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Semantic Override of Low-level Features in Image Viewing –
Both Initially and Overall

Marcus Nyström
Lund University

Kenneth Holmqvist
Lund University

Guidance of eye-movements in image viewing is believed to be controlled by
stimulus driven factors as well as viewer dependent higher level factors such as task
and memory. It is currently debated what proportions these factors contribute to gaze
guidance, and also how they vary over time after image onset. Overall, the unanimity
regarding these issues is surprisingly low and there are results supporting both types
of factors as being dominant in eye-movement control under certain conditions. We
investigate how low, and high level factors influence eye guidance by manipulating
contrast statistics on images from three different semantic categories and measure
how this affects fixation selection. Our results show that the degree to which contrast
manipulations affect fixation selection heavily depends on an image’s semantic
content, and how this content is distributed over the image. Over the three image
categories, we found no systematic differences between contrast and edge density at
fixated location compared to control locations, neither during the initial fixation nor
over the whole time course of viewing. These results suggest that cognitive factors
easily can override low-level factors in fixation selection, even when the viewing task
is neutral.

Keywords: Image viewing, contrast manipulation, semantic information dis-
persion, bottom-up, top-down

Introduction

The human visual system (HVS) is equipped with
a high resolution fovea where detailed information
about the visual environment is acquired, and a less
sensitive periphery which samples the visual input
very sparsely. In order to fully comprehend the visual
world, thus, we move the eyes to provide the fovea
with detailed information. Typically, the eyes move
about three to four times per second by employing fast
ballistic movements called saccades. In between the
saccades, the eye is virtually stable in what is referred
to as a fixation.

The guidance of eye-movements is generally at-
tributed to bottom-up and top-down processing.
Bottom-up processing implies that gaze guidance is
controlled by low-level primitives such as contrast, lu-
minance, and edge density (Treisman & Gelade, 1980).
It is generally described as a fast and involuntary pro-
cess. Top-down processing is somewhat more difficult
to define precisely, but can be thought of as a seman-
tic interpretation of the scene reflecting the interplay
between higher cognitive factors such as a viewer’s
task, goals and familiarity with similar types of scenes
(Sarter, Givens, & Bruno, 2001).

Gaze behavior and guidance of eye-movements in
image viewing have been studied as early as in the
1930s by Buswell (1935), and later by Yarbus (1967).
In particular Yarbus’ work is well cited in the litera-

ture. Two of his main observations were that the task
at hand heavily influences where people look and that
’informative’ regions are looked at more than other re-
gions. More recently, there have been a series of studies
building on these pioneering works seeking to gain a
deeper understanding of the mechanisms behind eye-
guidance through eye-tracking experiments. For exam-
ple, it has been investigated how different tasks affect
eye-movements, and what makes a region informative.

To address eye-movement guidance from a bottom-
up perspective, statistical differences in image content
around visually attended regions and control regions
have been compared. For example, Reinagel and Zador
(1999); Parkhurst and Niebur (2003) report of higher
luminance contrast around gaze positions than con-
trol regions, and Baddely and Tatler (2006) conclude
that high-frequency edges are good predictors of fix-
ated locations. The influence of bottom-up features on
eye-movements has also been studied through com-
putational frameworks defining the salience at differ-
ent image locations through combinations of a num-
ber of low-level primitives (Itti, Koch, & Niebur, 1998).
Salience has been shown to correlate with gaze posi-
tions better than at random (Parkhurst, Law, & Niebur,
2002), and has recently been reported to coincide with
image regions deemed as important by human view-
ers (Elazary & Itti, 2008). Furthermore, it has been an-
alyzed how low-level primitives relate to fixated im-
age regions over the time course of viewing. Specifi-
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cally, Parkhurst et al. (2002) and Carmi and Itti (2006)
report that bottom-up processing is more influential
early after stimulus onset. However, these findings are
not supported by Tatler, Baddeley, and Gilchrist (2005),
who argue that bottom-up features are equally influ-
ential over time, whereas top-down influences increase
as a function of viewing time. It is further known that
bottom-up control of eye-movements is less influential
as the saccadic amplitude increases (Tatler, Baddeley, &
Vincent, 2006); the landing positions of long saccades
are hard to predict given the feature content available
to a viewer when the saccade is initialized (Rajashekar,
Linde, Bovik, & Cormack, 2007).

