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Abstract

The influence of small and large, charged molecules on the properties of aque-
ous interfaces has important implications in chemistry, biology, and medicine.
For example, at the surface of marine aerosols, the presence of halide anions and
tropospheric gases gives way to multiphase chemical reactions affecting climate
and air quality. In this Thesis, we investigate three different systems and phe-
nomena at the interface using molecular simulations, experiments, and theory.

A new accurate all-atom force field is developed to study thiocyanate ions in
solution and at the interface. We show how different cations affect the properties
of NaSCN and KSCN bulk aqueous solutions and, supplementing vibrational
sum frequency spectroscopy, our simulations indicate that the thiocyanate anion
has a higher affinity for hydrophobic surfaces with exposed methyl groups than
for the air–water interface.

Combining coarse-grained simulations and quartz crystal microbalance with
dissipation monitoring experiments, we develop an analytical model to study
the adsorption of amyloid fibrils onto oppositely charged lipid bilayers. The
model shows that short, rigid fibrils adsorb more onto oppositely charged sur-
faces than long fibrils.

A computationally efficient coarse-grained model is developed to investigate
the interaction of cationic peptides with lipid membranes. Additionally, we use
small-angle X-ray scattering experiments and all-atom simulations to study the
solution behavior of arginine-rich cell-penetrating peptides. Despite their large
positive charge, we find that arginine decapeptides self-associate in aqueous
solution. We elucidate the molecular origin of the attraction, and highlight its
common occurrence in protein crystal structures.
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Populärvetenskaplig
sammanfattning

Växelverkningar mellan små och stora molekyler har konsekvenser för reakt-
ioner som kemister utför i sina provrör, lika mycket som för de livsnödvändiga
reaktionerna som sker i vår kropp och våra celler. Förståelsen av dessa växel-
verkningar är nyckeln till att kunna utnyttja dem till vår fördel, till exempel i
industriella processer eller i utveckling av mediciner. För att uppnå detta kan
man utföra experiment med avancerade verktyg, till exempel när man försöker
undersöka molekylära växelverkningar med röntgenstrålning. Tyvärr är dessa
kraftfulla tekniker dyra och i allmänhet oförmögna att observera enskilda mole-
kyler. I den här avhandlingen konstruerade vi nya datorbaserade modeller för
att förutse och visa i detalj på hur vissa av dessa växelverkningar påverkar våra
system, samtidigt som vi analyserar den information som kan erhållas från ex-
periment. Specifikt undersökte vi de växelverkningar som sker vid gränsen
mellan vatten—runt celler eller i ett provrör—och luft eller en mikroskopisk
yta—såsom ett protein eller ett cellmembran.

I ett av dessa system, beskriver vi beteendet hos små molekyler som kallas
tiocyanatjoner. Detta då de är viktiga inom såväl industri som biokemiska lab-
oratorier. Den utvecklade datormodellen kan exakt förutse beteendet hos tio-
cyanatjoner vid olika gränsskikt.

Vi tittar också på märkliga biologiska processer som växelverkningen mell-
an en cells yttre membran och amyloidfibriller. Amyloidfibriller är stavformade
klumpar av proteinliknande molekyler och är vanligtvis kopplade till flera sjuk-
domar såsom Alzheimers sjukdom. Vi har utvecklat datormodeller för att under-
söka fibril–membran interaktionen, eftersom denna anses vara en viktig del mot
att förstå fibrillernas giftiga verkan. Denna förvärvade kunskap kan få betydelse
för att förklara de molekylära mekanismerna bakom sjukdomar och att utforma
läkemedel mot dem.

Slutligen har vi utvecklat modeller och utfört experiment samt datorberäkn-
ingar i syfte att förstå hur och varför vissa molekyler som kallas cellpenetrerande
peptider enkelt kan ta sig in i celler. Resultaten kan bidra till att designa nya
cellpenetrerande peptider som kan styra läkemedel in i celler.
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Popular Science Summary

Interactions between small and large molecules have implications not just for re-
actions that chemists conduct in their test tubes, but also for the life-supporting
reactions that happen in our cells and body. Understanding these interactions is
key to their exploitation for human benefit, including industrial processes and
the design of drugs against diseases. This quest may involve performing experi-
ments using advanced setups, for instance when trying to investigate molecular
interactions using radiation such as X-rays. Unfortunately, these powerful tech-
niques are expensive, and generally unable to shed light on single molecules. In
this Thesis, we designed new accurate computer-based models to predict and
explore in great detail how some of these interactions take place, while also
analyzing the information that can be obtained from the experimental setups.
Specifically, we investigated the interactions occurring at the junction between
water—around the cells or in a test tube—and air or a microscopic surface—like
that of a protein or a cell membrane.

In one such system, we describe the behavior of small molecules called thio-
cyanate ions, because of their remarkable interaction with proteins for industrial
and technological applications. The developed computer model can accurately
predict the behavior of thiocyanate ions at different interfaces.

We also look at critical biological processes, like the interaction between the
outer membrane of a cell and amyloid fibrils. Amyloid fibrils are rod-shaped
assemblies of protein-like molecules and are associated with several disorders
such as Alzheimer’s disease. We have developed computer models to probe the
fibril–membrane interaction, as it is regarded as one of the first steps toward the
toxic action of these assemblies. The acquired information can contribute to our
understanding of these diseases and to design drugs against them.

Finally, we have developed models, performed computer simulations, and
experiments, to understand how and why cell-penetrating peptides are able to
enter cells very efficiently. Our findings may find application to designing new
cell-penetrating peptides for transporting drugs into cells.
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Chapter 1

Introduction

While chemical processes are commonly treated as bulk phenomena, complex
molecular systems are often comprised of multiple phases. The natural conse-
quence is the introduction of interfaces that serve as sites for chemical reactions
and physical processes. The processes harbored at interfaces between an aque-
ous phase and another phase—liquid, solid, or vapor—often play crucial roles
in chemistry, biology, and medicine. For instance, the lipid bilayer of the cell
membrane meets the aqueous surroundings to generate a life-supporting inter-
face, which acts as the medium for metabolite diffusion and intercellular signal-
ing. Yet another common example is the air/water interface of marine aerosols,
wherein ionic species are involved in chemical reactions with important implica-
tions in atmospheric chemistry.1,2 Electrolytes are also present in physiological
media, where the interplay of ions and the interface between biomolecules and
aqueous phase affects protein stability and solubility3 and the mechanical prop-
erties of lipid membranes.4,5

In 1888, Franz Hofmeister studied the effect of several anions and cations
to yield precipitation of protein solutions.6 While the seminal work used egg
whites, the Hofmeister series naively rank ions based on their influence on
the properties of the protein/water interface.3 To understand these interactions
in depth, in recent years, surface-sensitive experiments and molecular simu-
lations have significantly advanced molecular-level understanding of aqueous
interfaces. The two methods are highly complementary and interdependent.
On the one hand, the analysis of experimental data requires an underlying the-
ory, typically involving assumptions and approximations on the molecular-level
structure of the system, which can be assessed by molecular simulations. On the
other hand, molecular simulations of systems at the nanometer scale are com-
monly based on empirically derived models, i.e., force fields, and hence extensive
comparison with experimentally accessible data is required to substantiate sim-
ulation results.

This Thesis begins by developing such a force field. The development of
force fields for molecular simulations of aqueous interfaces involves validation
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of properties of the bulk solution and of the surface region. In this Thesis, this
challenging process is detailed in Paper I for force fields for sodium and potas-
sium thiocyanate at the air/water interface, developed using Kirkwood–Buff the-
ory (see Chapter 2). The interest in the thiocyanate anion is due to its prominent
position at the extreme end of the Hofmeister series, i.e., its ability to increase
protein solubility. In Paper II, we use the developed force field for molecular
simulations of sodium thiocyanate aqueous solutions, and complement it with
nonlinear vibrational spectroscopy experiments, in a comparative study between
the interface with air and with a hydrophobic solid surface. Both, the simula-
tion predictions and experimental observations demonstrate that thiocyanate is
attracted more to the hydrophobic surface than to the air/water interface.

The interface between aqueous solutions and biological lipid membranes is
an area of interest, which has progressed in the last decade thanks to the syn-
ergy between molecular simulations and experiments. Now, we move toward
biological and biochemical systems with interfaces and physical surface pro-
cesses. The membrane/water interface is studied in Paper III and IV, focus-
ing on the interactions of peptides and peptide aggregates with lipid bilayers.
Phenomena pertaining to peptide–membrane interactions are typically charac-
terized by high free energy barriers (see Chapter 3) as well as large time and
size scales, e.g., milliseconds and hundreds of nanometers.7 Simulations of de-
tailed models accounting for the interactions between all the atoms in the system
are computationally expensive, if not infeasible. Therefore, a host of strategies,
generically termed coarse-graining, have been devised to decrease the complex-
ity of the numerical problem, by reducing the number of interacting particles.8

Although lacking chemical details, the simplified representation conveyed by
coarse-grained models has the advantage of highlighting the dominant micro-
scopic features.

In Paper III, we develop and use a coarse-grained model, supplemented by
quartz crystal microbalance with dissipation monitoring experiments (see Chap-
ter 4), and theory to describe the adsorption of amyloid fibrils onto oppositely
charged lipid membranes. Amyloid fibrils are self-assembled elongated aggre-
gates of peptides associated with many neurodegenerative and other diseases.9

A proposed mechanism of cellular toxicity of amyloid fibrils is based on their
interaction with lipids, resulting in the disruption of the cell membrane.10,11 In
Paper III, we also study the dependence of adsorption on the ionic strength of
the aqueous medium, and on the length of the particles.

In Paper IV, a coarse-grained model is developed to efficiently simulate the
adsorption and translocation processes of cell-penetrating peptides across lipid
bilayers. These molecules, rich in basic amino acids, spontaneously traverse cell
membranes through the lipid bilayer/aqueous interface, and are promising can-
didates for drug delivery.12 The emphasis of the coarse-grained model in this
work is on the role of acid-base equilibria and the dependence of permeation
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energy on peptide length.

While the membrane translocation efficiency of cell-penetrating peptides is
often attributed to peptide–membrane interactions, it has been suggested that
the cooperative action of the peptides is also crucial for cellular uptake.13 In Pa-
per V, we compare intermolecular interactions of the highly positively charged
cell penetrating peptide deca-arginine against deca-lysine, in aqueous solution.
Via small-angle X-ray scattering (see Chapter 5), we show that deca-arginine self-
associates, whereas deca-lysine does not. All-atom molecular dynamics simula-
tions show that the attraction originates from interactions between the guani-
dinium moieties of arginine side chains, together with salt bridges involving
carboxyl groups. We also analyzed publicly available protein crystal structures
to find that this newly discovered mode of interaction in deca-arginine dimers is
a common motif in biochemistry.

Finally, with the elevated interest in guanidinium–guanidinium interactions
at interfaces, as well as in bulk, Paper VI is a review article concerning these in-
teractions in aqueous solutions of guanidinium salts, the self-interaction of short
and long arginine–rich peptides, and the aggregation and adsorption of long
arginine-rich peptides onto lipid membranes.

