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Abstract

Modern graphics hardware pipelines create photorealistic images with high geo-
metric complexity in real time. The quality is constantly improving and advanced
techniques from feature film visual effects, such as high dynamic range images
and support for higher-order surface primitives, have recently been adopted.
Visual effect techniques have large computational costs and significant memory
bandwidth usage. In this thesis, we identify three problem areas and propose new
algorithms that increase the performance of a set of computer graphics techniques.
Our main focus is on efficient algorithms for the real-time graphics pipeline, but
parts of our research are equally applicable to offline rendering.
Our first focus is texture compression, which is a technique to reduce the memory
bandwidth usage. The core idea is to store images in small compressed blocks
which are sent over the memory bus and are decompressed on-the-fly when ac-
cessed. We present compression algorithms for two types of texture formats. High
dynamic range images capture environment lighting with luminance differences
over a wide intensity range. Normal maps store perturbation vectors for local
surface normals, and give the illusion of high geometric surface detail. Our com-
pression formats are tailored to these texture types and have compression ratios of
6 : 1, high visual fidelity, and low-cost decompression logic.
Our second focus is tessellation culling. Culling is a commonly used technique in
computer graphics for removing work that does not contribute to the final image,
such as completely hidden geometry. By discarding rendering primitives from fur-
ther processing, substantial arithmetic computations and memory bandwidth can
be saved. Modern graphics processing units include flexible tessellation stages,
where rendering primitives are subdivided for increased geometric detail. Images
with highly detailed models can be synthesized, but the incurred cost is significant.
We have devised a simple remapping technique that allows for better tessellation
distribution in screen space. Furthermore, we present programmable tessellation
culling, where bounding volumes for displaced geometry are computed and used
to conservatively test if a primitive can be discarded before tessellation. We in-
troduce a general tessellation culling framework, and an optimized algorithm for
rendering of displaced Bézier patches, which is expected to be a common use-case
for graphics hardware tessellation.
Our third and final focus is forward-looking, and relates to efficient algorithms for
stochastic rasterization, a rendering technique where camera effects such as depth
of field and motion blur can be faithfully simulated. We extend a graphics pipeline
with stochastic rasterization in spatio-temporal space and show that stochastic mo-
tion blur can be rendered with rather modest pipeline modifications. Furthermore,
backface culling algorithms for motion blur and depth of field rendering are pre-
sented, which are directly applicable to stochastic rasterization. Hopefully, our
work in this field brings us closer to high quality real-time stochastic rendering.
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1. INTRODUCTION

Figure 1: The left image shows a simple three-dimensional scene with a set of geometric
models, a camera, and a light source. On the right side is the rendered image from the
camera’s point of view, with materials applied to all the objects. By carefully computing the
interaction between lights and materials, a realistic image can be obtained.

1 Introduction

In the field of computer graphics, collections of three-dimensional geometric mod-
els are transformed into realistic-looking images. A scene description is created
by positioning models into the scene, assigning materials and adding light sources.
The scene is viewed from a virtual camera and the interactions between lights
and materials are computed from that viewing position. The result is a computer-
generated image. Figure 1 shows a simple scene with five objects, each with a
unique material. The process of computing the color of each pixel on screen from
a three-dimensional scene description is often referred to as rendering an image.
The ability to visualize three-dimensional objects by rendering realistic images
has widespread use. Medical visualizations help doctors diagnose symptoms and
prepare for surgery. In biology, complex three-dimensional structures of proteins
and other substances are better understood when visualized. In computer-aided
geometric design, virtual prototypes of new products, such as cars and houses, can
be presented to the client with the option to interactively replace the materials and
colors. This enables more control and reduced costs during product development.
Several geographic map applications allow for three-dimensional navigations di-
rectly in a browser, and with the HTML5 standard, low-level 3D graphics APIs,
such as WebGL [36] are under development, which support interactive rendering
of three-dimensional scenes in web browsers. The most widespread use of com-
puter graphics, however, is in the entertainment industry, which includes computer
games and visual effects in feature films and advertising. Most recent feature films
include computer graphics to some degree. These effects are often obvious, such as
when an extinct dinosaur attacks a car, but can be more subtle, as when a camera,
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INTRODUCTION

capturing an ordinary scene in a room, suddenly moves through a key hole.
In this introductory chapter, we will first introduce computer graphics rendering.
Thereafter, an overview of the graphics pipeline is presented in Section 2. In Sec-
tion 3, we summarize our contributions and research methodology. Section 4
presents texture compression and the first four papers of this thesis. Section 5
discusses culling in graphics pipelines and introduces the following three papers.
Section 6 describes stochastic rasterization, which is related to the two remaining
papers. Finally, in Section 7, we conclude the thesis and present a few directions
for future work.
Rendering can be broadly divided in two categories, namely offline and real-time
rendering. The focus of this thesis is on the latter, but we will give a brief summary
of both aspects to give more context to our work. Furthermore, the two categories
are converging, as faster processors and better algorithms allow for more advanced
visual effects at interactive frame rates.

1.1 Offline Rendering

In offline rendering, hours or even days are spent on rendering a single high quality
computer generated image. Visual quality is the top priority, and realistic camera
models and advanced simulations of light and material interaction are used to cre-
ate stunning, often photorealistic images. Use cases include, for example, feature
films, high-end commercials, architectural prototypes, and product visualizations.
Visual effects departments at the big production houses often work for years on
each feature film to create spectacular visual effects, using massive computational
resources. Big render farms with thousands of processors [43] are used, with ren-
dering times on the order of hours per frame. Great care is taken to match computer
generated content with live action footage.
To generate photorealistic images, one needs to solve the so called rendering equa-
tion [30]:

Lo(x,ω) = Le(x,ω)+
∫

Ω

fr(x,ω ′,ω)Li(x,ω ′)(ω ′ ·n)dω ′. (1)

A thorough discussion of this equation is beyond the scope of this thesis. Please
refer to Jensen’s book [29] for a detailed discussion of the involved terms. At a
high level, this equation states that the outgoing radiance,1 Lo, from one surface
point x, in the direction ω , is the sum of the emitted radiance, Le, from x in the
direction ω and the total radiance which is scattered towards x from all directions
ω ′ over the hemisphere Ω. The term fr(x,ω ′,ω) is the bidirectional reflectance
distribution function (BRDF), which returns the proportion of light reflected from
the direction ω ′ towards the direction ω at position x. Loosely speaking, the BRDF
determines the surface material properties.

1Radiance is the amount of light that passes through or is emitted from a particular area, and falls
within a given solid angle in a specified direction.

2



1. INTRODUCTION

Solving this equation involves computing the interaction of light for all primitives
in the scene, which is a daunting task. A large collection of algorithms has been
proposed to approximate the rendering equation, often involving tracing a large
number of rays that bounce around in the scene or by computing the light trans-
fer between pairs of surface elements. Typically, the algorithms require efficient
sampling of the entire scene from any point within its bounds. An important area
of computer graphics research concerns data structures for holding and querying
the scene hierarchy and efficient scene traversal strategies. For a detailed overview
of the field of physically based rendering, please refer to Pharr and Humphreys’
book [44]. The memory access patterns of graphics sampling algorithms are of-
ten incoherent. For example, Monte Carlo methods that estimate hemispherical
integrals (e.g. the integral over Ω in Equation 1) may trace a set of randomly dis-
tributed rays from a large set of surface points. Efficient geometry caching schemes
are difficult to implement, which makes rendering of scenes with high geometric
complexity a challenging task.
To circumvent the need of building and storing traversal structures of the scene
geometry in memory, the REYES architecture [13] approaches the problem some-
what differently. The initial design goals included managing massive amounts of
highly detailed geometry, high-quality anti-aliasing, and camera effects like mo-
tion blur and depth of field. By sacrificing support for secondary ray effects, such
as true reflection rays and indirect illumination, each geometric primitive is only
processed once, and can be streamed through the pipeline. Furthermore, each
geometric primitive is recursively subdivided into grids of pixel-sized primitives,
called micropolygons. These are then displaced and shaded in wide SIMD-batches.
Each generated micropolygon is visibility tested at a rate decoupled from the shad-
ing rate. Such a renderer is denoted a micropolygon renderer. Pixar’s Render-
Man [2, 13] renderer was designed around these concepts, and is highly popular in
the visual effects industry, partly due to the ability to handle vast amounts of ge-
ometric complexity, but also due to a flexible shading system with programmable
materials. Movies such as Toy Story were rendered using a micropolygon ren-
derer, and although the geometric detail is high, the absence of highly reflective
materials and advanced lighting effects is rather obvious.
Currently, most offline visual effects use a combination of micropolygon and phys-
ically based renderers depending on the look of the particular shot. Each ren-
derer outputs large sets of layers which are composited together in post-processing
passes. One could easily conclude that visual effects can be created more effi-
ciently today. A large number of algorithms for efficient offline rendering have
been published over the last decades [44]. Furthermore, for more than 40 years,
the number of transistors per unit area in computer hardware has doubled approx-
imately every two years, following Moore’s law [40]. Many computer graphics
techniques can indeed be generated in shorter amount of time today, but in gen-
eral, the additional processor resources and algorithmic improvements have in-
stead largely been invested in the creation of even more advanced visual effects
within the same time-budget. The total production time remains approximately
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constant [24]. Looking forward, we anticipate a continuing strong demand for
high quality computer graphics. Currently, 3D cinema and television are gain-
ing momentum and display resolutions are still increasing. Both these trends will
require even more computational resources and efficient rendering algorithms.

1.2 Real-Time Rendering

In real-time rendering, interactivity is critical, because it allows the end user to
move the camera, change material parameters or move objects around in the scene,
for example. Applications include computer games, scientific visualizations, flight
simulators, 3D in web browsers, and pre-visualizations for feature films. To meet
these needs, coarser approximations to the rendering equation (Equation 1) are
used, where effects such as reflections and soft shadows are approximated instead
of being sampled with a large number of rays. Similar to the REYES architecture
discussed above, the requirement of holding the entire scene hierarchy in mem-
ory has been removed and the geometry is instead streamed through a graphics
pipeline. Each primitive is processed in turn and then discarded. A streaming
model is more amenable for a hardware implementation as complex hierarchical
scene representations are avoided. For performance reasons in real-time rendering,
primitives are typically not subdivided to pixel-sized polygons as in the REYES
architecture, and camera effects such as motion blur and depth of field are not sup-
ported directly. However, many effects can be approximated by rendering multiple
passes and combining them. A thorough overview of real-time rendering is given
in the book by Akenine-Möller et al. [1].
In offline rendering, visual fidelity is the end goal, where each individual image
may take hours to render. In real-time rendering, an interactive frame rate is a re-
quirement, which limits the output to the best possible rendered image that can be
obtained in less than, say, 40 ms. To make the problem more constrained, the form
factors of consumer computational devices are decreasing. Power consumption
and heat dissipation are often the limiting factors.
To attack this problem, dedicated hardware has been designed for real-time ren-
dering, where billions of triangles are streamed through the pipeline every second.
Great effort is put into reducing memory bandwidth usage and power, by, for ex-
ample, using compressed data formats and fixed function processing units for some
tasks. To retain flexibility, the graphics hardware pipeline also contains a number
of programmable stages, similar to REYES, which allow for geometry displace-
ments, animations, and a wide range of user-defined materials. With dedicated
hardware and a graphics pipeline programming model that extracts the inherit par-
allelism in computer graphics rendering, visualizations that a decade ago required
a server rack the size of a refrigerator can now be rendered in real time on a smart-
phone.
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2 The Graphics Pipeline

