LUND UNIVERSITY

Object-Oriented Modeling of Chemical Processes

Nilsson, Bernt

1993

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, B. (1993). Object-Oriented Modeling of Chemical Processes. [Doctoral Thesis (monograph), Division of
Chemical Engineering]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/5d830caa-86ba-4c56-a234-2aa00bf38f5c

Object-Oriented Modeling
of Chemical Processes

Bernt Nilsson

AN 4 A 4
‘ ' RN)
7 WY T | i
//én Z~ /// /P
w j s — |
\ —
I H —= | 1]
U | i
\ | /
S / - —
\\ é/fj///////
\ -
\

vd . Department of Automatic Control, Lund Institute of Technology

s
/
H
% ﬁé

Bernt Nilsson

T
AL
5

o

{w by {"i“"\’f\ Oy & SSow S O th et e,

Object-Oriented Modeling of Chemical Processes

ISSN 0280-5316
ISRN LUTFD2/TFRT-1041-SE

~ % ™ Y ",
e

7 (?/é/
Sy

Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document name

DOCTORAL DISSERTATION

Date of issue

August 1993

Document Number

ISRN LUTFD2/TFRT--1041--SE

Author(s)
Bernt Nilsson

Supervisor

Karl Johan Astrém and Sven Erik Mattsson

Sponsoring organisation
Swedish Board of Technical Development under con-
tract 87-02503 and 89-2740

Title and subtitle
Object-Oriented Modeling of Chemical Processes

Abstract

Models are important for almost all engineering activities. This thesis presents an object-oriented methodology
for development of models for complex chemical processes. Although we primarily deal with chemical processes
much of the methodology can also be applied to other complex technical systems. An object-oriented modeling
language, Omola, is used as a tool throughout the thesis.

The main results of the thesis are guidelines for structure and class hierarchy decomposition. A chemical plant
model is decomposed into smaller and smaller pieces following the guidelines for model structure decomposi-
tion. The libraries of predefined models are organized following the guidelines for class decomposition. These
guidelines cooperate to create well defined model modules that are easy to reuse in new, applications.

Other important results are particular modeling methods. Medium and machine decomposition is a method
to separate the description of the process media and the processing unit machine. Methods for control system
abstraction are also presented together with parameterization methods for reusable models with complex
interiors. The guidelines and these methods are used in a chemical plant application and they are shown to
be successful in an Omola implementation.

Some modeling methods need extensions in current Omola. Examples are concepts for regular structures as
well as abstract and parameterized classes. A method for batch process modeling is also suggested that uses
antomatic switching between different internal descriptions.

Key words
Modeling; process models; object-oriented modeling; systems representations; hierarchical systems computer
simulation; simulation languages computer-aided design; software tools.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316 0280-5316
Langaagc v N#mber of pages Recipient’s notes
- English 166 !

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

A4
i ;

o
¥

Object-Oriented Modeling of Chemical Processes

WY,
o,
¥

e ¥
=

The illustration on the front page shows the structure and
class hierarchies of a chemical plant example. The front cover
example is discussed in more detail in Appendix C. The hier-
archy decompositions are discussed in Chapter 4 and 5.

Object-Oriented Modeling
of Chemical Processes

Bernt Nilsson

¥

Department of Automatic Control, Lund Institute of Technology
Lund, August 1993

S 7
2

To Asa and Cecilia

Department of Automatic Control
Lund Institute of Technology
Box 118

S-221 00 LUND
Sweden

ISSN 0280-5316
» ISRN LUTFD2/TFRT-1041-SE

.o v e
T

% (©1993 by Bernt Nilsson. All rights reserved.

Printed in Sweden by Lunds offset AB
Lund 1993

Contents

Preface 7
Acknowledgements 7
1. Introduction 9
1.1 Engineering Design Co . . 10
1.2 Context of the Thesis 5 e e e e .. 11
1.3 Scope of the Thesis L .. 13
1.4 Thesis Outline 14

2. Modeling and Simulation T 1
21 Models " . . 16
2.2 Modeling 19
2.3 Simulation in Control Engineering 22
2.4 Simulation in Process Engineering 24
2.5 Conclusions 26
3. Object-Oriented Modeling co.L 27
3.1 The Tank Example 28
3.2 Modeling Concepts in Omola 32
3.3 The Omola Modeling Language 35
3.4 Omola Simulation Environment39
3.5 Multiple Problem Solving Environment 44
3.6 Other Object-Oriented Approaches 47
3.7 Conclusions 53
4, Abstraction and Reuse b4
4.1 Process Structure Hierarchy b5
4.2 Interaction b8
4.3 Process Model Class Hierarchy 61
7744 Conclusions” 65
5. Decomposition of Model Behavior 66
5.1 Medium and Unit Decomposition 67

5.2 Medium and Machine Inheritance
5.3 Primitive Behavior Decomposition
54 Conclusions,

6. Parameterization
6.1 Demands on Parameterization
6.2 Medium and Tray Parameterization
6.3 Column Parameterization
6.4 Distillation Unit Parameterization
6.5 Conclusions

7. Control Systems
7.1 Continuous and Sampled Controllers
7.2 Event Driven Controllers Coe
7.3 Structuring Control Systems Coe
7.4 Hierarchical Control Systems
7.5 Controller Class Hierarchy
7.6 Conclusions

8. Multi-Facet Models I
8.1 Multiple Realizations
8.2 Multiple Class Models Coe e
8.3 Batch Process Models P
8.4 Model Database L.
85 Conclusions

9. Process Example in Omola oo
9.1 The Chemical Plant Example
9.2 Tank Reactor Model e e e e
9.3 Distillation Unit Model
9.4 Process Simulation
9.5 The Use of OmSim
9.6 Conclusions

10. Conclusions L.
11. References

A Aspen Plus e e e e e

B. Introductory Omola Example
C. Front Cover Example

b LS
T

Preface

The following thesis belong somewhere in the borderland of Computer Sci-
ence, Automatic Control and Chemical Engineering. The thesis studies a
new modeling language, called Omola, in modeling chemical processes for
control analysis and design. Writing an interdisciplinary thesis has many
potential pitfalls. The scope necessary becomes broad and the audience,
with experience from all fields, is small. This thesis is primarily written
for a reader with knowledge of automatic control and chemical engineer-
ing. It is broad in the sense that it touches upon several different areas
that each, in its own right, could be the topic of further research. The
intention behind the work has been to explore the use of Omola in a par-
ticular application and to study the use of traditional chemical modeling
concepts in Omola. Another pitfall with an interdisciplinary thesis is that
it run the risk of being considered inappropriate for all fields. Hopefully,
this is not the case here. Instead my hope is that the work may generate
a new modeling methodology and new modeling concepts.

-

Acknowledgements

Many people have helped me in producing this thesis and- it is a great
pleasure to express my gratitude to the following good friends.

I am very glad to express my sincere gratitude to Karl Johan Astrom.
He has created the necessary conditions for a stimulating research atmo-
sphere and has been a consistent source of enthusiasm. His great knowl-
edge of people and broad overviews of the state of different research areas
have been of great help. He has greatly improved the manuscript by con-
structive criticism on several chapters.

I thank Sven Erik Mattsson. He has supervised me throughout this
work and has been an important source of inspiration particularly in the
first phase of this work. As the leader of the CACE group he has always
pointed out the importance of application driven interaction with the de-
velopment of a software. I am thankful for the opportunity to interact
with the development of OmSim. Sven Erik Mattsson has read several
versions of the manuscript and I am grateful for his comments.

I also would like to thank Mats Andersson, a key person in the CACE
group and the inventor of Omola, for patiently answering my questions
about Omola, taking my criticisms of OmSim with calm and for always
beatmg me on the 10'km track at Skrylle. Mats Andersson has also made
constructive comments on several chapters of the manuscript.

I am also very glad to express my sincere gratitude to Karl Erik
Arzén. He was a very important person during the "hard years", when I

7

was working on another project. I would particularly like to thank him for
always letting me share his deep insight to the fantastic world of G2. I also
would like to thank him for reading several versions of the manuscript and
for constructive suggestions and comments that have greatly improved the
quality of the thesis.

My colleagues at the Department form a friendly and inspiring com-
munity and I am grateful for their encouragement and help. I specially
would like to thank the following: Tim Berg for correcting my English
under time pressure, Leif Andersson for maintaining excellent computer
and text generating facilities and for patiently answering all my TEX-
questions, Dag Briick and Tomas Schonthal for the great work of imple-
menting the OmSim environment and always promising me that my bugs
will be corrected in the next version, and Per Hagander for many long
talks during my first years at the department.

I also would like to thank Bjorn Tyreus for several important discus-
sions in the beginning of this work.

The work has been partly supported by the Swedish Board of Tech-
nical Development. .

Finally I thank Asa, my beloved wife, and Cecilia, our lovely daughter,
for their encouragement and their support in everyday life.

B.N.

\ x\ﬂ\

Introduction

-

Models are important for almost all engineering activities. They are used
in design and analysis of new and existing systems and they are an in-
creasingly important ingredient in control systems. Requirements on in-
creased productivity and quality make the systems more complex which
means increased engineering effort in design. At the same time there
are demands for shorter development time to a lower cost. Tools that
increase the engineering efficiency are therefore important. This thesis
presents some new ideas for development of models for complex chemical
processes. Although we primarily deal with chemical processes much of
the methodology can also be applied to other complex technical systems.

The requirements on future chemical processes will increase. Compe-
tition on the international market together with government regulations
on the production, impose challenging constraints on process design and
operation. Recycling of both energy and material is required in order to
satisfy environmental regulations and economic demands. This makes the
process complex. Flexible production, both regarding quality and quantity,
due to changing market demands and just-in-time production, is another
important requirement. Safety is yet another vital consideration. Haz-
ardous release of chemicals involves enormous costs. There will also be
increasingly hard regulations on transport of chemicals which will force
the production sites"to be near the consumers. Such processes will be
small, customized, miniaturized processes. These requirements make the
process design complex and the process operation difficult. The process
control system must handle not only the classical regulation problem but

9

Chapter 1 Introduction

also rapid operational changes. The system must have facilities for discon-
tinuous operational changes, e.g. start up, planned and emergency shut
downs, reduced production, etc. Process diagnosis of failure situations to-
gether with qualitative operational diagnostics for improved quality will
be common ingredients in future process information systems.

1.1 Engineering Design

Engineering design of systems, particularly large and complex systems,
involves some basic principles to handle complexity. Here are a few gen-
eral principles that are useful when dealing with complex systems: mod-
ularization, abstraction and reuse. A design methodology of chemical pro-
cesses that uses these principles is found in [Douglas, 1988].

Modularization

Breaking a large system into smaller subsystems, called modules, is a
natural way to handle complexity. The basic idea is that the subsystems
are easier to deal with than the total system. It is important that the
modules are isolated with well defined interaction. Modularization can
be done hierarchically at a number of levels where modules are decom-
posed into submodules, which are decomposed into subsubmodules, etc.
This creates a hierarchy of modules. Each decomposition is made to make
design of each individual system easier. There are no direct rules for mod-
ularization. The physical structure of components is a common guideline
for modularization in process industry.

Abstraction

Another aspect of modularization is abstraction. A good decomposition
gives modules with small interaction with surrounding modules and with
its super module. A well abstracted module is easy to use in a larger struc-
ture because the user does not have to know about the internal details of
the module.

Reuse

In design of large systems it is often possible perform the decomposition
so that the modules have a well known design. It is then possible to
build a library of ‘mddules that can be used for different purposes. The
common use of unit operations is a typical example. It should therefore
be possible to reuse previously defined modules. Reuse is the driving force
in modularization. Large systems are often decomposed until well defined

10

1.1 Engineering Design

submodules, often with a known design, are found. This increases the
importance of abstraction. A well abstracted module can be reused in
many different applications. The possibility of module reuse also forces
the modularization to use previous described modules.

Modeling

Design is a decision making process. These decisions can used to create a
model. A model is therefore often a representation of the decisions made
in the design process and the decisions implications on the behavior. The
most common way to use this model is in the analysis of the design and
one common analysis method is simulation. This analysis may result in
a redesign. Modeling and the model therefore play an important role in
the design of systems.

Object-Orientation

The object-oriented methodology is based on decomposition and reuse.
The problem is decomposed into objects. An object is a structuring en-
tity containing a number of attributes. These attributes describe different
properties of the object. The objects in a problem description can interact
with each other. |

Reuse is facilitated through inheritance in object-oriented methodol-
ogy. One object can inherit attributes from another object. The first object
is called subclass of the second one, which is called super class. This cre-
ates a class hierarchy, where object classes can be reused to describe more
specialized objects. Object-oriented methodology is presented in [Stefik
and Bobrow, 1984].

Object-oriented methods for modeling are investigated in a number
of different research projects. Omola is one object-oriented modeling lan-
guage that supports modularization, abstraction and reuse. It is developed
at the department and an interactive environment is under implementa-
tion. Omola is used as the modeling tool throughout this thesis. Other
approaches are briefly discussed in Chapter 3.

1.2 Context of the Thesis

Although structuring has been used for a long time in mechanical, chem-
ical and electrical engmeerlng these structuring studies, which are hard-
ware based, have taken a long time to emerge. Because they are tied to
hardware they are also less amenable to experimentation. The advances
in Computer Sciences have provided a good platform to experiment with
system structuring. This is the theme of this thesis.

11

Chapter 1 Introduction

A 4
S

Compressors Reactor Tubular Reactors Distillation Columns

Figure 1.1 A typical flowsheet of a chemical plant.

A method of modeling and simulation called flowsheetingis frequently
used in the design and redesign of chemical plants, see [Westerberg and
Benjamin, 1985]. It usually only involves static simulation of the perfor-
mance due to changes of design parameters. In flowsheeting, the process
topology is described by connections between units as seen in Figure 1.1.
The units are predefined and found in a library. The process medium
can be described separately, independent of the units and the topology.
The process description, where topology, units and medium are separated,
is very user oriented. The underlying mathematical problem contains a
large, nonlinear equation system which is solved through static simula-
tion or optimization. The process dynamics and the control system design
are often not considered in this phase of construction, due to the lack of
tools and methodology.

The dynamic studies, together with control system construction, are
done later in the design phase, sometimes even after the plant has been
completed and it is too late to change the process design. The control engi-
neering is of tradition therefore concentrated on existing plants, available
process data and tools that handle local phenomena. In control system de-
scriptions, the natural process unit representation is destroyed. The tools
are often not capable of handling large systems. They are, on the other
hand, "open-systems" with a model description language which allows
user defined models, see [Cellier, 1991]

The flowsheeting packages use abstraction for handling large prob-
lems but this has resulted in "closed-softwares". The dynamic simulation
packages have limited abstraction capabilities but they are open and sup-
port the user with model description languages.

-7 One of the purpeses of this thesis is the unification of the tools for
ﬂowsheetmg and control system construction.

e Another is to explore the use of object-oriented methodologies in
the mathematical modeling of chemical processes. Although object-

12

1.2 Context of the Thesis

FF ‘/_‘ qfeed

ref AC é FC2 |={ DV

%;Column ¢
$ - /
lrof =1 LC ‘éﬁ Fc1 = rv G Drum

e

Figure 1.2 A typical block diagram of a part of a distillation column control
system. For controlling of the level in the reflux drum and the composition
control in the distillate product.

orientation has been used for a long time in engineering the concepts
was formalized in Computer Science, where tools for dealing with it
was developed.

The work has been a part of the Computer Aided Control Engineering,
CACE, research program at the department of Automatic Control in Lund.

1.3 Scope of the Thesis

This thesis discusses the use of new techniques for representation, model
structuring and reuse, which are based on an object-oriented approach.
The object-oriented modeling language, Omola, is therefore used as a tool
to demonstrate the techniques. An overview of the Omola project is found
in [Mattsson et al, 1993]. Primarily the models are used for dynamic
simulation studies, but the aim is to develop general techniques which
can also be used for other problems. The main contributions in the thesis
are the use of the following concepts in dynamic flowsheeting and control
system simulation:

e A methodology for system decomposition through use of submodels
with well defined interfaces. A model is decomposed into a number
of submodels, e.g., a chemical plant is decomposed into processing
units, units into components and so on. Guidelines for structure de-
composition are presented in Chapter 4 and in Chapter 7. Primitive
behavior decomposition in general, and medium and machine decom-

~ position in particular, is discussed in Chapter 5. Models with multiple

-7 interior descriptions are discussed in Chapter 8. The proposed batch
process modeling concept is of particular importance.

e A methodology for building model libraries of components that can be
used. Inheritance is used to facilitate reuse. A model can be reused

13

Chapter 1 Introduction

by the inheritance of a model from a library. A special kind of reuse
allow the user to modify a library model. This flexible way to use
models allows the reuse of empty models, half developed models and
parts of models. Guidelines for model class inheritance are presented
in Chapter 4 and Chapter 7.

e Advanced parameterization methods are used to increase the abstrac-
tion of complex submodels. Parameterization of a model means that
a property of the model can be changed in order to adapt the model to
different applications. A parameter can therefore be many different
things, from a single variable to a whole structure of submodels. Pa-
rameterization is the subject in Chapter 6 and the discussion result
in the demand of Omola extensions.

e The methodologies are applied to a nontrivial example which is suc-
cessfully modeled and simulated using the concepts listed above. The
example is a small but complete process plant application and it is
presented in Chapter 9.

The work presented in this thesis is a mixture of demands from the user
and an exploration of the new object-oriented methodology in chemical
process modeling.

1.4 Thesis Outline

The thesis is divided into ten chapters. Some background and fundamen-
tal aspects of modeling and simulation are presented in Chapter 2. Chap-
ter 3 introduces the notation of object-oriented modeling and the language
Omola which is used as a tool throughout this thesis. General model struc-
turing concepts are also discussed in that chapter. which also surveys re-
lated works Decomposition of process topologies and inheritance of process
models are discussed in Chapter 4. This is continued in Chapter 5 where
unit and medium separation and behavior decomposition are discussed
in detail. Chapter 6 focuses on parameterization which is important for
abstraction and reuse of models. Control system representation and ab-
straction are discussed in Chapter 7. Multi-facet models and the model
database are discussed in Chapter 8. A chemical plant example, modeled
and simulated in Omola, is presented and discussed in Chapter 9. Chapter
10 gives concluding remarks.

i W
. '}f -

14

Modeling
and Simulation

Models can be of many different kinds, from rigorous mathematical models
to geographical descriptions and logical representations. A mathematical
model can describe the static relations between design parameters or the
dynamic behavior of the system. The mathematical model contains con-
straints from the physical world and from the engineering design. A pure
model of a system is often mathematically incomplete, e.g., the numbers
of variables and parameters are larger than the number of equations.
The problem formulation describes the use of the model and makes the
description complete by adding data. The required accuracy and complex-
ity of the model are problem dependent. The problem solving method, the
model and the problem formulation generate a solution with a given ac-
curacy. The engineer uses different models, formulations and solvers for
different purposes depending on the demands on the solution.
Simulation is one problem type which is important in engineering.
The mathematical problem is to solve an equation system, a system of
algebraic and/or differential equations. The designer uses simulation to
learn how a complex process behaves and to get insight in process con-
£ stramts Simulation 15 also used in operation for operator traiping, pre-
- diction of control actions and safety studies.
Optimization is another problem formulation which is important, par-
ticularly in design. The problem is to optimize a criterion under the con-

15

Chapter 2 Modeling and Simulation

straints given by the model. The model is used together with a loss func-
tion description which is optimized by the problem solving tool. To do this
optimization the tool may invoke simulation.

Models are the key to both design and simulation. To create good mod-
els rapidly is an important part of engineering. In this chapter the roles
of models are discussed. In the following sections the use of simulation in
process and control engineering are also discussed further. |

2.1 Models

Every engineering activity has its own model descriptions and its own us-
age of models. The separation of model, problem formulation, and solution
procedure, i. e., problem solver, is more or less explicit. This is discussed
in this section.

What is a Model?

»

A model is a chunk of knowledge that describes a system. A model is
a simplified description of the system behavior from a certain point of
view. It can be the dynamic time response in a specific time scale or the
steady state relation between process variations and parameters. When a
model is developed, it is done in a context. The model describes the system
for a particular reason and with particular inputs or as Marvin Minsky
[Minsky, 1965] puts it:

A model (M) for a system (S) and an experiment (E) is anything
to which E can be applied in order to answer questions about S.

To violate this is both the potential and the danger in the use of
models. To assume that the model M is valid for a class of experiments,
(CE), makes it possible to study other experiments than the one that was
used to develop the model. This can of course lead to misuse where models
are used in experiments where they do not fit.

A model can be quantitative or qualitative. It can describe the behav-
ior or the function of the system during normal operation or under fault
conditions. In control engineering, quantitative description of the dynamic
properties of a system is the most widely used explicit model description.
This is often expressed as ordinary differential equations, ODEs. Static
descriptions, often algebraic equations, AEs, is the dominating form of
modegls in process engineering. There is clearly a good incentive to unify
these view points.

16

2.1 Models

input, / Output, O

——{ Model, M

Figure 2.1 A model can be used in a number of different problem formula-
tions.

Use of Models

Models are widely used in engineering for explicit knowledge representa-
tion in problem solving activity. Assume a model M with an input I and
an output O, see Figure 2.1. Depending on what is known or specified,
other missing quantities can be found.

o The so called direct problem is to apply I on M and study O. This is
done in simulation and analysis.

¢ The reverse use of M is to apply O and study the input I. It can be
called the inverse problem and it is also sometimes called the control
problem.

If both the input, I, and the output, O, are specified then they can be
used to find properties in M. This is used in the identification and the
estimation problems in control engineering and in the design problem in
process engineering.

e In the identification problem it is attempted to find the structure and
parameters of M.

e In the estimation problem one can find the internal states in M if the
structure of M is known.

o In process engineering this is the design problem where the input
and the output are used to find given parameters in M, often through
optimization.

A similar discussion is found in [Cellier, 1991].

Models can be used for many different purposes. In this perspective
it seems natural to have problem independent models stored in libraries
and use them together with different problem solving tools. Today this is
not the case. Each problem solving tool has its own model description and
the models are very different for different problems.

Simulation problem formulations use models in a direct and explicit
way. Developing problem independent models is therefore often misun-

derstood as making simulation studies. ‘

17

Chapter 2 Modeling and Simulation

EXAMPLE 2.1—A Tank Reactor Model

A simple tank reactor is modeled by a mole balance of one of its chem-
ical components. The reactor is assumed to have constant volume, flow,
pressure and temperature. It can then be described by the following equiv-
alence statement.

In + Production = Out + Accumulation
d 2.1
qcin + (—kc)V =qc + (;;c) (2.1)

This is a general model that describes the constraints between a number
of process variables and parameters. O

EXAMPLE 2.2—Simulation of the tank reactor dynamics

To simulate the concentration dynamics in Example 2.1 one needs to de-
fine all the parameters and variables that are constant during a dynamic
simulation. Examples are the process parameters, flow ¢, volume V and
the reaction coefficient k. To make a dynamic simulation the initial value,
c(0), must also be given together with the input signal c;,;(¢). The sim-
ulation problem is then well defined. We have the following differential
equation,

de(t) (4 S
o= - (V + k) c(t) + cm(t) (2.2)
which can be integrated by an ordinary ODE solver. O

ExXAMPLE 2.3—The inverse problem

In the inverse problem to Example 2.1, the concentration profile, c(t) is
defined and the input signal ¢;,(¢) should be determined. The concentra-
tion profile must be differentiated in order to find ‘fig which is used to
calculate c;, in the following equation.

V de(?)
q dt

Cin(t) = (1 Iy)c(t) (2.3)

a

EXAMPLE 2.4—Static simulation of the tank reactor
The steady-state simulation problem defines the concentration derivative
to zero in Example 2.2, ¢ = 0. The system then becomes

= < or __q . , 0.4
¢ (@ +kV) Cin (2.4)
and the problem can now be handled by an equation solver. O

18

2.1 Models

EXAMPLE 2.5—Reactor model in a design problem

In process design one often wants to find a process parameter, for example
the volume, based on a specification on the process performance. In this
case the incoming and outcoming concentrations can be defined and the
volume is calculated by an equation solver.

q (Cin
V=i (7 - 1) (2.5)
This problem is mathematically identical to the steady-state simulation
problem above, in Example 2.4. The design problem has only one un-
known, the volume. This is often not the case. A number of variables are
unknown and the problem is underdetermined. Optimization is therefore
used to solve the problem. To do this additional cost functions must be
defined. One example is to optimize the flow and the volume based on
the constraint above in Example 2.1. This means that the problem has
two variables and one equation. A loss function, Fj,ss = f(g,V), must
then be added. The problem is now to minimize Fj,,; based on the model
(constraint) 2.1. ’ : O

In Examples 2.2 to 2.5, the model of the process, found in Example 2.1,
is general and it is used in a number of different problem formulations.
In each problem additional information are defined, which specialize the
model to a specific problem formulation.

2.2 Modeling

Modeling is an activity that can mean different thing for different engi-
neers. A rough classification of modeler is as follows:

¢ The research model developer tries to describe small scale systems
with complex behavior or unknown phenomena.

e The production model developer often studies large scale systems and
is mainly interested in the problem solution. The elements of the
model are often predefined and well known.

In a classification like this a control engineer works often as a research
developer while a process designer often works as a production developer.

Modeling in Control Engineering

Control engineering Telies heavily on models, both models of the control
system and the process to be controlled. A model of the process is created
and in the control design a controller description is developed which ful-
fills some specifications. This control system is then implemented in the

19

Chapter 2 Modeling and Simulation

design
Process Control System
Model Model
analysis
modelling implementation
identification

ek

PROCESS CONTROLLER

Figure 2.2 A conceptual description of activities in control engineering.

physical control system. A conceptual description of the role of process
models in control engineering is illustrated in Figure 2.2.

Modeling in this context means to describe the behavior of an existing
process. Since control engineering often is applied to existing processes,
modeling and identification are based on some kind of experiments. The
model is often input/output oriented with disturbance descriptions. Small
scale models are common.

Modeling in Process Engineering

There are many different uses of models in chemical engineering. A re-
search model developers develop new models of a particular phenomenon
or models of new process components. The structure of the model is known
or partly known and it is often of low order and may include complex
behavior descriptions. The model developer works directly with the math-
ematical description to fit the model to data. The user of the developed
model is often the developer himself. A control engineer and a research
process model developer work like this. Problem solving software in this
domain is therefore mathematically oriented. This is called microscopic
modeling in Figure 2.3, which illustrate the activities in process engi-
neering.

In chemical engineering there is also the production model developer
who uses predefined component models to create models of different pro-
cess designs. This kind of model user does not work on the mathematical
level. Instead the developer uses a domain related description language
often related to the application. An electrical engineer uses circuits and
circuit elements to describe phenomena. A chemical engineer uses often
common process components, like pumps, valves, reactors etc. These mod-
eling problems are so large that there can be many model developers and
many more users. This is called flowsheet modeling in Figure 2.3.

20

2.2 Modeling

Process Plant

Model
flowsheet
mode/iM
Hc])lé el ‘w) deling
Phenomena
macroscopic Model
modeling

microscopic
modeling

PROCESS

Figure 2.3 A conceptual description of activities in process engineering mod-
eling.

The Modeling Process

Model development is more of an art than a science. How a system can
be structured and mathematically described depends on the problem for-
mulation and the problem solver. A model of a system is composed of the
structure description and the behavior of the entities. Modeling is there-
fore equivalent to defining structural entities and their interrelations and
defining behavioral descriptions of the entities.

The structure of the modeling process is illustrated in Figure 2.4. To
develop a model the user has a purpose and demands on the solution.
The laws of physics are also constraints on the modeling process. But the
problem complexity may force the model developer to make approxima-
tions and violate physical principles. Purpose, demand and physics are the
inputs to the modeling process. The modeling process can be decomposed
into six levels. First the model is decomposed into minor submodels with
well defined interactions, called the structuring phase. When the model
is structured the submodels are described. These submodels may be rec-
ognized as standard components which can be reused; this is called the
model reuse phase. If the submodel is not known the model developer has
to develop a new submodel. This is done in the new description phase.
Both in this phase and in the reuse phase the developer can realize that
thestructure must be changed which means that the process is iterative.
A problem independent model is described after these three phases.

When the model is developed it can be used for problem solving. First
the problem dependent information must be added which is done in the

21

Chapter 2 Modeling and Simulation

—_— T e~ —

¢~ Pupose S ¢ Demand N ¢ /’Physics oy
~ —~ ~ —~ ~ —~

— — — — ~— —

-~ T =
\\ | //
\\ ‘b //
o ~ L
(f‘: STRUCTURING
MODEL REUSE

NEW DESCRIPTION

A

Figure 2.4 A conceptual description of the modeling process. Purpose, demand
and physics are the input to the iterative process of modeling and out come the
problem solution, the problem formulation and the model.

problem formulation phase. This problem formulation must often be ma-
nipulated to fit the problem solving tool. The manipulation can be a minor
change of the model, e. g., sorting of explicit equations, or a major change,
e.g., solving implicit equations and adding problem solving equations. The
aim is automatic transformation of the original problem formulation into
a problem solving tool description. The resulting description can now be
used in a problem solving tool. New insight to the problem can force a
new iteration in the modeling process, both in the model manipulation
and problem solving phases. The output from the modeling process is not
only the solution of the problem generated by the solving tool but also the
problem formulation and the actual model. This is clearly illustrated in
Figure 2.4.

2.3 Simulation in Control Engineering

£ A

Simulation is an important tool in control engineering. It is used for anal-
ysis of process dynamics and control system behavior. Control systems
are often designed using linear models which are simplifications of the

292

2.3 Simulation in Control Engineering

-physical world. Simulation is therefore used to study the control system
behavior on a more general model, e.g., a nonlinear model with different
kinds of disturbances.

Continuous System Simulation Language

Most of the general-purpose continuous time system simulation languages
which are commercially available are derivatives of the Continuous Sys-
tem Simulation Language, CSSL, that was specified by the CSSL commit-
tee in 1967 [Augustin et al, 1967]. CSSL packages are all based on the
same basic system representation, namely state-space descriptions of sys-

tem equations. This is a set of first-order ordinary differential equations
(ODE),

dx(t)
o = f=tu)

y - g(x,t,U)

(2.6)

where ¢ is time, x is internal state, u is input and y is output. In CSSL
this description is declarative and not executive, which means that the
equations are sorted into an executable sequence and solved simultane-
ously by an ODE solver. Surveys on general-purpose simulation softwares
are given in [Kreutzer, 1986] and in [Kheir, 1988]. Use of CSSL tools is
discussed and well exemplified in [Cellier, 1991]. One example of a widely
used CSSL tool is ACSL [Mitchell and Gauthier, 1986].

Other commercial systems are Simnon [Elmqvist et al, 1990] and
SIMULINK [MathWorks, 1991]. These systems can handle composite sys-
tems, where a number of submodels are connected to each other. Simnon
has a system description language for definition of systems. SIMULINK
has a nice graphical interface with a block diagram editor and graphical
interaction.

The standard formulation of the problem makes it possible to make
a separation of the system model and the problem solver. The key idea is
to allow the user to specify the problem and leave the problem solving to
the simulator.

Equation Oriented Simulation

The state-space description has some major drawbacks. It can be difficult
to explicitly descrlbe demvatlves in a physical based model. So called alge-
braic loops are another problem. This means that even if each submodel is
defined by explicit calculations it may be necessary to solve an algebraic
equation to find the variables of the interconnected system. Therefore
some efforts have been done on leaving the explicit descriptions to allow

23

Chapter 2 Modeling and Simulation

equation oriented model descriptions such as,
F(x,x,t,u) =0 (2.7)

This is an implicit ODE description. The mathematical formulation can be
rewritten as B(x)x = f(x,t,u). If B(x) is invertible then it can be turned
into an explicit ODE, x = B(x)"1f(x,t,u) = h(x,t,u). If it is not invertible
then it is a differential-algebraic equation system, a DAE system. DAEs
are categorized into so called index problems. An index zero problem can
be turned into an explicit ODE description, which means that B(x) is
invertible. An index one problem means that the DAE is composed of one
differential part, dynamics, and one algebraic part, statics. An index one
problem can be solved by a DAE solver. The most well-known DAE solver
is the DASSL by Petzold [Petzold, 1982]. For higher index problems some
equations must be differentiated a number of times which lowers the
index. The inverse problem of the tank reactor in Example 2.3 is an index
two problem. The original problem formulation must be differentiated
once in order to make it an index one problem that can be solved by a
static equation solver.

One example of a language that handles equations is Dymola, Dy-
namic Modeling Language, developed in [Elmqvist, 1978]. Dymola sorts
all equations and generates an explicit ODE description. It works like a
preprocessor in front of an ordinary CSSL, like ACSL or Simnon. This
makes it possible to handle the invertible case, index zero problem.

Discussion

Control engineering is often focused on local, small scale control prob-
lems with complex behavior. Modeling languages are often good at allow-
ing new model descriptions but they have poor structuring facilities. The
CSSL standard has established the basic idea of separating problem for-
mulation and problem solving by the use of a manipulation phase. This
is not only true in simulation but also in other parts of computer aided
control engineering. It is therefore quite odd that equation oriented rep-
resentations are not so common. There are a number of reasons like the
lack of DAE theory and computer power, but the main reason is probably
that control engineers deal with small scale problems.

24 Simulatiord in Process Engineering \

Simulation has been used for more then 30 years in Chemical Engineer-
ing. Steady state simulation is the most common application. There are

24

2.4 Simulation in Process Engineering

many packages for steady state simulation, which is also called flowsheet-
ing. Dynamic simulation was rare and almost no commercial dynamic
flowsheeting packages were available until the mid-eighties. Already in
the beginning of the sixties two different paradigms in chemical process
flowsheeting were developed, sequential modular and equation oriented,
A lot of surveys can be found in the literature, [Westerberg and Benjamin,
1985], [Perkins, 1986], [Biegler, 1989] and [Marquardt, 1991].