In summary, this Thesis deals with disparate molecular systems related to
aqueous interfaces, ranging from triatomic anions to peptide aggregates tens
of nanometers in length. All-atom molecular dynamics force fields (Paper I),
coarse-grained models (Paper III and IV), as well as analytical theory (Paper III)
and a continuum model (Paper IV) have been developed to gain insight into
phenomena covering a wide spectrum of length scales.
The following Chapters provide concise overviews of theories and methods that
have played a key role in the work of this Thesis.
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Chapter 2

Kirkwood–Buff Solution Theory

Kirkwood–Buff (KB) solution theory14 is a general and exact theory relating
thermodynamic properties of a multicomponent fluid to spatial correlations be-
tween pairs of molecules of the various species present in solution. The spatial
correlations arise from interparticle interactions and are expressed by molecu-
lar distribution functions (DFs).15,16 The molecular-level information conveyed
by the DFs is related to local cross fluctuations between the densities of the
components of the isotropic solution. Within the framework of the grand canon-
ical ensemble, local density fluctuations provide the connection between DFs
and macroscopic solution properties, e.g., compressibility, partial molar volume,
and the change in chemical potential in response to a change in composition.17

In the derivation of KB theory, no assumptions are made regarding the shape
of the particles or the pairwise additivity of the intermolecular interactions.18

Therefore, the theory is valid for isotropic as well as anisotropic molecules, irre-
spective of the nature of the total potential energy. These aspects make KB theory
suitable to the study of complex fluids, e.g., protein solutions. On the one hand,
KB theory is widely used in molecular simulations for force field parametriza-
tion and validation against experimental thermodynamic data19 as well as to
gain insight into phenomena such as ion pairing,20 cosolute effects on associ-
ation processes,21 and folding equilibria.22 On the other hand, the inverse KB
theory23 is used to estimate molecular-level properties, such as protein–solvent
and protein–cosolute coordination numbers, from experimental measurements
of macroscopic quantities.24,25

This chapter begins by introducing molecular DFs for closed and open systems;
subsequently, the relationships between DFs and thermodynamic properties are
described for one-component fluids; finally, the DFs are generalized for two-
component solutions and the connection with activity derivatives is presented.

2.1 DFs in the Canonical Ensemble

For a system of N indistinguishable and rigid molecules in a closed system of
volume V at constant temperature T, a configuration of the system is denoted by
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the vector q = (q1, .., qN), where qi = (ri, Ωi) defines the position, ri, and the
orientation, Ωi, of the ith molecule. Using the mathematical formalism of classi-
cal statistical mechanics, the system can be described by the canonical partition
function26

Q(N, V, T) =
1

h3N N!

∫
dp

∫
dq exp [−βH(p, q)], (2.1)

where h is Planck constant, p is the vector containing the momenta of the N
molecules, β = 1/(kBT) is the inverse thermal energy, and H(p, q) is the Hamil-
tonian of the system.26 In Equation 2.1, the first integral goes from −∞ to ∞ over
the three components of the N momenta, whereas the second integral is over V
and over all possible orientations of the molecules. To simplify the notation in
this Chapter, the probability density in the canonical ensemble is denoted by

P(q) =
exp [−βU(q)]∫

dq exp [−βU(q)]
, (2.2)

where U(q) is the total potential energy of the system.
The average density of molecules at a given location r′ is expressed by the singlet
DF:16

ρ(1)(r′) =
∫

dq P(q)
N

∑
i=1

δ(ri − r′), (2.3)

where δ(ri − r′) is the 3D Dirac delta function. Due to the indistinguishability of
molecules, the N integrals are identical, and for any molecule labeled 1, Equation
2.3 can be rewritten as

ρ(1)(r′) = N
∫

dq P(q) δ(r1 − r′) = NP(1)(r′), (2.4)

where P(1)(r′) is the probability density of Equation 2.2 evaluated at r1 = r′, and
orientationally averaged. In a macroscopic, homogeneous system, the density is
constant throughout V, i.e., ρ = N/V, and the volume integral of ρ(1)(r′) is
simply ∫

V
dr′ρ(1)(r′) = ρ

∫
V

dr′ = N. (2.5)

The probability density of simultaneously finding molecule 1 at r′ and molecule
2 at r′′ is given by

P(2)(r′, r′′) =
∫

dq P(q) δ(r1 − r′) δ(r2 − r′′), (2.6)

whereas the joint probability of finding any molecule at r′′ and any other molecule
at r′, is expressed by the pair DF16,27

ρ(2)(r′, r′′) =
∫

dq P(q)
N

∑
i=1

δ(ri − r′)
N

∑
j=1

δ(rj − r′′)

= N(N − 1) P(2)(r′, r′′),

(2.7)
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where the factor N(N − 1) is the total number of pairs of molecules in the sys-
tem. The normalization condition of ρ(2)(r′, r′′) is∫

V
dr′

∫
V

dr′′ρ(2)(r′, r′′) = N(N − 1). (2.8)

The ratio P(2)(r′, r′′)/P(1)(r′) is the conditional probability, P(2)(r′|r′′), of finding
molecule 2 at r′′ when molecule 1 is at r′. This leads to the definition of the pair
correlation function,16 g(2)(r′, r′′), as the average number density of molecules
in the volume element dr′′, given a molecule in dr′:

ρ(1)(r′′) g(2)(r′, r′′)dr′′ =
ρ(2)(r′, r′′)dr′dr′′

ρ(1)(r′)dr′
. (2.9)

For an isotropic and homogeneous fluid, ρ(2)(r′, r′′) = ρ2g(2)(r′, r′′); moreover,
g(2)(r′, r′′) depends only on the scalar interparticle distance r = |r′′ − r′|. There-
fore, it is convenient to perform the change of variables (r′, r′′) → (r′, r =
r′′ − r′), followed by the transformation to polar coordinates (r′, r) → (r′, r, θ, ϕ).
The resulting g(r) is the radial DF (RDF), defined so that ρg(r)4πr2dr equals the
average number of molecules in a spherical shell of radius r and thickness dr,
centered around a fixed particle. The relationship between the RDF and the pair
DF is given by

ρg(r) 4πr2 dr = ρ(1)(r′′) g(2)(r′, r′′)dr′′ =
ρ(2)(r′, r′′)dr′dr′′

ρ(1)(r′)dr′
. (2.10)

2.2 DFs in the Grand Canonical Ensemble

In an open system, i.e., in a region of volume V of an infinitely large system,
the number of molecules fluctuates. This scenario is described by the grand
canonical (GC) ensemble, with partition function

Ξ(µ, V, T) =
∞

∑
N=0

Q(N, V, T) exp (βµN), (2.11)

where µ is the chemical potential of the molecules. The probability of finding
exactly N particles in the open system of volume V is16,17

P(N) =
Q(N, V, T)
Ξ(µ, V, T)

exp (βµN). (2.12)

The ensemble average, ⟨. . . ⟩, of N is readily obtained as

⟨N⟩ =
∞

∑
N=0

N P(N). (2.13)

Analogously, the singlet and pair DFs for the GC ensemble are obtained as aver-
ages of the corresponding canonical DFs running over N and weighted by P(N).
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In the notation of this Chapter, DFs defined for the open system are labeled with
the subscript O to distinguish them from the canonical DFs. The singlet DF is
defined for systems of at least a single molecule, therefore,

ρ
(1)
O (r′) =

∞

∑
N=1

ρ(1)(r′) P(N), (2.14)

whereas, the pair DF requires a minimum of two particles for its definition:

ρ
(2)
O (r′, r′′) =

∞

∑
N=2

ρ(2)(r′, r′′) P(N). (2.15)

Considering the relationship between DFs and probability densities (Equations
2.4 and 2.7), the volume integrals of ρ

(1)
O (r′) and ρ

(2)
O (r′, r′′) can be derived as∫

V
dr′ρ(1)O (r′) =

∞

∑
N=1

N P(N)
∫

V
dr′P(1)(r′) = ⟨N⟩ (2.16)

and ∫
V

dr′
∫

V
dr′′ρ(2)O (r′, r′′)

=
∞

∑
N=2

N(N − 1) P(N)
∫

V
dr′

∫
V

dr′′P(2)(r′, r′′)

= ⟨N2⟩ − ⟨N⟩,

(2.17)

respectively.

2.3 DFs and Thermodynamic Quantities

The volume integral of the RDF of an open system:

GO =
∫ ∞

0
dr4πr2 [gO(r)− 1] (2.18)

takes the name of Kirkwood–Buff integral (KBI),18,28 for its central role in KB
solution theory. Using Equations 2.16, 2.17, and 2.10, KBI can be solved to obtain
a relationship between DFs and the fluctuation in the number of molecules in
the open system:

GO =
1
ρ

∫ ∞

0
dr4πr2 [ρgO(r)− ρ]

=
1
ρ

∫
V

dr′′
[
ρ
(1)
O (r′′)g(2)O (r′, r′′)− ρ

(1)
O (r′′)

] ∫
V dr′ρ(1)O (r′)∫
V dr′ρ(1)O (r′)

=
1
ρ

[∫
V dr′

∫
V dr′′ρ(2)O (r′, r′′)−

∫
V dr′ρ(1)O (r′)

∫
V dr′′ρ(1)O (r′′)∫

V dr′ρ(1)O (r′)

]

=
1
ρ

[
⟨N2⟩ − ⟨N⟩2

⟨N⟩ − 1
]

,

(2.19)
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where ρ = ⟨N⟩/V. The fluctuation in N,
√
⟨N2⟩ − ⟨N⟩2, a central quantity of

the GC ensemble, is related to the chemical potential via29

⟨N2⟩ − ⟨N⟩2 =
1
β

(
∂⟨N⟩

∂µ

)
VT

=
V
β

(
∂ρ

∂µ

)
T

, (2.20)

where the second equality follows from Equation 2.13. Using the chain rule and
the Gibbs–Duhem equation, Equation 2.20 can be manipulated as follows:29

⟨N2⟩ − ⟨N⟩2 =
V
β

(
∂ρ

∂p

)
T

(
∂p
∂µ

)
T
=

V
β

(
∂ρ

∂p

)
T

ρ

=
⟨N⟩

β

(
∂ρ

∂V

)
T

(
∂V
∂p

)
T
= −ρ2

β

(
∂V
∂p

)
T

,
(2.21)

where p is the pressure. Equation 2.21 relates the fluctuation in N in an open
system to the relative change in V, in response to a change in p, i.e., to the
isothermal compressibility:29

χT = − 1
V

(
∂V
∂p

)
T

. (2.22)

Combining Equation 2.19 and Equation 2.21, KBI is found to be related to the
ratio between the χT of the fluid and the compressibility of an ideal gas,30 χid

T =
β/ρ:

1 + ρG0 =
χT

χid
T

. (2.23)

