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Foreword:

These notes were originally distributed among the participants in the Summer School of
Mathematics at Tjorn in 1969; later, a copy was given to Johannes Sjostrand (not himself
a participant at the Summer School) who remembers that he received it with instructions
that the notes were preliminary and should not be circulated. Not surprisingly then, my
father chose to destroy the original before his death and so did not include these notes
in the collection of Unpublished Manuscripts he wished to survive him (and which were
published by Springer Verlag in 2018). We can never know for sure why he did not want
to keep them himself, but a likely reason is that he felt that they were superceded by the
published presentation of the theory. Nevertheless, they were quite widely distributed and
I understand from discussions with Johannes Sjostrand and Gerd Grubb (who supplied
the copy of the manuscript) that they have significant historical interest, as also discussed
in more detail by Johannes Sjostrand in the commentary appended at the end of the text.
I have therefore decided to make these notes available to a wider audience here at LUCRIS
despite my father excluding them from his intended mathematical legacy. Enjoy!

Lund, in August 2018

Sofia Brostrom

Daughter and heir of Lars Hoérmander
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Introduction

Pseudo-differential operators have been developed as a tool for the
study of elliptic differential equations. In suitably extehded versions

they are also applicable to hypoelliptic equations, but their value is

rather limited in genuinely non-elliptic problems. In these lectures we
shall therefore discuss some more general classes of operators which

should be more useful in such contexts, Their theory is still in a fair-

ly primitive state but seems well worth further development in view of the
applications which can already be made, It also seems that one gainsg some
more insight into the theory of pseudo-differential operators by considering
them from the point of view of the wider classes of operators to bhe disousm
sed here,

Pseudo-differential operators as well as our Fourier integral operators
are supposed to make it possible to handle differential operators with vari-
able coefficients roughly as one would handle differential operators with
constant coefficients using the Fourier transformation, Thus for example
the inhomogeneous Laplace equation

Au = f ecg"(mn)
is for n > 2 solved by
o .
a(x) = (2n) ™ ol FE 1£1724(x) ax.
To be able to solve arbitrary elliptic equations with variable coefficients

one is led to consider more general operators of the form



0.2

() w0 = (™ (9P a(xe) Ko) e
where a behaves as a sum of homogeneous functions when &-—> oo . These are
the (olassioal) pseudo-differential operators, On the other hand, suppose
that we want to solve the Cauchy problem
Aw - D2u/362 = 0 5 u=0, dufdt = £ECT (B, t = 0

Then the solutidn is given by
(0;2) u(x,t) = (27:)““& ei(<xf5>+t"§l)(zlgl)”%\(a) dE -

_ (2n>-n§ei(<x,g>-tlgl)(2Ig,)—%\(@d&.;
FTach of the terms on the right hand gide is similar tO'(O.1> except for
the fact that the function <x,E> in the exponent has been replaced by
<x,&> - tlel, This is a homogeneous function of & with critical points as
a function of & where X = tE/lEI, thus lxl2= tz, which ig the light cone.
The function <x,E> on the other hand has no.oritioal point except when
g = O, These observations reflect the fact that the fundamental solufion*
of the wave equation is singular on the 1ight cone whereas the fundaméntal
solution of the Laplacean is singuiar only at the origin.

If one introduces the definition of the Foﬁrier transform f, thé

operators occurring in (0.1) and (0.2) assume the form
(0.3) Af(x) = U 1P CT18) o ,y,E) £(y) ayat.
Although one has to take some care to give a precise meaning to this
integral, we shall see below that it is advantageous to write pseudo-
differential operators also in this form, However, our, main purpose is
of course to discuss the properties of (B}Ifor a general choice of %P o

The first topic in the lectures is to digscuss the precise meaning of




(0.3) for suitable amplitude functions a and phasé functions qD « We shall
then review the theory of pseudoadifferential operators from this point
of view. We then pass to an analogous though unfortunately very incomplete
discussion of general operators of the‘form (0.3). A section on L2 estimates
was originally intended but has been omitted due to some hopefully minor
difficulties which turned up in the proof, We then pass to a further ex-
tension of the class of Fourier integral operators where the amplitude
function in (0,3) may have singularities. The purpose is bto construct fun-
damental solutions of differential equations of principal type with variable
coefficients by imitating the.definition of the integral

(on) ™ j Ji<x, 8 P(E)‘1‘a(5) aE
by complex deformation of the integration contour in the cage where
P is homogeneous and has no real critical point & % 0, This will yield

new regularity and existence theorems for such operators.
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Chapter T

Definitions and bagic properties of Tourier integral operators

1.1, Symbols, Concerning the amplitudes in the operators (0.,3) we shall
make the same assumptions as in the study of pseudo~differential operators

so we shall only recall the definitions and some fundamental facts,

Definition 1.,1,1. Let m, ¢

P

, & be real numbers with 0<e < 1 and

0 i 5 < 1, let ) be an open subset of B and N a positive integer. Then

we denote by s‘;,é(Q , B') the set of all a€8™ (02 %<&y such that for

every compact set K C )2 and all multi-indices a,/é we have with a constant
CdﬁB, Kthe estimate

(1.1.1) lDngaa(x,g)l < ca,(ng(wlgl)m‘f]“l*‘sllgl, x €K, EER".

The elements of S?’é are called symbols of order m and type o 53 1f =1,

§ = O we sometimes drop the subscripts and talk simply about symbols-of ox-
der m, If (1.1.1) ig only valid for large ’El, we say that aéf%%for large lel,
Example 1. If 2e0® and if a is a homogeneous function of degree < m

for large [El, then a is a symbol of order m and type 1,0,
Example 2, If a is semi-homogeneous in the gsense that
™ " m
a(g,t 5 ey B ) = v alEys eees £)
for some mj> 0 and m, and if a 0% for & % 0, then a is for large lel
a symbol of degree max m/mj and type min mj/mk, O.
Example 3. If ;Y/é'CSD, then a(x,&) =;Y'(XIE|€) is of type 1, € and

degree O for large lzl, (Note that x| can be bounded by IEf—S in the

support. )
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Example 4. If 0 < t < 1, the function £-—> exp ilg is of degree

0 and type [ 0 if and only if p < P

Proposition 1.1.2. S? 6(£§’,RN) is a Fréchet space with the topology
4

defined by taking as seminorms the best constants C "which can be

a,/s, X

ugsed in (1.1.1). This space increases when § and m increase and ¢ decrea~-

mn . o NP me- pla 1+ 141
ses., If a&$ , it follows that agﬁ% = (11)&) (wx)/b’ a & Sf,a f R

046
{ t
and if b&S® _ it follows that ab es™™
98 £io

The proof is obvious, Note that to prove (1.1.1) for ab one needs to
know only that (1.1.1) holds for a and for b when the differentiations
involved are of order < |a|+lﬂl. This is important for some proofs by
induction,

. . +os m §2 Ny |
It follows immediately from Definition 1.1,1 that SSp 5( s B ) is
’
invariant for diffeomopphisms in the x variable, so the definition makes
sense also if.f). is a manifold. However, it may then be more natural to
(2 xg" Q i
replace R by & real vector bundle V over . We can do so provided
that for every aeSm

£ 8
J:Z‘ﬁ'GL(N, R). Inspection of Example 4 shows that this requires that

we have a(x, A(x)E) € S? g if x> A(x) is a €% map
’

1= 9 i 8+ Conversely, this condition is alse sufficient so we can define

g™ ({2 ’ V) where V is a real vector bundle over the manifold 2 provided

§2°

that 1 -532 & and only then, Indeed, we have the following proposition

which makes it possible to define s™  for still mowe general objects:

£90

Proposition 1.1.%3. With the notations of Definition 1.1.,1 let

1 .
Aj(x,&) 681'0(93 RN)’ =1y ooy Ny and 391‘7 A(x,E) = (A1(x,€),...,A.N (x58)) .

We assume that (1+1gl) ¢ ¢ (1+1a(x,E)1), x €K, If aes; 5 it follows then
= ?
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that a(x, A(:c,&))ésg provided that 1= p< 8.
, <

)
Proof, Writing aj(x,g) = ‘Ba(x,é)/aij and aj(x,i) =7}a(x,£)/3xj, we
have

Qa(x,A(x,E))/ij = aj(X9A(XsE))'+ ;ZTak(x,A(x,E)ijk(x,E)/DXj,

iaa(X,A(Xyg))/aEk = ;E:aj(x, A(X’g))aAj(X9g)/ggk'

Here a’€ s;l:é?, ajes;‘jg and DAlc/aajgsiyo C s;,é, ?Ak/axje:s}’oc S;,s'
It is clear that a(x, A) satisfies (14161) when a+f2= 0, so we may prove
this estimate in general assuming it to be known for smaller la-wﬁl. But
then it follows from the formulas aebove in view of the statement concerning
mutliplication of symbols given in Proposition 1.1.2 and fhe following
remarks.

Remark. The proof shows that the statement remains valid if the hypo-

thesis AjéESJ is weakened to Aje;S1

,O "5.

Proposition 1.,1.3 makes it possible to define §§’5(£2? V) if V and
(2 are manifolds with a map p: V—>(2 having surjective differential such
that there is given a free differentiable action of the multiplicative group
of positive real numbers on V which commutes with p, for which the quotient
of V by R+ has compact fibers. Roughly speaking this means that the fibers
of V are cones and it is natural to call V a cone bundle, However, we shall
mainly discuss local results here so we shall not pursue this global setting
further.

Wext we recall an important completeness property of the space of

symbols. For the proof see Theorem 2.7 in Hormander [27.

me.
Proposition 1.,1.4. Let pjegs?Jé(gz ,BN), j=0, 1, 25, +.. and assume
3
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that m.—>»~00, Set mi = m , Then one can find pe&Smb (32 ,RN) such
J < Py

Pk

that for every &

Zp685
i<k

The function p is uniquely determined modulo S (\2 B ) ()Sm (f};m \ and
hag the same property relative to any rearrangement of the series ;E:pja
To recognise when p has the properties in the proposition it is useful

to have the following result, which is the same as Theorem 2.9 in [o],

Proposition 1.1.4. Let pj gvggfé(ilgﬂ,j =0, 1, «.. and assume that
n,—> 0o when j>o . Tet pec®((2xn") and assume that for all multi-indi-
ces a,(@ and compact sets K<Z§2 we have for some‘C and//{ depending on
U, /g and K

lp([‘));(ﬁc g)l < o(1+le:l)/ , X€K,

If there exist numbers // - o such that

lp(x,8) - > Py (x,8)1 ¢ Cg, 1(1+la!) b , X €K,
i<k

it follows that p €3 06(£>, B ) where mb = Sup My, and that pzﬂ/2z Py
[

Finally we shall make some remarks on the topology of the Fréchet

. Recall that a set MCS™ . is bounded if (1.141) is valid with

1
gpace S
§58

590

a /g, K

of pointwise convergence, the topology of CCO(§2.>< RN) and the topology of

independent of a when a €M, On a bounded set in ?? 5 the topology
?

6(!), RN), m' > m, all coincide. This is an immediate consequence of
Ascoli’s theorem,

Proposition 1.1.5. Let a(’S (LQ i ) and let jkﬁj#' ) be equal to

- . . N
1 at 0. If a_(x,&) =/‘(/(ag)a(x,a) it follows tha’é o &§F:%(xz, k) and
. m! N ,
that 2 —> a in 8" ({2, B ) when e—> 0 if m' > m.
€ ?,5

Proof, It suffices to note that the functions (X,E)4>)/(e£) form a




e T1¢5H =
bounded set in S?,O when 0 < € é 1 (ef. Example %, page 4).

In particular, we can take,)/ with compact support., Then we obtain

:
Corollary 1.1.6. Let L be a linear map from functions in SGD(KQ%fRL>

vanishing for large IEI to a Fréchet space F such that L is continuous for
the topology of S; 6(@2, RN) for every m. Then there is a unique extension
?
co ¢ N (
of L to sf 6(32, R) = J/ S (§2 il ) which ig continuous on 5 (\4,
7 m

for every m,

1.2 Oscillatory integrals. We shall now discuss the definition of

integrals of the form

(1.241) I:P(au) - j? ! P(X,E)a(x g)u(x) axde, U~¢C (AA)
where aAES?,S(gl, RN). For the sake of simplicity it will be assumed that

QP is real valued and positively homogeneous of degree 1 with respect to
&, and that (P«Q-CGD for E % 0. However, this hypothesis could'easily
be relaxed as we shall indicate later on,

The integral (1.2.1) is absolutely convergent for every aeﬁS?sé(fZ,mN)

provided that m+N < 0. In particular, it is well defined 1if a(x,8) = 0
for large lel, Using Corollary 1.71.6 we wish to extend the definition of
(1.,2.1) by continuity to arbitrary a(iS (E) i ) = L}§3 (AZ, i )
This is not always possible - for example q> must not vanish in any open
set - but we shall prove that the definition of (142.1) is indeed possible

if gj has no critical point % 0. This will follow by means of integrations

by parts in (1.2.1).
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Lemms 1,2,1, IT (f) has no critical point, one ean find a first order
differential operator
L= 5 aj'EVDEj +-‘2:bj'a/3xj + c
_ . .
with a,e8% (2, 2Y) and b., o es”' (2, =YY, such that 'L et Po ot
3 1,0 3 1,0 _
R o t
if "L is the adjoint of L.
Proof. By hypothesis the sum
25 YNNG - : 2
lel” 2 (@) + 2 (¢/ox;)
is homogeneoug of degree 2 with respect to & and % 0 for & % 0. Let qf be

the reciprocal of this sum which is then homogeneous of degree -2 and

e¢]

¢~ for E # 0, With ZVf?Cg)(RN) chosen so that ¥ = 1 near 0, we set

= N o/oE, bt o/x,
M Zaa /gJ+ZbJ /xa+

'T o 23 U/ s 0 o , \ o o=
where aj' = ~i(1- Y)Y lgl=2 [/azj é~8190, bj' ~»—;(1-;y)q/5Y/ij C4S190,

. ‘o
The coefficients are chosen so that M el\f = el(k ; 850 L = tM has the

required properties, for

= - o o - 5 - e gl
ay = =asl, by= cbt, o= ;\(\- Z-oaj'/agj prLVES €57 oe

The lemma is proved,
If a vanishes for large lgl, we can integrate by parts in (1.2.1)
after replacing ei%: by tL ei(P o« This gives
T (am) - jgeiiP<XsE) L(a(x,E)u(x)) dxaE
or after iteration

(1.2.2) I, (au) = j(ei P(38) 1k o, e u(x)) axdE, k = 0y 1, 2, +un

Lf,

Now L is a continuocus map of s™ _ into Sm't if t = min (fv, 1-8). Hence
f96 996

m-kt

k m
L7 maps S
P ) ?95

continuously into S
P8

. If m - kbt < -N, the integral (1.2.2)

is thus defined and continuous on all of Sm'é(iz, RN), In view of Corollary
9

1.7.6 we have thereforeAproved
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Propogition 1.2.2. If <f’ has no critical points, the definition of

the integral (1 .2.1) can be extended in one and only one way to all

aes® (0D, RN) so that I, (au) is a continuous function of aes” _ for

‘{)96 L(/ )096

every fixed m. The linear form u —> IQP(au) is a distribution of order < k

- m
it a«gé?yé

derivatives of order < k of continuous functions.)

and m»k§)< ~N, m—k<1—6) < =N, (More precisely, it is a sum of

For the extended form we have the representation (1.2.2). According to

Propogition 1.1.% we also have

o - . g~ g .