Sequential Modular Flowsheeting

FORTRAN subroutines were used to make steady state calculations of
unit operations in the end of the fifties. This approach was very suc-
cessful and a number of so called flowsheeting packages that are used
today rely on this approach. The name derives from the term flowsheet,
which is a graphical abstract representation of the topology of chemical
processes. Flowsheeting packages are unit oriented, which means that
the software modules describe the behavior of a unit operation, such as
a reactor, a distillation column etc. The process stream represents inter-
actions between the unit modules which are connected to each other in
a flowsheet description. The sequence of units in the flowsheet describe
the process. There are packages available which were mostly developed
during the seventies, like ASPEN PLUS [Aspen, 1982]. Actually, most of
the major chemical companies have their own flowsheeting package. The
major drawback of the sequential modular description is that the mod-
els and problem solver are tightly coupled in the software modules, i.e.,
FORTRAN subroutines. It is only in recent years that user friendly inter-
faces have become available for user defined module descriptions. Another
drawback is the problem with recycle loops in the flowsheet. The modules
are calculated in a sequence and when the recycle appear, an iteration of
the sequence must be done which must be repeated until it converges. In
flowsheeting the process model description is separated into three parts:
the process topology, the process units and the medium property. A small
application in ASPEN PLUS is found in Appendix A.

Equation Oriented Flowsheeting

The problem discussed above with recycle loops was recognized already
in the beginning of the sixties, [Sargent and Westerberg, 1964]. An alter-
native approach was developed, equation oriented flowsheeting. In this
approach the user defines the equations, which are solved once and for
all.7The advantage 6f equation oriented flowsheeting is a well defined
separation of model and problem solving. Recycle loops do not create any
problems in equation oriented flowsheeting. The main drawback is that
many models are not described by simple equations. Typical examples

25

Chapter 2 Modeling and Simulation

are physical properties. These are instead described by implicit equations
“which require iteration. Tailormade solvers have been developed for the
sequential modular flowsheeting packages.

Dynamic flowsheeting is often based on the equation oriented ap-
proach. SPEEDUP, developed at Imperial College in London, one of the
first equation oriented flowsheeting packages [Sargent and Westerberg,
1964], has an equation oriented but FORTRAN like syntax for system
representation, see [Perkins and Sargent, 1982]. Today, SPEEDUP has a
DAE solver for index one problems, see [Pantelides, 1988]. SPEEDUP has
much in common with Dymola.

In recent years some efforts have been made to combine the two
approaches into what is called the simultaneous modular method. The
equation oriented approach is used to describe the structure and the se-
quential modular approach is used to describe the physics, see [Fagley
and Carnahan, 1990].

Discussion

The two paradigms, sequential modular and eguation orjented, share
some common ideas, which are based on the user demands on flowsheeting
and the user needs to evaluate and analyze a process design. The process
design is based on structures of unit operations where the problem is to
size the units. This means that the user wants to work with unit operation
modules and change well defined parameters in these modules. The unit
operation modules must also be medium independent and the flowsheet-
ing package must support a library with physical property descriptions
for common chemicals. This results in unit orientation of the flowsheet
structure and a separation of units and physical properties. Good struc-
turing facilities have been developed in flowsheeting. They are problem
specific, and use large data bases for units and medium descriptions. It
is on the other hand difficult to include new submodel descriptions.

2.5 Conclusions

Modeling and simulation have been discussed in this chapter. These two
activities are sometimes interwined because simulation problems require
an explicit model description. Models are used in all engineering activi-
ties and tools for developing general models are therefore important. The
modeling process was discussed together with the practice of simulation
in"¢ontrol engineering and in process engineering. This showed that the
different areas have much in common. An unification should allow the
power of an open modeling language together with concepts for abstrac-
tion and reuse developed in flowsheeting.

26

Object-Oriented
Modeling f

Object-oriented methodology has been a subject of research in computer
aided engineering in the last years. Object-oriented programming was
developed in the Computer Science already in the end of the sixties and
got a lot of attention in the eighties. The basic idea is to group properties
of an entity into an object. An important concept is inheritance. One object
class is a subclass of another class and inherit its properties. A number
of different research groups are working on applying object orientation on
modeling.

Omola is an object-oriented modeling language. It is a modeling lan-
guage that captures the modeling structuring concepts developed in the
Computer-Aided Control Engineering research program, CACE, at the
department of Automatic Control at Lund Institute of Technology, [mat,
1989]. Omola is the third generation of modeling software developed at the
department. Simnon is CSSL inspired with state space model description
language. It was developed in the early seventies, see [Elmqvist, 1975].
Simnon is commerc1ally available and is still widely used, see [Elmqvist
et al, 1990]. Dymola a dynamic modeling language for large continu-

" ous systems was presented in Elmqvist’s thesis in the late seventies,

[Elmqvist, 1978]. It is based on structured modeling and has powerful
structuring concepts. It works as a preprocessor where Dymola models are

27

Chapter 3 Object-Oriented Modeling

]

Controller

vel Sensor

SRR

Tank Outflow Valve

Figure 3.1 The introductory tank system example.

manipulated and fed to other packages for simulation. A renewed inter-
est in Dymola is reported in [Cellier and Elmqvist, 1993] and [Elmqvist,
1993] and today Dymola is a commercially available. The object-oriented
modeling language, Omola, is presented in [Andersson, 1989] and in An-
dersson’s thesis [Andersson, 1990]. A nice overview of Omola is found in
[Mattsson and Andersson, 1992] and a more detailed discussion is found
in [Mattsson et al, 1993].

In this chapter we first introduce Omola by an introductory example
in Section 3.1. A discussion of the modeling concepts in Omola is presented
in Section 3.2 and a more detailed presentation of the Omola modeling
language is then given in Section 3.3. The concepts are based on ideas
from structured and object-oriented programming. The Omola Simula-
tion Environment, OmSim, is briefly presented together with a discussion
about engineering problem solving environments of tomorrow in Section
3.4. Related projects in object oriented modeling are briefly discussed in
the last section.

3.1 The Tank Example

A small example which illustrates some of the modeling concepts in Omola
is now given. The example is a water tank with one inlet and one outlet.
The level of the tank is controlled by the inflow.

The tank system is composed of a water tank with an inflow valve, an
‘outﬂow valve and a controller, see Figure 3.1. The level of the water tank
is controlled by the controller which uses the inflow valve as an actuator.
The outflow is changed by an external consumer.

To study the dynamic behavior of this system we need a dynamic
model that describes the mass balance of the tank. It is also assumed that

28

3.1 The Tank Example

TankSystem ISA Model WITH
terminals:
In ISA PipeInTerminal;
Out ISA PipeQutTerminal;
submodels:
Tank ISA TankModel;
InflowValve ISA ContValveModel;
OutflowValve ISA ValveModel;

PID ISA PIDControllerModel;
connections:

In AT InflowValve.In;

InflowValve.Qut AT Tank.In;

Tank.Out AT OutflowValve.In;

OutflowValve AT Qut;

Tank.Level AT PID.Measure;

PID.Control AT InflowValve.Control;
END;

Listing 3.1 The tank system model expressed as Omola code which is a textual
description of the graphical interpretation in Figure 3.1.

-

the valves can be modeled statically both with respect to mass and mo-
mentum balances. The flow through a valve is assumed to be proportional
to the velocity which in its turn is a nonlinear function of the pressure
drop. The controller is an ordinary PID-controller.

A top-down description begins with the composite model describing
the tank system with its process components. This is given in Listing 3.1.
The tank system class has twelve attributes: the in and out terminals, four
submodels and six connections. TankSystem uses four reserved word: ISA,
WITH...END and AT. ISA describes the classification of the model or the
model component and WITH. . .END indicate the beginning and the end of
the model body. The AT operator is interpreted as a connection between
two terminal. All attributes are grouped together under a so called cate-
gory tag, such as terminals and submodels. These tags are optional and
are used more like comments than as a part of the language. The actual
mathematical description is found further down in the structure hierar-
chy. The four submodels are process components and use the description
of predefined model types or model classes, like TankModel.

The interaction between the composite model components, the sub-
models, are described by connections. A connection is a relation between
two terminals with identical internal structure. The water flow from one
con;ponent to another is described by the PipeInTerminal gwen in List-
- ing 3.2. The terminal is a record terminal composed of two subtermmals
Flow and Pressure. These terminals represent the interaction variables.

Listing 3.3 shows the Omola model for the water tank which is a so

29

Chapter 3 Object-Oriented Modeling

PipeInTerminal ISA RecordTerminal WITH
Flow ISA ZeroSumTerminal WITH

direction := ’in;
END;
Pressure ISA SimpleTerminal;

END;

Listing 3.2 Omola description of the terminal describing flow interaction be-
tween process components in the simple water tank example.

called primitive model. The TankModel has eight attributes. Three ter-
minals describe inflow and outflow and one measurement. The tank also
has four parameter attributes which are time invariant variables. One
internal variable, mass, is also defined in the tank model. The behavior
is described by four equations: one mass balance, one constant density
assumption, and one mechanical energy balance, a Bernoulli equation.
The tank is also assumed to have atmospheric pressure. The dot notation
is used to refer to an attribute of a class. In the mass balance equation
the flow descriptions are subterminals of record-terminals, In and Out.
Note the derivative operator, mass’, in the mass balance which is the first
equation.

Omola can describe structure hierarchies and hierarchical terminals
as shown above. Omola also has taxonomy concepts from object-oriented
programming, like classes and inheritance. The use of inheritance is illus-

TankModel ISA Model WITH
terminals:
In ISA PipeInTerminal;
Out ISA PipeQOutTerminal;
Level ISA SimpleTerminal;
parameters:
Density ISA Parameter;
GravAcc ISA Parameter;
TankArea ISA Parameter;
PipeArea ISA Parameter;
variable:
mass ISA Variable;
equations:
mass’ = Density*(In.Flow - Out.Flow);
mass = Density*TankAreaxLevel;
Density*GravAccx*Level =
. Out.Pressure + Density*(Out.Flow/PipeArea)”2/2;
"¢~ In.Pressure = 0.0;)
END;

Listing 3.3 Omola models of the tank class which is used as a component in
the tank system model.

30

3.1 The Tank Example

ValveModel ISA Model WITH ContValveModel ISA ValveModel WITH
terminals: terminal:

In ISA PipeInTerminal; Control ISA SimpleTerminal;

Out ISA PipeQutTerminal; parameter:

parameters: ValvePar ISA Parameter;

PressDrop ISA Parameter: variables:

Density ISA Parameter: PressDrop,Position ISA Variable;

PipeArea 1ISA Parameter: equations:

equations: PressDrop =

In.Flow = Out.Flow; ValvePar*Position;

PressDrop * Position =
(In.Pressure-0Out.Pressure)= IF Control<0 THEN 0 ELSE
Density * IF Control>1 THEN 1 ELSE
(In.Flow/PipeArea) ~2/2; Control;

END; END;

Listing 3.4 Omola models of the valve (left) and its subclass control valve
(right).

trated in the valve model classes in Listing 3.4. The valve model, Valve-
Model, describes a static valve with seven attributes for the inflow and
outflow terminals, three valve parameters and two equation attributes.
The equations describe the static mass balance and a Bernoulli equation.
The PressDrop parameter describes how much of the pressure difference
over the valve is used to generate the flow through the valve.

The control valve model, ContValveModel, is a specialization of the
valve model. The valve model attributes are inherited and the inherited
PressDrop parameter is overwritten and replaced by a variable which
changes with the valve position. The valve position is proportional to the
control signal and its range is limited to be between 0 and 1.

Description Structure

Two different hierarchies are discussed above, the structure hierarchy for
abstraction and the class hierarchy for inheritance and reuse. These hier-
archies are also called HAS-A4 and IS-A hierarchies. These two hierarchies
are orthogonal to each other and create a net structure. A small part of
the network of objects for the tank system example is shown in Figure
3.2. Every item is an object class. The super classes for model, record
terminal, zero sum terminal and simple terminal are all predefined in
Omola, see Figure 3 g The record terminal class has one subclass which
also-has one subclass. The PipeInTerminal has two subterminals which
are local subclasses of predefined Omola classes, ZeroSumTerminal and
SimpleTerminal. These two terminal subclasses PipeInTerminal and
PipeOutTerminal are globally defined in the model database. The model

31

Chapter 3

Object-Oriented Modeling

Record ZeroSum Simple
l Model Terminal | Terminal Ternainal
TankSystem | = ValveModel | Pipelnw /
QutflowValve _— in Flow
inflowValve Out Pressure /
\ \ A
Controlvalve
Model PipeOut
Terminal

Figure 3.2 A part of model and class hierarchies in the tank example.

root class has two subclasses, namely TankSystem and ValveModel. The
valve model has two local attributes that are subclasses to the globally
defined terminal classes. These local terminal classes are inherited by
the control valve model. The tank system class has two locally defined
valve classes which inherit attributes from their super classes. These lo-
cal classes are only accessible inside the owner object and its subclasses.
Notice that local attribute classes can be specialized.

3.2 Modeling Concepts in Omola

Omola is based on the methodology from structured and object-oriented
programming. A brief discussion is presented in this section.

Structured Modeling in Omola

The concepts for structuring models have strong relations to structured
programming. Creation of a hierarchy of encapsulated models with well
defined interfaces have corresponding constructs in programming. The
model must have an interface for communication with the surrounding
models. This makes it possible to abstract the internal structure of the
model. Local complexity inside a model is hidden in the model interior.
This makes it easy to handle a structure of abstracted models. To summa-
rize the abstraction concepts a model is composed of two parts, interface
and interior.

e The interface of a model describes its interaction. It is composed of
two types of model components.
_® A terminal is a model component class which describes interac-
©“7- tion with'a ¢onnected model. \
e A parameter is a model component class that allows the user to
interact with the model. It is used to adapt the behavior of the
model to a new application.

32

3.2 Modeling Concepts in Omola

M1 ISA Model; (intertace) |~ [M21SA Model; (rtertace)

] []In a ISA Parameter; mm[]

y ISA Varlable
y’ + a*y = In;

. Out = y;

smi
I_EISrRMS; T

Figure 3.3 The concept of structured modeling pictured graphically. Models
have well defined interfaces and interior descriptions.

e The interioris a description of the model’s internal behavior. It can be
primitive or composite. A primitive interior is described symbolically
with equations and variables. A composite interior is described as a
structure of connected submodels.

e An equation describes the relation between variables, simple ter-
minals, their derivatives and parameters.

o A variable describes an internal state that is not seen in the
model interface. g)

o A submodel is a structuring entity describing a part of the be-
havior of a composite model.

o A connection is a relation between model terminals.

EXAMPLE 3.1—Encapsulation

The abstraction concepts are illustrated in Figure 3.3. Model M1 has an
interface consisting of two terminals. It also has a composite interior of
two submodels, Sm1 and Sm2. The Sm2 submodel is a local subclass of the
global model class M2, which has an interface composed of two terminals
and one parameter. It has a primitive interior described by one internal
variable and two equations. O

Object-Oriented Modeling in Omola

Object-oriented modeling is strongly influenced by the ideas and method-
ology developed in object-oriented programming. Classes and instances
are used in the Omola object-oriented approach to modeling.

A class is a type definition which is composed of attributes. Attributes
can be inherited and local. Inherited attributes are inherited from the
super class. A super ¢ class can inherit attributes from its super class and
S0 on. This creates a ‘class hierarch y with single inheritance where a class
only can have one super class. If it can have many super classes then
it is called multiple inheritance which creates a net structure. Omola
supports single inheritance. The local attributes of a class are used to

33

Chapter 3 Object-Oriented Modeling

make the class more specialized than its super class. The most common
rule describing inheritance is that a local attribute that has the same
name as an inherited attribute overwrites the inherited one. In other
words the last defined attributes in the class hierarchy are the valid ones.
There can be other rules, like deletion of inherited attributes and other
overwriting rules in multiple inheritance, but they are not so common and
are not discussed here.

Another concept is the instance in object-oriented methodology. An
instance is the actual data structure described by a class and used by
the executing program. Omola does not use instances on the model rep-
resentation level. Instances are used in the model compilation. They are
created in the process of translating a model into simulation code.

Inheritance facilitates reuse, specialization and polymorphism. The
reuse is directly seen in the tank example in the first section in this chap-
ter. Local classes in a composite model reuse the class definition of global
classes. Specialization means that a subclass in the inheritance hierarchy
has local attributes specializing the subclass making it more special for its
purpose. Polymorphism is a concept closely related to reuse.. Polymorphic
models can be used in the same context and the surrounding models in a
composite model cannot see any difference between the models. Polymor-
phic models can be exchanged in a composite model without any modifi-
cations which means that the structure is reusable. A number of objects
with different internal descriptions can have the same super class. This
super class contains the interface definitions. In object-oriented program-
ming polymorphic objects have the same names for their methods and the
message passing cannot see any difference. A message is the specification
of an operation to be performed on an object. Similar to a procedure call.
A method is a function that implements the response when a message
i1s sent to an object. The Omola version of object-oriented modeling does
not have methods and message passing. Instead it has equations and
connections. Connections are like message passing and equations are like
methods. As long as the connections between the surrounding models and
the polymorphic models are valid the internal descriptions of equations
are polymorphic.

ExXAMPLE 3.2—Inheritance

The use of inheritance is illustrated in the Figure 3.4. M2a1l is a subclass
of M2a which directly reuses its inherited description. It only has one
additional parameter binding. M2a is a specialization of its super class,
M2ic, which contain$§ an interface description. Since M2b has, the same
interface and super class as M2a they are polymorphic. In the composite
model M1 the submodel Sm2 is a subclass of M2a. A new model which
uses the polymorphic model instead is easy to define. M1b is a subclass

34

3.2 Modeling Concepts in Omola

M2a ISA M2ic WITH M2ai ISA M2a WITH
7"l v ISA Variable; E?\JS‘ 10;
) / y +a‘y=In; :
M2ic ISA Model WITH Out =y
In,Out ISA END:
SimpleTerminal; y -
eSS A Parameter; 7| = Map 1SA M2ic WITH
! L / y ISA Variable;
/ l 2y’ + a*y*2 = 2%In;
Model / | Out =y;
’ | LEND;
M1 ISA Model WITH N
2 e ——
Sm2 ISA M2a; M1b ISA MAWITH
2 ISA M2b
END; END:

Figure 3.4 An illustration of the use of inheritance for direct reuse, special-
ization and polymorphic models

of M1 and it inherits its attributes except for the Sm2 definition which
is overwritten. The new definition of Sm2 has a new super class, M2b, a
polymorphic model to the original one. O

-

3.3 The Omola Modeling Language

Omola is a general object-oriented data representation language. It can
be viewed at two different levels, one basic level and one model represen-
tation level. Omola is presented in Andersson’s thesis, [Andersson, 1990].
A nice description of Omola is also found in [Mattsson and Andersson,
1992]. Extensions to combined discrete events and continuous time sys-
tems are published in [Andersson, 1992] and [Andersson, 1993a]. A user’s
manual of Omola and OmSim environment is found in [Andersson, 1993b]

Basic Omola

The class is the most important entity in Omola. Every class has a name
and a set of attributes. The set of attributes is defined in the class body.
A class definition is seen below.

{name} ISA {name of super class} WITH
{class body}

END;

The class body contains the attributes of the class. Attributes can be
other class definitions, variable type definitions, assignments and equa-
tions. These class definitions create a class tree hierarchy where the root
of all classes is called Class. A class inherits all attributes from its super
class. If the class has a local attribute that has the same name as an
inherited attribute, the local overwrites the inherited.

35

Chapter 3 Object-Oriented Modeling

Class
Model Terminal Parameter Variable
RecordTerminal BasicTerminal
SimpleTerminal ZeroSumTerminal

Figure 3.5 The predefined classes for model representation in Omola.

Omola Model Representation

A set of classes are predefined in Omola. They have special meaning to the
system and in some cases rules limiting what kind of attributes they can
have. The most important predefined Omola classes are the Model class
and three model component classes Terminal, Parameter and Variable.
The predefined class hierarchy is illustrated in Figure 3.5.

e The Model class is the root class for all user defined models It can
contain model component attributes.

e The Terminal class is the root class for all model interaction classes.
It has subclasses for record terminals and for basic terminals. The
basic terminal class has subclasses for simple terminals and for zero
sum terminals. This is discussed in more detail in the next subsection.

o The Parameter class is a time invariant variable used by the model
user to adapt the model behavior to new applications.

e The Variable class is the super class for user defined variables used
as internal variables in models.

User defined classes are defined as subclasses of these predefined classes.
New attributes are added to these user defined models. The attributes
can be other defined subclasses, equations, connections and events This
is clearly illustrated in the inheritance example 3.2.

Submodel Interaction

The interaction between two submodels is described by connections be-
tween terminals. A connection is valid if the two terminals connected to
each other have the same internal structure. A record terminal is used to
describe a set of interactions and a connection between record terminals
medns that each ihdividual subterminal pair is connected. \

A basic terminal represents a single quantity of interaction. That
quantity is represented by an attribute called value. It also has three at-
tributes called causality, quantity and unit. These attributes must have

36

3.3 The Omola Modeling Language

AModel ISA Model WITH
terminals:
T1 ISA RecordTerminal WITH
x ISA SimpleTerminal;
y ISA SimpleTerminal WITH causality:=’input; END;
z ISA ZeroSumTerminal WITH direction:=’in; END;
END;
T2 ISA this::T1 WITH
y ISA SimpleTerminal WITH causality:=’output; END;
END;
connection:
T1 AT T2;
END;
Listing 3.5 A model containing two connected record terminals

compatible values in order for a connection to be valid. The causality of a
terminal can be undefined, input or output. The causality defines the cal-
culation order of the terminal variables. A connection between terminals
with undefined causality is interpreted as an equation between the termi-
nal variables. A connection with a well defined causality is interpreted as
an assignment and cannot change direction. The quantity attribute speci-
fies the name of the physical quantity which the terminal represents and
two terminals with different quantity cannot be connected. The unit at-
tribute describes the unit of the quantity and is used for automatic scaling.
This makes it possible to use models from different libraries developed in
different units.

The zero-sum-terminal is used for describing flows and has one addi-
tional attribute describing the positive direction of the value. The direction
attribute can be defined as in or out and the default direction is in. It is
used for describing flows. Submodel interaction in Omola is discussed in
[Mattsson, 1988] and also in [Mattsson, 1989].

An example containing a number of different connection interpreta-
tion is illustrated in Listing 3.5. AModel contains two terminal attributes
and one connection. The first terminal, T1, is a record terminal with three
subterminals. They are one simple terminal, one simple terminal with a
given causality and one zero sum terminal with a given direction. The
second record terminal, T2, is a subclass of T1 with a new definition of
the y subterminal with the opposite causality. The result of the connection
is interpreted as follows.

) | Tlx = T2.x
¢ T2.y:=Tly !
Tlz+T2z =0

The x terminal connection is translated into an equation. The y terminal

37

Chapter 3 Object-Oriented Modeling

connection is interpreted as an assignment where the output terminal
assigns the value of the input terminal. The third z terminal connection
is described by an equation where the values are summed to zero. The
sign in front of the value is defined by the direction attribute.

Primitive descriptions in Omola

A model can have behavior described by equations. Such a model is some-
times referred to as a primitive model since it is not further decomposed.
The equations may contain common mathematical expression. The ele-
ments of the equations are variables, basic terminals and parameters
which can be of the types integer, real, boolean and matrix. Variables can
also be defined directly using types. The variable can have an optional
binding to an expression.

{name} TYPE {type} := {expression};

The time derivatives of variables can be expressed as x’ or x’°,
Higher order derivatives are expressed by the DOT operator like DOT (x, 3).
An example of a primitive model description is the one of the tank model
in the previous section, see Listing 3.3.

mass’
mass

Density*(In.Flow - Qut.Flow);
Density*TankArea*Level;

The derivative of the mass variable is equal to the density times the
difference between the inflow and the outflow. The next equation describes
the relation between mass, density, tank cross area and tank water level.
The density and the tank area are parameters. If the inflow and outflow
are known and the parameters have proper values, the mass is a state
variable and the level is an output variable. The level becomes a function
of the mass after the equation manipulation phase.

Assignments can be used to force a binding of an expression to a vari-
able. A variable or parameter that is assigned a numerical value becomes
a constant. When the causality of a module is given and the behavior is of
state space form, assignments can be used instead of general equations.

Another model component used in primitive models is the event.
Events can be used to describe discrete systems. Events can be time de-
pendent events or state dependent events and may have explicit names.
Time events are scheduled by a schedule operator and state events are
caused by conditions. The use of events is discussed in moré detail in
Chapter 7.

38

3.3 The Omola Modeling Language

Summary

The Omola language is based both on structured and object-oriented mod-
eling. It has concepts for model encapsulation with model components de-
scribing its interface and its interior. Models and model components are
classes in Omola. Even local model components that are attributes of a
model class are classes, so called local classes.

3.4 Omola Simulation Environment

The Omola Simulation Environment, OmSim, is the implementation of
a kernel for object-oriented modeling. This kernel can represent Omola
models with a one to one mapping. In other words, Omola is the textual
description of the models in the OmSim kernel.

OmSim Architecture and Implementation

The OmSim architecture is illustrated in Figure3.6. The architecture is
based on a central model database. This database can be accessed by
a number of tools. The so called model database in current OmSim is
not a proper database since it does not support permanent storage of its
contents. The user must explicitly store the contents on files. There are
tools for model development and for simulation. A browser is used to show
the classes in the database and there are a number of graphical tools to
display the contents of the model database. A graphical object diagram

Tree Display Browser

~N 7 _

Model Database omola parser “
- g

e, et et e sl o e sy

|Bitmap Editor I / ' \

interface:

tools: | Text Editor / Consistency Simulator
l . Check
Graphical
Editor
T T Model Plot |
Access

Figure 3.6 The OmSim architecture with the model database in the center
surrounded by a number of different tools.

39

Chapter 3 Object-Oriented Modeling

editor, called MED, is used to develop composite models and an ordinary
text editor, Emacs, to develop primitive models. The OmSim simulator is
only a problem solving tool in the current version. There is a supporting
tool for checking of the model consistency.

A prototype called SEE, System Engineering Environment, was de-
veloped by Andersson [Andersson, 1989]. SEE was implemented in KEE
[IntelliCorp, 1987] and CommonLisp [Winston and Horn, 1984]. KEE and
CommonLisp need powerful computers. If SEE was to be spread among a
larger community of users, it probably would have to be implemented in
a less resource demanding environment. Therefore it was decided that an
implementation in a compiled language should be developed and the name
was changed to OmSim. The current version of OmSim is implemented
in C++, an object-oriented programming language [Stroustrup, 1986].
OmSim is developed under Unix using X-windows. Interviews, a public
domain graphics library, is used for developing the graphical interface. It
is important to note that Omola model classes cannot be represented as
classes in the implementation language. This is because C+ + classes are
pure compile-time entities which do not exist at- run-time. In the mod-
eling environment, however, model classes are created and modified dy-
namically. A dynamic object-oriented environment is therefore developed
in OmSim using C+ +.

Model Development in OmSim

Models can be developed outside OmSim using an ordinary text editor,
for instance Emacs. These models, stored in files, are parsed into the
OmSim model database. An alternative way is to develop models inside
OmSim using Emacs and a graphical object diagram editor called MED.
It is possible to send models from the OmSim database to Emacs, edit
and send the model back using temporary files.

The graphical model editor is an object diagram editor where sub-
models can be defined and connections between terminals can be drawn.
Submodels are represented by user defined icons or by standard rectangles
A model with an undefined icon attribute automatically gets a rectangle
icon. A composite model then looks like a block diagram. An icon is de-
veloped using a bitmap editor outside OmSim. The OmSim architecture
is illustrated in Figure 3.6 with the three editors on the left.

An example of how OmSim might look for model development is

- shown in Figure 3.7. The OmSim model browser is seen at the top left.

Except for the predefined library it contains only one library, the tank sys-
tem library. It is composed of two terminal classes and six model classes.
The composite tank system model is seen in the graphical editor below
the browser. The object icons are developed and stored outside of OmSim.

40

3.4 Omola Simulation Environment

[@] Omola Class Browser ET]
File Tools

tanksystem.om
ile Edit Buffers Help

Browser shows: O Models OTerminals ®@All classes

Libraries Classes in TankSystem % Design: Bernt Nilasson, 29 march 1993.
ES TR <] [FipelnTerminal
Base FipeOutTerminal ipeInTerminal ISA Base::RecordTerminal WITH
TankModel Flow ISA Base::ZeroSumTerminal WITH
\ValveMaodel direction := ’In;
ContrelValveModel END;) ‘
PiControllerModel Pressure ISA Base::SimpleTerminal;

| END

H

TankSystemSimProblem PipeDutTerminal ISA TankSystem::PipeInTerminal WITH
| |«none» Flow ISA Base::ZsroSusTerminal WITH
L+ direction := ’Qut;

Model block diagram editor
dit Insert Connect
Tank3ystem

ETlL1 15A Base: :Model WITH

¢ ISA super::Graphic WITH
ap TYPE String := "icontank"”;

! ‘i‘ankSystem: :PipeInTerminal WITH

hic ISR super::06raphic WITH
ipos := 200.0;
hcs: tanksystem. om {Fundamental) ~~==Taop
_[®] Model
53 TankModel
ValveMordel ControiValveModel

]

Maodel
PiControllerModel

[] ™ TankSystem—TankSystemSimPrablem

(@] 7ankSystem 2l
Tank
inflowValve
(8] OmSim log window FankSySLMS. outfiowvaive
OMSIM Version 2.0 started Mon Apr 5 14:20:39 1993 Pi

Figure 3.7 The tank system example illustrated in OmSim.

An ordinary text editor, Emacs, is used to develop the primitive models.
The Emacs window on the right in Figure 3.7 is loaded with the tank
system library. Two tree display windows are found below the text edi-
tor. One shows the class tree, i.e., the inheritance relations between the
six model classes. The other shows the structure hierarchy of the tank
system, which is composed of four submodels.

For long time storage, models are stored on files. A library concept
has therefore been developed. Omola models are grouped in libraries and
one practical way of storing models is one library per file.

Simulation in OmS$im
A i
The OmSim simulator can be divided into two parts, the model compila-

tion part and the simulation part.
The procedure for transforming an Omola model into a representa-

41

Chapter 3 Object-Oriented Modeling

tion that can be handled by the simulator is quite complex. The procedure,
which includes analysis of consistency and completeness, is called model
compilation for simulation. It is composed of two steps, one model syn-
tactical and semantical analysis and one mathematical consistency check
and transformation.

Model syntactical and semantical analysis is used to control the model
description in Omola:

A Lexical and syntactical analysis. This is done already when a model
is loaded into the model database.

B Semantical check involves scope rules for name and type consistency
of expression.

C Connection consistency check.

Mathematical consistency checking and transformation is the second
step. The mathematical properties of the model are analyzed and a proper
model is transformed into simulation code:

Check of structural defects. .
Order equation into a sequence of subproblems.
Sort out time-invariant parts.

Derive the differential index-one problem.

Sort equations in computational order.

Check causality.

Reduce higher index.

Partitioning and symbolic manipulations.

© 0 =3 O Ut P W N =

Output a result suitable for simulation.

A model can be simulated after a successful model compilation. The
result from the model compilation is the simulation code that can be used
by the numerical solvers. The OmSim simulator has a number of different
numerical solvers. For differential-algebraic problems there are DASSL
and Radaub. DASSL is a multi-step method and Radau5 is an implicit
Runge-Kutta method. There are also three solvers for ordinary differential
equations, Dopri45r is an explicit Runge-Kutta method with modified step
size control, one pure Euler method and finally RKsuite, a state-of-the-

‘- art explicit Runge-Kutta method. A more rigorous discussion about the

OmSim simulatoris found in [Mattsson et al., 1993]. \

It is possible to interact with the simulator and change the numerical
solver, the error tolerances on the solution etc. It is also possible to interact
with the model and change parameter settings and initial conditions.

42

3.4 Omola Simulation Environment

[8] Omola Class Browser 2 £ (8] 7ankSystemParameters E]
- I —
File Tools TankSystemSimProblem ISA TankSystem LY
Browser shows: OModels OTerminals ®All classes PA ISA Parameter M 0.01
. . . D ISA Parameter M (1000
Libraries Classes in TankSystem
- PIISAPI
TankSystem G-I [lGoTyo
Base Fipe OutTerminal u ISA Variable 0.408
TankbMorsl i ISA Variable 0.408
ControlvalveMode! p ISA Variable ~4.02
IPi1ControllerMadel e ISA Variable -2.0H
TankSystem i
ank3ystemSiiProblem RefISA Parameter El
«none» ; Tt ISA Parameter M (100
Ti ISA Parameter E 25
K ISA Parameter ER
[8] 7ankSystemSimulator Control 1ISA SimpleTerminal
Config Access InfOut Debug Measure ISA SimpleTerminal
OutflowValve ISA ValveModel
InflowValve ISA ControlValveModel
o

LevelPlot [®] FlowPlot gl [®] ControiPlot ET
le Config Erase Rescal i Config Erase Rescale ile Config Erase Flescale

0 200 400

Figure 3.8 The tank system example simulated in OmSim.

The result of a simulation can be displayed in plot windows or stored in
files. The user can run the simulation interactively, manipulating different
windows with buttons and menus. The Omola command language, OCL,
is a language that can describe a sequence of simulator commands.

A simulation of the tank system example is seen in Figure'3.8. The
model database browser is found top left and below this the main sim-
ulator panel is found. On the right, a model access window shows the
parameters and variables of the tank system model. The presentation is
automatically expandable and by clicking on an object the internal vari-
ables are listed. Parameters are interactively changeable in this window.
Three plot windows, in the bottom of Figure 3.8, show the level, inflow
and. outflow and ﬁnally the control signal. The simulation example shows
what happens when the reference value is changed from 1.0 to J.1 at time
10 and back again at time 250. The tank system simulation problem is a
DAE problem of index one.

43

Chapter 3 Object-Oriented Modeling

Object-Oriented Database
Model Kernel

Command and Contrgl

User Interface _

 Communications

/

Figure 3.9 CACE reference model suggested in [Barker et al., 1993].
3.5 Multiple Problem Solving Environment

A direct continuation of OmSim is to add new tools for other types of
problem solving. There is currently a discussion on how an architecture
like this should look. A reference model for CACE is suggested in [Barker
et al., 1993]. This is closely related to the ideas in Computer Aided Soft-
ware Engineering, CASE. The environment model in Figure 3.9 is a mod-
ification of the ECMA CASE reference model. ECMA stands for European
Computer Manufacturer’s Association.