Equation 2.23 shows that the information on the interparticle correlations incor-
porated in KBI can be directly translated to a macroscopic quantity pertaining to
the net intermolecular interactions in the system. However, this result is strictly
valid in the GC ensemble, whereas for a closed system:

1 + ρG = 1 + ρ
∫ ∞

0
dr4πr2 [g(r)− 1] = 0. (2.24)

Molecular simulations are commonly performed for systems of finite size in the
canonical or isothermal-isobaric ensembles. Several approaches have been sug-
gested31–35 to accurately estimate thermodynamic properties from KBIs trun-
cated at an upper limit, R:

G(R) =
∫ R

0
dr4πr2 [g(r)− 1] . (2.25)

In Paper I, these methods are discussed and applied to the calculation of activity
derivatives of electrolyte solutions from all-atom molecular dynamics simula-
tions in the isothermal-isobaric ensemble. Moreover, in Chapter 5, Figure 5.3
shows an example of the usage of Equation 2.25 for the calculation of the χT of a
Lennard–Jones fluid from Metropolis Monte Carlo simulations in the canonical
ensemble.
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2.4 Two-component Solutions

For a solution of Ni molecules of species i and Nj molecules of species j, the
vector of configurations can be written as14,17,18

q = (qi
1, ..., qi

Ni
, qj

Ni+1, ..., qj
Ni+Nj

). (2.26)

The definition of the molecular DFs are analogous to the one-component case:

ρ
(1)
i (r′) = N

∫
dq P(q) δ(ri

1 − r′) = Ni P(1)
i (r′), (2.27)

and
ρ
(2)
ij (r′, r′′) = Ni(Nj − δij)

∫
dq P(q) δ(ri

1 − r′) δ(rj
2 − r′′)

= Ni(Nj − δij) P(2)
ij (r′, r′′),

(2.28)

where r′ and r′′ refer to species i and j, respectively, and δij is the Kronecker
delta, which is used to compactly discern between the case of like molecules,
i.e., Ni(Ni − 1) or Nj(Nj − 1) pairs, and the case of unlike molecules, i.e., Ni Nj
pairs. According to Equation 2.10, the RDFs for a binary mixture are defined as

ρjgij(r) 4πr2 dr = ρ
(1)
j (r′′) g(2)ij (r′, r′′)dr′′ =

ρ
(2)
ij (r′, r′′)dr′dr′′

ρ
(1)
i (r′)dr′

. (2.29)

The partition function for a two-component system is

Ξ(µi, µj, V, T) =
∞

∑
Ni=0

∞

∑
Nj=0

Q(Ni, Nj, V, T) exp (βµi Ni) exp (βµjNj). (2.30)

In close analogy to Equation 2.13, an expression can be obtained for the ensemble
average of one of the components:

⟨Ni⟩ =
∞

∑
Ni=0

∞

∑
Nj=0

Ni P(Ni, Nj)

=
1
Ξ

∞

∑
Ni=0

∞

∑
Nj=0

Ni Q exp (βµi Ni) exp (βµjNj)

=
1
β

[
∂ ln Ξ

∂µi

]
µj ,V,T

.

(2.31)

Therefore, the normalization conditions of the singlet and pair DFs for a two-
component, open system are14,18

∫
V

dr′ρ(1)Oi (r
′) =

∞

∑
Ni=1

∞

∑
Nj=0

Ni P(Ni, Nj) = ⟨Ni⟩ (2.32)
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and ∫
V

dr′
∫

V
dr′′ρ(2)Oij(r

′, r′′)

=
∞

∑
Ni=1+δij

∞

∑
Nj=1−δij

Ni(Nj − δij) P(Ni, Nj) = ⟨Ni Nj⟩ − ⟨Ni⟩δij,
(2.33)

respectively. The definition of KBIs follows as a generalization of Equation 2.19

GOij =
∫ ∞

0
dr4πr2 [gOij(r)− 1

]
=

1
ρj

∫ ∞

0
dr4πr2 [ρjgOij(r)− ρj

]
=

1
ρj

∫V dr′
∫

V dr′′ρ(2)Oij(r
′, r′′)−

∫
V dr′ρ(1)Oi (r

′)
∫

V dr′′ρ(1)Oj (r
′′)∫

V dr′ρ(1)Oi (r
′)


=

V
⟨Nj⟩

[ ⟨Ni Nj⟩ − ⟨Ni⟩⟨Nj⟩
⟨Ni⟩

− δij

]
= GOji.

(2.34)

This result shows that, for a two-component solution, KBI is related to the cross
fluctuations of the number of particles of species i and j.18 Moreover, ρjGOij can
be interpreted as the excess coordination number20,35 quantifying the depletion
or surplus of particles j around particle i with respect to ⟨Nj⟩.
The connection to the chemical potential is obtained by deriving ⟨Ni⟩ with re-
spect to µj:(

∂⟨Ni⟩
∂µj

)
µi ,V,T

= β
(
⟨Ni Nj⟩ − ⟨Ni⟩⟨Nj⟩

)
= Vβρi

(
δij + ρjGOij

)
, (2.35)

where the second equality is based on Equation 2.34. Thermodynamic solution
data is often measured at constant pressure and temperature as a function of
composition. Equation 2.35 can be recast in the isothermal-isobaric ensemble to
obtain an expression connecting the RDFs to the change in the chemical potential
of species i in response to a change in the number density of species i:14,17,18

βρi

(
∂µi
∂ρi

)
p,T

=
1

1 + ρi
(
GOii − GOij

) , (2.36)

or equivalently: (
∂ ln ai
∂ ln ρi

)
p,T

=
1

1 + ρi
(
GOii − GOij

) , (2.37)

where ai is the activity of species i. Equation 2.37 provides a convenient route
to obtain the activity derivatives of solutes from molecular simulation of solu-
tions. In Paper I, this approach has been applied to three-component systems to
parametrize force fields for aqueous electrolyte solutions of several salts against
experimental activity data.
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Chapter 3

Biased Sampling Techniques

Metropolis Monte Carlo (MC) and molecular dynamics (MD) simulations are
computational techniques to explore the coordinate or phase space of a sys-
tem described at a microscopic level. Since the number of possible states for
a many-particle system is extremely large, molecular simulations aim at gen-
erating configurations that are representative of a particular ensemble.36 For N
particles in the canonical ensemble, a configuration is a set of 3N Cartesian co-
ordinates, r, with potential energy U(r). Representative configurations are the
thermally populated states, i.e., those with negative, or small and positive U(r)
values, which contribute the most to the configurational partition function:26,36

Qex
NVT =

1
VN

∫
dr exp [−βU(r)] =

ZNVT

VN , (3.1)

where ZNVT is the configurational integral, V is the volume of the system, and
β = 1/kBT. Denoting ensemble averages by ⟨. . . ⟩, Equation 3.1 can be rewritten
as

Qex
NVT =

∫
dr exp [−βU(r)]∫

dr exp [βU(r)] exp [−βU(r)]
=

1⟨
exp (βU)

⟩ . (3.2)

In principle, the excess Helmholtz free energy can be calculated as

Aex = −kBT ln Qex
NVT = kBT ln

⟨
exp (βU)

⟩
, (3.3)

however, conventional simulation methods are targeted to selectively sample
regions of phase space with small values of exp (βU). This entails that the
convergence of the ensemble average in Equation 3.3 is in general difficult to
attain. In biophysics, it is often of interest to calculate the free energy difference
between stable and metastable states as well as the height of the free energy
barriers in-between. The free energy landscapes can be simplified as free en-
ergy profiles or surfaces by identifying one or two generalized coordinates that
discriminate between the thermodynamic states of interest. These so-called re-
action coordinates, ℜ(r), are functions of the coordinates of the particles such
as the center-of-mass separation between two molecules (see Paper V), the end-
to-end distance of a polymer chain, or the angle between the principal axis of a
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rod-like particle and the normal to an interface (see Paper IV). The probability
density for the reaction coordinate at any ℜ is given by the ensemble average of
the Dirac delta function δ[ℜ(r)−ℜ]:

ρ(ℜ) =
⟨

δ[ℜ(r)−ℜ]
⟩
=

∫
dr δ[ℜ(r)−ℜ] exp [−βU(r)]

ZNVT
, (3.4)

where at the numerator exp [−βU(r)] is integrated over all degrees of freedom
but ℜ to obtain ZNVT(ℜ).36 The change in free energy along ℜ with respect to a
reference ℜ value is expressed by36

∆F (ℜ) = −kBT ln ρ(ℜ) = −kBT ln
ZNVT(ℜ)

ZNVT
. (3.5)

∆F (ℜ) is commonly referred to as the potential of mean force (PMF) due to the
following relationship with the mechanical force along ℜ:

− d∆F (ℜ)
dℜ =

kBT
ρ(ℜ)

dρ(ℜ)
dℜ =

⟨
−dU

dℜ

⟩
ℜ(r)=ℜ

. (3.6)

If ℜ(r) is a nonlinear function of r, a change of variables is required to perform
the integral at the numerator of Equation 3.4.37,38 Specifically, the transformation
is r = (r1, r2, ..., r3N) → u = (ℜ, q), where q = (q2, ..., q3N) is a set of 3N − 1
coordinates. The resulting integral is

ZNVT(ℜ) =
∫

du |det (J)| δ[ℜ(q)−ℜ] exp [−βU(r(u))], (3.7)

where |det (J)| is the absolute value of the determinant of the Jacobian matrix

J(q) =


∂r1
∂ℜ

∂r1
∂q2

. . . ∂r1
∂q3N

...
...

. . .
...

∂r3N
∂ℜ

∂r3N
∂q2

. . . ∂r3N
∂q3N

 . (3.8)

|det (J)| accounts for the change in the volume element accompanying the trans-
formation. A simple illustration of the Jacobian correction is provided by the ℜ
defined as the angle between the bond of a rigid diatomic molecule and the
z-axis, e.g., coinciding with the normal to an interface. The variable change to
be performed in this case is (x1, y1, z1, x2, y2, z2) → (x1, y1,ℜ, x2, y2, z2), where
x1, y1, z1, x2, y2, z2 are the atomic Cartesian coordinates. ℜ = arccos (z2 − z1)
whereas the Jacobian is

J(x1, y1,ℜ, x2, y2, z2)

=



∂x1
∂x1 . . . ∂x1

∂ℜ . . . ∂x1
∂z2

...
. . .

...
. . .

...
∂z1
∂x1 . . . ∂z1

∂ℜ . . . ∂z1
∂z2

...
. . .

...
. . .

...
∂z2
∂x1 . . . ∂z2

∂ℜ . . . ∂z2
∂z2


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 sinℜ 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 − sinℜ 0 0 1

 .
(3.9)
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|det (J)| = sinℜ expresses the ℜ-dependence of the configurational volume,37

e.g., the fact that a larger number of configurations are possible for ℜ = π/2
than for ℜ = 0.
If |det (J)| is a function of ℜ only, PMFs that are free from the trivial volume de-
pendence expressed by the Jacobian can be obtained by introducing a correction
term in Equation 3.5:

∆F (ℜ) = −kBT ln ρ(ℜ) + kBT ln |det (J)|. (3.10)

The calculation of PMFs from molecular simulations can be effectively achieved
by advanced techniques that enhance the sampling of high-energy states along
ℜ. A class of such methods is based on introducing a bias in the evolution of the
system in the form of an additional ℜ-dependent energy term to the potential
energy. The present Chapter focuses on two implementations of this approach:
the umbrella sampling technique and the Wang–Landau method.

