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Active Distances for Convolutional Codes

Stefan Hyst, Student Member, IEEERoIf Johannessorkellow, IEEE
Kamil Sh. Zigangirov,Member, IEEE and Viktor V. Zyablov,Associate Member, IEEE

Abstract—A family of active distance measures for general Il. DEFINITIONS OF ACTIVE DISTANCES FOR
convolutional codes is defined. These distances are generalizations TIME-INVARIANT CONVOLUTIONAL CODES
of the extended distances introduced by Thommesen and Justesen ) ) . .
for unit memory convolutional codes. It is shown that the error Consider a binary, raté& = b/c convolutional code with
correcting capability of a convolutional code is determined by a rational generator matri&/(D) of memorym. The causal
the active distances. The ensemble of periodically time-varying information sequence
convolutional codes is defined and lower bounds on the active

distances are derived for this ensemble. The active distances w(D) =up+u D +uyD* + --- (1)
are very useful in the analysis of concatenated convolutional
encoders. is encoded as the causal codeword
Index Terms—Active distances, cascaded convolutional codes, v(D) =vo +v1D + voD? + - - 2)
convolutional codes, extended distances.
where
[. INTRODUCTION v(D) = uw(D)G(D). (3)

HE column distance is often considered to be of fund@or simplicity, we sometimes write = uou, --- andv =
mental importance when we study or construct convolygy, - - - instead ofu(D) and »(D), respectively. When we

tional codes [1], [2]. It has the well-known property that it willconsider sequences of lengih+ 1 we use the notation
not increase any more when it has reached the free distancegq[pn} = ZoZy T

this paper we introduce a family of distances that stay “active” et the binarym-dimensional vector ob-tuplesa, be the
in the sense that we consider only those codewords which glecoder state at depttof a realization in controller canonical

not pass two consecutive zero encoder states. These distarges of the generator matrix and let” = (o{6) ... 5@))

determine the error correcting capability of the code and thgy thep-tuple representing the contents of positiaf the shift
are of pgrtmular importance when we consider concatenategisters (counted from the input connections) (see Fig. 1).
convolutional encoders. (When thejth constraint length/; < m for somej, then we

The active distances can be regarded as (nontrivial) geny thejth component o™ to be 0.) Then we haves, =
eralizations to encoder memories > 1 of the “extended” 6(1)6(25_ !

(m) ; ; _
. : o . . -0, . To the information sequence = wuot; - -
distances introduced for unit-memory convolutional codes %%rresponds the state sequemce: oooy - - -
Thommesen and Justesen [3].

X ; L . . Let 777 denote the set of state sequenegs ., that
In Section Il, we give definitions of the active distances for [t1, 2] = . q s to]
L ) i i _Start at deptht; in states; and terminate at depth in state
time-invariant convolutional codes. Some important properties . ) .
) . . . . ) &> and do not have two consecutive zero states in between, i.e.,
of time-invariant convolutional codes are obtained via the ac-

tive distances in Section lll. After having introduced restricteg;h?] def {t,,t,] = 01, = 01, 04, =02 and
. . . . . 1,02 ?
sets of information sequences in Section IV, we define the 0;, G141 NOtboth = 0, #; <i < ta}. (4)

active distances for the ensemble of periodically time-varying
convolutional codes. Lower bounds on the active distances for_ .. .. .
- . . . Definition: Let C be a convolutional code encoded by a
the ensemble of periodically time-varying convolutional codes .. : L :
rational generator matri¢( D) of memorym which is realized

are derived in Section V. Finally, in Section VI we discuss : . . i
. I . . in controller canonical form. Th¢th-order active row distance
various applications of the active distances. .
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Vmin = min; {#;} andm = max; {1, }. Then the active row wherej > ¢+ m and the sum of the lengths of the paths to
distance of ordey is the minimum weight of paths that divergethe right of the inequality is

from the zero state at depth possibly “touches” the all-

zero path only in nonconsecutive zero states at deptthere i+m+l+(j—i—-m—-1D)+m+1=j+m+1 (10)
14+ v < & < 4, and, finally, reemerges with the all-zero

path at depttt, wherej + 1 + vy < £< j + 1 +m. i.e., equal to the length of the path to the left of the inequality.

For a polynomial generator matrix realized in controller 0
canonical form we have the following equivalent formulation: Furthermore, we have immediately the following important
aj = min_ {wn(up, ;G))} (6)  Theorem 1:Let C be a convolutional code encoded by a

u; #0, 807 . .
[0, 5+1] noncatastrophic generator matrix. Then
whereo denotes any value of the stadg,; with ‘7]('21 =u, min {0} = diee. (11)
and ; j
GO Gl o Grn

G,, GO Gl o Grn, 7 O
i ' . - 0 The following simple example shows that the triangle
Go Gy - Gp inequality (9) would not hold if we did not include state se-

) ) ~ quences that contain isolated inner zero states in the definition
isa(j+1)x (j+1+4m) truncated version of the semi-infinite o¢ 5;17:’1_

matrix
Example 1: Consider the memony = 1 encoding matrix
GO Gl Tt Grn

G- Go gl G | BN <) G(D)=(1 D). (12)