In this section, we discuss the graphics pipeline in order to provide context to
the new compression, culling, and stochastic rasterization algorithms presented in
this thesis. We start by motivating the need for dedicated graphics hardware and
the concept of a graphics pipeline, followed by a description of each stage of a
modern graphics pipeline. In upcoming sections, we will focus on performance
improvements for this model with further details regarding our contributions.
As an initial example, consider increasing the contrast of a full screen photograph
displayed on a computer display. The display contains a large number of picture
elements, pixels, each representing a unique color value at one point on the display.
The task of increasing the contrast of the photograph is equivalent to increasing the
contrast of each individual pixel. In computer science terminology, this translates
into executing a short program, that takes the pixel’s color value as input and out-
puts a modified color value, for every pixel on screen. A modern display contains
more than two million pixels, which makes even a simple operation expensive
when computed over all pixels.
Note that many instances of the same program are executed independently over
different data (in this case, pixels). Hence, this is a massively parallel problem.
In general, computer graphics workloads have similar characteristics to our initial
example, where one program, denoted a shader, is executed over, e.g., a large num-
ber of pixels or geometric primitives. Geometric primitives are often represented
by meshes of triangles, and each point in such a mesh, describing a point in space,
is denoted a vertex. Vertex shaders and pixel shaders are the most commonly used
shader programs in real-time graphics pipelines.
Dedicated graphics hardware is designed for these large parallel workloads. In-
stead of having one, or a few, complex processors, large sets of simpler processors
are packed together in wide SIMD units, where each set share instruction fetch
and decode logic [18]. Within each set of processors, the same shader program is
executed with different data for each pixel. Similar computations are executed for
large blocks of pixels, and at one extreme, one processing unit can be attached to
each pixel [20].
The set of packed SIMD-processors are called shader cores, which are designed
for high arithmetic throughput and to cope with long latencies. Each shader core
has a small amount of local memory and high bandwidth to the graphics proces-
sor’s memory system. Shader programs commonly request values from images,
which are denoted textures, stored in the graphics card’s memory. Textures are
presented in further detail in Section 4.
The graphics pipeline abstracts the underlying hardware details from the graph-
ics programmer, while providing a restricted programming model that expresses
the inherent parallelism in rendering. For example, each vertex of a geometric
model can be transformed in parallel and each pixel can be colored independently.
The current graphics pipeline has evolved from a fixed-function pipeline to a pro-
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Input model Tessellated model Shaded model

Figure 2: The graphics pipeline takes three-dimensional models as input, positions the
models, adds geometric detail, and applies materials and lighting.

grammable pipeline, where many of the stages execute user-provided shader pro-
grams [7, 22, 49].
In a simplified form of the pipeline, the graphics programmer writes a shader that
determines how one individual vertex should be transformed and another shader
that contains instructions of how the color of one pixel should be computed. The
underlying hardware then schedules and dispatches all instances of vertex and
pixel shader programs. This scheduling process is completely hidden from the
user. The different shader programs are applied to a large set of primitives, and
have clearly defined frequencies of operation, such as geometry transforms on ver-
tex level and shading at pixel level.
At a coarse level, the graphics pipeline can be divided into three main stages: ge-
ometry processing, where three-dimensional models are positioned and animated.
Additionally, the input geometry can be refined if needed. Rasterization follows
next, where the visibility of each primitive for a specific camera position is deter-
mined. Finally, in the pixel processing phase, materials are applied to the visible
parts of the geometry and the pixel color is computed and written into the resulting
image. Figure 2 shows this process for a single mesh.
In the next subsection, we will give a brief overview of the stages in a modern
graphics processing unit (GPU).

2.1 The Graphics Hardware Pipeline

In the presentation below, we use a simplified version of the recently introduced
Direct 3D 11 graphics pipeline [14] as a basis for our discussion. For clarity of
description, we have omitted the geometry shader [7] and the compute shader [10],
as those stages are not directly relevant for the work presented in this thesis.
The pipeline consists of both fixed-function and programmable stages. All pro-
grammable stages of the pipeline can access texture images through the GPU’s
memory system. Figure 3 shows a schematic overview of this pipeline. We start
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Figure 3: A simplified GPU pipeline. At the top, three-dimensional models are fed to the
pipeline. These are positioned in space, and optionally geometric detail is added in the tes-
sellation stages (dashed box). On-screen visibility is determined in the rasterizer. Materials
and lighting are then applied in the pixel shader. The green stages represent programable
pipeline stages. Note that many stages interact with the memory system.

from the top, where geometry data from the application is received at the graph-
ics processor. Three-dimensional models are represented as collections of trian-
gles, quadrilaterals or higher order primitives, where the latter are parametric sur-
face patches. In addition to geometric primitives, the application uploads shader
programs for the programmable stages and buffers holding constant values and
specific rendering state, such as tessellation method, light positions, and camera
parameters. A set of texture images needed for the shader programs are also up-
loaded to the GPU’s memory system. With this information available from the
application, we are ready to step through the pipeline stages.

Input Assembler The first stage of the pipeline reads arrays containing vertex
data, such as arrays of positions, normal vectors and texture coordinates, and as-
sembles vertex structures from the individual arrays. The members of the vertex
structure are called vertex attributes, Often, a separate index list with offsets into
the vertex arrays is used for more compact storage, and to avoid transforming the
same vertex more than once. The assembled arrays of vertex structures are then
sent to the next stage of the pipeline, the vertex shader. Consecutive indices in the
arrays form rendering primitives, typically triangles.
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Vertex Shader The vertex shader is a user-provided program executed once for
each vertex structure in the assembled vertex array. The program outputs a trans-
formed position and all attributes needed by shader programs later in the pipeline.
A minimal vertex shader takes a three-dimensional position, expressed in a coor-
dinate system local to the geometric object, and multiplies it with a matrix that
transforms the position into the camera clip space. This is a coordinate system in-
dependent of the scene scale, convenient for clipping operations against the cam-
era’s view volume. The vertex shader program can, as all programmable shader
stages, access texture images through the graphics processing unit’s memory sys-
tem and use those values in the computation of the transformed vertex position.
Other vertex attributes, such as normal vectors and texture coordinates can also be
modified in this stage. If the tessellation stages are enabled, the vertex structures
do not represent geometric positions, but animated patch control points, which are
passed on to the hull shader stage. If tessellation is disabled, the vertices are sent
directly to the rasterizer.

Hull Shader The following three pipeline stages interact to support flexible ge-
ometry amplification. These are the hull shader, a fixed-function tessellator, and
the domain shader. The hull shader interprets the transformed positions from the
vertex shader as control points for a parametric patch. In the graphics pipeline,
parametric patches are represented by a set of control points and a parametric sur-
face domain. They are evaluated and tessellated into a large set of small triangles
in the two downstream tessellation stages. The hull shader is applied to the con-
trol points of an input patch, and has two tasks. First, a user-provided program is
executed per control point of the input patch, typically to change the patch’s con-
trol point basis. The transformed control points are passed directly to the domain
shader. The second task is to execute a user-provided program that computes tes-
sellation factors for the edges of the patch, which are provided to the next stage,
the tessellator.

Tessellator This is a fixed-function unit that, given a patch, tessellation factors
from the preceding hull shader, and state parameters, generates a set of barycentric
coordinates and connectivity in a planar domain inside the patch. In modern GPU
pipelines, the tessellator works on triangular and quad patches and has a set of
modes, including uniform and fractional tessellation, where the latter tessellation
algorithm enables smoothly varying surface detail. The barycentric positions are
fed into the next pipeline stage.

Domain Shader This program is executed once for each generated barycentric
position from the tessellator and outputs a displaced vertex. Figure 4 shows the
domain shader executed on all points within a triangular patch. The shader has ac-
cess to the transformed control points from the hull shader, and typically evaluates
a parametric surface, such as a bi-degree Bézier surface, at a certain parametric
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Figure 4: A triangular surface patch (left) is tessellated into a mesh of triangles (middle),
and a domain shader ( f ) is executed at each vertex of the mesh to create a highly detailed
surface (right). The green point shows one barycentric position within the patch, where one
instance of the domain shader is executed.

coordinate. Additionally, the shader may use texture images to add local surface
detail. When the tessellation stages are enabled, the domain shader takes the role
of the vertex shader, and transforms the geometric positions into the camera clip
space. The transformed vertices are then passed on to the rasterizer.
The three tessellation stages are not as flexible as the adaptive split-dice tessellation
algorithm [32] used in REYES offline rendering. However, recent research has
shown that the tessellation stages can be combined to represent advanced surface
representations, such as animated approximate subdivision surfaces [33, 34].

Rasterizer The first task of the rasterizer is to set up triangles from consecutive
indices in the vertex arrays. After triangle setup, the next task is to determine which
pixels on screen that are covered by each triangle. At this point in the pipeline, the
triangles have been transformed by the vertex or domain shader into the camera
clip space. The rasterization stage handles clipping of primitives to the view vol-
ume and performs culling operations, which are further described in Section 5.
After clipping and culling, the clip space coordinates are projected on screen and
visibility is determined. There are several traversal strategies for the visibility test.
One simple approach is to, for each triangle, compute a bounding box on screen
and for each screen space visibility sample within this bounding box, test if the
sample is covered by the triangle. This process is called scan conversion or raster-
ization. Figure 5 shows the rasterization process for two overlapping triangles in
screen space.
To determine if the triangle covers a certain screen space sample position, a com-
mon technique is to represent each triangle edge by a linear function, which has
a value greater than zero on one side of the edge and less than zero on the other.
By evaluating these three edge functions for a screen space sample position and
looking at the resulting signs, the inside status can be determined [45].
More efficient rasterization approaches include hierarchical visibility testing, where
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Figure 5: The rasterization process for two triangles. All pixels in the bounding box of each
triangle are tested. If the triangle covers the pixel center, a fragment is generated. In this
example, only the fragment closest to the camera is stored for each pixel.

tiles of sample positions are coverage tested. Rasterization can be performed in
screen space after clipping [38], or directly in homogeneous coordinates [37, 41].
If a sample is covered, a fragment is generated. For each covered fragment, the
vertex attributes are interpolated using the triangle’s barycentric coordinates at the
sample’s hit point. The interpolated vertex attributes, including the depth at the hit
point, are stored in the fragments. The fragments are then sent to the next pipeline
stage, the pixel shader. In most graphics hardware pipelines to date, the rasterizer
is a fixed-function unit.

