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Projective area-invariants as an extension of the cross-ratio

Lars Nielsen and Gunnar Sparr

Lund Institute of Technology
Box 118, S-221 00 Lund, Sweden

1. Introduction

Plane projective geometry treats properties of geometric figures that are invariant under
certain transformations, the ”projectivities”. The classical theorems mainly deal with
incidences of points and lines. Metrical concepts, such as distance and area, have
less natural sites in projective geometry. One well known exception is the cross-ratio,
relating distances between collinear points. On the other hand, area-invariants have
been discovered in connection with robot control and vehicle guidance [5-7]. There the
problem was to find objects suited as sign posts or marking symbols. For reasons of
error robustness and existing hardware, area measurements were preferable. Figure 1
shows one object that features area-invariants, and a possible image of it.

Figure 1. Two views of an object that features area-invariants

The existence of these new area-invariants pose some basic questions, since they
indicate that areas in a certain sense have a place in projective geometry. The topic of
this paper is an investigation into such fundamental matters, and one major result is
that the area-invariants are conceptually justified. Another major result is that both
the classical cross-ratio on the line and the area-invariants in the plane can be embedded
in a wider formulation where they turn up as two special cases.

The presentation is structured as follows. The concepts of area and invariance
are discussed in Section 2. Section 3 treats generalizations of the cross-ratio on the
projective line. When passing to the projective plane, it can be done in two main
directions. Two points on a line determine an interval of a specific length. In the same
way three points in the plane form a triangle of a specific area. The cross-ratio is an
invariant relation between lengths of intervals on the line, and a natural extension to the
plane is then invariant relations between areas of triangles. This is the topic of Section
4. Section 5 treats another way of extending results from the line to the plane by to
rotating the line i.e. to look for invariant relations between areas of conical sections as
circles and ellipses. The findings are summarized in Section 6.



2. Areas and Invariants

By definition, distance between points is a property dealt with in Euclidean geometry.
On the contrary, in affine geometry it is not possible to compare distances between
points, unless they all lie on the same line. It is therefore somewhat remarkable that
the concept of area makes sense in affine geometry, despite the fact that in elementary
geometry it is usually defined in terms of distances.

For projective geometry the question arises to what extent the concept of distance
and area in an affine space can be transferred to a projective space, claiming the
existence of area-relations that are invariant under projectivities. For n = 1 the cross-
ratio makes an example. Analogous expressions were also studied for triangles and
tetrahedrons in Mdbius ”Der barycentrische Calcul” (1829) [4]. Else, although a natural
problem, it seems to have been little studied. An effort is made in this paper.

Areas

We start with an example. Let Ag, 4;, A, be three points in a plane 7 in the Euclidean

space IE®. The points are represented by their coordinates. Suppose that the origin
O ¢ 7. Then

det(Ag, A1, 43) = the volume, with signs depending on the orientation, of the
parallelepiped spanned by the vectors O4,,04,,04, =

6-(the volume of the tetrahedron with vertices in (O, 4, 4;, 45))=
3.(the area of the triangle with vertices (Ao, A1, A,)) - (the distance between O and

).
In other words, apart from a factor of proportionality, det(A4, 41, 4;) measures the
area of the triangle in , having vertices in 4y, 41, 4,. O

We now turn to projective spaces, where the notion of area/volume has no a priori
meaning. A definition will be made, inspired by the above affine considerations in the
case m : Xg #; = 1. This plane augmented with the plane at infinity £7 z; = 0, will then
serve as a model for IP™.

For X = (zg,...,2,) € R", put

o(X)=) = (1)

Further, for Xy,...,X, € R"!, put

S Xal i o(Xo)...0(Xn) £ 0

6(X0,“-,Xn) — 0 ifdet(Xo,...,Xn):O (2)
- if det(Xo, ..., Xn) # 0,
o(Xo)...0(Xn) =0

Here one notices that, by homogeneity, § is in fact a function on IP™ x ... x IP™
(n+1 times). This fact alone does not qualify it to be a meaningful object in projective
geometry. For this also some sort of projectivity invariance is needed. Clearly § standing
for itself does not have such a property. However, there are equations involving several
6-expressions which have (cf. Theorems 1 and 3). Thus, when appearing together with

others in such an equation, § gets a projective meaning. Here it can in fact also be
interpreted in terms of affine areas.



The particular choice of 7 : ) 7 ¢; = 1 may seem somewhat arbitrary at first sight.
However, the discussion above may also be formulated in terms of coordinate changes
instead of mappings. (Both operations correspond to premultiplication by a matrix.)
In the new coordinate system the role played by = will be played by another plane.
(In particular, premultiplication by a diagonal matrix will correspond to a perspectivity
between the two planes.) The invariance equations mentioned above will relate, in the
old and new planes, the volumes associated to a given set of (n + 1)-tuples. When
dealing with invariancy, it is thus no restriction to consider the particular plane 7 only.

