
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Projective Area-Invariants as an Extension of the Cross-Ratio

Nielsen, Lars; Sparr, Gunnar

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nielsen, L., & Sparr, G. (1989). Projective Area-Invariants as an Extension of the Cross-Ratio. (Technical
Reports TFRT-7441). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/90b18aa3-c08d-4743-99f1-b15c42a36132


C OD EN: LUTFD2/(TFRT- 74 4t) I L-Ls / (1e8e)

Projective Area-invariants as an
Extension of the Cross-ratio

Lars Nielsen
Gunnar Sparr

Department of Automatic Control
Lund Institute of Technology

December 1989



Languagc

English
SecuÅty classification

Numbcr of pges
19

Author(s)
Lars Nielsen and Gunnar Sparr

Department of Automatic Control
Lund Institute of Technology
P.O. Box 118

S-22L 00 Lund Sweden

IS,SN ¿nd kcy títle

R.ccþicnt's notee

ISBN

S up ple nrc at aty b iblio graphic aI info rrnzt io a

Classifrcatíon syatcm. and/or indcx teras (í1

Key wotds

Abst¡rut

Paper at the 6th Scandinavian Conference on Image Analysis, Oulu, Finland, June 19-22, 1g8g

TítIe a.tÅ subúitlc

Projective area-invariants as an extension ofthe cross-ratio

Spoacoring organisaúioa
The Swedish Board for Technological Development

Supezvíæt

CODEN : tU TFD2/(TFPcT-? 441)/ 1-1 e/ ( 1 e8 e)

Docurent Nmbc¡

Dal.c of íasue

December 1989

DOCUttcAt na¡ae

Report

The rcpott may bc o¡dc¡cd îrom the Dcpantmcat of .A'uton-tic Codrcl or bot¡owcd. tårough tlre tlnivetsity Library 2, Box 7070,
s-zzl og Lunå, swcde4 Telcx: 33248 lubbis lund.



Projective area-invariants as an extension of the cross-ratio

Lars Nielsen and Gunnar Sparr
Lund Institute of Technology

Box 118, 3-22100 Lund, Sweden

L. Introduction

Plane projective geometry treats properties of geometric figures that are invariant under
certain transformations, the "projectivitiest'. The classical theorems mainly deal with
incidences of points and lines. Metrical concepts, such as distance and area, have
less natural sites in projective geometry. One well known exception is the cross-ratio,
relating distances between collinear points. On the other hand, area-invariants have
been discovered in connection with robot control and vehicle guidance [5-?]. There the
problem was to find objects suited as sign posts or marking symbols. For reasons of
error robustness and existing hardwate, øreø, measurements were preferable. Figure 1
shows one object that features area-invariants, and a possible image of it.

Figure 1. Two views of an object that features area-invariants

The existence of these new area-invariants pose some basic questions, since they
indicate that areas in a certain sense have a place in projective geometry. The topic of
this paper is an investigation into such fundamental matters, and one major result is
that the area-invariants are conceptually justified. Another major result is that both
the classical cross-ratio on the line and the area-invariants in the plane can be embedded
in a wider formulation where they turn np as two special cases.

The presentation is structured as follows. The concepts of area and invariance
are discussed in Section 2. Section 3 treats generalizations of the cross-ratio on the
projective line. When passing to the projective plane, it can be done in two main
directions. Two points on a line determine an interr¡al of a specific length. In the same
way three points in the plane form a triangle of a specific area. The cross-ratio is an
invariant relation between lengths of intervals on the line, and a natural extension to the
plane is then invariant relations between areas of triangles. This is the topic of Section
4. Section 5 treats another way of extending results from the line to thã plane by to
rotating the line i.e. to look for inv¿riant relations between areas of conical sections as
circles and ellipses. The findings are summarized in section 6.
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2. Areas and Inr¡ariants

By definition, diatønce between points is a property dealt with in Euclidean geometry.
On the contrary, in affine geometry it is not possible to compa,re distances between
points, unless they all lie on the same line. It is therefore somewhat remarkable that
the concept of. areø makes sense in affine geometr5 despite the fact that in elementary
geometry it is usually defined in terms of distances.

For projective geometry the question arises to what extent the concept of distance
and area in an affine space can be transferred to a projective space, clairning the
existence of area-relations that are invariant under projectivities. For n : ! the cross-
ratio tttakes an example. Analogous expressions were also studied for triangles and
tetrahedrons in Möbius "Der barycentrische Calcul" (1829) [4]. Else, although a natural
problem, it seems to have been little studied. An efiort is "'ade in this pa,per.

Areas
'We start with an example. Let AsrAtrA, be three points in a plane zr in the Euclidean
space IE3. The points are represented by their coãrdinates. Soppo." that the origin
O / n. Then

det(:4.e, AtrAz) : the volume, with signs depending on the orientation, of the
parallelepiped spanned by the vectors@r$r$:
6.(the volume of the tetrahedron with vertices in (O, AorArrAr)):
3'(the area of the triangle with vertices (AorAtrAz)). (the distance between O and
r).

