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Active Distances for Convolutional Codes
Stefan Ḧost, Student Member, IEEE, Rolf Johannesson,Fellow, IEEE,

Kamil Sh. Zigangirov,Member, IEEE, and Viktor V. Zyablov,Associate Member, IEEE

Abstract—A family of active distance measures for general
convolutional codes is defined. These distances are generalizations
of the extended distances introduced by Thommesen and Justesen
for unit memory convolutional codes. It is shown that the error
correcting capability of a convolutional code is determined by
the active distances. The ensemble of periodically time-varying
convolutional codes is defined and lower bounds on the active
distances are derived for this ensemble. The active distances
are very useful in the analysis of concatenated convolutional
encoders.

Index Terms—Active distances, cascaded convolutional codes,
convolutional codes, extended distances.

I. INTRODUCTION

T HE column distance is often considered to be of funda-
mental importance when we study or construct convolu-

tional codes [1], [2]. It has the well-known property that it will
not increase any more when it has reached the free distance. In
this paper we introduce a family of distances that stay “active”
in the sense that we consider only those codewords which do
not pass two consecutive zero encoder states. These distances
determine the error correcting capability of the code and they
are of particular importance when we consider concatenated
convolutional encoders.

The active distances can be regarded as (nontrivial) gen-
eralizations to encoder memories of the “extended”
distances introduced for unit-memory convolutional codes by
Thommesen and Justesen [3].

In Section II, we give definitions of the active distances for
time-invariant convolutional codes. Some important properties
of time-invariant convolutional codes are obtained via the ac-
tive distances in Section III. After having introduced restricted
sets of information sequences in Section IV, we define the
active distances for the ensemble of periodically time-varying
convolutional codes. Lower bounds on the active distances for
the ensemble of periodically time-varying convolutional codes
are derived in Section V. Finally, in Section VI we discuss
various applications of the active distances.
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II. DEFINITIONS OF ACTIVE DISTANCES FOR

TIME-INVARIANT CONVOLUTIONAL CODES

Consider a binary, rate convolutional code with
a rational generator matrix of memory . The causal
information sequence

(1)

is encoded as the causal codeword

(2)

where

(3)

For simplicity, we sometimes write and
instead of and , respectively. When we

consider sequences of length we use the notation
.

Let the binary -dimensional vector of -tuples be the
encoder state at depthof a realization in controller canonical
form of the generator matrix and let
be the -tuple representing the contents of positionof the shift
registers (counted from the input connections) (see Fig. 1).
(When the th constraint length for some , then we
set the th component of to be .) Then we have

. To the information sequence
corresponds the state sequence .

Let denote the set of state sequences that
start at depth in state and terminate at depth in state

and do not have two consecutive zero states in between, i.e.,

and

not both (4)

Definition: Let be a convolutional code encoded by a
rational generator matrix of memory which is realized
in controller canonical form. Theth-order active row distance
is

(5)

where denotes any value of the state such that

, and denotes the first positions of the shift registers
(counted from the input connections), i.e.,

Let be the minimum of the constraint lengths
of the generator matrix of memory , i.e.,

0018–9448/99$10.00 1999 IEEE
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Fig. 1. The controller canonical form of the rateR = 2=3 generator matrixG(D) =
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and . Then the active row
distance of order is the minimum weight of paths that diverge
from the zero state at depth, possibly “touches” the all-
zero path only in nonconsecutive zero states at depth, where

, and, finally, reemerges with the all-zero
path at depth , where .

For a polynomial generator matrix realized in controller
canonical form we have the following equivalent formulation:

(6)

where denotes any value of the state with
and

...
...

...
(7)

is a truncated version of the semi-infinite
matrix

...
...

. . .
(8)

Notice that the active row distance sometimes can decrease
but, as we shall show in Section V, in the ensemble of
convolutional codes encoded by periodically time-varying
generator matrices there exists a convolutional code encoded
by a generator matrix such that its active row distance can be
lower-bounded by a linearly increasing function.