The vision is to have an environment with a common model kernel
based on an object-oriented database. These models can be used in dif-
ferent problem solving activities by the tools in the tool slots. The tools
use a common interface which supports customized problem specific user
interfaces. This software architecture resembles a hardware architecture,
where processing cards can easily be changed without any integration
problems. In [Barker et al, 1993], Omola is suggested as the model ker-
nel description language.

Multi-Purpose Models in Omola

Omola is a general modeling language with equation oriented descrip-
tions. This means that it is possible to construct general models that can
be used for many different problem formulations. One example of how a
multi-purpose model is used in a number of different applications is given
in ‘Chapter 2. The eXxample is a simple tank reactor and it is,described
further in the following examples.

The tank reactor example from Chapter 2 has constant flow and vol-
ume. The dynamics are described by a dynamic mole balance of one chem-

44

3.5 Multiple Problem Solving Environment

TankReactorModel ISA Model WITH
terminals:
In ISA RecordTerminal WITH
Flow ISA ZeroSumTerminal;
Conc ISA SimpleTerminal;
END;
Out ISA In WITH
Flow ISA ZeroSumTerminal WITH direction:=’out; END;
END;
parameters:
Volume, ReacCoeff ISA Parameter;
variables:
Conc, ReacVelo ISA Variable;
equations:
In.Flow = Out.Flow;
In.FlowxIn.Conc + ReacVelo*Volume =
Qut.Flow*0Out.Conc + Volumex*Conc’;

ReacVelo = -ReacCoeff*Conc;
Qut.Conc = Conc;
END;

Listing 3.6 A simple multi-purpose tank reactor model. ,

ical component. The inflow and outflow are described by two record ter-
minals. The internal behavior of the model is composed of four equations,
one static volume balance, one dynamic mole balance , one reaction veloc-
ity equation, and finally one dummy equation declaring that the internal
concentration is the same as the outflow concentration. The Omola code
describing the tank reactor is found in Listing 3.6.

This simple model can be reused in four different problem formula-
tions as illustrated below. First the dynamic and static simulation prob-

DynamicSimProblem ISA TankReactorModel WITH

parameters:
Volume := 10;
ReacCoeff := 0.1;
equations:
In.Flow = 1;
In.Conc = 1;
Conc.initial := 0;
END;

StaticSimProblem ISA DynamicSimProblem WITH
.~equation: v
“" Conc’ = 0; '
END;

Listing 3.7 The dynamic and the static simulation problem formulation of the
tank reactor model.

45

Chapter 3 Object-Oriented Modeling

InverseProblem ISA TankReactorModel WITH
parameters:

Volume := 10;

ReacCoeff := 0.1;
equations:

In.Flow = 1;

Out.Conc = (1 - exp(-0.2+Base::Time));
END;

Listing 3.8 The inverse problem formulation of the tank reactor model.

lems and then the inverse problem followed by the design problem. They
all reuse the tank reactor model.

In a dynamic simulation problem the tank reactor model is reused
and we just specify some parameters and an initial state condition. The
mathematical problem is now a well defined differential equation problem
and it is found in Listing 3.7. The static simulation problem formulation is
a further specialization of the dynamic problem, where also the derivative
of the state is set equal to zero. The mathematical problem becomes one
algebraic equation with Conc as the only unknown. It is also found in
Listing 3.7.

In the inverse problem we use the tank reactor model with the outflow
concentration profile specified together with the parameter values. The
mathematical problem is one differential equation with a well defined
output, which result in the need for differentiation of the output to find
the input. The inverse problem formulation of the tank reactor is found
in Listing 3.8.

The inflow and the outflow concentrations are specified in the tank
reactor design problem formulation. The unknown variable is the volume
parameter. Notice that the Out.Conc is a specified constant which means
that the equation solver must set the derivative of Conc to zero. The only
unknown is the volume which is calculated by an equation solver. The
Omola representation of the design problem is listed in Listing 3.9. This
problem formulation is mathematically identical to the static simulation

DesignProblem ISA TankReactorModel WITH

parameters:
ReacCoeff := 0.1;

equations:

. In.Flow =1;
"¢~ In.Conc = 1;

Qut.Conc = 0.3;

END;

Listing 3.9 The design problem formulation of the tank reactor model.

46

3.6 Multiple Problem Solving Environment

TankReactorModel

-

DynamicSimProblem InversProblem DesignProblem

StaticSimProblem

Figure 3.10 The tank reactor model is the super class to four different prob-
lem formulations, dynamic and static simulation, inverse problem and the re-
actor design problem.

problem formulation in Listing 3.7.

The general tank reactor model is inherited in all these examples.
This means that the problem formulations are subclasses of the actual
model. To develop models should be problem independent. This class hier-
archy is illustrated in Figure 3.10. On the other hand, different problems
may require different degree of detail which results in different special-
izations in different problem formulations.

The discussion above illustrates that a general model can be special-
ized into a set of problem formulations and it means that an explicit model
is not necessarily a simulation problem. However the only problem solv-
ing that can be solved by the current OmSim is the dynamlc simulation
problem.

3.6 Other Object-Oriented Approaches

The object-oriented approach to modeling is a very active research area
and a number of different languages have been developed. Two other mod-
eling languages are discussed in more detail in this section, namely AS-
CEND and MODEL.LA. They are both developed for modeling of chemical
engineering systems and were both developed, like Omola during the late
eighties. An good overview is found in [Marquardt, 1991].

ASCEND

ASCEND was developed at Carnegie-Mellon University by the group un-
der Westerberg, see [Plela 1989] and [Piela et al, 1991]. It is a model
building environment for complex models con31st1ng of large ,sets of si-
multaneous nonlinear algebraic equations. The ASCEND language is a
textual description of models which is parsed into the database of the
ASCEND environment. The ASCEND environment is based on Design

47

Chapter 3 Object-Oriented Modeling

Systems Laboratory, DS-Lab, which is a programming environment de-
veloped at Carnegie-Mellon University.

The model building blocks are models, atoms and types.

1) Models are structured types built hierarchically from instances of
other models, instances of atoms and types, and relationships be-
tween instances.

2) Atoms are primitive variables used to represent physical quantities
and they are of a particular type.

3) Types are elementary types such as real, integer, boolean etc. These
types are predefined in the language.

Models and atoms are organized in simple inheritance hierarchies in
which every interior type has an unique, immediate parent. ASCEND
has single inheritance and has three different concepts for inheritance.

e The REFINES operator describes the inheritance between classes.

e The IS_A operator describes the instantiation of classes and types.

e The IS REFINED_TO operator changes the type associated with a
previously declared instance.

Relationships between models, atoms, and types are declared in state-
ments. Notice that ASCEND has instances and classes. Instances cannot
have local attributes. The relation ARE_ALIKE is used to group instances
together. This relation is similar to making a connection between termi-
nals. The relationship ARE_THE SAME is similar to ARE_ALIKE but
merges the operands into a single structure. Mathematical relations can
be expressed as equations and assignments. Relations can be named and
the syntax is name : relation. A reference to an element of a structured

MODEL valve REFINE model;
in IS_A pipeterminal;
out IS_A pipeterminal;
density IS_A real;
valvecoeff IS_A real;
pipearea IS_A real;
in.flow = out.flow;
valvecoeff*(in.pressure - out.pressure) =
density*(in.flow/pipearea)~2/2;
END valve;

. -MODEL pipeterminal REFINE stream;
- flow IS_A real; ‘
pressure IS_A real;
END pipeterminal;

Listing 3.10 A simple valve example in ASCEND.

48

T T e T e

3.6 Other Object-Oriented Approaches

type is done with dot notation.

An ASCEND example of the valve class discussed earlier is illus-
trated in Listing 3.10. ASCEND has structuring mechanism for building
hierarchies but it does not have encapsulation with well defined submodel
interfaces. All elements in a model are open and can be referred to using
dot notation. This problem, if it is a problem, does not appear in the small
example above. Submodels with boundaries and interfaces or open struc-
tures with visible internal descriptions is perhaps a philosophic question.

MODEL.LA.

MODEL.LA. is developed at the Massachusetts Institute of Technology
by the LISPE group under G. Stephanopoulos, see [Stephanopoulos et al,
1990a] and [Stephanopoulos et al., 1990b]. The structure of process models
is depicted by specific digraphs, which are symbolically constructed by
algorithmic procedures. These procedures are driven by the context of
the modeling activity. MODEL.LA. is implemented in KEE, Knowledge
Engineering Environment [IntelliCorp, 1987]. It does not have any textual
description like Omola and ASCEND. The semantic network is based on
six modeling elements and eleven semantic relationships. The modeling
elements are the following:

e Generic-Unit (GU) is an encapsulated system that has well defined
boundaries. Derived subclasses are plant, plant-section, unit and sub-
unit.

e Ports are the entities in a GU which describe the interface. Derived
subclasses of port are convective, non-convective and information.

e Stream is the entity that describes the connection between ports.
Derived subclasses from stream are similar as for port subclasses.

® Modeling-Scope is a set of declarative relationships, which apply to
all the model components. It has two important subclasses; Context
and Model. In context, assumptions about the model are declared

and in model the actual relationships between model elements are
described.

o (onstraintis a declarative relationship between quantities. Relation
and assignment are subclasses of constraint.

e Generic-Variable is the basic building block for constructing modeling
- -~ relationshipsx Itrencapsulates the following entities: physical signifi-

" cance, value, range, units, trends, etc. It has two subclass‘es, namely
variable and term.

The subclasses of GU are used to create a hierarchical decomposition

49

Chapter 3 Object-Oriented Modeling

of the plant model. Ports are the terminal class, and streams are the
connection class. Model, constraint, and generic-variable are classes which
are used for primitive model descriptions. The context class is a model
element that has no equivalence in ASCEND and Omola.

Eleven semantic relationships describe the dependencies between the
modeling elements. The relationships can often be grouped two and two
because they are the inverses of each other.

o Is-arelations build up the class hierarchy. It governs the inheritance.

o Is-a-member-of relations describe generic/individual links between
object and instantiations.

o Is-composed-of and Is-part-oflinks build up the model hierarchy.

o Is-attached-to and Is-connected-by are the links between streams and
generic-units to ports.

o Is-described-by and Is-describing are links between objects of generic-
units, streams and ports to the mathematical description objects like
generic-variables and constraints.

o Is-disaggregated-in and Is-abstracting are links between elements in
different contexts.

o Is-characterized-as is a special semantic link that describe the rela-
tion between an element and an attribute. ’

The first semantic relation is explicit in both Omola and ASCEND and the
second relation in ASCEND. The other semantic relations are all implicit
in Omola and ASCEND.

Comparison of Omola, ASCEND and MODEL.LA.

The modeling languages and the implementations of the modeling systems
Omola, ASCEND and MODELL.LA. are very different but the languages
share a number of common concepts. Most of the model building elements
are equivalent in Omola, ASCEND and MODEL.LA., capturing the struc-
tured modeling concepts discussed earlier. The only major difference is
that ASCEND has open submodels while the others have models with
boundaries and interfaces. The object-orientation mechanisms are also
similar. Omola and ASCEND have single inheritance and MODEL.LA.
has multiple inheritance. Omola does not have instances as a modeling
concept which the other two have. Finally both Omola and ASCEND are
textual languages while MODEL.LA. is an user application on top of KEE.
The implementationg' of the three and the problem solving tools are very
different. Omola is the only one currently implemented in a complled lan-

guage.

50

3.6 Other Object-Oriented Approaches

Other Modeling Languages

The three languages discussed above are similar and there are other lan-
guages are under development in the same spirit.

DYMON developed by Lund [Lund, 1992], is a prototype of a dynamic
process modeling environment, similar to the three discussed above. It is
based on a textual description, closely related to Omola and ASCEND.
The main difference is that DYMON uses a dynamic sequential modular
simulation tool [Hillestad and Hertzberg, 1988].

gPROMS is a general process modeling system used in combined dis-
crete event and continuous time simulation. It is under development at
Imperial Collage, see [Barton and Pantelides, 1991] and [Pantelides and
Barton, 1992]. gProms supports both structure and class hierarchies. The
actual description language is a further developement of SPEEDUP, [Pan-
telides, 1988]. The continuous part, called model, can handle DAEs. It also
has a task concept which is similar to events in Omola. A task can gener-
ate other tasks and it can have actions. Models and tasks are combined
in a single entity called process. A solver that also can handle partial
differential equations is under development.

VeDa stands for "verfahrenstechnisches datamodell” and is under devel-
opment at Stuttgart University [Marquardt, 1993]. It also supports struc-
ture and class hierarchies. VeDa has something called "phenomenological
modeling objects” creating a primitive model hierarchy, e.g., an equation
system is composed of equations which are composed of variables which
can be expressed by other variables and so on. VeDa is supposed to be
implemented on top of an object-oriented database management system.
An automatic code generator transforms the models into a procedural
representation, i.e., FORTRAN code. This code can be used in the simu-
lation environment Diva, see [Marquardt et al, 1987] or [Kroner et al,
1990]. Diva can handle DAEs with discontinuous events. One DAE solver
is modified to use sparse matrix techniques. .

Modeling Assistants

Modeling assistant is another active research area in computer aided mod-

eling. The idea is to use expert system techniques to develop intelligent
- help systems that assist the model developer. These techniques make it
=2 . possible to have advanced user interfaces with customized model devel-
opment tools for certain applications.

L

DESIGN-KIT is a modeling assistant from MIT, [Stephanopoulos et al.,
1987], and it is a precursor to MODEL.LA. Like MODEL.LA,, it is an
user application on top of KEE and is heavily based on object-oriented

51

Chapter 3 Object-Oriented Modeling

programming. The use of multiple inheritance is intersting in DESIGN-
KIT. A process object inherits attributes from a number of super classes.
This means that a process object can be described directly by selecting
super classes from a library or, as in DESIGN-KIT, from a menu.

A mixing drum example in DESIGN-KIT, from [Stephanopoulos et al,
1987], is shortly presented below to illustrate the ideas. A mixing drum
inherits attributes from six super classes. From MIXING-DRUM-ICON it
inherits the icon and from PHYSICAL-VERTICAL-DRUM it inherits meth-
ods for designing and sizing. The super class COMPONENT-CONSERVATION
has attributes describing n number of material balances and that no re-
actions occur. The properties inhertited from TWO-INPUTS-0ONE-QUTPUT-
TOPOLOGY super class together with the previous inherited properties ex-
actly describe the material balances. ADIABATIC super class together with
the two previous super classes describe the energy balance. The ISOBARIC
super class describes that there is no pressure dependency. The mixing
drum example has six super classes and the inherited attributes are in-
terpreted as a set of equations.

ModAss is an intelligent modeling assistant, developed by'Sgrle [Sgrlie,
1990] at the Norwegian Institute of Technology. It is based on another
approach compared to DESIGN-KIT, namely the use of expert systems.
ModAss is capable of supporting both process knowledge and general mod-
eling knowledge to the user. A prototype is implemented in Knowledge-
Craft, an interactive programming environment, similar to KEE. A sepa-
rate program, called the ModelAss supervisor, operates in the background.
It is only visible when the user makes obvious mistakes or asks for ex-
pert advice. The blackboard concept is used to organize different knowl-
edge sources which are monitoring the modeling process. Each knowledge
source submits a bid if it is trigged and the best bid is allowed to give its
expert advice to the user.

PROFIT and HPT are model assistants for process modeling from
first principles and they are also developed at the Norwegian Institute
of Technology by Telnes, [Telnes, 1992], and Woods,[Woods, 1993], re-
spectively. PROFIT and HPT are implemented in LISP with the object-
oriented enhancement CLOS. PROFIT has a graphical interface for dis-
playing three dimensional process pictures. The process equipment ge-
ometry is described interactively by the use of menus. Description of
phases and reactions are done in a similar way. These descriptions are
then used to generate the model resulting in a mathematical description
of the equipment. Ah inference engine is used to identify phase inter-
actions, conservation equations, and reaction influences. HPT stands for
Hybrid Phenomena Theory and is based on the ideas from Qualitative
Process Theory, QPT. The basic idea is that phenomenon and topological

52

3.6 Other Object-Oriented Approaches

descriptions are orthogonal. The user build a topological model which is
used together which predefined phenomena definitions to generate a qual-
itative model, a phenomenological model By adding activity conditions, a
quantitative model on state space form can be generated. HPT can express
a consistent relation between the qualitative and quantitative description
of a system.

3.7 Conclusions

Object-oriented modeling in general and the modeling language Omola
in particular are presented in this chapter. Omola is shown to capture
the basic concepts in structured and object-oriented modeling. Structured
modeling concepts are modularization of large models into an hierarchy
of modules with well defined interfaces. Omola clearly describe the model
interface and model interior. It is possible to develop composite models
with hierarchical decomposition of the internal structure into submodels.
The models have a well defined interface with terminals and parame-
ters. Object-oriented modeling concepts are focused on reuse. Models are
defined as classes in a single inheritance class hierarchy. A model class
inherits model components from the super class. A primitive model has an
internal behavior expressed by variables, equations, and events. General
models can be described by Omola which then can be used in a multi-tool
environment.

OmSim is the Omola simulation environment where Omola models
can be developed and simulated. It is implemented in C++ using Unix,
X-Windows and Interviews. The OmSim simulator can handle differential
and algebraic equation systems combined with discrete events.

Two other object-oriented languages, ASCEND and MODEL.LA., are
also presented and they are found to have similar properties as Omola.

53

Abstraction and Reuse

Chemical plants are composed of many process units connected in more
or less complex structures. Descriptions of systems liké this gain a lot
by the use of abstraction. Abstraction is created by the use of decomposi-
tion of a large model into well defined submodels with minimal interfaces.
This decomposition can be done recursively to create a model structure
hierarchy. The development of complex systems is also facilitated by the
use of common unit operations. The plant development and the model
development are very similar. In traditional flowsheet packages the plant
is described by a flowsheet composed of predefined unit modules, see Ap-
pendix A. The unit modules are typical unit operations commonly used in
chemical processes.

In Omola it is possible to develop hierarchical flowsheets by the use
of composite models. The predefined unit modules are classes in the model
database. The user can also develop new unit classes by specializing an
old unit class. Reuse is accomplished by the use of inheritance in object-
oriented modeling. A class inherits properties from its super class, which
inherits from its super class, and so on. This creates a class hierarchy.

Process structure hierarchy is discussed in the first section which
gives guidelines for process decomposition. Section 4.2 discusses process
‘model interaction in detail. The use of inheritance and the class hierarchy
categorization is discussed in Section 4.3 and it is also ended with process
class hierarchy guidelines.

54

4.1 Process Structure Hierarchy

4.1 Process Structure Hierarchy

The topology of a chemical plant is described in a flowsheet. Recall that a
flowsheet is a two dimensional topology map describing how units in the
plant are physically connected to each other. The degree of detail varies
depending on the purpose of the flowsheet description. In a flowsheeting
package the elements in the flowsheet, the unit modules, are unit oper-
ations and similar components. This means that the complexities of the
unit modules are very different, from simple mixing and splitting drums
to multi-fraction distillation columns. In order to have single layer flow-
sheets with well defined modules, some modules must necessarily be more
complex than others. The user wants to have well defined unit modules.
The topology of the process flowsheet is described in a single layer which
means that it is not possible to develop subflowsheets of parts of the pro-
cess that are particularly complex. Examples of the use of flowsheeting
packages are found in [Aspen, 1982] and [Perkins and Sargent, 1982]. An
ASPEN PLUS example is also found in Appendix A.

A natural extension is to allow hierarchical -structures. A flowsheet
can be composed of submodels that are subflowsheets, and so on. A unit
in a flowsheet can have an internal structure of other units. This is the
same thing as the composite model description discussed earlier. By the
decomposition of one unit into components the internal details of the unit
are abstracted and the structure becomes more comprehensible.

Process Structure Decomposition Guidelines

One suggestion for a structure hierarchy is the following: plant - plant
section - unit - subunit.

e Plantis the super object describing the whole processing system. It is
composed of a number of plant sections for feed treatment, reaction,
separation, recovery etc.

e Plant section is composed of units and is a part of the plant object.

e Unit is the basic predefined building block in the flowsheet and it
corresponds to the unit operations concept, like reactor, distillation
column etc. A unit can have an internal structure of subunits. More
complex units can have an internal structure of other units.

e Subunit objects are used to abstract the internal behavior of an unit
and to increase the reuse of parts of the unit behavior.

Thie -decomposition guidelines sometimes include too many levels and
sometimes too few. In a small plant the plant section level becomes unnec-
essary. For some units the subunit are uninteresting. On the other hand,
there is a need for more than one plant section level in very complex struc-

55

Chapter 4 Abstraction and Reuse

A
J
@
B

Bubble
Tank
Compressors Reactor Tubular Reactors Distillation Columns

Figure 4.1 A typical flowsheet of a minor chemical plant.

tures , e.g., a separation section is composed of liquid and vapor recovery
sections and a product fraction section. Complex units, such as distillation
columns, need perhaps more then two levels of abstraction for the internal
description. A similar decomposition is found in.[Stephanopoulos et al,
1990a], where the following decomposition levels are supported: Plant -
plant section - augmented unit - unit - subunit. The augmented unit is a
unit composed of other units.

A Plant Example

The structure hierarchy guideline above is exemplified by a chemical
plant, see Figure 1.1. The feed is mixed with a recycle stream and fed into
a bubble reactor, which is the first reaction step. In the second reaction
step the stream enters two parallel tubular reactors. The product stream
then goes to the separation section which is composed of three distillation
columns. The example is taken from [Nilsson, 1989a]. With the use of the
decomposition guidelines above the plant is decomposed into three plant
sections: feed preparation, reaction and separation. The decomposition is
seen in Figure 4.2. The separation plant section is composed of three distil-
lation column units connected in series. A distillation unit has an internal
structure of components, like column, condenser, reflux drum, reboiler etc.
The reboiler component also has an internal structure of subcomponents:
heating side, boiler side, and heat transfer wall. The heat transfer wall
model has no internal structure and is therefore described as a primitive
model with equationg.

* “In Omola, structure hierarchies can be represented by composite mod-
els inside composite models. This creates a structure tree where the leaves
are primitive models and the branches are composite models.

56

4.1 Process Structure Hierarchy

Unitt Unit2

WallModel;
Q=kA(T,-T)
/s
\ | e Py
} =1 -
Boil \ AHeall<] -
Side /\ Side
~
==
Reboiler

—_——
e
e

Figure 4.2 An example of hierarchical structure decomposition of a plant
flowsheet. The plant is decomposed into plant sections, the separation plant
section into distillation units, the distillation unit into other units, the reboiler
unit into subunits and the boiler heat transfer wall subunit has a primitive

description.

A Tank Reactor Example

~

The reaction plant section is composed of reactor units, like a continuous
stirred tank reactor, CSTR. A unit operation like a CSTR is decomposed
into internal subunits associated with certain aspects of the unit. The
reactor unit is a jacketed cooled tank reactor which is a vessel cooled
by a surrounding jacket. The reactor object is therefore decomposed into
one cooling jacket object, one reactor vessel object, and one heat transfer
object, the wall or boundary. This is seen in Figure 4.3. The chemical
reaction occurs in the reactor vessel and thus generates heat. The heat
transfer is modeled in a separate model which is connected to the vessel

and the jacket, see Figure 4.3.

Wall Vessel

T e ‘

Figure 4.3 The decomposition structure of the CSTRModel in the tank reactor
example. The composite model of a CSTR is decomposed into three submodels,

namely Jacket, Wall and Vessel.

57

Chapter 4 Abstraction and Reuse

ProcessInTerminal ISA RecordTerminal WITH
Flow ISA ZeroSumTerminal WITH

direction := ’in;

END;

Composition ISA SimpleTerminal WITH
n TYPE Integer;

value TYPE column([n];
default TYPE column[n];
END;
Enthalpy ISA SimpleTerminal;
Pressure ISA SimpleTerminal;
NoComp TYPE Integer;
Composition.n := NoComp;
END;

Listing 4.1 An example of a process flow pipe terminal. It is composed of four
subterminals, one integer variable and one parameter assignment.

4.2 Interaction

The decomposition of processes in the previous section is used to struc-
ture the process flowsheets in a natural way. This results in a structure
hierarchy of submodels. The submodels interact with each other through
terminals which are connected, as discussed in Chapter 3. The interaction
description is also abstracted in the same way as the process structure. A
number of basic terminals can be grouped together in a record terminal
description. Record terminals can also be defined as subterminals in a
record terminal hierarchy. This was discussed in more detail in Section
3.2.

A Process Terminal Class

In process applications there are a number of common unit interactions.
The most obvious is the flow pipe, where a forced flow of process medium
enters or leaves a unit. Other process interactions are, e. g., fluxes of mass
and heat.

The process medium is forced to flow from one unit to another in a
process flow pipe. This interaction is described by the amount of flow-
ing medium, e.g., mass flow, and the internal state of the medium, e.g.,
composition, enthalpy and pressure. The composition is a vector terminal
with the length, n, equal to the chemical dimension of the medium, e.g.,
the number of chemlcal components, NoComp. An example of a process
pipé-terminal is listed in Listing 4.1. A connection between two process
pipe terminals is interpreted as a set of equations. In the example it re-
sults in four equations, where one equation is in vector form. The flow
terminals are summed to zero because they are derived from a zero sum

58

4.2 Interaction

LiquidInTerminal ISA ProcessInTerminal WITH
Phase ISA SimpleTerminal WITH
value TYPE String := "Liquid";
END;
END;

Listing 4.2 A liquid flow terminal is a subclass to the process terminal with
an additional Phase attribute.

terminal class. The other medium state terminals are set equal to each
other because they are simple terminals. The process terminal class name
indicates the positive value of the flow component. The terminal class in
Listing 4.1 can be used for describing a medium inflow to a unit model.

User Defined Semantics

A connection between two terminals is consistent if each simple terminal
pair can be connected to each other, see Section 3.2. Terminals describ-
ing a vapor flow and a liquid flow can have exactly the same internal
terminal structure. This means that they can be ‘connected to each other
which is undesired. One way to prevent this is to add a terminal com-
ponent describing the phase of the medium in the process terminal. This
component is a simple terminal assigned a constant value. A connection
between two constant terminals is consistent if they have the same value.
This is illustrated in the example in Listing 4.2. The process terminal is
specialized by adding a phase attribute. This phase attribute is assigned
a string value.

The Tank Reactor Example

To exemplify process interactions the tank reactor example is discussed in
more detail. The tank reactor is a continuous stirred tank reactor, CSTR.
A chemical reaction is assumed to occur, A — B, which produces heat.
A tank reactor decomposition is illustrated in Figure 4.3. The reactor is
decomposed into one jacket submodel, one wall submodel, and one vessel
submodel. The internal descriptions of the models together with the in-
ternal description of the terminals are seen in Figure 4.4. The figure is
intended to illustrate the interaction between the submodels.

Jacket is modeled by a dynamic energy balance and a static volume
balance. The jacket has two flow terminals, In and Out, describing the
flow and temperature of the flowing cooling medium. It has one terminal
describing the heat transfer to the vessel, Ht. The terminal is composed of
the jacket temperature and the transferred heat. If the transferred heat
is known together with In terminal, the model describes the temperature
in the jacket.

59

Chapter 4 Abstraction and Reuse

in
qclp
CSTRModel I
In
Vessel qcTp
parameters:
k, Ea, R, D, Cp, Hr, g, Area, po, PipeArea;
Jacket Wall variables: P g po. Flp
parameters: Volutme, RV, Qp;
£ lq parameters: equations:
gl'HHe Volume, D, Cp A Volume' = In.q - Out.q;
Ofr equations: alz Q) tions: Ql_ll_la] volume*Outc' =In.q*In.c - Out.c)
ing = Outq ; T IFk=3]5 [auactons: ekl + Volume*RV;
Sla a] volume'D*Cp*HLT = Ol |ouwa=ina; RV = [-1; 1]*k*EXP(-Ea/(R*Out.T))*Out.c(1);
% = el T in.q*in.T - Qut.q*Out.T In.Q=k*A*(In.T-Out.T);
3 T +HLQ; Volume*D*Cp*Out.T’ =
OutT=HtLT: In.g*D*Cp*(In.T - Out.T) + Qp - HL.Q;
Qp = Hr*Volume*RV(1);
Ht.T = OuL.T;

D*g*{Volume/Area) + po =
ABS(Out.q)*Out.a/(2*PipeAreat2) + Out.p;

In.p =po ;

qcTp
Qut
|
gcTp
Qut

Figure 4.4 The internal details of the primitive models, Jacket, Wall and
Vessel, in the composite model, CSTRModel .

-
/

The Wall object represents the heat transfer interaction between the
jacket and the vessel. The transferred heat is a function of the temper-
ature difference on each side of the heat transfer object, the vessel wall,
see Figure 4.4. The heat transfer is described by a simple static equation.

Vessel is modeled by one dynamic volume balance and one dynamic
mole balance on vector form of dimension two, A and B. The volume and
the composition in the vessel is described by the first two equations in
Figure 4.4. The reaction velocity, called RV, is also a vector variable. The
fourth equation is the dynamic energy balance and it is followed by a
description of the energy production caused by the reaction. The sixth
equation in Figure 4.4 defines the equivalence between the temperature
subterminal in the outflow and in the heat transfer terminal. Finally there
is a Bernoulli equation describing the mechanical energy balance and an
equation tying the inflow pressure to a parameter.

A dynamic simulation problem formulation of the CSTRModel will
add a number of assignments to the model. The models contain 50 vari-
ables, basic terminals and parameters. They also contain 13 explicit equa-
tions and 16 equations generated from connections. A problem formulation
must add 21 assignments. 15 parameters and 6 subterminals must be as-
signed values in order to make a well defined simulation problem. The
subterminals are the-flow and temperature of the CoolIn terminal, the

flow, composition and temperature of the In terminal and finally the Out
pressure subterminal.

60

4.3 Process Model Class Hierarchy

4.3 Process Model Class Hierarchy

Models are represented as classes in a class hierarchy in object-oriented
modeling. Through inheritance a model class reuses the description of
previously defined class. The first class is a subclass of the second class.
This is a generalization of the module reuse that is possible in current
modeling environments. In flowsheeting, process unit modules can be se-
lected from a library to form a process topology. The class hierarchy and
the inheritance concept can be used for reuse, polymorphism, and orga-
nization. Model reuse is achieved in three different ways as discussed in
Chapter 3.

e The first way is to use a predefined model as a unit directly in a
flowsheet model. In Omola this is the same as making a subclass
definition of a global model class as an attribute of a composite model.
The global class is a unit model class and the composite model is a
flowsheet. This is a direct reuse and it is supported by many systems
today, e.g., [Aspen, 1982].

e The second way of reuse is a specialization of a predefined global
model class to a specialized global subclass. The specialization con-
sists of the addition of new model components and equations.

e The third way of reuse is the use of polymorphic. models. If two
submodels are polymorphic they can be used in the same compos-
ite model. Polymorphic models have equivalent interface structures
which facilitate the reuse of structures.

Reuse, specialization and polymorphism will be illustrated in the tank
reactor example in this section.

Reuse

The tank reactor in the example in Section 4.2 is decomposed into three
submodels. The components are assumed to be classes in a class hierarchy
or, in other words, the components of a composite unit class are local
subclasses of global subunit classes found in the model database. The
subunits of the tank reactor are the reactor vessel model, the cooling
jacket model and the heat transfer wall model, which are local classes
inside CSTRModel. These local classes can be subclasses of global classes in
a class hierarchy. This is an example of direct reuse of predefined classes,
which is illustrated in Figure 4.5.

. .~Direct reuse of submodels creates a flat class hierarchy where every
model class is a subclass of the predefined Model class. The CSTR class
is a composite model with attributes that are local subclasses of global
classes.

61

Chapter 4 Abstraction and Reuse

Wall Jacket Vessel CSTRModel
Model Model Model Vessel
K//Jacket
Qv___//Wall
| _—

Figure 4.5 An example of a flat class hierarchy with poor reuse and polymor-
phic possibilities.

Specialization and Polymorphism

Experience has shown that it is rather difficult to make complicated spe-
cializations, such as adding equations to an already complete model. The
global model class definition should instead be decomposed into classes in
a hierarchy. One example is the change of the wall model to a dynamic
description, NewWall, see Figure 4.6. If the NewWall class has the same
interface as Wall they are polymorphic. The point is to make it possi-
ble to reuse the composite CSTRModel and just overwrite the local Wall
definition attribute. It is convenient to create a common super class for
the two wall classes. This class is a pure interface definition. WallIClass
does not have any internal behavior description so it can therefore not
be simulated. The postfix IClass indicates that the class is an interface
class for polymorphic models. The difference between the two WallIClass
subclasses are the internal primitive description of the behavior.

If the definition of physical objects is spread out in a number of classes
in an inheritance hierarchy the reuseability of these classes will increase,
particularly for the super classes high up in the hierarchy. The most im-
portant result is the polymorphic aspect of the distributed unit descrip-
tions, which makes the reuse of the composite models easy. The described
method of class decomposition increases the depth of the class hierarchy
with some levels.

The demands on polymorphic models are interface similarities and
the same degree of freedom.

¢ Terminals of polymorphic models must be compatible. This means
that the interactions with surrounding models are invariant.

Parameters that are assigned values by the super model must be
identical in polymorphic models. It is possible to have additional pa-

- ~-rameters that-are assigned values locally.
£ 1

The degrees of freedom of polymorphic models must be the same. The
degree of freedom, d, is the difference between the number of vari-
ables, n,, and the number of constraints, n.,. Variables are interface

62

S - T T T T e T e .