In other words, apart from a factor of proportionality, det(.4s, AtrAz) measures the
area of the trianglein r, having vertices in ,4s, ArrAr. tr'We now turn to proiectiae spøces, where the notion of area/volume has no a priori
meaning. A definition will be made, inspired by the above affine considerations in the
case rr : Ðff æ¿ - 1. This plane augmented with the plane at infinity Eï r¡: 0, will then
serve as a model for IPt.

For X : (æ0, ... ron) € IR'+1, put

"(x): I,*
fù

0

(1)

Further, for Xs, ..., Xn€ IR-+l, put

ó(xo, ...,x,.) :
#,.ffii ir ø(xs) ...o(x*) l o

0 ifdet(X6,...,X,"):0
oo if det(Xs ,. . . , Xn) * 0,

o(Xo)...o(X*):g
(2)

Here one notices that, by homogeneit¡ 6 is in fact a function on IP' x ... x lptl
(n*L times). This fact alone does not qualify it to be a meaningful object in projective
geometry. For this also some sort of projectivity invariance is needed. Clearly ó standing
for itself does not have such a property. However, there are equations involviog ,.rr"J
d-expressions which have (cf. Theorer''s 1 and 3). Thus, when appearing together with
others in such an equation, ó gets a projective meaning. Here it 

"u,o 
lo fact also be

interpreted in terms of affine areas.
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The particular choice of r : Di ,, - 1 may seem somewhat arbitrary at first sight.
flowever, the discussion above may also be formulated in terms of coordinate changes
instead of mappings. (Both operations correspond to premultiplication by a matrix.)
In the new coordinate system the role played by zr will be played by another plane.
(In particular, premultiplication by a diagonal matrix will correspond to a perspectivity
between the two planes.) The invariance equations mentioned above will relate, in the
old and new planes, the volumes associated to a given set of (z * l)-tuples. When
dealing with invariancy, it is thus no restriction to consider the particular plane zr only.

The following definitions will be used. (The postfix t'ad" in the first one is borrowed
from Veblen-Young.) Cf. [8] vol II p. 55 or [4] p. 266 ff. for Definition 3.

Dpprmrrrow 1

By " polyød in IP* is meant a non-degenerate ordered (z + l)-tuple of points in IP-
A : (Ao, . . . , An) . If n:L ,2,3 also the terms ily ød, triød, and tetra,d, will be used. tr
Dnrrnnron 2

The aolume of the polyad is defined by eqs. (2.1) and (2.2). For dyads and triads the
terms length and øreø will also be used. tr
Dorrxrrlow 3
For given points X, Y and a polyad .4 in IP', the following collection of cros¿-ratios is
formed lor i, j - 0,. .. ttut i t i,

k¿i : k¿¡(X,Y;A) : k¿¡(X,YiAo,... rA,-) :

6
a

Aor...rXr..-rAn) (3)
6(Ao,...,4,...,A

t

/6çq0,...,i,...,An)t@
J

In particular, if n:t, we recognizekß as the ordinary cross-ratio, also denoted

CR(XrY;Aor,4r):&ro: ffi1ffi (4)

The cases when the values 0 or oo appear somewhere are treated by the natural limit

#ffi /;þrs"ffi# _ det(.,4.s,x,A2) f ð,er(As,y,Az)ffi/ ffi:w/ñ

conventions.

Tnponnu 1

The crcss-tatios k;¡ arc invariant under projectìvities. tr
Prcor: To fix the ideas tet n : 2 and consider k12. Let T € pGL(2) and
XrYrAorAtrAz €.]F2. Suppose at first that no three of the points are collinear and
that none of them or their images under T is a point at infinity. Fixing representatives
of the points and the projectivit¡ one has

te L 2 (T x, T y 
; T A s, T At, T A z) : 619 !:' T, r! ù I u=t!-+,, !-Y,' 4-ù :- --¿' 6(TAo,TAt,rX) / 6(TAo,rAL,TÐ -

The last expression also equals kn(XrY;AsrAlrAz), which is shown in the same y¡ay.
This proves the theorem under the irnposed extra ¿sssrnptions. By limit considerations
the result is proved for general projectivities. tr
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3. The Projective Line

In this section we derive certain projectivity invariant relations between the lengths of
certain intervals on the line, where the cross-ratio will be one special case. Relying on
a geometric picture, we treat perspectivities by thernselves.

Perspectivities

Let lr l' be two lines and O ø ¿Ult a point in the afrne plane, cf. Figure 2. Augmented
with points at infinit¡ the lines may be thought of as models for Fl. Let P' , A' ,8,, with
A' * B', be three points on l'. P' may coincide with á' or B'. Under the perspectivity
with center O the points P'rAt rB' are urapped on Prr4.r.B respectively. Let p be the
point on I corresponding to the point at infinity on l', i.e. such tlnat Op is parallel to
¿t.

P'A B

!

o

Figure 2.