(1.24%) L(P(au) = lim j}e f(x’g> a(x,&);k(ei) u(x) dxag
g-»0

. - (2 ~

if //é?\jj and /V(O> = 1,

Tt is convenient to use the notation (1.2.1) also for the continuous
extension which has now been defined . We shall then refer to the genera-
limed integral as an oscillatory integral,

If %) and a are continuous functions of a parameter t with values in

00/ M Ny sA1 m ) N . § . .o
e (L x(m\ 10))) and 5 6(; , B ) respectively, then an obvious modifi-
5 ,
cation of the proof of Proposition 1.,2.2 shows that Itp(au) is a continuous-
function of +. Note that if a is a continuous function of t with values in
¥'e) (} - . I - N , .
¢ (L X R ) whose range is a bounded subset of Sf 6(&), R), then a is a
i

. . . - . m! i N

continuous function of t with values in ?F 6(A29 R) when m' > m, These
t?
remarks make it possible to pass to the 1limit in the oscillatory integral

(?.252) and in particular to differentiate with respect to parameters under

the integral sign.
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1 .5, Definition of Fourier integral operators. Let J:ZJ be an open

gubget of an, j=1, 2y, and let 99 be a real valued function of (X,y,g)
é‘“fz x 2 %(EN which is positively homogeneous of degree 1 with respect

to £ and infinitely differentisble for E % 0. With a symbol a&iS ((7 X ’Z’R )
we wish to consider the operator defined by the integral

(1301)  mux) = [ PO o ye) uy) ayye, weod (32p)y x €52y,
or the corresponding weak form

(14342)  <hu, v> = W LP(y18) o(x,y,8)v(x)uly) dxdyds, u el ( Lz),

To define these integrals we can apply the results on oscillatory integrals

given in section 1.2, The conclusions are as follows:

Theorem 1.3.1. (i) If @ has no critical point (x,y,&) with £ £ 0, then
the oscillatory integral (1.3.2) exists and is a continuous bilinear form
for the Cg topologies on u, v if
(1 3, 3) m-kp< -N, m-k(1-8) < -N,

When (1.3.3) is valid we thus obtain a continuous linear map A from 05(172)
into 5é9!k(§21) which has a distribution kernel KAEEzéa'(£21 7‘&222) given
by the oscillatory integral -

(oset) () = [f] OB aaye) wmy) axayae, weod (2,5 52,).

(ii} If QD has no critical point (x,y,E) with & % 0 considered as
a function of (¥, E) for fixed x, then (1.341) is defined as an oscillatory
integral., When (1.3,%) is valid we obtain a continuous map As C ((2 )= C(N‘1)
By differentiation under the integral sign it follows that A is a continuous
map. of 018(522) into oj(,Q1) if

(14345) militd < ke o, mill+ < k(1=8).
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(iii) If (¥) has no critical point (x,y,E) with & % 0 congidered as a
function of (x,&) for fixed y, then the adjoint of A has the properties
listed in (ii) so A is a continuous map of é?'j(§22) into Qg'k(fl1) when
(1.,3,5) is fulfilled. In particular, A defines a map from é?n(g?g) into
D12

(iv) Let EQCP be the open set of all (x,y)é;A2.1X-§22 such that
q)(x,y,i) has no critical point & % 0 as a function of &, Then the oscilla-
tory integral ‘
(13.6) K, (xpy) = Jo Pleads8) a(x,y,8) az, (X:YMQY,;’
defines a function in CGJ(KQ(F) which is equal to the distribution (1.3.4)
in A LF. If g?<F== £21 < {2 09 it follows that A is an integral operator
with a 0% kernel so A is a continuous map of éfﬂ(§72) into OOO((Q1)f'

The proof is an immediate conseduence of the properties of oscillatory

integrals listed in section 1.2,

Example 1, Pseudo-differential operators correspond to the function
q?(x,y,i) = <x=y, &> (n1sn2=N). Then (i), (ii), (iii) are fulfilled and
.fQ(P is the complement of the diagonal, if we take >§21 = .flz.

Example 2, In the introduction we saw that the study of the Cauchy

problem for the wave equation leads to the function

(x,%5 ¥, E) = <x-y,&> + tlel.
Here n1—1 = Dy= N and the variable in..§21 is denoted by (x,t). Then (i),
(ii), (iii) are fulfilled and [jg}QP consists of all (x,bs y) with

|x—y|2 = tz, that is, (x,t) shall lie on the light cone with vertex at (y,0).

Definition 1.3%3.2. A real valued function (P of (x,y,E)é’j‘ 1X‘$

which is a ¢® function for g % 0 and positively homogeneous of degree 1
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with respect to & will be called a phase function if for fixed x (or y)

it has no oritical point as a function of (y, &) (ox (x,&)) when & 40,
When ({> is a phase function the requirements in parts (i)y(ii),(iii)

of Theorem 1.3.1 are thus fulfilled. Let FLP denote the complement of

_JQ({ in ‘Z. X 22, that is, the set of all (X,y)C L2 XAAZ guch that

grad Q(X,yyﬁ) = 0 for some E # O, From (iv) in Theorem 1.3.1 it follows

€

then that

(1.3,7) sing supp Au < F(%_supp Uy, U E é?'(ﬁzz),

where the right hand side is defined by considering FCF as a relation

between points in §7.2 and in (2 4 Thus F(PK = %x; (x,y)é~F%;§for some

ye K I K2 = gupp u and K1 ig a compact subset of §121 which does not

intersect Fq)KQ’ we have K1 > K2 F~LL(P , 80 we can find nelghborhoods

521‘ D Ky f22' > K, such that sz’,xgk ‘ijlfq\. This proves (1.).7)

Using (ii) in Theorem 1.,3.1 we can improve (1.3.7) further. In fact, for

any neighborhood SQ.Q' of sing supp u we can make a decomposition u = Vv + v
co . . ~00 .

where supp v 5(22‘ and W‘ECO « Since AweC we obtaim

sing supp Au = sing supp Av C’Fgﬁsupp Vy

so we have proved

Theorem 1.3. 3; If ue & '(Q ), then
(1.3.8) sing supp Aun C F(P ging supp W
Example, For pseudo-differential operators this means that
sing supp Au (¢ sing supp U,
that is, we have the pséudo~1boa1 property .

Finally we note an obvious localization property:
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Theorem 1.3.4. If a(x,y,5) vanishes when (x,y) belongs to some neigh-
borhood of FQP, then the distribution K, defined by (14344) is in 000(1{21»(522).

Indeed, the formula (1,%.6) makes sense in §21 x {2 X

Remark, It is eagy to shoﬁ that the statement remains valid under the
weaker hypothesis that a = O when lgradg<fi’5|€ < ¢ for some C and some
e < nmin ( ¢ s 1/2). We shall prove a(till better result for some %9 in
Propogition 2.147

Finally we introduce the notation %?,6(§21"(22’ qﬁ for the class of
operators of the form (1.3,1) with awgéﬁyé when (%;is a given phase func-
tion, Note that every operator with a ¢ kernel belongs to Psyé, for if
we take a function ;}’63 Cg)(RN) vanishing in a neighborhood of O and with
JbV(S) dE = 1, then a(x,y,E) = e—i ?‘X’y’gzg/(i) b(x,y) corresponds to the

integral operator with the kernel b(x,y).
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Chapter II

Pacudo-differential operators

2.1, The calculus of psevdo-differential operators. If (2 is an open

set in B, we shall write L? 6(§1) for the class of operators L? a(ﬁ?, <2, %Q
2y s

defined with the phase function uP(x,y,E) = <x~y, & (N = n). As we shall

see in a moment, this agrees with the definitions given in Hormander 12!

at least when & < ¢ , so we shall call these operators pseudo~differential

-

of type §>, S
A pseudo-differential operator

(2.141) Mi(x) = Jﬁ’ei<x-y9£> a(x,7,8) u(y) dydg

is called properly suvported if both projections supp KA‘~?A:Z are proper,
that isy if g(x,y) &- supp KA; x K or yw;Kt} ig compact for every compact
set XK () . (Here we recall that K, is the distribution kernel‘of Ay) T%
is then clear that Au can be defined without restrictions on the support

of us thus A maps ¢ (()) into ¢ ({2) and Q) into D1(12). Further-

more, A maps Cgo(gz) into ng(£2) and gf3(£2. into é?'(ilﬁ. Ir ;?/ is a

function in 6 ( () x {) which is equal to 1 in a neighborhood of supp K,
and the projections suppgyi%rﬂiare also proper, it is clear that the operator
A ig also defined by the symbol ;F2X9y)a(x,y,€) = a1(x,y,E). Note that
f(x,y); (x,7,8) €supp 8, for some & and xory g X
is then relatively compact in ) ~{2 for every compact set K < () . We
shall also say that such a symbol is proper. Every pseudo-differential

operator is the sum of one with a ¢® kernel and one which is properly
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supported., This follows immediately if we choose KthérCoo( (2 >»£70) so that
9/ = 1 in a neighborhood of the diagonal and‘)V is properly supported,

for the symbol (1—;¥)a defines an operator with ¢ kernel according to
Theorem 1¢3.4, and ;Y'a is & proper symbol.

When 8§ < ? we shall now derive an expression for a properly supported
pseudo-differential operator A which will connect the definition used here
with that used in Hormander [2], Thus let A be defined by (2.1.1) where
a is proper. We apply A to the exponential function eg(x) = exp I<x,&
and obtain Aeg(x) = (jk(x,i) eg(x) where

JA<X’E> - ff a(x,57,m) ei<x—y,n>+i<y—x,€> dydn =
= lya(x, X+Y E+n) e-i<y,n> dydn e

The oscillatory integral here may be interpreted as a repeated integral

Il

taken first with respect to m, then with respect to y. We set b(x,y,&)

= a(x,x+y, E) and introduce the Fourier transform
~ .
b(x, 8, &) = fb<xy3fyg) e—l<y9 © ay s

For every compact set K < {2 we obtain if aeﬁS? 5 is proper and if xekK
e

(2.1.2) IDXO‘ Q@Déb/{)\(x, 0, E;',){ _<—_ C(1+|§|>m+6(lal+[/3!) - Sl&/l’

hence for any positive integer 2/

5 - 1y -/
(2.1.3) IDXQDEJI%(X’ 0, £)1 < C<1+|El)m+6(la!+"v> eyl (1+1al)™>,
Now we have

7, (x,8) = J%\(X, ny E+n) dn.

Since & < 1 it follows from (2.1;3) that CTA and any one of its derivati-
vies can be bounded by some powers of (1+|§!). To obtain the asymptotic

behavior of CTA when £ —% co we form the Taylor expansion; by (24143) we have

m+82w pN ,

ABSSSE

|g(x,n,€+n) -~ 2> (iD )“ﬁ(x,n,g) n%/ati< ClnlN sup (1+1E+tn1
& = 0< <1 L
/ (1+l1’]l)— .

Jo I<w
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Here »’ 1is any positive number or 0. With »/ = N we obtain the bound
C(1+l£l)m+(6- f)N if ln[ < ]5]/2, and if we chéose 30 large we get a bound
by any power of (1+1nl)"1 it lgl < 2Inl, Hence
| o, (x,8) = (2m)" 22 (0,)% D b(x,y,8)/ub o] < o1+ 15 1) 8=9)T,
ey LBV fy=0" =
In'v%ew of Proposition 1.1.4 1t follows that aﬁA;E’S?’é(fl) and that
R R CORPIC R KCE Oy
If ucgcg)(il) we have Fourier’s inversion formula
u(x) = (on)™ yeg(x)ﬁlg) ak.
Since A is continuous from COO(SY) to CQ)(XZ), we can apply A under the
gign of integration and obtain
(2.145) Ma(x) = (zn)"nfei““"zz> T (x,E) ae) ag, necP(@?), xe (2.
Tn the left hand side we should interpret u as the restriction of u to {2 .

Obviously (2¢1.5) determines th uniquely., Summing up, we have proved

m Y
Theorem 2.1.1. If A is a properly supported operator & Lf,é(&4),
5

6 < §> , then A can be written in one and only one way in the form (2.145)s

Here th e g™ (5}, mn) is asymptotically given by (24144) and is called

if,é
the symbol of A,

Gonversel y, every operator of the form (2.1.5) with Cfgff S? 8 is
Je

. m
in I

¢ 5({2) by our present definition. Hence the definitions used here are
9

i

equivalent with those used in [2] when & < ¢ 5 which we assume from now

-0

on,If we note that & ,&€ S if the kernel belongs to ¢® and conversely,

A
the preceding theorem shows that the map A~9<7A defined there together with

the map CTAf”%> A given by (2.145) leads to an isomorphism

m -00 m -0
L L —2 5 S o
5’95/ f9d f 95/5095
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The formula for the symbol of the adjoint operator given in o] is
an immediate consequence of Theorem 2,1.1. Indeed, if A is properly suppor-
ted and we define the adjoint by <Au, v> = <u, tAV), then we obtain
from (2.1.5)

bo(x) = (20)™ [ EXTR o (5,8) v(y) aya
o 7 ‘
Be() = (20)™ [ EETE Gy -) (y) avaes
Tt follows that for the properly supported operator tA é‘P?sé we have
(2.1.6) <7£A(x,g)(«)gf(iDE)“DX“<51(x,-a)/a&.
The formwla extends immediately to the symbols for arbitrary Ae?Lm,é.

Using the adjoint operator we can also get another useful represente~
tion for a properly supported pseudo-differential operator, already used
by Kohn and Nirenberg [4]; In fact, if

Cr(y) = (2n)™ [T o(y,8) We) a,
then =

camy, v = ()™ f[ 2T g1(5,8) T2 uy) azay,
which means that Au is the Fourier transform of

e v ()] M o (,8) w(y)
Writing cfA(y, £) = s'(y, ~E), we have then with the notation of oscilla-
tory integrals
. ~
malx) = (2n)—uéfel<X-Y95>C7A(ysg> u(y) ayae,
or equivalently that ’
()(@) = [ Fy, 6) uly) a.

Tf A is of the form (241.1), then

(2.147) E;L(Ys E)fQJZT(-iDE)a p_* a(x,ysﬁ)/“l/x=y~
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Now let B be another properly supported pseudo-differential operator.
Using (2,1.5) for B and (2.1+7) for A we then obtain
' an ({ _i<x-y &> it
(2~1¢8) BAu(x) = (on) e ()B(X95)53A(Y9E> u(y) dyd&,
which proves that BA is a pseudo-differential operator. For the symbol
we obtain using (2.1.4)
5 -\)Z : 0 5 @ ot 1
£ BA<X’E)f (iDy)" D, og(x,8) c.JA(y,g)/oa./ynx.
In view of (2.1,7) we have
~ S
Q/A(y9g) ~ Z (—iDE)(Dy’[(fA(y,E,)/OCL .