4.3 Process Model Class Hierarchy

Model
Wall
IClass
A
Wall Jacket Vessel CSTR
Model Model Model Model
AT N~ __ S/
r____Wh,*fjt:::::::"Q/
New
New
Wall CSTR
N~ —

Figure 4.6 The class hierarchy shows how polymorphic wall classes can be
used to increase the CSTR structure reuseability. (arrow - is-a relation, dashed
arrow - has-a relation.)

variables, such as terminals and externally assigned parameters, and
interior variables, such as locally assigned parameters and internal
variables. Constraints are equations and assignments.

d:nv—nc

=n + nvinterior — nc

Uinterface

= (nTerm + nExtPar) + (nlntPar + nIntVar) - (nEqu,+ nAss)

Polymorphic models must have the same interface which means that
the number of interface variables are the same. If the number of
constraints is increased in one polymorphic model then the number
of interior variables, such as internal variables and locally assigned
parameters, must also be increased to keep the degree of freedom
constant. A good rule is to defined the interface variables in the in-
terface class and defined the interior variables in the model class.

Library Organization

In a process application the number of classes in the model data base will
be large, from hundreds to thousands. It will be hard to find the class
that is of interest. The majority of the classes are not unit model classes,
like the CSTR unit, that are directly reusable in flowsheet composite mod-
els. There are terminal and parameter definitions and incomplete super
classes to unit and subunit classes. The class hierarchy must be orga-
nized and structured in order to increase the comprehensibility of the
~ database. Super classes can also be used to create a better tree structure.
The main purpose of these super classes is to make it possible to group
classes together that conceptually belong to the same category.

63

Chapter 4 Abstraction and Reuse

General Model
Model Library +
Process Process -
Model Library Class application
SubUnit Unit Flowsheet .
Class Class Class granularity
/ l / \
[EnEqSu ReacSu Reactor PlantSec Plant unit type
Class Class Class Class Class yp
AN I !
Wall Jacket Vessel)
IClass IClass IClass interface class
Y I
Wall Jacket Vessel CSTR
Model Model Model Model model class
] h_ A T TT1
~ N\ T
User Def. | New New Reaction
) MyPlant
Library Wall CSTR PlantSec Y
o " 7 N] h_)

—_—

Figure 4.7 The CSTR hierarchy with additional classes structuring the class
tree. The reusable CSTR classes are leaves on the CSTR tree, a subtree in the
class tree. (arrow - is a relation, dashed arrow - has a relation.)

Four new super classes are added in Figure 4.7, compared to the class
hierarchy in Figure 4.6. The process model class, ProcessClass, makes
an application type categorization of the tree. Examples of other appli-
cation type classes are ControlClass, MechanicClass etc. The postfix
Class indicate that this class is just an empty classification class. The
next added class level is a process model categorization into types of dif-
ferent granularity, e. g., flowsheet, unit and subunit. A flowsheet class is
composed of units and a unit is composed of subunits. The next level di-
vides the tree into process unit types. The subunit class tree is divided
into energy equipment subunits and reactor subunits. The unit class tree
has only a reactor class; other examples are separator class and energy
equipment class. The flowsheet class is divided into plant section class and
plant class on the unit type level. The actual model classes for reuse and
specialization are found below this level. In the example a new CSTR is
specialized to have a new wall description and it is also used in a reaction
plant section in a plant model called MyPlant.

Process Class Hierarchy Guidelines
N S i

Guidelines for the structure hierarchy was discussed in Section 4.1. Sim-
ilar guidelines for the process model class hierarchy are suggested below.
The guidelines are illustrated in Figure 4.7.

64

4.3 Process Model Class Hierarchy

e The application type categorization class is used to make a rough
decomposition of the model data base into different application areas.
Examples are ProcessClass, ControlClass etc.

e The granularity type classifies process classes into different branches
of the tree depending on the grain size of the model. Examples are
FlowsheetClass, UnitClass and SubUnitClass.

e The unit type categorization class is used to structure the class tree
into different unit subtrees. Examples of unit classes are Reactor-
Class and SeparatorClass.

e The unit interface class is the root class for polymorphic classes con-
cerning a particular unit. The WallIClass is an example in the Fig-
ure 4.7 which has two subclasses.

e The unit model is the leaf in the library class tree and is the actual
model used in different problems. It can be reused in other composite
models or specialized to new models. An example is CSTRModel in
the example above.

Once again this class structure is a guideline for object-oriented modeling.
The class hierarchy has four purposes, namely direct reuse, specialization,
structure reuse through polymorphic models, and for class tree organiza-
tion.

4.4 Conclusions

The abstraction of large models is done by hierarchical decomposition
of the model into well defined submodels with minimal interaction. One
of the main conclusions of this chapter is process structure hierarchy
guidelines. A plant model is suggested to be structure decomposed into
the following levels; plant - plant section - unit - subunit.
Abstraction is also aided by reuse. The ability to reuse predefined sub-
models makes it easy to define large structures of submodels. Reuse is cat-
egorized into three different methods. Direct reuse is done when a model
class is reused as a submodel in a composite model. A model class can also
be reused through specialization, where additional properties are defined
in a subclass. One example is the specialization of a model interface class
- into a model class. A third method is polymorphism. Polymorphic models
: have the same interfaces and they can therefore be exchanged in the same
composite model. The suggested guidelines for class hierarchy decompo-
sitfon are appllc:atlon - granularity - unit type - interface -
model.

65

Decomposition
of Model Behavior

This chapter discusses the use of decomposition without a corresponding
physical pattern. The decomposition of structures into smaller modules in
a hierarchy has being discussed and exemplified in Chapter 4. The decou-
pling of media and unit descriptions is a common structuring feature in
flowsheeting. The model developer can select units from a unit library and
make a medium description separately. The medium models and physical
parameters are automatically found in a medium database, see [Aspen,
1982]. A small ASPEN PLUS example is found in Appendix A. An object-
oriented approach to medium and unit decomposition is discussed in the
first part of this chapter. The basic tools for this are polymorphic medium
models and unit models.

The second part of the chapter deals with the decomposition of primi-
tive behavior descriptions into behavior components, i. e., equation objects.
Each individual unit and medium model is described by a set of equations.
Each equation describes a certain physical property. To support develop-
ment of new units that are missing in the model database, different be-
havior characteristics can be reused from a library. This library contains
equation objects that may be easily put together to create a new model.
The discussion concludes that new class description concepts are needed.

66

5.1 Medium and Unit Decomposition

I 1L
/ VesselModel
// Ves?ﬁl aezclion
S~ Machine edium
| H
\\\l
;e
- / '[.—- \\ / //
CSTRModel / /I: y
7 /
Jacket \Wall //Vessel //
H H / /
/ //
/
==

Figure 5.1 A medium and machine (unit) decomposed reactor vessel model
is the second level of decomposition of the CSTR.

5.1 Medium and Unit Decomposition

The traditional decomposition of medium and unit in flowsheeting is to
view the medium model as a function, notice the FORTRAN association.
The unit modules make function calls to medium property functions. The
model user can separately describe the medium of interest. The flow-
sheet package can then make proper parameter selections from a medium
database to tune the medium function correctly according to the selected
medium. This section and the following section discuss how to do this in
an object-oriented modeling language like Omola. The discussion is based
on the tank reactor example defined in the previous chapter, Chapter 4. A
better name is medium and unit machine decomposition or just medium
and machine decomposition.

Medium and machine decomposition can be done in two ways using
different modeling concepts, structure decomposition and multiple inher-
itance. The medium and machine structure decomposition can be based
on a structural decomposition of an unit model into one unit machine
submodel and one medium submodel. The medium and machine models
interact through a medium and machine connection with terminals. This
is illustrated in the Figure 5.1. Another approach is to use medium and
machine multiple inheritance wherein the machine and the medium are
viewed as two separate super classes to the unit model. The structure
decomposition approach is discussed in this section and the multiple in-
heritance approach is discussed in the following section.

Tﬂhg_,Tank Reactor Vessel Model

‘ i
A mathematical description of the model is needed to make a detailed

discussion about the decomposition properties of different approaches. The
mathematical description of the tank reactor vessel is as follows. The

67

Chapter 5 Decomposition of Model Behavior

model of the vessel is a set of four nonlinear differential equations:

dV

P% = Pqin — PYGout (5.1)
d(;’tC) = QinCin — QowtC + Vr (52)
d(VT)

pCp

dt = pCinn(Tin - Tr) —pCpCIout(T - Tr) + Qp — Q: (5-3)

|QOut|QOut/a
2

ng + Py + Pout- (5.4)
The equations describe the vessel dynamics, i.e., dynamic material and
energy balances. The equations assume perfect mixing in the vessel, ho-
mogeneous concentrations and temperature. The medium model is the
medium parameters, p, C, and 17, together with the medium functions
describing, r and @,, reaction velocity and reaction produced heat:

r=[ra rg]t =[-1 l]Tkoe“g%cA (5.5)
Qp = Hyeqe Vra. I (56)

Static Medium Based Decomposition

One way of medium and machine decomposition is shown in Figure 5.2.
The machine model contains the main behavior description, e.g., balance
equations, and machine parameters, e.g., tank cross area. The medium
model contains the medium behavior, e.g., reaction velocity, and medium
parameters, e. g., medium density. This means that the submodels can be
changed independently of each other as long as their interfaces remain
unchanged. In other words, they have to have the same terminal descrip-
tion in the medium and machine communication. This decomposition can
be seen as a parameterization of the reactor vessel and it is also discussed
in [Nilsson, 1989a], [Nilsson, 1989b], and [Nilsson, 1990].

The interesting details of the medium and machine decomposition
are illustrated in Figure 5.2. The balance equations of volume, chemical
composition, thermal energy, and mechanical energy are described in the
vessel machine model. The inflow and outflow components in these equa-
tions are expressed by terminal variables using the dot notation, e.g.,
In.q. The heat transferred to the surrounding is described in the Ht ter-
minal, as discussed in Chapter 4. The reaction velocity and the produced
reaction heat are a medmm and machine subterminal. The medium and
% machine terminal, MMC, is connected to the medium model in the compos-

ite vessel subunit model. Inside the medium model the reaction velocity

is described and in this case it is a first order chemical reaction with

68

5.1 Medium and Unit Decomposition

VesselModel I
In
parameters: .
g, Area, po, PipeArea ; parameters:
variables: D,Cp, k Ea, R, Hr;
Volume;
equations: -?— .?.
Volume' = in.q - Out.q; D o Zlp
| MZEIT| Volume*Oute = In.q*(In.c - Out.c) Cp % % Cp
+ Volume*MMC.RV; RV RV
QpV QpV|
Volume*MMC.D*MMC. Cp*Out.T' = .
In. q‘MMp D*MMC.Cp*(In.T - Out.T) + equations:
le\ilclzxg? N(I\“/A? Qp\//A H; " MMC.D =D
g"(Volume/Area) + po =
ABS(Out.q)*Out. q/(2‘P|peArea"2) +0utp; MMC.Cp=Cp;
MMC.c = Out.c; MMC.RV = [-1:1]"k* _
MMC.T = Out.T: EXP(-Ea/(R*"MMC.T))*"MMC.c(1);
HL.T = Out.T; MMC.QpV = HI*MMC.RV(1) ;
In.p = po; qcTp
Out
Out

™

Figure 5.2 The function oriented static medium model based decomposition
of the reactor vessel.

an Arrhenius temperature dependency. The medium model describes the
reaction velocity as a function of the states which are described in the
machine model. In this example these are the concentration, ¢, and the
temperature, T'. The pressure should also be defined in MMC but it is not
used in this simple case. The information in the medium and machine
terminal goes in both directions. The medium state is expressed in the
processing machine and this information goes to the medium model which
describes a number of medium state dependent properties. The medium
model is like a function with no internal state and therefore this is called
a static medium based decomposition.

Dynamic Medium Based Decomposition

The medium model describes the medium behavior as functions of the
medium state in the static medium based decomposition. This way of
decomposition is similar to the medium models in traditional flowsheeting,
where the medium models are functions calculating physical properties.
Another way of making a medium and machine decomposition is to
separate every medium dependent part from the machine dependent part.
Both the concentrations and energy content in a reactor are quantities
of the medium, e.g., medium state, and are described per mass unit or
mole unit. They are intensive variables. Therefore the component and

69

e

Chapter 5 Decomposition of Model Behavior

gcTp
VesselModel r — .
In n
ReactionMedium [_¢T qp
P a;"““‘;tg“; Ea Rt VesselMachine
varri,ab'leps': o E& R A parameters:
Conc, Temp; g, Area, po, PipeArea ;
equations: variables:
Conc’ = Volume ;
=1 L]-1Q] (Inc-Concy/MMC.S +RV; S g § S | equations:
- i T o Eimmksl B DOT(Volume) = In.q - Out.q ;
emp' =
In.ﬁ"—Temp)/MMC.S - MMC.S = Volume/In.q ;
Qp-Ht.Q)/(D*Cp);
MMC.D*g*(Volume/Area) + po =
RV = [-1 1] *ko*exp(-Ea/(R*Out.T))*Out.c(1) ; ng(Out-q)'Out.q/(z‘PtpeAreaﬂz) +0
ut.p ;
Qp = Hr'RV(1) ;
MMCD=D; Inp=po;
Qut.c = Cong;
Out.T = Temp; cT 5P
Out Out
l) 1
] | K
qcTp

Out

Figure 5.3 The dynamic medium model based decotposition of the reactor
vessel.

enthalpy balances should be described in a medium model and not in a
machine model. The amount of mass in the reactor is a machine dependent
description. It is an extensive variable. The same goes for fluid mechanic
descriptions.

This type of decomposition is shown in Figure 5.3. The medium and
machine communication is minimized. In this case, under the assumption
that the density and heat capacity are constant, the interaction variables
are the space time, S, and the density. Space time is the volume divided by
the flow. This example is perhaps a conceptually more correct medium and
machine decomposition than the function oriented static medium based
decomposition described in Figure 5.2. The separation of the in and out
flow in one machine dependent part and one medium dependent part is
however less natural and harder to interpret.

Polymorphic Medium Models

The decomposition of unit machine models and medium models become
really powerful if the medium models can be made polymorphic. This al-
lows changes of the medium model without changes in the machine model,
according to the disctssion in the previous chapter. Inherited attributes
can be modified by overwriting in order to create new models. If the new
submodel has the same interface as the original one and has the same
degree of freedom, then the new model can be used in the same structure.

70

5.1 Medium and Unit Decomposition

Model
3
Process
Model
Medium SubUnit Unit
Class Class Class
I
Reaction
IClass
Reaction2 Reaction1 ReacMach Vessel CSTR
Model Model Model Model Model
T SO S S
| New
| CSTR
-)

T e e ———————— e

Figure 5.4 A definition of a new tank reactor with a new reaction model. The
new reactor is a subclass of the old tank reactor with a new medium model
super class.

Polymorphism is discussed in more detail in Chapter 4. This is the idea
behind the medium and machine decomposition. - /

The medium model class can be modified by changing the super class
definition to a new medium super class name. This is illustrated in Figure
5.4. It is now easy to reuse different medium models from a medium
library. The use of the medium models in other types of machines, like
non ideal reactors and tubular reactors, is also possible.

5.2 Medium and Machine Inheritance

The structure decomposition discussed above is artificial and is not a nat-
ural decomposition of a physical object. An alternative method is to view
the vessel as composed of the properties from a medium description and
from a unit machine decomposition. The reactor vessel is a typical exam-
ple where multiple inheritance may be attractive. Multiple inheritance
makes it possible to inherit properties from more then one super class. A
suggestion of how multiple inheritance can look in Omola is listed in 5.1
where the super classes are given in a list in the class definition header.
All attributes from the super classes are inherited and local specialization
is possible using the overwriting rule. This is a natural extension which

. ““Vessel ISA VesselMachine AND Medium WITH .
{class body}
END;

Listing 5.1 A suggestion of how multiple inheritance in Omola may look like.

71

Chapter 5 Decomposition of Model Behavior

In

VesselMachine qcTp Medium
parameters: parameters:
D, Cp, g. Area, po, PipeArea ; .
variables: D, Cp, k, Ea, R, Hr;
Volume, RV Qpv variables:
[) ' ;)
equations: c, T, RV, QpV;
Ql Volume'= In.q - Out.g; equations:
¥ = AT XDl R TV el 11
Tl volume*outc' = Ing: (In c- Out.c) RV = [-11]°k*EXP(-Ea/(R*T)) c(1);

+ Volume*R QpV = Hr*RV(1);

Volume*D*Cp*Out.T' =
IanCp(InT Out.T) +
Volume*QpV - HL.Q;

D*g*(Volume/Area) + po
ABS(Out.q)*Out. q/(2 PnpeArea"z) + Out.p;

HLT = Out.T;
Inp=po;
qcTp
Out .
‘\\561 //%;a
Vessel
OutT=T;
Outec=c;

Figure 5.5 Multiple inheritance with implicit interaction using overwriting
in the reactor vessel example. -

is straightforward as long as the attributes do not overwrite each other,
i.e., the inherited attributes are "orthogonal”.

Assume static medium model based decomposition, as’ dlscussed in
the previous section and assume also a machine model class and a medium
model class as described in Figure 5.5. Instead of a reactor vessel decom-
position and terminal connections a machine class and a medium class
are used as super classes in a reactor vessel model class description. In
the structure decomposition version of medium and machine models the
communication is explicitly described in the MMC terminals. In the mul-
tiple inheritance version this interaction must also be described. It can be
implicit or explicit.

Multiple Inheritance with Implicit Interaction

Implicit interaction uses the overwriting rule and a common implicit name
convention. The inherited attributes might have the same name in multi-
ple inheritance. Therefore a priority rule describing which way inherited
attributes overwrite each other would be needed. Assume that the vessel
machine class overwrites the medium class. The medium class has a vari-
able _called RV describing the reaction velocity. This is overwritten by the
corresponding definition with the same name in the vessel machine class.

"' This means that the super classes must know of each other in order to

obey the overwriting rule. The concentration definitions do not have the
same name in the super classes. This means that an additional equation

72

5.2 Medium and Machine Inheritance

in
VesselMachine qc¢Tp Medium
parameters:

D, Cp, g. Area, po, PipeArea ;
variables:

Volume, RV, QpV,
eguations:

equations:
Q| Volume'=In.g - Outg; s —
Volume*Out.C' = In.g*(In.c - Out.c) RV = [H1A K EXP(-Ba/RT) e(1);
+ Volume’RV; QpV = Hr'RV(1);

Volume*D*Cp*Out.T’ =

In.g*D*Cp*(In.T - Out.T) +
Volume*QpV ~ Ht.Q;

D*g*(Volume/Area) + po =
ABS(Out.q)*Out.q/(2*PipeArear2) + Out.p;

parameters:

D, Cp, k, Ea, R, Hr;
variables:

¢, T, RV, QpV;

Ht

HL.T = Out.T;
In.p =po;
qcTp
Out .
\S a ﬁs a
Vessel
OoutT=T: Machine.D = Medium.D;
Outc=c; Machine.Cp = Medium.Cp;

Machine.RV = Medium.RV;
Machine.QpV = Medium.QpV;

Figure 5.6 Multiple inheritance without overwriting used in the reactor ves-
sel example. -

would have to be added to make the variable association, as shown in the
vessel class in Figure 5.5. Developing models using multiple inheritance
with overwriting would mean a careful use of name conventions.

Multiple Inheritance with Explicit Interaction

The way to solve the last problem with the naming conflict is to aban-
don the overwriting rule between inherited attributes. The result in the
reactor vessel example is that there will be two RV variables, see Figure
5.6. The communication, describing that they are equal, must therefore
be added as a local attribute in the new class as shown in the Figure 5.6.

This solution is very similar to the decomposition approach. It creates
a lot of description overhead compared to an implicit interaction approach.
An advantage, however, is the possibility to describe the interaction in the
subclass instead of distributing it in two super classes through an informal
name convention.

Summary

The medium and machine decomposition can be made in a number of
ways. The structure decomposition, discussed in the previous section, re-
sults in a composite "model with encapsulated submodels using explicit
connections for interaction description. The well defined interfaces facil-
itate the control of polymorphism of medium models. Neither of the ap-
proaches using multiple inheritance have this property. Structure decom-

73

Chapter 5 Decomposition of Model Behavior

position is used in the rest of the thesis because of this and also because
it can be directly implemented in the current version of Omola. The static
medium model based decomposition is also preferred. This choice is based
on traditional reasons and not on experience.

5.3 Primitive Behavior Decomposition

The behavior of a primitive model is described by a number of equations.
These equations represents particular aspects of the model behavior, e. g.,
conservation of mass. The equations have a given form, e.g., a dynamic
mass balance. An interesting idea is to have equation or behavior ob-
jects in the model database. These equation objects can be reused in a
new model in order to create a new behavior. It could also increase the
readability of the model due to the abstraction of the behavior into a num-
ber of objects instead of a chunk of equations. These ideas are discussed
in [Stephanopoulos et al, 1987], [Sgrlie, 1990], [Stephanopoulos et al,
1990a] and [Lund, 1992]. ’

A process unit model behavior can be decomposed into equation ob-
Jects describing orthogonal quantities, like conservation of mass and en-
ergy. These equation objects can be represented in two different ways, as
equation submodels or as inherited equation super classes. It can be de-
scribed by structure decomposition or by multiple inheritance. This ques-
tion is closely related to the previous medium and machine decomposition
problem. A discussion based on three different ways of equation reuse fol-
low below:

* The encapsulated equation decomposition approach describing the
equation objects as submodels, interacting through connections,

e the open equation decomposition using common variables instead of
explicit connections for interaction descriptions, and

e multiple inheritance of equation super classes.

Some common problems and their solutions are also discussed.

Encapsulated Equation Decomposition

One way of representing equation objects is as submodels in a composite
model. The key problem here is whether the equation objects are encap-
sulated modules or not. If the objects are represented as in a composite
model then they are encapsulated. This means that relations between
equations must be explicit and must be described by connections. Every
variable that is used more than locally, in one equation object, must be
defined in the interface.

74

5.3 Primitive Behavior Decomposition

VesselMachine a¢ HJ
[v
L ¥ |
VolumeBalance
> V' = In - Out; E
| componentBalance
qgin V*cout' = qin*(cin - cout) (90Ut "
Q cin +Vn cout T
=< R r — S E
- D o
Cp
{EnergyBalance 1,
gin | v*T' = gin*D*Cp*(Tin - Tout) 1P
Tin +V*QpV - Qt;
N
parameters: TA PAP qcTp In.p=P;

Out

Figure 5.7 The primitive behavior of the tank reactor is turned into a com-
posite model with encapsulated equation submodels.

The tank reactor behavior can be decomposed into a number of equa-
tions, as discussed in Section 5.1. Let us use the structure decomposition
mechanisms to make the vessel machine into a composite model with
equation submodels. The equation submodels are subclasses of global
equation model classes. In this case the interactions between equations
must be explicitly defined by connections. It also means that common
variables are duplicated as simple terminals in every submodel. This is
illustrated in Figure 5.7. The interaction structure is complex and this
is not a good modularization. Perhaps a variable transformation can de-
crease the object interaction, but the problem with almost no abstraction
of the interaction is still not solved.

Open Equation Decomposition

Another natural way is to allow open equation objects. This means that
variables do not have to be defined inside the equation objects. However
this also implies that the objects are incomplete, creating another problem.
Oriola cannot parse mcomplete classes into the model database. Another
problem is the name convention that must be used in all equation objects.
The common variables referred to in the different equation objects must
have the same names. This name convention is informal and not explicitly

75

Chapter 5 Decor;i;osition of Model Behavior

Model
A
Process
Class
E i SubUnit
SR

e e o o e — e e et —

VolumeBalance l

| V=Inq-Outg; |
——— l_—_—_—_—__—_:ﬁ — e
‘Com ponentBalance | \ m
V*Outc' = | \
I U = I i . Oute) I \ VesselMachine [acTp
L] ~ \ variable:
l___—:::::: ____ \\ \ parameterspTA PA, g;
EnergyBalance | ~ ~
_ ~ 1+ —VB ¢
V'MMC D*MMC.Cp*Out.T' = T ~ _ T
ln\? MG DMNC,Cp(n. T~ OutT) | —— 1T—CB p =
*MMC.QpV - Ht 1 £
__________ 1 EB D fe)
T T Enar oo B o e ———1—MEB op
MechanicEnergyBalance | o —— 4 oV
MMC.D*g*(V/TA) + In.p = g — —— Q| MMCc=outg;
| ABS(Outq)*Outq/(2'PA%2) + | £|$| MMcT-ouT
Out.p; . MMC. p P;
L - 4 In.p =) qcTp

Out

Figure 5.8 The primitive behavior of the tank reactor is turned into a com-
posite model with open equation objects.

described until they all appear in a complete model with a given set of
common variables. Instead of encapsulated equation submodels with thick
walls, we have open objects where the variables are allowed to be defined
outside the equation object.

- Open equation classes are illustrated in Figure 5.8. Compared to Fig-
ure 5.7 the connections disappear because all equations refer to the same
variables. The walls of the equation objects are transparent. The equa-
tions refer to variables according to the scope rules. The price that is paid
for this is that the global equation super classes in the database are not
consistent. They must be used in a given context with a specific name
convention. To make this use of globally defined open equation classes
meaningful one has to use an informal name convention which all equa-
tions obey. Otherwise this use of equation objects can be dangerous. This
way of abstracting the primitive model behavior decreases the complexity.
The possibility to give an equation a name and an equation type makes
it easy to interpret the model description. Today Omola represents equa-
tions as nameless .attributes which therefore cannot be overwritten. It is

possible to encapsulate equations into equation objects but this can only
~ be done locally inside a given context and it is therefore unhelpful for
reuse.

76

5.3 Primitive Behavior Decomposition

Model
A
Process
Class
Equati SubUnit
C?aus% o Class

VolumeBalance |
| V=Ing-Outg; I

e i
ComporentBaiance | -
I

V*Out.c = -~
| U = I e oute) VesselMachine [qcTe
L] variable:
I____:___:::: ____ parametersPTA PA, g:
EnergyBalance |
C
lv-mmc. ommc., Cp*Out.T’ = T
[In.g*MMC.D*MMC. S(InT outT) | p |z
I V*MMC.QpV - Ht.] o |2
__________ (¢}
IMechanicEnergyBaiance | o
MechanicEnergyBalance | :Z)pV
MMC.D*g*(V/TA) + in.p = MMC.c = Out.c;
| ABS(Outq)*Outq/(2°PA%2) + 5 ? MMC.T =Out.T;
outp; | MMC.p =P; -
L - A Inp=P; qcTp

Out

Figure 5.9 The use of multiple inheritance in the behavior definition in the
tank reactor example. Notice that the global equation objects have undefined
variables in their equations.

Multiple Inheritance of Equation Objects

Behavior can also be seen as something that is inherited from more gen-
eral behavior classes. A behavior is composed of a number of different
behavior components which means that single inheritance is not enough.
Single inheritance means that all combinations of behavior components
must be predefined and a large tree of all possible super classes created
beforehand. This is a not a good solution. Multiple inheritance makes it
possible to inherit a number of behavior components at one level in the
class tree.

Yet another version of the reactor vessel machine class is seen in
Figure 5.9. Assume that there are globally defined equation objects in
the database. The vessel machine inherits through multiple inheritance
a number of equations which become nameless attributes of the machine.
We _still have the problem with encapsulated or open global equation
classes. The problem with multiple inheritance overwriting, discussed in
the medium and machine decomposition in Section 5.1, must also be taken
care of in this case. Since the use of open equation classes requires an in-
formal name convention in any case, we have to solve the problem. The

77

Chapter 5 Decomposition of Model Behavior

‘inheritance of a number of encapsulated equations into one class is ex-
actly the same problem as Figure 5.5 and 5.6. If overwriting is possible
then an informal name convention is important. Without overwriting, ev-
ery inherited equation class has its own variable names. The model user
has to make explicit declarations of the variable interactions.

Abstract Classes

An open equation object cannot be parsed into the Omola model database.
Omola will complain about an inconsistent object with undefined vari-
ables. One way to handle inconsistent classes is to use a new type of
attribute definition. It should be possible to declare an attribute as ab-
stract which means that it should not be instantiated. An abstract at-
tribute can be inherited and used in consistency analysis. An abstract
attribute definition defines a name and a super class. A class containing
abstract definitions must be used in a context where all names are defined
as ordinary attributes. When the model is instantiated the local abstract
attributes are not instantiated and the Omola scoping rules must find an-
other variable with the same name in the model hierarchy. The variables
with the same name are checked to be of the same type in order to define
a consistent model.

A name convention is explicitly described by making these abstract

EquationClass ISA ProcessClass WITH
% Not correct Omola
variables:
CLASS mass ISA Variable;
CLASS In ISA InFlowTerminal;
CLASS QOut 1ISA OutFlowTerminal;
END;

MassBalance ISA EquationClass WITH
equation:

DOT(mass) = In.q - Out.q;
END;

Tank ISA Model WITH

variables:
mass ISA Variable;
In ISA InFlowTerminal;
Out ISA OutFlowTerminal;

) ;equation_objegtSA
“#- MB ISA MassBalance; \
END;

Listing 5.2 One suggestion of how to create open equation classes. It is based
on the definition of dynamic scoping of variables using abstract class definitions.

78

5.3 Primitive Behavior Decomposition

variable class definitions in the common super class for all equation ob-
jects. This is done in EquationClass in Figure 5.8. The idea is illustrated
in Listing 5.2. An abstract class is defined with the prefix CLASS. A set of
abstract classes is defined in the EquationClass. The subclass MassBal-
ance inherits these definitions which are referred to in the local equation.
The mass balance object is the super class of the MB attribute in the tank
class. The equation inside the mass balance object MB will refer to the
attributes in the tank during the model compilation. This solves both the
informal name convention problem and the inconsistency problem.

Parameterized Classes

An alternative to abstract classes is the concept of parameterized classes.
The idea is to move the local abstract class definition up to the head of the
class definition. Attribute definitions in the class head are not instanti-
ated. It is similar to the macro concept in ordinary simulation languages,
like ACSL [Mitchell and Gauthier, 1986]. The macro concept is discussed
thoroughly in [Cellier, 1991]. .

Listing 5.3 illustrates the concept of parameterized classes. The class,
MassBalance, has three class definitions in the class header. The class
definitions are referred to in the equation in the normal way. Submodel
MB of Tank class is defined with an argument list which refers to the
variables in the Tank which have other names.

Parameterized classes create the possibility of having local names in
classes. However the class header becomes more complicated. Notice that

MassBalance (mass ISA Variable,
In ISA InFlowTerminal,
Out ISA OutFlowTerminal)
ISA EquationClass WITH
% Not correct Omola
equation:
DOT(mass) = In.q - Out.q;
END;

Tank ISA Model WITH

variables:
M ISA Variable;
InFlow ISA InFlowTerminal;
OutFlow ISA OutFlowTerminal;

. equation: v .
¢~ MB(M,InFlow,OutFlow) ISA MassBalance;)
END;

Listing 5.3 A second suggestion of how to create open equation classes. It is
based on parameterized classes.

79

Chapter 5 Decomposition of Model Behavior

the equation object becomes encapsulated with a well defined interface
via the argument list in the class header.

Discussion

Two related problems has been discussed. The first problem is encapsu-
lated versus open equation classes and the second is multiple inheritance
of equations versus equation component attributes. The problems have
the common difficulty with informal name convention.

Encapsulated equations are hard to use and require many connec-
tions due to the explicit relations between variables. The only practical
way of using encapsulated equations is together with multiple inheritance
with overwriting. Then one has to solve the name convention problem and
one solution is suggested using parameterized classes.

The open equation class concept also has problems with inconsis-
tent classes with undefined variables. It also requires an informal name
convention which is common for all equation classes. Compared to the in-
teraction description problem in the encapsulated equation example the
open equation class concept is superior.

The difference between decomposition and inheritance is more a mat-
ter of taste. A modeling language should support both. In the problem with
equation reuse the decomposition is superior to the use of multiple inheri-
tance. The benefit is the abstraction of the behavior into local objects with
super classes. This is contrary to some of the result found in the literature
[Stephanopoulos et al., 1987], [Stephanopoulos et al.,, 1990a], and [Lund,
1992].

An alternative to the discussion in this chapter is to use graphics in
order to make primitive behavior descriptions. Two examples are the ana-
log computer description and the bond graph approach. Analog computer
descriptions of equations is common in control engineering. Here electrical
components are used to construct a circuit with the same properties as the
equation in question. The model developer describes the equation using
predefined objects like integrators, adders, multipliers etc. SIMULINK
[MathWorks, 1991] is based on this approach. This is a nice way of de-
scribing relations between variables but for a process engineer it is not a
practical way of describing equations.

Bond graph descriptions are another example of graphic based be-
havior descriptions, see [Cellier, 1991] or [Ljung and Glad, 1991]. A bond
graph describes the gnergy flow in the system and it is based on a few

- modeling objects. Bond graphs Expressing behavior with graphits is inter-

esting and Bond graphs can probably be implemented in Omola without
any problems.

80

5.4 Conclusions

General Model
Model Library
Process Process o
Model Library Class application
Medium Equation Subhit .
Class Class Class Class granularity
\ A \ [
Reaction Conserv. ReacSu Reactor .
Class Equation Class Class unit type
\
Reactl Vessel .
IClass IClass interface class
\ v / \
ass React Vessel CSTR
Reaction BalEqg MachMod Model Model model class
fodel Y/ B S B B S
h_ S S J

Figure 5.10 The class inheritance guideline is complemented by two new
granularity class, MediunClass and EquationClass.

5.4 Conclusions

The decomposition of processing unit behaviors is discussed in this chap-
ter. The traditional medium and unit decomposition can be achieved by co-
ordinated decomposition and single inheritance or by multiple inheritance
alone. The structure decomposition approach is found to be superior with
its explicit described interaction. One of the major benefits is the ability
to create polymorphic medium models. The static medium based decom-
position was chosen because of its simplicity. This results in a medium
and machine decomposition that can be implemented in Omola.

In the discussion about behavior decomposition into equation objects
the encapsulated model concept was found to be too rigid. An open class
concept is suggested where models are allowed to have noninstantiated
attributes. Open classes can therefore not be instantiated and can only
be used for inheritance in a given context. Also in this problem the idea
of equation object attributes is superior to the use of multiple inheritance
of equation super classes.