Complementary to the empirical evidence support-
ing that gaze guidance is controlled by the physical
properties of a stimulus, there are several examples
of cognitive factors known to influence where peo-
ple look, of which some are listed by Henderson and
Ferreira (2004): Short-, and long-term episodic scene
knowledge, scene schema knowledge, and task knowl-
edge. Some of these factors have shown to override
prediction based on saliency; in line with Yarbus’ work,
certain task instructions have been shown to critically
influence where people look, reducing saliency map
predictions to a chance level (Underwood, Foulsham,
Loon, Humphreys, & Bloyce, 2006; Rothkopf, Ballard,
& Hayhoe, 2007). Henderson, Brockmole, Castelhano,
and Mack (2007) showed that image patches extracted
around fixated locations not only contained lower in-
tensity as well as higher contrast and edge density
than control locations, but these image patches were
also deemed more semantically important. This raises
the question whether semantic importance, instead of
saliency, dominantly influences fixation selection. In-
terestingly, Einhäuser and König (2003), found no sig-
nificant change in where people looked as an effect of
moderate manipulations in local image contrast at a
number of random image locations.

Besides that image properties and cognitive fac-
tors influence eye-movements, it is known that eye-
movement parameters such as fixation durations, sac-
cade lengths and saccade directions also depend on
previous and future eye-movements. For exam-
ple, Tatler and Vincent (2008, in press) argued that
knowledge about such systematic tendencies in eye-
movement behavior could, together with bottom-up
and top-down processing, be an important factor to-
ward a more coherent theory about eye-movement
guidance.

Clearly, there is a large body of research on gaze be-
havior and fixation selection in images, of which some
are listed above. The efforts to pursue these issues have
grown rapidly over the last years partly due to cheaper
and more accessible eye-tracking technology. Most cer-
tainly, computational models of visual attention have
helped in boosting this interest. Despite recent research
efforts, and even though the mechanisms driving gaze
guidance slowly are starting to unravel, the unanimity

in results is surprisingly low. One reason for this may
be that earlier studies dominantly use real-world pho-
tographs as stimuli, in which semantically interesting
regions coincide with low-level features in a manner
that is not under any experimental control. As a con-
sequence, it is hard to conclude whether the reported
high feature densities at fixation are causal or correlative.
A causal effect would imply that fixation locations are
chosen as a direct consequence of the signal strength of
one or a set of combined low-level primitives. A cor-
relative effect, on the other hand, would mean that fix-
ations land on regions that happen to contain high fea-
ture densities, but are in fact guided to these regions by
other, higher level mechanisms. For example, objects
may be fixated since they contribute to the semantic
representation of the scene, and not because they hap-
pen to contain e.g., high contrast.

In this paper, we will investigate how contrast and
edge density contribute to fixation selection, and how
this effect varies over time. Unlike the majority of
previous studies, test images are contrast manipulated
prior to display. Meanwhile, we aim to keep their se-
mantic content intact. We believe that by decoupling
objects (or regions) from their low-level signal strength,
an analysis is more likely to elicit causal relationships
between where subjects fixate and the reason why they
choose to look there. Besides manipulating the image
statistics, three image categories are used: Images natu-
rally embedding faces, images with man-made objects,
and images depicting scenes with neutral semantics
(trees, leaves, etc.). Each class is chosen to represent im-
ages with different semantic information dispersion (SID).
We define this concept as follows:

Definition 1. Semantic information dispersion (SID) mea-
sures how spread out the information is that subjectively best
conveys the information of the whole image.

For example, a face generally contributes more to the
core meaning of an image then does a leaf on a tree.
Consequently, an image has a low SID if a small part
(such as a face) of the image is judged to contain the
majority of conveyed information. The rationale for
using different image categories is to introduce a vary-
ing top-down influence without using an explicit task.
For example, the task look at regions with uniform tex-
ture would yield a low correlation between e.g., edge
density and fixated image content, but would hardly
reveal much about the mechanisms behind gaze guid-
ance. To verify that the images chosen for the experi-
ment indeed represent different levels of SID, an exper-
iment is performed where subjects are asked to identify
a fixed size region that best conveys the information of
the whole image. The average overlap between the re-
gions chosen by the subjects is then used to estimate
the SID.
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Figure 1. Test images comprise three semantic categories:
Face images (top two rows), images with neutral semantics
(row three and four), and images containing man-made ob-
jects (bottom two rows). Two contrast manipulated versions
of each image are used in the experiments.