By a diløtion on l' wilh center P' and scale t is meant a mapping

H'*, , X' --'+ X'r where ry: LW (5)

([1] and [2] serve as general references on the transformations appearing, where [2]
emphasizes the group theoretic point of view.) This can also be expressed u= TX,, :
(L - t)@ + tõF. In particular

M,, : (t - t)@ + tM, @ : (L - qØ + tØ
Then e.g. AL - P', A\ : A'. Let Ar, B, be the corresponding points on l. Our aim
is to derive, for a set of values of ú, certain relations between the lengths of the dyads
(Ar, Br). These relations shall be valid for øng percpective ir.age of 1,.

On l',let@ : ),M * pdF, \ + p: 1. Then

@: ((1 -r).r+ t)M+(1 - t)¡rd*, @:F-t)^M+((1 -t)p+t)W
Now fix a coordinate system or-oA: *ñrñ : LßM, in the plane, cf. Figure
2. The line I then has the equation a * g : l. In the corresponding homogeneous
coordinates holds

4: ((L - f))a * ta,(L - t)t"Ð, Bt: ((1 - t)\a,(L - t)pp + tp)

4



Application of 6 (Definition 2) yields

6(At,Bù t_

((1 - t)(.\a + pP)+ ta)((1 - ú)(Ào + pP) +tP)

(1 - f))a + úo (1 - t))a
(L-t)t"p G-t)t'p+tp

6(AL,Br)

Here the unit ó(.41, .B1) is included for homogeneity reasons. To achieve homogeneity in f
also, we replace At, Bt with ,4ro , B¿o and substitute t f ts îot ú. An algebraic computation
gives

((¿r - Ð'S? +\to - ú)sts, +*s2).6(Ar,Br): s2tt¡.6(Ab,Br) (6)

where
St:a*þt Sz:aþr,3r :Ào + pþ

Equivalently we may write

(oro' * bpþ + .$2) . 6(Ar, Br) : ttsaB . 6(A.*, B.-)

where

(8)

at: \(to - ¿X(¿r - t)) *t),h:2(to -t)'\tt*tto, c¿: p,(ts - ¿X(¿, -t)p+t) (9)

Lnuu¡ l-

With the notation introduced above, fot any percpective image of l' hold the rcIations:
(Ð If ,l : 1, tr:0 (i.e. P : A - Au t eß,), then

to h-tz) tz

6 A, Brr)
to - tt)

(7)

(10)

(11)

- o (12)

, h(t2 - to)*6* -06(A, Bh

(iÐ If ),: p: !12, then

to(t? - t3)
6(Ah,Bi,")

t2(t3 - t?)
06(Ar,,Br")

(äi) For genetal \, p, holds, using the notation 6¿, : 6(At, Btr),

lor, br,l6ro - tohf 6.*llbr,ltr. - totLf 6h 
"r, I _ 1 

I

I or, br"l6ro - tot2f6h llbr,l6r" - tot2f 6b cøl 6Z,l

2
Ctt

Ctz

Att

&t,

tr
Proof: The proof relies on (6) or equivalently (8). Since the perspectivity is uniquely
determined by the non-zero numbers o and B, "invariants under perspectivestt must be
independent of o, B. Writing rrL¿ : 6(Ar, Bù/6(A¡*, Bro) the basic formula (6) becomes

Uo - Ð2 5? + l(to- r)s,,5, + t(t - 9)sr : o (18)
Tfù¡'

Although (i) and (ii) are special cases of (iii), we prefer to treat them separately.
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(i) If ) : t, F: 0¡ then (13) simplifies into (to - t)a + t(1 - #lB: 0. Putting together
two such equations, corresponding to t : tt and ú : tz¡ one gèts a homogeneous system
of linear equations in the unknowns a and É. This system is known to have a nontrivial
solution, determined by the geometrical construction above. Hence the determinant of
the system is zero, i.e.

t'(1 -#,')
t,(L - #)

Expansion of the determinant directly gives (10).
(ii) If ),: F: t12 then ^ír 

: &lZ which simpüdes (13) into (lFo-nS?+4t(t- *,)5, :
0. By the same argument as above, combination of two such equations yields

t? 4t{h - #)
t7 4t2(t2 - #)

Expansion of the determinant gives (11).
(iii) Combination of two equations (8), corresponding to f1 and ú2, gives a system of two
homogeneous polynomial equations of second order in arB. This system is known to
have a non-trivial solution. A well known result from elimination theor¡ cf. [g] Ch XI
or [3] Ch IV' says that this happens if and only if the resultant of the system r¡anishes.
But here, in the case of two v¿riables, the resultant can be written down explicitly as

to-tt
to-tz

e,tL b¿, - tst16u/6t,
O trh

atz b¿, - tst26¿o f 6¿,

0 atz

ct.- o

b¿, - tst16u/6t, ctt

c.o0
b¡, - tst26to/6t" ctz

)+tz(to-¿rX
1

:(}

1

6(P,Ba) 6(P,Bh

0

t3

t3

0 (14)

(15)