The structure hierarchy guidelines are extended by a new level below
the subunit. Equation objects can be used to build up new subunits. Also
the class hlerarchy gu1del1ne can be commented. The super class of all
equatlon objects is EquationClass which is a new class on the granu-
- larity level. The super class to all medium models is also a new class on
this level. Figure 5.10 illustrate the two new granularity classes that are
discussed in this chapter.

81

Parameterization

Parameterization is an important method for abstraction of internal com-
plexity. Different parameterization methods are discussed in this chapter.
The methods are exemplified in distillation column examples. Distilla-
tion is probably the most common unit operation in the chemical process
industry. The behavior description of the distillation example is based
on first principle physics. The structure of the unit and the demand on
reuse create interesting modeling problems. Decomposition, inheritance,
and parameterization are used to solve these problems. The aim is to cre-
ate basic submodels that are reusable and abstracted to a user oriented
view. In some situations the Omola language cannot handle the problems
and in these cases suggestions of Omola extensions are presented.

6.1 Demands on Parameterization

A parameter is something that can be changed by the user in order to
adapt the model behavior to a new application. In Omola a parameter is
- a time invariant variable that can be changed between simulations and
- treated as a constant,by the the simulator. These two statements about a
parameter are very different. The Omola interpretation of a parameter is
a hard restriction of the first statement. The first definition of a parameter

could be almost anything, as will be discussed in this chapter.

82

6.1 Demands on Parameterization

Coolant

o} 5 =G
Reflux ! ! l

Feed Distillate

Reboil

OO

L

Heat Input

Bottoms

Figure 6.1 The basic structure of a distillation unit.

The Distillation Unit

Distillation is an unit operation in the process industry that uses energy
to split a stream into two streams with different chemical compositions.
This separation is done in a distillation tower where heated vapor and
cooled liquid are forced to interact. The liquid is boiled in the bottom
of the column to create a rising vapor flow and the vapor at the top is
condensed to create a liquid stream falling downwards. The feed enters
the column somewhere in the middle and the product streams are often
taken at the top and in the bottom. More complicated columns can have
multiple feeds and multiple product streams, so called side streams.

The basic unit is a structure of physical objects, like reboiler, column,
condenser, reflux drum, pump, valves and sensors and it is illustrated in
Figure 6.1. Some of the physical objects have an internal structure of ob-
jects similar to the decomposition in the previous chapter. The tray based
column has an internal structure of trays. The number of trays can vary
from a few to hundreds. The trays are connected in a regular structure.
Vapor from the tray below and liquid from the tray above enter the tray
and give the tray a certain content of liquid and vapor. Vapor leaves the
tray_ to the tray above and the liquid to the tray below, see Figure 6.2.
Distillation columns are often used in series or distillation trains. Each
unit configuration often differs slightly. For instance the column can be
tray based or packed based, the condenser can be a total condenser or a
partial condenser, the reboiler can have different configurations etc. This

83

Chapter 6 Parameterization

creates a family of distillation component objects that can be put together
to create a certain distillation unit.

The user of a distillation unit model has to specify a number of pa-
rameters characterizing the unit. The unit and medium should be defined
separately. The number of trays and the feed tray number should be pa-
rameters. It should also be easy to change between different reboiler and
condenser configurations. See the ASPEN PLUS example in Appendix A.

6.2 Medium and Tray Parameterization

Liquid and vapor are forced to interact in a tray. This phenomenon is
quite complex and can be modeled at different levels of detail.

A Tray Model

A common way to model trays is to assume that the dynamics in the
vapor phase is fast compared to the liquid phase. This means that pres-
sure, vapor flow, and vapor dynamics in the tray are neglected. The model
discussed in more detail in this section is based on component mass and
energy conservation in the liquid only. In Figure 6.2 the principle of the
vapor and liquid contact in tray is illustrated. The medium and machine
decomposition discussed in Chapter 5 becomes even more important and
powerful in this application. This is because of the column structure which
is discussed further in Section 6.4. this chapter. The tray model terminals
are two liquid flow and two vapor flow terminals describing the flows
through the tray.

An Omola code description is found in Listing 6.1. It is a composite
model with one tray machine model and one distillation medium model.
They are connected to each other and to the tray model terminals. The
terminals in the tray model are subclasses of record terminals discussed in
Chapter 4, see the Listing 4.1 and 4.2. Note that the chemical dimension
of the tray submodels and terminals is assigned a value that comes from
the medium model.

] 1
i‘ i TrayModel
Tray Distillation
Machine Medium
Model Model
1 T ~
i Liquid Vapor Tt —

Figure 6.2 A tray in a distillation column and the conceptual decomposition
into medium and machine models.

84

6.2 Medium and Tray Parameterization

TrayModel ISA Model WITH
structure_parameter:
ChemDim TYPE Integer := Medium.NumberQOfComponents;
Machine.ChemDim Medium.NumberOfComponents;
terminals:
LIn 1ISA LiquidInTerminal WITH NoComp:=ChemDim; END;
VIn ISA VaporInTerminal WITH NoComp:=ChemDim; END;
LOut ISA LiquidOutTerminal WITH NoComp:=ChemDim; END;
VOut ISA VaporQOutTerminal WITH NoComp:=ChemDim; END;
submodels:
Machine ISA TrayMachineModel;
Medium ISA DistillationMediumModel;
connections:
LIn AT Machine.LIn;
VIn AT Machine.VIn;
Machine.LOut AT LOut;
Machine.V0Out AT VQOut;
Machine .MMC AT Medium.MMC;
END;

Listing 6.1 The tray model is composed of one tray ‘machine model and one
distillation medium model.

Tray Machine Parameterization

The tray machine model is composed of the differential equations de-
scribing the mass and energy dynamics, as seen in Listing 6.2. It has
terminals, parameters, variables, and equations. There are 14 equations
in all. The first one is a dynamic component mole balance in vector form.
Its dimension is equal to the ChemDim structure parameter. Notice that
all composition subterminals in the flow terminals are also vectors with
the length specified by this ChemDim attribute. The chemical dimension
of the machine model is parameterized by the ChemDim parameter.

The second and third equations describe the total amount of a chem-
ical in mole units and the height of the liquid level of the tray. The fourth
equation is a dynamic energy balance. Since it has been assumed that va-
por dynamics can be neglected, energy is modeled as the liquid enthalpy.
The following three equations describe the liquid outflow of the tray in
terms of mole flow, composition, and energy. After the outflow equations
the pressure on the tray is calculated as a simple subtraction of the pres-
sure drop from the pressure of the tray below. The last five equations
are the medium and machine interaction. The liquid composition, liquid
enthalpy, and pressure are all described in the machine model. The re-
lation between these variables and the composition and enthdlpy in the
vapor and the liquid density and mole weight are medium specific and
thus described in the medium model.

85

Chapter 6 Parameterization

TrayMachineModel ISA Model WITH
structure_parameter:
ChemDim TYPE Integer;

terminals:
MMC ISA MediumMachineCommunication WITH NoComp := ChemDim; END;
LIn ISA LiquidInTerminal WITH NoComp := ChemDim; END;
LOut ISA LiquidQOutTerminal WITH NoComp := ChemDim; END;
VIn ISA VaporInTerminal WITH NoComp := ChemDim; END;
VOut ISA VaporQOutTerminal WITH NoComp := ChemDim; END;
parameters:
TrayArea, WeirLenght, WeirHeight, G, PressureDrop ISA Parameter;
variables:

Xmole ISA ColumnVariable WITH n := ChemDim; END;
mole, level, energy ISA Variable;
equations:

%% component mole balances

Xmole’ = ,
LIn.Flow*LIn.Composition + VIn.Flow*VIn.Composition -
LOut.Flow*LOut.Composition - VOut.Flow*VQut.Composition;

mole = SUM(Xmole);

level = mole*MMC.MoleWeight / (MMC. Den51ty*TrayArea)

%% energy balance

energy’ =
LIn.Flow*LIn.Enthalpy + VIn.Flow*VIn.Enthalpy -
LOut.Flow*LOut.Enthalpy - VOut.FlowxVQut. Enthalpy,

%% out flow models :

LOut.Flow = IF height<WeirHeight THEN 0 ELSE
WeirLenght/1.5%SQRT(2*G* (height-WeirHeight) "3);

LOut.Composition = Xmolex(1/mole);

LOut.Enthalpy = energy/(mole*MMC.MoleWeight) ;

%% pressure drop

VOut.Pressure = VIn.Pressure - PressureDrop;

LOut.Pressure = VOut.Pressure;

%% medium model communications

MMC.LiquidComposition = LOut.Composition;

MMC.VaporComposition = VQut.Composition;

MMC.LiquidEnthalpy = LOut.Enthalpy;

MMC.VaporEnthalpy VOut .Enthalpy;

MMC.Pressure VOut .Pressure;

END;

Listing 6.2 The machine part in the tray model.

Distillation Medium Parameterization

Thé distillation medium model is seen in Listing 6.3. The structure pa-
 rameter Number0f Components, used in TrayModel in Listing 6.1, is as-
signed its value here. The actual medium behavior is one phase equi-
librium model, two enthalpy descriptions, and density and mole weight

86

6.2 Medium and Tray Parameterization

DistillationMediumModel ISA MediumClass WITH
structure_parameter:
NumberOfComponents TYPE Integer := 2;
terminal:
MMC ISA MediumMachineCommunication WITH
NoComp:=NumberOfComponents;
END;
parameters:
A, B, LiquidCp1, VaporCp0O, VaporCpl, CompDensity,
CompMoleWeight ISA RowParameter WITH
n := NumberOfComponents;
END;
variables:
LOGPartPressure ISA ColumnVariable WITH
n := Number(OfComponents;
END;
temperature ISA Variable;
equations:
%lhphase equalibrium
LOGPartPressure = B - Ax(1/temperature);
MMC.VaporComposition = EXP(LOGPartPressure) *
(1/MMC.Pressure) ./ MMC.LiquidComposition;
SUMABS (MMC. VaporComposition) = 1;
hhenthalpy
MMC.LiquidEnthalpy = (LiquidCpl*temperature) *
MMC.LiquidComposition;
MMC.VaporEnthalpy = (VaporCp0O +
VaporCpl*temperature)*MMC.VaporComposition;
%hdensity
MMC.Density = CompDensity * MMC.LiquidComposition;
MMC.MoleWeight = CompMoleWeight * MMC.LiquidComposition;
END;

Il

Listing 6.3 The distillation medium part in the tray model.

descriptions. The phase equilibrium model describes the relation between
the composition in the vapor and in the liquid, the temperature and the
pressure. The enthalpy descriptions, one for the liquid and one for the
vapor, relate the enthalpy to the composition and temperature. The last
two equations describe the density and mole weight relations with the
composition respectively.

Medium and Machine Communication

The medium and machine communication class is found in Listing 6.4.
It -contains information that goes in both directions. Liquid co'mposition,
- liquid enthalpy, and tray pressure are all described in the machine model.
The vapor composition and enthalpy are calculated inside the medium
model. The liquid density is just a function of the liquid composition.

87

Chapter 6 Parameterization

MediumMachineCommunication ISA RecordTerminal WITH
NoComp TYPE Integer;
LiquidComposition ISA SimpleTerminal WITH

value TYPE column[NoComp] ;

END;
VaporComposition ISA LiquidComposition;
LiquidEnthalpy ISA SimpleTerminal;
VaporEnthalpy ISA LiquidEnthalpy;
Pressure ISA SimpleTerminal;
Density ISA SimpleTerminal;
MoleWeight ISA SimpleTerminal;

END;

Listing 6.4 The medium and machine communication terminal in the tray
model.

Reuse of the tray model

A typical way to reuse the tray model is to use it for a new application with
a different medium. Assume that the same model assumptions made be-
fore are valid in the new application. An example ‘of a new medium model
that inherits the medium model described in Listing 6.3 would look like
the one in Listing 6.5. A new tray model definition is seen with the new
distillation medium model as the super class of the medium model. The
only thing that has to be changed is the definition of the medium super
model. This is done by overwriting the original definition with a new one.
Notice that, in the new medium model, the number of components is set
to three. The chemical dimension in the tray machine, compositions in
terminals, and in composition state vector is set by the ChemDim param-
eter. The chemical dimension in the machine is set equal to the number
of components in the medium model in the composite tray model. This
means that the chemical dimension of the whole tray model is set by
one parameter in the medium model. This is not an ordinary parameter
because if the parameter is changed the model has to be recompiled. It
is called a structure parameter because it changes the structure of the
model and not the behavior as ordinary parameters do. The parameters
are distributed in the model structure. The distributed parameters are
assigned values through parameter equations.

Comments on the Mathematical Model

The-tray model is described in Listings 6.1 to 6.4. The machine model
_ consists of mass balances and one energy balance. The medium' model de-
scribes the vapor composition in the form of an equilibrium model defining
the vapor composition as a function of liquid composition and tempera-

88

6.2 Medium and Tray Parameterization

DistMediumModel2 ISA DistillationMediumModel WITH
structure_parameter:
NumberOfComponents TYPE Integer := 3;

parameters:
A := [0.00637,0.0073,0.0157];
B = [32.4,31.1,46.0];
CpLiquid = [2.51,1.67,1.67];
CpOVapour = [559,523,600] ;
CplVapour = [1.67,1.26,1.26];
CompDensity = [640,1120,1440];
CompMoleWeight := [58,45,18];

END;

NewTrayModel ISA TrayModel WITH
Medium ISA DistMediumModel?2;
END;

Listing 6.5 A subclass of the medium model seen in Listing 6.3. It is special-
ized with a chemical dimension of three and associated vectors for the physical
parameters. After this a new tray model is defined which uses this medium
model.

ture, under the constraint that the vapor composition elements must sum
to one. The vapor composition constraint results in an algebraic equa-
tion which means that the vapor composition and the temperature must
be solved simultaneously. This is a differential-algebraic problem of in-
dex one. The temperature is then used in the enthalpy calculations. The
energy balance has therefore only one unknown which is not the deriva-
tive; the unknown is instead the vapor outflow. This model is found in
Luyben [Luyben, 1973]. It is common to model a tray at equilibrium like
this, and these models are common in process engineering. However, it
makes the dynamic models unnecessarily difficult, causing index prob-
lems, [Ponton and Gawthrop, 1991]. An alternative is to assume constant
vapor flow through the tray and remove the energy balance. It is hidden in
the equilibrium description. Rate equation based descriptions are a third
way where the evaporation is described as a function of a driving force.
These are, on the other hand, difficult to validate.

6.3 Column Parameterization

e

v -
T e

o i
" The column in the distillation unit contains a structure of trays on top of
each other. To conveniently describe this structure requires mechanisms

for structure generation and for parameterization of this structure.

89

Chapter 6 Parameterization

Regular Structures

A regular structure is defined as a structure of identical components. In
a regular structure it is more convenient to refer to the individual com-
ponents by their place in the structure rather than by unique component
names. This problem is similar to the need for matrix descriptions in
algebra.

A first approach to create a regular structure mechanism in Omola
is to introduce indexed named models. Then it is possible to operate on
each individual component using its index. There is also a need for a
connection concept for regular structures. In a regular structure there is
a lot of identical connections. The definition of these connections should
be done once. Below follows some example of how these mechanisms can
look in Omola.

ExXAMPLE 6.1—Explicit iterator based notation

% Not correct Omola
FOR i=1 TO 3 CREATE -
Tray[i]l ISA TrayModel;
Tray[i] .Pressure = InPressure - PressureDrop*i;
END;
FOR i=1 TO 2 CREATE
Tray[i] .VOut AT Tray[i+1].VIn;
Tray[i]l .LIn AT Tray[i+1].LOut;
END;

The need for a regular structure is discussed in [Nilsson, 1987]. This
example of a regular structure concept with FOR-loops is suggested in
[Nilsson, 1989a]. It is closely related to the suggestion in [Elmqvist, 1978]
and is also implemented in ASCEND [Piela, 1989]. O

EXAMPLE 6.2—Implicit iterator based notation

A second approach is influenced by the Maple and Matlab notation for
matrices. Instead of using loop structures one can use local loops in one
statement. The notation : (colon) has the meaning of a local FOR-loop.

% Not correct Omola

Tray[1:3] ISA TrayModel;
Tray[1:2] .VOut AT Tray([2:3].VIn;
Tray[1:2] .LIn AT Tray[2:3].LOut;

3Iray[i=1:3].Pres§ure = InPressure - PressureDrop*i;
- i

Notice that it is sometimes necessary to use the index as a parameter

in the equation, which means that the name of the index variable must

be explicitly declared. O

90

6.3 Column Parameterization

Omola is a declarative language which means that a FOR-loop con-
struction is alien. On the other hand, the FOR-loop construction discussed
here can be viewed as a preprocessor for automatic generation of a struc-
ture rather than a sequential execution procedure. The second notation
is the most compact and well suited for this purpose. In the future in this
chapter the second notation is assumed to be implemented. In the current
version of OmSim there is no regular structure mechanism.

Column Parameterization

An example of a structure parameter is the number of trays in a distil-
lation column. Assume that the regular structure mechanisms discussed
above has been implemented, see Example 6.2. In the example in Listing
6.6 the definition of submodels, connections, and parameter assignments
are all parameterized by NoTrays.

The only unusual aspect of NoTrays is that it cannot be changed
during simulation studies as can other parameters. It may be viewed as a
constant and therefore the value of the parameter is bound to a number
and cannot be changed. Changes must be done in the column class before
model compilation.

The relation between different parameters is described explicitly in
Listing 6.6 and this relation is declared on a level in the model hierarchy
where the parameters can be reached. For example the area parameter
in all trays are assigned the same value as the TrayArea parameter of
the column.

6.4 Distillation Unit Parameterization

The structures of different distillation units are often similar but they
always have some unique component. The basic unit is composed of a
column, a reboiler configuration, and a condenser configuration. The re-
boiler configuration is a set of physical objects for creating a rising vapor
flow and a bottom product flow. The condenser configuration is similar but
with objects for the generation of reflux flow and top product flow, i.e.,
the distillate. This is seen in Figure 6.1.

The distillation column unit is a complex configuration of objects. The
model structure and class hierarchies become deep with five to ten differ-
ent levels. The structuring problem is discussed in the previous sections
but it also creates a parametenzatlon and abstraction problem. The aim
is t& create reusable Models on each level. Down in the model, structure
hierarchy it is often easy to find out how models look and how they can
be reused. Further up in the model hierarchy one must know about the
internal structure of the submodels to make proper modifications.

91

Chapter 6 Parameterization

ColumnModel ISA Model WITH
structure_parameters:
NoTrays TYPE Integer;
FeedTrayNo TYPE Integer;
parameters:
TopPressure, BottomPressure, TrayArea, WeirLength, WeirHeight
ISA Parameter;
terminals:
LiquidIn ISA LiquidInTerminal;
LiquidOut ISA LiquidOutTerminal;
VapourIn ISA VapourInTerminal;
VapourQut ISA VapourQutTerminal;

submodels:
Tray[1:FeedTrayNo-1] ISA TrayModel;
Tray [FeedTrayNol ISA FeedTrayModel;
Tray [FeedTrayNo+1:NoTrays] ISA TrayModel;
connections:

Tray[2:NoTrays] .LiquidOut AT Tray[1:NoTrays-1].LiquidIn;
Tray[1:NoTrays-1].VapourOut AT Tray[2:NoTrays].VapourIn;
LiquidIn AT Tray[NoTrays].LiquidIn;
VapourOut AT Tray([NoTrays].VapourQut;
LiquidOut AT Tray[1].LiquidOut; ,
VapourIn AT Tray[1].VapourlIn;

parameter_equations:
Tray[1:NoTrays] .PressureDrop:=

(BottomPressure-TopPressure) /NoTrays;

Tray[1:NoTrays] .TrayArea := TrayArea;

Tray[1:NoTrays] .WeirLenght := WeirLength;

Tray[1:NoTrays] .WeirHeight := WeirHeight;
END;

Column25Trays ISA Column WITH
structure_parameters:

NoTrays 1= 25;
FeedTrayNo := 16;
parameters:
TopPressure.default = 10000;
BottomPressure.default := 11250;

END;

Listing 6.6 The column model assuming a regular structure mechanism be-
comes compact both for the structure description and the parameter assign-
ments.

Assume that an unit has the right configuration of components. Then
a tg)lcal distillation eolumn unit design include following: medium speci-
fications, number of trays, feed entering tray, tray and column dimensions
and heating and cooling data. Assignments of these parameters are now
discussed.

92

6.4 Distillation Unit Parameterization

‘Super Model Parameter Assignment

Assigning values to parameters can be done in the class definition, as a
constant or as a default value, or it can be done interactively during simu-
lation studies. In the distillation column example, parameters deep down
in the model structure hierarchy must be given values. In the attempt to
create reusable models, abstraction is important. Abstraction facilitates
reuse of models and makes it possible for the user to forget about the
internal details. Basic and commonly changed parameters of a composite
model should be found on the top level.

A straightforward problem is to assign values to heating and cooling
parameters in the reboiler and condenser. It is possible to bound parame-
ters to other parameters in a model in Omola. This is done by parameter
assignment, which describes a relation between parameters. Parameters
are local and defined in submodels. They are reached by the dot notation.
If the top level, the distillation unit, has a parameter called HeatArea
then it can be used to assign the value of the submodel parameter in the
structure hierarchy through a parameter assignment. Area is a parame-
ter in the heat transfer model which is a submodel of the reboiler model.
It is interesting to lift the assignment of this particular parameter up in
the hierarchy to the unit operation model interface. This is done by the
use of the dot notation in a parameter assignment.

Reboiler.HeatTransfer.Area := HeatArea;

This parameter assignment is declared inside the distillation unit
model. A more complicated problem is to assign values to the trays in the
regular structure. A new column design may have hundreds of trays and
the user does not want to set all these parameters by hand. Omola has no
mechanism for repeated assignments, as discussed above. The problem is
similar to the regular structure connection problem.

% Not correct Omola .
Column.Tray[1:NoTrays] .Machine.TrayArea := ColumnDiameter 2xPHI/4;

The area parameter in all trays is given a value through this pa-
rameter assignment which is calculated through an expression using a
super model parameter, the column diameter. This is nice because of the
similarity to the regular structure mechanism that was discussed in the
previous section.

> ““Important pararfeters in distillation unit design are the number of
trays and the feed tray number. As discussed in the column parameteri-

zation section, these parameters are used to generate the structure. They
are structure parameters. These parameters are also lifted up to the top

93

Chapter 6 Parameterization

level by the use of parameter equations.

Submodel Parameterization

Each tray in the column is composed of one machine model and one
medium model, see the tray model class in Figure 6.3. By overwriting
the inherited medium class attribute with a new medium class a totally
different column is created. As mentioned in Section 6.2 the only restric-
tion is a well defined medium and machine communication. The trays in
the column form a regular structure model which in turn is a submodel in
the distillation unit. If the user now wants to change the medium model
super class the user must know about the internal structure of the unit
and change the medium class definition on the right level in the model
hierarchy. This means not only in the column but also in the reboiler and
condenser. This is not user friendly. A well defined distillation unit model
-has a medium model parameter in its interface, i. e., a medium parameter
on the top level in the structure hierarchy. It can be solved by two dif-
ferent methods, also mentioned in the previous chapter, abstract classes
and parameterized classes. ’

Abstract Classes

An abstract class is a class definition which can be used for inheritance
but cannot be instantiated, as discussed in end of Chapter 5. The abstract
class is defined by a prefix CLASS. An abstract class definition at the top
level of a structure hierarchy can be a super class for internal classes. By
the redefinition of the top level abstract class all the internal subclass are
redefined. This idea can be used to simplify the medium parameterization
problem in a large structure as a distillation unit. The idea is illustrated
in Figure 6.3. A global tray model class is defined as discussed in the
beginning of this chapter. It has a medium model that is a subclass of
a global medium model in a medium model library. A number of trays
are defined as subclasses of the composite tray class with the difference
that their medium model super class is redefined. The new medium model
super class for all the trays are instead an abstract class on the column
level. The globally defined tray based column model is inherited in a dis-
tillation unit which also has an abstract medium model class definition.
The inherited column class is specialized by the change of its abstract
class definition. The local column in the unit has an abstract class which
is a subclass of the unit defined abstract class. This will result in all in-
terfial medium model classes in the whole distillation unit being defined
as subclasses of only one abstract class. A change of the medium classes
of all internal components is done by the redefinition of the super class to
the unit abstract class. This idea is also discussed in [Nilsson, 1992].

94

6.4 Distillation Unit Parameterization

Abstract Classes

l
|
|
y

T

4
HTE N L
1 //\ A
L N

~ NN
\

7 WAy
M 1O |
g - —

ey

\ Machine Class

/
-
s

\ Medium Class

Y

\
\

Unit Class Column Class Tray Class

Figure 6.3 The parameterization method using abstract classes. The internal
medium model classes are subclasses to the an abstract class on the top level
in the model.

Listing 6.7 illustrates how it can look in Omola. A column model is
defined similar to the one discussed in the previous section. The major
difference is the abstract class definition of a medium model. The tray
medium model definition is overwritten by a definition that points to this
local abstract medium class. The OUTER prefix indicates that the class is
found in the structure hierarchy inside the composite model and not in the
global model database. This medium class definition in the column has
the prefix CLASS which means that it is abstract and not instantiated
and it can only be used for local inheritance.

ColumnModel ISA Model WITH
% Not correct Omola
CLASS MediumModel ISA DistMedium8;

Tray[1:NoTrays] ISA TrayModel WITH
MediumModel ISA OUTER: :MediumModel;

R

END;

L i

Listing 6.7 A suggestion of how abstract classes can be used for inheritance
of a local class definition.

95

Chapter 6 Parameterization

, Actually this idea of local classes for inheritance inside the structure
hierarchy can be used without abstract classes. Assume that the medium
model in the distillation unit discussed here is a static description. This
means that the local unconnected medium classes for reuse are instan-
tiated, but the model compilation will analyze these equations and find
them static. Therefore will they only be executed once.

Parameterized Classes

Another way to solve the same problem is to extend the use of param-
eterized classes. Parameterized classes were discussed in Section 5.3. It
makes it possible to have local names in a class and refer to the same vari-
ables by other names by the user. It is done by the definition of a class
interface to the owner. An extension of this concept is to allow redefinition
of the entities in the class header.

One example of this concept is illustrated in Listing 6.8. A tray model
is defined with the medium model class definition in the class argument
list. The following column model class has a tray subclass as a component.
The tray model, T1, has a new argument list where the super class of the
argument is redefined to a class in the column model argument. On the
unit model level a local column model, CVM, is defined with a new medium
model class. This makes it possible to lift up the definition of the medium
model to the unit top level. '

TrayModel(MM ISA MediumModel) ISA Model WITH
% Not correct Omola

;M ISA MachineModel;
ﬁM.MMC AT TM.MMC;

ENB;

ColumnModel (DM ISA MediumModel) ISA Model WITH
;1(MM ISA DM) ISA TrayModel;

ENS;

UnitModel ISA Model WITH

. ?éi éM(DM ISA DistMedium8) ISA ColumnModel;
ENB;

Listing 6.8 A suggestion of how parameterized classes can be used for super
class redefinition.

96

6.4 Distillation Unit Parameterization

DistillationUnit ISA Model WITH
% Not correct Omola
UnitSelect TYPE (Unit1,Unit2) := ’Uniti;
CASE UnitSelect OF
Unitil:
MediumModel ISA EtOHWaterModel;
NoTrays := 12;
Unit2:
MediumModel ISA ButanToluenModel;
NoTrays := 62;
FeedTrayNo := 47;
END;
END;

Listing 6.9 A suggestion of as CASE construction in Omola.

Predefined Parameter Alternatives

Often a selection of parameters can be grouped together and assigned by a
meta parameter. In the distillation unit example, this can be a choice of a
special kind of unit. This can be achieved in two ways. First it can be done
by a straightforward use of inheritance, i. e., by setting all the parameters
and creating a class of the unit in question. This may result in a large
number of specific designed classes which makes the model database more
difficult to organize. An alternative way is to make it possible to define
different parameter setups which the user selects from. This can be done
by a CASE construction, which ASCEND has [Piela, 1989], and a sugges-
tion is listed in Listing 6.9. The UnitSelect variable can have one of
the two discrete values, Unit1 or Unit2. The case statement selects one
of the two different definitions depending on the value on UnitSelect.
Notice that this case statement assigns values to structure parameters
and that it is executed before model compilation. It is, like the FOR loop
construction discussed earlier in this chapter, more like a preprocessor for
structure generation than a sequential execution statement.

6.5 Conclusions

This chapter focuses on the parameterization problem of a typical chemi-
cal unit operation, the distillation column. It is shown that there is a need
for a regular structure mechanism. There is also a need for a number of
different parametérization methods. The parameters can be of different
kinds. Ordinary parameters can be changed between simulations. Struc-
ture parameters cannot be changed after model compilation. The structure
parameter must be assigned values on the class level before model com-

97

Chapter 6 Parameterization

pilation. A directly reused submodel class can be seen as a special kind of
structure parameter which can be changed by the redefinition of its super
class:

e Super model parameter assignment is used to lift up a parameter
deep down in the structure hierarchy and assign it to a value of the
top level. It is done by a local parameter of the top level and a pa-
rameter assignment describing the relation between the parameters.

e Parameter propagation is used to propagate a parameter through a
connection from one submodel to another. This is not valid for struc-
ture parameters.

e Submodel parameterization can be done by removing one submodel
and replace it with a new one. Overwriting a well defined submodel
with a new super class definition is a compact way to change sub-
models. A special version is the use of local abstract classes for local
inheritance.

98

Control Systems

-

Dynamic studies of industrial processes include both dynamic models of
the actual process and dynamic models of the control systems. Dynamic
studies have not been so common in the process industry. They have
mainly been used in process control construction and in operation studies
and seldom in process design. This is changing and dynamic studies are
on their way to becoming an important process design tool.

The traditional design of processes is based on static model descrip-
tions used in static simulation and optimization. Dynamic problems have
been taken care of by control engineers in the design of the control sys-
tem. The dynamic problems that the control system cannot handle have
been taken care of by the process operator. Examples are drastic opera-
tion changes and failure situations. This means that dynamic properties
of the plant are studied after the plant has been build.

The increasing demands on process plants require dynamic consider-
ations already in the design phase of the plant construction. The design
must take account for flexible production, failure situations etc. Process
design computer environments will therefore include dynamic simulation
tools in the future, see [Evans, 1990], [Vogel, 1991] and [Wozny et al,
1992].

The process control systems of tomorrow are going to handle many
other operation pfobfems than today, like diagnosis, on-line optimization,
planning etc, see [Arzén, 1992]. To develop complex control systems like
this requires tools for verification before the control system is connected
to the plant. This means that the control systems in the future will also

99

- e ,

Chapter 7 Control Systems

include process modeling facilities and dynamic (real time) simulation
tools. It means that developed control system models can be implemented
in a real time environment. This real time control system can then be
used to control a real time simulation of the process model.

This chapter discusses some of the problems in modeling process con-
trol systems. The primitives and the mathematical formulation of continu-
ous and sampled controllers are discussed in Section 7.1 and event based
controllers in Section 7.2. The structure and representation of process
control systems are discussed in Section 7.3. In Section 7.4 a hierarchical
control system concept is suggested followed in Section 7.5 with sugges-
tions of class hierarchy guidelines.

7.1 Continuous and Sampled Controllers

A conventional process control system can be divided into two parts, con-
tinuous and sequential control. The continuous control system can be im-
plemented by analog controllers or by digital controllers in a computer.
The sequential control system contains sequences and logic and is imple-
mented in Programmable Logical Controllers, PLCs, or computers.

To handle discrete controllers and sequences Omola has primitives
for discrete events. Events can be time dependent and scheduled to occur
some time units in the future. The Sample event is scheduled to occur 1
time unit in the future.

Sample ISAN Event;
schedule (Sample,1.0);

Events can also be state dependent and occur when a state condition
becomes true. An event can cause two kinds of actions. First, an event
can generate new events, CAUSE, and second they can cause an execution
of assignments. Assignments inside DO and END are executed when the
event occurs.

y TYPE DISCRETE Real;
ONEVENT x>0.5 CAUSE Sample;
ONEVENT Sample DO
new(y) :=y + 1;
. ;;END;

o ¥
.r“;;""/

i

Variables that are only assigned values in events, like the y variable
above, are defined as DISCRETE variables. Their values remain valid until
they are changed in a new event. The new operator refers to the variable

100

7.1 Continuous and Sampled Controllers

PIDcontrollerIClass ISA Model WITH
terminals:

y,yr,uc ISA Simplelnput;

u ISA SimpleQutput;
parameters:

K,Ti,Td ISA Parameter;

b,Tt,N ISA Parameter;
END;

PIDcontrollerModel ISA PIDcontrollerIClass WITH

variables:

e,p,i,yf,d ISA Variable;
equations:

e =yr - y;

P K*(b*xyr - y);

i? K*xe/Ti + (uc - u)/Tt;
yf’ = N/Td*(y - yf);

d = -K#Nx(y - yf)
u=p+1i+d;
END; -

Listing 7.1 A simple PID controller divided into one interface class and one
model class.

value after the event and the variable without operator refers to the value
before the event. A variable that is defined as discrete real is ignored in
the manipulation of the continuous differential equation system during
model compilation.

Continuous Time Controllers

Continuous time controllers are described by dynamic systems, often low
order finite dimensional linear systems. The classical PID controller, pro-
portional, integral and derivative controller, is very common in the process
industry. It is used in almost every control loop. It is common to use more
than one PID controller in a given structure and a multi-PID controller
functions more like a complex controller. Complex controllers are there-
fore built up by the use of PIDs as building blocks. Implementation of PID
controllers is discussed in [Astrém, 1987].

An example of a classical PID controller is seen in Listing 7.1. The
controller description is decomposed into two classes, one interface class
which is the super class for the actual controller model class. The con-
trofler interface class has four terminals, three inputs and one output, and
six parameters. The internal behavior described in the model class can be
described by six equations and four internal variables. The algorithm is
a simple PID algorithm with tracking and filtering of the measurement.