Pixel Shader The rasterizer outputs a set of covered sample positions for each
triangle, and the next step is to determine the color of these fragments. For each
fragment generated by the rasterizer, the final color is computed by a user-defined
program, representing a surface material, that takes the fragment’s interpolated
attributes as input. These pixel shader programs often contain several texture map
lookups and advanced material descriptions, that take the local surface normal and
the light sources in the scene into account.
Returning to Equation 1, the bi-directional reflection distribution function (BRDF),
fr(x,ω ′,ω), is an important building block in pixel shaders, as it describes how
the surface interacts with light and is a function of the incoming (ω ′) and outgoing
(ω) light direction for each surface point x. To determine the radiance at a specific
surface point, the contribution from all incoming light directions are accumulated
to determine the total outgoing radiance in the viewing direction determined by
the current pixel and the camera origin. This radiance is stored as the pixel color.
Figure 6 shows a set of pixel shaders with different characteristics applied to five
spheres.
Pixel shader programs request textures from memory using dedicated hardware for
accelerated filtered texture lookups. The pixel shader program is often the main
performance bottleneck in terms of both execution cycles and memory bandwidth
usage in graphics workloads, mainly due to the vast number of fragments that are
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Figure 6: A set of different pixel shaders applied to five spheres.

needed to generate an image.
The pixel shader is followed by a depth test, and if the pixel shader is guaranteed
not to modify the depth interpolated in the rasterizer, this test can sometimes be
moved before the pixel shader. For fully opaque fragments overlapping the same
sample, the depth values of the currently processed sample is compared to the
value stored in a depth buffer. The depth test is configurable, and a commonly
used test is less than: only if the current fragment’s depth is closer than the depth
buffer value, the current color value is written to that sample position in the frame
buffer, and the corresponding entry in the depth buffer is updated. The same test,
but on a coarser depth buffer, can be performed earlier in the pipeline, and is called
occlusion culling. This culling technique will be further described in Section 5.

Output Merger In the final stage of the GPU pipeline, shaded fragments are
blended into the frame buffer, taking color and transparency of each fragment into
account. Once the entire scene has been fully processed, the resulting color buffer
is displayed on screen. The output merger is typically a fixed-function stage, with
a user-configurable blending mode.

3 Contributions and Methodology

This thesis presents a collection of algorithms that reduces the computations and
bandwidth requirements needed to render high quality images. The end goal is
higher visual quality within the same computational budget, or consistent visual
quality with computational savings. The algorithms we have developed are de-
signed to fit in modern graphics pipelines, harnessing their strengths and reducing
some of the bottlenecks, both in terms of computational requirements, memory
bandwidth usage, and power consumption. Our contributions can be divided into
three subcategories: texture compression, tessellation culling, and stochastic ras-
terization. All three categories aim to improve the graphics pipeline, and in Fig-
ure 7, we show which parts of the pipeline the different algorithms apply to.
To reduce memory bandwidth usage, we present texture compression formats, de-
signed to respect graphics hardware constraints such as fast random access and
minimal decompression complexity. We present block-based compression for-
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Figure 7: The graphics pipeline with notes summarizing, for each paper in this thesis, which
aspect of the GPU pipeline they improve.

mats for high dynamic range textures and normal maps, which are two texture
types with extended bit depths compared to standard digital images. Texture com-
pression formats developed for standard images are not directly applicable. If
texture formats with high bit rates are used uncompressed, they consume a large
amount of memory bandwidth. Our research addresses this problem by presenting
new compressed formats for these texture types, with compression ratios of 6 : 1,
simple decompression logic, and high visual quality.
For this research project, we have constructed a framework where floating-point
images can be compressed and decompressed. Here, new compression algorithms
can easily be prototyped and carefully evaluated with a set of image quality met-
rics. Visual quality evaluation of high dynamic range image compression tech-
niques is an active field of research [35], and we present a new error metric for
comparing high dynamic range textures. More details about texture mapping in
general and our compression algorithms are given in Section 4.
To approach the problem of tessellation culling, we used a software graphics
pipeline simulator framework developed in the graphics group at Lund Univer-
sity by Jon Hasselgren and Tomas Akenine-Möller. We extended this simulator
with tessellation stages, allowing us to implement tessellation culling algorithms
and measure their efficiency on relevant workloads.
Here, the core contribution is two culling algorithms that, by careful analysis of
the programmable tessellation shaders, can discard rendering primitives even be-
fore they reach the fixed-function tessellator of a GPU pipeline. Primitives are
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discarded only if they are guaranteed not to contribute to the final image. The
culling algorithms are therefore conservative, which means that the resulting im-
age, rendered with culling enabled, is identical to the image rendered with culling
disabled. The evaluation focus in this part of the research was therefore on the in-
curred cost of executing the culling, versus the costs saved by removing rendering
primitives from downstream processing. The efficiency of the culling algorithms
for various workloads was also measured. The presented culling techniques apply
both to real-time graphics pipelines and to offline REYES-like renderers.
During this research project, we also devised a remapping technique to obtain bet-
ter tessellation quality given a fixed tessellation rate. By warping the barycentric
coordinates output from the tessellator, a more uniform tessellation distribution in
screen space is obtained. Tessellation culling techniques for the graphics pipeline
and our algorithms are discussed further in Section 5.
With a graphics hardware pipeline simulated in software at hand, we also investi-
gated how to extend this pipeline to handle stochastic rasterization. The visibility
test in a standard rasterizer was generalized to handle moving primitives, with
generalized time-dependent edge equations for visibility testing. Furthermore,
new texture formats storing unique samples for each time interval were developed,
which allowed for motion blurred shadows and reflections. Finally, we developed
generalized, conservative backface culling tests for the case of motion blur and
depth of field.
To evaluate image quality, the stochastic rasterizer was compared with accumula-
tion buffering, which is a workaround to obtain high quality motion blur on current
GPUs, where the fixed-function rasterizer cannot be configured to handle the tem-
poral dimension. The evaluation focused on visual quality and memory bandwidth
usage. For the generalized backface culling tests, we investigated the need of a
truly conservative backface test in the presence of motion blur and depth of field,
and estimated the computational overhead of correct backface culling. More de-
tails about stochastic rasterization and our algorithms are given in Section 6.
My main supervisor, Tomas Akenine-Möller, has been actively involved in all the
research projects presented in this thesis, including algorithmic design and in writ-
ing the articles.
In summary, the goal of the research presented in this thesis is to allow for more
advanced visual effects in real-time rendering, by cleverly compressing data, re-
moving unnecessary work, and adapting stochastic rasterization to fit into modern
graphics pipelines. In the next sections, each of these topics is discussed in fur-
ther detail, starting with texture compression, followed by culling techniques, and
stochastic rasterization. In each focus area, the individual papers are introduced
and briefly discussed.
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4 Texture Compression for Graphics Hardware

As mentioned in Section 2, the programmable shader stages of the graphics pipeline
often need access to textures in memory. Our first focus is to reduce the memory
bandwidth usage between the shader cores and the GPU’s memory system (see
Figure 7 and Figure 8).
A single pixel shader program may access many different textures, and as these
programs are executed over millions of pixels, the memory bandwidth usage caused
by the texture accesses can become a bottleneck in the graphics pipeline. For
example, an advanced skin shader may use more than fifteen different texture
maps [17].
Texture compression is a widely used technique to reduce this bandwidth usage.
The first part of this thesis presents a set of new compressed texture formats tar-
geting textures with floating-point values per channel. Before discussing these
algorithms in detail, we give a brief overview of texture mapping.

4.1 Texture Mapping

In general, a set of attributes is attached to each triangle vertex, containing, for
example, a normal vector, color values, and texture coordinates. For a fragment
generated by the rasterizer, texture coordinates specified at each vertex are inter-
polated to give a unique position within the texture for that fragment. The interpo-
lated texture coordinates are used to access a small set of texels in a texture image
stored in memory. This technique can, for example, be used to paste “decals” onto
a three-dimensional model.
Texture maps are used in many places in the graphics pipeline. As seen in Fig-
ure 7, all programmable pipeline stages can access texture maps. Pixel shaders
often use textures to determine the diffuse and specular albedos of the surface ma-
terial. Other textures contain perturbation vectors to the shading normals (normal
mapping). Environment maps can be represented either by set of textures forming
a cube (cube map) or by a photograph of a reflective sphere, capturing the en-
tire view of the environment (sphere map). These maps can be used to simulate
highly reflective materials or to light a scene using a photograph. In Figure 1, an
environment map is used to simulate the chrome material of the teapot.
Texture maps are often stored as three-channel RGB images with 3× 8 = 24 bits
per pixel (bpp). This gives 28 = 256 values per color channel, which is suffi-
cient to represent decals, diffuse, and specular albedos. However, some texture
formats require higher bit rates for sufficient quality, such as textures represent-
ing slowly varying normal vectors. Another example is floating-point environ-
ment maps, which are commonly used in offline rendering to carefully match real
footage with rendered images [16, 47]. Vertex and domain shaders use texture
maps with higher bit rates for a technique called displacement mapping, where the
geometry is locally displaced according to a value stored in a texture image.
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Figure 8: A schematic illustration of a texture request from a shader, with and without
compression. Textures can be stored in compressed form in memory. When a region of the
texture is requested, a compressed block is sent over the memory bus, and is decompressed
by dedicated logic close to the shader cores. With this approach, the memory bandwidth
usage can be significantly reduced.

Altogether, texture mapping is a powerful technique that adds flexibility and con-
trol when designing a shader. It is very frequently used, and is an integral part
in both real-time and offline rendering to approach photorealistic rendering. The
main drawback is the added memory bandwidth usage. The gap between com-
puting power and memory bandwidth is increasing for standard CPUs, and the
compute versus memory access ratio is even higher for dedicated graphics hard-
ware [42]. In terms of energy, a memory operation from external DRAM requires
about 20−2000× the power of an arithmetic operation [15, 21]. Hence, it is criti-
cal to reduce the memory bandwidth usage as much as possible, which is the main
motivation for compressed texture representations.

4.2 Texture Compression

By storing the textures in compressed form in memory and decompressing them
on-the-fly when they are accessed, memory bandwidth usage can be traded for ad-
ditional computations. This is well-known by graphics hardware designers, and in
modern GPUs, texture maps are accessed through dedicated hardware units called
texture samplers. To allow for fast access at any position within the texture im-
age, textures are commonly divided into small blocks of, say 4× 4 texels, which
are individually compressed and stored in the GPU memory in blocks of a fixed
size. This is in contrast to commonly used image compression techniques, such as
JPEG, where variable encoding is a key to achieve high compression rates. The
blocks are decompressed on-the-fly by dedicated hardware [4, 31, 50]. Figure 8 il-
lustrates this high-level concept. Note that texture compression may in some cases
increase the level of detail, as larger, compressed texture maps can be stored in the
same amount of off-chip memory as smaller uncompressed textures.
To produce a filtered texture value, the color values of four to eight individual
texels are typically needed. High quality anisotropic texture filtering requires an
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Figure 9: S3 texture compression (S3TC/DXTC) illustrated. The color values in RGB triples
from a block of 4×4 texels are plotted in a Cartesian coordinate system, and a line is fitted
to the points. In the compression stage, each texel (blue stars) is assigned to one of four
quantized positions (red circles) along this line.

even larger set of texels. Hence, texture caches that exploit the spatial locality in
texture requests are commonly used to reduce the number of individual memory
transfers [25, 27].
Texture accesses are read-only, so the encoding of a texture into a compressed rep-
resentation is a one-time process, that can be performed offline. In contrast, the
texture will be decompressed many times during rendering, which motivates dedi-
cated decompression hardware and compression formats with fast decompression
algorithms. The design criteria for texture compressions are: minimal quality loss,
high compression rates, and low-complexity decompression.
S3 texture compression [28] (S3TC, also called DXTC) is one commonly used
scheme for compressing 24 bpp textures. It uses blocks of 4× 4 pixels that are
compressed from 16×24 = 384 bits to 64 bits, giving a compression ratio of 6 : 1.
Two base colors are stored in 16 bits (RGB565) each. These base colors form a
line segment in RGB-space. Two additional colors are placed along the line, in
between the base colors, creating a local color map of four colors. Figure 9 shows
an example of this technique. For each of the 4×4 pixels within the block, a two-
bit index is stored, assigning one of the four colors to the pixel. Finding the best
line for a set of 16 pixels in the encoding phase requires some computations, but
the decompression algorithm is very simple: decode the base colors, recreate the
four-color palette from the two base colors, and assign a value to each pixel. The
quality of the reconstructed texture is acceptable in most cases for 24 bpp textures.
Variants of this technique with more colors along the line, or more than one line
are also commonly used [14].
The first four papers of this thesis present new compression algorithms for two
types of textures used in graphics hardware pipelines; normal maps and high dy-
namic range textures. In the next two subsections, we discuss these texture types
and present our compression algorithms.
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Figure 10: A single high dynamic range (HDR) image displayed at three different exposures.
Note the different details appearing in each exposure. Due to the increased bit depth, more
image information is retained. This image is Copyright c©2004, Industrial Light & Magic,
a division of Lucasfilm Entertainment Company Ltd.

