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ABSTRACT

An objective with adaptive control of stochastic systems is Eo

obtain in some sense optimal control of the process. For practical app-

lications it is important that the controller is not too sensitive
with respect to assumpÈions concerning the process. For example it is
desired thaÈ the stability of the closed loop syst.em can be guaran-

teed. In this paper a stabilizing property is considered for a certain
class of adaptive regulators, the so called self-tuning regulators.
The investigated cont.rollers are based on simultaneous recursive pa-

rameter estimation and cont.rol. It is shor.¡n that., under fairly weak

condit.ions, these controllers have a stâbilizing property in Ehe

sense that the outpuË-signal is bounded.

1. INTRODUCTION

The main objective with adaptive controllers is to get a possibili-
ty to control unknown processes. It is thus desirable Eo make as few

assumptions as possible concerning the controlled process. llsually
when the adaptive- controllers are designed it is assumed that the pro-
cess is of a certain type.

AssumpÈions can be made concerning the order and the time delay of
the system. Also assumptions must be made concerning the dist.urbances
acting on the system. For practical applications it is important Èhar

these assumptions easily can be verified. One feature of an adaptir.,e

controller that is desirable is that the stabilitl'of rhe closed loop
system can be guaranteed.
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The stability analysis of a system controlled by an adaptive regu-
lator is far from trivial. The closed loop system is non-linear and.

tímevariant. Even íf the properties of the different parts of the
controller, i.e. the esÈimation and the control routines, are well
knor^m there uight be difficulties when they are connected into a

closed loop system.

For stability analysis a conmon tool is linearization arounrl the
desired solution. This is not. a suitable tool for stochastic systems

since there is a non-zero probability that the system r,¡ill be foreed
outside the area where the linearization is valid. Also it is the be-
haviour far from the optirnal solution that might be particularly ínte-
rêsting, since this gives a feeling for the transient properties of
the controller.

The problem of stability for adaptive controrlers is not easy to
solve even for deterministic systems. one example is the adaptive
controller based on Narendrats adaptive observer. rn Èhis case the
convergence of the controller can be shown under the assumptio¡ t.hat
the output of the system is bounded, i.e. that the closed loop sys-
Èem is stable. This is, however, a condition that is difficult to
show. The problem is so far solved for special types of processes tl].
An other example is the model- reference adaptive controllers where

fairly strong assumptions must be made on the controlled system.
This paper discusses a stabilizing property of a cerËain class of

adaptive regulators, the self-Èuning regulators [2]r[:1. These con-
trollers are based on recursive paramet.er identification and minimum

variance cofitrol". rt will be shown that the input and the output of
the process are bounded in the mean sguare sense under r,¡eak c.ond.itions.
In Section 2 the class of regulators is presented and heuristi.c argu-
ments are given for the stabilizing property. rn section ! the results
are given and a proof is outlined. The properties are illustrated u'ith
a simple exarnpLe in section 4. conclusions and references are given
in Sections 5 and 6 respectively.

2. ADAPTIVE REGUIATORS BASED ON RECURSIVE IDENTTFICATION

A fairly straightforward approach to adaptive con¡rol is to combine
a recursive identification method with a regulator of a certain. struc-
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ture. The parameters of the regulator are then determined based on

the current system parameter estimaÈes, províded by the identification
scheme. This approach has been ilescribed in [3], and varíous special
cases have been discussed earlier. A certain version, which r¡i1l be

described in more detail below, has been successfully appried Lo se-
veral industriaL processes.

The overall stabílíty properties of adaptive regulators based on

recursive identífication can be heuristically discussed as fo1lor^rs. If
sonething goes hrrong and the feedback yields an unstable system, then
the output and input signals increase rapidly. As the signals increase,
more ínformation about the true system becomes available, and the sys-
tem parameter estimat,es converge rapidly to their true values. If now

the feedback 1aw, based on the true parameter values, yields a st,able
ctosed loop systen (a very reasonable assumption) then the unstable
behaviour of the system is quickly stopped afÈer a "burst', in the out-
put signal.

However, this discussion is purely heuristic and has some short-
comings. The most imporÈant feature is that if only one of the system's
modes becomes unstable, only information about this one increases ra-
pidly. Therefore only a cerÈain combination of the system parameter
estimates converges rapidly to its true value. This may not be suffi-
cient to ensure that the cl-osed loop system is stabilized or that Ëhe

unstabLe mode changes sígnificantly to reveal ot,her modes of the sys-
tems. A more complete analysis of the structure of the regulatqr ver-
sus the identifícaÈion method is therefore required.