The following definitions will be used. (The postfix "ad” in the first one is borrowed
from Veblen-Young.) Cf. [8] vol II p. 55 or [4] p. 266 ff. for Definition 3.

DEFINITION 1
By a polyad in IP™ is meant a non-degenerate ordered (n + 1)-tuple of points in IP™
A = (Ap,...,An). If n=1,23 also the terms dyad, triad, and tetrad will be used. O

DEFINITION 2

The volume of the polyad is defined by egs. (2.1) and (2.2). For dyads and triads the
terms length and area will also be used. O

DEFINITION 3

For given points X,Y and a polyad A in IP™, the following collection of cross-ratios is
formed for 7,5 =0,...,n,1 # j,

kij = kij(X,Y; A) = kij(X,Y; Ao, ..., An) =

_ 6(Aoye. s Xyee ey An) [ 8(Aoy...,Y ., Ar) (3)
8(Ags-s X1 An)/ (A0 Y5 An)
J 7

In particular, if n = 1, we recognize k¢ as the ordinary cross-ratio, also denoted

6(Ao, X) [6(4,,Y)

CR(X,Y; Ao, A1) = ko = 4
( ? H 0y 1) 10 E(X, A]) E(Y, Al) ( )
The cases when the values 0 or co appear somewhere are treated by the natural limit
conventions. O
THEOREM 1
The cross-ratios k;;j are invariant under projectivities. O

Proof: To fix the ideas let n = 2 and consider k;,. Let T € PGL(2) and
X,Y, A, A;,As € P2, Suppose at first that no three of the points are collinear and
that none of them or their images under T is a point at infinity. Fixing representatives
of the points and the projectivity, one has

klz(TX TY; TAO’TAl,TAz) = (TAO,TX TAz) 6(TA0,TY,TA2) _

8(T Ay, TA;,TX)/ §(T Ay, T4A;,TY)

o(TA0)o(TX)o(TAs) [ T(TA)o(TY)o(TA;) _ det(Ao, X, As) /det(A4o,Y,4,)

det T'det(Ag,As,X det T'det( Ao, A1,Y
a(;Ag):(‘.(T,:;);(T}z') o ;‘An a(TAg)o(TA)o(TY) ‘.(T;; crlT) dEt(Aﬂ’AI’X) det(AO’Al’Y)

detTdEt(Ac ,X,A:) / det T'det AQ,Y Ag)

The last expression also equals ki2(X,Y;A49,41,42), which is shown in the same way.
This proves the theorem under the imposed extra assumptions. By limit considerations
the result is proved for general projectivities. O



3. The Projective Line

In this section we derive certain projectivity invariant relations between the lengths of
certain intervals on the line, where the cross-ratio will be one special case. Relying on
a geometric picture, we treat perspectivities by themselves.

Perspectivities

Let £, £ be two lines and O ¢ £U ¢ a point in the affine plane, cf. Figure 2. Augmented
with points at infinity, the lines may be thought of as models for IP!. Let P', A', B', with
A' # B', be three points on £'. P' may coincide with A’ or B'. Under the perspectivity
with center O the points P',A’,B' are mapped on P,A,B respectively. Let p be the
point on £ corresponding to the point at infinity on £, i.e. such that Op is parallel to

£,

Figure 2.

By a dilation on £' with center P' and scale ¢ is meant a mapping

Hp : X' - X, where P'X|=1t¢P'X' (5)

([1] and [2] serve as general references on the transformations appearing, where [2]
emphasizes the group theoretic point of view.) This can also be expressed as OX)
(1 —t)OP" +tOX'. In particular

04, = (1—t)OP' +t0A", OB, =(1—t)OP +{0OB"

Then e.g. Ay = P', A} = A'. Let A, B, be the corresponding points on £. Our aim
is to derive, for a set of values of ¢, certain relations between the lengths of the dyads
(A3, B:). These relations shall be valid for any perspective image of £'.