From the definition follows immediately

Triangle Inequality: Let be a rational generator ma-
trix with . Then its active row distance satisfies the
triangle inequality

(9)

where and the sum of the lengths of the paths to
the right of the inequality is

(10)

i.e., equal to the length of the path to the left of the inequality.

Furthermore, we have immediately the following important

Theorem 1: Let be a convolutional code encoded by a
noncatastrophic generator matrix. Then

(11)

The following simple example shows that the triangle
inequality (9) would not hold if we did not include state se-
quences that contain isolated inner zero states in the definition
of .

Example 1: Consider the memory encoding matrix

(12)

The code sequences corresponding to the state sequences
and are and
, respectively. It is easily verified that ,

, and , which satisfy the triangle inequality

(13)

If we consider only state sequences without isolated inner
zero states the lowest weight sequence of length four would
pick up distance and exceed the sum of the weight for the two
length two sequence, which would still be four, in violation
of the triangle inequality.
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Remark: If we consider the ensemble of periodically time-
varying generator matrices (or ) to be introduced in
Section IV and require that the corresponding code sequences
consist of only randomly chosen code symbols (i.e., we do
not allow transitions from the zero state to itself), then for a
given length the set of state sequences defined by is
as large as possible.

Next we shall consider an “active” counterpart to the column
distance.

Definition: Let be a convolutional code encoded by
a rational generator matrix of memory realized
in controller canonical form. The th-order active column
distance is

(14)

where denotes any encoder state.

For a polynomial generator matrix we have the following
equivalent formulation:

(15)

where denotes any encoder state and

...
...

.. .

. . .
...

(16)

is a truncated version of the semi-infinite
matrix given in (8).

It follows from the definitions that

(17)

where and, in particular, if ,
then

(18)

From (17) it follows that when the active column
distance of order is upper-bounded by the active row distance
of order , i.e., by the minimum weight of paths of
length starting at a zero state and terminating at a zero
state without passing consecutive zero states in between.

The active column distance is a nondecreasing function
of but, as we shall show in Section V, in the ensemble
of convolutional codes encoded by periodically time-varying
generator matrices there exists a convolutional code encoded
by a generator matrix such that its active column distance can
be lower-bounded by a linearly increasing function.

Definition: Let be a convolutional code encoded by a
rational generator matrix of memory . The th-order
active reverse column distanceis

(19)

where denotes any encoder state.

For a polynomial generator matrix we have the following
equivalent formulation to (19):

(20)

where denotes any encoder state and

...
...

...

.. .
...

(21)

is a truncated version of the semi-infinite
matrix given in (8).

The active reverse column distance is a nondecreasing
function of but, as we shall show in Section V, in the
ensemble of convolutional codes encoded by periodically time-
varying generator matrices there exists a convolutional code
encoded by a generator matrix such that its active reverse
column distance can be lower-bounded by a linearly increasing
function.

Furthermore, the active reverse column distance of a poly-
nomial generator matrix is equal to the active column
distance of thereciprocal generator matrix

Definition: Let be a convolutional code encoded by a
rational generator matrix of memory . The th-order
active segment distanceis

(22)

where and denote any encoder states.

For a polynomial generator matrix we have the following
equivalent formulation:

(23)

where and denote any encoder states, and .
If we consider the segment distances for two sets of consec-

utive paths of lengths and , respectively, then
the terminating state of the first path is not necessarily identical
to the starting state of the second path. Hence, the active
segment distance for the set of paths of the total length
does not necessarily satisfy the triangle inequality. However,
we have immediately the following
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Fig. 2. The active distances for the encoding matrix in Example 2.

Theorem 2: Let be a generator matrix of memory.
Then its active segment distance satisfies the inequality

(24)

where and the sum of the lengths of the paths to the
right of the inequality is

(25)

i.e., equal to the length of the path to the left of the inequality.