This determinant is easily rewritten as (12). tr
Remark 7. The case (i) is in fact the ordinary cross-rat'io relation fot C R (cf. Definition
3 and Theorem 1). Note that the sum of the nominators in (10) is zero. Hence

h(t,-,,Xæ;;;, -dñ ):0

or, equivalently (cf. Figue 3)

6(P,B]") - 6(P,Bt,)
6(P,Bf,)

6(P,Bà - P, Brr)
6(P,B1.')

to-tz,to-tt
: 

-I-

t2't,

But here 6(P,B1-) - 6(P,Ba):6(Br,,Bto),6(P,Bà - 6(p,Bø):6(8r",Bro) by the
geometric interpretation of 6. The left hand side in (15) is thus the cross-ratio (+), ana
we have reproved that it is invariant under perspectivities. (The way of expressing the
inr¡ariance of cross-ratios by a formula like (10) was known already by Möbius [4], 

;Von
der met¡ischen Relationen im Gebiete der Lineal-Geometrie" (1g2g).) n
Rema¡þ 2. The case (ii) relates the lengths of perspective images of dyads with a
common center. For reasons that will be apparent in the next chapter (cf. the remark
after Theorem 3), we will call this lhe polar case. The polar case (ii) u,r.d th" cross-ratio
case (i) are not as independent as they may seem. In fact (i) can be derived from (ii)

6



ototl

t2

z

0

tr'igure 8.

as a limit case P - A, p -+ A. Likewise (ii) can be derived from (i). We prove the
latter statement using a process that also works in the plane, cf. quadrangles in the
next section. On l' in Figure 4, change the notation B', B'rinfo B,* rB,r*, and introduce
corlesponding points B'- rB'r- symmetrically spaced around át. With obvious notations
on l, the equation (13) for case (i) rnay be written (it suffices to consider the case úo : 1)

) oþ+t 6(A, B; : dp-t
(1 - t)a +tp-6 A, B+)

:-
(1 - t)a +tP+' 6(A,B-)

B'- B A B B'+

Figure 4.

The fact that ó(á', B'+) - -6(A',.B'-) yields

aB+6(A,8*): -aB-6(A,B-), þ+ + þ- :2a

Denoting the common value of the members of the first equation by c we get

6(8; , Bl) : 6(A, r.l)-6(A, B;) :

6(A, BT

t t

!

45:'t
"(t - t )s? + 4t2 s2

with 
^9r 

: P+ + P- , 52: P+P-.Insertion of.t:1 gives c: 5z6(8-,8+)lSr, which
in turn gives eq (13) for case (ii). E
Remark 3. The cases (i) and (ii) are the only situations where (iii) reduces to a linear
relation ir-1-l6¿. This happens if and only if completion of squares in(12), as a quadratic

7



form in I f 6¿, gives only two quadratic expressions of different signs. This in turn happens
if and only if either the first term in (12) is a square in itself or the second term cancels.
In both cases the condition is that

atz ctz

for all tt,tz.\Me obtain ì :0 ot p -- 0 or À : ¡2. n
Remark 4. Two points A,,B divide the projective line into two "intervals". One of
these, the one that not contains the point at infinityr may be called the "finite" one.
Under a perspectivity a finite interval may be mapped onto a non-finite one. This
situation is reflected by a change of signs in á, but does not alter the validity of the
lemma. It is in order to avoid such considerations, irrelevant for the invariants, that
we talk about dyads instead of intervals. These aspects are still more accentuated in
higher dimensions. tl
Projectiaities. Hornologies The formulas of Lemma 1 remain true when a projec-
tivity is applied to all appearing points ArrBr. The proof is a simpler version of the
proof for the plane given in the next section and is omitted here.

THnons\,I 2

Tåe cases (i), (iÐ, and (üi) of Lemma 7 describe invariants under projectivities (i.e. the
equations remain valid when applying a projectivity t,o aII points involved). ¡
Remark. One could also consider transløtíons, corresponding to Pt : oo. By u
perspectivity t' '- L, every translation on {' is transferred to a projectivity on L.

This projectivity has a single fixed point and is thus a parabolic projectiaity. It is
also associated to the elations in the plane case. By means of a suitable limii process
every such elation may be parameterized by the same 7 as rryas used on l'. However,
since the result does not hold for the full group of projectivities (but only for a group
of elations), we do not develop this case any further. tr

4. The Projective Plane

This section is devoted to projectivity invariant relations between the areas of certain
triangles in the plane. \Me will also consider quadrangles. As in the previous section we
start with perspectivities.

Let rrrr'be two distinct planes and O Ø nU zrt a point in the three-dimensional
affine fpace. Augmented with lines at infinity, the planes may be thought of as models
for IP2. Let P' , A' , B' ,C' , be four points in nt with A' , B', C' non-colinea,r. Under
the perspectivity from zr'to zr with center O, the points P'rA'rB',C'are rna,pped on
PrA,BrC respectively. Let p denote the line in zr such that Op is parallel io r'.It thus
corresponds to the line at infinity in zr'.