Hence

O/BA<X9E> MZ(iDE)aDyOCCfB(X9€)("iDE)I@Dyﬁ O/A(y,i)/di/gl/y=x=
= D (0,) o (esB) (-0 ) P05 B o (sesB) [t 31

The right hand side can be simplified by means of the binomial theorem

2 % Platpr o (n40)7 )y

a+ﬁ==a/
if we note that in the preceding formula a factor iDg to the left is equi-
valent to the sum of a factor iD,. acting only on the first factor and one

g

acting only on the second factor. This gives the famiiiar result
(2.1.9) Cpplxs8) ™ Z’((iDgWo’B(x,a)) D7 oy (x,8) fex L

We shall now consider the effect of a change of variables., Let

2 02—,
be a diffeomorphism between open sets in En, let A<5L?96(§2) and set
A = (A(uo:zDo)qg ILGCSO 521> where [, 121 —> 1) is the inverse
of 77 . This means, if A is of the form (2.1.1), that
() = [ M B (), vy €) w(x (v) ayas

or after a change of variables
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i .
(o)) = [ 27400 = 70N B e (), 2(v), B)a) lagy(5)/ay |
dy dg
where d7%1(y)/dy = det ?Z1'(y) . This is again a Fourier integral opera-

tor but with a different phase function, That A, & L 8(§21) follows for
52

suitable f) and & from

Theorem 2.1.2, Let CFB'be a phase function in .12><§22<mn such that

gradE(P(x,y,E) = 0 is equivalent to x = y and grad(P(x,y,E) is a linear
function of & when x = y. Then L™ (§2,§2,cp) = 1" (€2) if 1= & < 8 <JO o
§2b g1 -

We shall give a simple proof suggested by Kuranishi (see Friedrichs

[11), using the following lemma.

Lemma 2.1.3¢ Let qQ be a phase function satisfying the hypotheses of
Theorem 2.1.2. For some neighborhood ¢ of the diagonal in {2x(2 one can
. n n g . .
then find a map éﬁ s (2 X RT—> 1 such that QE(X,y,E) is positively homo-
. n o
geneous with respect to E<R and C when & % 0,
(2.1.10) Py Pl s2)) = ey £
If q) is linear with respect to E for all x, y, then g@ can also be
chosen linear.
Proof, By hypothesis we have
7>qKX9Y9E>/BXj = “ﬁa(P(X9y96>/ayj = 25 ajk<x>€k when X = ¥
Since (%) is a phase function, the linear forms on the right cannot have
a common zero & % 0, so det ajk % 8. By Taylor’s formula we have in a neigh-
borhood of the diagonal
/ -
) \—P(XWSE) - Z ajk(x)(xj—yj)ik = Z (XJ yj>Rj(X9y’€)
where Rj é,COO for & % 0 and is homogeneous of degree 1 with respect to &3

moreover we have Rj(x,x,é) = 0 identically. Now the equation (2.,1.10) is
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valid if
(2.1.11) Zajk(x)éﬁquRj(x, y,gﬁ):gj,j:u cevy D
This system of equations for g%; satisfies the hypotheses of the implicit
function theorem when x = y since the Jacobian of the left hand side with
respect to (D is det ajk(x) % 0., Hence (2.1,11) can be solved uniquely for
lel = 1 and (x,y) in a neighborhood <) of the diagonal. By homogeneity we
can extend the solution to all &, If &p is linear with respect to £ we can
choose Rj linear, and the solution of the linear system of equations (2.1a11)
for éﬁg is then linear with respect to £«

The lemma means that apart from the bundle maps discussed in section
1.7 there ig only one function ({J satisfying the hypotheses of Theorem
2.1.2, Note also that if we consider the global situation where (2. is a
manifold and %) is defined in a real vector bundle V over a neighborhood
of the diagonal in L2 =5 , then the stated conditions give rise to an
identification of V with the cotangent bundle T™(<)) lifted to ) x(7 by
one of the projections (in a neighborhood of the diagonal). Thus we see
that the pair V, CP is unique up to isomorphism, It is clear that this
ohservation can be used to give a direct global definition of pseudo-diffe-

rential operators on a manifold though we shall not pursue this aspect here,

Proof of Theorem 2,1.2., In view of Theorem 1,3.4 1t is no restriction
to consider only operators AJEL?‘ﬁ(SQ,KZ,(P) of the form (1,3.1) where
9
a(x,y,&) vanishes for (x,y) outside a closed subset of 2 = {2 contained in

the set ¢.) of Lemma 2,1.3., Now a change of variables gives

m(x) = ([T alay, Fla,y,8)) ladlxyy,8)/ag ] uly) ayat.
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Tn view of Proposition 1.7.3 this proves the theorem,
We shall now return to the phase function

P (x,758) = <y (x) = 2,(y)5 &>
which occurred in the change of variables, in order to determine the trang-
formation law for the symbol., The proof of Lemma 2.1.3 then reduces to
writing ;ZA(X> ~ 7{1(y) = H(x,y)(x=~y) where H is an n>n matrix,
H(x,x) = 221'(x), s0 that (P(x,y,g) = {Xm¥, tH(x,y)‘cf}. Then we can take

t -1 t A1 b
dﬁ(xyy,é) = H(x,y) 't . Note that H(x,x) = /g’(x). Now we have

i<x~ b -

(ap)(x) = JfeS T8 a (x), 2, (r)s Bay)T'E) D0xpuly)ayas
where D(x,y) = ldet 7(1’(x)1/{det H(x,y) |, thus D(x,x) = 1. (That D(x,x)=1
means precisely that dxdE is an invariant measure on the cotangent space
which is of course very well known.) If we take a = <TA(X95) it follows
that
(2.1.1 2) o (x,8) w5 (4D,)"D. % o (2, (%), “H(x,¥)” €)D(xyy)/al
A ) A1 9 é L{X 1 E, ¥ A [1 X)e }Lgy X,y /X:yq
If we set |

& (Ox,z) = (1,)F o (x,8),
the general term in (2.1.12) will be a linear combination of terms of the
form o(x,y) Exfféf&(;z1(x), tH(x,y)—1E) with
(2,1,13) Lyl +lal < l//,!l < 2lal,
The second inequality is obvious, To prove the first we note that application
of Dy does not change l/?l— la/l while application of DE increaseg this dif-
ference by 1. From (2.1,12) we obtain in view of (2.1.13)

; ~ oA x. Toen '
(20101 4) ¢ (oelx), 8) ~ 207 (x, “oet (2)E) @y (,8) /o

1 F

where (%73 is a polynomial in & of degree < lal/2,
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(2,141 5) (0 (x,8) = 1.
10
Since q?g does not depend on A, we can determine 9%6 by choosing A to

be a differential operator. Then we have

I

e—1<y,€> Aqel<y’g>

[y=x(x) ~
o~i< 9:‘(z),g>CrA<X9D)ei<7¢(z),g>

O/A1(y9 E) el x)
z=X "
Here we introduce the Taylor expansion
w(z) = 2(x) + 7' (x)(z-x) + 2:;(2)
where Z:;(z) vanishes to the second order when z = x. We have
1< (a) B> i< ()8 =ik, T (x) B i<z, 9 (n)E> J1<ae(n) B>

In view of Leibniz’ formula we obtain (2.1.14) with
(2.1516) (pﬁ(x,g) = szé‘ RECSICIP E>/Z=x9
and with no other polynomials qyg Note in particular the first few polynomlals
(2 1, 17> /5(}‘ £) = 0, 121 < 1 cfﬂ(x,c,) =1 s (x) 85, l/ﬁl - 2.

We have now developed all the calculus of pseudo-differential operators
as given in Hormander (2T, The derivation given here is somewhat simplified
by the use of amplitude functions depending on (x,ygé) and not only on (X,E),
nd also by the straightforward substitution used to prove Theorem 2.74204
However, in Chapter III we shall also need certain precise estimates related

to Theorem 2.6 in [21, on which the calculus was based there, so we shall

end this section by proving these also.

Proposition 2,1.4. Let A be a properly supported operator P? 5((2)
-9
(6 < ¢ ) and let N be an integer > (m++n)/f> where m' = max (m, 0). For

every compact set K < {2 one can then find a constant C such that for A6~K

+ : : -
(2,1.18) sup (1+l§l)9N"m "nle_l<X9E>A(uel<x’g>) " ﬁz_‘jgé)(x,E)Dau(x)/asl
g o I

Y 2{? sup [Daui, uEECQD(fl)-
- |al§N
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Proof. Since A is properly supported, the left hand side of (2.1.18)
does not change if u is modified outside a sultable compact subset of ﬁti, S0
we may assume that supp u< XK' where K' is a compact set C<S2,. We write
A in the form (2.1.1) with a proper symbol a, Then

e—i<X7g>A(uei<X9£>) = ffei<x"y,n—g>a(xyy’n) u(y) d-yd_rr’.

(2:1419)
We shall estimate separately the contributions when Inl is small or large
compared with 1&l; we may assume that el is large. First we prove that
for ol > 1

| ~1<y,05 mt-n
(2.1.20) 1 (&2 ale,y mu(r)ay ! ¢ clol™ Mhuly, xex, Inl <lel,
where lulN denotes the CN norm of u on the right hand side of (2.1.18).

This is obvious when N = O so we may assume in the proof that (2.1.20) is

already known for smaller values of N and all symbols a with given support.

Choose j so that el = l@jl. (We may use the maximum norm in r™.) Since
iy, [ -idy,e>
Qj ie atk a(x,y,m)uly) dy = “j & bl (Dy.a(xyys'ﬂ))u(Y)dY +
. J
~i<y,8
v [T e,y ,n) D uly) ay,

J
we obbtain by the inductive hypothesis

\ . +
|9|N|~Je_l<y’@>a(x,y,n) u(y) dyl < clol™ lulN +

TS

loM=1] fe’i<y’g>(Dy.a(x,y,n))u(y)dyf.
: J
Here a is of degree i m+8 < m++6. Iterating this argument k times we obtain
;QINW_[e*i<y»@>a<x,y,n)u(y)dyi < clelm+lulN +
v lol™E | [T Kl y,0))uly) ay.
The last term can be estimated by CleN_k+m +k6!ulN, and if k(1-8) > N we
obtain (2,1,20).

Let )(ezcg?(mn) and Y (£) = 1 for lel < 1/4, ¥(&) = 0 foxr lgl > 1/2,

We split (2.1419) into two parts by introducing a factor ]/(n/lil) or
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;(1(n/|£’) where ;kq =1~ X . In view of (2,1.20) we have
o 1<K~y yn=ED> ntn-N
(2.1.21) | §eXF M8 v /1 )alx,p,m) u(y) ayanl ¢ clel laly,
for if © = n-& we have Inl < legl/2 < lgl in the support of the integrand,
To study the other part of (2.1.19) we introduce Taylor’s formula as im

the proof of Theorem 2.71,1:

N

u(y) = w(eiy—x) = 2 (i(y-x))"D%a(x) /ot + 2 (1(y-x)) "Ry (x,¥)
lo I< lo | =i

where Ra(x,y) are 0% functions which can be bounded in absolute value by

lul By an integration by parts we now obtain

-
ﬂ/ei<x"y’n"a> Xy (/1) a(x,y,0)u(y)dydn =

= ],%EN.Dau(x)/alJTei<X"y’n~€>(iDn)a( kg(n/lgl)a(x,y,n))dydn +
o

s 2 SHETE(4p Sy (n/1E])alx,yyn))R, (x,7) dyan.
lOﬁl:N n o

The integrals in the last sum can be estimated by Clgln+m—<9N if we recall

that the functions ;Xg(n/t), t > 1, form a bounded set in S? 0° From the
9

proof of Theorem 2.1.1 we find that

[ X (3 35 ¥ (/1 Dalie, 3 ym)azan = o (9 (x,8) -
_ er—i<x~y,n~E> (iDn>a)/(ﬂ/|§')a(X9y9ﬂ> dydn.

J)

In view of (2,1.20) with u = 1 the last integral can be estimated by any
power of 151—1. This completes the proof.
Proposition 2.1.4 is analogous to Leibniz’ rule, In fact, we can write
(2.1.18) in the form
Ia(uet X8y L 2 ei<x,€>cfga><x,g) p%a(x) /et | < 6(r+leD)™” Tl .
Lo I B
Here UA%OOO(§2) and x &K, and we have used the notation »= §>N—m+~n > O

A
If venga we obtain after multiplication by v(¥) and integration, also in K,

(2.1.22) Ia(va) - >~ (al¥v) p%/arl ¢ clulglv]
lo l<N a

-/

where
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vl - JIRE) I le D)™ ek,

2/

N

Thus

[ A A

vl = sup v(g)v(g)ael = sup lfv(x)v(x) ax |
. V '

where the supremum is taeken over all V with 5‘V(£)1(1+I§l) Q€ < 14 If k

is a non-negative integer with ki+n < » , it follows that

vl < ¢ sup | (eGow(x) axl.
SR\ A0S B

In particular we can take for v a rapidly oscillating function of a

morc general type than the one which ocours in (2.1.18). Thus 1et/)/é083(£2)
- Q0 /(Y ‘ - i A _

and (/ &C ($2, BR), grad V/ % 0 in supp )/. If v = )/e , we obtain
(24142%) l yv(z—:)w(a)dgl < oaEwl .
In fact, this is obvious if q/ is one of the coordinates. To prove (201¢23)
in general it suffices therefore to use a partitiom of umity. By combining
(251322) and. (2.1525) we now obtain since the hypothesis that hag compact
gupport ig irrelevant

Propogition 2,1.5. Let A be a properly supported operator é;Lm 6({2)
: P9

(s < % ) and let N be an integer 2 (m++1+2n)/g where m = max (m, 0), Let
%)G-CGD(L , ) and X & 0® ({2, &) be fixed functions with grad Ly # 0

in supp ;Y), Then we have

]

(241.24) lA(eiA[//)/u) - AIS:_ A(a)(ei>w;\/) p*u/atl <

lo <
- O , N
¢ clal ™ *1ren N wee® (D)), xEeK, Ay 1,
if K is a compact subset of 1] .
For later reference we point out that C can be taken independent of

#/ and ;Y/ if these functions vary in compact subsets of ¢® and

lgrad %/(x){ 2 o(x) for x &£ supp :kl where ¢ is a positive continuous func-

(

Aa) so its kernel is equal to

tion, The operator A(a> corresponds to o3

that of A multiplied by (i(y-xz))%.
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When applyihg Proposition 2,1,5 we shall need an asymptotic expansion
f "é—i/\\{/ A((X)(el > (Il/ ) valid in the compact set K, This we shall now derive
from the formulas for changing variables, To simplify notations we take a=0.

Tt is olear that e-i)(}/A(ei)l’/(X1—){2)) = o)™ on K for every W
if ;}/1 = ;}/2 = 1 in a neighborhood of K and 1) has no critical point
in supp ()/1-)/2); this follows from the fact that £11e kernel of A is a
0% function outside the diagonal, To determine the asymptotic behavior of
DSV 1% ' -
e 1)\?) A(el/} ‘ ;‘/) near a point X in K we can therefore take / with support
in a small neighborhood of X and equal to 1 in another neighborhood. If
the support of /}/ is small enough and E_‘,O = grad “//<XO)’ we can find a diffeo-

. - ' r .
morphism 7 : £2—>XL) gsuch that PK(XO) = x, and (}/(x) - (71/(3(.0) = <7((X),to>~
- <7((XO),€O> in supp R/. For example, if Lpécgo(mn) is 1 near O, we cam
gset for small € > O

. , -2
7((X) = X + ({,’((X-—XO)/E)(W(X)—(//(XO)~<X—X09€O>)EOIEO‘ .