The active segment distance is a nondecreasing function
of but, as we shall show in Section V, in the ensemble
of convolutional codes encoded by periodically time-varying
generator matrices there exists a convolutional code encoded
by a generator matrix such that its active segment distance can
be lower-bounded by a linearly increasing function.

The start of the active segment distance is the largestfor
which and is denoted .

The th-order active row distance is characterized by a fixed
number of almost freely chosen information tuples, ,
followed by a varying number, between and , of zero-
state driving information tuples (“almost” since we have to
avoid consecutive zero states for
and assure that ). Sometimes we find it useful to
consider a corresponding distance between two paths of fixed
total length, , but with a varying number of almost freely
chosen information tuples. Hence, we introduce the following
(final) active distance.

Definition: Let be a convolutional code encoded by a
rational generator matrix of memory . The th-order
active burst distanceis

(26)

where .

For a polynomial generator matrix we have the following
equivalent formulation:

(27)

where is given in (16).
The active row and burst distances are related via the

following inequalities:

(28)

Clearly, when , we have

undefined
. (29)

For a noncatastrophic generator matrix we have

(30)

From the definition it follows that the active burst distance
satisfies the triangle inequality.

Example 2: In Fig. 2 we show the active distances for the
encoding matrix

. Notice that the
active row distance of the zeroth order,, is identical to the
row distance of the zeroth order, , which upper-bounds

, and the start .

From the definitions follow that the active distances are
encoder properties, not code properties. However, it also
follows that the active distances are invariant over the set
of minimal-basic [4] (or canonical if rational) [5] encoding
matrices for a code. Hence, when we in the sequel consider
active distances for convolutional codes it is understood that
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these distances are evaluated for the corresponding minimal-
basic (canonical) encoding matrices.

III. PROPERTIES OFCONVOLUTIONAL CODES

VIA THE ACTIVE DISTANCES

We define thecorrect path through a trellis to be the
path determined by the encoded information sequence and
we call the (encoder) states along the correct pathcorrect
states.Then we define anincorrect segmentto be a segment
starting in a correct state and terminating in a correct state

, such that it differs from the correct path at some
but not necessarily all states within this interval. Let
denote the number of errors in the error pattern , where

.
For a convolutional code with a generator matrix of

memory consider any incorrect segment between two
arbitrary correct states, and . A minimum-distance
(MD) decoder can output an incorrect segment between
and only if there exists a segment of length -tuples,

, between these two states such that the
number of channel errors within this interval is at least

. Thus we have the following.

Theorem 3: A convolutional code encoded by a rational
generator matrix of memory can correct all error patterns

that correspond to incorrect segments between any two
correct states, and , and satisfy

(31)

for , .

We have immediately the following.
Corollary 4: A convolutional code encoded by a rational

generator matrix of memory and smallest constraint length
can correct all error patterns that correspond

to incorrect segments between any two correct states,and
, and satisfy

(32)

for , .

Both the active column distance and the active reverse
column distance are important parameters when we study
the error correcting capability of a convolutional code. A
counterpart to Theorem 3 follows.

Theorem 5: Let be a convolutional code encoded by a
rational generator matrix of memory and let be an
error sequence between the two correct statesand .
A minimum-distance decoder will output a correct stateat
depth , , if

(33)

Proof: Assume without loss of generality that the correct
path is the all-zero path. The weight of any path of length

diverging from the correct path at depth , and
not having two consecutive zero states is lower-bounded by

. Similarly, the weight of any path of length ,
reemerging with the correct path at depthand not having two
consecutive zero states is lower-bounded by . Hence,
if and , then must be
correct.

Since

(34)

it follows that we can regard Theorem 3 as a corollary to
Theorem 5.