4.3 High Dynamic Range Textures

Standard texture maps use 8 bits per color channel, which is not always enough
when capturing large lighting variations. Modern SLR camera sensors use 14
bits or more per channel in their RAW formats, and to faithfully capture large
lighting variations, a 16 or 32 bit floating-point number per color channel may
be needed. A texture with a floating-point representation per color channel is
called a high dynamic range (HDR) image. These image formats are convenient
in computer graphics, as they can accurately capture the light of an environment.
Therefore, HDR images are commonly used to faithfully light computer generated
models [47]. Furthermore, with this additional information, the exposure of one
HDR image can be modified over a large range of values. Figure 10 shows three
different exposures of an HDR image with a large range of luminance values.
The main drawback is again the additional storage requirements. Compared to
a three-channel 8-bit texture with a storage cost of 24 bpp, a three channel 16-bit
HDR texture requires 48 bpp, which is a 2× increase in storage cost and bandwidth
usage. Compression formats for standard textures with lower bit rates are not
designed for HDR and give poor quality when naïvely applied.
The first two papers in this thesis, Paper I and Paper II, address this problem,
and present texture compression algorithms designed especially for high dynamic
range textures. The compression ratio is 6 : 1, which is the same ratio as standard
compression schemes for 24 bpp texture maps, such as S3TC. Our algorithm uses
a color space transform to separate the luminance and chrominance information of
the images, and introduces a set of shapes, that inexpensively capture chrominance
information within 4× 4 texel blocks. The luminance is logarithmically encoded
and stored as quantized values along a one-dimensional line, similar to the S3TC
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format, but with higher precision and more quantized values. The decompressor is
of low complexity and the visual quality is very high over a large exposure range.
Furthermore, we present new error metrics for visual quality evaluation of HDR
textures. The dynamic range of the texture allows for a wider range of possible
viewing conditions with different exposures, which makes standard image quality
metrics unsuitable.
Paper I was, together with a similar HDR texture scheme developed independently
by Roimela et al. [48], one of the two first published HDR texture compression
algorithms. Both formats were presented at the ACM SIGGRAPH conference in
2006. Their algorithm has a strong focus on minimal decompression complexity,
while our main focus is on high image quality, with a slightly higher decompres-
sion complexity. Paper II extends the compression algorithm with an additional
mode with higher chrominance quality, and discusses a set of practical details with
regards to HDR texture compression. We also show that the compression algo-
rithm can be used as a high quality mode for standard 24 bpp textures.
More recently, the Direct3D 11 graphics API included a block compression format
for HDR textures called BC6H [14].
The research presented in Paper I and Paper II was a joint project between myself,
Petrik Clarberg, Jon Hasselgren and Tomas Akenine-Möller. I was the primary
author of the two papers and contributed to the conceptual design of the algorithms,
implementation, evaluation and in writing the articles. My major implementation
focus was on the chrominance shape transform algorithms and the framework used
for evaluation of texture compression algorithms.

4.4 Normal Mapping

High geometric detail is often desired for rendering, but it comes with a high cost.
For most rendering and animation algorithms, the performance degrades signifi-
cantly when the geometric detail is increased. Geometric complexity is therefore
one important knob in trading rendering speed for quality. For small geometric
features, a commonly used approximation is to store a perturbed shading normal
in a texture image, which changes the local appearance of the surface’s interaction
with light [6]. Figure 11 illustrates this technique. This is a convincing approxima-
tion in the interior of a mesh, but as the true geometry is unmodified, the object’s
silhouette is left unchanged. Also, local self-shadowing is not captured. Still, this
is an extremely wide-spread technique for real-time graphics.
Similarly to HDR textures, the main drawbacks with normal mapping are again the
storage costs and added texture bandwidth usage. Normal maps stored at 24 bpp
are not always sufficient to represent smoothly varying normals fields, and offline
rendering and modeling applications support normal maps with 16 and 32 bits per
vector component for higher quality. Furthermore, texture compression formats
designed for standard color texture maps do not perform well on normal data [3].
In Paper III, we introduce a normal map compression format that extends ATI’s
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Figure 11: Normal mapping. Left: a coarsely tessellated mesh is rendered with a plastic
material using the face normal of each facet of the mesh for shading. Right: the local
surface normal is perturbed with a vector fetched from a texture at every pixel, which gives
the illusion of increased geometric detail. The elephant model and normal map are courtesy
of Pixologic Inc.

normal map compression format 3Dc [3] with a set of new compression modes
for higher quality, but with the same compression rate and retained backwards
compatibility. The 3Dc format encodes the xy-components of the normal as two
separate channels. A one-dimensional S3TC-like algorithm is used for each chan-
nel, so the algorithm can be seen as creating a grid of uniformly distributed sample
points in the xy-plane. The third normal component, z, is reconstructed from the
xy coordinates by using the constraint that normal vectors have unit length. In
our algorithm, we exploit the correlation between the x and y channels for higher
quality. Our additional modes use rotated coordinate frames, variable point dis-
tribution, and differential encoding which results in a compression format with
higher image quality on our set of test images. The additional cost is a slightly
more expensive decompression algorithm.
Paper IV presents a similar normal map compression algorithm which is more
robust for directed features in normal maps. Inspired by the shape transform en-
coding from our HDR texture format (Paper I), we use two points and a scale
factor to encode a local two-dimensional coordinate frame that tightly enclose the
normals in a 4× 4 texel block. It is equivalent to, or better than, previous algo-
rithms on a large set of normal maps. However, it comes with a slightly higher
decompression cost and is no longer backwards compatible with 3Dc. Both pa-
pers include visual quality analyses using appropriate error metrics and high-level
hardware decompression proposals.
This was a joint research project with Jacob Ström, Ola Olsson and Tomas Akenine-
Möller. I was the primary author of both papers and contributed in writing the pa-
per and in all parts of the algorithm design, implementation, and evaluation, except
for the hardware decompressor proposals.
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5 Geometry Culling Techniques

The second focus of this thesis concerns geometry culling for the graphics pipeline.
Returning to Figure 7, the task at hand is to reduce the geometry amplification in-
troduced by the tessellation stages by carefully removing primitives that do not
contribute to the rendered image. In the tessellation pipeline stages, each input
primitive, typically a parametric triangular or rectangular surface patch, may be
subdivided into thousands of small triangles. This drastically increases the geom-
etry workload, as each generated triangle must be processed through the remainder
of the pipeline. Culling techniques can potentially remove many of the generated
triangles, which translates into computational savings.
Our research in this field is based on bounding the output values of domain shaders,
given a restricted input interval, so that spatial bounds for all positions within the
patch after domain shading can be computed. This allows for conservative culling
of patches even before the tessellator is invoked. We first give a brief overview
of culling techniques in the graphics pipeline, and then describe our algorithms in
detail.

5.1 Culling in Graphics Pipelines

In general, if a geometric primitive can be removed early in the pipeline, without
affecting the final image quality, a substantial amount of downstream work can
be avoided. As a result, total performance may increase. Culling techniques are
used in a graphics pipeline to remove work from further processing. Figure 12
shows the three most common culling techniques applied to geometric primitives
in a rasterization pipeline. View frustum culling removes objects that are entirely
outside the camera’s view volume. Occlusion culling removes objects completely
hidden by already drawn objects. Backface culling discards triangles whose face
normals point away from the camera.
Culling in graphics processors are typically applied in the fixed-function rasteriza-
tion unit, after the geometry has been transformed by the programmable vertex and
domain shader stages. In the rasterizer, geometric primitives are expressed in cam-
era clip space, where view frustum culling and backface culling tests have simple
expressions. Occlusion culling is commonly performed by testing the primitive
against a hierarchical coarse depth buffer [23] prior to inside testing.
Coarse view frustum and occlusion culling can also be performed on the applica-
tion side, where the programmer can avoid sending primitives, which are guaran-
teed to be outside the camera frustum, or occluded, to the graphics processor. Fur-
thermore, if tessellation is enabled, we can get substantial gains if a patch can be
culled before the tessellator, which avoids unnecessary domain shader evaluations.
However, as discussed in Section 2, many of the pipeline stages are programmable,
which means that in practice, a user-provided program may displace each vertex
to an arbitrary position. This makes conservative culling early in the pipeline, or
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Figure 12: Culling in a rasterization pipeline. From the given camera position, the only
visible parts of the scene are the triangles in the green area of the torus. All other geometry
could potentially be removed from further processing. The red region of the torus can
be backface culled, as all triangles in that region have face normals pointing away from
the camera. From the camera’s point of view, triangles in the blue region are completely
covered by geometry closer to the camera, and can be occlusion culled if the triangles are
rendered in front-to-back order. The pile of white cubes in the upper left corner can be view
frustum culled, as it is entirely outside the camera view frustum (dashed lines).

on the application side, very difficult in many cases.