In the next section we sha1l perform such an analysis for ttre fol-
lowing adapÈive regulator. The ídentification method is chosen to be
recursive least squares [4] and the regulator is the ninimum variance
controller, see e.g. t5].

More formally, we have a model

y(r+k) * âty(t-r)+...* ââr(r-n) = 6ru(t-1)+...+ 6ñu(r-ô) (t)
where y is the output and u is the ínput. The time deLay in the process
is k, and it is assumed to be known. The parameters â. 6. are estima-
ted using the LS criteríon, i.e 

1 1

N-k
vN = i (y(r+t)* âry(r-r)+...* âây(t-n)- 6rr(r-r)-....-6ar(r-ñlJ 2

1
(2)

Let the mininizing parameter at step NI- 1
is minimized r¿.r.r. ã and 6
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be denored by âr(N), 6i
recursively, e.g. t4l.

b (t) u(t-1) +
2

*;..* ûr{tl u(r-ñ+l)l (3)

This resultíng adaptive, or self-tuning reguLator is described in
more detail in [Z] an¿ [f].

3. A STABILIZING PROPERTY

rn this sectíon we sha1l prove that the self-tuning regulator (1)-
(f) possesses an overaLl stability property regardless of distr¡rbances
in (1). the proof is based on the heuristic discussion in secrí.on 2,
complemented s¡ith a proper analysis of how the unstable modes change.

Due to the línited space here, only an outline of the proof can be

given; the fu1l proof can be found in [6].

u(t) = * t âr(t) y(t)+...+ ârr(t) y(t-ñ+l)
b1(r)

(N) . It is well known horv these are for¡nd

The control is then chosen as

is minimum phase, then also

bt 0

u(t-â+r) lr
...0 lr

Theorem: Suppose that, the true process can be described by

y(t+t)+aly(t-1)+. . .+any(t-n) = bru(r-1)+. . .+bmu(r-m)+v(t+k)

r¡here v(') is some disturbance such that

(4)

(s)

(6)

I
N

N

E v(r)
1

2

Let Èhe self-tuning reguLator (L)-(3) be applied to (4) with â ¿ r,
â > r. Then the overall system is stable ín the sense that

ct

,r(t) 2 . c3

.No*=i i y(r)

If the system (4)

2 tc2

(7)

The constant.s c, are independent of N, but may depend on the reaLíza-1
tion of the (possibly stochastic) sequence v.

Proof: Introduce

I y(t)..., y(t-â+l), u(r),...

*i

ç(t)
Q=

o b
m
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0=[ a^
nft

aâ1 , Ê^ lrm-
6;{r) Jr

66,"
m

€(r) = [ âr(t),..., â¡(t), 61(r),...,
^0=0-0

o
^0(t)=0(r)-0o

Then (4) can be written
Ty(t+k+l) = e; e(r) + v(t+k+l)

and (3) is

e(t)r 9(t) = 0

Hence
' y(t+k+l) = õ'(r)T ç(r) + v(t+k+l)
Let

R(r) 1
ç( s-k-l) ç(s-k-1.) T

t- g=I

Then the LS criteríon (2) can be wriÈt,en

(8)

t
I

^Jr 10^ç(s-t-t) v(s)t + :
t
E

2v(s)
s 1

According to (5)

vr(o) < cl

Therefore,

v.(o(r)) r.,
and using Schwarz' inequality this irrplies that

õ'(.)r R(r) ã(t) < 4cr

or

ã'(.)r f- aC.t s 4cr/tt, (e),tE

rf now (6) does not hold so tra tends to infinity along a subsequence,
then ¿- is arbitrarily large and increasing for tssstt for some suffi-s
ciently large t. fhis implies via (9) ttrat õ'(s) is arbirrarily close
to the null space of R(t)/Lt for t<s<t'. Since r¿" is increasing, ï(s)
ís "large" for a nunber of s=tr...rtf. rn vier¿ of (8) this mearrs that
ê'(s)rtp(") also is "large". since õ'(s) is arbitrarily close ro rhe null
space of R(t)/ta, tO(s) cannor belong to the range space of R(t)/nt.
(since the maÈrix is synunetric, the null space and the range space are
orthogonal.) Hence R(t') gets a signíficant contribution from matrices
wiÈh range spece not belonging to the range space of R(t)/ta. In other
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words, the rank of n(t')//¿r, is higher than that of R(t)/Lt Repeat-

ing the argument at, mos â+ñ tirnes, it follows ühaÈ R(r')/¿rr has full
rank, yielding the only possible choice ín (9) ã¡r¡=6 (i.e. Lhe true
parameters). This gives y(s)=v(s), whieh contradicts the assumption

thaÈ ¿- increases for tssstr aÈ an arbitrarily high level.
s

If Lhe system is minimun phase, the inverse system is stabl"e. If
the input to the inverse system, y, satisfies (6), then the output, u,
must satisfy (7).