In fact, we have #(x) = x when (*)((x—xo)/e) = 0, and <Z(x),Ep> =
= L{/(X)-—ﬁ‘//(xo) + <xpyE,> when {P((x—-xo)/e) = 1, Since y/(x)u(ll)(xo)—-<x-—xo,$§o>
vanishes to the second order at Xqy W have © Zj/axk - éjk = 0(g) so the

implicit function theorem gives that ¢ is a diffeomorphism also in a neigh~

borhood of XO for small e. Now we have in supp;{/

MY AWy L R A B (K () AR 9y

e"‘l<v9 )Sr\> A

(y))/ya 7((}()’
where "/(1 = L 1 in a neighborhood of ,’/c."(xo) = X Iﬁ view of
(2.1916}) with u = )/1 and (2.1414), (241416), we obtain near Xy
S Ay - 2 (PP h e fe ) = >/f2'/z o
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Now the fact that \}/(x)—-q/(xo) = <7¢(X)-7{(xo),50> implies that
<y (P'(X)> = <2 (x)y, £y = <, t;z'(x)ﬁo) so that t;k'(x)zo = x/'(x),
Similarly,
i(z), Eg> = Yla) = Wlx) = <amx, P (x)> = iy 2(z)
is the non-linear part of &f at x. Hence we have in a neighborhood of Xy

ANy lﬁ% O @) LM VR oy, s

o2y

Summing up, we have proved

Proposition 2.1.6, Let A be a properly supported operator é?;? 6(£2>’
oy
1—§§6<§>.If(yécw(Q,R% }éCmQQ,m%¢mwy/%0inwmpk
and )Y = 1 in a neighborhood of a compact set Ktifl, then we have on K

(2.1.25) WAy | %"/&@(xw‘wf'(x))DfeiA ¥ ;(Z>//6l/z==x
_ O(/\m+(1/2 —-y)N)‘ |

Remark, It follows easily from this that
e—i)\V A(eiAqt}')ﬁdzféfgfg(x,;\q/’(x))Dgg eﬂq/;(z)/f%l/zzx
in an open set where ;Y = 1, However, we do not carry out the proéf since
only (2,1.25) is required in the applications, On the other hand, it is then
important to know that the proof shows that (2.1.25) is valid uniformly
with respect to %/ and. ;V if these functions vary in compact subsets of

COO

while satisfying the hypotheses,
As a preparation for section 2.2 we shall finally give for pseudo-

differential operators a more precise version of Theorem 1.5¢4.

Proposition 2.1.7. Let Af}L? 6(S2)’ 0¢<8<p <1, and assume that
) $AJ 9 =1 =

A is defined by (2.1.1) where ae?S? S(LQ‘KSQ , ) and a(x,y,&) = O when
e ‘ ,

Ix—yflils < c(x,y) where ¢ is a positive continuous function on 2x0) , 1f
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e < b it follows that A has a C°° kernel,
j | |y 12 ME I 12
Proof, With aj(x,y,é) = (xj—yj)a(x,y,i)/ x-y1“,where lwl® = > vyl
we have a(x,y,E) = :g'(xj~yj)aj(x,y,8). Assuming as we may that e > &,

m
WehmeeH@S+

¢ ;(LQ)&QZ, Rn). In fact, differentiation of aj with respect
9

to y either leads to differentiation of the factor a or the factor
(Xj~yj)lx—y[—2, giving rise to a factor which is homogeneous in x-y of
one lower degree of homogeneity., Since lx~y | 2 o(x,y)lafng, the asgsertion
follows. (We may assume a = 0 when IEI < 1.) Now we know that a defines

the same operator as i ;Zlbaj/aéj & Sm+zﬁsl(glxxﬁl, E@)Q Iteration of
s

the argument shows that A can be defined with an amplitude function in

mk(e~ ¢ )

S

for every k, and since e < ¢ 1% follows that the kernel of A

.. 00
is din C7 .

2.2, The continuity of pseudo-differential operators. In this section

we shall give a somewhat different proof of Theorem 3.1 in [21.

Theorem 2,2,1, Let Aé&Lgyé(SZ), 0¢< &8 <p <1, If Kis a compact set
in 51 there is a constant O such that
(2.2.1) I{ il ax < 0 [hulPax, weo®(x).

Proof, If )/é/Cg)(§2) and ;%/= 1 on K, we can replace A by X A Y
so we may assume from the start that A is given by (2.1.1) with a vanishing
for (x,y) outside some compact set < £2¥{J) , We have for u,V'éCgf

<Au, v$ = jﬁ”ei<x—y,5> a(x,y,8) u(y) v(x) dxdydE.
To estimate A we shall localize. The partition of unity to be used is

gsomewha t cruder than that used in f21, and following Friedrichs [11 we
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choose it depending on a continuous parameter which is somewhat more con-
venient notationally. Thus let Ly1 é‘Cg)(Rn) be a function of {El with
o 2
support where 1/2 < lgl < 1 and such that J q)q(&/t) dt/t = 1 for E # O,
0 ,

with support in

09]
thus | qq(g/t)zdt/t = 1 for lel » 1. Choose Y/, 67039
ri , -

the unit ball and JHV2dX = 1, Then we have for |£| > 1

1 = JJK g/1(8/t)2qé((x-x')t8)Lyz((y-y')tg)t2n€’1dtdx*dy"

t>1

Here we choose € so that 8§ < € < P oa The integral is still equal to 1
when lx~yll§|8 < 1 it we restrict the integration to the set where

Ix‘my'itg < 4, for in the support of the integrand we have

g

lp-xt | < 7%, lyeyt |l < £7%, t/2 < l2l < 1,

17 < 4%7°, For

co if luwayllgl® < 1 it follows that lxt~y'l < 2t7%+ lg
arbitrary x,y.& we obtain

/[/ (%q(g/t)z(fb((xnxv)tg)Lue((ymyt)tg)t2n€“1dtdx'dy' =

]x'—y'lt8<4 /
= A ((x~y) 1E]F)
vhere :
- ‘ 2 ’ -1 }
o () = !X‘:g]l<4 W (/0% pe ) (1 )™ Nt ay

igs a 0% function with compact support which is 1 fox x| < 1, Assuming

s we may that a(x,y,i) = 0 for IEI < 1, we can now write A = A,]+A2 where

Sy T ‘~/Z%£g<4 t>1ei<x"y’g>a<x,y,e>‘fﬁ<s/t>2(%5((x—x')tg)v<x>><
Xy g

2ne~14raxdyde

X W (=t )8 )uly)ax ay '
and A2 ig defined by the amplitude function az(x,y95) = (1—;{((x—y)|518)
a(x,y,8). By example 3 on page 1.1 we have a2<§SSQE(SZLf£iZ, "), and
since By 0 when lx~yl!§f€ é 1 it follows from Proposition 2,1,7 that A2

co . . .
hag a C kernel, Thus it only wvemains to estimate A1a To do so we pass to

a
amplitude functions independent of x, y by nmeans of7éaylor expansion
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la(X9Y9§) - ..>_.

 (xex ) Y (y-y ) e (xtyyt,E) fod B <
o2l a@ e ( =

Né('x—x'l+ly-y'l)N

< clel
whereo ad/3= (j‘Dxi)(X(iDyl)@ a(X|9y|,E>. Since ]X'-X' I+ly—y'l = O(J[;Ng) in

the integral defining A1, the contribution to <A1u, v> from the error term

can be egtimated by

C gluldx JIvl ay J g |0 t"Neqﬁ(E/t)2dt/t aE <
) fel>1,t>1 B
cor (lalax Vvl ap J 1M@=)ae $anltull 1wl
- ‘y ) lg 151 1.2 1,2

when the supports of u and of v lie in a compact set and N(e—é) > nae It

remains to estimate for fixed o and

o) agmw= IS0 o e’

It eyt 145¢a, 51
et 65 )v() Gy D6 )t a1 20 1P e gy g

where (Pg(x) = Xa(*b(x). Note that there is no contribution for x' or y!

I,
outside a certain compact set K', Sinoefamfg(x',y',i)l < Ct6!a+ﬁ' in the

' 2
support of %ﬁ(&/t), we obtain by Parseval’s formula with L~ norms

!<Amﬁ5u’ wlce ny (I %Q(D/t)q/g((x—x‘)t%v(x)l12 +

= xtayt 1454, 01

s Iy (0/8) wH Gy )85 () 117 67 axrayras,
In fact, .
’ JKfei<x—y’g>a(£)b(€)2U(x)v(y)dxdydal = IJ’E(_g)Q(g)a(g)b(g)ng! <

< sup lal flb(—a)ﬁkg)l!llb(&)G(E)ll = (2n)nsup la] llb(—D)UlIlIB(D)Vll.
“gupp b supp b

Hence

(2.2.3) I u, vl < of Jf 14 (0/6) @5 Gemx )6%)w () 17875 Taxaxtat +
{ a t>1 )

T 1w IRV U P
* ﬁgz 4 (0/8) Pol 3=y )6 )uly) 1767 ‘aydytdt g

F

To show that I<Aa u, v>| is bounded when Ilull < 1 and llvll < 1, it
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remains to establish a bound for the integrals on the right hand side.
This we shall do using a variant of Friedrichs’ lemma which allows us to
let the two factors \*Q(D/t) and q/g((x~x')t8) change places.

Lemme, 2,2.2, Lf Ly K% & ¢® . we nave if N is a positive integex

0 H
(2.2.4) IKY(D)(Y(X)V(X) - %2N. Dai;(x))v/<“>(D)v(x)/a£|2dx <

< o(jlglqu(g)ldz Z sup 1D° q/l) jlvl ax, v &C

N

00]
o °

Proofs The Fourier transform of'LV(D /P Y)v(x) is
(2)" &) P (e=n)olnan = 2 (20) A9 () (£m) k7 Een)oln) s +
; (2n)"n5§>(€m)w(€—n) +(n) an

where l_§(isﬂ)! < ClE—ﬂlN IA%V sup ID%(yl, Hence the Fourier transform
) o [=N .

of q/(D)(f(X)V(X> - IEF (Da(ﬁ(x))VJ(a)(D)v(x)/aL is bounded by
o IKN
¢ > sup lDu(Vl J}E—nlqug(g—n)ll;Kn)l dn, so the 12 norm can be estimated
I(Xl'::N .
by

cowp WL [ Gee) lag vl
IOLI::N S
If we replace LV(D) by LF(D/t) and (V(x) by LF((X—X‘)tS) in (2.2;4>9

we obbvain

(2.2.5) [ axly (o) })((A—-x')'b () = 5 61 ) 080 (xer)1%) ) /)t 1P

J A< /\/
< c 5 20(e-1) flvl ax.
If ne~1 + 2N(a—1) < =1, that is, if ¥ > ne/2(1—8), we conclude that

(2,2.?6) J‘Q lW(D/’G)L{/((x—X')t Yv(x) | dxdx'tm Tas < ¢ ) lv(x)] dx
51 x! X!

“or such an estimate is valid for each term in (2.2.5) as Well as the
error term, Since we need only integrate in (2.243) for x', y'&K', it
follows that I<A(x,&u9 vl < ¢ when llull = llvll = 1, which completes

f

the proof of Theorem 2,1.1.

Theorem 2.2.2, Let ALl 6(9), 0¢ 8 < p¢ 1. Then A ds for every
S\,, == . =
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compact set K C (. a compact operator from LZ(K) = ‘%uESLg, SUPD u<:K_§
2 . .
to L°(K) if and only if
(2.257) a(x,x,8) > 0, £ —> @,
uniformly for x in compact subsets K of 2 »
Proof, To verify that (242,7) is sufficient we need only inspect the
proof of Theorem 2,241 noting that

lago(xt oyt E)E ¢ Tagy(xtyxt,E) |+ olel®lxrgrl ¢

IR

16~8

A

lagy(xtpxty8) | cle —» 0, £—> w0,
in the support of the integrand in (2.2,2). For then the contributions

to <Au, v> for large values of ’E! can be estimated by a small constant
pimes | lullllvll while the contributions from bounded values of lgl always
give a compact operator, The details are left for the reader to supplys

To prove the necessity of (2,2J%) we assume that X, P XEQ , BP0

and that a,(}c_)/9 X, Ey)-$>c, and we have to prove that ¢ = O if A i1s compact,

. . .o . . 400
Choosing € with 8§ < € < ¢ and & nonsorivial function u&C we set
; 0

w(x) = g, 12520 (e, ) 18 S Yexp 1,8,

.

The norm of u_,is then independent of » and u_,-> 0 weakly when »—>00 . Ir
A is compact we must have <Au , u > —> 0, ¥—>oo. Now

<Au_, W)
» >

I

lEJnE‘ﬁyei<X~y’E"gy>a(x,y,E)u((ymxv)IEVIE)E((x—XV)lgvle)dxdydi
o [ T e 170 x ey [E,)7% 8w le, 1% ) u(y)u(x) axdyas.

Here a(xy+x|5xﬂ~€, xy+yl£y1~87 Ev+l£v|€§)~% ¢ uniformly on every compact

gset when y»->00 since § < g < P e Since (2n)na(x,x95) -ah(x,i)—? 0, E—>

we may assume in proving (2,2.7) that a is equal to th near the diagonai.

Then we can integrate with vespect to y and obtain

<hu , 0> = _{fei<x’5>a(x wxle )78 e wle 1%)a(e)al(x) axdt.
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The existence of an integrable majorant now allows us to let »’-»c under
the sign of integration; Whioh gives

<Auv; w>—> ¢ fei<x’g>u(§)5(§7 dxdE = (2n)nof1u(x)l2dx.
Since the limit must be O we conclude that ¢ = 0, which proves Theorem 2.242.

Tinally we recall briefly how Theorem 2.2,1 can be improved to give
precise information concerning the norm of A modulo compact operators.
(¢f. Theorem 3.3.in 121,) Thus let A be defined by (2.1.1) with aez§§,6
vanishing for (x,y) outside a compact set in )=y , and let

M > Tim (2¢>n!a(x,x98)|.
Let b(x,E) be the symbol of AEA; Then
b(xsE) = la(x,x,e) 1%+ o( 1217 9,

so lim b(X,E) < Mz. With the square root which is defined outside the

€00

negative real axis and is positive on the positive real axis, we can now

introduce c(x,&) = V M2—b(x,i) for large lel, It is easy to see that

0

P 5° Let Q be a properly supported pseudo-differential operator with
s

c &S
gymbol c¢. Then Q®q + A% - M2 = 0 is a compact operator, We have

Haal 12 < w1 lal 12 4 (ou, u);
Now take ;}’é CQD(mn) with ;Y,a 0 near O and ;V = 1 outside a compact set,
and write Aj = AJXKD/j). Then A-~Aj hag a € kernel. The norm ©f %(D/j)C
tends to 0 as j—>o00 since ¢ maps the unit ball into a compact set and
X(D/3) tends to O strongly, Hence Tim ||Ajl| < M. Modulo operators with
0% kernel the norm of A as an operator from LQ(K) to LQ(K) ig therefore
at most
(2.2.8) Tim (2n)nla(x,x,£)f.

x€ K
From the second %ég%oof the proof of Theorem 2.2,2 it follows that this

result cannot be improved.
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Chaptezr III

Properties of Fourier integral operators

3.1, Multiplication by pseudo-differential operators. In section 2.1

we have seen that properly supported pseudo~differential operators form an
algebra. We shall now prove that the general class Pz 6(521’ 52?, QD) is
R 2

a module over these algebras.

m,
m J {
’ — { P . N

Theorem 3.,1.,1. Let PCL?,(S(_Q“ {2,, () and let AJeL)Ogé(?J) be

properly supported pseudo-differential operators., If 1—j?§ s < f> < it
-~ m+m1+m2 ¢ .

follows that A, PA, & Lj)?6 (s £2,, QP)e

The proof will also give an expression for an amplitude function of
A1PA2.