Example 3: Assume that the binary, rate , memory
convolutional encoding matrix

is used to communicate over a binary-symmetric channel
(BSC) and that we have the following error pattern:

(35)
or, equivalently,

(36)

The active distances for the encoding matrix is given in Fig. 3.
From Theorem 3 it is easily seen that if we assume that
is a correct state and that there exists a such that

is a correct state then, despite the fact that the number of
channel errors , the error pattern (35)
is corrected by a minimum-distance decoder. The error pattern

(37)
or, equivalently,

(38)

contains also six channel errors but with a different distribu-
tion; we have three channel errors in both the prefix and suffix

. Since and the active row distance
, the active burst distance ; hence, Theorem

3 does not imply that the error pattern (37) is corrected by
a minimum-distance decoder; the states and
will in fact be erroneous states. However, from Theorem 5
follows that if is a correct state and if there exists a
such that is a correct state, then at least is also a correct
state.

We will now study the set of code sequences corresponding
to encoder state sequences that do not contain two consecutive
zero states. From the properties of the active segment distance
it follows that such code sequences can contain at most
zero -tuples, where is the start of the segment distance.
Lower bounds on the number of nonzero code symbols be-
tween two bursts of zeros are given in the following.
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Fig. 3. The active distances for the encoding matrix in Example 3.

Theorem 6: Consider a binary, rate convo-
lutional code and let and de-
note code sequences corresponding to state sequences in

, and , respectively, where
and denote any encoder states.

i) Let denote the number of ones in (the weight of)
a code sequence counted from the beginning of
the code sequence to the first burst ofconsecutive
zero -tuples. Then satisfies

(39)

ii) Let denote the number of ones in (the weight of)
a code sequence counted from the last burst
of consecutive zero-tuples to the end of the code
sequence. Then satisfies

(40)

iii) Let denote the number of ones in (the weight
of) a code sequence counted between any
two consecutive bursts of and consecutive zero
-tuples, respectively. Then satisfies

(41)

Proof:

i) The subsequence up to the beginning of the first burst of
consecutive zero-tuples consists of at least -

tuples. Thus the length of the subsequence that includes
the first burst of consecutive zero-tuples is at least

-tuples and, hence, must satisfy (39).
ii) Analogously to the proof of i).
iii) Since is the weight of the subsequence between

the two bursts of and consecutive zeros, re-
spectively, the total length including these bursts of

Fig. 4. A general time-varying polynomial convolutional encoder.

zeros is at least . Clearly, the
weight of a subsequence of this length is lower-bounded
by the corresponding active segment distance, which
completes the proof.

IV. A CTIVE DISTANCES FOR

TIME-VARYING CONVOLUTIONAL CODES

So far we have considered onlytime-invariant or fixed
convolutional codes, i.e., convolutional codes encoded by
time-invariant generator matrices. When it is too difficult to
analyze the performance of a communication system using
time-invariant convolutional codes, we can often obtain pow-
erful results if we study time-varying convolutional codes
instead.

Assuming polynomial generator matrices we have

(42)

where is a binary time-invariant matrix.
In general, a rate , binary convolutional code can

be time-varying.Then (42) becomes

(43)

where is a binary time-
varying matrix. In Fig. 4 we illustrate a general time-varying
polynomial convolutional encoder. As a counterpart to the
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...
...

. . .
(44)

semi-infinite matrix given in (8) we have (44) at the top
of this page.

Remark: With a slight abuse of terminology we call for
simplicity a time-varying polynomial transfer function matrix
a generator matrixalthough it might not have full rank.

We have the generalensemble of binary, rate ,
time-varying convolutional codeswith generator matrices of
memory in which each digit in each of the matrices
for and is chosen independently
and is equally likely to be and .

As a special case of the ensemble of time-varying convo-
lutional codes we have the ensemble of binary, rate

, periodically time-varying convolutional codes encoded
by a polynomial generator matrix (44) of memory
and period , in which each digit in each of the matrices

for and
is chosen independently and is equally likely to beand .
We denote this ensemble .

Before we define the active distances for periodically time-
varying convolutional codes encoded by time-varying poly-
nomial generator matrices we introduce the following sets of
information sequences, where we always assume that .