3.1 Umbrella Sampling

In biomolecular simulations, the widely used variant of the umbrella sampling
technique of Torrie and Valleau39 involves the addition to the Hamiltonian of
a biasing potential, wi(ℜ), to restrain the system to a narrow range of ℜ. An
example of an umbrella potential is the harmonic function centered around ℜi:

wi(ℜ) =
1
2

K(ℜ−ℜi)
2. (3.11)

where K is the force constant. Nw simulations are restricted to partly overlapping
windows along ℜ, each thoroughly sampling ρi(ℜ) in the neighborhood of a
different ℜi.40 The biased ρi(ℜ)B can be expressed as

ρi(ℜ)B =

∫
dr δ[ℜ(r)−ℜ] exp [−βU(r)] exp [−βwi(ℜ)]∫

dr exp [−βU(r)] exp [−βwi(ℜ)]
. (3.12)

To obtain the unbiased PMF through Equation 3.5, the bias is removed from
ρi(ℜ)B and the resulting unbiased ρi(ℜ)U for the Nw windows are combined
together. Dividing Equations 3.4 by Equation 3.12 yields

ρi(ℜ)U

ρi(ℜ)B =

⟨
exp[−βwi(ℜ)]

⟩ ∫
dr δ[ℜ(r)−ℜ] exp [−βU(r)]∫

dr δ[ℜ(r)−ℜ] exp [−βU(r)] exp [−βwi(ℜ)]
. (3.13)

As previously mentioned, the integral in the denominator of Equation 3.13
is carried out over all coordinates but ℜ.41 Therefore, the exponential factor
exp (−βwi) can be taken out of the integral to obtain

ρi(ℜ)U

ρi(ℜ)B =
⟨

exp[−βwi(ℜ)]
⟩

exp[βwi(ℜ)]. (3.14)
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The unbiased PMFi for a single simulation exploring the neighborhood of ℜi is
given by

βPMFi = − ln ρi(ℜ)U = − ln ρi(ℜ)B + βFi − βwi(ℜ). (3.15)

where Fi is a constant quantifying the free energy contribution originating from
the bias in the ith window.40 Fi is defined as

exp [−βFi] =
⟨

exp[−βwi(ℜ)]
⟩
=
∫

dℜ exp[−βwi(ℜ)]ρ(ℜ)U , (3.16)

where ρ(ℜ)U is the equilibrium unbiased distribution of the probability density
of ℜ. An effective route to calculate ρ(ℜ)U from the Nw biased distributions
is given by the weighted histogram analysis method (WHAM).42 ρ(ℜ)U can be
expressed as a linear combination of the various ρi(ℜ)U :

ρ(ℜ)U =
Nw

∑
i=1

Ci(ℜ)ρi(ℜ)U =
Nw

∑
i=1

Ci(ℜ)ρi(ℜ)B exp[βwi(ℜ)− βFi], (3.17)

where the second equality is derived from Equations 3.14 and 3.16; whereas the
coefficients Ci(ℜ) satisfy the normalization requirement, ∑Nw

i=1 Ci(ℜ) = 1. The
method of Lagrange multipliers provides the following expression for the Ci(ℜ)
yielding the optimal estimate of ρ(ℜ)U :43

Ci(ℜ) =
ni exp[βFi − βwi(ℜ)]

∑Nw
j=1 nj exp[βFj − βwi(ℜ)]

, (3.18)

where ni is the number of uncorrelated ℜ values that are used to generate
ρi(ℜ)B. Equations 3.17 and 3.18 can be succinctly rewritten as

ρ(ℜ)U =
∑Nw

i=1 niρi(ℜ)B

∑Nw
j=1 nj exp[βFj − βwi(ℜ)]

. (3.19)

Since the set of Fi values for the Nw simulations, {Fi}, is unknown, Equations
3.19 and 3.16 are solved iteratively.
As an example from Paper IV, Listing 3.1 shows an implementation of the
WHAM algorithm in the Python coding language, which was used to calcu-
late the PMF for the translocation of a neutral histidine monopeptide across a
lipid bilayer. Umbrella sampling MD simulations were performed with GRO-
MACS44 using the all-atom model presented in Paper IV. ℜ is defined as the
center-of-mass separation between amino acid and membrane along the axis
perpendicular to the bilayer. 36 umbrella sampling simulations were performed
using harmonic potentials with K = 103 kJ mol−1 nm−2. ℜ values were saved at
regular time intervals to different data files which are loaded for each simulation
at line 13 in Listing 3.1. The ℜ value at time-zero is the equilibrium distance ℜi
and is used to calculate wi(ℜ) (line 14). ρi(ℜ)B is calculated for the Nw simula-
tions as a histogram of the ℜ values with bin width 0.02 nm (line 18). {Fi} and
ρ(ℜ)U are initially set to zero (lines 20–21) and successively estimated by solving
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Equations 3.19 and 3.16 self-consistently (lines 26–35). The iterative process is in-
terrupted when the maximal difference between the Fi values of two successive
cycles is smaller than 10−6 kJ mol−1 (line 26). The Nw biased distributions and
the PMF calculated using the WHAM implementation of Listing 3.1 are shown
in Figure 3.1.

1 import numpy as np

2

3 RT = 8.3145*0.310 # thermal energy , (kJ/mol)

4 K = 1e3. # harmonic force constant , (kJ/mol/nm^2)

5 Nw = 36 # number of simulations

6 edges = np.arange ( -0.61 ,3.7 ,0.02) # edges of the histograms

7 rc = edges [: -1]+( edges [1]-edges [0]) *0.5 # reaction coordinate

8 wi = np.zeros(shape=(Nw,rc.size)) # set of biasing potentials

9 rhoBi = np.zeros(shape=(Nw,rc.size)) # set of biased distrib.

10

11 for i in range(Nw):

12 # loading data file of rc vs time

13 t,x = np.loadtxt(str(i)+’.dat’,unpack=True)

14 wi[i] = 0.5*K*np.power(rc -x[0] ,2) # biasing potential vs rc

15 # the first 10 ns are considered as equilibration

16 x = x[t>1e4]

17 # distributions are generated as histograms

18 rhoBi[i], edges = np.histogram(x,bins=edges ,normed=False)

19

20 Fi = np.zeros(shape=(Nw ,)) # free energy constants {Fi}

21 rhoU = np.zeros(shape=(rc.size ,)) # unbiased distribution

22 prevFi = np.zeros(shape =(Nw ,)) # {Fi} in previous iteration

23 change = 1 # maximal difference between previous and current {Fi}

24 ni = rhoBi.sum(axis =1)[:,np.newaxis] # number of rc values {ni}

25

26 while change > 1e-6: # iterative procedure

27 num = (ni*rhoBi).sum(axis =0)

28 den = (ni*np.exp((Fi[:,np.newaxis]-wi)/RT)).sum(axis =0)

29 rhoU = np.divide(num , den) # Eq. 5.14

30 for i in range(Nw):

31 Fi[i] = np.trapz(rhoU*np.exp(-wi[i]/RT),rc) # Eq. 5.11

32 Fi = -RT*np.log(Fi)

33 Fi -= Fi.min()

34 change = np.fabs(prevFi -Fi).max()

35 prevFi = np.copy(Fi)

36

37 PMF = -RT*np.log(rhoU)

Listing 3.1: Example of implementation of the WHAM algorithm written in the Python coding
language for the calculation of a PMF from biomolecular simulations.
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Figure 3.1: (Top) Probability density distributions, ρi(ℜ)B, of the reaction coordinate, ℜ, from 36
umbrella sampling MD simulations. (Bottom) Potentials of mean force (PMFs) obtained by unbiasing
and combining the various ρi(ℜ)B spanning the whole range of ℜ. The PMFs are calculated using
the Python code of Listing 3.1 with 4000 (solid line), 400 (dashed line), 40 (dot-dashed line), and 4
(dotted line) iteration cycles.

3.2 Wang–Landau methods

The enhanced sampling techniques falling under the category of Wang–Landau
methods are characterized by the optimization of a biasing potential aimed at
obtaining equal probabilities for all points on ℜ. The bias is an a priori unknown
function of ℜ, which is progressively modified to achieve uniform distributions
of ℜ. The implementation of Wang and Landau45,46 represents a refinement of
previous methods,47–50 successfully applied to study, e.g., phase transitions of
classical spin systems47,48 and of the Lennard–Jones fluid.49 Here, the method is
applied to the calculation of free energy profiles and surfaces.50–52 As opposed
to the multistage umbrella sampling technique described above, Wang–Landau
methods require a single simulation with an undetermined biasing potential
w(ℜ), which is initially set to zero. Throughout the simulation, w(ℜ) is contin-
uously updated to penalize the sampling of the explored regions of ℜ. Concur-
rently, the biased distribution, ρ(ℜ)B, is calculated and periodically monitored.
ρ(ℜ)B and w(ℜ) are generated as histograms, however, the former is built by
unit increments whereas the bin counts of the latter are increased by f . If the
degree of uniformity of ρ(ℜ)B meets a given criterion, f is reduced, ρ(ℜ)B is set
to zero, and the criterion for uniformity is made more stringent. Convergence is
reached when ρ(ℜ)B shows an insignificant dependence on ℜ. For ρ(ℜ)B = C,
where C is an arbitrary constant, Equation 3.15 can be rewritten as

βPMF = − ln
[
C
⟨

exp[−βw(ℜ)]
⟩]

− βw(ℜ) = C − βw(ℜ), (3.20)
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therefore, the converged w(ℜ) is directly related to the PMF. The criterion to
assess the flatness of ρ(ℜ)B can vary from implementation to implementation.
A common requirement is that the ratio between the minimum and the mean
values of ρ(ℜ)B should be sufficiently close to one.43 The initial value of f and
of the scaling factor used for the successive downward adjustments are also
implementation- and system-dependent. In the beginning of the simulation, a
relatively large value of f is beneficial to overcome free energy barriers along
ℜ. Once the whole ℜ-range has been visited, f needs to be downscaled to
progressively reduce the fluctuations in w(ℜ) and capture the fine details of the
PMF.
In MC implementations of Wang–Landau methods, trial moves are accepted
according to the following criterion:51

acc(rold → rnew) = min
[
1, exp [−βU(r)− βw(ℜ)]

]
. (3.21)

Since the Hamiltonian is continuously modified throughout the simulation, de-
tailed balance is not strictly observed.43,51 Therefore, to sample properties as
ensemble averages, it is necessary to perform long Wang–Landau simulations
biased with the converged w(ℜ), and with f = 0.43