Notice that the active row distance sometimes can decred$® code sequences corresponding to the state sequences
but, as we shall show in Section V, in the ensemble ¢, 1,0,1,0) and (0,1, 1,1,0) are (10, 01, 10, 01) and
convolutional codes encoded by periodically time-varyingl0, 11, 11, 01), respectively. It is easily verified thaf, = 2,
generator matrices there exists a convolutional code encodéd= 4, anda; = 4, which satisfy the triangle inequality
by a generator matrix such that its active row distance can be
lower-bounded by a linearly increasing function. ay < ap + ag. (13)

From the definition follows immediately

Triangle Inequality: Let G(D) be a rational generator ma- If we consider only stat_e sequences without isolated inner
trix with v = m. Then its active row distance satisfies th&€© states the lowest weight sequence of length four would
triangle inequality pick up distancé& and exceed the sum of the weight for the two

length two sequence, which would still be four, in violation

a; <af +a (9) of the triangle inequality. O

r
j—i—1l—m
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Remark: If we consider the ensemble of periodically time- Definition: Let C be a convolutional code encoded by a
varying generator matrice& (or G(D)) to be introduced in rational generator matri&’(D) of memorym. The jth-order
Section IV and require that the corresponding code sequenaetive reverse column distanég

consist of only randomly chosen code symbols (i.e., we do e def )

not allow transitions from the zero state to itself), then for a ;" = min {wn (V4] (19)
given length the set of state sequences definedBy; is e

as large as possible. whereo denotes any encoder state. O
dis,;lae;((t:ge shall consider an "active” counterpart to the column For a polynomial generator matrix we have the following

equivalent formulation to (19):

Definition: Let ¢ be a convolutional code encoded by re . e (20)
a rational generator matrixi(D) of memory m realized T et {wn(wp, j+m) @)}
in controller canonical form. Theith-order active column I
distanceis whereg denotes any encoder state and
G
defl . m
aj = S(lgl;n {wr ), ;7)) (14) Gt G,
[0,5+41] .
Grn—l
whereo denotes any encoder state. O G = Go : G, (21)
For a polynomial generator matrix we have the following Go Gm—1
equivalent formulation: :
{n (g0, 1G5} o
a; = min {wn(up, 1G; (15) ) S
! IR 10157 isa(j+m+1)x(j+1) truncated version of the semi-infinite
matrix G given in (8).
where o denotes any encoder state and The active reverse column distane§ is a nondecreasing
function of 7 but, as we shall show in Section V, in the
Gy G - Gp ensemble of convolutional codes encoded by periodically time-
Go G -+ Gn varying generator matrices there exists a convolutional code
. . encoded by a generator matrix such that its active reverse
o — Go Gi - G, (16) column distance can be lower-bounded by a linearly increasing
! function.
GO Grn—l . .
_ ) Furthermore, the active reverse column distance of a poly-
nomial generator matrix?(D) is equal to the active column

Go distance of theeciprocal generator matrix
L. v e v —1
isa(j+1)x(j+1) truncated version of the semi-infinite diag (D" D™ - D")G(D™).
matrix G given in (8).
It follows from the definitions that Definition: Let C be a convolutional code encoded by a
rational generator matri%?(D) of memorym. The jth-order

as < al_, (17) active segment distande
def .
al = min WH (V. i4m 22
wherek < min {j, vmin} @and, in particular, ity = m < 7, J E:;ZHH]{ (¥, j+m))} (22)
then
whereos; ando, denote any encoder states. O
ai < aj_p,. (18) For a polynomial generator matrix we have the following
equivalent formulation:
From (17) it follows that whery > 1, the active column s ) e 23
distance of ordej is upper-bounded by the active row distance 4= S[all,rilzn ] {wH (u[()?”m} J)} (23)
m,m4+1

of orderj — vy, i.e., by the minimum weight of paths of

length j + 1 starting at a zero state and terminating at a zemheres; andeo, denote any encoder states, a@@j: G’;c

state without passing consecutive zero states in between. If we consider the segment distances for two sets of consec-
The active column distance; is a nondecreasing functionutive paths of lengths+1 and(j—i—1)+1, respectively, then

of j but, as we shall show in Section V, in the ensemblle terminating state of the first path is not necessarily identical

of convolutional codes encoded by periodically time-varyintp the starting state of the second path. Hence, the active

generator matrices there exists a convolutional code encodegment distance for the set of paths of the total lepgthl

by a generator matrix such that its active column distance cdoes not necessarily satisfy the triangle inequality. However,

be lower-bounded by a linearly increasing function. we have immediately the following
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Fig. 2. The active distances for the encoding matrix in Example 2.
Theorem 2: Let G(D) be a generator matrix of memory. For a polynomial generator matrix we have the following
Then its active segment distance satisfies the inequality equivalent formulation:
S S S
4 2 i & W in {wn(u G} 27)
wherej > ¢ and the sum of the lengths of the paths to the S0 541
right of the inequality is o .. .
9 ‘q y‘ . . where G; is given in (16).
i+l+yj—i—-1+1=5+1 (25) The active row and burst distances are related via the
i.e., equal to the length of the path to the left of the inequalitjollowing inequalities:
) ) ) ) D al]’» > min {a}’ﬂ,_}
The active segment distaneg is a nondecreasing function | R (28)
of j but, as we shall show in Section V, in the ensemble aj 2 min {aj,, }
of convolutional codes encoded by periodically time-varyin
. : . (?Igarly, whenv,;, = m, we have
generator matrices there exists a convolutional code encodé
by a generator matrix such that its active segment distance can » _ [undefined 0<j<m (29)
be lower-bounded by a linearly increasing function. 4= Qi 7> m.
The start of the active segment distance is the largefir E tastrophi ‘ i h
which a = 0 and is denoted,. or a noncatastrophic generator matrix we have
The jth-order active row distance is characterized by a fixed min { a]b.} = diree- (30)

number of almost freely chosen information tuplgsy 1, J

followed by a varying number, between,;, andm, of zero- From the definition it follows that the active burst distance
state driving information tuples (“almost” since we have tgatisfies the triangle inequality.