On ¢, let OP' = AOA' + uOB', A+ u = 1. Then

OAL=((1~t)A+t)OA" + (1 - t)uOB’, OBL=(1—t)AOA" + ((1 — )+ t)O B

Now fix a coordinate system O, OA4 = éOA’, OB = 10OB', in the plane, cf. Figure
2. The line £ then has the equation z +y = 1. In tﬁe corresponding homogeneous
coordinates holds

A= ((1—Da+to,(1—)uh), Bo=((1— tPa, (1 — )b+ 8)



Application of § (Definition 2) yields

1
(1 - Qe+ pB) + ta)((L - )(Aa + pB) + t6)

JQ=De+te  (1-Ha
A-tus (1 typp+eg| 0P

Here the unit §( 41, B, ) is included for homogeneity reasons. To achieve homogeneity in ¢
also, we replace A;, B; with A;,, B;, and substitute ¢/ty for . An algebraic computation
gives

5(At, Bt) =

((fo — £)25% + t(to — t)S181 + 125,) - 6(Ae, By) = Sytto - 6(As,, By, (6)

where :
Si=a+p, S:=af, S =>a+up (N

Equivalently we may write
(a1a?® + biaf + ¢18%) - 6( Ay, Bs) = ttgaB - §(As,, By,) (8)
where

ar = A(to — t)((2o — )X + 1), by = 2(to — £)?Ap + tho, ¢z = p(to — t)((to — t)p+1) (9)

LEMMA 1
With the notation introduced above, for any perspective image of £ hold the relations:

(i) EA=1,p=0(ie. P=A=A4,;,tc R), then

to(tr—t2) | tita—to)  ta(to—t)

=0 10
6(A7Bfo) S(A:Bfl) J(A’Bh) ( )
(ii) A= p=1/2, then
(i -8) tB-#%)  t@-4) (11)
6(AtoaBto) 6(At1!‘811) 6(At2’Bt2) -
(iii) For general A, u holds, using the notation §;, = 6(As,, By),
ai, by [y, — tot1/6s, || bty /b4, — tot1/6y, ey _ 1 |as ey I =0 (12)
@i, bey/bs, — tota/bs, | | be, /sy — tot2/6s, iy | 6% |ay, e
O

Proof: The proof relies on (6) or equivalently (8). Since the perspectivity is uniquely
determined by the non-zero numbers a and 3, "invariants under perspectives” must be

independent of a, 3. Writing m, = §( Ay, B;)/6(A4,, By, ) the basic formula (6) becomes
- - t
(to — t)252 + t(to — £)515; + #(t — m—“)s2 =0 (13)
t

Although (i) and (ii) are special cases of (iii), we prefer to treat them separately.



(i) A =1, =0, then (13) simplifies into (t, —)a +#(1 — -)8 = 0. Putting together
two such equations, corresponding to ¢t = ¢; and ¢ = {,, one gets a homogeneous system
of linear equations in the unknowns a and . This system is known to have a nontrivial
solution, determined by the geometrical construction above. Hence the determinant of

the system is zero, i.e. .
to—t t(l- 2

to—1y (1 — m%

Expansion of the determinant directly gives (10).
(ii) If A = p = 1/2 then §; = §;/2 which simplifies (13) into (t2 —#2)S2 +4#(t— %)Sz =
0. By the same argument as above, combination of two such equations yields

-t 4t — 2-)

-8 4t — 7>)

Expansion of the determinant gives (11).

(iii) Combination of two equations (8), corresponding to t; and ¢,, gives a system of two
homogeneous polynomial equations of second order in a,. This system is known to
have a non-trivial solution. A well known result from elimination theory, cf. [9] Ch XI
or [3] Ch IV, says that this happens if and only if the resultant of the system vanishes.
But here, in the case of two variables, the resultant can be written down explicitly as

atl bt1 - totl 6t0/6t1 ct;, 0
0 ay, bt1 — t0t16t0 /5t1 (9 —0 (14)
atz btz — t0t2 6to /6-‘;2 Ctz 0
0 az, bi, — totadee /b, cx
This determinant is easily rewritten as (12). a

Remark 1. The case (i) is in fact the ordinary cross-ratio relation for CR (cf. Definition
3 and Theorem 1). Note that the sum of the nominators in (10) is zero. Hence

1 1 1 1
“l )5 B,y ~ 5B By T G By T m By ="

or, equivalently (cf. Figure 3)

6(P,B,,) — §(P, Btz)/ﬁ(P, By,) —8(P,B;,)  ty — tz/to — 1 (15)
§(P, By,) 6(P, By,) S t

But here 6(P, Bto) — S(P, Btl) = S(Bt]_,Bto), 6(P, Bto) - 6(P, Btz) = 6(Bt2,Bt0) by the
geometric interpretation of §. The left hand side in (15) is thus the cross-ratio (4), and
we have reproved that it is invariant under perspectivities. (The way of expressing the
invariance of cross-ratios by a formula like (10) was known already by Mébius [4], ”Von
der metrischen Relationen im Gebiete der Lineal-Geometrie” (1829).) 0O