Wang–Landau methods offer the possibility for parallel computing implemen-
tations of the MC algorithm.52,53 Np MC simulations can be initialized with
different random number seeds and carried out in parallel on separate proces-
sors. Periodically, wi(ℜ) and ρi(ℜ)B are collected from the Np processes and
the update of f is attempted. If at least one wi(ℜ) meets the flatness criterion,
each wi(ℜ) is updated to the average ∑

Np
i=1 wi(ℜ)/Np and the single simulations

proceed independently until the subsequent attempt. All the other aspects of
the simulation are identical as in the serial implementation.
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Figure 3.2: (Left) Root-mean-square deviation (RMSD) of intermediate PMFs with respect to the fully
converged PMF as a function of the number of updates of f and sampled for simulations performed
with 5 (blue), 10 (orange), 15 (green), and 20 (red) CPUs. (Right) Number of MC iterations as a
function of the number of updates of f and sampled for simulations performed with 5 (blue), 10
(orange), 15 (green), and 20 (red) CPUs.
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1 void update(const vector <double > &coord) override {

2 using namespace Faunus ::MPI;

3 double uold = penalty[coord]; // store current bias

4 if (++cnt % nupdate == 0 && f > 0) {

5 int min = histo.minCoeff (); // smallest count

6 MPI_Barrier(mpi.comm);

7 // gather counts of least sampled bin from all processes

8 MPI_Allgather (&min , 1, MPI_INT , minCounts.data(), 1,

9 MPI_INT , mpi.comm);

10 // check if the largest of the smallest counts > sampled

11 if ( minCounts.maxCoeff () > sampled ) {

12 MPI_Gather(penalty.data(), penalty.size(),

13 MPI_DOUBLE ,buffer.data(), penalty.size(),

14 MPI_DOUBLE , 0, mpi.comm);

15 if (mpi.isMaster ()) {

16 penalty.setZero (); // set penalty to zero

17 // average penalty over all processes

18 for (int i = 0; i < mpi.nproc(); i++)

19 penalty += Eigen::Map <Eigen::MatrixXd >(

20 buffer.data() + i*penalty.size(),

21 penalty.rows(), penalty.cols() )

22 / double(mpi.nproc ());

23 penalty = penalty.array() - penalty.minCoeff ();

24 }

25 MPI_Bcast(penalty.data(), penalty.size(),

26 MPI_DOUBLE , 0, mpi.comm);

27 histo.setZero (); // set histo to zero

28 f = f * scale; // decrease increment

29 // increase sampled

30 sampled = ceil( sampled / scale );

31 }

32 }

33 histo[coord ]++; // update probability density histogram

34 penalty[coord] += f; // update bias histogram

35 udelta += penalty[coord] - uold; // energy change

36 }

Listing 3.2: Function to update the biasing potential in the implementation of the Wang–Landau
method in the sofware package Faunus.

Listing 3.2 shows an excerpt from the code of the software package Faunus.54

Faunus is written in the C++ programming language and uses the message pass-
ing library standard MPI. The function update takes as an argument the visited
value of the reaction coordinate, coord (line 1), and increases the counts for the
corresponding bins in the ρi(ℜ)B and wi(ℜ) histograms (lines 33–34), which are
implemented as matrices named histo and penalty, respectively. If the num-
ber of MC steps is a multiple of nupdate (line 4), the processes exchange the
counts of the least visited element of histo and collect all the values in the vec-
tor minCounts (lines 8–9). If the maximum element of minCounts is larger than
a threshold sampled value, the manager process gathers the Np penalty matri-
ces (lines 12–14) and computes the average (lines 18–22). The average penalty

is then redistributed by the manager to the remainder Np − 1 processes (lines
25–26). Subsequently (lines 27–30), the histo of each process is set to zero,
whereas the increment f and the sampled value are multiplied and divided by
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0 <scale< 1, respectively.
An example of the Wang–Landau method is given by the calculation of the PMF
of translocation of a single amino acid across a lipid bilayer. MC simulations
are performed with Faunus using the coarse-grained model presented in Paper
IV. The initial values of f and sampled are 0.05 kBT and 3, respectively, whereas
scale is set to 0.7. The left hand-side of Figure 3.2 shows the progress of the con-
vergence of the PMF as a function of the number of updates of f and sampled,
for simulations performed with 5, 10, 15, and 20 parallel processes (CPUs). The
degree of convergence is quantified as the root-mean-square deviation (RMSD)
of the intermediate PMF with respect to the fully converged PMF. The degree
of convergence increases steadily as f is downscaled irrespective of the number
of CPUs. However, the right hand-side of Figure 3.2 indicates that the increase
in the number of processes decreases the number of MC iterations required to
perform the same number of updates of f.
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Figure 3.3: (Left) 2D PMF of translocation of a rigid linear three-bead molecule across a lipid bilayer
calculated as a function of two reaction coordiantes, ζ and θ. (Right) 1D PMFs obtained from the
2D PMF by angular averaging (black), and by selecting constant-angle profiles for θ = 0◦ (red)
and θ = 90◦ (blue). Shaded areas represent the uncertainties, estimated as the absolute difference
between the two symmetrical halves of the 1D PMFs.

For the simulated system consisting of 487 particles, 30 million MC itera-
tions per CPU are performed in approximately 30 minutes using 10-core 2.3
GHz processors. The Faunus implementation of the Wang–Landau method is
suitable for the calculation of PMFs as a function of one or two reaction coordi-
nates. The left hand-side of Figure 3.3 shows a 2D PMF obtained with Faunus
using the coarse-grained model presented in Paper IV. The PMF pertains to the
translocation of a linear rigid three-bead molecule across a lipid bilayer and is a
function of a distance, ζ, and an angular coordinate, θ. ζ is the z-component of
the center-of-mass separation between the molecule and the bilayer whereas θ is
the angle between the principal axis of the molecule and the z-axis, coinciding
with the normal to the membrane. The calculation of the 2D PMF required the
Jacobian correction of Equation 3.10 applied along the angular coordinate, with
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|det (J)| = sin θ. The right hand-side of Figure 3.3 shows free energy profiles as
a function of ζ obtained from the 2D PMF. Comparison of the angular average of
the 2D PMFs with the profiles for θ = 0◦ and θ = 90◦ indicates that the molecule
is preferentially oriented parallel to the z-axis at the midplane (ζ = 0); whereas
it favors the perpendicular orientation in the region of the lipid head groups.
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Chapter 4

Quartz Crystal Microbalance with
Dissipation Monitoring

The quartz crystal microbalance with dissipation monitoring (QCM-D) is a sur-
face-sensitive technique based on the measurement of changes in oscillation of
a quartz crystal in response to changes in the surrounding environment. It was
in the late 1960s that the name microbalance was used for the first time to refer
to this device.55 Since then, the sensitivity of the sensor has greatly improved
and the range of applications of the quartz crystal microbalance (QCM) have
expanded. The sensing unit of QCM is the quartz crystal resonator (QCR), a
piezoelectric disk of crystalline quartz of thickness dc and radius R. Typical di-
mensions are dc = 330 µm and R = 7.5 mm.56 The resonance of a QCR occurs
in a very narrow band of frequencies. For instance, the half-bandwidth, Γr, of a
QCR with resonance frequency, fr, of 5 MHz is typically smaller than 25 Hz.56

The two sides of QCR crystals used for QCM-D measurements are shown in Fig-
ure 4.1. In the QCM-D instrument Q-sense E4 from Qsense (Göteborg, Sweden),
the QCR is located in a measurement chamber where it is held horizontally on
top of an O-ring. Each side is in contact with an electrode, generally made of
gold. The upper electrode, which is exposed to the sample, has a larger surface
than the lower one, and can be coated with various materials, e.g., silica.56,57

Figure 4.1: Pictures of QCM-D crystals from Qsense (Göteborg, Sweden) with uncoated gold elec-
trodes taken from the front side (Left) and from the back side (Right).
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4.1 Operating Principle

When a static voltage is applied, the QCR is deformed to a very small extent.
However, by applying an AC voltage of frequency equal to fr, more pronounced
deformations are induced and a sizable oscillating electric current can be ex-
tracted by the electrodes. For an AT-cut QCR, the applied voltage mainly induces
shear deformations, wherein the vibrations occur tangentially to the crystal sur-
face and result in the generation of standing plane waves propagating in the
direction normal to the surface.56 Figure 4.2 illustrates the displacement pat-
terns for the first six harmonics of the resonance frequency for a bare QCR and
for a QCR covered with a rigid film. The wavelength of the shear waves is twice
as large as the thickness of the QCR. The antinodes are located at the surface
of the QCR, whereas, within the crystal, as many nodal planes are present as
the overtone order, n. Since the two faces of the deformed QCR are oppositely
charged, only odd n can be excited.58 When a rigid film is deposited on the
QCR, the increase in the thickness of the vibrating disk determines an increase
in λ and a decrease in the frequency of the oscillations f = c/λ, where c is the
speed of sound. The Sauerbrey equation55 describes this phenomenon in terms
of the change in frequency, ∆ f , upon deposition of a thin rigid film of mass m f

m f = −C
∆ f
n

, (4.1)

where C is a mass sensitivity constant.57 Equation 4.1 is strictly valid for rigid
samples in the gas phase and accounts for the use of QCM as a gravimetric
technique. Due to the small Γr of the resonance frequency band, ∆ f can be
measured with high precision and the gravimetric sensitivity is of the order of

Figure 4.2: (Left) Schematic illustration of a QCR excited by an oscillating voltage. (Right) Corre-
sponding displacement patterns for the first 6 odd overtone orders, n. (Top) The wavelength of the
standing shear waves generated by the QCR operating at the fundamental fr (n = 1) is twice as long
as the thickness of the crystal. (Bottom) The wavelength increases upon the deposition of a rigid film
on the surface of the QCR.
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Figure 4.3: (Left) Time-domain signal for the current drawn by the electrodes of a bare QCR (blue)
and of a QRC covered with a soft film (red) as obtained from Equation 4.2. (Right) Correspond-
ing frequency-domain signals obtained by Fourier transform (FT). The deposited film increases the
thickness of the resonator and decreases the frequency of the oscillations ( f − fr < 0). The vis-
coelastic forces acting on the soft film result in the rapid decay of the time-domain signal and in the
broadening of the frequency-domain band.