Let denote the set of information sequences
such that the first and the last

subblocks are zero and such that they do not contain
consecutive zero subblocks, i.e.,

and

(45)

Let denote the set of information sequences
such that the first subblocks are

zero and such that they do not contain consecutive
zero subblocks, i.e.,

and

(46)

Let denote the set of information sequences
such that the last subblocks are

zero and such that they do not contain consecutive zero
subblocks, i.e.,

and

(47)

Let denote the set of information sequences
such that they do not contain

consecutive zero subblocks, i.e.,

(48)
Next we introduce the truncated,

periodically time-varying generator matrix of memory and
period

...
...

...
. . .

. . .
...

(49)

where for .
We are now well-prepared to generalize the definitions

of the active distances for convolutional codes encoded by
polynomial generator matrices to time-varying convolutional
codes encoded by polynomial time-varying generator matrices:

Definition: Let be a periodically time-varying convolu-
tional code encoded by a periodically time-varying polynomial
generator matrix of memory and period .

The th-order active row distanceis

(50)
The th-order active column distanceis

(51)

The th-order active reverse column distanceis

(52)

The th-order active segment distanceis

(53)

For a periodically time-varying convolutional code encoded
by a periodically time-varying, noncatastrophic, polynomial
generator matrix with active row distance we define its
free distance by a generalization of (11)

(54)

In the following section, we will derive lower bounds on the
active distances. There we need the following.
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Theorem 7: Consider a periodically time-varying, rate
, polynomial generator matrix of memory and period

represented by , where is given in (44).

i) Let the information sequences be restricted to the set
. Then the code symbols in the segment

are mutually independent and equiprobable
over the ensemble for all .

ii) Let the information sequences be restricted to the set
. Then the code symbols in the segment

are mutually independent and equiprobable
over the ensemble for all

.
iii) Let the information sequences be restricted to the set

. Then the code symbols in the segment
are mutually independent and equiprobable

over the ensemble for all
.

iv) Let the information sequences be restricted to the set
. Then the code symbols in the segment

are mutually independent and equiprobable over
the ensemble for all .

Proof: It follows immediately that for the
code tuples are mutually independent
and equiprobable in all four cases. Hence, the proof of iv)
is complete. In cases ii) and iii) it remains to show that the
statements hold also for when .

ii) Consider the information sequences in the set
, where . Let ,

then, in the expression

(55)

there exists a such that at least one
of the -tuples is nonzero and all the previous-
tuples are zero. Hence, and

are mutually independent and
equiprobable. This completes the proof of ii).

iii) Consider the information sequences in the set
, where . Let ,

then, in (55) at least one of the -tuples
is nonzero and all the following

-tuples are zero. Hence, and
are mutually independent and

equiprobable.

i) For the information sequences in it re-
mains to show that and are mutually independent
and equiprobable also for . From the
definition of it follows that

, , , and . For
, we can choose, e.g.,

which implies that . However,
for and

are mutually independent
and equiprobable.

From Theorem 7 follows immediately.

Corollary 8: Consider a rate polynomial generator
matrix of memory represented by , where is given in
(8).

i) Let the information sequences be restricted to the set
. Then the code symbols in the segment

are mutually independent and equiprobable over
the ensemble for all .

ii) Let the information sequences be restricted to the set
. Then the code symbols in the segment

are mutually independent and equiprobable over
the ensemble for all .

V. LOWER BOUNDS ON THE ACTIVE DISTANCES

FOR TIME-VARYING CONVOLUTIONAL CODES

In this section we shall derive lower bounds on the active
distances for the ensemble of periodically time-varying convo-
lutional codes. First we consider the active row distance and
begin by proving the following.

Lemma 9: Consider the ensemble of binary,
rate , periodically time-varying convolutional codes
encoded by polynomial generator matrices of memory.
The fraction of convolutional codes in this ensemble whose
th-order active row distance satisfies

(56)

does not exceed

where is the binary entropy function.
Proof: Let

(57)

where and assume that

(58)

Then, it follows from Theorem 7 that

(59)

where the last inequality follows from the standard inequality

(60)

(Notice that we need the denominator “” in the right in-
equality in (60) in order to be able to apply inequality (60).)
Using

(61)
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as an upper bound on the cardinality of , we have

(62)

for each . Using the union bound completes the
proof.