Remark 2. The case (ii) relates the lengths of perspective images of dyads with a
common center. For reasons that will be apparent in the next chapter (cf. the remark
after Theorem 3), we will call this the polar case. The polar case (ii) and the cross-ratio
case (i) are not as independent as they may seem. In fact (i) can be derived from (ii)

6



Figure 3.

as a limit case P — A, p — A. Likewise (ii) can be derived from (i). We prove the
latter statement using a process that also works in the plane, cf. quadrangles in the
next section. On £ in Figure 4, change the notation B', B} into B't, B!*, and introduce
corresponding points B'~, B';” symmetrically spaced around A'. With obvious notations
on £, the equation (13) for case (i) may be written (it suffices to consider the case to = 1)

§(A,Bf) aftt 6(A,By) af~t

5A,B%) " (1-Da+t8"  §(4,B-) (-tatif

\ B"— B:t_ Al B/t+ B+ f

Figure 4.
The fact that §(A', B't) = —§(4', B'~) yields
oft6(A,Bt) = —af6(4,B7), Bt +8" =2a
Denoting the common value of the members of the first equation by ¢ we get

6(Bt_, B;l-) . 5(AvB;I-)_6(A7Bt—) =
1 N 1 - 45t
(1-ta+tp+  (A-t)a+tB~’ ~(1-12)52 + 44285,

ct(

with §; = 8t 4+ 8~ , S, = BB, Insertion of t =1 gives ¢ = S26(B~,B%)/S1, which
in turn gives eq (13) for case (ii). O
Remark 3. The cases (i) and (ii) are the only situations where (iii) reduces to a linear
relation in 1/6;. This happens if and only if completion of squares in (12), as a quadratic



formin 1/46;, gives only two quadratic expressions of different signs. This in turn happens
if and only if either the first term in (12) is a square in itself or the second term cancels.
In both cases the condition is that

atl Ctl _ O
atz Ct;
for all ¢1,t;. We obtain A =0o0r g =0o0r A = p. O

Remark 4. Two points A, B divide the projective line into two "intervals”. One of
these, the one that not contains the point at infinity, may be called the ”finite” one.
Under a perspectivity a finite interval may be mapped onto a non-finite one. This
situation is reflected by a change of signs in §, but does not alter the validity of the
lemma. It is in order to avoid such considerations, irrelevant for the invariants, that
we talk about dyads instead of intervals. These aspects are still more accentuated in
higher dimensions. O

Projectivities. Homologies The formulas of Lemma 1 remain true when a projec-
tivity is applied to all appearing points A;, B;. The proof is a simpler version of the
proof for the plane given in the next section and is omitted here.

THEOREM 2

The cases (i), (ii), and (iii) of Lemma 1 describe invariants under projectivities (i.e. the
equations remain valid when applying a projectivity to all points involved). O
Remark. One could also consider translations, corresponding to P' = oo. By a

perspectivity £ — £, every translation on {' is transferred to a projectivity on £.
This projectivity has a single fixed point and is thus a parabolic projectivity. It is
also associated to the elations in the plane case. By means of a suitable limit process
every such elation may be parameterized by the same T as was used on ¢'. However,
since the result does not hold for the full group of projectivities (but only for a group
of elations), we do not develop this case any further. O

4. The Projective Plane

This section is devoted to projectivity invariant relations between the areas of certain
triangles in the plane. We will also consider quadrangles. As in the previous section we
start with perspectivities.

Let m, 7" be two distinct planes and O € m U 7' a point in the three-dimensional
affine space. Augmented with lines at infinity, the planes may be thought of as models
for IP?. Let P',A',B',C", be four points in n' with A', B',C' non-colinear. Under
the perspectivity from #' to m with center O, the points P', A', B',C"' are mapped on
P, A, B, C respectively. Let p denote the line in 7 such that Op is parallel to «'. It thus
corresponds to the line at infinity in ='.

Our construction of invariants is based on the same ideas as in Section 3. A dilation
on 7' with center P' and scale ¢ is as before defined by

Hp : X' = X; where P'X!=tP'X' (16)

It follows that

OA} = (1—-t)OF +tOA', OB} = (1 — t)OP' +t0F, OC! = (1 — t)0P 4 {00




On ', there exist A, u,v (barycentric coordinates) such that

OP" = \OA' + pOB' +vOC", Atpt+rv=1 (17)
Then
OA4;=((1-t)A+t)OA'+ (1 —t)uOB" + (1 — t)»OC’
OB{=(1-t)A0A"+ ((1 - t)p+t) OB + (1 — t)vOC"
OC; = (1—-t)AOA"+ (1 = t)uOB" + (1 — t)v + 1) OC"