avoid consecutive zero stateso;; for 0 < i < j+1 . . .
E50i+1 . J Example 2: In Fig. 2 we show the active distances for the

(L i ind i
and assure thad; ;A. 0). somet|mes we find it useful to encoding matrix(D) = (14 D+ D2+ D?+ D7 + D+ D9+
consider a corresponding distance between two paths of f|x5gc1 14 D?+ D* £ D7 4 D* + D° + D). Notice that the
total length,j + 1, but with a varying number of almost freely §

chosen information tuples. Hence, we introduce the followinaCtiVe row distance of the zeroth ordap, is identical to the
) ) . PIEs. ' IDw distance of the zeroth ordefy; = 15, which upper-bounds
(final) active distance.

dree = 12, and the starf, = 9. O
Definition: Let C be a convolutional code encoded by a

. : From the definitions follow that the active distances are
rational generator matri&/ (D) of memorym. The jth-order

. ) . encoder properties, not code properties. However, it also

active burst distances follows that the active distances are invariant over the set
a;’» def min {wn(vp, 1)} (26) of minimal-basic [4] (or canonical if rational) [5] encoding

[0, 5+1] matrices for a cod€. Hence, when we in the sequel consider

wherej > tin. O active distances for convolutional codes it is understood that
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these distances are evaluated for the corresponding minimal- Proof: Assume without loss of generality that the correct
basic (canonical) encoding matrices. path is the all-zero path. The weight of any path of length
t — ¢ diverging from the correct path at depthi < ¢, and
not having two consecutive zero states is lower-bounded by
[ll. PROPERTIES OFCONVOLUTIONAL CODES a$_, . Similarly, the weight of any path of length-¢, j > ¢,
VIA THE ACTIVE DISTANCES reemerging with the correct path at degtand not having two
We define thecorrect path through a trellis to be the consecutive zero states is lower-boundedaby, . Hence,
path determined by the encoded information sequence dhdy,¢) < af_;_;/2 andey, ;) < a2, /2, theno, must be
we call the (encoder) states along the correct paghrect correct. U
states.Then we define atincorrect segmento be a segment
starting in a correct staig;, and terminating in a correct state
6.,, t1 < t2, such that it differs from the correct path at some ai_; o tait,  <al (34)
but not necessarily all states within this interval. L&t ;) it follows that we can regard Theorem 3 as a corollary to
denote the number of errors in the error pattegn,), where . J. . =
€lk,f) = CkCk+1 """ Cr—1-
For a convolutional code& with a generator matrix of Example 3: Assume that the binary, rafé = 1/2, memory
memory m consider any incorrect segment between twa = 2 convolutional encoding matrix
arbitrary correct statesgy, anq o.,. A minimum-distance G(D) = (1+D+D2 1+D2)
(MD) decoder can output an incorrect segment betwegn
ando,, only if there exists a segment of length-1 c-tuples, is used to communicate over a binary-symmetric channel
Vmin < J < t2 — t1, between these two states such that tH8SC) and that we have the following error pattern:

nzjmber of channel erroks,, 4,) vy|th|n this interval is at least €0, 20) = 1000010000000001000000001000000000100001
a3/2. Thus we have the following. (35)

Since

Theorem 3: A convolutional code” encoded by a rational Or, equivalently,
generator matrix of memory. can correct all error patterns ejo, 20)(D) = (10) + (01)D? + (01)D7
ep,, 1, that correspond to incorrect segments between any two 12 1 19
correct statesgy, ando,,, and satisfy + (10)D™ 4+ (10)D™ 4+ (01)D™. (36)
The active distances for the encoding matrix is given in Fig. 3.
Cltytk, tr14i) < Go_pe/2 (31) From Theorem 3 it is easily seen that if we assume that
is a correct state and that there exist¢’ &> 20 such that
for0<k<ts—ti—Vain— L, k+rvan <i<ty,—t —1. o isa correct state then, despite the fact that the number of
O channel errorgg 20y = 6 > diee = 5, the error pattern (35)
We have immediately the following. is corrected by a minimum-distance decoder. The error pattern
Corollary 4: A convolutional code& encoded by a rational efo 20 = 1010010000000000000000000000000000101001
generator matrix of memory: and smallest constraint length 37)
Vmin = m Can correct all error patterres, ,,) that correspond
to incorrect segments between any two correct statesand
o1, and satisfy €fo, 20)(D) = (10) + (10)D + (01)D?