For a given , , let be the smallest integer
satisfying the inequality

(63)

For large memories such a value always exists. Let

(64)

denote the largest integer that for given, , and ,
, satisfies the inequality

(65)

Then, from Lemma 9 follows that for each
the fraction of convolutional codes withth-order active row
distance satisfying (56) is upper-bounded by

(66)

Hence, we use the union bound and conclude that the fraction
of convolutional codes with active row distance for
at least one is upper-bounded by

(67)

Thus we have proved the following.

Lemma 10: In the ensemble of periodically
time-varying convolutional codes, the fraction of codes with
active row distance

(68)

is larger than , where for a given is
the smallest integer satisfying (63) and the largest integer
satisfying (65).

By taking , we have immediately

Corollary 11: There exists a binary, periodically time-
varying, rate , convolutional code encoded by a
polynomial generator matrix of period and memory
such that its th-order active row distance for is
lower-bounded by , where is the largest integer satisfying

(69)

and is the smallest integer satisfying

(70)

In order to get a better understanding of the significance of
the previous lemma we shall study the asymptotical behavior
of the parameters and for large memories.

Let the period grow as a power of greater than one;
choose , say. Then, since is an integer, for large
values of we have . Furthermore, the inequality (69)
can be rewritten as

(71)
or, equivalently, as1

(72)
Finally, we have proved

Theorem 12:There exists a binary, periodically time-
varying, rate , convolutional code encoded by a
polynomial generator matrix of memory that has a th-order
active row distance satisfying the inequality

(73)

for .

The main term in (73) can also be obtained from the
Gilbert–Varshamov bound for block codes using a geometrical
construction that is similar to Forney’s inverse concatenated
construction [6].

Consider Gilbert–Varshamov’s lower bound on the (normal-
ized) minimum distance for block codes [7], viz.

(74)

where denotes the blocklength. Let

(75)

denote the main term of the right-hand side of (73) normalized
by .

The construction is illustrated in Fig. 5 for .
The straight line between the points and
intersects in the point . The rate

is chosen to be

(76)

i.e., it divides the line between and in the
proportion . Then we have

(77)

1Here and hereafter we writeh�1(y) for thesmallestx such thaty = h(x).
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Fig. 5. Geometrical construction of the relationship between the lower bound on the active row distance for convolutional codes and the Gilbert–Varshamov
lower bound on the minimum distance for block codes.

which is equivalent to (75). The relationship betweenand
in Fig. 5 is given by (76).

We shall now derive a corresponding lower bound on the
active column distance. Let

(78)

where and let be an integer
satisfying the inequality

(79)

Then, as a counterpart to (59) we have

(80)

We use (61) as an upper bound on the cardinality of
and obtain

(81)

for each . Minimizing over and using
the union bound complete the proof of the following.

Lemma 13: Consider the ensemble of bi-
nary, rate , periodically time-varying convolutional
codes encoded by polynomial generator matrices of memory

. The fraction of convolutional codes in this ensemble whose
th-order active column distance satisfies

(82)

does not exceed

Next we choose to be the smallest integer satisfying
the inequality

(83)

Let

(84)

denote the largest integer that for given satisfies
the inequality

(85)

Then, from Lemma 13 follows that for each the
fraction of convolutional codes with ath-order active column
distance satisfying (84) is upper-bounded by

(86)

Hence, we use the union bound and conclude that the fraction
of convolutional codes with active column distance
for at least one is upper-bounded by

(87)

Thus we have proved the following.