Our construction of invariants is based on the same ideas as in Section 3. A dilation
on zr' with center P' and scale f is as before defined by

Hb, , X' --+ X', where FW: tP\Y (10)

It follows that

oAI: g -t)õf +rOT,Ofl: g - t)OF +tOF, oc,r: (t - t)õF +tÕU

Ctt&t,
0

8



On zr', there exist À, p,ru (barycentric coordinates) such that

Ø:xØ+p,îF¡uØ, 
^+p*u:!

(17)

Then
O4: ((1 - t)À + |M + (1 - t)¡rdÑ + (1 - t)uØ
@ : (1 - t)^M+ ((1 - t)p + t)W + (L - t)uØ
@: (r - t)^M + (1 - t)pdT + ((1 - t)" + t)Ø

Let AlrBtrC, be the points in zr corresponding to AlrrB'rrC| in zr'. Fix the coordinate
system O, -OA: 

L-M,, B : b@, Ø : +Ø, for the space. The plane zr
then has the equation æ * g + z : i. In the corresfonding homogeneous coordinates
holds

/ú : (((1 - t)) * ú) a, (L - t)t"þ,(r - t)uy)
B¿ : ((1 - ú).\o, ((1 - t)t" + t) p,(I - t)"ùq: ((L - ú))o, (t - t)pþ,((l - t)u + t)t)

Application of 6 and introduction of ús and 6(ArorBørCro) yields, in the same way as
in Section 3,

((¿, - ¿)'Si + t(to - Ð2 S?sL + *(to - t)Só2+ ússs) . 6(Ar,Bbct) :
*to&6(Ato,Bto,är) (18)

where fü:o + B+.yrSt: Ào* pP+u.yrSz- aB+ þl*.yarSs,: aþ.,1.
In the following lemma a number of special cases for l, p,rv, single out naturally.

Introduce first the notation

hs(tt,tz,ts) : t?tsz - tltT + tlt! - tït', + t!t', - tit?
: (ú, - tr)(tz - rs)(ús - t1)(t4t2 * t2ts * fsrr)

(Here the subscript 3 refers to triads, cf. quadrangles below)

LSI\,fÀdn 2

With the notation introduced above, for any perspective írnage of the confrguration in
rt hold the rclations (cf. Figure 5):
(Ð Ifl : L, p: v : 0 (i.e. P : A: A¿rt €ß"), then

f:'-t2)(t2-t3 ts - tt)
6 A, BrorCro)

tzoh(tlrtzrtt)
6(Ar", BrorCro)

tzh(h,to,tt)
6(Ar,,Bø,Cr,)

tZUs - !p)(ty- tt)(! - ts) _ tTþo - !ù(t: tÐ(!, - to) _ o6(A,Bh,Cr,) W
(ä) If \: þ:1,:Llï (i.e. P': thecenterolA,,B,,C,)then

(1e)

t!h3(t2,ts,ts )
6(ArÚ BrrrCt,)

t\h(to,h,tz)

+

I

6(Ar", Bt.rCr") 0

(20)



P

A'= P' B A B

Figure 5.

(äi) For general \, Frv holds

n(I, t, 1lî) : s

withT : (\,p,v),í : (to,tr,tzrts),Llî : (I/6ro1116rrrL/6r,rtl6r"), where
the rcsultant of the system oî three equations (78) conesponding to tlrtzrts.
homogeneous oî degree 6 inLlî.
Proof: The proof follows the same steps as in Theorem 2, and is omitted here. The
proof for À : þ: u : Ll\ has also been given in [6]. ¡

Projectivities. I{ornologies
'We note that the á:s in Lemma 2 represent dignities (certain areas) of the plane zr itself,
inherited from its affine structure, without reference to the particular perspectivity used
in the proof. It remains to characterize also the parameters ú and ), prv alptpealing in
the nominators by means of intrinsic propertiæ of zr only.

'We recapitulate some notions from plane projective geometry. As a model for IP2
1Me use the augmented plane :r in the three-dimensional affine space. A subclass of the
projectivities will play a particular role in the sequel. Thus, let P be a point and p a
line in r. By a, perspectiae collineøtionwith center P and øcir p is meant a projectivity
leaving fixed every point on p and every line on (:through) P" In particular, if. p / p
the collineation is called a hornologg, md if P € p aa. eløtion.

It is well-known that a homology is uniquely determined by its center P and axis
p, together with one point Q and its image Õ, .f. [1] p 53. For later reference we
repeat the proof, beginning with the uniqueness. Here and in the sequel we denote the
intersection of the lines ø and ó by a. b.

For any Y, by the invariance of the lines on P, the image i li". on the line py,
cf. Figure 6. on the other hand, ilY ø QQ then by the invariance of yo: ey .7t, the
Iine QY :YpY is- rnapped onto the ltneYoQ. It follows that i : py .ynj, uniquely.
The case Y e Q-Q is treated by repeated use of this argument, first using the known
property Q ---+ @ to construct a pair Z -+ 2 with Z I QQ, then using the property
Z --+ Z to construct Y --+ Y.