Methods

Test images

Three semantic image categories are used. In the
first category, we use images containing faces; it is
known that faces are very semantically important im-
age regions and therefore frequent fixation targets (e.g.
Yarbus, 1967). The second category comprises images
with neutral scene semantics and depicts scenes with
motives from nature such as trees and bushes (from
Einhäuser & König, 2003), grass, and a picture of a
brick wall. The last category falls between the first two
categories and contains man-made objects embedded
in natural environments. Six images from each cate-
gory are used. Images were converted to eight bit gray
scale and resized to dimension 1024×768through the
Matlab functions rgb2gray and imresize (bilinear), re-
spectively. The test images are shown in Figure 1. As
can been seen, each image comes in two versions where
contrast has been modified differently.

Face images are modified to form two subcategories.
In the first subcategory faces were retained in high con-
trast, whereas other regions were gracefully reduced in
contrast away from the facial region. In the second sub-
category, these contrast modifications were inverted;
only the facial regions were reduced in contrast. Figure
2 exemplifies this. For the other two categories, each
image was transformed into two different versions as
follows: Four candidate positions, same for all images,
were available as shown in Figure 3. One of these po-
sitions was selected at random, and the first version
was generated by reducing the contrast smoothly away
from this position. The other version was generated in
a similar manner, but now with the contrast being re-

(a) (b) (c)
Figure 2. Contrast manipulation for face images. (a) shows
the original image. In (b), the contrast is decreased away from
the marker in (a), positioned over the woman’s face. The fig-
ure in (c) illustrates the case where contrast instead is reduced
toward the face area by inverting the contrast manipulation
function in (b).

(a) (b) (c)
Figure 3. Contrast manipulation for images not containing
faces. Figure (a) shows the original image with four candi-
date markers. One of these markers is chosen at random, and
(b) illustrates the case when contrast is reduced away from
this marker (in upper left corner). In Figure (c), the marker
diagonally toward the randomly picked one is instead used
as the point from were contrast is reduced.

duced away from the point diagonally opposite to the
randomly selected position.

Image manipulation

Contrast manipulation was implemented by means
of variable resolution image processing using Gaus-
sian pyramids. A five level pyramid was created
by iterative lowpass filtering and downsampling of
the original image, followed by upsampling and (bi-
linear) interpolation back to the original image resolu-
tion (1024× 768). Lowpass filtering was implemented
by an ideal filter with a cutoff frequency adjusted to
avoid aliasing given a subsampling factor of 2 pix-
els. These operations resulted in a collection of im-
ages where the original image comprised the bottom
layer and higher layers were copies of the original im-
age with increasingly lower contrasts. To create images
with variable contrast, high resolution regions were se-
lected from the bottom layer of the pyramid, whereas
low resolution regions originated from the higher lay-
ers in the pyramid. Regions from different levels were
then synthesized through a Gaussian shaped blending
function. Let Iℓ(m,n) denote an image at level ℓ in the
lowpass pyramid. m and n span the image dimensions
and ℓ = {1,2,3,4,5}, where ℓ = 1 denote the bottom
layer comprising the original image. Then the imple-
mentation can be described by Algorithm 1. I(m,n) is
the output image, and G(m,n) denotes a Gaussian func-
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Algorithm 1 Implementing a variable contrast

1: I(m,n) = I1(m,n) {Initialize}
2: for ℓ = 2 to 5 do
3: I(m,n)← I(m,n) ·G(m,n)+ Iℓ(m,n) · (1−G(m,n))
4: end for

tion

G(m,n) = e
−

(

(
m−mi

σ )2+(
n−ni

σ )2
)

(1)

where (mi,ni) represents the point where the Gaussian
function is centered, i.e., the point from where the im-
age is increasingly reduced in contrast. To introduce a
noticeable amount of blur, σ was set to σ = 50 pixels.
σ was chosen simply by pilot testing where contrast
reduction was deemed as significant without chang-
ing the semantics of the image. It has been pointed
out in an earlier study (Parkhurst & Niebur, 2004),
that when using contrast manipulations to study fix-
ation selection, it is important to implement smooth
contrast degradations to avoid undesired variation in
higher order image statistics, which could explain pos-
sible changes in fixation behavior. To account for this
observation, we implement very smooth, although no-
ticeable contrast reductions.