B

This theorem shoç¡s a fairly ímportant feature of the self-tuning
regulator (1)-(3). Under quite weak condirions, the most imporrant, one

being that the time delay has t,o be known, the regulat,or is capable of
stabilizing any system in the sense (6). This stabilization takes p]-ace

regardless of the character of the disturbances (as long as (5) holds)
and regardless of or whether the estimate ôtt) eonverges or not.

4. EXAIVÍPLE

rn order to illustrate the stabilizing property of the discussed
self-tuning regulator we consider to following process

y(t) + a(t)y(t-l) = u(t-l) + e(t) e(r) € N(0,1) (10¡

where a(t) is a timevarying parameter. The parameter is alterecl bet-
ween -1 and 1 every 150th step of time. The model is assumed to have

Èhe structure

y(t)+ây(t-r)=u(t-l)
rt is assumed that rhe parameter 6, i" {r) is fixed to its trrue

value. In [6] ttre stability is shown for this case if the/parameter 6,
is fixed to a value which is sufficiently close to the correct value.
rt can be advantegous to fix 6, tor reasons of identifiability. rn
this case the control 1aw is characterized by one parameÈer and it is
thus sufficient to identify one parameter.

The control law is
u(t) = ây(t) (11)

The closed loop system is stable r¿hen

a-1.â.a+1
Thus if the estímated parameter has the same sign as the Ërue parameter
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then the closed loop system will be unstabl.e when the parameter a

changes sign. The nagnitude of the output r¿ill Èhen increase and the
estimated parameËer will rapidly be changed in order to stabilize
Ëhe system. In the simulation a weighting factor is introduced in (2),
that accomplishes an exponential discounting of o1d data. I,IiEh such a

factor it is easier for Èhe system to fo1low tímevarying parameters,

see e.g. [3]. The effect of old data is decreased to abour 102 of rhe

initial weight after about 2l (I-^) steps of time where À is rhe weighr-
ing factor,

Figure 1 shows the estimated and the true paramet,er when ), = 0.98.
This means that about 100 ol-d values are used'in the identification
and the effect of a change in a shouLd be almost forgotten before e

new change occures. Figure 2 sho¡¡s the output signal. The instability
is seen at t = 150, 300 and 450. rt ís seen that the system is stabi-
lized rapidly. rn this example the sysËem ís unsrable during 5-6 sreps
of tíme each time the parameter a changes sign.

Time

The estimated and the true parameter values when the pro-
cess (fO¡ is conrrolled by rhe control law (ff¡.

52
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o
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E
o
Lo
fL

Figure I
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Figure 2. The output signal when controlling the proeess (ro¡. At Ë =
= 150, 300 and 450 the closed loop sysËem is unstable for
5-6 steps of time before the estimator has changed the es-
timated paramet.er.

5. CONCLUDING RE},ÍARKS

An ability to stabilize any system is perhaps the most important
feat,ure of an adaptive controller. rf Èhe overall stability of the
controller is sensitive to certain assumptions that are difficu.lt to
verify a priori, then the controller is useless in practice. rf the
dynanics of the process is subject to changes that make it impossible
to stabilize it with a constant regulator, then an adaptive stabili-
zing regulat,or may be sufficient, even if it does not behave optimal-
ly from other points of view.

lle have here shown that the serf-tuning regulator (1)-(3) possesses

such a stabilizing capability. This regulator has been analysed pre-
viousl,y in 1,2J, [6]. possible convergence points and actual conver-
gence (r¿.p. 1) to the optimal regulator have been studied under vary-
ing assumptions on v(.). rt has been shor^rn that if v(.) is a moving
average of order k or less, then we have desired convergence, an{ this
can take place also for more general disturbances (but not necessarily).

The remarkable feature of the present resuLt is that it holds almost
regardl-ess of the characteristics of v(.). tCo stochastic assumptions

t,
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1

2

or assumptions on zero nean etc are íntroduced. It is required Èhat the
tine delay, k, is known, but this is usuaLry not difficult to aecom-
plish, since it is often easy to est,ímate k fron basic transport deLays
etc.
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