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Assume that the input signal is kept constant over sampling inter-

vals of length h. The input u and the state x is illustrated in

Fig. 1.
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Fig. 1.

The value of the state vector at the sampling points is then given

by

x{t+h) = ox(t) + F1u(t) + qu(t—h) 1)
where
& = eAh 2)
h(1=-1)
r,= § ™% pas (3)
0
h
ry= S % Bas (4)
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Notice that




The only difference compared to the usual case is thus that the

term u(t-h) appears in (1).

The puls transfer function relating the state to the input is
thus given by

H(z) = [zI - @]‘1 [r1 + z_1r2] (6)

Single Input Single Output Systems

In the single-input single-output case we choose the coordinates
in the state space representation so that the matrix ¢ is a

companion matrix i.e.

"—a1 1 0 0
—a2 o 1 0
6= .
=39 0 0 1
-2, 0 0 ... 0 | (7)

Furthermore denote

1 2
Yq Yq
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Iy= > To= 1.
1 2
Yh Yq (8)
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If the output y is chosen as the first component of the state-

vector i.e. y=x, we thus find that the input output relation is

given by
S 1.2
y(t)+a1y(t—1)+...+any(t—n) = y1u(t—1)+(y2+y1)u(t—2)+

oy y§_1)u(t—n)+yi u(t-n-1) (9)

which 1s identical to the standard form




A(q)y(t) = B(qlu(t=-1) (10)

where the polynomials A and B are both of degree n. Notice that
in the case when the timedelay is an integer multiple of the

sampling interval the polynomial B in (10) is of degree n-1.

A consequence of importance for system identification is thus
that it is reasonable to consider models where the polynomials
A and B are of the same degree as the standard case. It is also
clear that the model (89) can be used as a basis for adaptive

algorithms that can handle variable time delays.

An Example

As an illustration we will consider the first order system
x(t) = =-x(t) + u(t-th)

It is assumed that the input u is kept constant over sampling

intervals of length h, we thus find that the values of the state

variable at the sampling intervals are given by (1) where

o = e = a
_ -h(1-1)

P1- 1-e = b1
_ ~h(1=1) ~-h _

P2— e ~-e = b2

The transfer function of the system is thus given by

-1
b1+bzz

H(z) = i3

Notice that the pulse transfer function has a zero

b, 4 - o~hC1-1)

2575 7T TSh(i=T) -h
e -

which is outside the unit circle if

’I+e“h

2

T > 1 + % log = f(h)




A graph of the function f is shown in Fig 2.
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Fig 2 )
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The sampled system will thus be nonminimum phase if the delay =
is sufficiently large. The critical value of t depends on the
sampling interval. Notice that if t < 0.5 the zero of the pulse

transfer function is always inside the unit circle.
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