Lemma 14: There exists a periodically time-varying, rate
, convolutional code encoded by a polynomial

generator matrix of period and memory such that its th-
order active column distance for is lower-bounded
by , where is the largest integer satisfying

(88)

and is the smallest integer satisfying

(89)

If, as before, we choose , then , and
the inequality (88) can be rewritten as

(90)
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for or, equivalently, as

(91)

Thus we have proved

Theorem 15:There exists a binary, periodically time-
varying, rate , convolutional code encoded by a
polynomial generator matrix of memory that has a th-order
active column distance satisfying the inequality

(92)

for and is the
Gilbert–Varshamov parameter.

Analogously we can prove

Theorem 16:There exists a binary, periodically time-
varying, rate , convolutional code encoded by
a polynomial generator matrix of memory that has a
th-order active reverse column distance which is lower-

bounded by the right-hand side of the inequality (92) for all
.

For the active segment distance we have the following.

Theorem 17:There exists a binary, periodically time-
varying, rate , convolutional code encoded by a
polynomial generator matrix of memory that has a th-order
active segment distance satisfying the inequality

(93)

for , where

(94)

Proof: Consider the ensemble . First we
notice that the cardinality of is upper-bounded by

(95)

Using (95) instead of (61) and repeating the steps in the
derivation of the lower bound on the active column distance
will give

(96)

for all , or, equivalently,

(97)

where

(98)

instead of (90), (91), and (84), respectively, and the proof is
complete.

The parameter is the start of the active segment distance
(cf. Fig. 2).

For the ensemble of periodically time-varying convolutional
code the active burst and active row distances are related
through (29). Hence, we do not lower-bound the active burst
distance separately.

Next we consider our lower bounds on the active distances,
viz., (73), (92), and (93), and introduce the substitution

(99)

then we obtain asymptotically—for large memories—the
following lower bounds on thenormalized active distances.

Theorem 18:

i) There exists a binary, periodically time-varying, rate
, convolutional code encoded by a polynomial

generator matrix of memory whose normalized active
row distance asymptotically satisfies

(100)

for .
ii) There exists a binary, periodically time-varying, rate

, convolutional code encoded by a polynomial
generator matrix of memory whose normalized ac-
tive column distance (active reverse column distance)
asymptotically satisfies

(101)

for .
iii) There exists a binary, periodically time-varying, rate

, convolutional code encoded by a polynomial
generator matrix of memory whose normalized active
segment distance asymptotically satisfies

(102)

for

The typical behavior of the bounds in Theorem 18 is shown
in Fig. 6. Notice that by minimizing the lower bound on the
normalized active row distance (100) we obtain nothing but
the main term in Costello’s lower bound on the free distance
[8], viz.,

VI. COMMENTS

In this paper we have introduced a family of active distances
for convolutional codes and shown that the error correcting
capability of the code is to a large extent determined by these
distances.

In [9] we used the active row distance to lower-bound
the probability of the output error burst lengths for Viterbi
decoding of periodically time-varying convolutional codes.
From these lower bounds on the error burst lengths follow
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Fig. 6. Typical behavior of the lower bounds on the normalized active distances of Theorem 18.

easily the well-known upper error probability bounds for
periodically time-varying convolutional codes [10].

The active distances were used in [11] to determine the free
distances of two different constructions of binary concatenated
convolutional codes, viz., woven convolutional codes with
outer and inner warp, respectively. Both constructions have
large free distances.

Concatenation is a both powerful and practical method to
obtain constructions that are attractive for use in communica-
tion situations where very low error probabilities are needed.
The simplest concatenated scheme with two convolutional
encoders is a cascade without an interleaver but with matched
rates, i.e., the outer convolutional code has rate
and the inner convolutional code has rate , where

. In [12] we have shown the existence of cascaded con-
volutional codes in the ensemble of periodically time-varying
cascaded convolutional codes that have active distances with
lower bounds similar to those derived in this paper. From the
lower bound on the active row distance for the cascade it
is shown that given only a restriction on the memory of the
inner code, there exists a convolutional code, obtained as a
simple cascade, with a free distance satisfying the Costello
lower bound.
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