5.2 Pre-Tessellation Culling

Paper VII introduces a technique which carefully analyzes the shader programs
that compute the final vertex positions. It generates conservative bounds that can
be used to cull primitives before tessellation is applied.
Figure 13 shows a triangular patch that is tessellated and displaced in a domain
shader. The input to one particular instance of the domain shader is a barycentric
coordinate, and it outputs a displaced point. If the domain shader is applied to all
barycentric positions from the tessellator, the result is a displaced patch, illustrated
to the right.
Our technique translates the domain shader into a bounding shader by expressing
each shader instruction in a bounded arithmetic. The input to the bounding shader
is a barycentric domain, which in this case is the entire barycentric domain within
the triangular patch. The bounding shader outputs a bounding box, conservatively
enclosing the entire displaced patch. This is shown in the lower part of Figure 13.
This bounding box is then used for view frustum and occlusion culling, and similar
bounds can be obtained for the surface normal’s variation over the patch, allowing
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Figure 13: The upper row shows a triangular patch (left) that is tessellated (middle), and
each tessellated point is displaced in a domain shader, denoted f . The final displaced
surface (right) is obtained by applying the domain shader to each barycentric point in
the tessellation of the patch’s domain. One particular instance of the domain shader is
highlighted in green. The lower row shows the result of our bounding shader, denoted fb,
that takes the entire barycentric domain as input and outputs a bounding box, which is
guaranteed to contain the displaced surface.

a per-patch backface culling test. The bounding shader is more complex than the
corresponding domain shader, and this technique is expected to give performance
improvements if the total cost of executing the bounding shaders is less than the
total cost of all domain shader evaluations multiplied by the culling rate.
Our algorithm is based on previous work on programmable culling techniques for
pixel shaders [26], where conservative estimates for the range of output values for
a block of pixels were derived. For tessellation culling, we use a more elaborate
bounded arithmetic, called Taylor models [5], that is adapted to the problem of
bounding domain shaders expressing higher-order surface evaluations. Our work
was evaluated in an instrumented graphics pipeline simulator framework, where
culling rates and costs of the new bounding shader stages were measured. When
the input patches are highly tessellated, the proposed technique showed significant
gains on most test scenes, making it suitable not only for GPU tessellation work-
loads but especially for micropolygon offline renderers, where all primitives are
diced into pixel-sized primitives (See Section 1.1).
The automatic tessellation culling project was joint work with Jon Hasselgren and
Tomas Akenine-Möller. I was not the primary author of this paper, but was in-
volved in all aspects of the research project. My implementation focus was on
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the tessellation system of the pipeline simulator and the support for approximate
subdivision surfaces.
The technique in Paper VII handles a large variety of domain shaders, but may
come at a high cost due to its generality. In particular, obtaining accurate bounds
for the normal vector variation over the patch can be expensive. A common use
case for the tessellation stages of a modern GPU pipeline is displaced Bézier
patches. These are often bi-cubic patches, represented by 16 control points and
a displacement texture image that stores fine-grained surface detail. This can be
seen as a compact representation of high geometric detail, and simplifies anima-
tion, as it can be performed on the control point level. Displaced Bézier surfaces
are also popular approximations of displaced subdivision surfaces [33, 34].
Paper VIII presents a bounding technique fine-tuned for this common use case.
We obtained higher culling rates at a lower cost than the general technique, mostly
due to a more efficient bounding algorithm for the surface normal. We also de-
signed and evaluated a Direct3D 11 hull shader implementation of the algorithm
that runs interactively on a modern GPU, and improves performance on a complex
tessellation example, representing approximate subdivision surfaces.
This was joint work with Jon Hasselgren, Robert Toth and Tomas Akenine-Möller.
I was primary author and involved in all aspects of the paper. My implementation
focus was on algorithmic design and evaluation.
The tessellator in a modern GPU is flexible and contains a set of tessellation modes
that allow for smooth transitions from densely to coarsely tessellated regions. One
drawback is that each tessellated patch is, except for the outer row of vertices, near-
uniformly tessellated in object space. This can be sub-optimal for large patches
seen in perspective, where the triangle distribution is denser further away from
the camera. In Paper VI, we present a simple remapping approach that warps the
distribution of points, generating a tessellation that is often more uniform in screen
space.
This was a joint project with Jon Hasselgren, Tomas Akenine-Möller and Masahiro
Takatsuka. I was primary author of the paper and involved in all aspects of the
work.
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Figure 14: A simple object (left) is animated and rendered using motion blur by stochastic
rasterization. As can be seen, the blur gives a hint of how the object is moving.

Focus at near object Focus at middle object

Figure 15: Depth of field gives an important visual cue to direct the attention of the viewer,
and is frequently used by photographers and directors. These images were rendered with
stochastic rasterization.

6 Stochastic Rasterization

For increased levels of realism, effects such as motion blur and depth of field
are needed. These effects are integral parts of offline rendering systems to create
smooth animations (decrease temporal aliasing) and to direct the viewers’ atten-
tion. The REYES architecture [13] used in RenderMan [2] supports these effects
by using stochastic sampling. This is a technique where samples are randomly
distributed over, for example, the lens area and in the time interval when the cam-
era shutter is open. With enough samples, stochastic sampling faithfully renders
effects needed for high quality rendering, such as motion blur, depth of field, and
glossy reflections. The images in Figure 14 and Figure 15 were rendered using
this technique, using samples distributed in time and over the lens respectively.
High quality depth of field and motion blur through stochastic rasterization are
computationally expensive techniques, due to the high sampling rates needed for
noise-free images. There is no direct support for stochastic sampling in current
graphics hardware pipelines, so these effects are often approximated, or rendered
using multi-pass techniques.
Paper V presents a graphics pipeline, targeting real-time rendering, with added
support for stochastic sampling in the temporal dimension. The main difference
is a modified rasterizer, that stochastically rasterizes moving triangles. A time-
continuous triangle is shown in Figure 16, where each vertex moves linearly in the
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Figure 16: A time-continuous triangle is a moving triangle with linear vertex motion in
world space. In this example, the triangle sweeps out a volume in clip space, moving from
left to right during the exposure interval. As can be seen, the two drawn quads are only
covered by the moving triangle in a small temporal interval towards the end of the exposure
interval.

interval when the camera shutter is open.
A modified inside test is executed for each sample covered by a tight bounding
box of the time-continuous triangle. For this purpose, time-dependent edge equa-
tions were introduced, that extend standard homogeneous rasterization [37, 41]
with a temporal dimension. These time-dependent edge equations determine if
the primitive overlaps with a screen space sample position at a given time. The
graphics pipeline requires that pixel shaders are executed over 2×2 blocks of pix-
els in order to estimate shader derivatives based on finite differences. We derive
stochastic sampling patterns that respect this constraint. Furthermore, we intro-
duce time-dependent texture maps that can be queried for a certain time interval,
which enables stochastic shadow maps and reflection maps.
Our work has been followed by related research on stochastic rasterization [9, 11,
19, 39, 46].
Paper V was a joint project with Tomas Akenine-Möller and Jon Hasselgren, and
my main contribution was in the algorithmic design and implementation of time-
dependent texture maps and in the evaluation of the proposed algorithms.
Stochastic rasterization can be seen as a generalization of rasterization from two
to five dimensions, where time and two coordinates for the camera lens add three
new dimensions to the visibility query in screen space. These additional dimen-
sions make culling tests more complex. For example, a backface culling test for
a moving triangle must guarantee that the triangle is backfacing during the entire
exposure time. An overly conservative solution is to disable the backface test for
moving primitives. In many scenes, about 50% of the primitives can be backface
culled, which implies that without backface culling, the rasterizer has to perform
about two times more inside tests. Therefore, in many cases, disabling the back-
face culling test is very likely to result in a performance degradation. Common
practice for motion blur is to backface test the moving triangle only at the start and
end of the motion [19, 39]. In Paper IX, we first show that this is not always cor-
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rect, and derive conservative backface culling tests for triangles undergoing motion
blur and depth of field for the case of linear and polynomial vertex motion. We
also introduce Bézier edge equations for moving triangles, which are numerically
more robust reformulations of the time-continuous edge equations from Paper V.
I was involved in all aspects of the backface culling for motion blur and depth of
field research project, which was a joint project with Tomas Akenine-Möller. I was
the primary author of the paper.

7 Conclusions and Future Work

Our research concerns algorithms which exploit domain-specific characteristics for
increased quality and performance. The graphics pipeline has served as a founda-
tion, but instead of designing algorithms that run with maximum performance on
current GPU generations, we propose modifications to the pipeline itself, to in-
corporate further optimizations and alternative rendering techniques. A recurring
theme in our research is to trade an increase in arithmetic operations for reduced
memory bandwidth usage, which we strongly believe is an important tradeoff and
will continue to be so in the near future.
The geometric complexity will most likely increase as more developers start using
the tessellation stages for real-time graphics workloads. The performance charac-
teristics of tessellated workloads are still mostly unknown for real-time graphics,
and the domain shader stage may become a performance bottleneck. Tessellation
culling is a powerful tool for optimizing these workloads, and we hope that our
research may inspire new optimized culling algorithms, tailored for specific tes-
sellation use cases.
It is exciting to see that HDR texture compression has recently been added to
graphics APIs [14, 49]. The latest generation of GPUs have hardware support for
decompression of HDR textures, five years after our first paper on the topic. Today,
stochastic rasterization is applied mainly in offline rendering, but there is substan-
tial activity in the research community around real-time stochastic rasterization.
This makes us hopeful for added support for these effects in future generations of
graphics APIs and graphics processors.
A natural extension to our work is programmable tessellation culling for stochas-
tic rasterization, taking the time dimension, camera lens parameters, and varying
shader programs parameters into account. Paper IX takes a first step in providing
backface culling for a single moving and defocused triangle, but generalized pre-
tessellation culling for moving patches may be very useful if the incurred cost of
computing the bounds is low enough. The Taylor model bounding technique pre-
sented in this thesis is applicable, at least from a theoretical point of view. It can be
generalized to handle additional varying input variables, including time and lens
parameters, but the curse of dimensionality may be a severe problem in practice.
When introducing additional variables, the computations involved in evaluating
and bounding the Taylor model quickly becomes intractable, even for a modest
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number of dimensions. Optimizing compiler techniques for shader bounding [12]
applied to Taylor models is a related direction for future work.
The OpenEXR image format [8] is a commonly used image format in offline ren-
dering systems, as it can represent textures with high bit rates, including HDR
images, normal maps, and displacement maps. OpenEXR recently announced
support for multi-view images, and most likely, someone will present a use-case
where these types of images can be used as textures in the graphics pipeline. There
is generally a significant amount of coherence between the different views of a
multi-view image, making it amenable for a compressed representation. This is
another interesting area for future research.
In conclusion, I hope that the algorithms presented in this thesis help to bring more
visually pleasing effects to a wider audience.
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ABSTRACT

In this paper, we break new ground by presenting algorithms for
fixed-rate compression of high dynamic range textures at low bit rates.
First, the S3TC low dynamic range texture compression scheme is ex-
tended in order to enable compression of HDR data. Second, we intro-
duce a novel robust algorithm that offers superior image quality. Our
algorithm can be efficiently implemented in hardware, and supports
textures with a dynamic range of over 109:1. At a fixed rate of 8 bits
per pixel, we obtain results virtually indistinguishable from uncom-
pressed HDR textures at 48 bits per pixel. Our research can have a
big impact on graphics hardware and real-time rendering, since HDR
texturing suddenly becomes affordable.
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1. INTRODUCTION