Contrast manipulation for face images was imple-
mented with the above parameters when contrast was
reduced away from the face. However, in the opposite
case, when contrast was reduced toward the face re-
gion (the face was blurred), then the blending function
was modified to

G(m,n) = 1− e
−

(

(
m−mi

σ )1.5+(
n−ni

σ )1.5
)

(2)

in order to better limit the contrast reduction effect to
the facial region.

Subjects

13 naive test subjects (25.7±4.9 years old, one fe-
male) were recruited to participate in the experiment.
Their visions were normal or corrected to normal.
Compensation was given in the form a lottery ticket
and subjects consented to use of their data by signing a
form.

written consent was given to use collected data in
the analysis.

Experiment I: Viewing contrast manipulated im-
ages

Contrast manipulated images from all three cate-
gories were shown one at the time in full screen. Before
the presentation of an image, a central dynamic fixa-
tion marker in the form of solid black circle was shown
on a mid-gray screen. The diameter of the circle was
decreasing as a function of time. After one second, the
circle disappeared and an image was displayed in full

screen during a time randomly drawn from the inter-
val t = [3,4,5,6] seconds. This procedure was repeated
for all images, which were shown in random order.
Varying display time was used to prevent subjects from
adopting top-down strategies such as systematic scan-
ning of the images. Prior to each image was displayed,
subjects were asked to look at the fixation marker.

The instruction given to the subjects was to please
study the images carefully. Supposedly, being a fairly
general instruction, it prevents subjects to adopt in-
dividual viewing strategies trying to guess the pur-
pose of the tests. For example, we saw in an earlier
study (Nyström & Holmqvist, 2007), where subjects
were given the more neutral instruction solely to watch
the images, that subjects adopted a top-down strategy
avoiding to look at the blurred regions a bit into the
presentation. We believe that the task instruction used
in this paper will alleviate this undesirable adaption.

Experiment II: Image semantics evaluation

In a second experiment, that followed right after
the first, subjects were shown the 18 unprocessed (no
contrast manipulation) images (in eight bit gray scale
of dimension 1024× 768), one by one in full screen.
They were not informed about this evaluation until af-
ter the first experiment was completed. Superimposed
on each image was a quadratic box that could be con-
trolled by the mouse cursor. Subjects were asked to po-
sition the box over the area that best capture the core
meaning of the image. A mouse click continued this
procedure for next the image. The exact instruction was
given in writing as: ’Position the box over a region that
best conveys the information of the whole image’. The
size of the box was chosen large enough to encapsulate
whole objects or parts of objects, so that the meaning
of the box content would be clear without access to the
whole image. We used a box size that spanned four
degrees (128×128pixels).

Eye-tracking

Eye-tracking was preformed monocularly during
both experiments with an SMI iView X Hi-Speed 1250
Hz system. Subjects were seated 0.67 m away from a
19 Inch Samsung GH19PS screen with the resolution
and update rate set to 1024× 768 pixels and 60 Hz.
The physical dimension of the screen was 380× 300
mm, spanning 32×25 degrees of visual angle. Each
recording started with a 13-point calibration. Stimuli
presentation, communication with the eye-tracker, and
data analysis were performed with Matlab and the Psy-
chophysics Toolbox Version 3 (PTB-3) (Brainard, 1997).
A saccade based detection scheme developed by SMI
(IDFconvert.exe) was used to filter out event based
measures such as fixations and saccades. Gaze posi-
tions were classified as saccades if the eye velocity was
≥ 75◦/s and if the saccade duration lasted ≥ 10 ms. If
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these assumptions were violated, and the eye was sta-
ble for ≥50 ms, a fixation was detected.

Analysis and results

In this section data is visualized and analyzed. The
analysis addresses the following questions: 1) Are con-
trast and edge density different at fixated regions com-
pared to control regions for contrast manipulated im-
ages? 2) Do contrast manipulations change where peo-
ple look? 3) Is the magnitude of change related to im-
age semantics, and in terms of semantic image disper-
sion (SID)?

What do we look at? - Feature analysis

It is known from several previous studies that cer-
tain low-level features are elevated at fixated positions.
For example, fixated locations tend to have higher con-
trast and edge density than non-fixated, control re-
gions. We begin our analysis by testing whether these
observations still hold using contrast manipulated im-
ages. Contrast at the image location (m,n) is defined
as the standard deviation within a 3×3 neighborhood
centered at (m,n). Edge density is extracted by con-
volving the image separately with horizontal and ver-
tical Sobel operators, and then computing the average
of these filtered outputs.