Proof of Theorem B.1.1s It suffices to prove that A1PGEP?+§1(§2195?29%3).
5

t, t. . .mtmo, . m-+m: N
For then we have A2 P e L§,62<L22’£}1’(?)’ thus PA2 & ?9,52(521’§72’V“>

m4+m, +m L
and A,PA,E LF,61 2(@.1,;22, Lp).

We have by definition
pu(x) = [ e PEPE) (e,y,8) uly) ayar, weo® (),

where 3é35296(511 X2 5s mN) ney be chosen so that p = O when l&1 < 1.
Here we want to apply the pseudo-differential operator A1 under the sign
of integration. This will be possible by the results of section 2.1 if
we make sure that %ﬁ has no critical points as a function of x in the
support of p.

We recall tha t by Definition 1.5.2 we have IgradX(Pl % 0 when

gradg<€ = 0. Hence we can choose a positive continuous function c such
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igradxi%ﬂ > o(x,y) &l when grady, (f = 0,Then
f | )| B

Vo= Z(X9Y95)3 gradx% > ofx,y) IE 5
is a conical neighborhood of g(x,y,g); gradE(P = Qk Choose a function
VPN e n . . L
/(4:C (AZ,X(>)< R ) which is homogeneous of degree 1 with respect to the
lagt variable so that ;X/z 0 outside a closed cone contained in V and
/: 1 in a neighborhood of fﬁp(x,y,a); grad, (= o} . Then P = P +P,
where with PJ](X’ysE) = %(XngE)P(nysa), PQ(X93’9E> = (1‘2/(Xsy95)>p(x’y95)
we have

e

(3.1.1) 2ou(x) = [f PETIE) b (x,8) uly) ayak.
The operator P2 has a 0% kernel since (1.5,6) with a replaced by i makes
gsense to define the kernel of P2. The product A1P2 is therefore a continuous

& . co
map from £ ' to ¢® so it has a C kernel.

We wish to apply A1 under the oscillatory integral sign in (3.1.1)

for j = 1. Before doing so we consider
- 1 C N
(3.12) aleyye) = &7 FEE) (EPETIEy (x,,8))

vhere A, operates with respect to x. The continuity properties of A1 show

1
that q is a ¢® function with every derivative bounded by some power of
(1+121) when (x,y) belongs to a compact set. We can therefore apply Propo-

where 'n|=1,/

srE T
gition 1.1.4 when studying q. Set & = ) na tand apply (2.1.24) with
o= (F(X9y,n), u = p1(xsy,€> = p1(x,y,)'n). For (x,y,n) in a compact sub-
set of (:V we then obtain for evexry N
+ .
]q<X9y9£) | iCR\erm 1+’]+21’l-—/PN+6N9 A - IEI,

which proves that ¢ is rapidly decreasing outgide V, Now let (Xoyyoyﬂo>€rv

and choose (F”?CES(§Z1) with Ly(x) = 1 in a neighborhood U of Xy 8O that

lgrady(pl > 0181/2 for x ésupptk and (y,n) in some neighborhood U'!' of
$9 { .




"‘3~5"

(yo,no). For (x,y,0) € UXU! it follows from Propositions 2.1.5 and 2.1.6
that

lq(x,57, An) = 2
lo 1<

< e-i>¢<x’y’n>Aga)(%ei>‘ (-P<X9y9'ﬂ>)DXap1(x9y, T))/OC'.]
) C>\1+2n+m1++m—-(§f‘—6)

where

B O R S OD P e R

lgl<y A
XDfei (P;(Z’y’ﬂ)/ﬁ'./kxl < 0 )1111““(1/2 —9)//@/-- ploct

Tt follows that for (x,y,£) €V and (x,y) in a compact subset of {2~{2 the
difference

a(x,y,E) —25 1+fg(x, grad_ <n)D p1(x,y, ) D ﬁelqjx(z’y’&>/a/p / -
can be estimated by any power of (1+1£l) if we sum for lal <2 and
l/%l < , choosing 'y gufficiently large, Now the terms in the sum
belong to Szi% where /% = m1~f|aﬁgﬁ + m-+5|al+lﬁJ/2, thus —> ~co when
iaﬁﬂi-ﬁ?oo for 6§ < 9 and § > 1/2. By Proposition 1.1.4 we conclude that |
(3.143)  alx,y,8) A{Zb/(ﬁ+“)(x, grad fp) Do p1(xyy95)D’g lL{X(Z’y’g)/dﬂlb'/ x

It is clear that we can let A1 operate under the integral sign in
(3.1‘1) after introducing a convergence factor ;{(86) with compact support
as in Proposition 1.1.5. Letting e-—>» 0 we obtain

ap s ff ot P E)atey,8) () ayas.

Hence A, P é:Lm+m ((1 ﬁzz,QD), and an amplitude function representing
A P, modulo an operator with ¢® kernel is given by (5.1.3). This formula

11

can also be written as follows
s o ipt(z
(3.1.4) Q(X,y,ﬁ)ﬁéféfgj>(xs grad, ) Dy (p,(zy,8)e" g1 ’y’g>)/@3/2=xo

We recall that
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q);(zyysa) = CQ(ZyysE) - LF(X,y,&) - z=X, gradxtp(x,y,g)>
is the error term of second order in Taylor’s formula, (3.1.4) is of course
obtained formally by an application of Leibniz’ rule.

Tn the applications we need to know the first few terms explicitly

i

when §> 1 and & = 0, Note that the order of the general term in (3.1.3)

is then < m+m1—|a|—!/ﬂ+[|ﬁJ/2J where L | denotes integral part. This is

< mim,~1 unless o = 0 and lf%l < 2 or lal = 1 and /3: 0. Moreover, the

terms with,lfﬂ = 1 are 0, Thus we obtain in this case

(3.1.5)  a(x,y,8) = I;%E;O’i?)(xp gradx(¥0DXap1(X9y,€) +
o

m+m1—2

+ | %%;if&f)(x, gradx<§ﬁ(Dééi(P(x9y,E)//5l)p1(x,y,i)é%81’O .
-

3624 L2 estimates,
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Chapter v

Singular Fourier integral operators

A.1. Definitions and basic properties, The definition of the oscilla-

tory integral

j] ei(P(X’E)a(x,E)u(x)dxdE
given in section 1 .2 did not fully use the hypothesis that a is a symbol
in the sense of section 1f1‘ Indeed, we only used the fact that for some
first order differential operator L with the properties stated in Lemma 1.2,1
Lk(au)¢is an integrable function for sufficiently large values of k, This
we shall exploit in what follows.

Our purpose is to define operators of the form
(4.1.1) jﬁei(P(X’y’a)a(xgyya)/q(x,ysé) u(y) dydg
where ¢ is homogeneous with respect to & of degree m, say, and may have
real simple zeros, The real zeros of g form an obvious obstacle to defining
the integral. This we shall bypass by integrating over a suitable cycle
in the complex domain instead. Assume for simplicity that g and a are
analytic with respect to & in a neighborhood of the real domain and that
there is a vector n such that <gradgip(x,y,i), n> % O when q(x,y,&) = 0
and EG'RN, X & L)1, y(£§]_2. (It will in fact be necessary to let the
direction of m vary and in case the data a, q, (¢ are not analytic make
suitable "almost analytic" continuations of them. These questions will be
dealt with in the next Section.> Our hypotheses imply that

|m-—1

a(x,y,8+in) = lelMq(x,y,8/ g l+in/lel) > clg




m 2
for large lgl, go if we replace E by &+in in (4.1.1) we shall, for large &,
no longer have any infinities in the integrand. The next question in defi-
ning the integral is if a(£+in)/q(8+iﬂ) has the properties of a symbol,
Now we have for example

- . - -2
D4q 1(X,y,§+m)/>xj - -Dq/axj q
- - L
and we can only be certain that this can be bounded by IElm 2(m 1) = 1812 m.
Similarly [‘Bq;1(x,y,6+in)/5£jf < 0'511"m, so if one pursues this argument

one will find that o (&+in) € 8 "? (Note that @= 0, 6 = 1) which does

1
Oy
not suffice for the definition of (4.1.1). However, we can fortunately

say more about the action on q~1 of those differential operators which

act along the surface where q vanishes. To prove this we first note that
if p is a homogeneous ¢® function of degree//a and ¢ = O implies p = O,
then p/q is a 0 function of degree mh/w. In fact, to prove that p/q is a

o8]

C function it suffices to note that locally one can take ¢ as a local

coordinate and apply Taylor’s formula, Now let

L = QZjaj(x,y,E)HB/bgj + ;z:bj(x,y,E)ZDﬁéxj + c(x,7,8)
where for large IEI the functions aj are homogeneous of degree O and the
functions bj, ¢ are homogeneous of degree -1, If now Lg = O when g = O,

in | T2 dnql1g™21 ¢ clel™ gl i '
we obtain L a(x,y,&) = tLgllg < Clg q , and it follows easily

that

m

B(a(x,y,E4in) ") €857

More generally, if L1, oy Lk are operators of this type, then
=l o demek
Lj...qu(x,y,E+1n) 6,8071 .

We have discussed the properties of q"1 rather briefly since they liave

to be considered again after the discussion in section 4.2 of complex con-
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tinuation of symbols, but we hope that the preceding discussion motivates
the following developments,

Definition 4.71.1. Let I be an S? O(l], BN) ideal in the space of all
’

first order differential operators

1.2 L = L 2/PE. + O b, 2fax. + ¢
(4.1.2) 2 oy 208 + 5 by 2/,

. . &0 = N T.m C Ny .
with ajé:sq,o,; byy o QS1,O. We shall then say that a & sf(,2, R) if
aufsg 1([2, RN) and for arbitrary Ly, ..., L, €I we have

o7
T oI~ ko N
(4.1.3) AJ1°|;L1{8} éso,‘,] (N\ 9 R ).

Remark 1. It suffices to assume (4.1.3) when L1, csey Lk rUun over &
set of generators for the ideal ILi
Remark 2, If I consists of all operators (4,1.2) with the stated

conditions on the coefficients, then we can take L = ~9/3&_’,3 and

m

L = IEI—1 Q/ij ahd conclude that IST is equal to Sf 1-p
: SP P

§$

o In general

we have of course

I.m m

el S, 2 S
(4.1.4) 2 Spiing
for the left hand side decreases with increasing I.
Remark 3. The constant term ¢ in L obwviously does‘not play any essen=-

tial role but it is convenient to have it occasionally.

The following is an analogue of Proposition 1.71.2.

23
Proposition 4.1.2. If aeIsI; , it follows that aé;f; e Is?*'/“’, and
2 ‘
- Im' . I mtm'
if b & 89 it follows that ab & Sjj .

Proof. We begin with the last statement. By Proposition 1.1.2 we

. otm!
have ab &9

0.1 °* Assuming as we may that Lj has no consbtant term, we have
5 .

an identity of the form
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L1...Lk(ab) =2 (L ...Liva)(Lj veuLy b),
k= 2+ /L{ 1 1 Vel
which implies (4.1.3) for ab, In proving the first statement we may assume

that !a+/31 = 1, for example that lal = 1 and/£>= 0., Then we have

a(a> e s™ . Since La g™ s

0,1 0,1° differentiation with respect to Ea gives

m- §
0,1°

ral®) | i[DEa, L] a €8
- Here i[bga, L] is agaim an operator of the form (4.1.2) but it has coeffi-
cients with order lowered by one unit. Hence La(a)éf Sg:f: We can continue
inductively to verify (4.1,3); the details are omitted.

Remark, The proof shows that the action on a in any order of k1opera—

tors in I , k, operators 2/9£j and k

5 operators 'a/bxj can be estimated

3

m—k1g>+k3. This could also have been taken as a definitiom

vy (1+1el)
of%%.
If now qD is a real valued function & S? O(f}, RN) and for some
y

t iQé i . . .
LeTI we have Le = e , we can define the oscillatory integral

(42125) iy ei<F(X9£>a<X9§)u(X> dxd&, ue%Cg)(EZ))

for all a<§IS§

(<2, 2% ani%%é a distribution of order < k if meke < -N,
Example, Let qéiCq)(j2><(mN\'§O§)) be homogeneous with respect to

the last variable, grad ¢ % 0 when g = 0, and let Iq be the ideal genera-

ted by the operators of the form (4.1.2) where for large lel the coeffi-

cients aj are homogencous of degree 0 while bj’ ¢ are homogeneous of degree

-1 and

(4.1.6) ziaj'aqfaﬁj + EZ;bjI)q/éxj = 0 when gq = O,

Let q? be homogeneous. Then the proof of Lemma 1.2.1 shows that to

construct I with the properties required to define (4.1+5) we have to

satisfy in addition to (4.1.6) the equation
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(4.1.7) Z:aj ?>/2§j + Zibj Zb/zmj =1,

This is possible if and only if qi has no critical point with & # O and

in addition grad q>, grad q are linearly independent when gq = CP = O

(Note that (f = 0 at a critical point by Euler’s homogeneity relation, )
After this discussion of enlarged classes of symbols we pass to a

discussion of the corresponding generalized Fourier integral operators.

The following analogue of Theorem 1,3.1 follows immediately.

Theorem 4.1.%. Let I be an ideal of first order differential operators

in L2 X.f22><EN as considered in Definition 4.1.1 (with <£?_=_§21 x 522)9

and let ({ be a real valued function é~S1 O(g} ¥_2X\R )
( i

(i) If for some L EI we have L el"P= e” f , then the oscillatory

integral
{Au, v> = jf{el(V(x’y’g>a(x,y,E)u(y)v(x)dxdyd&
is defined for all a,éISm'( S, RN) u.éCk1§? ) v4f0k(f2 )
§ATe T ms2r 0 or=e2/r T EToN 4
provided that m~k§>< ~-N, and A is then a continuous map from c%((lz)
soadf E(C2.).
. t iﬁf i . . . o

(11) If "L e = e for some L €I which only involves differentiations

with respect to y and &, then the oscillatory integral
N (., -
Au(x) = jYél F(X’y’z)a(x,y,i) u(y) ay ag, a & S (\z x (?2, RN),

defines a continuous map from Cg(£22) into 03(121) provided that
(4.1.8) miN+3 < kP

ic i ¢
tL el'P= el P for gsome L *I which only involves differentia-

(iii) If
tions with respect to x and &, then A is a continuous map from /{’ ($ )

into éf'k(§21) when (4.1,8) is fulfilled,
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(iv) Let £/, be the largest open set CT£2_1)'1;22 such that over

Y

<§2%)there is an operator L which is locally in I such that L only involves
differentiations with respect toyi and tL eiC? = ei(¥ . Then the oscilla-
tory integral
KA(x,y) = Jrei CP(X’y’E> a(x,y,E) dE, (X9Y)E§J?%n

defines a function in Coo(f%g which is equal %o the kernel of the operator A.

In condition (iv) the phrase "L is locally in I" means that ')/L eI
for every ;Y'G'Cg)(g?@). That there exists a largest set SQLP where (iv)
is valid follows immediately by application of a partition of unity.