The existence of such a homolog¡ and a bit more, can be proved by means of a
perspectivity zre z¡'. Choose O and zr' so that p corresponds to the line at infinity in
r' . Let Q and Q in n correspond to Q_' aú, Q' in zr'. Then it is possible to find a value
of f such that, cf. (76), Hb, : Q' - Q'. L"ttitrg "persp', stand for ,'perspectivity with

(21)

Ris
-R is

tr
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P

o

Y

I
7f ----+ 7t

PersP PElsP

p

Yp

Figure 6.

center O", ã mapping X ---+ X¿ in r is defined by the diagram

7Í'
H",
-----+ Ìf'

Since the dilation Hþ, on r' rnay be described as a homology with center P, and with
the line at infinity as axis, the composite m-a,p in the diagram is a homology with center
P and axis p. Moreover it maps Q onto Q. Hence, the existence of a homology with
the stated properties is established.

The proof also indicates the possibility to parameterize the set of homologies with
a given center and axis. In fact, letting oo' denote the line at infinity in zr', Hþ, is
characterized by

C n(Xl, X'; P' ,æ' . P' X') : t

The invariance of cross-ratios under perspectives then legitimates the following alternate
definition of homologies.

Dnprwrrror¡ 4
By the homology in zr with center P, øæis p, seøle ú, is meant the mapping Hþ,o : X ---+ xr,
where X¿ is the unique point on PX determined by C.R( XtrX;prp. pXi: f. For a
given triad 1¿, BrC) the set of all triads (ArrBrrC¡) is called tlne homologicøl rønge of
(A,B,C) and is denoted by Ttp,n(A,B,C). tr

Given A'rB'rC'in er', the barycentric coordinates of P' are obtained by solving
(17) for À, þru. Cramer's rule gives

In terms of the cross-ratios of Definition 3 and by the conventions for treating points at

11



infinity, one checks that

.\ : &or (P' , A'1 A' P' . æ' , B' rC')

F : kn(P' , B'i A' , B' P' . ø' ,C')

u : kzo(P' ,C'; A' , B' ,C' Pt . æ')

The invariance of cross-ratios under perspectivities leads to

DsrrlirrroN 5

By the conf,guration coefficients of. (Prp; A, B rC) arc meant

) : Èor(P,A;AP .p,B,C)

P: ICN(P,B;A,BP 'P,C)

u: kzø(PrC;ArBrCP .p)

tr
(Note that, contrary to rt rin r the configuration coefficients have no interpretation

as barycentric coordinates.) By means of the uniqueness of homologies (stated above)
and another reference to Theorem 1, we obtain

LPtr¡tvt¿, 3
Let T be a prcjectivity on zr with Þ : TP, F : Tp. Then the following diagram is
comrnutative TX x

HI.,

X¿ 3- i,
If TA: Ã, TB - É, TC : Õ ìt foilo*" that (p,p;A.B,C) and (F,ñ;!,_E,p) huu.
the same confrguration coefr,cients and that T z ?lp,o(ArBrC) -- ?tp,ø(ÃrErÕ)', T z

(Ar,Br,Cr) - çÃr,Êr,Õr¡. E
Summing up, Lemma 2 gives homogeneous relations between the areas of triads

belonging to a particular homological range Tle,p(ArBrC) on ?r, with configuration
coefficients \rFrz. Lemma 3 says that projectivities on zr transfer homological ranges
onto homological ranges, without altering ú and \, pru. 'We have thus proved

Tnnonnu 3
Let (A¡rrBtrrC¿r) e']1r,o(ArBrC), ¿: 0,1,2r3, and let \r¡trv be the confrguration
coefrcients of (P,p;A,B,C). Then the cases (Ð, (ü), and (üi) of Lernma 2 desctibe
invariants under projectivities. tr
Remark. The polar case. The case (ii) À : ltr : u : !/3 has some special features.
Let P be a point a1d (ArBrC) a triangle in a plane zr. A new triangle (AtrBtrCL)
is defined by ár : PA. BC, Bt : PB . CA, Ct : PC . AB. The trianglàs (,4, B,Ci
1nd (l'r rBtrCt) are then perspective from P. By Desargue's theor"- thir'h.pp"ns
if and only if they also are perspective from a line p. (This means that the poirrl, of
intersection AB'AtBt, BC 'BrCt and C A.C:A, all lie on p.) The situation is described
by saying that P and p are pole and polar with respect to (r4., BrC), cf. Figure T and [1]

----)

J I*'u,,
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B,

p

tr'igure 7.