1 Introduction

The use of high dynamic range (HDR) images in rendering [6, 7, 18, 27] has
changed computer graphics forever. Prior to this, only low dynamic range (LDR)
images were used, usually storing 8 bits per color component, i.e., 24 bits per
pixel (bpp) for RGB. Such images can only represent a limited amount of the
information present in real scenes, where luminance values spanning many orders
of magnitude are common. To accurately represent the full dynamic range of an
HDR image, each color component can be stored as a 16-bit floating-point number.
In this case, an uncompressed HDR RGB image needs 48 bpp.
In 2001, HDR images were first used in real-time rendering [4], and over the past
years, we have observed a rapidly increasing use of HDR images in this context.
Game developers have embraced this relatively new technique, and several recent
games use HDR images as textures. Examples include Unreal Engine 3, Far Cry,
Project Gotham Racing 3, and Half-Life 2: Lost Coast.
The disadvantage of using HDR textures in real-time graphics is that the tex-
ture bandwidth usage increases dramatically, which can easily limit performance.
With anisotropic filtering or complex pixel shaders, it can become even worse.
A common approach to reduce the problem is texture compression, introduced in
1996 [1, 11, 23]. By storing textures in compressed form in external memory, and
sending compressed data over the bus, the bandwidth is significantly reduced. The
data is decompressed in real time using special-purpose hardware when it is ac-
cessed by the pixel shader. Several formats use as little as 4 bpp. Compared to
24 bpp RGB, such techniques can potentially reduce the texture bandwidth to only
16.7% of the original.
Texels in textures can be accessed in any order during rasterization. A fixed-rate
texture compression (TC) system is desirable, as it allows random addressing with-
out complex lookup mechanisms. Hence, JPEG and similar algorithms do not im-
mediately qualify as reasonable alternatives for TC, since they use an adaptive bit
rate over the image. The fixed bit rate also implies that all realistic TC algorithms
are lossy. Other characteristics of a TC system are that the decompression should
preferably be fast and relatively inexpensive to implement in hardware. However,
we expect that increasingly complex decompression schemes can be accepted by
the graphics hardware industry, since the available bandwidth grows at a much
slower pace than the computing power [15]. A difference between LDR and HDR
TC is that for HDR images, we do not know in advance what range of luminance
values will be displayed. Hence, the image quality must remain high over a much
larger range of luminance.
We present novel HDR TC schemes, which are inexpensive to implement in hard-
ware. Our algorithms compresses tiles of 4× 4 pixels to only 8 bpp. The com-
pressed images are of very high quality over the entire range of input values, and
are essentially indistinguishable from uncompressed 48 bpp data. An example of
a compressed image is shown in Figure 1.
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Figure 1: Example of a high dynamic range image, here shown at three different exposures,
compressed with our algorithm to a fixed rate of 8 bits per pixel. Our algorithm gives
excellent image quality over a large dynamic range, and is fast to decompress in hardware.

2 Related Work

Here, we first present research in LDR texture compression (TC) for graphics hard-
ware that is relevant to our work. For a more complete overview, consult Fenney’s
paper [9]. Second, some attention is given to existing HDR compression systems.

LDR Texture Compression Vector quantization (VQ) techniques have been
used by Beers et al. [1] for TC. They presented compression ratios as low as one
or two bpp. However, VQ requires an access in a look-up table, which is not desir-
able in a graphics hardware pipeline. The S3TC texture compression scheme [10]
has become a de facto standard for real-time rendering. Since we build upon this
scheme, it is described in more detail in Section 4.
Fenney [9] presents a system where two low-resolution images are stored for each
tile. During decompression, these images are bilinearly magnified and the color of
a pixel is obtained as a linear blend between the magnified images. Another TC
scheme assumes that the whole mipmap pyramid is to be compressed [16]. Box fil-
tering is used, and the luminance of a 4×4 tile is decomposed using Haar wavelets.
The chrominance is subsampled, and then compressed. The compression ratio is
4.6 bpp.
In a TC system called iPACKMAN [22], 4×4 tiles of pixels are used, and each tile
encodes two base colors in RGB444 and a choice of modifier values. The color of
a pixel is determined from one of the base colors by adding a modifier value.

HDR Image and Video Compression To store an HDR image in the RGBE
format, Ward [24] uses 32 bits per pixel, where 24 bits are used for RGB, and
the remaining 8 bits for an exponent, E, shared by all three color components. A
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straightforward extension would be to compress the RGB channels using S3TC to
4 bits per pixel, and store the exponent uncompressed as a separate 8 bpp texture,
resulting in a 12 bits per pixel format supported by current graphics hardware.
However, RGBE has a dynamic range of 76 orders of magnitude and is not a com-
pact representation of HDR data known to reside in a limited range. Furthermore,
as both the RGB and the exponent channel contain luminance information, chromi-
nance and luminance transitions are not separated, and artifacts similar to the ones
in Figure 13 are likely to occur. Ward also developed the LogLuv format [28],
where the RGB input is separated into luminance and chrominance information.
The logarithm of the luminance is stored in 16 bits, while the chrominance is stored
in another 16 bits, resulting in 32 bits per pixel. A variant using 24 bpp was also
presented.
Ward and Simmons [26] use the possibility of storing an extra 64 kB in the JPEG
image format. The file contains a tone mapped image, which can be decompressed
using standard JPEG decompressors. In the 64 kB of data, a ratio image of the
luminance in the original and the tone mapped image is stored. A loader incapable
of handling the format will display a tone mapped image, while capable loaders
will obtain the full dynamic range. Xu et al. [29] use the wavelet transform and
adaptive arithmetic coding of JPEG 2000 to compress HDR images. They first
compute the logarithm of the RGB values, and then use existing JPEG 2000 algo-
rithms to encode the image. Impressive compression ratios and a high quality is
obtained. Mantiuk et al. [14] present an algorithm for compression of HDR video.
They quantize the luminance using a non-linear function in order to distribute the
error according to the luminance response curve of the human visual system. Then,
they use an MPEG4-based coder, which is augmented to suppress errors around
sharp edges. These three algorithms use adaptive bit rates, and thus cannot provide
random access easily.
There is a wide range of tone mapping operators (cf. [18]), which perform a type of
compression. However, the dynamic range is irretrievably lost in the HDR to LDR
conversion, and these algorithms are therefore not directly applicable for TC. Li
et al. [12] developed a technique called companding, where a tone mapped image
can be reconstructed back into an HDR image with high quality. This technique is
not suitable for TC since it applies a global transform to the entire image, which
makes random access extremely slow, if at all feasible. Still, inspiration can be
obtained from these sources.
In the spirit of Torborg and Kajiya [23], we implemented a fixed-rate HDR DCT
encoder, but on hardware-friendly 4× 4 tiles at 8 bits per pixel. The resulting
images showed severe ringing artifacts near sharp luminance edges and moder-
ate error values. The decompressor is also substantially more complex than the
algorithms we present below.
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3 Color Spaces and Error Measures

In this section, we discuss different color spaces, and develop a small variation
of an existing color space, which is advantageous in terms of hardware decom-
pression and image quality. Furthermore, we discuss error metrics in Section 3.2,
where we also suggest a new simple error metric.

3.1 Color Spaces

The main difficulty in compressing HDR textures is that the dynamic range of
the color components can be very large. In natural images, a dynamic range of
100,000:1 is not uncommon, i.e., a factor 105 difference between the brightest and
the darkest pixels. A 24-bit RGB image, on the other hand, has a maximum range
of 255:1. Our goal is to support about the same dynamic range as the OpenEXR
format [2], which is based on the hardware-supported half data type, i.e., 16-bit
floating-point numbers. The range of representable numbers with full precision
is roughly 6.1 · 10−5 to 6.5 · 104, giving a dynamic range of 109:1. We aim to
support this range directly in our format, as a texture may undergo complex image
operations where lower precision is not sufficient. Furthermore, the dynamic range
of the test images used in this paper is between 102.6 and 107.3. An alternative is
to use a tighter range and a per-texture scaling factor. This is a trivial extension,
which would increase the quality for images with lower dynamic ranges. However,
this requires global per-texture data, which we have opted to avoid. We leave this
for future work.
To get consistently good quality over the large range, we need a color space that
provides a more compact representation of HDR data than the standard RGB
space. Taking the logarithm of the RGB values gives a nearly constant relative
error over the entire range of exposures [25]. Assume we want to encode a range
of 109:1 in 1% steps. In this log[RGB] space, we would need k = 2083 steps,
given by 1.01k = 109, or roughly 11 bits precision per color channel. Because of
the high correlation between the RGB color components [19], we need to store all
three with high accuracy. As we will see in Section 4, we found it difficult to reach
the desired image quality and robustness when using the log[RGB] space.
In image and video compression, it is common to decorrelate the color chan-
nels by transforming the RGB values into a luminance/chrominance-based color
space [17]. The motivation is that the luminance is perceptually more important
than the chrominance, or chroma for short, and more effort can be spent on en-
coding the luminance accurately. Similar techniques have been proposed for HDR
image compression. For example, the LogLuv encoding [28] stores a log represen-
tation of the luminance and CIE (u′,v′) chrominance. Xu et al. [29] apply the same
transform as in JPEG, which is designed for LDR data, but on the logarithm of the
RGB components. The OpenEXR format supports a simple form of compression
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based on a luminance/chroma space with the luminance computed as:

Y = wrR+wgG+wbB, (1)

and two chroma channels, U and V , defined as:

U =
R−Y

Y
, V =

B−Y
Y

. (2)

Lossy compression is obtained by subsampling the chroma components by a factor
two horizontally and vertically.
Inspired by previous work, we define a simple color space denoted logY ūv̄, based
on log-luminance and two chroma components. Given the luminance Y computed
using Equation 1, the transform from RGB is given by:

(Ȳ , ū, v̄) =
(

log2 Y,wb
B
Y

,wr
R
Y

)
. (3)

We use the Rec. 601 [17] weights (0.299, 0.587, 0.114) for wr, wg and wb. With
non-zero, positive input RGB values in the range [2−16,216], the log-luminance Ȳ
is in the range [−16,16], and the chroma components are in the range [0,1] with
ū+ v̄≤ 1.
In our color space, the HDR luminance information is concentrated to the Ȳ com-
ponent, which needs to be accurately represented, while the (ū, v̄) components
only contain chrominance information normalized for luminance. These can be
represented with significantly less accuracy.

3.2 Error Measures

In order to evaluate the performance of various compression algorithms, we need
an image quality metric that provides a meaningful indication of image fidelity. For
LDR images, a vast amount of research in such metrics has been conducted [3].
Perceptually-based metrics have been developed, which attempt to predict the
observed image quality by modeling the response of the human visual system
(HVS). The prime example is the visible differences predictor (VDP) introduced
by Daly [5].
Error measures for HDR images are not as thoroughly researched, and there is
no well-established metric. The image must be tone-mapped before VDP or any
other standard image quality metric, designed for LDR data, can be applied. The
choice of tone mapping operator will bias the result, which is unfortunate. In our
application, another difficulty is that we do not know how the HDR textures will
be used or what the display conditions will be like. For example, a texture in a 3D
engine can undergo a number of complex operations, such as lighting, blending
and multi-texturing, which change its appearance.
Xu et al. [29] compute the root-mean-square error (RMSE) of the compressed
image in the log[RGB] color space. Their motivation is that the logarithm is a
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conservative approximation of the HVS luminance response curve. However, we
argue that this error measure can be misleading in terms of visual quality. The
reason is that an error in a small component tends to over-amplify the error measure
even if the small component’s contribution to the final pixel color is small. For
example, consider a mostly red pixel, r = (1000,1,1), which is compressed to
r∗ = (1000,1,8). The log[RGB] RMSE is then log2 8− log2 1 = 3, but the log-
luminance RMSE, to which the HVS is most sensitive, is only 0.004. Still, we
include the log[RGB] RMSE error because it reflects the relative, per-component
error of the compressed image. It is therefore well suited to describe the expected
error of the aforementioned image operations: blending, lighting etc.
To account for all normal viewing conditions, we propose a simple error metric,
which we call multi-exposure peak-signal-to-noise ratio, or mPSNR for short. The
HDR image is tone mapped to a number of different exposures, uniformly dis-
tributed over the dynamic range of the image. See Figure 2 for an example. For
each exposure, we compute the mean square error (MSE) on the resulting LDR
image, and then compute the peak-signal-to-noise ratio (PSNR) using the mean of
all MSEs. As a tone mapping operator, we use a simple gamma-adjustment after
exposure compensation. The tone mapped LDR image, T (I), of the HDR image,
I, is given by:

T (I) =
[
255(2cI)1/γ

]255

0
, (4)

where c is the exposure compensation in f-stops, γ is the display gamma, and [·]255
0

indicates clamping to the integer interval [0,255]. The mean square error over all
exposures and over all pixels is computed as:

MSE =
1

n×w×h ∑
c

∑
x,y

(
∆R2

xy +∆G2
xy +∆B2

xy
)
, (5)

where n is the number of exposures, c, and w× h is the image resolution. The
error in the red component (similar for green and blue) at pixel (x,y) is ∆Rxy =
TR(I)− TR(C), where I is the original image, and C is the compressed image.
Finally, mPSNR is computed as:

mPSNR = 10log10

(
3×2552

MSE

)
. (6)

The obtained mPSNR over all exposures gives us a prediction of the error in the
compressed HDR image. The PSNR measure has traditionally been popular for
evaluating the performance of TC schemes, and although no other HDR texture
compression techniques exist, the use of mPSNR makes our results more easily
interpreted.
Recently, Mantiuk et al. [13] have presented a number of modifications to the
visual differences predictor, making it possible to predict the perceived differences
over the entire dynamic range in real scenes. This novel HDR VDP takes into
account a number of complex effects such as the non-linear response and local
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-8 -6 -4 -2 0 +2 +4 +6 +8 

49.1 44.9 41.7 39.2 37.7 37.1 38.4 38.0 35.7

Figure 2: In our multi-exposure PSNR error measure, the image is tone mapped to a num-
ber of different exposures to account for all normal viewing conditions, and the PSNR is
computed from the average MSE. In this case, the mPSNR is 39 dB. The top row shows the
standard PSNRs, and the bottom row shows the exposure compensation, c.

adaptation of the HVS. However, their current implementation only works on the
luminance, and does not take the chroma error into account.
As there is no established standard for evaluating HDR image quality, we have
chosen to use a variety of error metrics. We present results for our algorithm using
the mPSNR, the log[RGB] root-mean-square error, and the HDR VDP.

4 HDR S3 Texture Compression

The S3 texture compression (S3TC) method [10] is probably the most popular
scheme for compressing LDR textures. It is used in DirectX and there are exten-
sions for it in OpenGL as well. S3TC uses tiles of 4×4 pixels that are compressed
to 64 bits, giving a compression rate of 4 bpp. Two base colors are stored in 16
bits (RGB565) each, and every pixel stores a two-bit index into a local color map
consisting of the two base colors and two additional colors in between the base
colors. This means that all colors lie on a straight line in RGB space.
A natural suggestion for an HDR TC scheme is to adapt the existing S3TC algo-
rithm to handle HDR data. Due to the increased amount of information, we double
the rate to 8 bpp. We also apply the following changes. First, we transform the
linear RGB data into a more compact color space. Second, we raise the quantiza-
tion resolution and the number of per-pixel index bits. In graphics hardware, the
memory is accessed in bursts of 2n bits, e.g., 256 bits. To simplify addressing,
it is desirable to fetch 2m pixels per burst, which gives 2n−m bits per pixel (e.g.,
4,8,16,...). Hence, keeping a tile size of 4×4 pixels is a reasonable choice, as one
tile fits nicely into 128 bits on an 8 bpp budget. In addition, a small tile size limits
the variance across the tile and keeps the complexity of the decompressor low.
The input data consists of three floating-point values per pixel. Performing the
compression directly in linear RGB space, or in linear YUV space, produces ex-
tremely poor results. This is due to the large dynamic range. Better results are
obtained in the log[RGB] and the logY ūv̄ color spaces (Section 3.1). Our tests
show that 4-bit per-pixel indices are needed to accurately capture the luminance
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variations. We call the resulting algorithms S3TC RGB (using log[RGB]), and
S3TC YUV (using logY ūv̄). The following bit allocations performed best in our
tests:

Color space Base colors Per-pixel indices
log[RGB] 2× (11+11+10) = 64 16×4 = 64
logY ūv̄ 2× (12+10+10) = 64 16×4 = 64

Even though these S3TC-based approaches produce usable results in some cases,
they lack the robustness needed for a general HDR TC format. Some of the short-
comings of S3TC RGB and S3TC YUV are clearly illustrated in Figure 13. As
can be seen in the enlarged images, both algorithms produce serious block arti-
facts, and blurring of some edges. This tends to happen where there is a chroma
and a luminance transition in the same tile, and there is little or no correlation be-
tween these. The reason is that all colors must be located on a straight line in the
respective 3D color space for the algorithms to perform well. In Figure 13, we also
show the results of our new HDR texture compression scheme. As can be seen,
the image quality is much higher. More importantly, our algorithm is more robust,
and rarely generates tiles of poor quality.

5 New HDR Texture Compression Scheme

In the previous section, we have seen that building a per-tile color map from a
straight line in some 3D color space does not produce acceptable results for S3TC-
based algorithms. To deal with the artifacts, we decouple the luminance from the
chrominance and encode them separately in the logY ūv̄ space defined in Equa-
tion 3. By doing this, difficult tiles can be handled much better. In the following,
we describe how the luminance and chrominance can be accurately represented on
an 8 bpp budget, i.e., 128 bits per tile.

5.1 Luminance Encoding

In the logY ūv̄ color space, the log-luminance values Ȳ are in the range [−16,16].
First, we find the minimum and maximum values, Ȳmin and Ȳmax, in a tile. Inspired
by S3TC, we then quantize these linearly and store per-pixel indices indicating
which luminance step between Ȳmin and Ȳmax that is to be used for each pixel.
As we have seen, we need approximately 16 steps, i.e., 4-bit per-pixel indices, for
an accurate representation of HDR luminance data. If we use 12-bit quantization
of Ȳmin and Ȳmax as in S3TC YUV, a total of 2×12+16×4 = 88 bits are consumed,
and only 40 bits are left for the chroma encoding. This is not enough. By searching
in a range around the quantized base values, it is very often possible to find a
combination that gives a significantly reduced error. Thus, we manage to encode
the base luminances with only 8 bits each without any noticeable artifacts, even on
slow gradients.
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Ymax

Ymin

Ymax

Ymin
Uniform mode Non-uniform mode

Figure 3: The two luminance quantization modes. The non-uniform mode is used for better
handling tiles with sharp luminance transitions, such as edges.

Another approach would be to use spatial subsampling of the luminance. Re-
cent work on HDR displays by Seetzen et al. [20, 21] suggests that the human
eye’s spatial HDR resolution is lower than its LDR resolution. However, the tech-
niques developed for direct display of HDR images are not directly applicable to
our problem as they require high-precision per-pixel LDR data to modulate the
subsampled HDR luminance. We have tried various hierarchical schemes, but the
low bit budget made it difficult to obtain the required per-pixel precision. Second,
our compression scheme is designed for textures, hence we cannot make any as-
sumptions on how the images will be displayed on screen. The quality should be
reasonable even for close-up zooms. Therefore, we opted for the straightforward
solution of storing per-pixel HDR luminance.
The most difficult tiles contain sharp edges, e.g., the edge around the sun in an
outdoor photograph. Such tiles can have a very large dynamic range, but at the
same time, both the darker and the brighter areas must be represented accurately.
For this, a uniform quantization between the min/max luminances is not ideal. To
better handle such tiles, we add a mode using non-uniform steps between the Ȳmin
and Ȳmax values. Smaller quantization steps are used near the base luminances,
and larger steps in the middle. Thus, two different luminance ranges that are far
apart can be accurately represented in the same tile. In our test images (Figure 10),
the non-uniform mode is used for 11% of the tiles, and for these tiles, the log-
luminance RMSE is decreased by 12.0% on average. The two quantization modes
are illustrated in Figure 3.
To choose between the two modes, we use the mutual ordering1 of Ȳmin and Ȳmax.
In decoding, if Ȳmin ≤ Ȳmax, then the uniform mode is used. Otherwise, Ȳmin and
Ȳmax are reversed, and we use the non-uniform mode. Hence, no additional mode
bit is necessary, and the luminance encoding uses a total of 2×8+16×4 = 80 bits,
leaving 48 bits for the chrominance. The bit allocation is illustrated in Figure 4.

1Similar ordering techniques are used in the S3TC LDR texture compression format.
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Figure 4: The bit allocation we use for encoding the luminance and chrominance of a 4×4
tile in 128 bits (8 bpp).
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Figure 5: Illustration of the flip trick. By mirroring the coordinates for a base color, we
exploit our triangular chrominance space in order to obtain another bit.

5.2 Chrominance Line

Our first approach to chrominance compression on a 48-bit budget, is to use a line
in the (ū, v̄) chroma plane. Similar to the luminance encoding, each tile stores a
number of indices to points uniformly distributed along the line.
In order to fit the chroma line in only 48 bits, we sub-sample the chrominance by
a factor two, either horizontally or vertically, similar to what is used in DV encod-
ing [17]. The sub-sampling mode that minimizes the error is chosen. To simplify
the following description, we define a block as being either 1× 2 (horizontal) or
2× 1 (vertical) sub-sampled pixels. The start and end points of the chroma line,
each with 2×8 bits resolution, and eight 2-bit per-block indices, gives a total cost
of 4×8+8×2 = 48 bits per tile.
In our color space, the normalized chroma points (ūi, v̄i), i ∈ [0,7], are always
located in the lower triangle of the chroma plane. If we restrict the encoding of the
end points of the line to this area, we can get two extra bits by a flip trick described
in Figure 5. If a chrominance value c = (ūi, v̄i) is in the upper (invalid) triangle,
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Original Chroma line Shape transforms

Figure 6: A region where a line in chroma space is not sufficient for capturing the complex
color. With shape transforms, we get a much closer resemblance to the true color, although
minor imperfections exist due to the sub-sampling.

this indicates that the extra bit is set to one, and the true chroma value is given by
c′ = (1− ūi,1− v̄i), otherwise the bit is set to zero. We can use one of these extra
bits to indicate whether to use horizontal or vertical sub-sampling. The other bit is
left unused.