In the analysis, an approximately 1 degree (32× 32
pixel) region is extracted from the feature maps around
each fixation location. For comparison, equal sized re-
gions are also extracted from control locations, and the
difference between fixated and control feature contents
is analyzed. Instead of using uniform sampling over
the image area to simulate a random viewer, we use
control fixations collected from other images used in
the experiment. This way, a simulated ’random’ fixa-
tion pattern coincides with the distribution of fixations,
which is known to be non-uniform with a bias to the
center of the display. It has been argued that the cen-
tral bias may give rise to artificially high features values
at fixation (e.g., Tatler et al., 2005), and should there-
fore be carefully accounted for in the analysis. More
insights about the central bias effect are given by Tatler
(2007).

An increasingly popular method to estimate the de-
gree to which fixated and control feature content can be
differentiated from each other is the receiver operating
characteristics (ROC) analysis (e.g., Hanley & McNeil,
1982). A ROC curve plots the fraction of true positives
(TP) against the fraction of false positives (FP). In our
case, TP consist of fixated feature content, whereas FP
comprise feature content at control locations. The area
under the ROC curve varies between zero and one, and
is a robust measure of how well image features can be
discriminated between fixated and control locations; if
the ROC area is significantly larger than 0.5, a tested
feature is said to discriminate fixated locations from
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Figure 4. ROC areas for discrimination between image fea-
tures at fixated and control locations. Black bars show ROC
areas for the first fixation whereas all fixations are included in
the white bars. Error bars span standard errors of the mean.
A ROC area larger than 0.5 indicates a difference.

control locations. A ROC area that equals 1 is said to
give perfect classification.

Figure 4 plots the average ROC areas for contrast
and edge density. Black bars represent results consid-
ering the first fixation (from all subjects in all images)
only, whereas the white bars represent a similar anal-
ysis over all fixations. By the first fixation, we mean
the fixation following the initial saccade after image
onset and not the first registered fixation is the data
file, which is constrained to the center of the screen
by a fixation marker. As reported by several previous
studies, feature densities at fixated locations are signifi-
cantly higher (ROC area > 0.5) than feature densities at
control locations (p < 0.01, t-test, for both contrast and
edge density). Apparently, this is also true for contrast
manipulated images. Moreover, there is a tendency, al-
though non-significant, that initial fixations discrimi-
nate contrast and edge density better than fixations do
over the whole time course of viewing.

Do image semantics and feature manipulations in-
fluence where we look?

To this point, our empirical findings are in line with
previous results emphasizing bottom-up control over
fixation selection. The findings show, on average, that
contrast and edge density are higher at fixated posi-
tions than at other, control positions. In this section,
it is investigated whether these general tendencies are
consistent when analyzing images with regard to their
semantic information dispersion (SID) as well as their
direction of contrast reduction. What happens with
peoples’ allocation of fixations, for example, if a re-
gion deemed as semantically important is reduced in
low-level signal strength? Obviously, a saliency based
framework would predict an obligatory shift in fixation
density away from this region.
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Figure 5. Images in order of increasing semantic information
dispersion (SID). The top row shows where subjects have po-
sitioned a box that ’best conveys the information of the whole
image’. The bottom row illustrates the fixation density of the
same subjects while performing this task. As can be seen,
the inter-subject agreement between fixation density and the
regions judged to best convey the information of the whole
image is large.

Using data collected from the second experiment, we
found the SID for each image, calculated as the average
overlap between box locations within an image. Thus,
if Bi, j denotes a box in the image i positioned by subject
j, the SID for image number i is defined as

SIDi =

[

2
N(N +1)−2N ∑

j=1,...,N−1
k= j+1,...,N−1

Bi, j ∩Bi,k

]−1

(3)

where ∩ denotes the intersection between the boxes in
pixels, and N is the number of viewers. The inverse
is computed such that a large SID value represents a
spread out semantic information and vice versa. The
top row in Figure 5 shows three of the unprocessed test
images and the boxes as positioned by the test subjects.
Out of the 18 unprocessed images used in the exper-
iment, images with the lowest, midmost, and highest
SID are shown in the figure. Unsurprisingly, the im-
age with the lowest SID contains a face, and the im-
age with the highest SID contains rather neutral seman-
tics. For the sake of comparison, the fixation density
of the same subjects while performing the SID detec-
tion task is given in the second row in the figure. For
these images, the overlap between where subjects fix-
ated and where they positioned the box is quite large.
As expected, the image categories were tightly cou-
ple with SID; five of the six images containing faces
were among the images with the lowest SID (boxes
were dominantly positioned over the face), and all the
six images from the ’neutral’ category had the highest
SIDs. Consequently, five images from the ’man-made
object’ class were located in the mid-SID section along
with one face image.