Example. Let qéﬂfn(§21>«$2 o X (RN \§O§)) be homogeneous with respect
to the last variable, grad g % O when q = 0, and let Iq be the correspon-
ding ideal defined in an example after Proposition 4.1.2. Then the condi-
tions in Theorem 4.1.3 reduce to

grad (P % 0, and the wvectors grad CP , grad q are linearly independent
where q = O,
Here gradients are to be taken with respect to x,7,& in condition (i),
ys& in condition (ii), x,& in condition (iii) and & in condition (iv).
In particular, let %3 be a phase function in K:LXKQ.%LRN guch that

gradgiy= 0 <%%> X = ¥y, and assume that gradaq # 0 when q = 0, The condi-

tions (i),(ii),(iii) are then fulfilled over a neighborhood of the diagonal,




Y

1 - N
4.2, Almost analytic continuation of symbols, Let aé}S; 6(52, R).
: y
. . . . W ;- Ay
We wish to extend a to a function in € (L2 X &) in such a way that the
Cauchy-Riemann equations are fulfilled of infinite order in RN. At first
we ghall do so ignoring the parameter x& (2, so we agsume that we are
given a function aé&CCO(RN) with
I, “a(e) | ey slelpep®
(4.2.1) D, a(&) g:ca(1+ gl) , EER,
If a(E+in) were an analytic continuation of a, we would have for small Inl
. =T a /. o
a(g+in) = 2 Dy a(g) (-n)"/al.
o

In general the right hand side will of course exist only as a formal power
series, so we shall modify it to ensure convergence without changing the
formal expansion when n = O so that the Cauchy~Riemann equations will be
valid there. The procedure is parallel to the usual proof of the Borel
theorem that there exist ¢ functions with a given formal power series as
Taylor expansion at a given point,

Let ;}/é§ Cg)(RN) be equal to 1 in a neighborhood of 0. Choosing a
gufficiently rapidly increasing sequence tj, jJ =0, 1, 2, .., we shall set

o . ST o o IIQ—-?/Q .
(4.2.2) a(E+in) = Dy a(&) (=) "X (%), n(1+1el%)™ )/ ot

a

and prove

Theorem 4.2,1. Given a function ae;c“’(mN) satisfying (4.2.1) one

can extend a to a function in C“”(m) such that

. me elar Bl
(4.2.3) 'DaaDn‘B a(g+in) | ¢ Coz/&“”‘”:”m Pl
(4.2.4) a(E+in) = O when . Inl > c(1+lgl)§,
(4.2.5) 5 a(erin)l = (2 l’aa/azj+i‘aa/anjlz/4)1/2 <

< ck(1+lgl)m" ?(1+k>lnlk

for any integer k > O, Finally, a(E+in) = 0 when & QE SUPP e
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Note that (4.2.5) implies that when Inl < C(1+IE|)Effor some < < ¢
then 2 a is a rapidly decreasing function, For our purposes this will be
as useful as knowing that a is an analytic function for we do not pay atten-
tion to rapidly decreasing symbols or the corresponding operators with ¢
kernel.

Proof of Theorem 4.2,1s First note that each termn in (4.2.2) satisfies

(4.244) with a fixed C if tj 2 1 for every j, for example. Write
N Y 2 —f/Z . CpoNT '
Qi(g, n) = n(1+lgl‘) and X (n) = (=n)" X'(n).
The general term in (4.2,2) can then be written oa(E,n)/dL where

oy (8 1) = (0, a(e)) (14112 P12 510l Y (o Ge, m).

Here (Dgaa(g))(1+lgl2)9l“'/2 & S? , and for the derivatives of éﬁ* we

A

have when (4.2.4) is valid

T ol plgl = ol o]
IDEa Dngfﬁ(g’ﬂ)l < 6y p(1lel) B P < Ca/6(1+lgl) e

/

It follows that y satisfies (4.2,3). Moreover, if we choose tlal large
enough, we have

(402.6) ng‘fD,ﬂ?/o@(am)! < (elegh)™ pryl=t |1t

5 6> 0, t+lﬁﬂ+la4 <lal-1.
(W2 have to make sure only that this is true for the extreme cases t =‘O

and t = |a|—1-|f3+2{!.) Since the series ;zj1/dl converges, it follows

from (4.2.6) that (4.2.3) is valid. To prove (4.2.5) we first note that

it follows from (4.2.3) when Inlﬁ/(1+|€l§) is bounded from below. On

the other hand, when (tla,n(1+lgl2)"f/2) = 1 for lal < k, we have

(2/22 +12/om )a(E+in) = > % iale)(-n) % ay +

b=k E
s (Dpeaiopn) 2 o (gm)/ab.
J Vo l>x

The first sum has the required bound, and so has the second by (4.296) with

t = k (for lal > k+1), This completes the proof,
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Remark 1. We introduced the argument tan(1+!i|2)_5/2 instead of
tanl&lng) in the cutoff function just to obtain differentiability at the
origin, If a is a homogeneous function, ¢® for E % 0, the latter choice
is more natural for the extension a(5+in) ig then homogeneous of the same

dogree and O outside a conical neighborhood of RN.

J
Remark 2. If > By = 1 we can choose the same numbers t¥ifor the
; .

extension of each aj and concludes that

JZ o (E+in) = )_/(ton/(1+le;|2) /2y &1 s Il < c(arlED)S

H
for & cerbtain constant C.
The proof of Theorem 4.2.1 can be repeated in the presence of parame-
ters with no essential change except that the notations become heavier, so
we have also

n W an_extensign "
Theorenm 4,2.2, Let a &S 6(§2, R'). Then one can find/a€C (0x 1)
§9

such that for every compact set K we have when x& K

' o p . , ly ] plot 2l
(4.2.7) 1, fpY alx,erin) | < ca’ﬁmeJrle;I)‘“6 A
(4,2.8)  a(x,E+in) = O when Inl > CK(HIEl)? )

(4.249) 12 a(x,g+in) | < Ck?K(lel)m"f(Hk)Inlk , k=1, 2, ..

if a1 and &y are two such extensions and b = a1~a29 then

(4.2.10) Ib(x,e+in) | < © (1+1g )" PRINIE, x €K, k = 1, 2, «..

K,k

To prove the last statement we note that (402,9) implies that
?b/95j+19b/3ﬂj vanishes of infinite order when n = 0. Since b = O when =0
we conclude that ”Bb/?nj = 0 when n = 03 since ‘B/an(}b/bgj+iab/3nj)=0
when n = 0 we then obtain'?gb/anjbnk = 0 when n = 0, Inductively it follows
that all derivatives of b vanish when n = 0. Hence (4.2«10) follows by

Taylor expansion of b(x,6+in) at n = O using (4.2,7).
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Note that (4.2.10) implies that b is rapidly decreasing when for
some « < fJ we have Inl < C(1+l§|)0/. The same is true for every deri-
vative of b, Different choices of "almost analytic'' continuation of a will
therefore always lead to operators differing by one with a ¢ kernel.

One advantage of the almost analytic continuations introduced here is
that they can be applied to partitions of unity so that these can be used
as if they were analytic functions, We shall need the fellowing existence
theorem for a partition of unity.

Proposition 4.,2,3, Let Fj’ j=1y «.vy J, be closed sets in

2{_: {<X95)(:{2x:mN’ lel = 1;} , and assume that (//Fj = > . Then one

can find Q/j & %? - ¢ (Q, EN) with /;EVJ = 1 so that on any compact set K
9 Ld > e
£

@ o »
in £J we have (Fj(x,g) = O when the distance froml&/lgl)to Fj is >OKIE|‘

and lel is sufficiently large; c, denoting a positive constant.

K

Proof, Let AFG(X,E,&) be the convolution of the characteristic func-

. = /',;5/ ) } o
tion of ?(X,E); (x,&/lgl)/gy e—n/{zé/e) where )2/6:00 ,_J)/di = 1 and

;?/ vanishes outside the unit ball. This is well defined if e < the distance

LN ~
from x to /LZ. The derivatives of %/j of order k with respect to x,&, & can

k

be bounded by Cka— . Let 0 < ¢@0% (L)) be smaller than the boundary distance

function and set £ = (1+IE’2)(§—1)/20(X), (%g(x,ﬁ) = (Pj(XlEngl, s)j(z
(x5 R
The easy verification of the properties stated in the proposition is left

for the reader,
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4¢%, Definition of simply singular Fourier integral operators, We shall

now complete *the program of giving a precise meaning to the operator
(4;3;1) Au(x) = fj o FGOTIE) o(x,y,8)/a(x,y,E) w(y) ayds, weCy’ (C1y)
which wes begun in section 4.1, Our hypotheses are
(4;3.2) g is real valued and homogeneous of degree’/x with respect to &,
auﬁ.qéCm when & %O;
(4.343) q) is a phase funotionz(Definition'1.5.2);
(4.3.4) gra d %) and grad q are linearly independent when q = 0 if grad
is taken either with respect to x& or y&;
(4.3.5) aes) . (D2, 1"y, o< e <
foivg =
We choose almost analytic continuations‘of a, QF:and q uging Theorem
4.2,2, In the case of %) and g though we use Remark 1 following Theorem 4.2,1
to choose the continuations homogeneous.
Let n = n(x,y,&) be a homogeneous ¢ function of degree O when & £ O
with values in Rn, which satisfies the condition
Qe N0 % O when q(x,y,E) = 0, & % 0.

et '

for instance, we can take 7 =sgrada a4 (or rather the covector corresponding

(4.3.6) <grad£

to gradgq with respect to a Riemannian metrio). We denote by V the set of

+
all n satisfying (4.3,6). We also define V as the set of all n sgtisfying
(4.3.7) <grad, d, 1> 2 0 when q(x,7,E) = O, E # O,

Note that V+ and ¥V are both convex.

If néV, the Taylor expansion
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. . (4D
a(x,y,8+in) = alx,y,8) + i<gradyq, 0> + o(Jel"™%),
implies that in a conical neighborhood of the zeros of ¢ we have
e,y Eein) |y la(x,y,8) 1/240(,y) /™2 o,y T 1

(la(x,y,8) lro(a,y) 11T /2 18 Tel > 01 (x,7).

IV

Since |€]f{can be bounded by a constant times lq(x,y,é)f outside a conical
neighborhood of the zeros an estimate of the same type is valid there,
Hence we have for suiteble continuous positive functions ¢ and C

(4.3.8) la(,r,8+40) 1 > (Ta(xyy,8) l+o(x,y) 1T /2, Tel > o(x,y).

The somewhat formal arguments in the beginning of section 441 can now be
made precise as follows,

Proposition 4.3.,1. Let q, a and n satisfy (4.3,2),(4,3.5), (4.3.6),

and assume that a(x,y,&) = 0 when l&] < C(x,y), the constant in (4.3.8).,
Let I be the 1ldeal of first order differential operators defined in an

example after Proposition 4,1.2. With the notation fn(x,y,g) =

m—-/1+1 (

N
5 )

= £(x,y,6+in(x,y,&)) we have then a"/q" Q,IS
Proof. Write b(x,y,8) = a(x,y,8)/q (x,5E) so that

(4'-51¢9> a’n(Xﬂng) = b(XQT;g) qn(x,y,é’,).

" ig in g . This atatement is closely related to Proposi-

The function a
psl-p

tion 1 1,3 but not contained in it. However, the proof is a simple exercise

N

using (4.,2.7) and a Taylor expansion of a ' with respect to n, so it may be

left for the reader,

T he first step in the proof is to show that beisgﬁ?+1 s that is,
9 .

m_/,+1+]al ; nyéK CC',«{‘Z'(‘

(4:3.10) 1o ¥ Po(a,y,e)l ¢ c(relel)

Xy

I

R

This follows from (4.3,8)! when = /2 = 0 so we may uwse induction with

o ‘ .
respect to increasing ]a+/31. Applica tion of ny Dgfgto (4.3.9) gives




R I

« BN 5T a al_ sl g
p. “pfal e 2 2 DD v)D. "D g,
Xy é;’ 1+(x||_‘a /5 +I,Yl=/3 ,CC” ’/' /3“( Xy %; ) Xy E

The left hand side is bounded By o(1+lg1)™" Lo Since

. M ol
gince a CASO}1a

n ]

g €9 for & % 0 by the preceding discussion of a', the terms on the

1,0

right with o''+3" % 0 can be estimated by a constant times

- § — N P L3
<1+|gl)m/l,z+1+|oc I-I-/'/ I/J"I - (1+,E])m+locl+1 IOL +/é | g (1_+]gl)m+lal‘
Using (4¢3.8) we conclude that (4;3;10) is valid, Note that the proof only

used tha t a” GSO 10

Next let L be a first order operator & I with homogeneous coefficients
and no constant term, that is,
L= 2 a.28, + 5 b.90x,
= J J J
where aj is homogeneous of degree O and bj is homogeneous of degree -1 with
regpect to &,
(4,3011) Zaj?q/é\ij+2bj‘aq/9xj = TLq = O when ¢ = O.

Tf we apply L to (4.3«9) we obtain

n

(Lb)vqn = La = qun.

Wow Taylor’s formula gives that q - q €8, . . Hence

1

-2

n .
e 4 1,0

In view of (4.3411) we have Lq = cq with c of degree -1, so it follows that

(4.3.12) 14" = oq" + @ vhere o & ST and deS/ 2

1,0

Thus (Ib) ¢" = La" - b(eq'+d), that is,

(4.%.13) (b + be) ¢" = 12" - Dbd.

Here Ta"es™ ¥ and pa €5™ ! so the right hand side is in slg“ ¥, From the

?,1;“? : 091 91
first part of the proof we now obtain

Ib + bo € sm’/’”'f

and since be eS /:we conclude that
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Ib & sm’"/‘“r1 £,

n uged so far are that ané?Sm and that

Note that the only properties of a 0,1
' H

R
La (’8091.
Let mg now prove by induction that if L1g..Iﬁa,ésg"f3 for j < k and

) h

M= et -=-L50

arbitra ry homogeneous L1,...,L &1 as above, then L1...L b<fS ]
Oy

We know this already when k = 0,1 and assume that the statement is proved

with k replaced by k-1. Set L Sm'-pkJ

- L, By hypothesis Lj"‘Lk 1Lk

snd the inductive hypothesis gives that L1...Lk_1bd é‘ngq+1+ﬂ"2“f(k'1)q
b

Hence L L m~ky

gDy 1( al-ba) € 5,

, also with any other operators of the seme

type instead of L, .44, In view of (4.3.13) and the inductive hypothesis

17 k1"
m-k ¢ v-/4+1

0,1 . The inductive hypothesis

it follows that L,...L (L

qoeely (b + be) €8

k

plso gives L (bc) = Sm— (k-1)5(’°mﬁﬂ+1 kf which completes the

g

proof that L,...L. Db & Smﬂ/Hﬂ—kf

1 k 0,1 and so proves the proposition.