101

Chapter 7 Control Systems

PIDdiscreteModel ISA PIDcontrollerIClass WITH
parameter:
h ISA Parameter;
variables:
e,p,i,yf,d,v ISA Variable WITH
value TYPE Discrete Real;
END;
events:
Init, Sample ISAN Event;
behavior:
ONEVENT Init, Sample DO
new(e) := yr - y;
new(p) := Kx(bxyr - y);

new(i) := i + Kxh/Tixe + h/Tt*(uc-u);
new(yf):= yf + hxN*Td*(y - yf);
new(d) := -KxNx(y - new(yf));
new(v) := new(p) + i + new(d);
schedule (Sample,h) ;
END;
equation: -
u = v;

END;
Listing 7.2 A simple discrete PID controller.

A continuous time controller is a continuous dynamic system and can be
modeled by the same tools as discussed before in this thesis. Omola can
also handle matrices which means that state space controllers are easy
to describe.

Discrete Time Controllers

Discrete time controllers are described by difference equations with a
sampling interval. They can be designed in two different ways, directly in
discrete time or by discretization of analog controllers. The latter design
can be done if the controller can sample fast enough.

A discrete PID controller can be a discretization of the continuous
controller behavior, see [Astrom, 1987]. This discretized behavior is exe-
cuted in the action part of a sampling event. The discrete PID controller in
Listing 7.2 is similar to the continuous one in Listing 7.1. The continuous
and discrete PIDs are subclasses of the same interface class. Notice the
extra parameter, h, the sampling period. The system defined event Init
occurs at time zero..The assignments are calculated and a new event,
‘Sample is scheduled to occur after one sampling period. The vhriables in
the controller, except for the three input terminals, are discrete and thus
constant between the sampling events. Notice the use of the new operator.

102

7.2 Event Driven Controllers

7.2 Event Driven Controllers

Event driven or asynchronous controllers are other important parts in
process control systems. These controllers describe sequences and logic
which often are state dependent.

Sequential Controllers

Events can be used to describe sequences. One way to illustrate this is
to describe how Grafcet can be implemented in Omola. Grafcet based
sequences can be developed by graphics. A text book on Grafcet and Petri
nets is [David and Alle, 1992] and Grafcet and Petri net implementations
in Omola are discussed in [Nilsson, 1991].

The basic objects in Grafcet are steps and transitions. Steps repre-
sents the states of the sequence and they can be activated or deactivated.
The activation is done by a transition which governs the change of state
from one step to another step. A transition is fired if the step above the
transition is active and the transition condition is fulfilled. Then the step
above is deactivated and the step below is activated. Actions can be as-
sociated with a step and when a step is active the associated action is
executed. An example of a simple Grafcet is illustrated in Figure 7.1.
The Grafcet sequence is built up by objects which make it possible to use
graphics. It is possible to implement Grafcet objects in Omola and one
possible implementation is described in this section.

An Omola example of a transition is seen in Listing 7.3 and a step
in Listing 7.4. If the condition becomes greater then zero and the step
connected to Upper is active then the transition event is fired, causing
two new events. These two events are propagated through the terminals
to the connected steps. To make this possible there are two system pre-
defined terminals describing event output and event input. If an event
output in terminal T1 is connected to an event input in terminal T2 then

initial step ® ||--heat=1
transition — temp
step _ . heat=0
Pty ¥
. ‘
transition ——g-—— temp

Figure 7.1 The On-Off controller modeled in Grafcet is illustrated by graphics.

103

Chapter 7 Control Systems

TransitionModel ISA Model WITH
terminals:
Upper ISA RecordTerminal WITH
State ISA SimpleTerminal WITH
value TYPE DISCRETE Integer;
END;
Trigg ISAN EventQOutput;
END;
Lower ISA RecordTerminal WITH Trigg ISAN EventOutput; END;
Condition ISA SimpleTerminal;
behavior:
ONEVENT Condition > O AND Upper.State > 0.5 CAUSE
Upper.Trigg, Lower.Trigg;
END;

Listing 7.3 A Grafcet transition in Omola. The condition causes the firing
of two events which are propagated out from the transition object through the
terminals.

this connection is interpreted as ONEVENT T1.0utput CAUSE T2.Input.
The transition causes event outputs which are connected to event inputs
on the steps. The state is activated in the step if the upper event is fired
and the state is deactivated if the lower event is fired. In the small exam-
ple in Listing 7.5 the Grafcet objects, step and transition, are used to form
a sequential controller, an on-off controller. This can be done by a graph-

StepModel ISA Model WITH
terminals:
Upper ISA RecordTerminal WITH Trigg ISAN EventInput; END;
Lower ISA RecordTerminal WITH
State ISA SimpleTerminal WITH
value TYPE DISCRETE Integer;
END;
Trigg ISAN EventInput;
END;
State ISA SimpleTerminal WITH
value TYPE DISCRETE Integer;
END;
event:
Action ISAN Event;
behavior:
ONEVENT Upper.Trigg CAUSE Action;
ONEVENT Upper.Trigg DO new(State):=1; END;
. ONEVENT Lower.Trigg DO new(State):=0; END;
. =2 Lower.State"= Btate;
END;

Listing 7.4 A Grafcet step in Omola. Events propagated through the termi-
nals enter the step and change the state.

104

7.2 Event Driven Controllers

GrafcetExample ISA Model WITH
terminals:
temp ISA SimplelInput;
heat ISA SimpleOutput WITH value TYPE DISCRETE Real; END;
parameters:
Ref ISA Parameter;
submodels:
S1 ISA InitStepModel WITH
ONEVENT Action DO new(heat):=1; END;
END;
T1 ISA TransitionModel WITH Condition :
S2 ISA StepModel WITH
ONEVENT Action DO new(heat):=0; END;
END;
T2 ISA TransitionModel WITH Condition :
connections:
S1.Lower AT T1.Upper;
T1.Lower AT S2.Upper;
S2.Lower AT T2.Upper;
T2.Lower AT S1.Upper;
END; “

temp - Ref; END;

Ref - temp; END;

Listing 7.5 A small example of Grafcet in Omola, an On-Off controller. A
graphical description is found in Figure 7.1.

ical editor but the specific conditions and actions must be specified in a
textual editor. Almost all event handling is encapsulated and abstracted
in the transition and in the step super classes. The Grafcet development
is abstracted to a graphical level. The Grafcet user must use the prede-
fined Action event to cause actions and must also define the Condition
expression to cause transition firing.

Other Types of Controllers

Describing integrated process control systems requires handling of other
types of controllers. Examples of other types are expert systems, neural
nets and fuzzy systems. To describe these control methods in Omola today
they have to be turned into equations and events.

A rule based expert system is one common way to develop monitoring
and diagnostic controllers. With Omola it is possible to use the event
concept to describe the forward chaining mechanism in expert systems.
One example is a blackboard type of rule based system. An object has
terminals and variables and is also composed of a set of rule objects. The
rulé fires if the 1npu€ terminals or variable values used in the condition
~ expression changes. The rule action changes the value of the common

variables or output terminals. This can cause other rules to fire. This
can probably be described by equations and events. Model based expert

105

Chapter 7 Control Systems

DMPmodel

I=

Figure 7.2 A small example of a DMP based diagnosis module.

systems are much more difficult to develop because they reason about
objects and the state of objects and Omola does not have any problem
solving tool with this capability.

Neural nets are based on quantitative measurements and nonlinear
functions, described in a structure. This is well suited for Omola. The only
difficult thing is to handle the complexity of the structure. There should
be mechanisms for describing regular structures and index numbering
objects in such structures.

Another approach, closely related to neural nets, is the diagnostic
model processor, DMP diagnosis method, see [Petti and Dhurjati, 1991].
Here measurements enter model equations in residual form. If the equa-
tions predict the measurements well then the residuals are small but if
not they become larger. The residuals are scaled in nonlinear functions.
The equations are based on a number of model assumptions. If the equa-
tions are not predicting the measurements well then some of the assump-
tions are violated. All equations that depend on a particular assumption
are used to confirm or reject this assumption. The scaled residuals are
weighted to generate a failure likelihood of the assumption. When a fail-
ure likelihood is above a certain limit it causes an alarm. A diagnosis
module like this is possible to develop in Omola.

A more advanced controller will incorporate tools for design and anal-
ysis. These tools can be complicated numerical calculations that are sel-
dom used by the controller. Examples are automatic trajectory generation,
automatic model based tuning and model validation from experimental
data. They are algorithms with repeated entries and therefore difficult
to translate into the event-ass1gnment description in the current Omola.
Thére is a need for procedural language concepts. This procedural lan-
guage should be used to model computer calculations and should not be
used to solve modeling problems. Examples of a procedure concept in a
real time computer environment is found in G2, [Gensym, 1992].

106

7.3 Structuring Control Systems

7.3 Structuring Control Systems

Dynamic models with control systems for dynamics can be represented in
many different ways. Here three approaches are discussed: P&I diagrams,
block diagrams, and unit oriented structuring. The number of abstraction

levels and class tree organization are also discussed.

Process and Instrument Diagrams

In the process industry, process and instrument diagrams, P&I diagrams,
are the most common way of describing processes with control systems.

-
N

rg
&
Deisobutanizer
[M={M >
“,=.
X

R }‘“"*1
AG={ X Il
m & <t
i
151
NS, ¢
feed g
butanes & = .
gasoline é hot oil
[

gasoline

Figure 7.3 Two energy integrated distillation columns with control systems.
From [Bristol, 1980].

107

Chapter 7 Control Systems

FF ‘/_‘ qfeed

re AC é FC2 = DV

/éSaColumn ¢

CS_ - /
lrer =1 Lo & FC1 = Rv B Drum

=

Figure 7.4 A typical block diagram of a part of a distillation column control
system. It is the top control of the level in the reflux drum and the composition
control in the distillate product. It is also seen in the top of the debutanizer in
Figure 7.3.

The control system is described as a set of the continuous controllers and
does not describe the logical and sequential controllers. In a process and
instrument diagram, P&I diagram, the process objects and the control
system objects are all described in the same topology.

The relations between the process units and the controllers become
obvious. The control loop with sensor, controller and actuator is physi-
cally described. Problems arise when the controllers become more com-
plex. Then it is not obvious how the control loop functions and what it is
supposed to do. One good example of a P&I diagram that has this problem
is seen in Figure 7.3. The control system is multivariable with ten actua-
tors and twenty sensor measurements. The problem with this description
is the lack of abstraction. The control system is distributed in the process
description. There is no way to abstract the control loop details.

Control Block Diagram

The block diagram description is the most common way to describe struc-
ture in control engineering. A block diagram is similar to a P&I diagram.
It is customary to use only blocks as icons and to have a given direc-
tion of the information flow through each blocks, i.e., from the left to the
right. This makes the process description less 1ntu1t1ve and hard to un-
derstand even for a process engineer. The feedback loops are:of course
the most important details for a control engineer. A number of different
process variables are merged and are described by a lumped disturbance
variable.

108

E’l

7.3 Structuring Control Systems

Unit Oriented Control System

In some situations it is better to associate the control system with
the unit. The control system becomes a part of the unit description. This
is interesting when the internal control system is well known and can be
reused from previous applications. Examples are dynamic process design
and configuration of large control systems.

Process design that handles dynamic properties must also handle
control systems. This means that the control system design and process
design meet in the design phase. The process designer must know some-
thing about control systems and the control designer must know about
the process design. To use the conventional design approach with unit op-
eration decomposition of the process, the control system description must
also support this decomposition. This results in an unit operation control
system that makes it possible to reuse an unit, with a control system,
from a library and simulate it. It should also be possible to parameter-
ize the dynamic unit model with respect to the control system. Different
unit designs need different control systems. Common combinations can
therefore be predefined with simplified parameterization:

In configurations of large control systems like process control systems
it is convenient to reuse well known configuration on the unit level. The
process is illustrated by icons describing the process and the units include
its control system. The unit control system must be flexible and support
interunit control between different units, the coordination control on plant
and plant section level.

The unit oriented control system can be represented in two major
ways, distributed or centralized, see Figure 7.5. The distributed repre-
sentation has a natural interpretation with well defined measurements
and control actions. It is a P&I diagram on the unit level. The centralized
control system is a composite model containing all control modules for
the control of a unit. It interacts with the unit model through composite
terminals describing all measurements and all control signals. The cen-
tralized version is harder to interpret in a quick look. On the other hand,
if the internal structure of control system is not important, like in process
design, then it is abstracted into one object. Two different representations
of a control system are illustrated in Figure 7.5. The distributed control
;sysﬁem with five ¢onfrollers for controlling the tank inventory, level, and
the product quality, temperature. The centralized control system is one
process control system object which is composed of two objects, one inven-
tory control and one quality control.

109

Chapter 7 Control Systems

Reactor UnitController

System

Figure 7.5 Two ways of representing a process control system, distributed to
the left and centralized on the right.

7.4 Hierarchical Control Systems

The natural interpretation of a distributed control system is compensated
by the abstraction facility that gives a centralized control system an in-
ternal structure. The centralized representation of control systems is pre-
ferred because of the abstraction facility which is important in process
design.

A controlled unit can be decomposed into the physical unit description
and the unit control system. The unit control system is a composite de-
scription of a number of local control systems. These local control systems
are also composite and composed of other controllers. The controllers in
the bottom in the control system structure hierarchy are called primitive
controllers and the unit and local control systems composite controllers.
This creates an unit operation control system hierarchy. Above the unit,
there are control systems on the plant and plant section levels. These con-
trol systems are supervisory and coordinative. The unit control system is
centralized into one object but from the plant view the control system is
distributed in the unit modules.

e The plant control system consists of supervisory and coordinative
composite controllers.

e The plant section control system is similar to the plant controller and
. . ~it consists of supervisory and coordinative composite controller.

o The unit control system is a composite controller for the control of a
unit. Notice that it also contains sequential and monitoring control.

e The local control system is a feedback composite controller for local

110

7.4 Hierarchical Control Systems

control of a control objective.

e The elementary controller is a composite controller. Examples are
feedback, feedforward, or sequential controllers.

e Primitive control objects are the primitive building blocks of compos-
ite controllers.

These six levels of decomposition are now discussed in the reversed order.
Structuring of unit controllers is also discussed in [Nilsson, 1993b].

The Building Blocks of Local Controllers

The primitive control objects are the building blocks of hierarchical con-
trol systems. Examples of continuous primitive control objects are PID
modules, limiters, adders etc. The basic building blocks are few, but more
specially designed controllers for multivariable, adaptive, or nonlinear
control would increase the number of building blocks. Other examples are
the Grafcet primitives, steps and transitions. The elementary controllers
are ordinary control objects, like PID controllers, feedforward controllers,
etc. They are composed of a number of primitive control objects. They are
the parameterized controllers that are easy to reuse.

The local composite control system uses the elementary controllers
to make a special control system for a particular control variable. Differ-
ent types of control variables are production rate, inventory, environment,
quality and economics, see [Shinskey, 1987]. The combination of a num-
ber of elementary controllers that handle different local control variables
are large but in practice there are a limited number of composite con-
trollers. Structures of elementary controllers are sometimes called idioms
or idiomatic control, see [Bristol, 1980]. These idiomatic controllers can
be described as a number of classes that can be reused in different appli-
cations, 1. e., in different local composite controllers.

Unit Control Systems

The unit composite controller is composed of a number of local controllers
which control a number of control variables, like inventory and product
quality. In cases with large number of interactions there is a need for
decoupling between local controllers. This decoupling is represented on
the unit control level. Many of the idiomatic controller structures found
in [Bristol, 1980] and [Shinskey, 1987] use both linear and nonlinear de-
coupling between different local controllers. An unit control system for
the’debutanizer distillation column, illustrated in Figure 7.6, is composed
of four local controllers. The control actuators are the heat input in the
reboiler, heat output in the condenser, outflow in the bottom and in the
top, and finally the reflux flow. The column in Figure 7.6 has no heat out-

111

Chapter 7 Control Systems

% Lat— Unit Control
$ q
Q

(a) al
3, ? :
fe ™ E Top Quality Control
e]
butanes & s n
gasoline ke coolant (O={=|=€Q r
[s] 1

Bottorn Inventory Control

gasoline

Figure 7.6 The debutanizer distillation column with a centralized unit con-
troller.

put control. The condenser cooling flow is instead set by the surrounding
equipment. The centralized unit controller is composed of four local con-
trollers, namely quality and inventory control of the top and bottom of the
distillation unit. The only coordinated control on the unit level is a feed
forward of the flow measure in the top quality control to the top inven-
tory control. Each local controller is a composite controller except for the
bottom inventory controller which is composed of one level controller. The
other three local controllers are based on cascade configurations with a
primary control loop around the actuator valve. All three of them use dif-
ferent methods for feedforward and nonlinear control. The top inventory
controller uses feed forward control of the distillate flow. The top quality
controller uses nonlinear scaling with respect to the feed flow. The bot-
tom quality controller is a cascade configuration where the primary loop
controls the reboiler effect using a nonlinear transformation of two mea-
surements. It also has two selectors. A minimum of reboiler effect is set
- by the max selector. The minimum selector switches to presstire control
when the pressure or the control signal from the effect controller are too
high.

112

7.4 Hierarchical control systems

Dist. Section
Controller

Distiliation
Seguence

Top
Inventory
Control

Bottom
Quality
Control S

Plant Controller

Bottom
nventory Control

Figure 7.7 The process hierarchy with unit oriented control systems. The unit
controller with internal hierarchy of control objects.

Plant Control Systems
The plant and plant section control systems are similar to the unit con-
troller. These controllers start and stop the controlled units. They super-
vise the unit control systems. Interaction control or coordinative control
are also included in these controllers. The control system hierarchy is il-
lustrated in Figure 7.7. The distillation unit controller is composed of four
local controllers which in turn are composed of elementary controllers. The
distillation section is composed of controlled units and a distillation sec-
tion controller. The plant is composed of controlled sections and a plant
controller. A decomposition of the control system like this relies on the
ability to make hierarchically decomposed control systems. There is a
need for hierarchical control system design and tuning, like guidelines

for structuring and designing of large control system.

7.5 Controller Class Hierarchy

The.classification guidelines for control system classes are similar to the
process model classification guidelines discussed in Chapter 4\ They are
therefore unified into common guidelines. The classification guideline is
as follows: application - granularity - unit type - interface class - model

class.
113

Chapter 7 Control Systems

General Model
Model Library +
Control System
; Control ..
Model Library Class - application
SubController Controller ContSyst anularit
Class Class Class & y
\ } ‘\ i
SubGrafcet | | SubCont MISO Grafcet|| Unit controller type
Class Controller Cont. Cont. Cont.
\\ *) A i
Step Trans. ||PID interf: 1
IClass IClass IClass ace class
- A A A
tep Trans. PID Cascade controll
Model Model Algor. Cont. ontroller model
/|’\ |\ A__ 7 &
S ! K I B N
|
U_SGI' Dey | Level Tank Tank
Library \ | Cont . Seq Cont
-~ T kT

—— e

Figure 7.8 The CSTR hierarchy with additional classes structuring the class
tree. (arrow - is-a relation, dashed arrow - has-a relation.)

The guidelines are illustrated in Figure 4.7. The application super
class is the ControlClass which is the common super class for all control
system building blocks. The next level is the granularity level. The control
class tree is here divided into three parts, namely SubControllerClass,
ControllerClass and ControlSystemClass. The primitive control ob-
jects are the building blocks for controllers and are subclasses of the sub-
controller class. They are analogous to subunits in the process class tree.
Examples are grafcet primitives, like step and transitions, and controller
building blocks, like PID algorithms, adders, limiters etc. The elementary
and local controllers are the reusable controllers that are well parameter-
ized and can be used directly in graphical control system models. They
are subclasses of the controller class and they are composed of primi-
tive controllers. Examples are PID controller, cascade controller, start up
sequences etc. The composite controllers are control system models de-
scribing integrated unit controllers composed of continuous controllers
and sequences and they are subclasses of the control system class.

> "7The unit type lével or the controller type level is used to separate
- different controller types from each other. Examples of controller type
classes are Grafcet class, simple controller class, DMP class etc. The com-
posite controllers are often user defined and are analogous to flowsheets

114

7.5 Controller Class Hierarchy

‘in the process model class tree. But for particular units, predefined unit
controller may be developed. Examples of control system types are unit
controllers, plant section controllers, and plant controllers. These library
organized classes are followed by the interface class and the model class
levels. They have the same meaning here as in Chapter 4.

7.6 Conclusions

The representation and structure of process control systems are discussed
in this chapter. Omola can describe continuous and discrete controllers. It
can also describe sequential controllers and other types of control systems
that are based on events or quantitative measurements.

Analog controllers can be described directly in Omola using the equa-
tion oriented representation. To describe discrete time controllers a sam-
pling mechanism is needed. To describe sequential controllers and logic,
Omola has an event concept.

Abstraction of control systems into reusable components is important.
A process control system can be decomposed into a structure hierarchy:

e coordinative controllers on plant and plant section level,

e unit controllers on unit class level, ‘

e local composite controllers as components of unit controllers,
e elementary controllers as components of local controllers.

The class hierarchy structure is based on the same levels as for the process
class guidelines: application - granularity - controller type - interface class
- controller model.

Ay

115

Multi-Facet Models

Model representations of processes with units and associated control sys-
tems have been discussed in the previous chapters. They have been fo-
cused on abstraction and reuse which are facilitated through an object-
oriented approach. Structure decomposition together with class decompo-
sition create a large number of objects in the model database. The aim
is to have a model database with a lot of reusable objects that can cre-
ate new, more complex objects. To work with a model database like this
is a classical database problem. The discussion here will point out some
problems and indicate some solutions. :

Models, used in multiple problem solving, must fulfill a number of
different demands. The universal model that can be used in any problem
for any purpose is not practical and is extremely difficult to develop and
understand. Instead, a collection of different models for different pur-
poses should describe the system from different perspectives or views.
One can talk about multi-facet models. A multi-facet model contains a
set of behavior descmptlons In Omola this can be handled by multiple
freahzatmns which means that the realizations have a common interface
of terminals. Objects that are modeled with very different models with no
common interface must be described in different model classes, multiple
class models.

116

primary_realization := Nonlinear;

Nonlinear
Linear

Figure 8.1 A model Tank with two realizations describing a nonlinear and a
linear behavior. The Omola code is seen in Listing 8.1.

8.1 Multiple Realizations

An object can be described in a number of different ways. Often it is inter-
esting to have multiple model behaviors. It should be possible to change
the interior behavior description if the different behaviors of one model
have a common interface of terminals. There is a.concept called multiple
realization in Omola. It is not completely implemented in the current ver-
sion of OmSim. Realization is a predefined super class of a model compo-
nent in Omola that can be used to aggregate the interior of a model class,
l.e., a set of variables and equations. The realizations have therefore a
common interface of terminals, which means that they are polymorphic.
The internal behavior can be changed without any interaction problems
with the surrounding models. Polymorphic realizations should have com-
mon parameter sets, but this is unpractical because a new behavior means
that new phenomena are modeled and therefore new parameters are also
added.

A typical example of multiple realizations in control engineering is
the need for one nonlinear description and one linearized version of the
description, which is illustrated in Figure 8.1 and in Listing 8.1. Other
examples of descriptions can be state space and transfer function model
representations. The selection of the proper realization is made by the
user by assigning the primary realization parameter a realization class
name. This primary realization parameter is therefore a kind of structure
parameter.

EXAMPLE 8.1—Tank model

The tank model in Listing 8.1 has two different realizations, one nonlinear
equation description and one linear state space description. The second
is a linearization of the first. A model user can select the realization of
interest by assigning the parameter primary_realization a realization
class name. By default the last defined realization is the valid one (pri-

117

Chapter 8 Multi-Facet Models

Tank ISA Model WITH
terminals:
In ISA ZeroSumTerminal WITH direction:=’in; END;
Out ISA ZeroSumTerminal WITH direction:=’out; END;
parameters:
g ISA Parameter WITH value:=9.81; END;
PipeArea, CrossArea ISA Parameter;
realizations:
primary_realization := Nonlinear;
Nonlinear ISA Primitive WITH
variables:
Acc,h ISA Variable;
equations:
In = Out + Acc;
Acc = CrossAreaxh’;
Out = IF h>0 THEN PipeAreaxsqrt(2*gxh) ELSE 0;
END;
Linear ISA Primitive WITH
parameter:
ho ISA Parameter;
variables:
h,a,b ISA Variable;
equations:
h’ a*h + bxIn;
a = - PipeArea/CrossAreaxsqrt(g/(2xho));
b 1/CrossArea;
END;
END;

i

Listing 8.1 A tank model with two different realizations, one nonlinear and
one linear descriptions.

mary), in this example Linear. To choose Nonlinear one has to make an
explicit parameter declaration of the primary realization. O

8.2 Multiple Class Models

If the differences in the models are large, so large that they do not have
a common interface, then they have to be described in different classes.
The need to describe some kind of relation between the classes is still
relevant.

Semi-Polymorphic-Models

s i

Semi-polymorphic models can have the same terminal names but the in-
ternal structure of the terminals differs. This means that models like
these can have the same interface super class. The subclass inherits the

118

8.2 Multiple Class Models

TankRoot ISA VesselModel

1} gl

IS A w A
Tank1 ISA TankRoot Tank2 ISA TankRoot
q q
[{]. L] [oal]

Mass ISA Variable; Mass ISA Variable;

DOT(Mass) = in - Out; Energy ISA Variable;

DOT(Mass) = In.q - Out.q;
DOT(Energy) = In.q*In.h - Out.g*Out.h;
Outh = Energy/Mass;

Figure 8.2 A tank model super class with terminal definitions is specialized
into two tank classes. Notice that Tank2 must overwrite the terminal definition.

terminals and overwrites the original terminal super classes with new
ones with other internal descriptions. One example of semi-polymorphic
models in process engineering is seen in Figure 8.2. The class TankRoot,
which contains two terminal attributes, is specialized into two tank model
classes. Tank1l adds a behavior based on a mass balance. Tank2 adds a
behavior based on both mass and energy balances. This results in new def-
initions of the inherited terminal attributes. These are overwritten with
new ones which are record terminals with two components.

The resulting tank models in Figure 8.2 are not polymorphic. But
if the connected models in a composite model also change their internal
terminal description the composite super model can be reused. The mod-
els are polymorphic seen from the composite model if all submodels are
changed in a coordinated way.

Multiple Class Models

Multiple class models are models of the same physical system that are
very different. They are so different that they have almost nothing in
common, neither interface nor interior. They are truly non-polymorphic.
There is still the need to associate them with each other. The problem is
how to represent a relation between multiple models of the same system.
For maximized reuse the models have different super classes. If they are
forced to have a common super class, then it is an empty super class. In
other words there is a need for additional relation descriptions that can
describe the relations between the models, a multi class model relation.
This semantic relaticn is used to organize the model database and cannot
be used in the model compilation.

Relations or semantic links can be implemented in a number of dif-
ferent ways. Multiple inheritance can be used where one super class is the

119

Chapter 8 Multi-Facet Models

LinearTank ISA TankIClass WITH
% Not correct Omola

relation:
Is_linearization_of ISA Relation WITH
class := NonlinearTank;
END;
END;

NonlinearTank ISA TankIClass WITH
% Not correct Omola

relation:
Is_nonlinear_model_of ISA Relation WITH
class := LinearTank:
END;
END;

Listing 8.2 A suggestion of relation attributes in Omola. Two classes with
corresponding relation attributes describe the relation between the two classes.

super class for multiple class models. This is not a good solution. A class
will have different super classes, one for reuse and one for classification.
Using the same concept to describe two different things can be confusing.
Relation attributes that describe relations between one class and another
class, is a second approach. A third approach is to have a multiple view
object, MVO, which is a meta class for the multi-class models. The models
have different relations to the MVO. The MVO represents the real sys-
tem and all model objects are only different views of the real system from
certain perspectives. Multiple view objects are discussed in [Arzén, 1992].

Relation attributes are defined locally to describe the links to other
classes. One suggestion is illustrated in Listing 8.2. Here the relation is
unidirectional, from the owner to the related class. All relations are dis-
tributed in the different classes concerning a physical system. A multi
view object is a meta object containing relations to the different descrip-
tions of the same physical system. An example is illustrated in Listing
8.3. The MVOTank has two relations, to the nonlinear tank and to the
linear tank. The relations are centralized to the MVO which contains
the total description of a system in the model database. The relation at-
tribute approach results in a distributed network where each individual
class contains the relation descriptions. The whole relation structure will
therefore be difficult to describe and need a new display tool. The multiple
view object approach results in a centralized relation description with a
well defined tree structure.

Multiple class models are not so important in the current OmSim

120

8.2 Multiple Class Models

MVOTank ISA MultiViewClass WITH
% Not correct Omola

relations:
Nonlinear_model ISA Relation WITH
class := NonlinearTank;
END;
Linearized_model ISA Relation WITH
class := LinearTank;
END;
END;

Listing 8.3 An example of a multi view object in Omola (a suggestion). It con-
tains two relations to two global classes, one nonlinear model and one linearized
model.

because the number of very different descriptions of the same object is
limited. The number of multiple models will increase in an environment
with more than one problem solving tool.

8.3 Batch Process Models

It is often problematic and inconvenient to describe a batch process in
one single model. The model must capture all batch phases and handle
the discrete changes of operational conditions. These models become too
complicated to understand and maintain because of the complexity. One
simplification is to divide the model into batch phase models instead.
Batch phase models are easier to develop and to interpret.

Automatic Realization Selection

Instead of having realizations that describe different phenomena, one can
have realizations with different validity intervals. The choice of realiza-
tion depends on the state. A natural extension is therefore to have au-
tomatic selection of realizations. The decision to change realization can
be made by the event mechanism discussed in the previous chapter. The
action part in the event is just a parameter assignment. The key problem
is that the parameter is a structure parameter which means that the sim-
ulator must be able to handle a switch of realizations. This can be done
if the model compilation handles all realizations simultaneously before
simulation or by making run-time model compilation.

EXAMPLE 8.2—PressiTe vessel with a bursting disc \

A model of a pressurized gas vessel with a bursting disc is illustrated
in Listing 8.4 It is composed of one terminal, a number of parameters
and one variable. It also has two realizations which are both composed of

121

Chapter 8 Multi-Facet Models

GasVessel ISA Model WITH
terminal:
In ISA PipeInTerminal;
parameters:
V,M,R,T,K1,K2,P0 ISA Parameter;
variable:
p ISA Variable;
realizations:
% Not correct Omola
Intact ISA SetOfDAE WITH
p’ = R¥TxK1/(VxM) *sqrt(In.p - p);
END;
Bursting ISA SetOfDAE WITH
p’ = R*T/(V¥M)*(K1*sqrt(In.p-p) - K2#sqrt(p-P0));

END;
events:

Init, Burst ISAN Event;
selections:

% Not correct Omola
ONEVENT Init DO

primary_realization := Intact; ,
END;
ONEVENT Burst DO
primary_realization := Bursting;
END;
ONEVENT p>10%P0 CAUSE Burst;
END;

Listing 8.4 A pressurized gas vessel with a busting disc described in Omola
with automatic realization selection.

one equation. The intact realization describes the pressure in the vessel
when the in terminal pressure changes and the bursting disc is intact.
The bursting equation also describes the changes of the pressure caused
by the inflow pressure but in this case with an erupted disc. The model
also has two events, Init and Burst. On the init event, which occurs at
time zero, the normal realization is selected as active. On the burst event
the second bursting realization is selected. A nameless state event causes
the burst event and the condition is that the pressure is above ten times
the normal pressure. O

An automatic realization switch must handle continuous state transi-
tions. This can be done in two ways, by common state variables or explicit
state assignments. The simplest version is to define the state variable

outside the realizations which means that the equations inside the real-
- izations operate on the same variables. This is the case in Example 8.2.
The realization switch just changes the active set of equations. The other
way is by explicit state assignments. This means that the realizations are

122

BatchReactor q | ¢
0 S Stc:/p 0 0;¢cb:=0
—1 Sto| =0;ca:=0;¢cb:=0;
® P END;
+ stant
1 Filling
—| Filling V'=In.g; ca:=In.ca;cb = 0;
END;
+ V > V_high
2 Reaction
— :?::c— V' =0;ca’' = -k*ca; cb' = k*ca;
END;
+ ca < ca_limit
3 Empty
— Empty V' =Qut.q; ca’' = 0; ¢cb' = 0;
END;
Af}:: V<V_low
(9 [ca [eb]
Qut

Figure 8.3 A batch reactor model in Omola using a Grafcet for automatic
realization selection.

independent of each other and that the realization switch must therefore
handle the state transition. The switch makes a transformation of the old
state variables to the new states variables.

The behavior of the process can be described distributed in local re-
alizations and the selection of behavior can be described centralized. The
descriptions of the behavior phases are abstracted from the description of
the phase sequence. Example 8.2 is a modification of an example in [Bar-
ton and Pantelides, 1991] using gPROMS. A conditional case statement
selects the active equation set in gPROMS. The switch between two cases
is described inside the active case.

Batch Process Modeling

The use of multiple realizations becomes powerful in batch process model-
ing. The behavior in batch processes changes drastically depending on the
phase of the batch. To describe the process behavior with common equa-
tions for all phases becomes complex and difficult to overview. Distributed
descriptions of each phase are much easier to handle. A centralized de-
~ seription of the pliasé changes make the process description simple. As
~ the batch phases are repeated in a sequence this centralized description
can be represented with Grafcet. Modeling of batch processes with Grafcet
is described in [Nilsson, 1991].

123

8.3 Batch Process Models

Chapter 8 Multi-Facet Models

BatchReactor Controller
0 (]
@ |I—] Stop 'r ————————— o
t
|
AR A4———1 stan
|
1 | 1
|| Filling __

N

w

|
|
Aizk ——————— - V< V_low Ei

Figure 84 The principle of controller and batch process separation.

Grafcet primitives in Omola have been described in detail in Section
7.2. Grafcet can be used to describe a sequence of batch phase models,
as illustrated in Figure 8.3. The actions associated with the steps can
be assignments of new active realizations. The reactor has different re-
alizations for each step. As mentioned above, the realizations can have
internal states. The step actions must include state transformations from
one realization to another.