+ (10)D'" + (10)D*® + (01)D'®  (38)

or, equivalently,

Clt k,t 142 < a”f_ ‘—'rn/2 (32) . . . . . .
[kt ) =k contains also six channel errors but with a different distribu-

tion; we have three channel errors in both the prefix and suffix
101001. Sincer,;, = m = 2 and the active row distance
Both the active column distance and the active reversg = 5, the active burst distancet, = 5; hence, Theorem
column distance are important parameters when we stuglydoes not imply that the error pattern (37) is corrected by
the error correcting capability of a convolutional code. A& minimum-distance decoder; the statas o», 615, andog
counterpart to Theorem 3 follows. will in fact be erroneous states. However, from Theorem 5
éollows that if o is a correct state and if there exist$' & 20
such thab is a correct state, then at least, is also a correct
state. |

for0<bk<tao—t;i—-m-—-1,k+m<i<ty—1t; —1. O

Theorem 5: Let C be a convolutional code encoded by
rational generator matrix of memory and letey,, ,,) be an
error sequence between the two correct statesand o, .
A minimum-distance decoder will output a correct stateat We will now study the set of code sequences corresponding

deptht, ¢, < t < to, if to encoder state sequences that do not contain two consecutive
zero states. From the properties of the active segment distance
e,y < a?—i—l/zv t1 < L <t 33) it follows that such code sequences can contain at mostl
e,y < aity 1/2 t <y <t zero c-tuples, wherej, is the start of the segment distance.

Lower bounds on the number of nonzero code symbols be-
O tween two bursts of zeros are given in the following.
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Fig. 3. The active distances for the encoding matrix in Example 3.

Theorem 6: Consider a binary, rateR = b/c¢ convo- D

/)Q%\ T
lutional code and letwf, , v[g ;. and v, ., de- @ @ @

Akl
note code sequences corresponciing to state sequences in

0,0 o, 0 T1,02 i
S0 4177 Spo, 41 @NA S L, Tespectively, where
o, 01, ando, denote any encoder states. ” Lol by ol — o uy,

i) Let w; denote the number of ones in (the weight of)
a code sequencef; ,; counted from the beginning of Fig. 4. A general time-varying polynomial convolutional encoder.
the code sequence to the first burstjotonsecutive

zero c-tuples. Thenw$ satisfies . ) )
J zeros is at leasyy + [w} ;,/c| + j2. Clearly, the

Wi 2 @ e -1 (39) weight of a subsequence of this length is lower-bounded

ii) Let wi® denote the number of ones in (the weight of)
a code sequence’[‘g I counted from the last burst
of j consecutive zera-tuples to the end of the code

sequence. Them’® satisfies

completes the proof. O

IV. ACTIVE DISTANCES FOR
TIME-VARYING CONVOLUTIONAL CODES

TC 5 4TC e . 4 . . . . .
Wi = Gjwrefel -1 (40) So far we have considered onlyme-invariant or fixed

by the corresponding active segment distance, which

i) Let w3 , denote the number of ones in (the weightonvolutional codes, i.e., convolutional codes encoded by

of) a code sequence; counted between any time-invariant generator matrices. When it is too difficult to

m, 3 —m
[m, J

two consecutive bursts of; and j» consecutive zero analyze the performance of a communication system using

c-tuples, respectively. Thew

s
J1,792

S S
Wiy, o 2 Gy tjp b w3, fel-1° (41)

instead.
n Assuming polynomial generator matrices we have

Proof: v = Go+u_1G1+ -+ G (42)
i) The subsequence up to the beginning of the first burst of ) ] ) . . . .
j consecutive zere-tuples consists of at leaBt¢/c] c- whereG;, 0 <i<m,is a bmaryb X ¢ t|me—|nyar|ant matrix.
tuples. Thus the length of the subsequence that includedn general, a ratez = b/c, binary convolutional code can
the first burst ofj consecutive zere-tuples is at least P€ time-varying.Then (42) becomes

J+ [w§/c] ctuples and, hencey; must satisfy (39). v = w,Go(t) - 1wy 1G4+ wy G ( 43
ii) Analogously to the proof of i). e = uGo(t) +uaGi(?) emGnt) - (43)
iii) Since w?, ,, is the weight of the subsequence betweemhere G;(¢),« = 0,1, ..., m, is a binary b x c time-

satisfies time-invariant convolutional codes, we can often obtain pow-
erful results if we study time-varying convolutional codes

the two bursts ofj; and j» consecutive zeros, re-varying matrix. In Fig. 4 we illustrate a general time-varying
spectively, the total length including these bursts gfolynomial convolutional encoder. As a counterpart to the
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Go(t) Gi(t+1) e G (t+m)