Let A4, B;,C, be the points in 7 corresponding to A}, B}, C} in 7'. Fix the coordinate
system O, OA = 104', OB = 50B’, OC = 10C, for the space. The plane =
then has the equation z + y + z = 1. In the corresponding homogeneous coordinates

holds
Ar=(((1 = DA+ ) ey (1 — )b, (1 — t)ory)
By = (1 — ), (1 — )+ ) B, (1 — )
Ce=((1 - t)Ae, (1 = ), ((1 — t)v + 1) )

Application of § and introduction of ¢y and §(As,, Bs,,Ch,) yields, in the same way as
in Section 3,

((to — 1)*83 + t(to — t)2818, + t*(to — 1)51 S, + 12S3) - 6( Ay, By, Cy) =

, (18)
t t0535(Ato’ Btoa Cto)

where §; = a+ﬂ+77‘§1 =da+pf+vy,5; = af + By +va,S3 = afy.
In the following lemma a number of special cases for A, u,v, single out naturally.
Introduce first the notation
h(ty,t2,13) = 8345 — 1342 + 1383 — 1312 + 263 — 342
= (t1 — t2)(t2 — t3)(ts — t1)(t1ta + tats + t3ty)

(Here the subscript 3 refers to triads, cf. quadrangles below)

LEMMA 2

With the notation introduced above, for any perspective image of the configuration in
7' hold the relations (cf. Figure 5):

(i) FA=1,p=v=0(ie. P=A= A, t € R), then

t3(ts —t2)(f2 —ta)(ts — t1)  #3(ta —13)(ts — to)(ta — t2) ,

5(A7 Btoicto) E(A, Bhaoh) N (19)
t3(ts — to)(to — t1)(t1 —ts)  #(to — t1)(t1 — t2)(t2 — to) _ 0
J(A:sz’ct:) E(AaBtaacta)
(ii) XA =p=v =1/3 (i.e. P' = the center of A', B', C') then
tihs(t1,t2,13) _ tlha(ta, 13, t0) .
6(Aty, By, Cy,)  6(Asy, By, Co)
( 1 t t) ( i i t) (20)

t2h3(ts,t0,11) _ t2h3(to,11,12) —0
6(At2’Bt2’Ct2) 6(At3’Bta’Ct3) B




Figure 5.

(iii) For general A, p,v holds
R(X,%,1/8) =0 (21)

with X = (A, p,v),T = (to,t1,t2,13),1/8 = (1/645,1/64,,1/64,,1/8:,), where R is
the resultant of the system oi; three equations (18) corresponding to t;,t5,%3. R is
homogeneous of degree 6 in 1/6. O

Proof: The proof follows the same steps as in Theorem 2, and is omitted here. The
proof for A = p = v = 1/3 has also been given in [6]. O

Projectivities. Homologies

We note that the §:s in Lemma 2 represent dignities (certain areas) of the plane r itself,
inherited from its affine structure, without reference to the particular perspectivity used
in the proof. It remains to characterize also the parameters ¢ and ), 1, v appearing in
the nominators by means of intrinsic properties of 7 only.

We recapitulate some notions from plane projective geometry. As a model for IP?
we use the augmented plane 7 in the three-dimensional affine space. A subclass of the
projectivities will play a particular role in the sequel. Thus, let P be a point and p a
line in w. By a perspective collineation with center P and azis p is meant a projectivity
leaving fixed every point on p and every line on (=through) P. In particular, if P €p
the collineation is called a homology, and if P € p an elation.

It is well-known that a homology is uniquely determined by its center P and axis
p, together with one point @ and its image Q, cf. [1] p 53. For later reference we
repeat the proof, beginning with the uniqueness. Here and in the sequel we denote the
intersection of the lines @ and b by a - b.

For any Y, by the invariance of the lines on P, the image Y lies on the line PY,
cf. Figure 6. On the other hand, if Y ¢ QQ then by the invariance of ¥, = QY -p, the
line QY =Y,Y is mapped onto the line ¥, Q It follows that ¥ = PY .Y, Q, uniquely.
The case Y € QQ is treated by repeated use of this argument, first using the known
property @ — — Q to construct a pair Z — Z with Z ¢ QQ, then using the property
Z — Z to construct Y — Y.

The existence of such a homology, and a bit more, can be proved by means of a
perspect1v1ty 7w — 7'. Choose O and 7' so that p corresponds to the line at infinity in
7. Let Qand Qin correspond to @' and Q' in ' Then it is possible to find a value
of ¢ such that, cf. (16), HE : Q' — Q'. Letting ” persp” stand for ”perspectivity with

10



Figure 6.

center O”, a mapping X — X, in 7 is defined by the diagram

H',
P
T 5 x

T persp J' persp

T —> T

Since the dilation H}, on 7' may be described as a homology with center P' and with
the line at infinity as axis, the composite map in the diagram is a homology with center
P and axis p. Moreover it maps Q onto Q. Hence, the existence of a homology with
the stated properties is established.