One example is illustrated in Figure 8.3. The batch reactor has one
In and one Out terminal. It has one Grafcet sequence and four realiza-
tions. The sequence makes the proper realization selection. It is composed
of four steps. The initial step activates the Stop realization. This realiza-
tion initializes the three states to zero. On the event Start the sequence
goes to the first step. The Filling realization has one differential equa-
tion describing the mass balance. When the volume reaches a certain
value the sequence is switched to step two. Here the realization has three
differential equations, one where the volume derivative is zero and two
other describing a simple chemical reaction. When the concentration of a
reactant is below a predefined concentration the sequence switches to the
last step. The Empty realization has one volume differential equation.

This type of batch process model is a mixture of the process equip-
ment description and the sequential controller. The model can instead be
divided into two sequences, one for the batch reactor and one fpr the con-
trol sequence. The description of batch processes, as illustrated in Figure
8.4, divides the behavior into a number of phase behavior models. These
behavior models can be predefined classes in a batch process library. This

124

8.3 Batch Process Models

batch process behavior decomposition makes the development of new mod-
els simpler. The open description in Omola makes it possible to change
the sequence. Grafcet is developed in a graphical editor. It is also possi-
ble to change each individual realization describing the behavior of each
batch phase.

Petri nets are used to structure a batch process simulator in [Czulek,
1988]. In spirit this is similar to the Grafcet approach discussed here.
The structure of the Petri net based simulator, in [Czulek, 1988], is on
the other hand invariant. The user can change the action in each place and
change the transition conditions. Another approach to modeling of batch
processes and combined discrete and continuous processes is presented
in [Barton and Pantelides, 1991], using gPROMS. gPROMS has language
constructs for describing procedures. These procedures can be actions of
tasks which are similar to events in Omola. Tasks can be hierarchical
and parameterized. With the task concept, sequences can be described in
gPROMS.

Similar ideas to the batch process model structuring are also dis-
cussed in the Al community. A model using different modeling techniques
on different abstraction levels is called a multi-model. The ideas discussed
in this section with finite-state machine descriptions for primitive model
abstraction is also presented in [Fishwick, 1992] and [Fishwick, 1993].

8.4 Model Database

The current version of OmSim has an internal database of Omola classes.
The classes can be developed inside OmSim or in an external editor.
For long time storage OmSim saves the classes in the database on files.
The user must organize the storage himself. A permanent object-oriented
database management system, OODBMS, is a better solution and will
probably be the choice in the future. An OODBMS must handle complex
objects, equivalent objects, and object versions, see [Hurson et al, 1993].
Complex objects are the composite models described in Omola. Equivalent
objects are related to the multiple class models discussed in Section 8.2.
Object versions are not handled at all in current OmSim.

Structure and Modularization

The structure of the class tree is discussed a number of times in this the-
sis;7in Section 4.3,'5.4 and 7.5. The class tree has a number of levels, first

" a number of structuring levels and then levels for reuse. A typical model-

ing example includes hundreds of classes. In a situation where predefined
class trees for different applications are available a model database will

125

Chapter 8 Multi-Facet Models

‘have perhaps over a thousand classes. It will therefore be important to
structure the class tree. The classification guidelines discussed in Chap-
ters 7 are as follows:

e The application class categorizes the class tree into different applica-
tion dependent subtrees.

e The granularity class is a super class classifying the grain size of the
class in the structure hierarchy.

e Unit types are super classes which divide the rest of the class tree in
particular unit sub trees.

e The interface class is a the super class for polymorphic subclasses.

e The model class is the classification level for the actual reusable
model description.

To support multiple developers and users the class tree can be modular-
ized into libraries. The merging of different class trees creates problems
with the global name space. Libraries therefore have a local name space
which makes it possible for different developers to develop independent
libraries. Libraries are stored on files. One library can be stéred on many
files and one file may contain many libraries. The rule "one library - one
file" is recommended. ,

A class in a library can be a subclass of a class in another library.
This means that the second library must be loaded before the first one.
This creates a hierarchy of libraries. The library definition looks like the
list below. The head is composed of a library name definition and a list of
libraries that are used.

LIBRARY ProcessEquipmentLib;
USES ProcessTerminallib;

{list of omola classes}

In a library every global class must have a unique name. However,
two different libraries can have two classes with the same name which can
be referred through the library name subseeded by the class name, Pro-
cessEquipmentLib: :Valve and MyHomeMadeModels::Valve. A model
developer only has to worry about unique naming in his or her own li-
brary.

There is one type of library in OmSim and it is open for everybody.
All-¢lasses can be mamipulated and this is sometimes not desuable There
is a need for other types of libraries.

e A work space is an area in the database where new models currently
is developed. It is the same as the OmSim-library today.

126

84 Model Database

TankModel ISA Base::Model WITH
% Not correct Omola

relations:
Graphic ISA Relation WITH class := TankGraphic; END;
Description ISA Relation WITH class := TankDescription; END;
terminals:

In ISA TankSystem::PipeInTerminal;
Out ISA TankSystem::PipeQutTerminal;
Level ISA Base::SimpleTerminal;

parameters:

Density, GravConst, TankArea, PipeArea ISA Base::Parameter;
variable:

mass ISA Base::Variable;
equations:

mass’ = Density*(In.Flow - Out.Flow);
mass = Density*TankArea*Level;
Density*GravConst*Level =
Out.Pressure + Density*abs(Out.Flow)*0ut.Flow/PipeArea~2/2;
In.Pressure = 0.0;
END;

Listing 8.5 The user defined mathematical description of the tank model in
the introductory example.

e A library is closed and a user is only allowed to read and reuse. The
user is not allowed to change or add models in the library unless the
user has permission.

e A reuse-only-library is a further development of the closed library
concept. This kind of library does not allow the user to read the Omola
code and the user only has access to the class interfaces. However,
the classes can be reused in the normal way.

Presentation and Browsing

A model database will contain many classes. It is important to support the
user with tools that facilitate browsing, search, reuse and specialization.
To work with a large database is an information problem, especially work-
ing with a library developed by another user. The presentation of models
and search methods become important issues. The classes in the model
database can have a number of different presentations. In the Omola case
the following descriptions may be available:

o _,,Icon is a graphical description of the class,

‘e Unit description and interface is a mixture of the definition of termi-
nals, parameters and optional comments.

Model assumptions can only be described by comments.

127

Chapter 8 Multi-Facet Models

TankGraphic ISA Base::Model WITH
% Not correct Omola

relations:

Model ISA Relation WITH class := TankModel; END;

Description ISA Relation WITH class := TankDescription; END;
icon:

Graphic ISA super::Graphic WITH

bitmap TYPE String := "icontank";

END;

terminals:

In ISA TankSystem::PipeInTerminal WITH
Graphic ISA super::Graphic WITH

x_pos := 200.0; y_pos := 300.0; invisible := 1;
END;
END;
Out ISA TankSystem::PipeOutTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0; y_pos := 0.0; invisible := 1;
END;
END;
Level ISA Base::SimpleTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0; y_pos := 225.0; invisible := 1;
END;
END;

END;

Listing 8.6 The class with only the graphical description of the tank model
in the introductory example in Appendix B.

o Object relations, such as structure and class hierarchies, can be de-
scribed in OmSim today.

e User oriented description is a mathematical description or graphical
interpretation of the class.

e Omola code which can be displayed today in OmSim.

Only Omola code, object relations, and graphical descriptions of composite
models can be presented in the current browser, together with the Om-
Sim graphical MED-editor. The object relations are the is a and part of
hierarchies that can be displayed by a graphical tool.

Multiple presentations can be supported in two ways: by tool filtering
and by multiple classes. Tool filtering means that the object contains all
the different presentatlons and that the tool selects the one to be pre-
setited. This is the way OmSim works today and this makes the Omola
code hard to read because of all the graphical information. This is not
good. This is clearly seen in the tank system example in Appendix B.
Half of the Omola code for the tank model is graphical descriptions which

128

84 Model Database

are generated by the graphical editor and not by the user. If the Omola
model is divided into one interface class and one model class a separation
of the graphical information and the model description can be achieved.
The interface with the terminal descriptions contains all graphical de-
scriptions.

A better solution is the multiple class concept. The user-defined model
and the automatically defined graphical description are described in sep-
arate classes. The classes are related by a semantic link or relation.

This approach can be generalized and allows a number of different
model classes or views of an object. These ideas are illustrated in the
example in Listing 8.5 to 8.7. The actual model description is found in
Listing 8.5. This is the primitive mathematical description. All graphical
information is described in the tank graphic class listed in 8.6. The major
part is the terminal location descriptions. Textual descriptions of the tank
object are defined in the third class, the tank description, seen in Listing
8.7. This distributed tank model representation is called the relation ap-
proach in the Multi Class Model section. The multi view object approach
can of course also be used here. The example, in Listing 8.5 to 8.7, is used
to illustrate the concept of distributed description and not the multi class
representation.

It is difficult to find the right model in a large database even if you
know what you are looking for. It is almost impossible for an inexperi-
enced user to find models in new libraries. If a modeling environment has
advanced model development tools the model developer tends to develop
new models of his own instead of searching for predefined models. Effi-
cient search methods and browsing facilities are importance. One simple
idea is to introduce keywords that describe the class in question. One
example of a keyword list is illustrated in Listing 8.7. The user interact
with a search tool by entering keywords and the tool lists all classes that
are described by these keywords. By adding and deleting keywords the
class list is interactively changed.

As mentioned in the previous subsection it should be possible to lock
a library. To lock a library the developer must define class descriptions,
model assumptions, and a keyword list. This forces the developer to make
proper documentation of the library before being authorized to lock it.

8.5 Conclusions

Multi-facet models ifi a broad perspective are discussed in this chapter.
They are used in multiple model descriptions, batch process models, and
in model database structuring. Omola has a multiple realization concept
which makes it possible to allow a model to have more than one behavior

129

Chapter 8 Multi-Facet Models

TankDescription ISA Base::Model WITH
% Not correct Omola
relations:
Graphic ISA Relation WITH class := TankGraphic; END;
Model ISA Relation WITH class := TankModel; END;
descriptions:
UnitDescription ISA TextClass WITH
text :=
"A class describing a liquid medium container with one
inflow and one outflow. The flow terminals are composed
of one flow and one pressure component. The unit has
also one level measurement terminal";
END;
Assumption ISA TextClass WITH
text := %
"The model is based on one dynamic mass balance. The
density and tank cross area are assumed to be constant.
The outflow is described by a Bernoulli equation.";

END;
keywords:
TankKey ISA KeyWordList WITH . ,
wordlist := (mass conservation, vessel, container);
END;
END;

Listing 8.7 A tank class with textual attributes describing the unit, its in-
terface and model assumption. It also contains a keyword list for quick search.

description. This can be used in user defined behavior parameterizations
where the user selects the proper behavior. Automatic switching between
realizations cannot be done in the current OmSim. It would require a
new type of model compilation that can handle multiple realizations si-
multaneously. In batch process modeling a sequence of realizations can
describe the overall behavior. The sequence can be described in an ordi-
nary graphic based sequence language such as Grafcet or Petri nets. The
need for a relation concept for database organization is also discussed. It
can be implemented in a number of different ways.

.A!
N
Lo

130

Process Example
in Omola *

In this chapter we apply the modeling techniques discussed in previous
chapters to develop a model of a simple, but complete chemical process.
The example uses the structure and class hierarchy guidelines. It also
uses the medium and machine decomposition of units in order to increase
the reusability. Each dynamic unit has a unit controller. The control sys-
tems are composed of both sequential and continuous controllers. These
concepts are exemplified and illustrated in the current version of OmSim.

The example used in this chapter is a chemical plant composed of
a pretreatment section, a reaction section and a separation section. The
reaction and the separation section are simply composed of one unit each,
a continuous stirred tank reactor and a distillation column unit respec-
tively. The simulation illustrates both the sequential and continuous dy-
namic properties of the process. The Omola code describing the example
is listed in [Nilsson, 1993a].

The description of a plant can be done graphically in OmSim by the
reuse of library unit models. These models are selected from libraries
Tistéd in a browser and placed in a graphical editor. A browser and a
MED graphical editor are found on the left in Figure 9.1. The graphical
editor is displaying the composite plant model. The connections can then
be drawn in the editor.

131

Chapter 9 Process Example in Omola

[®] Omola Class Browser §
Flle Tools Display

Psim ET¢[@] OmSim log window
onfig Access IniOut Debug (Sl 0T Version 3.1 199308

| StartTime B] Stop Time

Browser shows: OModels CTerminals ® Alf classes Command file starts,

Time: 50 . E.'omand file finished,

Libraries asses InEnergyEquipmer £02 200 @ T Y
ProcessPlantWosp HeatTransferiClass Y Start | { Sto Continue | { Ste Reset
fFrocessPantLib HeatTransfarMadel] P { (] (p] L‘J L r— T h—_—_—
m""'::%sf’ :E%‘I? ol compDrum i [e) 0ompBoiIer
DistiliationWosp i MacketModel le Config FErase Rescale ElFile Config FErase Rescale
DistiltationControliib BolleriQass E
ICSTRWesp oilerMachinelClass B
ICSTRControltit oierMachineModel . H 1
olierModel .
oferSimProblem T o8 A~ — —wu 1
[Total CondenseriClass 8 r H
[Total CondMachine Model o
[Total CondenserModel B i 0.6
[Cond ConfigModel I B
0.4 -
[8] Modei block diagram editor 2 - ~~ 02 4
Edit Insert Connect) O““_ ———
BPtantSimProblem T T T T 3 0 T T T T
I S __;K - : 1] 10 20 30 a0 50 _ V] 10 20 30 40 S0
1Bl 1 [8] CSTRcone El[®] 7ankLevels
. MR B 1 File Config FErase Rescale File Config Erase Rescale
Meod—a - 1 - - .
I I o . 1 | 2
sreea—d_:%—"' — N | 0.8 - 15
. . :

T T T T
10 20 30 40 ~ 50 |

Figure 9.1 A screen dump of OmSim with a simulation of the process example.

A simulation of the chemical plant example is also shown in Figure
9.1. The composite model shown in the editor can be compiled and trans-
formed into simulation code. The main simulator panel for driving the
simulation is found in the top of Figure 9.1. Four plot windows are found
below the simulation panel. They show the distillation drum and boiler
composition, in the windows compDrum and compBoiler, and the reactor
composition, in CSTRconc together with the levels in the reactor and the
recycle tank, in TankLevels. The start up of the plant, at time 1, is shown
together with a reference change of the distillation boiler composition at
time 30.

9.1 The Chemical Plant Example

We will consider a small scale chemical plant producing the product B
using the raw material A, which is seen in Figure 9.2. The reaction A —
B occurs in the solvent S. Solvent and reactant A are mixed to produce
‘theffeed to a continubus stirred tank reactor, CSTR. The reactor outflow
goes to a distillation column where unreacted material and product are
separated. The unreacted material leaves the column in the bottom and
is recirculated via a buffer tank. The product leave the column in the top.

132

9.1 The Chemical Plant Example

]

Recycle Tank Tank Reactor Distillation Column

Figure 9.2 The chemical plant example used in this chapter.

Plant Decompositidn

According to the decomposition guidelines in Chapter 4, we should have
the following levels: plant - plant section - unit - subunit. - The plant is
decomposed into three plant sections: pretreatment, reaction and separa-
tion. The last two plant sections, reaction and separation, are only com-
posed of one submodel each. The plant section level has been excluded.
The reactor and distillation units on the other hand have complex internal
structures which will be discussed in the following sections. The construc-
tion of plant sections and plant configurations are plant dependent while
units and subunits often are commonly reused constructions. Unit models
are therefore developed in the spirit of being general and reusable. Note
that there is a plant controller for supervisory control, see Figure 9.1. It is
composed of a sequential controller which coordinateds the start up and
shut down of each individual unit.

Chemical Plant Database

There are over 200 globally defined Omola objects in this plant applica-
tion, where 30 are classification classes, 40 are terminal and parameter
classes, and 25 are simulation problem classes. The rest, about 110, are
interface classes and model classes. All of these classes are grouped into
19 libraries, which are seen in the Omola class browser in Figure 9.3.
Four libraries are called work spaces and they contain simulation prob-
lem classes. Two libraries are terminal libraries. The classification classes
are-defined in the M8delClassTreeLib. The last two libraries in Figure
9.3 are predefined in OmSim. All libraries and their classes are listed in
[Nilsson, 1993a].

133

Chapter 9

Process Example in Omola

(@] Omola Class Browser &
File Tools Display

Browser shows: O Models OTerminals ®All classes
Libraries Classes in DistillationL

ProcessFPlantVosp <+ [TraylClass <

ProcessPlantLib TrayMachinelClass

PretreatWosp Tray MachineModel

PretreatLib Tray Model

DistillationWosp FeedTrayModel

Distillation ControlUb ColumniClass

CSTRWosp Column3TrayModel

CSTRControlLib Column9TrayModel

GrafcetLib DistillationUnitiClass

ControlSystemlLib Distillation3TUnitModel

Distillation9TUnitModel

C3TRLb «nones»

EnergyEquipmentLib

Flow EquipmentLib

PhaseEquilLib

ReactionModellLih

ControlTerminalLib

ProcessTerminallib

ModelClassTreelib

Scratch

Base 5 } 5

Figure 9.3
braries.

The Omola class browser loaded with the chemical process li-

9.2 Tank Reactor Model

The tank reactor in the plant example is a jacketed continuous stirred
tank reactor with a control system with both sequential and continuous
controllers. The medium and machine separation concept is exemplified
and the internal structure of the control system is discussed in this sec-
tion.

[®] Madel block diagram e

[@] Model block diagram editorfd]

[®] Mode! block diagram editor Edit

Insert Connect

Edit Insert Connect

Edit Insert Connect

[®] Model biock diagra

Edit Insert Conned

T

[

o

U

T

Figure 9.4 The tank reactor decomposition is illustrated in four hierarchical
MED editors.

134

9.2 Tank Reactor Model

[®] OMOLA class TankBeaclorVessethiodet (1)

TankReactorvesselModel ISA SubTankReactorClass WITH [&]
%% Composite model of a tank reactor vessel with
%% onhe reactor machine and one reaction model.
R3S They communicate through a reaction/reactor terminal,
icon:
% Layout here...;
structure_parameter:

Chembim := AtoBReaction.NumberofComponents;
ReactorMachine.ChemDim := AtoBReaction.NumberofComponents;
submodels:

ReactorMachine ISA CSTRLib::TankReactorMachineModel WITH
% Layout here...;
END;
AtoBReaction ISA ReactionModelLib::AtoBReactionModel WITH
% Layout here...;
= - —]
[8] OMOLA class TankBeactorMachineMode! E]{1[®] OMOLA class ReactiontoiModel (1)

TankReactorMachineModel ISA TankRe[&) L ReactionloiModel ISA Reaction gl
%% This 1is a reactor machine mod %% First order kinetics of 4
%% to reaction descriptions usin %% irreverabel reaction, A |
%% Two chemical components, A an parameters:

%% (A = Comp[1], B = Comp[2], S K¢ ISA Parameter;

parameters: R ISA Parameter;
CVOSSArea ISA Paraneter; Ea ISA Paranmeter;
variables: _ Hreac ISA Parameter;
Xmole ISA ColumnVectorClass WITH variable:
n := ChemDim; rr IYPE Real.:
END 5 1 R
Conp ISA ColumnVectorClass WITH
n = Chempin s [®] OMOILA class AeqBReactioniodel ()]
END;

AeqBReactionModel ISA Reactio[&)
X% A reversabel parameteriz
structure_parameter:

mole ISA Variable;
Volume ISA variable;
Level ISA Variable;

energy ISA Variable; NumberofComponents := 3;
Tenp ISA Variable; parameters:
equat?ons; ! Density ISA RowParameter WI
]¢r’ default := [?g2, 791, 99¢

END;
10 § O X

Figure 9.5 The reaction medium and reactor machine decomposition. One left
a part of the machine model and the reactor model are found, and on top right
the composite reactor vessel above the specialized reaction description.

Reactor Structure

Figure 9.4 illustrates the decomposition of the tank reactor. The figure
is a screeen dump of the actual OmSim environment and it shows four
hierarchical graphical editors. The continuous stirred tank reactor with a
control system is found in the window on the left. The second window from
the left shows the decomposition of the reactor into one reactor and three
control valves. The reactor is decomposed futher, in the third window from
the left, into one vessel, one jacket and one heat transfering wall. Finally,
the vessel is decomposed into one reactor machine model and one reaction
mod(el in the windowrto the right in Figure 9.4.

i

A part of the Omola description of the reactor vessel is found in the
top window of Figure 9.5. The vessel is decomposed into one machine and
one medium model and they are found in the windows below the vessel

135

Chapter 9 Process Example in Omola

[®] Model block diagram e, Model block diadTh
Edit Insert Connect it Insert Connect

i:ﬁ?‘%i ,,,,, BN

[@] Mode! block diagram editor

. r____Edit Insert Conhnect . L —tr
. . \ v " B

: 000

000

It

agram edilor
Edit Insert Connect

.

Figure 9.6 Decomposition of the CSTR controller into one sequential con-
troller and three PID controllers, all with internal structure.

window. The fourth window, bottom right, is a specialized medium model
description. The chemical dimension parameterization of the reactor ves-
sel can be seen in these windows. The chemical dimension in the vessel
and in the vessel machine are set equal to the number of components pa-
rameter of the medium model. This is done in TankReactorVesselModel
under the structure parameter tag. The actual chemical composition vari-
ables are defined in the machine model, lower left in Figure 9.5. It in-
teracts with the reaction model found on the right which describes the
reaction rate and energy production. A subclass of this reaction model,
AtoBReactionModel, seen bottom right in Figure 9.5, contains the pa-
rameter values together with the definition of the chemical dimension,
NumberOfComponents. The chemical dimension of the whole reactor is
set by the internal reaction model parameter attribute NumberQOfCompo-
nents. This means that another reactor for another application only has
to be a specialized subclass of this reactor class, with a locally redefined
reaction model super class.

The Composite Reactor Controller

The centralized unit controller of the controlled CSTR is hierarchically
giecémposed into 4 ntimber of levels. Three levels are illustrated in Fig-
- ure 9.6. The unit controller is composed of three PID controllers and one
sequential controller.

The sequential controller is described graphically using Grafcet. Note

136

9.2 Tank Reactor Model

[®] Model block diad]]
Edit Insert Conne

[a] 4 ition

ProdTransition ISA Grafcetlib::Tra
% Layout here...;

B o Condition := Level - 0.9*LevelRe

END;

[

e [®] OMOLA eclass CSTRGrafcet.Production (1) H)
Production ISA GrafcetLib::Step wl%:]

% Layout here...;
WHEN Action DO new{OutFlow.UM
END;

Figure 9.7 The sequential controller in the CSTR control system.

that the user defined Grafcet objects, shown in the Omola display win-
dows in Figure 9.7, are subclasses of predefined library classes. The user
only has to define the action and the condition descriptions. The internal
behavior of the Grafcet is abstracted in the super classes. The Grafcet
controller starts and stops the PID controllers individually through con-
nections.

The PID controller is composed of one PID module, one manual to
automatic switch, and one control signal limiter, which is seen in Figure
9.6. Note that there is information going in both directions in the PID
controller connections. The information about limiter saturation is prop-
agated backwards to the controller for windup tracking. This also solves
the manual mode problem which automatically turns the PID module into
tracking.

9.3 Distillation Unit Model

The decomposition of the distillation unit follows the same ideas used in
the tank reactor example in the previous section.

Di%tﬁllation Unit Structure

e - }
The controlled unit is composed of one unit controller and one unit model,

which is seen on the left in Figure 9.8. The second window from the left
is the distillation unit its with control system. The third window displays

137

Chapter 9 Process Example in Omola

Model block diadT}

g
Edit Insert Connect

0l el block diagram editor o .
Edit Insert Connect C L= . . . [8) Model bleck diagramPT}

BPantSimProblem Edit Insert Connect

Afeed—l_
Sfeed—r:eH' ;

Figure 9.8 Decomposition of the plant model down to the medium and tray
machine decomposed tray model in the distillation unit.

the distillation unit model, which is composed of a number of other units:
reboiler, reflux drum, tray column, control valves etc. The tray column
1s composed of a number of trays in a series. Each tray is medium and
machine decomposed which is illustrated in the window on the right in
Figure 9.8. This means that the distillation unit has the same polymor-
phic properties as the reactor. It is only possible to change the medium
model super class in order to adapt the unit to a new application. Note
that a regular structure mechanism that automatically creates the inter-
nal structure of the tray column is needed. Also, an abstract super class
concept for the medium models is useful in order to parameterize the
column efficiently. This is discussed in Chapter 6.

Distillation Model Classes

All distillation model classes used in the example are found in the class
tree display in Figure 9.9. The classes shown are all subclasses of the
ProcessClass which is called application type class in the class hierar-
chy guidelines in Chapter 4. The next level is the granularity type class,
andthe SubUnitClaSs and MediumClass are seen in Figure 9.9. The unit
type classes are the third and final categorization class in the class hierar-
chy guidelines. SubSeparatorClass is the unit type class for the column
model classes. It has two subclasses which are interface classes. The tray

138

9.3 Distillation Unit Model

[8] ProcessClass &

Distillation9TUnitModel
SeparatorClass IControlDist9TModel——I Control Dist9TSimProblem
ProcessClass| CControlDist3TModel——CControlDist3TSimProblem
CControlDist9TMadel——CContralDistSTSimProblem

Distillation3TUnitModel—Distillation3TSimProblen
DistiflationUnitl Class<

HeatTransferlClass——HeatTransferModel
HEXPartlClass——HEXPartModel——Jacket Model
BoilerMachinelClass——BoilerMachine Model
SubEnergy Equip Class&—Boiler! Class< BollerSimPrablem
BoilerModel<
BoilerData
TotalCondMachineModel
otalCondenserlClass<
TotalCondenserModel-——CondenserData
TankReactorMachmeIClass—TankReacwrMa:
TankReactorV IModel Vi ISimProblen

SubUnitClass! Sub Rear,tortlass-—SubTankReactorClass

TrayMachinelClass——Tray Machine Model

‘Tray SimProblem
Tray Model

TraylClass TrayData
Sub Separatordass< FeedTray SimProblem

FeedTrayModel<
FeedTrayData

ColumnBTrayMOdel———ColumnSlmPruhlem
Column9Tray Model

Column IClass

AtoBReactionMadel

Reaction1orModel—AeqBReactionMadel
PhaseEquilibriaClass——DistMediumlClass——DistMediumModel—AB SPhase EauilData

Reaction1oiModel)
ReactionClass—Reaction1 OrderiClass ZeroReactionModel
Medlumaass<

Figure 9.9 A part of the class tree in the chemical plant example.

interface class TrayIClass is the super class for two tray models and one
tray machine interface class. This is an exception from the guidelines.

Notice that there are six to eight levels in the class tree. The root
class is the predefined Omola class Model followed by three classification
levels. The fourth level is the interface class followed by the model class.
Direct reuse of a model means that the inherited model class is special-
ized by parameter assignments and this is done in a simulation problem
class. Additional levels in the class hierarchy occur if exceptions from the
guidelines are needed, like additional interface class, e.g., TrayMachine-
IClass, or specialization of model classes.

Specialization of a primitive model class into a new model class is
complicated. Equations and connections are nameless and can therefore
not be overwritten. To specialize a well defined primitive model class into
a new model class méans that the inherited equations are still, valid and
new ones are added, which together have a new, well defined meaning.
One example is found in the introductory example in Chapter 3. It is
often not the case. Reuse and specialization are therefore more successful

139

Chapter 9 Process Example in Omola

| Tanklevels F): [®] compDrum FT]
_File Config Frase Rescale

-?‘{

ile Config Erase Rescale

0.8

L

(@] CSTRconc
File Config Erase Rescale

ile Config Erase Rescale

1 1

0.8 - 0BT Y b
0.6 - Ean—— TR -
0.4 - L 204 s
0.2 - - 02 s

0 10 20 30 40 50 b

Figure 9.10 A simulation of the process example.

in composite models than in primitive models. It can be good to divide
a primitive model description into a number of subseeding classes. This
makes it possible to reuse models that are not complete and that lack a
number of equations. This is difficult to generalize and therefore is only
the interface and interior class separation discussed.

9.4 Process Simulation

The process example is translated into simulation code by the simula-
tor tool. An interactive simulation study can be done by the use of the
simulator subtools. A plant simulation is shown in Figure 9.1Q. It shows
some of the process variables, namely top and bottom composition in the
distillation column on the right and reactor and buffer tank levels in top
left, and finally, the reactor composition in bottom left. After the start

140

e T T A,

9.4 Process Simulation

“up transient, 4 to 8 hours, the process is at steady state after 20 hours.
A reference change is done on the bottom composition controller at 30
hours. This change causes large changes in the buffer tank level, which
is desired.

The reactor is modeled as discussed in Chapter 4 and also seen in
Figure 9.5. The distillation unit model is simplified compared to the dis-
cussion in Chapter 6. In the phase equilibrium model the algebraic loop is
removed by the use of relative volatility models. The vapor composition is
a function of the liquid compositions. This means that the energy dynamic
1s removed and replaced by a function of the composition. The model as-
sumes also that the liquid is always at equilibrium which means that
the start up dynamics are not well described. The assumption that there
are no vapor and pressure dynamics has a number of consequences. It
simplifies the actual modeling. On the other hand, it makes some descrip-
tions unrealistic and strange. Examples are the control system modeling,
particularly controllers that use flow and pressure measurement.

9.5 The Use of OmSim

The development of the process example is done using three different ed-
itors, a text editor called Emacs, the MED graphical editor, and a bitmap
editor.

The text editor can be used outside OmSim. Developed models are
stored in files which can be loaded into the OmSim database. The text ed-
itor can also be used from the inside where OmSim and Emacs exchange
model descriptions via temporary files. The graphical description devel-
oped in a MED editor is translated into Omola code which can be stored
together with text editor developed models. Icons are developed in an ordi-
nary bitmap editor in UNIX. The result is stored as a file for each bitmap.
The graphical description attribute in every Omola object can have an in-
ternal bitmap attribute indicating its bitmap file. The MED editor can
then use this information to show the icon in the right position.

It is customary to group Omola models into libraries and which are
stored on files for long time storage. A recommendation is to have one
library per file. Note that bitmap files are stored separately.

- Model Development

The model developmgnt process can be divided into three phases: the in-
terface development, the model development and the simulation problem
development.

The interface development begins with the definition of the termi-
nal classes in the text editor. The model interface is then defined in the

141

Chapter 9 Process Example in Omola

MED editor. It is good practice to make this a separate interface class.
A primitive model can now be developed in the text editor and it is a
subclass of the interface class. The same goes for composite models with
their internal structures of submodels.

This way of developing models minimizes the interaction with the
graphical information which is now found in the interface class. Advanced
use of parameterization and submodel changes force the user to interact
with the graphical information in composite models. These problems have
been discussed in Chapter 8. This can be solved by the construction of spe-
cially designed editors but this is not desired. It is better to use standard
tools and use advanced representations that make this separation possi-
ble.

After the model class is defined a simulation problem formulation
should be developed to test the model. Even if the model is a submodel
and not intended to be used alone it can be worth while making this test.
These simulation problems are stored in separate libraries called work
spaces. There are 25 simulation problem classes in the process example
mentioned in the first section in this chapter. They are used to check out
different parts of the plant model.

Simulation

When a model class with a well defined simulation problem subclass is
developed, the subclass can be simulated. The model compilation turns
the class into simulation code.

Many different checks are done. Syntax and semantic checks are of-
ten carried out already in the loading phase of a library into OmSim. A
more detailed analysis is done together with the resolving of all variables
to check the mathematical consistency of the problem. After this the equa-
tion set is manipulated in a number of different steps. This is discussed
in Section 3.3. It can sometimes be hard to realize what is happening and
why. Particularly if the problem formulation is consistent but wrong from
the application point of view. This forces the equation manipulation into
undesired analysis. The error message is hard to understand and to in-
terpret for an inexperienced user. This manipulation step should perhaps
be interactive where the user supports the manipulation with problem
characteristics and the manipulation gives the user insight to his own
problem formulation.

The simulation 1nterface is defined after the model compilation is
done First a model access tool is defined by a menu choice. It contains
all parameters, terminals and variables in the simulation problem. It is
possible to interactively change parameters and initial values of state
variables. After this plot windows can be defined. The variables that are

142

9.5 The Use of OmSim

going to be plotted are selected in the model access tool and connected
to the right plot window. Before starting the simulation it is possible to
change the simulator options, like the numerical method, error tolerances,
etc.

The lack of a steady state solver for consistent initial conditions
makes it difficult to work with DAEs in the current version of OmSim.
The algebraic equations must be initialized with correct initial conditions
in order to start the DAE solver, DASRT. Low order DAE systems can
be treated as in the introductory water tank example in Chapter 3. Here
the DAEs are calculated at time zero by the action of an init event. This
can be found in the very end of Appendix B. For large DAE systems, like
the distillation columns discussed in Chapter 6, this is not a practical
solution.

Interface

Everything in OmSim is window based and each tool and subtool have
separate windows. The majority of the user actions are menu or push
button driven. An option menu choice results in a special kind of window
which cannot be moved. This is sometimes impractical and there should
perhaps be ordinary windows. A general comment is that working with
OmSim results in many windows and this is valid for many graphical
based technical programs. '

9.6 Conclusions

The Omola Simulation Environment is successfully used to model and
simulate a chemical plant. The chemical plant is composed of a pretreat-
ment section, a tank reactor and a distillation column unit. It is controlled
by four sequential controllers and nine continuous PID controllers. Omola
has a number of modeling concepts that facilitate development of large
models, like hierarchical submodel decomposition for abstraction and in-
heritance hierarchy for reuse. The medium and unit machine decompo-
sition and the unit model and control system separation are important
special cases in dynamic process applications. The process structure is
decomposed into about 5 levels. The plant model is composed of about
200 global Omola classes in a class hierarchy with about 7 classification
levels.