AB;

ci I

Figure 8.

p 29. The corresponding ), pru are found by means of the invariance of the pole/polar
property under perspectivities. The perspectivity 7r -- T' maps the polar p onto the
line at infinity P ---+ P', (ArBrC) - (A,rB,rC,), and (.41 ,BtrCt) -- (A\rBlrCi),
("f. Figure 8). Hence P' is pole and the line at infinity is polar *ith t"rpãct lo tÏe
triangle (A'rB'rC'). By means of similar triangles and medians one finds that P, is
the center of the triangle (A,B,C) i.e. OP' : (OA, + OB, + OC,)lg. This shows that
\ : lr : L, :1/3. For this reason we refer to (ii) as the Ttolør cøse. tr

Quadrangles

Generally speaking, by a simple k-point in IP' is meant an ordered fr-tuple of points in
IP". If Ic: n+ f. it is a polyad, and if & < n+I it may be considered as a polyad in
a k-dimensional projective subspace of IP'. Since polyads, here triads, are treated in
the main line of this work, only the case k ) n * 1 remains to be studieil. By means of
Definition 2, in a natural ütay one associates an tareat' to every simple k-point in Ip2
by

¡(Xt,...,Xn) : 6(Xr, X",Xs)+ ó(Xr, Xs,X+)+ ... + ó(Xr, Xn¿,Xn)
(cf. [8] vol II, p 104 for the affine case). For triads & : 3 we know from Theorem 3 that

A
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there exist area-inrrariants. The natural question arises whether this is true for k > 3.
We will consider the case k : 4 in a particular situation, reminding of the polar

case (ii) in Theorem3. Starting as usual in an affine plane rrr, let A'rB'rCtrD'bea
parallelogram and let P' be the intersection of its diagonals (cf. Figure g).

Figure 9.

By a dilation with center P', scale f, the points A!r, BlrCI, D', are constructed. After
a perspectivity zr' ---+ ?r one obtains the situation of Figure 10.

Figure 10.

Let, a¡, Brrcu D¡ be the images or. A!r, B'r, cl, Dt , and let the line p in ur correspond
to the line at infinity in r' .

By considering the homological ranges 'lle,p(A, B rc) arLdr{p,e(A, Drc) separatel¡
the whole quadrangle may be treated. In both cases the configuration coefficients are
(L12,0,L/2). Let

OA
1_
=OA" OB
a

Si : aþ-l.Then

L(Ar, Bt, Cb pr) : 6(ar, Br, Cr) - 6(Ar, Dr, Cr)

D

A

B

R

1

p+ æ,æ !Ø, Ø:
,,1

1

Put ,Sr+ : aþ*1,

14
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Computation of ó, as in (L8), gives

L(ArrBuCrrpr): * sl6(A, B,C) *ss 6(A,D,C)
o(A¡)a(B)a(C) o(A¿)a(Dt)a(C)

The facts that ó(,4', B'rC'): -6(A'rD'rC') and that Pt is the midpoint of. A'C'
and B'D' yield

^9fó(,4, B,a): -,5;á(,4,D,c), a*1: p+ +p-

Denote by c the coûrmon v¿lue of the members of the first equation. Let s1 be the
common value of the second. Put s2 - a1 + P+ P-, s+: alþ*B-. Then

LL(ArrBrrCrrDr): 
"t2( a(A¡)o(B¿)o(Cr)

ct2 s1

o(A¡)o(B¿)a(C¿)o(D¿)

Insertion of f : 1 gives cst - saA(L, BrCrD). After a straightforward calculation we
obtain the analogue of (18):

((1 - t')'"1+ 4*(l - t2)sls2 f 16úasa)A(Ar,Br,Cr,Dr): L6ú2s+A(A,B,C,D)

In analogy with hs above we define

hn(t',tz,ts) : t?tl - tlt| + tlt! - tît| + tzrtl - ttt? : (t? - tÐ(tz - t?)(t! - t?)

By a now familiar argument we obtain

Lnuu¡ 4
Fot any petspective image oî the confr.guration in zr' holds the rcIation

t3h4(tL,t2,ts) _ t?h4(t2,ts,to) 
_L *2h4(ts,to,tt) tlh4(ts,t1, t2\A¿" L,t, +.Ë-ff:o (22)

tr
This is in fact an invariant under general projectivities. To prove this, one needs

some invariant configuration property, replacing the configuration coefficients in Lemma
3. To this end one notices that P is a vertex and p the opposite side of the diagonal
triangle P,Q,R of the complete quadrangle defined by A,B,C,D (cÍ. [1] Ch z). r,et
us in this case say that (PrpiArBrcrD) is a ilåøgonal configurøtion. This pråperty
is preserved under projectivities. Defining in a natural way the homologi""t i""gl
?{e,p(A, B ,C, D), an analogue of Lemma 3 holds true in this particular case. \{'e obtain
Tneonnl\,f 4
suppgse that (PrpiArB,c,D) is a diagonal cottfrguration. Let (A¡rrBrrrcr,Drr) e'lle,n(A,BrcrD), ¿:0,1,2r8. Then the equation (22) is invariant'uãer pio¡"it;u;ií"r.

n
Rernark. Comparing (20) and 22, where in both cases the center of the figure was
used as the center of the homologg one notes at least two common features. First, the
number of figures needed were in both cases four, and second, the coefi.cients Iz3 and

1-;wJ)
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h,a in the invariant formula have the same structure. The problem arises whether this
can be generalized to general k-points. The answer is zo, at least in the sense that
the number of figures needed depends on &. This number is highly dependent on the
symmetry properties of the.figure. Calculations with a symbolic manipulation program
have showed that for regular pentagons r lc : 5, one needs nine and for regular hexagons,
Ic:6, six t-values (i.e. homological irnages of the reference k-point). n

5. Conical Area-invariants

The derivation of two-dimensional area-relations for regions enclosed by ellipses and,
after suitable interpretation, general conic sections will repeated only briefly since the
result for perspectivities was given in [6,7]. The interesting point here is the extension
to the full projective group. \Me restrict ourselves to the analogue of the ttpolar case"
in Section 4, i.e. when the center and axis of the homological range are pole and polar
of the configurations considered.