The proof also indicates the possibility to parameterize the set of homologies with
a given center and axis. In fact, letting co' denote the line at infinity in #', H, is
characterized by

CR(X;, X';P' 00 - P'X') =1t

The invariance of cross-ratios under perspectives then legitimates the following alternate
definition of homologies.

DEFINITION 4

By the homology in 7 with center P, azis p, scale 1, is meant the mapping H}’,p : X — X,
where X, is the unique point on PX determined by CR(X;, X; P,p- PX) = t. For a
given triad (4, B, C) the set of all triads (4;, B;, C}) is called the homological range of
(4,B,C) and is denoted by Hp (4, B,C). O

Given A',B',C" in 7', the barycentric coordinates of P’ are obtained by solving
(17) for A, p,v. Cramer’s rule gives

_ det(P',B',C") _ def(A',P',C") _ det(A',B', P')
~ det(A,B,C") FT ey, B0y VT dela, B0

In terms of the cross-ratios of Definition 3 and by the conventions for treating points at
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infinity, one checks that
A=ko(P,A";A'P' . o', B',C")
p=ki2(P',B';A'",B'P' .0, C")
v =kyo(P',C';A'",B',C'P' . ")
The invariance of cross-ratios under perspectivities leads to

DEFINITION 5
By the configuration coefficients of (P,p; A, B,C) are meant

X = kou(P, 4; AP - p, B, C)
n= klz(P,B;AaBP -p,c)
V= kzo(P,C;A,B,CP 'P)

|

(Note that, contrary to #', in 7 the configuration coeflicients have no interpretation

as barycentric coordinates.) By means of the uniqueness of homologies (stated above)
and another reference to Theorem 1, we obtain

LEMMA 3 _
Let T be a projectivity on w with P = TP, p = Tp. Then the following diagram is
commutative . _

X — X

|mes |,

x, 5o X,
If TA= A, TB = B, TC = C it follows that (P,p; A, B,C) and (B, ; A,B,C) have
the same configuration coeflicients and that T : Hp (A, B,C) — Hp 5(4,B,C), T:

(Ag, Bg, Cg) — (A‘t: Bg, Ot). O

Summing up, Lemma 2 gives homogeneous relations between the areas of triads
belonging to a particular homological range Hp,,(A4,B,C) on =, with configuration
coefficients A, u,v. Lemma 3 says that projectivities on 7 transfer homological ranges
onto homological ranges, without altering ¢ and X, z,v. We have thus proved

THEOREM 3
Let (At;, By, Cy;) € Hpp(A,B,C), i = 0,1,2,3, and let A\, u,v be the configuration
coefficients of (P,p; A, B,C). Then the cases (i), (ii), and (iii) of Lemma 2 describe

invariants under projectivities. O

Remark. The polar case. The case (ii) A = p = v = 1/3 has some special features.
Let P be a point and (4, B,C) a triangle in a plane 7. A new triangle (A1, B1,C4)
is defined by 4, = PA.-BC, B, = PB-CA, C; = PC - AB. The triangles (4, B, C)
and (A1, B1,Ci) are then perspective from P. By Desargue’s theorem this happens
if and only if they also are perspective from a line p. (This means that the points of
intersection AB-A;B;, BC-B;C; and CA-C; A4, all lie on p.) The situation is described
by saying that P and p are pole and polar with respect to (4, B, C), cf. Figure 7 and [1]

12



Figure 7.

Figure 8.

P 29. The corresponding A, p1, v are found by means of the invariance of the pole/polar
property under perspectivities. The perspectivity 7 — 7' maps the polar p onto the
line at infinity, P — P', (4,B,C) — (4',B',C"), and (4, B;,C;) — (A1, B;,C)),
(cf. Figure 8). Hence P' is pole and the line at infinity is polar with respect to the
triangle (4', B',C'). By means of similar triangles and medians one finds that P’ is
the center of the triangle (4, B,C) i.e. OP' = (0OA' + OB' + 0C")/3. This shows that

A =p=v=1/3. For this reason we refer to (ii) as the polar case. O

Quadrangles

Generally speaking, by a simple k-point in IP™ is meant an ordered k-tuple of points in
IP™ If k =n+1itis a polyad, and if ¥ < n + 1 it may be considered as a polyad in
a k-dimensional projective subspace of IP™. Since polyads, here triads, are treated in
the main line of this work, only the case ¥ > n + 1 remains to be studied. By means of
Definition 2, in a natural way one associates an ”area” to every simple k-point in IP?
by