1 ng cm−2.56 In water, a shear wave generated by a QCR oscillating at 5 MHz
has a penetration depth of 250 µm.56 QCM-D owes its surface specificity to this
rapid decay of the shear waves in the liquid medium, which limits the material
sensed by the QCR to a surface layer of thickness 1 µm.56

If the film is deformable or if the rigid adsorbate protrudes into the liquid phase
and is acoustically coupled with the solvent molecules, frictional viscous forces
considerably damp the amplitude of the oscillations of the QCR. In that case,
Equation 4.1 does not apply, and the viscoelastic properties of the film have to
be taken into account. To disentangle the effects of mass and viscosity in QCM-D
measurements, the QCR is periodically excited by a radio-frequency (RF) pulse
matching fr. The current drawn by the electrodes, I(t), has an initial amplitude
I(0) which freely decays in time, t. The dampened signal can be modeled as
a cosine function of frequency f , decaying exponentially with decay constant
1/(2πΓ):57,59

I(t) = I(0) exp (−2πΓt) cos (2π f t). (4.2)

The current signal is digitally recorded and fitted to Equation 4.2 to simultane-
ously measure Γ and f . The RF pulses are applied approximately every second,
typically alternating between the frequencies of the first 6 odd overtones.57 In
QCM-D experiments, the time evolutions of Γ and f are monitored as the sam-
ple flows through a thermostatted measurement chamber. Figure 4.3 illustrates
the signal of Equation 4.2 in the time and frequency domains for a bare QCR (Γr
and fr), and for a QCR covered with a viscoelastic film (Γ and f ). Γ is related to
the energy dissipation D by59

D =
2Γ
f

, (4.3)
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which is proportional to the ratio between the energy dissipated during one
oscillation, Ed, and the energy stored in the deposited film after the excitation,
Es,57

D =
Ed

2πEs
. (4.4)

4.2 Modeling

Generally, the length scale of inhomogeneities of the media surrounding the
QCR is considerably smaller than the penetration depth of the shear waves.
Therefore, continuum models are commonly used to analyze QCM-D signals
in terms of energy storage and dissipation processes. Within the framework of
continuum mechanics, the response of the viscoelastic film to the stress applied
by the oscillating QCR is expressed by the complex frequency-dependent shear
modulus

G̃( f ) = G′( f ) + iG′′( f ), (4.5)

where G′( f ) is the storage modulus and G′′( f ) is the loss modulus, which is
related to the shear elastic viscosity, η( f ), by60

G′′( f ) = 2π f η( f ). (4.6)

In the literature, G′( f ) is often termed the shear elastic modulus, µ( f ). A widely
used model for viscoelastic homogeneous films in QCM-D data analysis is the
one-layer Voigt model60,61. The QCR is treated as a harmonic oscillator covered
by one viscoelastic layer. The bulk solution is considered as a semi-infinite New-
tonian fluid of density ρs and frequency-independent viscosity ηs. Newtonian
fluids are characterized by relaxation rates that are considerably faster than the
f at which the QCR is operating; therefore, G′( f ) ≪ G′′( f ) and G′( f ) can be ne-
glected61. No-slip conditions are assumed to hold at the interfaces.57,60,61 Beside
the viscoelastic parameters µ( f ) and η( f ), the layer is described by density, ρ f ,
and thickness, d f . In the viscoelastic regime, µ( f ) and η( f ) vary monotonically
with f and can be approximated by the following power laws61

µ( f ) = µ0 ( f / f0)
αµ ,

η( f ) = η0 ( f / f0)
αη .

(4.7)

µ0, η0, and f0 are reference values whereas αµ and αη are the power law expo-
nents. The Voigt model provides the equations to relate ∆ f and ∆D to G′( f ) and
G′′( f ). Global fitting procedures are performed on the time-dependent data of
∆ f and ∆D of several overtones. Knowledge of the parameters ρs, ηs, and ρ f is
a prerequisite, whereas µ0, η0, αµ, αη , and d f are obtained from the fit. Finally,
the mass of the film can be obtained as

m f = πR2ρ f d f . (4.8)

For many samples, e.g., protein solutions, the viscoelastic film is highly solvated
and a substantial amount of solvent molecules are acoustically coupled to the
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QCR. In that case, d f has to be considered as an effective hydrodynamic thick-
ness and m f as wet mass57.
QCM-D measurements are used in Paper III to investigate the adsorption of
amyloid beta peptides and fragmented fibrils to supported lipid bilayers. The
∆ f and ∆D are modeled by treating the supported lipid bilayer as a rigid film
and using the one-layer Voigt model described in this Chapter to obtain the
viscoelastic properties and the wet mass of the fibril film.
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Chapter 5

Small-angle X-ray Scattering

Small-angle X-ray scattering (SAXS) is a powerful experimental technique for
the structural characterization of solutions of particles in the nanometer range.
Exploiting the variation of the electron density throughout a sample volume,
SAXS provides information on the size and shape of the particles, as well as on
the spatial correlations between the particles.62

Figure 5.1 shows a schematic illustration of a SAXS experiment. A beam of
collimated X-ray photons is incident on the sample. The scattered radiation is
collected by a 2D area detector, while the transmitted radiation is absorbed by
a beamstop to protect the detector.63 The oscillating electric field of the incident
electromagnetic waves is denoted by

E(t) = êE exp[i(k · r − νt)], (5.1)

where ν is the frequency, ê is the polarization versor and k = k̂k is the wave
vector defining the propagation direction, k̂ ⊥ ê. Synchrotron X-rays have wave-
length λ = 2π/k ≈ 0.1 nm which is considerably larger than the classical
electron radius, re =2.818 fm. Therefore, the interaction between X-rays and

Figure 5.1: Schematic representation the experimental setup of a small-angle X-ray scattering mea-
surement.
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electrons can be treated as classical elastic Thomson scattering.64 E(t) exerts a
Lorentz force on a free electron, which makes the latter oscillate with accelera-
tion

a =
F(t)
me

= −e
E(t)
me

, (5.2)

where me is the mass of the electron and e is the elementary charge. The os-
cillating free electron emits an electromagnetic wave of the same λ and a phase
shift of π with respect to the incident wave. Since all incoming X-ray photons
are in-phase, the scattering process is characterized by a well-defined phase re-
lationship between incident and scattered waves.64 The amplitudes of the scat-
tered X-rays result in an interference pattern on the detector. The amplitude of
a scattered wave is exp(iϕ), where ϕ is the phase angle. Figure 5.2 schematically
illustrates ϕ for an electron located at position r with respect to the origin. The
angle between the scattered and incident waves is known as the scattering angle.
It is usually denoted by 2θ, and in SAXS experiments it is typically smaller than
5◦. The difference in optical path length of the electron at r with respect to the
origin is δ2 − δ1 = r · k̂0 − r · k̂ where k̂0 and k̂ are the propagation versors of the
incident and the scattered wave, respectively. Therefore, the phase angle is

ϕ = (δ2 − δ1)k = −q · r, (5.3)

where q is the scattering vector, q = k− k0, of magnitude q = 4π
λ sin θ. The total

amplitude, F(q), of radiation at an angle 2θ is obtained by integrating the com-
plex amplitude of the scattered wave emitted by a single electron, exp(−iq · r),
over the sample volume:

F(q) =
∫

drρ(r) exp(−iq · r), (5.4)

where ρ(r) is the continuous electron density. The scattering intensity, I(q), is
defined as the squared norm of the total amplitude:64

I(q) = |F(q)|2 =
∫

dr
∫

dr′ρ(r)ρ(r′) exp(−iq · r) exp(iq · r′). (5.5)

d2

d1 q
q k0

k q = k - k
0

r

O

Figure 5.2: Schematic illustration of the difference in optical path length of the electron at r with
respect to an electron at the origin.
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By choosing r′ = r+R, the intensity is expressed in terms of interelectron vector
distances R,

I(q) = V
∫

dR⟨ρ(r)ρ(r + R)⟩ exp(−iq ·R), (5.6)

where V is the sample volume, whereas ⟨ρ(r)ρ(r+R)⟩ is the spatial autocorrela-
tion function of the electron density.64 For isotropic and non-crystalline samples,
⟨ρ(r)ρ(r + R)⟩ depends only on the magnitude R of the vector R, whereas I(q)
can be integrated in spherical coordinates:64

I(q) = V
∫ ∞

0
dR R2⟨ρ(r)ρ(r + R)⟩

∫ 2π

0
dγ

∫ π

0
dα sin α exp(−iqR cos α)

= V
∫ ∞

0
dR 4πR2⟨ρ(r)ρ(r + R)⟩ sin(qR)

qR
= I(q),

(5.7)

where α is the angle between q and R, and sin(qR)/qR is known as the Debye
factor. Since the scattering intensity depends only on the magnitude of the scat-
tering vector, the 2D scattering pattern recorded on the detector has cylindrical
symmetry with respect to the incident X-ray beam along k0.

5.1 Form and Structure Factors

A particle solution can be treated as a binary system where the particles are
immersed in a background of solvent and co-solutes.64 The I(q) of the sample
is approximated to the sum of the scattering intensities originating from the
particles, IP(q), and from the background, IB(q). IP(q) is thereby obtained by
subtracting IB(q) from I(q),

IP(q) = I(q)− IB(q). (5.8)

where IB(q) is measured from a solution prepared to accurately match the com-
position of the medium in which the particles are dissolved.63 In this kind of
SAXS experiments, F(q) is the Fourier transform of the excess electron density,

∆ρ(r) = ρP(r)− ρB, (5.9)

where ρP(r) is the electron density of the particles and ρB is the average elec-
tron density of the background. The success of the measurement relies on the
contrast, i.e., ∆ρ = ρP − ρB, as well as on the accurate match between the com-
positions of the background solution and the medium surrounding the particles
in the sample.63

For a system of N identical particles in a volume V, the scattering intensity aris-
ing from the particles can be expressed as a sum of contributions from the single
particles

IP(q) =
N
V
⟨|F(q)|2⟩+ 1

V

⟨
N

∑
j=1

N

∑
k=1 ̸=j

Fj(q)F∗
k (q) exp[−iq · (rj − rk)]

⟩
, (5.10)
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where F(q) is the Fourier transform of ∆ρ(r) extended over the particle volume,
VP,

F(q) =
∫

VP

dr∆ρj(r) exp(−iq · r). (5.11)

where Fj(q) and Fk(q) are the F(q)s of single particles with mass centers located
at rj and rk, respectively. If the particle is non-spherical, F(q) depends on the
orientation, Ω, of the particle. In the decoupling approximation, the orientation
of a particle is considered to be independent of its position and of the configu-
ration of the other particles.62 The configurational average in Equation 5.10 can
be divided into orientational and positional averages:64

IP(q) =
N
V
⟨|F(q)|2⟩Ω +

|⟨F(q)⟩Ω|2
V

N

∑
j=1

N

∑
k=1 ̸=j

⟨
exp[−iq · (rj − rk)]

⟩
r . (5.12)

The spherically averaged scattering intensity of a single particle is readily ob-
tained from Equation 5.7:

⟨|F(q)|2⟩Ω = (VP∆ρ)2
∫ Dmax

0
dR P(R)

sin(qR)
qR

(5.13)

where Dmax is the largest separation between two points inside the particle. P(R)
is the pair distance distribution function,

P(R) = ⟨∆ρ(r)∆ρ(r + R)⟩ 4πR2

VP∆ρ
2 , (5.14)

where ⟨∆ρ(r)∆ρ(r+R)⟩ is the spatial autocorrelation function of the excess elec-
tron density inside VP. P(R) is normalized as

P(R) =
∫ Dmax

0
dR P(R) = 1. (5.15)