Remark, The proof only used the fact that a,éISm and migh?t be more
natural if the proposition were stated in that way. However, this more ge-
neral statement is an immediate consequence of the one which we have proved
in view of the last statement in Proposition 4.1.2,

To complete the definition of (4.3.1) we note that

L[”n(X9Y9E) (P(XaY95+l'ﬂ> (f(nggta + V/(X9y9€>s LVCS

Hence elq/é SO so that eltfjaﬂ/q c S;l—yu%—’l

1.0 . For a given function n &V
) o

we choose an almost analybtic extension a, of a function which i1s equal to a
for large |&! but vanishes for &l < ¢(x,y) so that (4,3.8) becomes applicable

with a replaced by a,. Using Theorem 4.1.3 we can now define

1°

(3o 4% - [ T e e ey, Eur)ay aering A

/ld(€N+inN>.
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Tere we have used the nota tions of exterior calculus to express the inte-
oration element briefly. Note that d.(&1+iﬂ1)/\ .../\d(&n+inn) (where diffe~
sentials are taken with x,y regarded as parameters) is equal to D(xgyvi)
aE, No.. /g where D(x,y,,z)és?po, in fach D(x,y,E) = 1 + an asymptotic
sum o° termg homogeneous of degree ~1; =2; a«.e Thue we could have written
E(x?y?é)di instead., If a is sufficiensly rapildly decreaging at infinity 1%
ig perchaps best to write .
() = ST T Doy, )/l £) () ar a5y A MG,

xy
mhere B”?V is the cycle €~—§~E+in(xpy9€)v

We shall postpone for a moment the discussion of the gingularities of

the kernel of A" put observe what Fhis operator has 2ll the prorerties

1isted 4n Theorem 4e.1e5 with m revlaced by m~/1+1° Our nexs purposs is to

1
)

- . . Neo] , M. . \
«rov that modulo cperators with C kernel the operanox ANig independenty of
a1 . . A+ P L o
211 *he choices made provided that m &V (or n&7 ); representativen fox
- , . . + = . -
these clasgses of operators will be denoted by AT anl A respectively.
. . . > . . . -/ A
First of all, for a fixed choice of 13 it is clear in vilew OI x4.2610)

tha t different choices of 8y and the almost analytic continuations will

PN VO )
only change s (“’f’E)a?(x,y,a)/qn(x,yﬁi) by o berm which is wapidly

decreasing at infinity, The same ig +true for the derivatives, Tt remainsg
tal

" oan . 0 1 +
o discuss the dependence oum m, Assume for examplie that 1 : 0 & V', Then

0 B . .
vo bave (1-%)1 +‘IJT]1€:VT if 0< t< 1 and for gufficiently large Gh )we

nave (46508) for all these vector fields, Let fﬂ"y b the chain

ES

el N o
B S (h,e) = £ 4 (1-6)n0(x,,8) + b (x,y,8) &1, 0¢ V4

Tf £ iz ranidly decrcasing atb infinity we have by Stokes® formula
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: 4 . .
f 5 =1/
% 2 tALZ A AL, = 2 (=1) fnafd§1/&.../\d§ne
Xy .0 xy

Hence we obtain for every € > O

j/{ 3 (o Pl §)a1(x,y,§)/q(x,ys ENuly)ayd $,A - /Ldgne"e(§’§)
Xy )

1 . ' ‘ i,
_ %‘_ (__1)2]-1 gfnj o2 (Q(X,y, §>a1(x,y, ;)/q(x,y, ;) u(y)dydj/J. AL, o
Xy

When & ->0 the right hand side converges to the difference between the two
: ] o .

t0 oscillatory integrals A" u(x) and A" u(x). On the left hand side the

1imit of the integrand is rapidly decreasing in view of (4.2,9)7 S0 we

1 0
conclude that (A" - A7 ) is an integral operator with the kernel

Fif ) (ei (P(x,y, g)a1(x,y, ;)/q(x,y', g))/\dg,]/\ .o /\dfn.
This is a ¢® function: since the integrand remains rapidly decreasing after
any number of differentiations with respect to x or ¥y (this follows by
combining (4.2.9) and (4.2:7) using standard convexity properties of deri-
vatives; or we could otherwise ha ve stated (4.2.9) in a stronger form in-

volving also differentiations with respect to x and vy The results obtained

go far are summed up in the following

Theorem 4.3.2. Assume that (4.3.2) - (4.3.5) are fulfilled, Then the
. . o . + -
integral (4.5.13) with neV (V ) defines a class of operators A (or A )
modulo operators with ¢® kernel, such that
(1) A* is a continuous map of Cloc(Qz) into CJ(Q,‘) if me bl 4] < kg
‘s + . . o j . k . .
(ii) A* is a continuous map of g‘J(QQ) into og' (L?Q) if m-/fﬁ'l+N+J<k 5
We shall now examine the location of the singularities of the kernel
:!:' .\
of A", In part the results could be obtained from (iv) in Theorem 4.71.3 but
we get more precise information by studying what can be achieved by a sui-

. o ‘
table choice of Ne V™ in (443413).
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We shall prove that if (x,y)élf21‘x.fzz end for some ne V'
(4.3.14) <gradELP(X,y,E)9n(X,y,E>> > 0y E ?4 0,
then the kernel of AT is ¢ in a neighborhood of (x,y). In doing so we
may assume that (4.3.14) is va _lid in all ofA§21)<1122 for we can otherwise
replace these open sets by smaller ones. We shall then push the integration
contour in (4.3,1 3) further out in the directiomn., This can be done
without any difficulties from the exponential function for

Re i qD(x,y,€+itn(x,y,E)) = ~t<grady @, > + O(Ig['1t2> )
< ~telx,y) if 1 <t < lel/c(x,y), lel>c(x,y)

where ¢, C are positive continuous functions, We can now repeat the discus~
sion preceding Theorem 4;3.2 with no = 1 and n1 = tn, where t—>+ .
Agsuming as we may that _P < 1 we recall that by (4.2.8) we have
|n| = o(IEI) in supp a(x,§+in) so in the limit we obtaim the nicely con-
vergent integral

Mo (x) = - [, B (o P 8D (s €02y ) O(PIATEGA e

Xy
Here faxy is now the chain

N+l . . N

gt > (%, &) —> E+itn(x,y,E) et

restricted to t > 1, As before it follows that A" nas a ¢ kernel given
by the integral

- P}éfs (o1 5T )a (x5, £)/alx,y, S IMAE S, Newi AT,
Now one can find ntEV+ satisfying (4.3.ﬁ4) unless for some & with

a(x,y,E) = 0 we have gra dg %Kx,y,&) = () gradaq(x,y,i) where ) < 0.

In fact, we can then satisfy (4.3. ) and (4.3.7) (with the upper inequality)

at the same time locally and using a partitiom of unity we find that n also

exigts globally, Hence we have proved
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T heorem 4.3.3. The kernel of the operators AT (A7) defined in Theorem

4.3.2 are in 0 excepts at points (x,y) where for some EGERN, E # 0y with

a(x,y,&) = O we have gra de ¢ é ) grad ; 4 for some ) < O (> 0)s

W

Note that for each of the operators AT ana A” we obtain only "one half"
of the gingularities possible by (iv) in Theorem 4413+ A further improvement
can be made as follows, Let us take a partition of ;Z = g(x,y,E);lE|=1‘§
as in Proposition 4.2.3, thus 2_ = F. (/F_ where F, and F_ are olosed.’
Choose %jj according to Proposition 4,2.3 with @< 1. We now define
A as the sum of the + operator corresponding to g}%a and the - operator

corresponding to a, Them the kernel of A can only be singular at (x,y)

2 .
if one can find EGERN with q(x,y,&) = O such that (X,Y,E)G;F+ (F_) and
grad&(f(x,y;ﬁ) = ) gradgq(x;y;ﬁ) with ) < 0 (] > )+ This will be useful
in Chapter V where any one of these operators A will be a fundanental solu-

tion and a favorable choice of F+ and F_ gives precise results on the loca-

tion of singularities of the solutiaens,

+
Multiplication» of the operators A" by pseudo-differential operators to

the left or to the right gives new operators of the same type, that is,
with the same (P and q but with a new a, To prove this we first note that
by a substitution:

(%y75E) —> (%47, q§<xsy,5))
one can locally reduce g to a function independent of x and y, miltiplied
by a homogeneous function without zeros. In establishing this fact we may
assume that the degree of homogeneity'/;4 of q is % 0. Then the vector

v(E) = grad Eq(xo,yo, £) is then always # O, for grad q = O implies q = O
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by Euler’s identity for homogenéous functions, so v(&) % 0 in view of
(4;3:2); Now we define f?%(x,y,g) = £ + tv(E) where t shall be chosen so
tha %
a(x,y, E+tv(E)) = q(xo,yo,E) and t = O when X=Xqs¥y=¥qe
Since 2/2% of the left hand side is # O at Xy, when t = 0, the implicit
function theorem implies that there is a unique solutions t, homogeneous of
2~ .
degre€_7c%ith respect to £, defined and ¢® for (xyy) in a neighborhood
of (xo,yo), and .gs-then gives a substitution with the desired property.
But as soon as g is independent of x (or y) we can use the proofs of the
multiplicative properties of Fourier integral operators given im.section 
3,1 to discuss left (or right) multiplication by properly supported pseudo-
differential operatorss Since we shall not actually use these results the
detailed proofs will not be given but we keep in mind until Chapter V that

q should be chosen independent of x (y) if one wants to operate to the

left (right) by a pseudo-differential operator,




Chaptexr V

QOperators of principal type

5.1, Constructiom of & right parametrix, Let P = Pm(x,D)+ ees + Po(x,D)

be a differential operator of principal type in: the open set Q< Rn.
Thus Pj(x,é) is homogeneous of degree j with respect to & and
(5.141) Pm(x,ﬁ) = 0 :i>/grad£Pm(x,€) # O,

We also make the essential assumptiom that Pm has real coefficients.

Our methods are also applicable if Re gradEPm(x,E) and Im grangQ(x,E)
are linearly independent whenever Pm(x,g) = 0 but so far they are not
sufficient for the general "principally normal" case which has been stu-
died before by means of energy integral methods. On the other hand, the
results obtained bygthe use of Fourier integral operators are more precise,.
(Using the results of section 3.1 it would cause no difficulties to study
pseudo-differential operators P in the same.way but we shall refrain. from
doing so in the hope that this will make the exposition eagier to follow.)

A right parametrix in ﬁfZ is a continuous map E: Cg)(ﬁz) - COO({Q)
such that PEu - u = Ku, uéécg), where K has a C® kernmel, In the case
where P has constant coefficients, one can construct Eu béﬁinterpreting
the integral

(2m)™® [[ 3% p(2)~"a(2) ar

as a suitable contour integral, We shall make an analogous approach here

using the results of Chapter IV, Thus we write, at first formally

Bu(x) - (z0) ] ot PETIaly,8)/a(r,8) uy) arae
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where qD, a, q should be as in section 4.,3. Note that g is required to be
independent of x so that we can opera te with P(x,D) under the integral
sign without introducing worse singularities. (See the remarks at the end
of section 4.3‘) The function q@ should satisfy the hypotheses of Theorem
2.1.2 so that L‘;‘/’O(Q;Q, $) = L?;O(Q) is a standard space of pseudo-~diffe-
rential operators., More precisely, we shall choose gp go that
(5.1.2) qQ(X,y,E) = <X~y E> + O(lx—ylglgl).
Then the identity operator can be represented in the form:
u(x) = (2m) ™ ff T PTIE1(,5,8) u(y) ayas

where I(x,x,E) = 1 & s;:O(Q, ™),

Formally the equa tion PEu = u + Ku should be satisfied with an operator
K having a smooth kernel provided that apart from an error which decreases
rapidly at infinity '
(50103) e T PETIE) pi0) (e P o ,8) falws8)) = T(x3,8).
Actually we shall at first only achieve somewhat less, namely that this
equation is satisfied to a high degree of accuracy on the diagonal with
I(x,x,&) replaced by 1. The leading term in the left hand side of (5.1.5)
is P (x, gradx<P)a/q. We would like to have P (x, gradx(f(x,y,ﬁ))= Q(y;ﬁ)
so that our equation (5.1.3) in the first approximation becomes a = 1,
Since gradx(P(x,y;E) = £ when x = y in view of the requirement (591.2),
this means that we must have
(541.4) a(y, &) = Pm(y; £)

(5c105) Pm(X9 gra dxlf) = Pm(Y9 E), QF(X,X,E) = 0, gradeF(x,y,E)nﬁ
when x=y.

The conditions (5.1 +5) are of course a consequence of
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(5.1.6) Pm(x, gradX(P(x,y,E)) = Pm(y,aj, gradxip(x,y,i) é £ when x é y and
(F(x,y,a) = <x-y,&> when <x-y, t(y, E)> = O,
Here t(y,&) shall be chosen as a G function, homogeneous with respdct
to & for & # 0, such that <grad£Pm(y, £)s t(yyE)> # 03 for example t(y,&)
could be gradEPm(y;E) (or rather the corresponding covector), This is a
non-characteristic initial value problem and since Pm ig real it follows
from the Hamilton~Jacobi integration theory in view of the homogeneity with
respect to & that in a neighborhood 5:21 of any point in lilthe conditions
(5;1.6) define uniquely a phase functiom QD. We shrink £) so that this
is agsumed to be true in the whole of ﬁ:l; we may even assume that graquD#O,
gra dy %>% 0 when & # O and that gradE(P = 0 & x = y. Finally we choose
£)lso small that (4.3.4) is fulfilled. This is possible in virtue of
the remarks made in the example at the end of section A1,
By Leibniz’ formula we can write (of. (3.1.5)) using (5.1.6)
et P )p( 0y (TP G798 g 60 )
n . '
= Pm(y, £) a(x,y,&) +2§lP§J)(x, grad_ )ija +ba + een
Here b ig homogeneous of degree m-1 and the dots indicate a sumof homogeneous
functions ?f degree i mﬁ/{-Q if a is of degree i/ﬁ{. We shall choose a so
that a(x,x,&) = 1 and
(5.1.1() et CP(X’y’E)P(X,D)(ei (P(X’y’zf’)a(x,y,&)) - Pm(y,g)a(x,y,i)é-s;?%-
0
Write formally a = ;ZT &, where a ,is homogeneous of degree m, Then the
0 -
terms of order m-1-% in the left hand side of (5.1,7) will cancel provided
that

P

' ’ n .
(5.1.8) %: PI(HJ)(X, gra d.XLP) ijay+ ba, =

where r , is a homogeneous function of degree m-1-, which is determined
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by the terms a which precede 8, e In particular, To = O We

O’ LI ) a’l}—1

solve the linear first order equations (5.1.8) with the boundary conditions
(5.1.9) ag(x,%,€) = 1, a,(x,%,8) = 0y ¥> O,

Since it suffices to do so when f&] = 1 and then extend a , by homogeneity
it is clear that this is possible if ./ is chosen sufficiently small,

If we now choose ae&S? 0 according to Proposition 1.1.3 so that
9

o0

af\J;Z a , for lel > 1, it follows that
.0

(5.1.10) a(x,x,E) = 1 for large l&l,
(5.1.11) o~ FET B pr py (ot POT98)a(,y,2)) = B (7, 8)aloey7,8) +(x,7,8)

where T é—S-Oo.nWith a chosen in this way we introduce
(om) ™

Fu(x =‘5H91 Plaxs752) a(x,y,8) /P (v, &) w(y) dyag
or rather the two opera _tors F' and ¥~ corresponding to deformation of B

in the directions ¥ i grad Pm(y,E). Now we have for the almost analytic

3

continuations of a and A
(5o1z) o TR plny (PO Eateyy, 2)) v v () 2)ale, €)
+ o(x,¥, §)

where r and all of its derivatives are rapidly decreasing when [Im gl =

= 0o( ! ;ld‘> for some &< 1, In fact, if we write out the left hand side

of (5+1+12) explicitly so that the exponentials disappear and note that
sumg and products of almost analytic continuations are also almost analytic
continuations, we obtain (5,1,12) using the last part of Theorem 4.2.2,

+
Now we may compute PF~ u by operating under the integral sign, This

"8(§3§) which is then re-

is obvious if we introduce a convergence factor e
moved by letting €-—»0, In the resulting integral we can make a change of

integration back to B by using Stokes’ formula as in section 4.3. This
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+ +
gives P B~ = A + K~ where KT and K~ ha ve C° kernels and

m(x) = (2n) [T PCTE) oy ey u(y) ayas.
Since a’ SO 0 and a(x,x,&) = 1 for large 'El, we have A = 1 + R1+R2 where

Ty

1

0 is properly supported and R, has a
9

I is the identity operator, R, € L;
¢ kernel, It follows that the operator A hags an approximate inverse, In
fact, let B be a properly supported pseuvdo-differential operator of order O

with the symbol
Q@ X
o~ Z (-1)7 T k.
B 0 1

Then we have AB = (I-+R1)B-+R =1 + R3 where R3 has a ¢ kernel.