G, Go(t+1) Gi(t+2) Gm(t+14+m) ) (44)

semi-infinite matrix@ given in (8) we have (44) at the topconsecutive zero subblocks, i.e.,
of this page. U 1] E g, —n, 11U, i) £ 0, i—m < i < ty—m}.
Remark: With a slight abuse of terminology we call for (48)
simplicity a time-varying polynomial transfer function matrix Next we introduce th&j + m + 1) x (j + 1) truncated,
a generator matrixalthough it might not have full rank. periodically time-varying generator matrix of memary and
We have the generatnsemble of binary, ratd? = b/c, period T
time-varying convolutional codewith generator matrices of Gonlt)
memorym in which each digit in each of the matric€ () Grnn—ll(t) Gon(t+1)
for0 <i<mandt=0,1,2,---is chosen independently ]
and is equally likely to bed and 1. : Gr-1(t+1)
As a special case of the ensemble of tlm_e-varylng CONVGH, , ;1= Go(t) : Gt + )
lutional codes we have the ensemble of binary, rAte= Go(t+1) Gor (t47)
b/c, periodically time-varying convolutional codes encoded i
by a polynomial generator matri&?, (44) of memorym : :
and period 7, in which each digit in each of the matrices Go(t+7)
Gi(t) =Gyt +T)foro0<i<mandt=0,1,---, T —1, (49)
is chosen independently and is equally likely to(eand 1. where Gi(f) = Gy(t+T) for 0 < i < m.

We denote this ensemb&(b, ¢, m, T). We are now well-prepared to generalize the definitions

Bgfore we defipe the active distances for' periodic_ally tim%’f the active distances for convolutional codes encoded by
varying convolutional codes encoded by time-varying poly; lynomial generator matrices to time-varying convolutional

_nom|al generator matrices we introduce the following sets ggdes encoded by polynomial time-varying generator matrices:
information sequences, where we always assumetthsitt,.

Let U, ., +,+m denote the set of information sequences Definition: Let C be a periodically time-varying convolu-
Uy, Uy, _ma1 " U, +m SUCh that the firstn and the lastn  tional code encoded by a periodically time-varying polynomial
subblocks are zero and such that they do not contai 1  generator matrix of memory. and period?’.
consecutive zero subblocks, i.e., The jth-order active row distancés

- def rdef . : , ,
U[’h —m, to+m] = {'Ur[tlfn% ta+m)] |'u'[t17'rn, ti—1] = 0 aj - Irltln [,; Iniil.+ ]{wH ('u'[tfm, t+]+m]G[t, t+]+m})}'
ot i
U, 11, t,+m] = 0, ANAUY 1) # 0,81 —m < i <t} (50)

(45) The jth-order active column distance

def . .
Let ¢ , ., denote the set of information sequences aj = min min AwE(U—m, o+ Gl o)} (B1)
W, e, —m41 -, Such that the firstn subblocks are . e o
zero and such that they do not contain+ 1 consecutive  The jth-order active reverse column distanise

zero subblocks, i.e., o def . .
a;® = min _min {wa(U—m, t451G, 0451) - (52)
def [t—m, t+]]
Uity =, = ittt —rm, 111y = 0. The jth-order active segment distani
andup; ;) £ 0, 1 —m < i <ty — m}. J 9
def . .
(46) a; = min min {waW—m, 145G, e45) (53)
[t—m, t+5]
Let U7, . +ny denote the set of information sequences O

Uty Ut —m+1 - Up, +m SUCH that the lasty subblocks are  For 3 periodically time-varying convolutional code encoded
zero and such that they do not contairt- 1 consecutive zero by a periodically time-varying, noncatastrophic, polynomial

subblocks, i.e., generator matrix with active row distancé we define its
e def free distance by a generalization of (11)
[t1—m, ta+m] = {u[t1 —nl,t2+nl1|u[t2+l,t2+nz] = 07
nduy; ; — i<t} of . .
a dU[Z7Z+nl1 ?é 0’ tl mets tQ} dfree d:f nun {CL;} (54)
47 i

Let i _,, ., denote the set of information sequencek the following section, we will derive lower bounds on the
Wi, —m i, —m—+1 - - U, SUCh that they do not contaim + 1 active distances. There we need the following.
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Theorem 7: Consider a periodically time-varying, rateé= From Theorem 7 follows immediately.
b/c, polynomial generator matrix of memory and periodl’

represented by, whereG, is given in (44). Corollary 8: Consider a rat& = b/c polynomial generator

matrix of memorym represented b¥?, where@G is given in
i) Let the information sequences be restricted to the &).

u[t—m,t+j+ml' Then the.code symbols in the 'segment i) Let the information sequences be restricted to the set
U1, 1+54m] @re mutually independent and equiprobable

S i B S i, T e e b i e segnen
ii) Let the information sequences be restricted to the set [t, 4] y P quip

c ; the ensembl& (b, ¢, m, 1) for all 4,0 < j < m.
Ui, 1+ Then the code symbols in the segment ii) Let the information sequences be restricted to the set

U1+, are mutually independent anq equiprobable ure . Then the code symbols in the segment
over the ensembl€(b, ¢, m, T) for all ,0 < j < [t—m, t+j+m] . .
V|1, 1+, @re mutually independent and equiprobable over
max {m + 1, T}. the ensembl& (b, ¢, m, 1) forall j, 0 < j <m O
iii) Let the information sequences be restricted to the set D o= =
L{[’;‘:_mﬂrﬂ. Then the code symbols in the segment
U, 14, are mutually independent and equiprobable
over the ensembl&€(b, ¢, m, T) for all 4,0 < j <
max {m + 1, T}. In this section we shall derive lower bounds on the active
iv) Let the information sequences be restricted to the sdistances for the ensemble of periodically time-varying convo-
Ul _m 147+ Then the code symbols in the segmerititional codes. First we consider the active row distance and
U[t, 145 @re mutually independent and equiprobable ovéegin by proving the following.
the ensembl€ (b, ¢, m, T) forall j,0< j<T. O