Equation 5.12 can be rewritten as

IP(q) = nP⟨|F(q)|2⟩Ω

{
1 +

1
N

|⟨F(q)⟩Ω|2
⟨|F(q)|2⟩Ω

N

∑
j=1

N

∑
k=1 ̸=j

⟨exp[−iq · (rj − rk)]⟩r

}
= nP(VP∆ρ)2P(q)Se f f (q),

(5.16)
where nP is the number density of the solution and Se f f (q) is the effective struc-
ture factor.64 For an ideal solution, Se f f (q) = 1 and the scattering intensity is

Iid.
P (q) =

N
V
⟨|F(q)|2⟩Ω = nP(VP∆ρ)2P(q) (5.17)

where P(q) is the form factor:64

P(q) =
∫ Dmax

0
dR P(R)

sin(qR)
qR

. (5.18)
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The effective structure factor is defined as

Se f f (q) = 1 +
|⟨F(q)⟩Ω|2
⟨|F(q)|2⟩Ω

(S(q)− 1), (5.19)

where S(q) is the structure factor:

S(q) =
1
N

N

∑
j=1

N

∑
k=1

⟨exp[−iq · (rj − rk)]⟩. (5.20)

For a monodisperse solution of spherical particles |⟨F(q)⟩Ω|2 = ⟨|F(q)|2⟩Ω and

IP(q) = nP(VP∆ρ)2P(q)S(q). (5.21)

5.2 The Guinier Approximation

The form factor, P(q), yields information on the overall shape and size of the
particle. From P(q) we can obtain the radius of gyration of the particle, Rg. The
series expansion of sin(qR)/qR for small q gives

sin(qR)
qR

= 1 − (qR)2

6
+O(qR)4. (5.22)

We can write P(q) for small q values as

P(q) ≈
∫ Dmax

0
dR P(R)−

∫ Dmax

0
dR P(R)

(qR)2

6
= 1 −

(qRg)2

3
, (5.23)

where Rg is the radius of gyration for a particle of uniform density

R2
g =

1
2

∫ Dmax

0
dR R2P(R). (5.24)

Using the series expansion ex2 ≈ 1 − x2, we derive the Guinier approximation63

ln P(q) ≈ −
(qRg)2

3
. (5.25)

For a sample of low particle concentration, ln I(q) vs. q2 can be fitted to

ln Iid.
P (q) ≈ ln Iid.

P (0)−
(qRg)2

3
. (5.26)

For globular proteins, Equation 5.26 is accurate for q < 1.3/Rg.63 The slope
gives an estimate of Rg, whereas the intercept is Iid.

P (q) extrapolated at q = 0.
Given the partial specific volume of the particle, v, the mass concentration of the
sample, cP, and ∆ρ, the molecular weight of the particle, Mr, is readily obtained
from Iid.

P (0).63 According to Equation 5.17,

Iid.
P (0) = nP(VP∆ρ)2 =

cP(v∆ρ)2Mr

NA
, (5.27)
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where NA is the Avogadro constant.
The Guinier analysis was used to estimate the radii of gyration and the molecular
weights of the decapeptides studied in Paper V, as shown in Figure S1 in the
Supporting Information.

5.3 Structure Factor and Radial Distribution Func-
tion

The structure factor

S(q) =
N

∑
j=1

⟨exp[−iq · (r1 − rj)]⟩ (5.28)

can be factorized into a self part, j = 1, and N − 1 distinct parts

S(q) = ⟨exp[−iq · (r1 − r1)]⟩+
N

∑
j=2

⟨exp[−iq · (r1 − rj)]⟩

= 1 + (N − 1)⟨exp[−iq · (r1 − r2)]⟩.
(5.29)

In classical statistical thermodynamics, the ensemble average of
exp[−iq · (r1 − r2)], where r1 and r2 are the positions of the center of mass of
two distinct particles, reads as

⟨exp[−iq · (r1 − r2)]⟩ =
∫

dr1...drN exp[−iq · (r1 − r2)] exp[−βU(r1, ..., rN)]∫
dr1...drN exp[−βU(r1, ..., rN)]

,

(5.30)
where β = (kBT)−1 and U(r1, ..., rN) is the Hamiltonian of the system.
As mentioned in Chapter 2, the joint distribution function for finding a particle
at position r1 and any other particle at r2 is27,30

n(2)
P (r1, r2) = N(N − 1)

∫
dr3...drN exp[−βU(r1, ..., rN)]∫
dr1...drN exp[−βU(r1, ..., rN)]

. (5.31)

Therefore,

S(q) = 1 +
1
N

∫
dr1dr2 n(2)

P (r1, r2) exp[−iq · (r1 − r2)]

= 1 +
1
N

∫
dr1

∫
dr2 nP(r1)nP(r2) g(2)(r1, r2) exp[−iq · (r1 − r2)].

(5.32)

For an isotropic solution, g(r1, r2) depends only on |r2 − r1| = |r12| = r12, hence
g(r1, r2) = g(r12). After the convenient change of variables (r1, r2) → (r12, r1),
we obtain

S(q) = 1 +
1
N

∫
dr1

∫
dr12 n2

P g(r12) exp[−iq · r12]

= 1 +
V
N

∫
dr12 n2

P g(r12) exp[−iq · r12]

= 1 + nP

∫
dr12 g(r12) exp[−iq · r12].

(5.33)
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Figure 5.3: (Left) Structure factors, S(q), of Lennard–Jones fluids of various densities, nP, calcu-
lated from NVT Metropolis Monte Carlo simulations using Equation 5.20 (circles) and Equation 5.35
(lines). (Right) Kirkwood–Buff integrals vs the cutoff distance, R, calculated for the same systems
using Equation 2.25. Dashed vertical lines indicate the R-interval over which the integrals are av-
eraged to estimate the isothermal compressibilities of the fluids. Simulations are performed in the
canonical ensemble using the software package Faunus. 54

The forward scattering cannot be measured experimentally because forward
scattered and transmitted photons are indistinguishable.64 Furthermore a beam-
stop is used to absorb I(0) to protect the detector. As a consequence, S(q) is often
defined as

S(q) = 1 + nP

∫
dr12 g(r12) exp(−iq · r12)− nP

∫
dr12 exp(−iq · r12)

= 1 + nP

∫
dr12 [g(r12)− 1] exp(−iq · r12),

(5.34)

where nP
∫

dr12 exp(−iq · r12) corresponds to the radiation that passes through
the sample unscattered.15

S(q) can be integrated in spherical coordinates

S(q) = 1 + nP

∫ ∞

0
dr r2 [g(r)− 1]

∫ 2π

0
dγ

∫ π

0
dα sin α exp(−iqr cos α)

= 1 + 4πnP

∫ ∞

0
dr r2 [g(r)− 1]

sin(qr)
qr

.
(5.35)

The structure factor extrapolated to q = 0 is a measure of the response in the
number density to a change in osmotic pressure, Π. Using the series expansion
of sin(qR) around qr = 0, we obtain

lim
q→0

S(q) = lim
q→0

{
1 +

4πnP
q

∫ ∞

0
dr r (qr − (qr)3

6
+ ...)[g(r)− 1]

}
= 1 + 4πnP

∫ ∞

0
dr r2 [g(r)− 1] = nPχosmkBT,

(5.36)
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where χosm is the osmotic compressibility

χosm = − 1
V

(
∂V
∂Π

)
T
=

1
nP

(
∂nP
∂Π

)
T

. (5.37)

The derivation of Equation 5.36 is based on the relationship in the grand canon-
ical ensemble between Kirkwood–Buff integral (KBI) and compressibility ex-
pressed by Equation 2.23 in Chapter 2.
For low particle concentrations, Π can be approximated to a truncated virial
expansion

1
nPχosm

=

(
∂Π
∂nP

)
T
= kBT

(
∂

∂nP
[nP + B2n2

P +O(n3
P)]

)
T

= kBT[1 + 2B2nP +O(n2
P)].

(5.38)

Therefore, at high dilution, the second virial coefficient, B2, can be obtained from
S(0) via

S(0) ≈ 1
1 + 2B2nP

≈ 1 − 2B2nP, (5.39)

where, in the last step, we have used the series expansion of (1 + 2B2nP)
−1

around nP = 0.
To conclude this Chapter, an example is given of the use of Metropolis Monte
Carlo simulations65 to calculate the RDF, the S(q), as well as the isothermal
compressibility of a model fluid. The left-hand side of Figure 5.3 shows structure
factors obtained from Equation 5.20 and Equation 5.35 for Lennard–Jones fluids
for closed systems of various densities in the canonical ensemble. The right-hand
side of Figure 5.3 shows KBIs for the same systems as a function of the upper
limit of integration, R. As discussed in Chapter 2, Equation 5.36 is valid only
for open systems. A viable approach to accurately estimate S(0) from a closed-
system RDF is to average the KBI over one oscillation in the low-R region32

(dashed vertical lines in Figure 5.3).
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Chapter 6

Summary and Outlook

This Chapter summarizes key results from the papers included in the Thesis, as
well as their future perspectives.

6.1 Paper I

Positioned at the end of the Hofmeister series, the thiocyanate ion binds to the
NH and CH groups of the protein backbone,3 and is one of the most surface-
active small inorganic ions.66 Previous SCN− force fields failed to reproduce
its orientational alignment at the interface. We developed a classical, all-atom
force field for aqueous solutions of NaSCN and KSCN with unprecedented ac-
curacy. Quantum-chemical calculations of the solvated anion were used to de-
rive the charge distribution within SCN−. The parameters describing the ions
were adjusted to improve the agreement between experimental and calculated
activity coefficients, obtained from molecular dynamics (MD) simulations us-
ing Kirkwood–Buff theory (see Chapter 2, Equation 2.37). The force field was
shown to be suitable for simulations of the air/water interface by comparing
experimental and simulated surface tension data, over a wide range of salt con-
centrations. Further, the force field was tested against available experimental
data on reorientational dynamics and ion clustering in bulk solution.

The newly developed model suggests that K+ preferentially interacts with
the S atom of SCN−, whereas Na+ shows a stark affinity for the N atom. The
difference in strength between K+–S and Na+–N interactions has notable conse-
quences on the dynamic and structural properties of NaSCN and KSCN aque-
ous bulk solutions. Specifically, KSCN has a higher tendency to form ion pairs,
whereas, large clusters are formed in concentrated NaSCN solutions resulting
in slower SCN− reorientational dynamics. On the contrary, the cation has a
negligible influence on the properties of the air/water interface, wherein SCN−

molecules form an average angle of 44◦ with the normal to the surface, with the
S atom pointing toward the vapor phase.

37



The current work tackles several limitations of empirical force fields em-
ployed in earlier studies. However, we observed that aqueous solutions of
potassium salts underestimated experimental mass densities, and the surface
tensions for KI and KCl deviated from experiments. In order to address this,
reparametrization of the cation needs to be attempted.