A(XI, R 7Xk) s 6(X17X2,X3) + 6(X17X31X4) +..t 6(X17Xk—17Xk)

(cf. [8] vol II, p 104 for the affine case). For triads k¥ = 3 we know from Theorem 3 that
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there exist area-invariants. The natural question arises whether this is true for & > 3.
We will consider the case £ = 4 in a particular situation, reminding of the polar

case (ii) in Theorem 3. Starting as usual in an affine plane =', let A, B',C',D' be a

parallelogram and let P' be the intersection of its diagonals (cf. Figure 9).

Figure 9.

By a dilation with center P’, scale ¢, the points 4}, B}, C!, D} are constructed. After
a perspectivity 7' — 7 one obtains the situation of Figure 10.

P P

Figure 10.

Let A4, By, Cy, D; be the images of A}, B}, C}, D}, and let the line p in = correspond
to the line at infinity in 7',

By considering the homological ranges Hp (4, B,C) and Hpp(A,D,C) separately,
the whole quadrangle may be treated. In both cases the configuration coefficients are
(1/2,0,1/2). Let

1
IET
Put S = aBty, S; = aff7v. Then

OA = %OA’, OB=—O0B', 0C= lOC’, OD = EI—OD’
5 -

A(Ah Bt, C’h Dt) = 6(At7 -Bt) Ct) - 6(At7 -Dt7 Ct)
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Computation of §, as in (18), gives

*576(4,B,C)  t*5;6(4,D,C)

A(A¢y By, Cey Dy) = 0(As)o(B:)a(C:)  o(A:)o(Dy)o(Cy)

The facts that §(A4',B',C") = —§(4',D',C") and that P' is the midpoint of A'C’
and B'D' yield

5;6(44’-3,0) = —S;J(A,D,C), at+y= :B+ +B6~

Denote by ¢ the common value of the members of the first equation. Let s; be the
common value of the second. Put s = ay + 878, 54 = ay8+tB~. Then

1 _ 1 )
o(4:)o(Be)o(Cy)  o(Ai)o(Dy)a(Cy)
ct?s,

= 0(A)o(Be)o(Cr)o(Dy)

A(At, Bt, Ct, Dt) = th(

Insertion of ¢ = 1 gives cs1 = s4A(A, B,C, D). After a straightforward calculation we
obtain the analogue of (18):

(1 —)2s7 + 4¢°(1 — t?)s}s; + 16t*s4)A(Ay, By, Cy, D;) = 1612s,A(A, B, C, D)
In analogy with hs above we define
ha(tiyta, ts) = 1ty — 018 + 8585 — 383 + 458] — 636 = (& - )(& — )(& - £2)

By a now familiar argument we obtain

LEMMA 4
For any perspective image of the configuration in w' holds the relation

toha(tr ta,ts) _ Bha(tasts,to) | Bhalts,torts)  #ha(to, 1, %)

=0 22
A’Eg A‘h Aiz Ata ( )

a

This is in fact an invariant under general projectivities. To prove this, one needs
some invariant configuration property, replacing the configuration coefficients in Lemma
3. To this end one notices that P is a vertex and p the opposite side of the diagonal
triangle P,Q, R of the complete quadrangle defined by 4, B,C, D (cf. [1] Ch 2). Let
us in this case say that (P,p; A,B,C,D) is a diagonal configuration. This property
is preserved under projectivities. Defining in a natural way the homological range
Hpp(A,B,C, D), an analogue of Lemma 3 holds true in this particular case. We obtain

THEOREM 4

Suppose that (P,p; A,B,C,D) is a diagonal configuration. Let (A4, By;,Cy;,Dy,) €

Hpy(4,B,C,D),1=0,1,2,3. Then the equation (22) is invariant uder projectivities.
O

Remark. Comparing (20) and 22, where in both cases the center of the figure was
used as the center of the homology, one notes at least two common features. First, the
number of figures needed were in both cases four, and second, the coefficients ks and
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hs in the invariant formula have the same structure. The problem arises whether this
can be generalized to general k-points. The answer is no, at least in the sense that
the number of figures needed depends on k. This number is highly dependent on the
symmetry properties of the figure. Calculations with a symbolic manipulation program
have showed that for regular pentagons, k = 5, one needs nine and for regular hexagons,
k = 6, six t-values (i.e. homological images of the reference k-point). O

5. Conical Area-invariants

The derivation of two-dimensional area-relations for regions enclosed by ellipses and,
after suitable interpretation, general conic sections will repeated only briefly since the
result for perspectivities was given in [6,7]. The interesting point here is the extension
to the full projective group. We restrict ourselves to the analogue of the "polar case”
in Section 4, i.e. when the center and axis of the homological range are pole and polar
of the configurations considered.