V. LOWER BOUNDS ON THE ACTIVE DISTANCES
FOR TIME-VARYING CONVOLUTIONAL CODES

Lemma 9: Consider the ensemb®(b, ¢, m, T') of binary,

Proof: It follows immediately that for0 < j < 7" the rate R = b/c, periodically time-varying convolutional codes
code tuples;, i = ¢, t+1, - - -, t+j, are mutually independent encoded by polynomial generator matrices of memety
and equiprobable in all four cases. Hence, the proof of ihe fraction of convolutional codes in this ensemble whose
is complete. In cases ii) and iii) it remains to show that thgth-order active row distance;, 0 < j < 7', satisfies

statements hold also f& < j < m whenm > 7. o )
) : . . _ aj <day < (j+m+1)c/2 (56)
ii) Consider the information sequences in the set
L{[‘;_m ]’ where0 < j < m. Lett < i < t+ j, does not exceed

then, in the expression PolG+D)/GHmA+D]R+1(@] / G+m+1)e)—1) (j+m-+1)e

v, = w,Go(d) + w1 G1(0) + - - + i, G (1) (55)

whereh( ) is the binary entropy function. O
: Proof: Let
there exists a, 0 < k& < m, such that at least one
of the b-tuplesu;_, is nonzero and all the previous Vs rjm] = U 1jem] Gl 1] (57)

tuplesu;_s, k < kK < m, are zero. Hencey; and
vy, t <4 < i <t+j, are mutually independent andwherewy, , 14j4m) € Up_, 144, @8N assume that
equiprobable. This completes the proof of ii).

iii) Consider the information sequences in the set

(t=m, 4y Where0 < j < m. Lett < < ¢4, Then, it follows from Theorem 7 that

then, in (55) at least one of theb-tuples
w1, 0 < k < m, is nonzero and all the following P (Wh(Vp, t4j4m]) < @))
b-tuplesu; ,0 < k' < k, are zero. Hencey; and @’

a; < (j+m+1)c/2. (58)

vy, t <i <4 <t+ j, are mutually independent and =3 <(j +”} T 1)c>2—(j+m+1)c
equiprobable. =0 '

i) For the information sequences i, , . ... it re- < 2@ /GAmiDe)—D(tmtDe g <j< T —m
mains to show that; andwv;; are mutually independent (59)
and equiprobable also fa@r < ¢ —¢ < T'+m. From the
definition ofL{[’t‘_m thjm] it follows thatwp_,,, +—1] = where the last inequality follows from the standard inequality
0, 'U:t # 0, 'U:1+J # 0, and u[t+j+l,t+j+'rn1 = 0 FOI’ k
j = T, we can choose, e.g., n h(k/m)n 1. <

Z<i><2 k< n/2. (60)

— ( 72=0
Ult—m, t+m] = Ut+T—m, t+T+m) € u[tfrn,t+T+rn]

(Notice that we need the denominatd®”“in the right in-
equality in (60) in order to be able to apply inequality (60).
for T —m < j < T vt 4 < tt+m and Coualityin (60) pply inequality (60).)

Usin
v, t+j < <t+j+ m, are mutually independent 9 ' '
and equiprobable. O 2UHLE — 9(i+1)Re (61)

which implies thatwy, ;1) = Vji41, 1474m]- HOWEVET,
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as an upper bound on the cardinalit)u{q_m tj4m)r WE have and j, is the smallest integer satisfying

J+1 .
. ap 1—-—RJ(y De>2log T. 70
P( Comin {wa(V, eriem) ) S aj> < J——— )(J +m+1)c > 2log (70)
[t—m, t+5+m]
< 9(i+1) Reg(h(a7/(G+m~+1)e)=1)(j+m+1)c O

In order to get a better understanding of the significance of
the previous lemma we shall study the asymptotical behavior
»f the parameterg, anda; for large memories.

Let the periodl” grow as a power ofn greater than one;
chooseT = m?, say. Then, sincg, is an integer, for large
For a givenf, 0 < f < 1, let jo be the smallest integgr values ofm we havej, = 0. Furthermore, the inequality (69)

= UG+ GmADIR+1ET/GHmte)—D(j+mtle (62)

for eacht, 0 < ¢ < 7. Using the union bound completes th
proof. O

satisfying the inequality can be rewritten as
i+1 ) T2 < a; ) j+1 <10g m)
1—-———R})(G+m+1c> log . 63 hl———+)<1-———R+0
< Jtm+1 )Q mtlez S1-7 (63) (G+m+1)c) ~ J+m+1 + m -
For large memoriesn such a value always exists. L&} or, equivalently, as (r1)

_ , &7}Sh_l<1—.—R)(j—i—m—i—l)c—i—O(logm).
denote the largest integer that for givéno < f < 1, andj, J+m+1 -
7 > jo, satisfies the inequality ) (72)

A Finally, we have proved
j+1 ar; .
<ﬁ R+ h<m> - 1) (J+m+1)c Theorem 12:There exists a binary, periodically time-
J J ) varying, rate R = b/c, convolutional code encoded by a
T ) polynomial generator matrix of memory that has gth-order
(65)