Figure 6 illustrates how the fixation density changes
as a result of contrast manipulations for images with
low, medium, and high SID. The fixation densities are
visualized as heat maps, where Gaussian functions

have been centered at each fixation location and then
superimposed. The variance of each Gaussian func-
tion has been set such that the width at half its maxi-
mum height approximates the size of the foveal span
of a viewer in the current experimental setup. In ad-
dition, the height of each Gaussian function has been
scaled in proportion to the fixation duration. As a con-
sequence the fixation densities not only reflect where
people have fixated, but also their level of cognitive
processing during each fixation, hence providing more
sensitive and detailed information. Henceforth, we
refer to the heat maps as fixation density functions
(FDFs), in order to better capture what the heat maps
represent. The second column in Figure 6 depicts FDFs
for all subjects during the first fixation, and the third
column illustrates corresponding fixation densities col-
lapsed over all fixations. This can be compared with
the two rightmost column, where contrast and edge
density are visualized. A visual inspection of the plots
indicates that contrast and edge manipulations clearly
influence where subjects look. However, the magni-
tude of change seems to differ depending on the image
type; the images containing faces undergo relatively
small changes in fixation placement due to contrast ma-
nipulation whereas fixations in the images that contain
more neutral semantics seem to be more influenced by
the manipulations.

To quantify how fixation locations change as a
function of contrast manipulation and SID, the two-
dimensional correlation coefficient between FDFs be-
longing to the two contrast manipulated versions of
each image is computed. This metric has been used in
other works for the same purpose (Rajashekar, Linde,
Bovik, & Cormack, 2008). Although it is not clear how
accurately the 2-D correlation coefficient, or any other
metric for that matter, captures the difference between
people’s fixation locations, it gives an estimate that
helps us to interpret the magnitude of change. For a ref-
erence of other metrics used to estimate the similarity
between fixations, see for example Mannan, Ruddock,
and Wooding (1995); Privitera and Stark (2000); Tatler
et al. (2005). Since images’ SID-values almost perfectly
matched the initial division of images into three seman-
tic categories, the analysis is preformed with respect to
the image categories, which henceforth are referred to
as ’Face’, ’Man-made’, and ’Neutral’. Figure 7(a) de-
picts the average 2-D correlation between FDFs gener-
ated from the initial fixation (black bars) and all fixa-
tion (white bars) within each category. It can be seen
that the image category influences the degree to which
contrast manipulations trigger shifts in fixation densi-
ties; images containing regions of high semantic impor-
tance, such as faces, are less sensitive to the manipula-
tions than other images and in particular those from the
’Neutral’ category. This tendency is present for both the
initial fixation and for fixations over the time course of
viewing.

Another way to represent how fixation locations
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Images First Fixation All Fixations Contrast Edge Density

Figure 6. Effect of contrast manipulation on fixation behavior.

are affected by contrast manipulations and semantics,
shown in Figure 7(b), is to plot the shift in fixation den-
sity (2-D correlation coefficient between FDFs) against
images’ SID. Circles and triangles represent how the
initial fixation and all fixations, respectively, are shifted
in location as a function of SID. The lines are least
square fits to the data points. Considering all fixations,
it can been seen that SID clearly influences the magni-
tude of shift in fixation density, having a correlation of
ρ = −0.67. This tendency is weak, or hardly present
at all, considering the first fixation only. It may be the
case since fewer fixations are used to generate the first
fixation FDFs, giving individual fixations more weight.
Consequently, a fixation that is not aligned with other
fixations have a large impact on the shape of an FDF,

and therefore also the value of the 2-D correlation coef-
ficient between two FDFs.

In summary, the results from Figure 7 clearly illus-
trate that the degree to which fixation locations are in-
fluenced by contrast manipulations depends on SID
and image category.