6.2 Paper II

We further used the developed force field for SCN− to study its surface-active
behavior at air/water and hydrophobic interfaces. The simulations were com-
plemented by vibrational sum frequency spectroscopy (VSFS) of monovalent
salt solutions at the interface with a hydrophobic solid surface. Using VSFS,
we probed non-hydrogen bonded OH groups of water in contact with the hy-
drophobic surface, to infer the relative amount of anions at the interface, as well
as CN triple bonds with preferred orientation for direct estimation of SCN−.
SCN− and I− were found to be present in significant amounts in the outermost
surface layer at the interface, whereas Cl− and Br− are expelled from the inter-
face. Moreover, SCN− was found to have a higher affinity for the alkane/water
interface than I−. MD simulations agreed with the accumulation of SCN− in the
outermost surface layer. However, we also found that the average concentration
of SCN− in the interfacial region is lower than in the bulk.

Both, simulations and experiments show that SCN− forms an average angle
of around 60◦ with the normal to the alkane/water interface, and the anion ori-
entation is negligibly affected by bulk salt concentration. Using our simulations,
we were also able to infer that the structure of the ion distribution at the interface
is dictated by the strong Na+–N interaction described in Paper I. Briefly, in the
outermost surface layer, the S atom of SCN− points toward the monolayer, while
in the inner surface layers anions prefer the antiparallel orientation with respect
to the normal to the interface. The two layers of roughly oppositely oriented
SCN− molecules are interposed by Na+ ions.

The Langmuir model was used to analyze the VSFS data, and we found that
SCN− is attracted to the hydrophobic surface more than to the air/water inter-
face. This trend was also found to be in agreement with MD simulation results.
Further work for confirming the applicability of the Langmuir model would en-
tail the calculation of 2D radial distribution functions for SCN molecules in the
surface layers.
For a more quantitative discussion of the differences between air/water and
monolayer/water interfaces, concentration profiles and orientational distribu-
tions should be calculated with respect to the instantaneous interface.

Further, simulations and experiments for KSCN at the alkane/water interface
would be useful to confirm the weaker interaction of K+ with the N atom, in
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comparison to Na+. We expect a less pronounced antiparallel alignment for the
SCN− molecules in the deeper layer for KSCN solutions, which would result in
more intense peaks for the CN triple bond.

6.3 Paper III

The focus of this study was the adsorption of amyloid aggregates onto op-
positely charged lipid membranes. A combination of quartz crystal microbal-
ance with dissipation monitoring (QCM-D, see Chapter 4), coarse-grained (CG)
molecular simulations, and analytical theory was used to study the dependence
of the adsorption of amyloid aggregates of different architecture on aggregate
size and solution ionic strength. QCM-D experiments showed that Aβ1−40 fibrils
adsorb to positively charged lipid bilayers at low ionic strength, whereas no sig-
nificant adsorption is observed at high ionic strength. Further, Aβ1−40 peptides
in monomeric form do not adsorb to positively charged lipid bilayers.

We explained the experimental results using Monte Carlo (MC) simulations
for rigid aggregates of 2 to 100–200 monomers interacting with a surface of ho-
mogeneous charge density. The CG aggregates were constructed using a bottom-
up approach, building on the available atomic-resolution structures and repre-
senting each amino acid as a bead with a certain charge and radius. The free
energy of interaction between aggregate and surface was calculated for aggre-
gates of various lengths and solutions of different ionic strengths. This data was
used to develop an analytical theory accounting for the entropy loss associated
with the aggregates approaching the surface, wherein fibrils are represented by
line segments with homogenous charge distribution. Using generalized van der
Waals theory,67 the line-segment model was used to predict the amount of ag-
gregates adsorbed onto the surface.

Our simulations showed that the aggregate–surface interaction is governed
by the interplay between electrostatic attraction and entropic repulsion due to ex-
cluded volume. This determines a complex dependence of the adsorbed amount
on the ionic strength of the bulk solution and on aggregate size. Notably, we
observed preferential adsorption of smaller aggregates over larger ones at phys-
iological ionic strength and pH. Further, the orientation of the aggregates on the
surface was found to be dependent on aggregate size and ionic strength.

Besides providing new insight into the interaction between amyloid aggre-
gates and membranes, our findings describe general physical principles pertain-
ing to the interaction of elongated, rigid particles with oppositely charged inter-
faces. The CG model could be extended by introducing discrete representations
of multivalent ions, and laterally diffusing charge sites on the surface. Addi-
tionally, it would be interesting to verify the predictions of our model, especially
those regarding the orientation at the interface, on other systems consisting of
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rod-like particles and oppositely charged surfaces.

6.4 Paper IV

Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) are oligo-
peptides often rich in basic amino acids. To fully exploit their potential as can-
didates for intracellular drug delivery and treatment of infections, it is crucial
to understand the interaction of short cationic peptides with lipid bilayers. Un-
fortunately, experimental techniques seldom provide highly resolved molecular-
level information, and simulations of peptide–membrane interactions require
large length scales and long equilibration times, especially when aimed at elu-
cidating the concerted action of several peptides. Therefore, we developed a
computationally efficient CG force field and outlined a convenient strategy to
parametrize it against all-atom simulations as well as experimental data.

The CG force field is based on the Cooke lipid model,68 which reproduces
structural and mechanical properties of lipid bilayers. In our extended model,
lipids and peptides are described as connected beads of given radius, charge,
and excess polarizability embedded in a dielectric continuum. The excess polar-
izabilities quantify the difference in dielectric properties between the beads and
the surrounding aqueous medium, and determine van der Waals and charge–
induced dipole interactions between peptide and lipid beads. The parametriza-
tion of the model is targeted toward all-atom free energies for the monopeptide
at the membrane interface and midplane, and a continuum model is developed
to map the reference data to the parameters of the CG force field.

Biased sampling techniques (see Chapter 3) are used to calculate free energy
profiles of translocation for protonated and neutral histidine, lysine, and argi-
nine monopeptides, using the CG and the all-atom force fields. CG and all-atom
models display similar deformations of the lipid membrane upon monopeptide
permeation. Further, free energy maxima and minima of translocation profiles
of CG di- and triarginine molecules are in agreement with reference all-atom
data. Using constant-pH MC simulations, we demonstrate that the CG model
can be used to predict the protonation states of mono-, di-, and tripeptides as a
function of the depth of membrane penetration.

The model can be further applied to the investigation of the mechanism of
action of CPPs and AMPs. Specifically, it can contribute to explain the chain-
length dependence of the translocation efficiency of oligo-arginines, which is
expected to be maximal for 6–15 residues.69,70 Moreover, after parametrization
of peptide–peptide interactions, the model could be employed to perform large-
scale simulations involving the concurrent interaction of several peptides with a
lipid membrane.
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6.5 Paper V

Arginine-rich CPPs (RRPs) can traverse biological membranes via a direct, non-
endocytotic mode.71 It has been experimentally shown that the efficiency of cel-
lular uptake of RRPs can be related to the formation of aggregates in solution.
Simulation studies have suggested that RRPs can aggregate on the lipid bilayer
surface, giving way to a cooperative internalization process. In this study, we
present the non-trivial solution behavior of deca-arginine (R10), in comparison
with deca-lysine (K10). Small angle X-ray scattering (SAXS, see Chapter 5) shows
that counterintuitively, R10 self-associates at low-to-intermediate ionic strengths,
despite its high positive charge. Conversely, K10 displays the expected solution
behavior of polyelectrolytes. We used all-atom umbrella sampling MD simula-
tions (see Chapter 3) and calculated free energy profiles of interaction between
R10 and K10. The results are shown to be consistent with the trends observed
in SAXS measurements. We found that the R10–R10 interaction is attributed to
the stacking of the positively charged guanidinium (Gdm+) side chains of the
ninth residues, which favorably interact with the negatively charged C-terminal
carboxyl groups. Inspection of the Protein Data Bank revealed that the double
salt bridge between a like-charged Gdm+ ion pair and two carboxyl groups is a
common motif in protein crystal structures.

To confirm the importance of the ninth arginine residue, we also looked at
R8KR and K8RK. SAXS and simulations showed that these peptides do not self-
associate. However, R8KR–R8KR interactions are significantly less repulsive
than K10–K10 interactions. These results suggest that, beside the double salt
bridge involving the ninth residues, self-association requires additional Gdm+–
Gdm+ attractive interactions between other residues. This non-specific pairing
between arginine side chains has also been corroborated using HSQC NMR.
As mentioned previously, the efficiency of uptake by cells is optimal for oligo-
arginines of 6–15 residues.69,70 Our findings suggest that the low bioavailability
of shorter and longer peptide chains might be related to the suppression of self-
association, due to either the lack of attractive Gdm+–Gdm+ interactions, or the
build-up of net positive charge of the peptide.

It would be interesting to systematically test the dependence of oligo-arginine
attraction on the chain length, e.g., via SAXS and simulations of solutions of
oligo-arginines of 8–20 residues. Moreover, to confirm the role of the double salt
bridge, solutions of C-terminally amidated oligo-arginines could be investigated.
The detailed information on oligo-arginine interactions acquired form SAXS and
all-atom simulations could additionally be used to develop a CG peptide model
to investigate, within the force field of Paper IV, the influence of self-association
on membrane adsorption and translocation.
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6.6 Paper VI

This paper presents an overview of the research on Gdm+ ion pairing focusing
on its implications for the mechanism of action of RRPs. Gdm+ is the small-
est cation that is able to form like-charge ion pairs in aqueous solution. Gdm+

can be considered as an orientational amphiphile, owing to its planar structure
with hydrophobic faces and the ability to form in-plane H bonds with water
molecules. Like SCN−, Gdm+ is placed at the extreme end of the Hofmeister se-
ries, and GdmCl is a widely used protein denaturant. As previously mentioned,
Gdm+–Gdm+ pairing plays crucial roles in protein structure and function, espe-
cially when further stabilized by a double salt bridge with two carboxyl groups.

MD simulations and quantum-chemical calculation of hydrated Gdm+ di-
mers have shown that Gdm+–Gdm+ interactions are thermodynamically stable,
owing to the compensation of the like-charge repulsion by cavitation, dispersion,
and quadrupole–quadrupole attractions. Electrophoresis experiments and MD
simulations indicate that Gdm+ ions form like-charge ion pairs with arginine
side chains, and the work of Paper V has further shown that ion paring also
occurs between the arginine side chains of RRPs.

At dilute extracellular peptide concentrations, the internalization of RRPs
has been shown to occur via direct translocation, whereas, at high peptide con-
centrations, experiments suggest a transduction mechanism involving the local
aggregation of RRPs adsorbed onto the plasma membrane.71 Comparative stud-
ies conducted using MD simulations, as well as experiments, have shown that
polyarginines bind considerably more strongly than polylysines onto lipid bi-
layers, and that the interactions between adsorbed peptides are attractive for the
former and repulsive for the latter. Further, MD simulations have suggested that
cooperative actions of the self-associating RRPs can induce kinetic stabilization
of membrane transient pores.

The findings reviewed in this paper may contribute to design new cell-
penetrating peptides and to optimize their efficacy as intracellular delivery vec-
tors.
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