3 »,—,",
e

143

10

Conclusions

e

The thesis has presented an approach to object-oriented modeling of chem-
ical processes and process control systems. The thesis presents a modeling
methodology and methods which are applied to a process example. The
methodology can be used in any process modeling activity, but the presen-
tation is focused on dynamic models. A new modeling language, Omola,
has been used as a tool. Although this tool is used to implement the ideas
the modeling methodology can be implemented in other languages sup-
porting object-orientation and use of real equation to describe behavior.

Methodology

The modeling methodology is based on the idea of decomposition into a
library of reusable submodels. These submodels can easily be specialized
by the use of inheritance in a class tree of models.

e Guidelines for hierarchical structure decomposition are presented. A
plant is decomposed hierarchically into smaller and smaller pieces:
plant sections, units and subunits. A dynamic unit is divided into
one control system and one process unit. A unit is divided into one
medium model and one unit machine model.

Guidelines for class tree organization are also presented. All submod-
~els derived in the hierarchical structure can be found in the model
“¢lass tree. The major part of the submodels are reused from prede-
fined libraries. New submodels are often specialized versions of the
old submodels using inheritance.

144

- General Process Modeling Concepts

General modeling concepts can also be extracted from the methodology. A
number of the ideas presented are general.

e Guidelines for hierarchical structure decomposition can be used to
structure process models. A chemical plant structure is decomposed
hierarchically as follows: plant - plant section - unit - subunit. This
is discussed in Chapter 4 and 7 and illustrated in the example in
Chapter 9.

e Guidelines for hierarchical class decomposition are used to organize
the class tree and to increase the reuse of model classes. The class
tree is decomposed into following levels: application - granularity -
unit type - interface class - model class. This is also discussed in
Chapter 4 and 7.

e The notation of media and machine decomposition have been found
to be very useful in models of chemical processes. This is shown, e. g.,
in the example in Chapter 9.

e Decomposition of behavior into a number of equation objects make it
possible to reuse equations. This results in a solution that is based
on structure decomposition, single inheritance and a new concept of
abstract classes which are discussed in Chapter 5.

e Abstract classes can be used to parameterize a composite model with
respect to a submodel. An alternative concept is called parameterized
classes. These concepts are discussed in Chapter 6.

¢ Batch process model decomposition into individual descriptions of
each batch phase is suggested in Chapter 8. The selection of the active
phase is done by an ordinary sequential controller description.

Omola Extensions

Some of the modeling concepts discussed in the thesis cannot be handled
conveniently in the current version of Omola. Some suggestions for exten-
sions of Omola have been made. Some missing features are serious and
some are less important. The major suggestions are:

¢ The lack of regular structure description is probably the most impor-
~tant drawback of the current Omola in process applications.

7Tt would be useful to have abstract classes of the type discussed in
Chapter 5 and 6 in Omola. It is important in some parameteriza-
tion methods of large models and for local inheritance in structure
hierarchies.

145

Chapter 10 Conclusions

e Parameterized classes is a powerful concept as shown in Chapter 5
and 6. It would be useful to have direct support of these parameter-
ized classes in the modeling language.

e Automatic switching between different internal descriptions facili-
tates modeling of complex behavior. This creates a difficult model
compilation and requires a major revision of the simulator as dis-
cussed in Chapter 8.

e Multiple inheritance is an interesting concept that is easy to include
in Omola. However, there are no arguments in the thesis that defend
its importance in process model applications. Some users may find it
useful and therefore Omola should allow multiple inheritance.

Future Work

A direct continuation of the work in this thesis is to develop libraries for
different applications in the spirit of the thesis methodology. This can be
done in the current version of the Omola simulation environment.

Some of the concepts discussed in the thesis-are not implemented in
Omola today and therefore not explored in detail. Implementation and ex-
ploration of these concepts are interesting. Interesting concepts to explore
further are automatic switching between realizations, equation decompo-
sition of behavior, parameterized classes, and abstract model classes.

A complement to the OmSim environment could be a modeling as-
sistant, an intelligent system for the generation of Omola code. Together
with an equation class library and an user oriented front end the assis-
tant should generate code from an application oriented description. The
ideas in DESIGN-KIT, [Stephanopoulos et al., 1987], or HPT, [Woods, 1993],
can be implemented into an open modeling language like Omola using a
modeling assistant.

Omola can describe combined continuous and discrete systems. They
can be differential and algebraic equation systems with discrete events.
To allow other primitive model descriptions is interesting to also include.
Transfer function descriptions should be possible to transform into ordi-
nary differential equations, ODEs, and use the current simulation tool. In
process applications, particularly partial differential equations, PDEs, are
of great interest to describe. A language extension like this is simple. The
problem is to develop problem solving tools. One simple solution is the
use of the method of lines and static gridding for transformation of PDEs
into ODEs. This s1mgle solution is used in some simulation tools and can
only be used to a particular class of PDE. A more general approach to
PDE simulation is a complicated problem and needs advanced solvers.

146

11
References

ANDERSSON, M. (1989): “An object-oriented modeling environment.” In
IAZEOLLA et al., Eds., Simulation Methodologies, Languages and Ar-
chitectures and Al and Graphics for Simulation, 1989 European Sim-
ulation Multiconference, Rome, pp. 77-82. The Society for Computer
Simulation International.

ANDERSSON, M. (1990): Omola—An Object-Oriented Language for Model
Representation. Lic Tech thesis TFRT-3208, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

ANDERSSON, M. (1992): “Discrete event modelling and simulation in
Omola.” In Proceedings of the 1992 IEEE Symposium on Computer-
Aided Control System Design, CADCS ’92, Napa, California.

ANDERSSON, M. (1993a): “Modelling of Combined Discrete Event and
Continuous Time Dynamical Systems.” In Proceedings of the 12th
World Congress of Automatic Control.

ANDERSSON, M. (1993b): “OmSim and Omola Tutorial and User’s Manual.”
Technical Report TFRT-7504, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

ArziN, K.-E. (1992): “A model-based control system concept.” Report ISRN
#% = -/LUTFD2/TFRT-£3213--SE, Department of Automatic Control, Lund
-~ Institute of Technology, Lund, Sweden.

ASPEN (1982): ASPEN PLUS Introductory Manual Aspen Technology,
Inc., Cambridge, MA.

147

Chapter 11 References

AstrOM, K. J. (1987): “Implementation of PID regulators.” Report TFRT-
7344, Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

AuGUSTIN, C. D. C., M. S. FINEBERG, B. B. JOHNSON, R. N. LINEBARGER,
F. J. SANSON, and J. C. STRAUSS (1967): “The SCi Continuous System
Simulation Language (CSSL).” Simulation, 9, pp. 281-303.

BARKER, H., M. CHEN, P. GRANT, C. JOBLING, and P. TOWNSEND (1993):
“Open Architecture for Computer-Aided Control Engineering.” Con-
trol Systems, 13:2, pp. 17-27.

BARTON, P. and C. PANTELIDES (1991): “The Modelling and Simulation
of Combined Discrete/Continuous Processes.” In Proceedings from
Process System Engineering 91, Montebello, Canada.

BIEGLER, L. (1989): “Chemical Process Simulation.” Chemical Engineering
Progress, October, pp. 50—61.

BrisToL, E. H. (1980): “After DDC: Idiomatic Control ” AIChE Philadel-
phia, May.

CELLIER, F. and H. ELMQVIST (1993): “Automated Formula Mampulatmn
Supports Object-Oriented Continuous-System Modeling.” IEEE Con-
trol Systems Magazine, 13:2, pp. 28-38.

CELLIER, F. E. (1991): Continuous System Modelling. Sprmger-Verlag

CzuLEK, A. (1988): “An Experimental Simulator for Batch Chemical
Processes.” Computers & Chemical Engineering, 12:2/3, pp. 253-259.

DaviD, R. and H. ALLE (1992): Petri Nets and Grafcet. Prentice Hall.

DouGLAS, J. (1988): Conceptual Design of Chemical Processes. McGraw-
Hill.

ELmQvisT, H. (1975): “SIMNON - An interactive simulation program for
nonlinear systems.” Technical Report TFRT-3091, Dept of Automatic
Control, Lund Institute of Technology, Sweden.

ErmQvist, H. (1978): A Stuctured Model Language for Large Contmuous
Systems. Phd thesis, Lund Institute of Technology.

ELmQVIST, H. (1993): “Object-Oriented Modeling and Automatic Formula
Manipulation in Dymola.” In Proceedings of Scandinavian Simulation
Society, Kongsberg, Norway.

ELmqvisT, H., K. J. ASTROM, T. SCHONTHAL, and B. WITTENMARK (1990):
'SIIHIIOH User’s.Guide for MS-DOS Computers. SSPA Systems.

, 'E'VANS L. B. (1990): “Process Modelling: What Lies Ahead.” Chemical
FEngineering Progress, pp. 42—44.

FAGLEY, J. C. and B. CARNAHAN (1990): “The Sequential-clustered method

148

for Dynamic Chemical Plant Simulation.” Computers & Chemical
Engineering, 14:2, pp. 161-177.

FisHwICK, P. (1992): “An Integrated Approach to System Modelling
using a Synthesis of Artificial Intelligence, Software Engineering
and Simulation Methodologies.” ACM Transactions on Modelling and
Computer Simulation, 2:4, pp. 307-330.

FIsawICK, P. (1993): “A Simulation Environment for Multimodeling.”
Discrete Event Dynamic System: Theory an Applications.

GENSYM (1992): G2 Reference Manual, version 3.0. Gensym Corp., Cam-
brigde, MA.

HLLESTAD, M. and T. HERTZBERG (1988): “Convergence and Stability of
the Sequential Modular Approach to Dynamic Process Simulation.”
Computers & Chemical Engineering, 12:5, pp. 407—414.

HURSON, A., S. PAKZAD, and J. CHENG (1993): “Object-Oriented Database
Management Systems: Evaluation and Performance issues.” Com-

puter, 26:2, pp. 48-60. .
INTELLICORP (1987): KEE Software Development System, User’s Manual,
IntelliCorp.

KHEIR, N. (1988): Systems Modeling and Computer Simulation. Marcel
Dekker, Inc. '

KREUTZER, W. (1986): System Simulation — Programming styles and
languages. Addison-Wesley.

KRONER, A., P. HoLL, W. MARQUARDT, and E. D. GILLES (1990): “DIVA - an
Open Architecture for Dynamic Simulation.” Computers & Chemical
Engineering, 14:11, pp. 1289-1295.

LJUNG, L. and T. GLAD (1991): Modellbygge och Simulering (Modelling
and Simulation). Studentlitteratur.

Lunp, P. C. (1992): An Object-Oriented Environment for Process Mod-
elling and Simulation. PhD thesis 50, the Norwegian Institute of
Technology.

LUYBEN, W. L. (1973): Process Modeling, Simulation, and Control for
Chemical Engineers. McGraw-Hill.

MARQUARDT, W. (1991): “Dynamic Process Simulation—Recent Progress
and Future Challanges.” In RAY and ARKUN, Eds., Fourth Interna-
tional Conference on Chemical Process Control, South Padre Island,

= -+ Texas. o ‘

MARQUARDT, W. (1993): “An Object-oriented Representation of Structured
Process Models.” In Furopean Symposium on Computer Aided Pro-
cess Engineering — 1.

149

Chapter 11 References

‘MARQUARDT, W., P. HoLL, and E. GILLES (1987): “Dynamic Process
Flowsheet Simulation—an Important Tool in Process Control.” In
Proceedings of the 10th World Congress on Automatic Control,
volume 2, pp. 374-379, Munich, Federal Republic of Germany.
International Federation of Automatic Control.

MATHWORKS (1991): SIMULINK a program for simulating dynamic
systems, User’s Guide. The Math Works Inc., Cochituate Place, 24
Prime Park Way, Natick, MA 01760.

MATTSSON, S. E. (1988): “On model structuring concepts.” In Preprints

4th IFAC Symposium on Computer-Aided Design in Control Systems
(CADCS), pp. 269-274, P. R. China.

MATTSSON, S. E. (1989): “Modeling of interactions between submodels.”
In IAZEOLLA et al, Eds., Simulation Methodologies, Languages and
Architectures and AI and Graphics for Simulation, 1989 European
Simulation Multiconference, Rome, pp. 63—68. The Society for Com-
puter Simulation International.

MATTSSON, S. E., Ed. (1989): “New tools for model development and
simulation. Proceedings of a full-day seminar, Stockholm, 24 October
1989.” Report TFRT-7438, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

MATTSSON, S. E. and M. ANDERSSON (1992): “The Ideas Behind Omola.”
In Proceedings of the 1992 IEEE Symposium on Computer-Aided
Control System Design, pp. 23—29.

MATTSSON, S. E., M. ANDERSSON, and K. J. ASTROM (1993): “Object-
Oriented Modelling and Simulation.” In LINKENS, Ed., CAD for
Control Systems, pp. 31-69. Marcel Dekker, Inc.

MINSKY, M. (1965): “Models, Minds, machines.” In Proceedings IFIP
Congress, pp. 45—49.

MitcHELL, E. E. L. and J. S. GAUTHIER (1986): ACSL: Advanced Con-

tinuous Simulation Language—User’s Guide and Reference Manual,
Mitchell & Gauthier Assoc., Concord, Mass.

NILSSON, B. (1987): “Experiences of describing a distillation column
in some modelling languages.” Report TFRT-7362, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

NILSSON, B. (1989a): Structured Modelling of Chemical Processes—An
Object-Oriented Approach. Lic Tech thesis TFRT-3203, Department
~Zof Automatic €Cofitrol, Lund Institute of Technology, Lund, Sweden.

. NILSSON B. (1989b): “Structured Modelling of Chemical Processes with
Control Systems.” In AIChE annual meeting 1989, 5-10 november,
San Fransisco, CA.

150

NILSSON, B. (1990): “Object-oriented modelling of a controlled chemical
process.” In Preprints 11th IFAC World Congress, volume 10, pp. 22—
27, Tallinn, Estonia.

NILSSON, B. (1991): “En on-linesimulator for operatérsstod,” (An on-line
simulation for operator support). Report TFRT-3209, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

NILSSON, B. (1992): “Object-oriented chemical process modelling in
Omola.” In Proceedings of the 1992 IEEE Symposium on Computer-
Aided Control System Design, CADCS 92, Napa, California.

NiLssoN, B. (1993a): “A Chemical Plant Model in Omola.” Technical
Report ISRN LUTFD2/TFRT--7507--SE, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

NiLssON, B. (1993b): “Modeling Process Control System in Omola.”
In Proceedings 12th World Congress International Federation of
Automatic Control, volume VI, pp. 197-200, Sydney, Australia.

NiLssoN, H. (1991): “Implementation of Petri-net and Grafcet primitives
in Omola and modelling of Markov-processes.” Master thesis TFRT-
5452, Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

PANTELIDES, C. (1988): “SPEEDUP - Recent Advances in Process Simula-
tion.” Computers & Chemical Engineering, 12:7, pp. 745-755.

PANTELIDES, C. and P. BARTON (1992): “Equation-oriented Dynamic Sim-
ulation current status and future perspectives.” In Proceedings of
FEuropean Symposium on Computer Aided Process Engineering-2.

PERKINS, J. D. (1986): “Survey of existing Systems for the Dynamic
Simulation of Industrial Processes.” Modeling, Identification and
Control, 7:2, pp. 71-81.

PERKINS, J. D. and R. SARGENT (1982): “SPEEDUP: A Computer Program
for Steady-State and Dynamic Simulation and Design of Chemical
Processes.” AIChE Symposium Series, 78:214, pp. 1-11.

PETTI, T. F. and P. S. DHURJATI (1991): “Object-Based Automated Fault
Diagnosis.” Chemical Engineering Communications, 102, pp. 107-
126.

PeETzOLD, L. (1982): “A description of DASSL: a differential-algebraic
equation solver.” In Proceedings of IMACS World Congress, Montreal,
-~Canada. o

- PIELA P. (1989): ASCEND: An Object-Oriented Computer E’nvzronment

for Modeling and Analysis. PhD thesis, Carnegie-Mellon University,
Pittsburgh, PA.

151

Chapter 11 References

PieLA, P., T. EppERLY, K. WESTERBERG, and A. WESTERBERG (1991):
“ASCEND: An Object-Oriented Computer Environment for Modeling
and Analysis: the Modeling Language.” Computers & Chemical
Engineering, 15:1, pp. 53-72.

PoNTON, J. W. and P. J. GAWTHROP (1991): “Systematic Construction of

Dynamic Models for Phase Equilibrium Processes.” Computers &
Chemical Engineering, 15:12, pp. 803—-808.

SARGENT, R. W. H. and A. W. WESTERBERG (1964): “SPEED-UP in Chemical
Engineering Design.” Transaction Institute in Chemical Engineering,
42, pp. 190-197.

SHINSKEY, F. G. (1987): Controlling Multivariable Processes. Instrument
Society of America, 3 edition.

SoruIE, C. F. (1990): A Computer Environment for Process Modelling.
PhD thesis 12, the Norwegian Institute of Technology.

STEFIK, M. and D. G. BoBROW (1984): “Object-Oriented Programming:
Themes and Variations.” The Al Magazine, 6:4, pp. 40-62.

STEPHANOPOULOS, G., G. HENNING, and H. LEONE (1990a): “MODEL.LA. A
Modeling Language for Process Engineering—I. The Formal Frame-
work.” Computers & Chemical Engineering, 14:8, pp. 813—846.

STEPHANOPOULOS, G., G. HENNING, and H. LEONE (1990b):"‘MODEL.LA. A
Modeling Language for Process Engineering—II. Multifaceted Mod-

eling of Processing Systems.” Computers & Chemical Engineering,
14:8, pp. 847-869.

STEPHANOPOULOS, G., J. JOHNSTON, T. KRITICOS, and R. LAKSHMANAN
(1987): “DESIGN-KIT: An Object-oriented Environment for Process
Engineering.” Computers & Chemical Engineering, 11:6, pp. 655—674.

STROUSTRUP, B. (1986): The C++ Programming Language. Addison-
Wesley, Reading, Mass., USA.

TeELNES, K. (1992): Computer Aided Modeling of Dynamic Processes based
on Elementary Physics. PhD thesis 47, the Norwegian Institute of
Technology.

VoGeL, E. F. (1991): “An Industrial Perspective on Dynamic Flowsheet
Simulation.” In RAY and ARKUN, Eds., Fourth International Confer-
ence on Chemical Process Control, South Padre Island, Texas.

WESTERBERG, A. W. and D. R. BENJAMIN (1985): “Thoughts on a Future
- ..~ Equation-oriented Flowsheeting System.” Computers & Chemical
" Engineering, 9:5, pp. 517-526. ’

WINSTON, P. H. and B. K. P. HORN (1984): Lisp. Addison-Wesley.
Woobs, E. (1993): The Hybrid Phenomena Theory. PhD thesis 60, the

152

Norwegian Institute of Technology.

Wozny, G., W. GUNTERMUTH, and W. KOTHE (1992): “CAPE in der
Verfahrenstechnik aus industriller Sicht — Status, Bedarf, Prognose
oder Vision?” Chemie-Ingenieur-Technik, 64:8, pp. 693—699.

,

153

Aspen Plus

This appendix breifly introduce a flowsheet simulation packages called
ASPEN PLUS. Below follows an example found in [Aspen, 1982]. It is a
minor process where two feed streams are mixed together with two re-
cycle streams to produce a reactor feed, see Figure A.1. In the reactor
benzene and hydrogen react to produce cyclohexane. The reactor out flow
enters a flash where vapor and liquid are separated. Some of the vapor is
recyled and some is purged. The liquid is also split into one recyle stream
and one column feed. The column separates light components and the
desired product of cyclohexane. The input file to ASPEN PLUS is found
in Listing A.1. It begins with a title and a textual description. These are
just comments and used to make output comments. The problem specifi-
cations begin with the definition of engineering units and continue with

O Purge

() Light
by-products

Hydrogen

Benzene
L o *

AR

Cyclohexane

Figure A.1 Flowsheet of the process for hydrogenation of benzene to cyclo-
hexane.

154

TITLE ’HYDROGENATION OF BENZENE TO CYCLOHEXANE’
DESCRIPTION “"THIS IS A MODEL OF A PROCESS FOR PRODUCING
CYCLOHEXANE BY HYDROGENATION OF BENZENE."

IN-UNITS ENG

OUT-UNITS ENG

COMPONENTS H2 HYDROGEN/ N2 NITROGEN/ C1 METANE/ BZ BENZENE/
CH CYCLOHEXANE

PROPERTIES SYSOP3

FLOWSHEET
BLOCK FEED-MIX IN=H2IN BZIN H2RCY CHRCY OUT=RXIN
BLOCK REACT IN=RXIN OUT=RX0OUT
BLOCK HP-SEP IN=RXOUT OUT=VAP LIQ
BLOCK V-FLOW IN=VAP OUT=PURGE HZ2RCY
BLOCK L-FLOW IN=LIQ 0UT=COLFD CHRCY
BLOCK COLUMN IN=COLFD OQUT=LTENDS PRODUCT

STREAM H2IN TEMP=120 PRES=335 MOLE-FLOW=300
MOLE-FRAC H2 0.975/ N2 0.005/ C1 0.02
STREAM BZIN TEMP=100 PRES=15 MOLE-FLOW=100
MOLE-FRAC BZ 1
BLOCK FEED-MIX HEATER
PARAM TEMP=300 PRES=330
BLOCK REACT RSTOIC
PARAM TEMP=400 PRES=-15
STOIC 1 MIXED BZ -1/ H2 -3/ CH 1
CONV 1 MIXED BZ 0.998
BLOCK HP-SEP FLASH2
PARAM TEMP=120 PRES=-5
BLOCK V-FLOW FSPLIT
FRAC PURGE 0.08
BLOCK L-FLOW FSPLIT
FRAC CHRCY 0.3
BLOCK COLUMN RADFRAC
PARAM NSTAGE=15
FEEDS COLFD 8
PRODUCTS LTENDS 1 V/PRODUCT 15 L
P-SPEC 1 200
COL-SPECS RDV=1 RR=1.2 B=99
VARY 1 B 97 101
SPEC 1 MOLE-RECOV .9999 STREAMS=PRODUCT COMPS=CH

Listing A.1 Listing of the ASPEN PLUS input file of the example.

a medium description. The user only has to specify the chemical compo-
nents and what kind of termodynamic property description to be used.
It is all encapzulated into one property assignment. After this the flow-
sheét topology is specified. Before the definition of the processing blocks
in the flowsheet the feed streams of hydrogen and benzene aré specified.
The block are predefined units found in the library. They have predefined
parameters that can be set, as seen above.

155

Introductory
Omola Example

The introductory tank system example in Chapter 3 is described in more
detail in this appendix. The library containing all classes in the tank
system example is listed in the following section. It is also listed in the
model database browser in Figure 9.3. The tank system library contains
two terminal classes, four primitive models and two composite models.
The primitive models describe a tank, static valve, control valve and PI

(@] Omola Class Browser
File Tools

Browser shows: O Models OTerminals ® All classes

Libraries Classes in TankSystem

@ PipelnTenminal
Base Pipe OutTenminal
[TankModel
\ValveModel
ControlValve Model
Pl ControllerModel

o TankSystem SimProblem |
T : «hohes
' (3 (3

Figure B.1 The tank system library listed in the OmSim model data base
browser.

156

(@) Modef block diagram editor &
Edit Insert Connect

TankSystem

[

Figure B.2 The tank system model in the graphical model editor, MED.

controller. The composite models is the tank system model and a sub-
class defining the simulation problem. Compared to the Omola classes in
Section 3.1 these library classes also contain graphical descriptions. The
graphical description is described in the Graphic attribute. It contains
information about the icon position (xpos, ypos) and the icon bitmap. The
terminal icons can be made invisible. The bitmap description is devel-
oped by an ordinary bitmap editor. The bitmap is not a part of the model
database and the bitmap attribute is interpret as a file name. The icons
are seen in graphical editor in Figure B.2.

LIBRARY TankSystem;
%% A library with the introductory tank
%% system example in Chapter 3.

PipeInTerminal ISA Base::RecordTerminal WITH
Flow ISA Base::ZeroSumTerminal WITH

direction := ’In;
END;
Pressure ISA Base::SimpleTerminal;

END;

PipeQutTerminal ISA TankSystem::PipeInTerminal WITH
Flow ISA Base::ZeroSumTerminal WITH
direction := ’0ut;
~ END;
.+ END; ©or

TankModel ISA Base::Model WITH

icon:
Graphic ISA super::Graphic WITH

157

Appendix B Introductory Omola Example

P

158

T

bitmap TYPE String := "icontank";
END;
terminals:
In ISA TankSystem::PipeInTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 300.0;
invisible := 1;
END;
END;
Out ISA TankSystem::PipeQutTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 0.0;
invisible := 1;
END;
END;
Level ISA Base::SimpleTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y_pos := 225.0;
invisible := 1;
END;
END;
parameters:
Density ISA Base::Parameter;
GravConst ISA Base::Parameter;
TankArea ISA Base::Parameter;
PipeArea ISA Base::Parameter;
variable:
mass ISA Base::Variable;
equations:
mass’ = Density*(In.Flow - Out.Flow);
mass = Density*TankAreaxLevel;
Density*GravConst*Level =
Out.Pressure + Density*abs(Out.Flow)*0ut.Flow/PipeArea~2/2;
In.Pressure = 0.0; .
END;

ValveModel ISA Base::Model WITH

icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "iconvalve";
END;
terminals:

In ISA TankSystem::PipeInTerminal WITH
Graphic ISA super::Graphic WITH]

x_pos := 0.0;

y_pos := 100.0;

invisible := 1;
END;

e

. i? ~

END;
Out ISA TankSystem::PipeQutTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y-pos := 100.0;
invisible := 1;
END;
END;
parameters:
PressDrop ISA Base::Parameter;
Density ISA Base::Parameter;
PipeArea ISA Base::Parameter;
equation:
In.Flow = Out.Flow;
PressDrop*(In.Pressure - Qut.Pressure) =
Density*abs(In.Flow)*In.Flow/PipeArea~2/2;
END;

ControlValveModel ISA TankSystem::ValveModel WITH
Graphic ISA super::Graphic;
terminal:
Control ISA Base::SimpleTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 200.0;
y_pos := 300.0;
invisible := 1;
END;
END;
parameter:
ValvePar ISA Base::Parameter;
variable:
PressDrop ISA Base::Variable;
Position ISA Base::Variable;
equations:
PressDrop = ValvePar*Position;
Position = if Control < 0 then 0
else if Control < 1 then Control
else 1;
END;

PIControllerModel ISA Base::Model WITH
icon:
Graphic ISA super::Graphic WITH
bitmap TYPE String := "iconpireg";
END;

terminal:

Measure ISA<Base::SimpleTerminal WITH
Graphic ISA super::Graphic WITH
x_pos := 400.0;
y_pos := 150.0;
invisible := 1;

159

Appendix B Introductory Omola Example

END;

END;

Control ISA Base::SimpleTerminal WITH
Graphic ISA super::Graphic WITH

x_pos := 0.0;
y_pos := 150.0;
invisible := 1;
END;
END;
parameters:

K ISA Base: :Parameter;
Ti ISA Base::Parameter;
Tt ISA Base::Parameter;
Ref ISA Base::Parameter;
variables:
e ISA Base::Variable;
p ISA Base::Variable;
i ISA Base::Variable;
u ISA Base::Variable;

equations:
e = Ref - Measure; "
P = Kxe;

i’ = Kxe/Ti + (u - Control)/Tt;

u=p+ 1i;

Control = if u < 0 then 0 else if u < 1 then u else 1;
END; '

TankSystem ISA Base::Model WITH
icon:
Graphic ISA super::Graphic;
terminals:
In ISA TankSystem::PipeInTerminal WITH
Graphic ISA super::Graphic WITH

x_pos := 0.0;
y_pos := 200.0;
END;

END;
Out ISA TankSystem::PipeQutTerminal WITH
Graphic ISA super::Graphic WITH

x_pos := 400.0;
y_pos := 75.0;
END;
END;
submodels:

Tank ISA TankSystem::TankModel WITH
Graphic ISA super::Graphic WITH

s x_pos := 200.0;
) y_pos := 150.0;
END;
END;

160

InflowValve ISA TankSystem::ControlValveModel WITH

Graphic ISA super::Graphic WITH
x_pos := 100.0;
y_pos := 200.0;
END;
END;
OutflowValve ISA TankSystem::ValveModel WITH
Graphic ISA super::Graphic WITH

x_pos := 300.0;
y_pos := 75.0;
END;

END;

PI ISA TankSystem::PIControllerModel WITH
Graphic ISA super::Graphic WITH

x_pos := 225.0;
y-pos := 250.0;
END;
END;
connections:

C1 ISA Base::Connection WITH
In AT InflowValve.In;
bpoints TYPE Matrix [4, 2] := -

[0, 199; 49, 199; 49, 193; 82, 193];

END;

C2 ISA Base::Connection WITH
InflowValve.OQut AT Tank.In;
bpoints TYPE Matrix [3, 2]

END;

C3 ISA Base::Connection WITH
Tank.Out AT QutflowValve.In;
bpoints TYPE Matrix [3, 2]

END;

C4 ISA Base::Connection WITH
Out AT QutflowValve.Out;
bpoints TYPE Matrix [4, 2]

[316, 68; 352, 68; 352, 74; 399, 74];

END;

C5 ISA Base::Connection WITH
Tank.Level AT PI.Measure;
bpoints TYPE Matrix [4, 2] :=

[224, 161; 259, 161; 259, 249; 236, 249];

END;

C6 ISA Base::Connection WITH
PI.Control AT InflowValve.Control;
bpoints TYPE Matrix [3, 2] := [212, 249; 99, 249; 99, 216];

[116, 193; 199, 193: 199, 174];

[199, 125; 199, 68; 282, 68];

END;
_ END;
3 g,;,;i L
\'TankSystemSimProblem ISA TankSystem::TankSystem WITH
parameters:

D ISA Base::Parameter WITH
default := 1000;

161

Appendix B Introductory Omola Example

END;
PA ISA Base::Parameter WITH
default := 0.010;
END;
parameter_assignments:
In.Pressure := 10000;
Qut .Pressure := 0Q;
InflowValve.Density := D;
InflowValve.PipeArea := PA;
InflowValve.ValvePar.default := 0.40;
Tank ISA super::Tank WITH
Density := D;
PipeArea := PA;
TankArea.default := 1;
GravConst := 9.810;
mass.initial := 1000;
END;
PI ISA super::PI WITH
K.default := 1;
Ti.default := 50;
Tt.default := 100;
END;
OutflowValve.PressDrop.default := 0.20;
OQutflowValve.Density := D;
OutflowValve.PipeArea := PA;
event:
Init, Stepl, Step2 ISA Base::Event;
initial_condition_calculations:
ONEVENT Init DO
new(Pi.Ref) := 1;
new(Tank.Level) := Tank.mass/(D*Tank.TankArea);
new(Tank.Out.Pressure) := Tank.GravConst*Tank.mass /
(Tank.TankArea*x(1 + OutflowValve.PressDrop));
new(Tank.Out.Flow) := PAxsqrt(
abs (2*0utflowValve.PressDrop*new(Tank.Out.Pressure) /D)) ;
new(InflowValve.In.Flow) := new(Tank.Out.Flow);
new(InflowValve.PressDrop) := ,
Dxabs (new(InFlowValve.In.Flow))*new(InFlowValve.In.Flow) /
(PA"2%2%(InFlowValve.In.Pressure-InFlowValve.Qut.Pressure));

new(Pi.i) := new(InFlowValve.PressDrop)/InFlowValve.ValvePar;
schedule(Step1,10);
END;
step_change:

ONEVENT Stepl DO

new(Pi.Ref) := 1.1;
] schedule(Step2,250);
= END; e

ONEVENT Step2 DO
new(Pi.Ref) := 1;

END;

END;

162

Front Cover Example

The figure on the front cover is also found in Figure C.1 with additional
textual expanation. The figure illustrate the structure hierarchy guide-
lines together with the class hierarchy guidelines discussed in Chapter
4.

The plant structure is decomposed into five levels; plant - plant
section - unit - subunit - subsubunit. The plant structure is de-
scribed in the bottom in Figure C.1 with the plant on the left to the
subsubunits on the right. The plant is decomposed into three plant sec-
tions: pretreatment, reaction and separation. The separation plant section
1s composed of three distillation units in series. The third unit is further
decomposed into subunits. One subunit is the reboiler which is decom-
posed into boiler side, heat transfer wall and steam side. The boiler side
part is medium and machine decomposed.

The class hierarchy is described from the top to the bottom. The class
hierarchy is decomposed into six levels; application - granularity -
unit type - interface class - model class. The application class
in the process class found in the top, below Model class. The next level
is the granularity classes, called flowsheet, unit, subunit and medium
classes in Figure C.1. The next level is the unit type level, where the
class tree is branched into unit specific classes. The fourth level is the
interface class level where interfaces to model classes are defined and
following level is the actual model class definition level.

The subclasses to the interface classes can be called polymorphic mod-
els and they can be used in the same context. Examples of polymorphic

163

Appendix C

Front Cover Example

Model

!

Process
Class

T

FlowSheet Unit SubUnit Medium
Class Class Class Class
Plant Plant [Distillation Boiler Equilibrium
Class Sec.Class Class Class Class
Dist.Unit Reboiler Vessel Equil.
IClass IClass IClass IClass
WY + f 445
Unit .] Equil.
Separation ﬂ Model_1 Reboiler Machine Vessel [Model_1
Class Model Model Model T
/ I = ——g N \
“ - é/ ;‘ zL/ H—"T1 d T \
11 | e vessel | JDist
T . e L
e —
\ —
L LT
Plant ‘\ Boiler Side ——"
\ / | —
\ /
(| 2 TR Y
s /- - =
Separation \ ~ 7| Reboiler_ —
Plant Section \ z- -
\ —
\
~
Distillation Unit 3
Figure C.1 The figure from the front cover illustration structure and class

hierarchies in a chemical plant example.

models in Figure C.1 are the equilibrium models, e.g., EquilModel 1.
and the distillation unit models, e.g., UnitModel_1. This is discussed in

Chapter 4.

The boiler side is medium and vessel machine decomposed. This de-
composition method is discussed in Chapter 5 and it makes it possible to
create independent libraries of unit machines and medium descriptions.

164