2
ot
At last we can now define B = F B, These operators are continuous

from Cgo(fl) to ng(fl) and from g?'(§2) t0 <§Dt(§2), and we have
+ + +

PE = (A+K )B=1I + 1{1"

+ +

where K1— has a ¢ kernel, Thuer— is & right parametrix. In view of the

+
pseudo~local property of B, the singularities of the kernel of E -must

+
be the same as those of the kernel of F . The latter can be determined
using Theorem 4.3.33 we only have to examine the meaning of the condition.
that
(5.149) grad , (0 = P grad.EPm(y,E) for some £ # O and A € R, Pm(y9€)=o°

If >\= O this is equivalent fto x = y, so we assume that jk % O. Note that

(5.149) implies that Zsjmp/‘a&j = 0 if Zsj"aPm(y,g)/agj = 0.

To study (531a9> we shall use the fact that
(5.1.1 0) P (x, grad_ (P) = P (v,8) = 0,
8o we have to recall some of the Hamilton-Jacobi integration: theory,

This relates the solution: of the non-linear equation Pm(x, grad(%ﬁ = 0 %o

the Hamilton equations
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dxj/dt = P;j)(x, Q) = ”a@m(x,@)/égj, de/dt = APmyj(x,O) :-DPm(x,g)/axj;
The solutions of these equations are curves in the cotangent space, called
bicharacteristic strips} their projections on the x variable are called
bicharacteristics. Now if we have a solution of the equation Pm(x,gradsp):zO
we obtain by differentiation that—Pm’j(x, gradwq/) = ;E:Pék)eiéﬁis bZHV/BXjBXk.
If we integrate the equations dxj/dt = P;j)(x, 9) with ¢ = grad 7/, the
remaining Hamilton equations will therefore.be satisfied automatically.

If © = grad %/ at one point of a bicharacteristic strip this will therefore

be valid along the whole strip.

In our situatiom we have a solution of the equations Pm(x, gradX(P) =
= Pm(y,a) depending on the parameters y and E. Differentiation with respect

to ¥ gives if s, are constants, with y and & fixed now,

k
j 2 . k
;Zj PéJ{(X, gradx(?) P (P/axgbéksk = 0 if ;g:skP; >(y,i) = O,
Thus }i_sibqyagk is then constant on the bicharacteristics corresponding

to qD . (This expresses the fact that bicharacteristics arise as intersec~

/level surfaces of/
tiong of/infinitesimally close solutions of the equation.) Provided that

L2 , is sufficiently small, these will intersect the plane <x-y, t(y,&)>=0
used in (5.1¢6) for this is transversal to the direction grangm(y,E) of
the hicharacteristic curve thropgh y. Since gradE %?= X~y + O(|X~y|2)

cannot have the direction grad,Pm(y,é) when x is in this transversal plane

g
and sufficiently close to but different from y, we conclude that (5.1.9)
implies that x lies on a bicharacteristic starting at y, that is, on the
curve determined by the initial value problem

(541¢11) dxj/dt = P;j)(x? 9), d@j/dt = —Pmyj(x, e), x(0) =y, 0(0) = &,

where we recall that Pm(y, £) = 0, Since 'BgradE q>/at = gradEPm(y,E), t = 0,
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and gra d

Eq?(x,y,é) #£ 0 for x # y, we conclude that grad'q)(x,y,i> will have
i ;

the same direction as grangm(y,E) for + > 0 and the opposite direction
for t < O,
¥

Let C (y,E) be the parts of the bicharacteristic (5.1.11) corresponding
to parameter values t > O and t { O respectively., Then we have found that
e @ S +
ET (E”) has a ¢~ kernel at (x,y) except when x &€ C (v,8) (x&0 (7,8))
for some & with P (¥, £) = 0.,

A still better result, essentially due to Grusin f1al for operators

with consta nt coefficients, can be obtained from the remarks following

Theorem 4.3.3. In fact, let 2§_= i (v, E)éggxﬁn, Pm(y,E) =0, lel = 1‘g
which is a closed set, and let 2 = F+L)F— where F+ and F_ are closed sub-
sets. Then we can choose a corresponding partition of unity V/19 ¥/2
according to Proposition 4.2,3. Let F be the sum of the +operator correspon-
ding tO'w\+éa and the -operator corrésponding to q/1a as explained after
Theorem 4,3.3, Then E = FB is still .a right parametrix)for PF can be com-
puted as before by letting P act under the sign of integratidn, the factors
q/1 and l%/g being independent of x. In view of the quoted remarks following

Theorem 4.3.35 we obtain

Theorem 5,1.1, Let P be a differential operator of prinoipal type

with real principal part, defined in an open set §>.C Rn. Bvery point in
jjz has then an open neighborhood 1(24 Cﬂﬂ:{ where for any two closed
- S n ' \
sets P, F_C 3 = %(y,i)é{&21 ¥ R, Pm(y,g) = 0,lel = 1<g with
F+L)F; ==2:~ one can find a right parametrix E of P which is a continuous

map from Gg)(§21) to 003(f21) and 541(521) to d25'(§21) such that the
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kernel of B is im €® in (2, (2, outside
gL(x,y)z5521&§21; xec+(y,a) for some £ such that (y,E) & F, or
x€C_(yyE) for some & such that (y,E)éF_z'o
Roughly speaking, this means that x shall avoid an arbitrarily chosen half
of the bicharacterigtic cone with vertex at y.
In seetion 5:‘2 we ghall need & left parametrix E, that is, a map
such that EP = I + K where X hag a o® kernel; Now the adjoint of a right
parametrix for P is obviously a left parametrix for the adjoint of P, so

we obtain from Theoem 5,1,.1

Theorem 5.1.2. Let P be g differential operator of principal type
with real principal part, defined in an open set Q(_an BEvery point in
) has then an open neighborhood ,‘-':21 < fz_ where for any two closed
sets F , P_C > = §' (x,&)é_Q17< B", Pm@x,a) -0, |E]| = 1} with
F+UF_ = Z one can find a left parametrix E of P which is a continuous
map from 080 (Q1) o C°°(_Q1) and g’(QQ to @'(Qﬂ such that the
kernel of E ig in ¢™ in Q1X Q,‘ outside

S;(XQY)Eﬂ,l)C 01; v E C+(x,i) for some E such that (x,E) e, or

yéC_(x,E.) for some E such that (x,E) € F_jL.

5.2. The gingularities of solutions of differential equations of

principal type. As in section 5,1 we denote throughout by P a differential

operator of principal type with real principal part in an open set Qcrt,
Let u é@'(g_) and
(502'1) Pu = fé COO(_C?_).

We wish to study the singular support of u, denoted sing supp w, which is
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defined as the complement of the largest open subset of 2
where ueC®,

Theorem 5.2,1, Let Xy € ()  and assume that for every bicharacteristic

curve through x, we have sing supp u ﬂC(XO, £) & C+(XO, E) or C—(XO,E);
Then XO?—E ging supp U,

In other words, a singularity cannot propagate along half the bicharac-
teristic conoid only.

Proof., Since S2 can be replaced by any smaller neighborhood of Xo
we may assume that the conclusion of Theorem 5.1.2 ig valid in ,Q . Let

00 . .
L}/é CO (C)) be equal to 1 in a neighborhood of X, and set K = supp d L// .
This is a compact subset of A/’Z\{x&. If now E is one of the left parametri-
ces of Theorem 5,1.2, we have EP&‘/u -yu 6—000, hence

(5:2.2) U - EP\(/U. & ¢® in a neighborhood of x..
in a neighborjood 09 Xq

We wish to choose E so that EP\yu & COO/. The singular support of PL’JU. ig
contained in K/) sing supp uw so we just have to make sure that E(xo,y)
is in ¢® when (x,"y) is in a neighborhood of %XO%’X Kf) sing supp 11;
Thig will be true for the left parametrix of Theorem 5;1.'2 provided that
(5.2.3) 0¥ (g E)NV KM sing supp v = f 5 (x5,E) €T3
C—(XO,E>ﬁ KN sing supp w = @ , (xO,E)e .

Since by hypothesis the open sets

+ +

0~ = {F;; le] = 1, C"(xo,g){\Knsing supp u = ﬁ}
cover the unit ball, it is clear that we can choose F+ , ¥ with the pro-
perties required in Theorem 5.1.2 so that (5.2.3) ig valid., This proves
the theorem,

Remark 3, The proof used only a weaker version of Theorem 5;1.2 where
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FY oand P are replaced by open gsets, This is the result proved by Grusin

|1a| when the coefficients are constant., We could have restricted the dis-

cussion in Chapter IV to = 1 if we had only wanted to prove this result.,
Remark Zf The proof d4id not use the full hypotheses either for

only Ks;éing supp u played a role and not sing supp u. When Pm has constant

coefficients a simple modification of the proof of Theorem 5,2.1 shows that

if x sing supp u, then a bicharacteristic through x belongs to sing supp U,

(This result is due to Grusin l1a .) Is this true also when the coefficients
are variable,

Remark 3. Zerner and the author have shown that for every bicharacte-
ristic curve one can find a solution of (5;2.1) with sing supp w equal to
the bicharacteristic curve, This is clearly a converse of the strong type
of results discussed in Remark 2.

As an application of Theorem 5.2,1 we shall mnow prove a result
which has previously been obtained by the author with energy integral

arguments; it is clear that Theorem 5,2.1 also implies improvements of it.

Theorem 5.2.2, Let P be of principal type with real principal part

in L/, and let t%’éﬁCoo(fz) pe a function such that &x‘) y/(x)gc} ig
a compact subset of () for every c, and (+} ig pseudo-convex in the sense

that

(5o0u) = 22ysron, 2 (6,202l (,8) + 5= (LI Gx,)E() () -
Jyk=1 JoEn m Jok=1 ™

- B, (58D ) Y2 oy > 0, 0 4 8y x ey
Pm(x';g) = 0, Zng)(x,g)aq//axj = 0,

It u.ééé?}(gl) it follows that the supremum of 9/ in sing supp u is equal
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to the supremum of %/ in sing supp Pu.
I+ is well known (see e.g. the author’s lecture at the Stockhobm
s s . . . fz :
Congress 1962) that this implies existence theorems for Pin 24 .
Proof, The meaning of (5.2.4) is that on a bicharacteristic curve
the second derivative of lf’is positive where the first derivative vanishes.,

Let ¢ <5 be the smallest constants such that V/(x) < 8y (resp: 02) when

1?
X & sing supp u (resp. gsing supp Pu). Then Cy i Oy Agsume that Cy < Gy
For every xo,with %/(xo) = ¢, we can then apply Theorem 5:2.? gince

near X, one half of every bicharacteristic curve through X, must lie in
the set §x3 %’(x) > o{% where u is known to be in €, It follows that

no point Xq with qﬁQxO) = Cy belongs to sing supp u, which contradicts the

definition of cJ,l and shows that oy = 02;
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Correctionses

page 144 line 3  the subseript P is missing
page 1,10, line 12 & should be &
page 2,4, line 10 the sﬁbsoript P is misgsing.
page 2.5, line 8 from below ol should be 3’1 ,
page 2?11 line 11 two integral sigys are missing.
page 2,12 line 13 should be ... that ;}/ has compact
line 17 S .missing
page 2,17, formula (2,2.2); one integral sign missing
page 2,18 , formula (2.2?4). An integral sign is missing,
line 2 from below, Theorem 2,1.1 should be Theorem 2,2.1,
page 3.3, line 4 +the exponent should end with ~(f - &)
line 6 qumeqiby)?i
line 7 insert') in the exponential function; replace lFJ by
Y on the right hand side
line 2 from below insert a missing. q9 .
page 4,1, line 6 from below replace qQ by 4.
page 4,2, line 13 replace m—/u by /%i— m,
page 4.5, line 1, .Insert q? on the left hand side
page 4,8, line 10, Replace ta by tla" g
formula (4,2,6): right hand side should be (1+l5!)m~f(hgﬁrl+t)|ntt
. line 5 from below ;{l is migsing
page 4,11, line 6 from below should be ... take n = |g|17/% grad; d
page 4,13, line 10 from below,gshould be ... Sq:g. Hence
line 9 from below,/u is missing there too,
page 4,18, line 10, Y/ is missing
page 5.%, line 10 from below.,.q) ig misging
page 5.4, line 4., should be ... extend a,, by homogeneity
line 5, L2 isg missing
line 12 from below ..., a and (P
page 5.5, line 3 Since aé:S?;o coe .
page 5,7, line 1 grad{P(x,y,&) should be gradgqg(x,y;g).
page 1.6, line 11 should be M= eus + X




Some comments to the text by Lars Hormander: Fourier integral
operators, Lectures at the Nordic Summer School in Mathematics, 1969.
[Ho69d]

This text is a very interesting document from a time of intense develop-
ment of microlocal analysis. Pseudodifferential operators had already been
around for a few years, and with the present text the author took the first
steps towards a systematic treatment of Fourier integral operators. See
[Ho83-85] for an account of the modern theory. The text was not intended for
publication by its author, but I think it has a considerable historical value.

The second part of the notes deals with singular Fourier integral operators
and the motivation here is to invert pseudodifferential operators which are
not elliptic. The author approaches this problem in a very direct way by
leaving the real domain and reaching a region where the symbol is invertible,
somewhat in the spirit of the treatment of hyperbolic equations. To be able
to do so without analyticity assumptions, Hormander introduces the notion
of almost analytic functions, which fulfill the Cauchy-Riemann equations to
infinite order on the real domain.

In a parallel work, Nirenberg [Ni69] introduced almost analytic functions
in his proof of the Malgrange preparation theorem. Mather [Ma69] found
an alternative construction. Dynkin [Dy70} [Dy72, Dy74], [Dy80, Dy93] has
also introduced such functions with motivations from complex and harmonic
analysis with different function spaces.

The commentator has had a great benefit from [Ho69a] in his works with
A. Melin [MeS;j75], L. Boutet de Monvel [BoSj76] and others on the theory of
Fourier integral operators with complex valued phase functions. Almost an-
alytic functions here permit to give the right geometric descriptions of many
quantities in complexified phase space and they are useful in the analysis as
well.

Dynkin [Dy70, Dy72] has used almost analytic functions to develop func-
tional calculus for classes of operators. Unaware of these works, B. Helffer
and the commentator [HeSj89] reintroduced the simple functional formula for
spectral problems in mathematical physics. See also [Da95, [JeNa94, [DiS;99].
The construction of almost analytic extensions was announced by Hérmander
in [Ho69b].

We thank Gerd Grubb for supplying a well preserved copy of the lecture
notes [Ho69a] and for pointing out two typos in this text which are now
corrected.

Chissey en Morvan, July, 2018
Johannes Sjostrand
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