Since contrast manipulations change where people
look with different magnitudes depending on images’
SID, one would expect this to be reflected in fixated
image content across the image categories. For exam-
ple, in the category that was least influenced by the
image manipulations, we would expect a lower dis-
crimination for contrast and edge density between fix-
ated and control locations than for the other two cat-
egories. Figure 8(a) plots average ROC areas for con-
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Figure 7. Influence of fixation selection on image category, SID, and contrast manipulations. (a) Bars represent the average
shift in fixation density due to contrast manipulations within each image category. (b) The images are presented in order of
increasing semantic information dispersion (SID). The solid lines are least square fits to the data points. Error bars span one
standard error around the mean. 95% confidence interval of the correlation coefficient ρ are generated using bootstrapping
with 1000 resampled sets (Matlab’s bootstrp function).
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Figure 8. ROC analysis of contrast and edge density over different image categories. (a) All images from each category are
included. (b) From the ’Face’ category, only images with blurred faces are included.

trast and edge density over the three image categories.
Results for both the first fixation and all fixations are
given for each feature and category. As expected, the
discrimination of features between fixated and control
locations were the lowest in the ’Face’ category and in-
creasingly higher for the ’Man-made’ and ’Neutral’ cat-
egories. However, it was significantly (p < 0.05, t-test)
better than chance (ROC area > 0.5) in all cases. Also
notice how ROC scores in the ’Neutral’ category are
significantly (p < 0.05) higher for first fixation than all
fixations, whereas this tendency was not significant in
the other two categories.

Figure 8(b) differs from Figure 8(a) in the way that
only those images from the ’Face’ category where con-
trast was reduced toward the face, i.e., where the faces
were blurred, were included in the analysis. Since peo-
ple still looked at the face regions after being reduced
in contrast, the discrimination was reduced to a chance

level, both considering the first and all fixations. Inter-
estingly, discrimination was worse for feature content
fixated at the initial fixation, contrary to the finding by
Parkhurst et al. (2002).

Discussion

It has previously been reported that image features
such as contrast and edge density are higher around
fixated locations then control locations, and thus are
likely to contribute in guiding eye-movements. We
found this effect to be highly dependent on images’ se-
mantic content and how this content was distributed
over the image. The effect was replicated in images
with neutral semantics, but was not present in images
where semantically important regions where reduced
in low-level signal strength. These results suggest that
semantic interpretations of an image easily can over-
ride bottom-up control of eye-movements.



JOURNAL OF EYE MOVEMENT RESEARCH, VOLUME X, ISSUE X 9

There is a continuously increasing debate about
what controls where we look in real-world pho-
tographs. In particular, it is debated how bottom-up
and top-down factors interact to guide eye-movements
toward regions of particular interest or relevance. On
the one hand, the physical properties of an image have
shown to correlate well against locations fixated by hu-
man viewers, motivating computational approaches to
fixation prediction by combining a set of image features
with known high correlation (e.g., Itti et al., 1998; Itti
& Koch, 2000). On the other hand it is known from,
e.g., Buswell (1935) that higher level factors such as
a viewer’s task heavily influences where people look.
For example, several recent studies have shown that
some tasks easily overrides a prediction based on a
saliency map (see Underwood et al., 2006; Rothkopf et
al., 2007; Einhäuser, Rutishauser, & Koch, 2008). Cur-
rently, the nature of bottom-up and top-down control
of eye-guidance is largely an open problem.

We investigated the contribution contrast and edge
density as well as image semantics to the selection of
fixations in images. Unlike the majority of earlier stud-
ies, the statistics of the tested images were experimen-
tally manipulated, and the degree of change in fixation
locations caused by the manipulations was measured.
The degree of change was quantified over three image
categories: Images containing faces, images with man-
made objects, and images depicting scenes with rather
neutral semantics. The semantic information disper-
sion (SID) was calculated for each image by letting sub-
jects position boxes over the one region in each image
that best conveyed the information of the whole im-
age. The average spatial box-overlap across subjects
defined the SID. Face images had the lowest SID fol-
lowed by man-made objects and the neutral category.
In the images containing faces, contrast was either re-
duced away from, or toward the face area. In the other
two image categories, contrast was reduced away from
one of four candidate points.

ROC analysis was used assess whether contrast and
edge density around fixated image patches could be
discriminated against the same features at control lo-
cations. In agreement to several previous studies (e.g.,
Reinagel & Zador, 1999; Parkhurst & Niebur, 2003),
and despite the contrast modifications introduced in
the images, both contrast and edge density were found
to be elevated at fixated positions. Moreover, an-
other previously reported observation (Parkhurst et al.,
2002), that the correlation between features and fixa-
tion locations are highest early after image onset, was
also found in our analysis, although this tendency was
weak. Interestingly, these overall results showed vary
across the image categories.