Consider quadratic functions

q(*)
1

æTQæ I aTæ¡h, æ e IRz, Qsymmetric
2

If Q is non-singular, then

Dnprxluon 6
By tlre fundamentøI form of q is meant

if Q is nonsingular

otherwise

n
The fundamental form a(g) can, apart from a factor, be interpreted as an area.

Here a itself changes in an irregular way under projectivities. IIowever, when grouping
together a number of a:s in a particular equation, we will see that each of them allows
a projectively meaningful interpretation as an area.

Perspectivities

Now consider a non-degenerate cone in the three-dimensional space. Let O be its vertex
and let zr,zr' be two planes with O Ø nu T', T * nt. Let (. : ¡rr nt. Two conics C and
C' are defined by the intersections of the cone with zr and rr' respectively. Suppose that
C' is an ellipse. Let Pt be the center oî. C'. Let e' be the conjugate direction of I with
respect to Ct (i.e. the direction determined by the locus of all midpoints of chords of
Ct parallet to l). Choose the length of ët so that it can be represented by a directed
segment connecting (.and Pt. Then by classical theory of conics it is possible to choose
f'I l¿ so that, for some ú,

C' z n'2 * y'2 : t2 (23)

For the perspective images of three such conics corresponding to three different ú-values
the following lemma holds. (See [7] for a proof.)

(qa )

( 
"'Q-ro.-2bl-;æ--\oo
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Lnuu¡, 5

With the notation introduced above, for any perspectivity holds

t?-t| t3-t3 t\-t? 
^

w)**w*1-wt¡u':u
(24)

Renark. At first sight this lemma only gives an analytical relation between the
fundamental forms of three particular quadratic functions g¿ri :0,1,2. However, since
a(q¿) has an interpretation as the area connected with C¿ ' 

qr(r) : 0, it changes only
by a proportionality factor under affine coordinate transformations on 7r. Because of
the homogeneity of. (24), one rnay thus choose for q¿ the polynomials defining C¡, in any
affine basis for zr. n

Projectivities

Projectivities map conics onto conics. If C has the equation q(*) :0, then the irnage
under ? has the equation ("qXæ) :0, where

gq)(*): q(T-tæ)

Ilere it is preferable to work with homogeneous coordinates, since then the calculation
oI Tq can be done by means of matrix operations.

Equation (23) describes a family of conical sections, obtained from each other
by dilations with center Pt. After a perspectivity, the situation in zr is described by
homologie" Hþ,o, where P,p are the images of Pt and the line at infinity, respectively.
The homologicøI ro,nge'llp,p(C) of conical sections is defirred as for polyads.

Tlre concepts of pole and polar are central in projective geometry, cf. e.g. [1] Ch.
8. In zr' the center P' of Ct and the line at infinity are pole and polar with respect
to C'. These properties are preserved under perspectivities, i.e. P and p are pole and
polar with respect to C. The situation is unaltered after any projectivity on ?r. For
this particular pole-polar configuration it is thus possible to formulate an analogue of
Lemma 3. Together with Lenxna 5, cf. also the remark above, it yields:

Tnnonnru 5

Let C¿, €'llp,o(C), i :0,L,2, where P and p are pole and polar with respect to C. Let
C¡, have the equation q¿(æ) :0. Then the formula in Lemma 5 is an invariant under
projectivities (i.e. when replacing q¿ by Tq¿). tl
Remark. It is noteworthy that the number of terms in (2a) is three, while it earlier in
the plane has been at least four (cf. the remark after Theorem 4). tr
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6. Conclusions

The main contributions of this paper is the definition and justification of area-invariants
in projective gbometiy, and the comrnon frame-w'ork from where the diflerènt invariânts
turn up as special cases. More specifically, there has been a complete characterization
of invariants concerning lengths of intervals on the line. Only in two cases, case (i) and
(ii) of Lernma 1, are the invariants linear. 'l'he first case is the well known cross-ratio,
anrl the second case is what we call the polar case.

The generalization to the plane can be done in different directions. One can either
view points (on the line or in the plane) as the basic entity, or one can view the geometric
figures (intervals, triangles, circles) as the basic entity involved. The first view was
adopted already by Möbius who generalized the cross-ratio, as was recalled in Theorem
1. The second view used here leads to another generalization of the cross-ratio, as
in Theorems 3-5, where the invariants are relations between the areas of the separate
geometric figures involved. Remarkably enough, we found that these invariants turn
out to be linear if the figures involved are related in a pole/polar configuration.
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