1-f active row distance satisfying the inequality
Then, from Lemma 9 follows that for each jo < j < T,

< —log

N _ j+1 )
the fraction of convolutional codes witjth-order active row @ > h™" <1 - 14‘:7%4“ R) (j+m+1)c+O(log m), (73)
distance satisfying (56) is upper-bounded by )
1—f for j > 0. O
T2~ lesl?/0=Nl = =) (66) . . .
T The main term in (73) can also be obtained from the

Hence, we use the union bound and conclude that the fractfgHbert-varshamov bound for block codes using a geometrical
of convolutional codes with active row distaneg < a7 for construction that is similar to Forney’s inverse concatenated
- 7

at least onej, jo < j < T, is upper-bounded by construction [6].
. ) Consider Gilbert—Varshamov's lower bound on the (normal-
-— 1-7 ized) minimum distance for block codes [7], viz.
> — <1 (67) )
Jj=jo

N 2hT =R (74)
Thus we have proved the following.

o where N denotes the blocklength. Let
Lemma 10:In the ensemble& (b, ¢, m, T') of periodically

time-varying convolutional codes, the fraction of codes with ) ht (1 - jjfjm R) (J+1+m)c
active row distance 6"(j) = o (75)
aj >aj,  Jo<j<T (68)  denote the main term of the right-hand side of (73) normalized
by me.

is larger thanf, where for a givenf, 0 < f < 1, jo is

the smallest integer satisfying (63) anfi the largest integer The construction is illustrated in Fig. 5 foR = 1/2.

satisfying (65). 0 The straight1 line betyveen thg poin(Q,IS"(j)) and (R, 0)
intersectsh~*(1 — R) in the point(r, R~'(1 — r)). The rate
By taking f = 0, we have immediately r is chosen to be
Corollary 11: There exists a binary, periodically time- po_Jtl g (76)
varying, rate R = b/c, convolutional code encoded by a 7+14+m

polynomial generator matrix of period™ and memorym
such that itsjth-order active row distance fgp < 7 < T'is
lower-bounded by, wherea is the largest integer satisfying

i.e., it divides the line betweerf0, 0) and (R, 0) in the
proportion (j 4+ 1):m. Then we have

) J+l4m

J+1 a; ) — ~ = (77)

< —2logT (69) 1Here and hereafter we write~ ' (y) for thesmallestr such thaty = h(z).
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Fig. 5. Geometrical construction of the relationship between the lower bound on the active row distance for convolutional codes and the Gittredv-Vars

lower bound on the minimum distance for block codes.

which is equivalent to (75). The relationship betweeand j
in Fig. 5 is given by (76).

We shall now derive a corresponding lower bound on the

active column distance. Let

Ve, t45] = Ut—m, t+5]GPe, 1451 (78)

where Ult—m, t+5] € u[i—m,t-l—ﬂ

satisfying the inequality

and leta; be an integer

a; < (j+1c/2. (79)
Then, as a counterpart to (59) we have
Ac = j +1)c —(J c
< Q(h(fi;/(j-l-l)C)—l)(j-l-l)c’ 0<j<T (80)
We use (61) as an upper bound on the cardinaliﬂ/[@_fm 4]
and obtain
P <z/t[" inin+ .] {wav, t45) ) < &j)
< 2D Reg(r(a5/(G+1)e)—1)(F+1)e
— o(R+h(a5/(G+1)e) 1) +1)e (81)

for eacht, 0 < ¢ < 7". Minimizing over0 < ¢ < 7" and using
the union bound complete the proof of the following.

Lemma 13: Consider the ensemblé(b, ¢, m, T) of bi-

nary, rateR = b/c, periodically time-varying convolutional
codes encoded by polynomial generator matrices of memory
m. The fraction of convolutional codes in this ensemble whose

Jth-order active column distaneg, 0 < j < 7, satisfies
aj < a5 < (j+1)c/2 (82)
does not exceed
Po(BAR(E5/(j+1)e)=1) ([ +1)e

Next we choosegjy to be the smallest integer satisfying
the inequality

(1-R)(j +1)c 2 log T2. (83)

Let &j

0< a5 < (j+1)c/2 (84)

denote the largest integer that for given; > j,, satisfies
the inequality

<R+ h<(j i§1)6> - 1) (j+1Dec< —log T?.  (85)

Then, from Lemma 13 follows that for eaghjo < j < T, the
fraction of convolutional codes with gh-order active column
distance satisfying (84) is upper-bounded by

ro-les T _ 1

(86)

Hence, we use the union bound and conclude that the fraction
of convolutional codes with active column distam&g as
for at least onej, jo < j < T, is upper-bounded by

T—-1

<1 (87)

M| =

Jo

.,
Il

Thus we have proved the following.

Lemma 14: There exists a periodically time-varying, rate
R b/c, convolutional code encoded by a polynomial
generator matrix of perio@ and memorym such that itsjth-
order active column distance fgg < j < 7' is lower-bounded
by a;, whereas is the largest integer satisfying

(ren( ) 1) rves 2t o9

and jo is the smallest integer satisfying

(1-R)(j+1)ec>2logT. (89)

|
If, as before, we choosE = m?, thenj, = O(log m), and
the inequality (88) can be rewritten as
h< .aj )Sl— _4dlogm
(j+1)c

Groe 0
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for j = O(m) or, equivalently, as For the ensemble of periodically time-varying convolutional
i < h=Y(1 = R)(j + 1)e + O(log m). (91) code the active burst and active row distances are related
through (29). Hence, we do not lower-bound the active burst
distance separately.