Consider quadratic functions

1
q(z) = EwTQm +a¥z +b, zeclR?, Qsymmetric
If Q is non-singular, then

DEFINITION 6
By the fundamental form of q is meant

a.TQ"'a,—zb . . .

= if ) is nonsingular
a(q) = { 4/det Q Q g

0 otherwise

O

The fundamental form a(q) can, apart from a factor, be interpreted as an area.

Here o itself changes in an irregular way under projectivities. However, when grouping

together a number of a:s in a particular equation, we will see that each of them allows
a projectively meaningful interpretation as an area.

Perspectivities

Now consider a non-degenerate cone in the three-dimensional space. Let O be its vertex
and let w, 7' be two planes with O € rUn', 7 # n'. Let £ = 7 N x'. Two conics C and
C' are defined by the intersections of the cone with 7 and 7' respectively. Suppose that
C' is an ellipse. Let P' be the center of C'. Let & be the conjugate direction of £ with
respect to C' (i.e. the direction determined by the locus of all midpoints of chords of
C' parallel to £). Choose the length of & so that it can be represented by a directed
segment connecting £ and P'. Then by classical theory of conics it is possible to choose
f'//£ so that, for some ¢,

Cl . mI2 +yl2 — t2 (23)

For the perspective images of three such conics corresponding to three different t-values
the following lemma holds. (See [7] for a proof.)

16



LEMMA 5

With the notation introduced above, for any perspectivity holds
i3 — 43 i3 —4 2 -4

(a(tinrJ)zjs (a(;i:))z,fa (a(tiz))zja

—0 (24)

Remark. At first sight this lemma only gives an analytical relation between the
fundamental forms of three particular quadratic functions ¢;,7 = 0,1,2. However, since
a(q:) has an interpretation as the area connected with C; : ¢:(z) = 0, it changes only
by a proportionality factor under affine coordinate transformations on . Because of
the homogeneity of (24), one may thus choose for ¢; the polynomials defining C;, in any
affine basis for =. O

Projectivities

Projectivities map conics onto conics. If C has the equation g(z) = 0, then the image
under T has the equation (T'q)(x) = 0, where

(Tq)(z) = (T )

Here it is preferable to work with homogeneous coordinates, since then the calculation
of T'q can be done by means of matrix operations.

Equation (23) describes a family of conical sections, obtained from each other
by dilations with center P'. After a perspectivity, the situation in 7 is described by
homologies H Itg’p, where P,p are the images of P' and the line at infinity, respectively.
The homological range Hp ,(C) of conical sections is defined as for polyads.

The concepts of pole and polar are central in projective geometry, cf. e.g. [1] Ch.
8. In 7' the center P’ of C' and the line at infinity are pole and polar with respect
to C'. These properties are preserved under perspectivities, i.e. P and p are pole and
polar with respect to C. The situation is unaltered after any projectivity on m. For
this particular pole-polar configuration it is thus possible to formulate an analogue of
Lemma 3. Together with Lemma 5, cf. also the remark above, it yields:

THEOREM 5

Let Cy, € Hpp(C), % =0,1,2, where P and p are pole and polar with respect to C. Let
Ct, have the equation ¢;(z) = 0. Then the formula in Lemma 5 is an invariant under

projectivities (i.e. when replacing ¢; by T'q;). O
Remark. It is noteworthy that the number of terms in (24) is three, while it earlier in
the plane has been at least four (cf. the remark after Theorem 4). O
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6. Conclusions

The main contributions of this paper is the definition and justification of area-invariants
in projective geometry, and the common frame-work from where the different invariants
turn up as special cases. More specifically, there has been a complete characterization
of invariants concerning lengths of intervals on the line. Only in two cases, case (i) and
(i1) of Lemma 1, are the invariants linear. The first case is the well known cross-ratio,
and the second case is what we call the polar case.

The generalization to the plane can be done in different directions. One can either
view points (on the line or in the plane) as the basic entity, or one can view the geometric
figures (intervals, triangles, circles) as the basic entity involved. The first view was
adopted already by Mobius who generalized the cross-ralio, as was recalled in Theorem
1. The second view used here leads to another generalization of the cross-ratio, as
in Theorems 3-5, where the invariants are relations between the areas of the separate
geometric figures involved. Remarkably enough, we found that these invariants turn
out to be linear if the figures involved are related in a pole/polar configuration.
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