-Nichols self oscillation
method, see [Ziegler and Nichols, 1942].

Various performance criteria have been discussed. One that is compu-
tationally easy to handle and has a sound physical interpretation is IE, the
integrated error of the process output after a load disturbance at the process
input. The minimjzation of IE, under certain restrictions, has been chosen
as the performance criterion. IE is minimized with respect to wp.

= To have control over the robustness of the system, a value of the max-
imum of the sensitivity function is specified in the design. This is the M,
value. The number 1/M, can be interpreted as the smallest distance from
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the Nyquist curve of the loop tramsfer function to —1. To obtain this, (,
is chosen to give the specified M, of the controlled system. This way, the
parameter M, becomes the only design parameter of the method.

Several variations of the design method have been tested. As conclusion
two methods are recommended. For PI controller design, wg is chosen to
maximize k;. The parameter (; is chosen to get a specified M, value of the
loop transfer function. For PID controller design the same choices of wy and
Co can be made. The third parameter, o, necessary to specify PID controllers
can be set to 1, except for resonant plants where ag should be set to a lower
value. Normally ag = 0.5 works well. Setting M, = 1.6 gives in most cases a
non-oscillating system, with set point and load responses without overshoots.
If My, = 2.0 we get a somewhat faster systems, which may have overshoots.

Given the frequency response of a plant, it is natural to ask which parts of
the frequency response are used in a certain design method. Some numerical
investigations on this problem have been made. The results are that for
PI and PID control nothing is gained by using information of the model in
a frequency range where the phase lag is more than 180°. Normally four
points on the Nyquist curve, corresponding to thé phase lags 0, 45°, 135°,
and 180° are enough information to design a good PID controller. To design
controllers for integrating processes information is needed up to the frequency
corresponding to the phase lag ~ 225°.

The methods can handle a broad spectrum of dynarriics uniformly, in
the sense that the time and frequency responses of the controlled systems
will look very similar.

The parametrizations studied are very flexible. It is easy to implement
and test various design criteria. The methods do not require any sophisti-
cated numerical software, such as differential equation solvers. Of course,
simulation of the closed systems is advised, but it is not part of the design
method. The methods are moderately computationally demanding, e.g., we
do not have to solve any differential equations numerically. The design rou-
tines have been implemented in Matlab. The simplest possible numerical
methods for optimization and equation solving have been used to be able to
handle as wide a variety of plants as possible.

It has been shown that in the case of PI control all other design rules
can be interpreted as DPD. Study of the standard design rules, ZN, IAE,
ISE, and ITAE, for standard systems has given some guidance for design
in the general case. If we want optimal controllers in the sense of IAE,
ISE, etc, the optimization must be done numerically by solving differential
‘equations. These critéria may give closed systems with very poor robustness.
The criteria are not always physically relevant.

There are a few problems with the methods. Designing by maximizing
k; can be dangerous, since a maximal k; does not necessarily mean that the
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system will be stable. In particular, design of systems with resonances is
problematic. This is, however, not the prime application area of PID con-
trollers. Moreover, the parameter function k;(wo) may have several maxima,
to get a stable closed loop system the numerical routines must pick the first
maximum.

It is not possible to solve anything but the simplest cases analytically.
Therefore it is difficult to give any proofs of the properties of the design
methods for more realistic plants.

Further research

It has been suggested to use on-line expert systems to tune and supervise
large plants with hundreds of control loops. The presented controller tuning
methods are suitable for such a system. The supervisor system may come up
with several different kinds of process models, all which can be handled by
the proposed methods. We also have a good design parameter, M, by which
we can control the behaviour of the closed loop system.

This design method could also be used in an adaptive PID controller.
The models estimated by a recursive estimator could very well be used as
models for PID controller design. With the software system developed for
this thesis it would be easy to make a simulation study. The simulation and
parameter estimator in Simnon could be connected with the design proce-
dures in Matlab. In such a case it would be interesting to study a larger
process with several interconnected control loops.

If the design methods are to be used on a routine basis, a better and
more efficient numerical implementation will probably be needed. It would
be interesting to see how much could be gained by coding the design routines
in a compiled language.
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