Theorem 15:There exists a binary, periodically time- Nextwe consider our lower bounds on the active distances,
varying, rate R = b/c, convolutional code encoded by aviz., (73), (92), and (93), and introduce the substitution
polynomial generator matrix of memory that has gth-order L= (j+1)/m (99)
active column distance satisfying the inequality

Thus we have proved

then we obtain asymptotically—for large memories—the

aj > p(j + L)e + O(log m) (92) following lower bounds on th@ormalized active distances
for j = O(m) > jo = O(log m) andp = h=*(1 — R) isthe =~ Theorem 18:
Gilbert—Varshamov parameter. O i) There exists a binary, periodically time-varying, rate

R = b/e, convolutional code encoded by a polynomial

Analogously we can prove : . )
generator matrix of memony. whose normalized active

Theorem 16:There exists a binary, periodically time- row distance asymptotically satisfies
varying, rate R = 0/c, convolutional code encoded by . def @] . £ log m
a polynomial generator matrix of memory. that has a = m—Jc >h <1— 1 R) ¢+ 1)+O< - )
Jth-order active reverse column distancg which is lower- (100)
bounded by the right-hand side of the inequality (92) for all
i A — - for ¢ > 0.
J > jo = O(log m). U .. . . - . .
i) There exists a binary, periodically time-varying, rate
For the active Segment distance we have the fOIIOWing. R = b/C, convolutional code encoded by a p0|ynomia|
Theorem 17:There exists a binary, periodically time- generator matrix of memory, whose normalized ac-

tive column distance (active reverse column distance)

varying, rate R = b/c, convolutional code encoded by a ! e
asymptotically satisfies

polynomial generator matrix of memory that has gth-order

active segment distance satisfying the inequality . def @ {6;’0 défai} > hi(1— R+ O<10g m)
s p (1o L N G et Ofog m)  (93) me "
aj; —jT )+ 1)e+ og m (101)
for j = O(m) > js, where for £ > £o = O(log m/m).
. ‘ iiiy There exists a binary, periodically time-varying, rate
Js < 7= ™+ O(log m). (94) R = b/¢, convolutional code encoded by a polynomial
0 generator matrix of memony. whose normalized active
Proof: Consider the ensemblé(b, ¢, m, T'). First we segment distance asymptotically satisfies
notice that the cardinality df ,, - is upper-bounded by 53 4t aj > pt <1 41 R)E n O<10gm> (102)
mc ¢ m
2nlb2(j+l)b —_ 2(j—|—rn+l)Rc. (95) for
. : : : R log m
Using (95) instead of (61) and repeating the steps in the bzli=g—7+0|——) 0
derivation of the lower bound on the active column distance

will give The typical behavior of the bounds in Theorem 18 is shown

< P ) Cjm4l . dlogm in Fig. 6. Notice that by minimizing the lower bound on the

J (96) normalized active row distance (100) we obtain nothing but

G+ 1)e J+l G+ 1)e the main term in Costello’s lower bound on the free distance
for all j = O(m) > j,, or, equivalently, [8]. viz.,
R
j 1 T ok _ 1\
i< bt <1 - ‘% R) (j+1e+O(log m)  (97) —log (2'=% - 1)
J
VI. COMMENTS
where . . . . .
In this paper we have introduced a family of active distances
O < < (j+1)c/2 (98) for convolutional codes and shown that the error correcting

capability of the code is to a large extent determined by these
. . distances.
'Cnosrfaigtgf (90), (91), and (84), respectively, and the pg)of Sn [9] we used the active row distance to lower-bound
piete. the probability of the output error burst lengths for Viterbi
The parametey, is the start of the active segment distancdecoding of periodically time-varying convolutional codes.
(cf. Fig. 2). From these lower bounds on the error burst lengths follow
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Fig. 6. Typical behavior of the lower bounds on the normalized active distances of Theorem 18.

easily the well-known upper error probability bounds for
periodically time-varying convolutional codes [10]. 2]

The active distances were used in [11] to determine the free
distances of two different constructions of binary concatenategd
convolutional codes, viz., woven convolutional codes with
outer and inner warp, respectively. Both constructions haVﬁ]
large free distances.

Concatenation is a both powerful and practical method to
obtain constructions that are attractive for use in communica?!
tion situations where very low error probabilities are needed.
The simplest concatenated scheme with two convolutionagd)
encoders is a cascade without an interleaver but with matched
rates, i.e., the outer convolutional code has fte= b,/c,
and the inner convolutional code has rdte = b;/c;, where [g]
b; = ¢,. In [12] we have shown the existence of cascaded con-
volutional codes in the ensemble of periodically time-varyind
cascaded convolutional codes that have active distances with
lower bounds similar to those derived in this paper. From the
lower bound on the active row distance for the cascade [}l
is shown that given only a restriction on the memory of thﬁl]
inner code, there exists a convolutional code, obtained as a
simple cascade, with a free distance satisfying the Costello

lower bound. [12]
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