To quantify how contrast manipulations affect where
people look, each image was presented in two versions
to the subjects; each version had its contrast reduced at
different image regions. The 2-D correlation coefficient
between the fixation densities of people looking at the

two versions was computed to measure the magnitude
of change in fixation locations. Fixation locations in im-
ages from the ’face’ category, with the lowest SID, were
least affected by contrast manipulations, whereas fixa-
tion locations in images from the ’man-made’ and ’neu-
tral’ categories where increasingly affected as a func-
tion of increasing SID. To investigate whether these
observations across image category were reflected in
terms of fixated image content, further ROC analyses
were performed on contrast and edge density for each
image category separately. ROC analyses revealed that
the ability for contrast and edge density to discriminate
fixated locations from control locations varies heavily
on image category (and thus SID). Images from the
’neutral’ category has the best discrimination with up
to 70%, whereas the other two categories had lower
discriminabilities, but still above change performance.
The poorest discrimination was found when analyzing
only those images where faces were reduced in con-
trast; in this case, contrast and edge density were not
different between fixated and control locations. In sum-
mary, we found to systematic discrimination in con-
trast and edge density between fixated and control lo-
cations, and the degree to which these features influ-
enced fixation selection showed to vary across image
category.

Recently, it has been debated whether low-level fac-
tors more heavily influence where people fixate early
after image onset compared to later in viewing. For ex-
ample, Parkhurst et al. (2002), suggested that saliency
(see Itti et al., 1998) contributes more to fixation selec-
tion during the first fixation and thereafter slowly de-
creases over successive fixations, however still above
chance level. To address this issue, we compared the
influence of contrast and edge density on the initial fix-
ation location. Again, the results varied heavily over
the image categories. The effect reported by Parkhurst
et al. (2002) was found in the low-SID, ’neutral’ cate-
gory. However, it was not consistent over the image
categories. In fact, the opposite effect was found when
regions rated as semantically important, such as faces,
were reduced in contrast; subjects’ initial fixations in-
stead landed on regions with low contrast and edge
density. Overall, this argues against a causal link be-
tween low-level features and fixation locations, at least
for images with low SID. For high-SID images with
neutral semantic content it may be argued that, since
objects with high-level semantic interest are largely ab-
sent, bottom-up features to a larger extent influence
where people look. However, even though the correla-
tion between bottom-up features and fixated locations
is higher in this case, it cannot be ruled out that other
high-level mechanisms still control fixation selection.

According to a bottom-up, saliency framework, re-
ducing the low-level signal strength would yield an
obligatory shift in fixation density toward regions with
a retained, high signal strength. Even though this effect
was present overall in our data, it was not stable over
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different image categories and different types of con-
trast manipulations. Rather, the results found in this
paper suggest that regions with high semantic impor-
tance attract fixations regardless of their saliency. How-
ever, even though our results do not support a causal
link between saliency and fixation locations, it has been
shown that what is judged as interesting coincides with
regions of high saliency in typical real-world scenes
(Henderson et al., 2007; Elazary & Itti, 2008). This may
in part explain previous results emphasizing bottom-
up control of eye-movements.

An issue related to this study concerns how low and
high spatial frequencies are related to fixated image
content. We have in this paper analyzed fixated con-
tent at rather high spatial frequencies. For example,
the filters we used were of size 3× 3 pixels and oper-
ated on images of size 1024×768pixels. Consequently,
only image variations with high detail were extracted,
whereas coarser variations were not captured by these
filters. Mannan et al. (1995); Mannan, Ruddock, and
Wooding (1996) investigated how low pass filtering of
an image affects where people look. They found that
during the first 1.5 seconds of viewing, people fixate
the same locations in the original image as in the low
pass filtered version of this image. Since only the low
frequency content is shared between these versions,
this suggests that a representation based on low spa-
tial frequencies could be responsible to guide fixations.
In this sense, a saliency map operating on lower spa-
tial frequencies could account for the results found in
this paper. This line of argumentation has some sup-
port considering images from the ’face’ category only;
contrast manipulations dominantly attenuating higher
frequencies have little influence on where people look,
and faces are looked at regardless of their contrast lev-
els. However, it seems more plausible that face regions
are looked at because of their known semantic impor-
tance than because of some low-level account. More-
over, images from the ’neutral’ category directly over-
throw this assumption since fixation locations showed
to be directly affected by contrast manipulations in this
case.
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