

Linear Sampled System with Time Delay Which is a Fraction of the Sampling Period

Åström, Karl Johan

1972

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA): Aström, K. J. (1972). Linear Sampled System with Time Delay Which is a Fraction of the Sampling Period. (Research Reports TFRT-3044). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Download date: 03. Jul. 2025

LINEAR SAMPLED SYSTEM WITH TIME DELAY WHICH IS A FRACTION OF THE SAMPLING PERIOD

K. J. ÅSTRÖM

REPORT 7217 (B) AUGUST 1972 LUND INSTITUTE OF TECHNOLOGY DIVISION OF AUTOMATIC CONTROL LINEAR SAMPLED SYSTEM WITH TIME DELAY WHICH IS A FRACTION OF THE SAMPLING PERIOD

K.J. Åström

Abstract

- 1. INTRODUCTION
- 2. ANALYSIS
 Single Input Single Output Systems
 An Example
- 3. REFERENCE

$$\frac{dx}{dt} = Ax(t) + Bu(t-\tau h)$$

Assume that the input signal is kept constant over sampling intervals of length h. The input u and the state x is illustrated in Fig. 1.

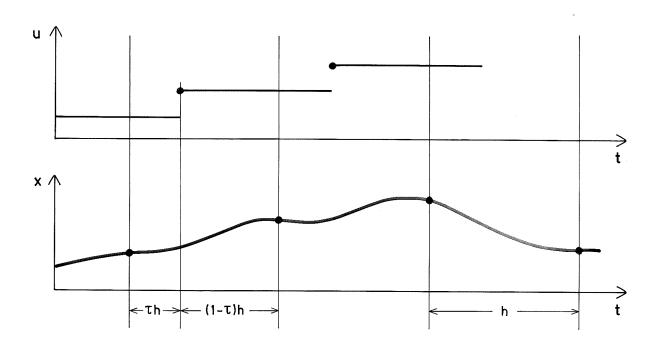


Fig. 1.

The value of the state vector at the sampling points is then given by

$$x(t+h) = \Phi x(t) + \Gamma_1 u(t) + \Gamma_2 u(t-h)$$
 (1)

where

$$\Phi = e^{Ah}$$
 (2)

$$\Gamma_1 = \int_0^{h(1-\tau)} e^{As} Bds \tag{3}$$

$$\Gamma_2 = \int_{h(1-\tau)}^{h} e^{As} Bds \tag{4}$$

Notice that

$$\Gamma_1 + \Gamma_2 = \int_0^h e^{As}$$
 Bds

The only difference compared to the usual case is thus that the term u(t-h) appears in (1).

The puls transfer function relating the state to the input is thus given by

$$H(z) = \left[zI - \Phi\right]^{-1} \left[\Gamma_1 + z^{-1}\Gamma_2\right] \tag{6}$$

Single Input Single Output Systems

In the single-input single-output case we choose the coordinates in the state space representation so that the matrix Φ is a companion matrix i.e.

$$\Phi = \begin{bmatrix} -a_1 & 1 & 0 & \dots & 0 \\ -a_2 & 0 & 1 & \dots & 0 \\ \vdots & & & & & \\ -a_{n-1} & 0 & 0 & \dots & 1 \\ -a_n & 0 & 0 & \dots & 0 \end{bmatrix}$$
(7)

Furthermore denote

$$\Gamma_{1} = \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{n} \\ \end{bmatrix}, \quad \Gamma_{2} = \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{n} \\ \end{bmatrix}$$
(8)

If the output y is chosen as the first component of the state-vector i.e. $y=x_1$ we thus find that the input output relation is given by

$$y(t) + a_1 y(t-1) + \dots + a_n y(t-n) = \gamma_1^1 u(t-1) + (\gamma_2^1 + \gamma_1^2) u(t-2) + \dots + (\gamma_n^1 + \gamma_{n-1}^2) u(t-n) + \gamma_n^2 u(t-n-1)$$
(9)

which is identical to the standard form

$$A(q)y(t) = B(q)u(t-1)$$
 (10)

where the polynomials A and B are both of degree n. Notice that in the case when the timedelay is an integer multiple of the sampling interval the polynomial B in (10) is of degree n-1.

A consequence of importance for system identification is thus that it is reasonable to consider models where the polynomials A and B are of the same degree as the standard case. It is also clear that the model (9) can be used as a basis for adaptive algorithms that can handle variable time delays.

An Example

As an illustration we Will consider the first order system

$$\dot{x}(t) = -x(t) + u(t-\tau h)$$

It is assumed that the input u is kept constant over sampling intervals of length h, we thus find that the values of the state variable at the sampling intervals are given by (1) where

$$\phi = e^{-h} = a$$

$$\Gamma_1 = 1 - e^{-h(1 - \tau)} = b_1$$

$$\Gamma_2 = e^{-h(1 - \tau)} - e^{-h} = b_2$$

The transfer function of the system is thus given by

$$H(z) = \frac{b_1 + b_2 z^{-1}}{z + a}$$

Notice that the pulse transfer function has a zero

$$z = -\frac{b_2}{b_1} = -\frac{1 - e^{-h(1-\tau)}}{e^{-h(1-\tau)} - e^{-h}}$$

which is outside the unit circle if

$$\tau > 1 + \frac{1}{n} \log \frac{1 + e^{-h}}{2} = f(h)$$

A graph of the function f is shown in Fig 2.

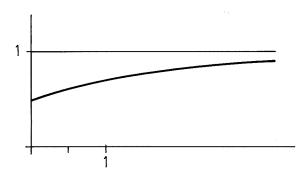


Fig. 2
Graph of $f(x) = 1 + \frac{1}{x} \log \frac{1+e^{-x}}{2}$

The sampled system will thus be nonminimum phase if the delay τ is sufficiently large. The critical value of τ depends on the sampling interval. Notice that if τ < 0.5 the zero of the pulse transfer function is always inside the unit circle.

3. REFERENCE

Bolam, F. "Papermaking Systems and their Control" Trans of the Symposium held in Oxford Sept 1969. The British Paper and Board Maker's Association, London 1970.