5.3 Chroma Shape Transforms

A line in chroma space can only represent two chrominances and the gradient
between them. This approximation fails for tiles with complex chroma variations
or sharp color edges. Figure 6 shows an example of such a case. One solution
would be to encode ū and v̄ separately, but this does not easily fit in 48 bits.
To better handle difficult tiles, we introduce shape transforms; a set of shapes, each
with four discrete points, designed to capture chroma information. In the classic
game Tetris, the optimal placement of a shape in a grid is found by rotating and
translating it in 2D. The same idea is applied to the chrominances of a tile. We al-
low arbitrary rotation, translation, and uniform scaling of our shapes to make them
match the eight sub-sampled chrominance values of a tile as closely as possible.
The transformation of the shape can be retrieved by storing only two points.
During compression, we select the shape that most closely covers the chroma in-
formation of the tile, and store its index along with two base chrominances (start
& end) and per-block indices. This allows each block in the tile to select one of
the discrete positions of the shape. The shape fitting is illustrated in Figure 7 on
one of the difficult tiles from the image in Figure 6. Using one of the transformed
shapes, we get much closer to the actual chroma information.
The space of possible shapes is very large. In order to find a selection of shapes
that perform well, we have analyzed the chrominance content in a set of images
(a total of 500,000 tiles), different from our test images. First, clustering was
done to reduce the chroma values of a tile to four chroma points. Second, we
normalized the chroma points for scale and rotation, and then iteratively merged
the two closest candidates until the desired number of shapes remained. Figure 8
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v

u
Line fit Shape transform fit

Figure 7: In tiles with difficult chrominance, such as in this example taken from Figure 6,
a line in chroma space has difficulties representing the (ū, v̄) points accurately (left). Our
algorithm based on shape transforms generates superior chroma representations, as it is
often possible to find a shape that closely matches the chrominance points (right).

shows our selection of shapes after a slight manual adjustment of the positions. See
Appendix B for the exact coordinates. Shapes A through C handle simple color
gradients, while D–H are optimized for tiles with complex chrominance. Also,
by including the uniform line (shape A), we make the chrominance line algorithm
(Section 5.2) a subset of the shape transforms approach. Note that the set of shapes
is fixed, so no global per-texture data is needed.
Compared to the chrominance line, shape transforms need three bits per tile to
indicate which of the eight shapes to use. We exploit the unused bit from the
chrominance line, and the other two extra bits are taken from the quantization
of the start and end points. We lower the (ū, v̄) quantization from 8 + 8 bits to
8 + 7 bits. Recall from Section 3.1, that in the logY ūv̄ to RGB transform, the R
and B components are given as R = v̄Y/wr and B = ūY/wb, with wr = 0.299 and
wb = 0.114. As wb is about three times smaller than wr, it makes the reconstructed
color more sensitive for quantization errors in the ū component, and therefore more

Shape A B C D E F G H
Freq(%) 5.8 10.8 6.3 18.3 17.4 16.8 6.6 18.0

Figure 8: The set of shapes we use for the shape transform algorithm and their frequencies
for our test images. The points corresponding to base colors are illustrated with solid black
circles.
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bits are spent there.
With these modifications, shape transforms with eight shapes fit in precisely 48
bits. The total bit allocation for luminance and chrominance is illustrated in Fig-
ure 4. We evaluated both the chrominance line and the shape transform approach,
combined with the luminance encoding of Section 5.1, on our test images. On aver-
age, the mPSNR was about 0.5 dB higher using shape transforms, and the resulting
images are more visually pleasing, especially in areas with difficult chrominance.
The shape fitting step of our new algorithm is implemented by first clustering the
eight sub-sampled input points to four groups. Then we apply Procrustes analy-
sis [8] to find the best orientation of each shape to the clustered data set, and the
shape with the lowest error is chosen. This is an approximate, but robust and effi-
cient approach. We achieved somewhat lower errors by using an extensive search
for the optimal shape transform, but this is computationally much more expensive.

6 Hardware Decompressor

In this section, we present a decompressor unit for hardware implementation of
our algorithm. We first describe how the chrominance, (ū, v̄), is decompressed for
a single pixel. In the second part of this section, we describe the color space trans-
formation back to RGB-space. A presentation of log-luminance decompression
is omitted, since it is very similar to S3TC LDR decompression. The differences
are that the log-luminance is one-dimensional (instead of three-dimensional), and
more bits are used for the quantized base values and per-pixel indices. In addi-
tion, we also have the non-uniform quantization, but this only amounts to using
different constants in the interpolation.
The decompression of chrominance is more complex than for luminance, and in
Figure 9, one possible implementation is shown. To use shape transforms, a coor-
dinate frame must be derived from the chroma endpoints, (ū0, v̄0) and (ū1, v̄1), of
the shape. In our case, the first axis is defined by d = (du,dv) = (ū1− ū0, v̄1− v̄0).
The other axis is d⊥ = (−dv,du), which is orthogonal to d. The coordinates of a
point in a shape are described by two values α and β , which are both fixed-point
numbers in the interval [0,1], using only five bits each. The chrominance of a
point, with coordinates α and β , is derived as:(

ū
v̄

)
= αd+βd⊥+

(
ū0
v̄0

)
=
(

αdu−βdv + ū0
βdu +αdv + v̄0

)
. (7)

The diagram in Figure 9 implements the equation above. As can be seen, the hard-
ware is relatively simple. The α and β constants units contain only the constants
which define the different chrominance shapes. Only five bits per value are used,
and hence the four multipliers compute the product of a 5-bit value and an 8 or
9-bit value. Note that (ū, v̄) are represented using fixed-points numbers, so integer
arithmetic can be used for the entire chroma decompressor.

47



PAPER I: HIGH DYNAMIC RANGE TEXTURE COMPRESSION FOR GRAPHICS
HARDWARE

u1

v1

u0

v0

du=u1-u0

dv=v1-v0

>1?

>1?

control
logic

which pixel to decode, 4 bits

color index
2 bits

α
con-

stants

con-
stants

β

shape
index
3 bits 5 bits

α

β

−β

u

v

horiz/vert
subsample bit

chroma
indices

t0

t1

t0 t1

FLIP

2 8

Figure 9: Decompression of chrominance, (ū, v̄), for a single pixel. The indata is the 48 bits
for chrominance (left part of the figure), and a 4-bit value indicating which pixel in a tile to
decode. The outdata is (ū, v̄) for one pixel. The green box contains the logic to implement
the flip trick, where inverters have been used to compute the 1− x terms.

At this point, we assume that Ȳ , ū and v̄ have been computed for a certain pixel in
a tile. Next, we describe our transform back to linear RGB space. This is done by
first computing the floating-point luminance: Y = 2Ȳ . After that, the red, green,
and blue components can be derived from Equation 3 as:

(R,G,B) =
(

1
wr

v̄Y,
1

wg
(1− ū− v̄)Y,

1
wb

ūY
)

. (8)

Since the weights, (wr,wg,wb) = (0.299,0.587,0.114), are constant, their recip-
rocals can be precomputed. We propose using the hardware-friendly constants:

(1/w′r,1/w′g,1/w′b) =
1

16
(54,27,144). (9)

This corresponds to

(w′r,w
′
g,w
′
b)≈ (0.296,0.593,0.111). (10)

Using our alternative weights makes the multiplications much simpler. This comes
with a non-noticeable degradation in image quality.
In summary, our color space transform involves one power function, two fixed-
point additions, three fixed-point multiplications, and three floating-point times
fixed-point multiplications. The majority of color space transforms include at least
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a 3× 3 matrix/vector multiplication, and in the case of HDR data, we have seen
that between 1–3 power functions are also used. Ward’s LogLuv involves even
more operations. Our transform involves significantly fewer arithmetic operations
compared to other color space transforms, and this is a major advantage of our
decompressor.
The implementation shown above can be considered quite inexpensive, at least
when compared to using other color spaces. Still, when compared to popular LDR
TC schemes [10, 22], our decompressor is rather complex. However, we have at-
tempted to make it simpler by designing a hardware-friendly color space, avoided
using too many complex arithmetic operations, and simplified constants. In addi-
tion, we believe that in the near future, graphics hardware designers will have to
look into more complex circuitry in order to reduce bandwidth, and the technolog-
ical trend shows that this is the way to go [15].

7 Results

To evaluate the algorithms, we use a collection of both synthetic images and real
photographs, as shown in Figure 10. Many of these are well-known and widely
used in HDR research. In the following, we refer to our algorithm as the combina-
tion of our luminance encoding (Section 5.1) and shape transforms (Section 5.3).
The results using mPSNR, log[RGB] RMSE, and HDR VDP are presented in Fig-
ure 11. After that follows visual comparisons.
In terms of the mPSNR measure, our algorithm performs substantially better over
the entire set of images, with an average improvement of about 3 dB over the
S3TC-based approaches. The mPSNR measure simulates the most common use
of an HDR image in a real-time application, where the image is tone mapped and
displayed under various exposures, either as a decal or as an environment map. The
range of exposures used in mPSNR is automatically determined by computing the
min and max luminance over each image, and mapping this range to exposures that
give a nearly black, and a nearly white LDR image respectively. See Appendix A
for the exact numbers.
The log[RGB] RMSE measures the relative error per component over the entire
dynamic range of the image. In this metric, the differences between the algorithms
are not as obvious. However, our algorithm gives slightly lower error on average.
The HDR VDP chart in Figure 11 shows just noticeable luminance differences.
The 75%-value indicates that an artifact will be visible with a probability of 0.75,
and the value presented in the chart is the percentage of pixels above this threshold.
Our test suite consists of a variety of both luminance-calibrated and relative lumi-
nance HDR images. To compare them, we multiply each image with a luminance
factor so that all HDR VDP tests are performed for a global adaptation level of ap-
proximately 300 cd/m2. Although we quantize the base luminances to only 8 bits,
our algorithm shows near-optimal results, except for image (a). VDP difference
images for image (i) are shown in Figure 12. Increasing the global adaptation level
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increases the detection rates slightly, but the relationship between the algorithms
remains.
Our algorithm is the clear winner both in terms of robustness and perceived visual
quality, as can be seen in Figure 13. In general, luminance artifacts are more easily
detectable, and both S3TC YUV and our algorithm handle these cases better due
to the luminance focus of the logY ūv̄ color space. However, the limitation of
S3TC YUV to a line in 3D makes it unstable in many cases. The only errors
we have seen using our algorithm are slight chrominance leaks due to the sub-
sampling, and artifacts in some images with high exposures, originating from the
quantization of the base chrominances. Such a scenario is illustrated in Figure 14.
Overall, our algorithm is much more robust since it generates significantly fewer

a. StarField b. Bonita c. Desk d. Room

e. Tubes f. Memorial g. Cathedral h. GreenSlats

i. DockDome j. StageEnv k. DraftOffice l. DaniBelgium

m. BigFogMap n. Office o. AtriumNight p. MtTamWest

Figure 10: The HDR test images we use for evaluating our algorithms. The figure shows
cropped versions of the actual test images. (e), (k), and (n) are synthetic.
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Figure 11: These diagrams show the performance of our algorithm compared to the S3TC
RGB and S3TC YUV algorithms for each of the images (a)–(p) in Figure 10. The mPSNR
measure gives consistently better values (left), while the log[RGB] RMSE (middle) is lower
on nearly all of the test images. The HDR VDP luminance measure (right) indicates a
perceivable error very close to 0.0% for most images with our algorithm, clearly superior
to both S3TC-based algorithms.

Original S3TC RGB S3TC YUV Our algorithm

Figure 12: HDR VDP difference images. Green indicates areas with 75% chance of detect-
ing an artifact, and red indicates areas with 95% detection probability.

tiles with visible errors, and this is a major strength.
It is very important that a TC format developed for real-time graphics handle
mipmapping well. Figure 15 shows the average error from all our test images
for the first 7 mipmap levels. The average errors grow at smaller mipmap lev-
els due to the concentration of information in each tile, but our algorithm is still
very robust and compares favorably to the S3TC-based techniques. In both error
measures, our approach is consistently much better.

8 Conclusions

In this work, we have presented the first low bit rate HDR texture compression
system suitable for graphics hardware. In order to accurately represent the wide
dynamic range in HDR images, we opted for a fixed rate of 8 bpp. Although it
would have been desirable to further reduce the bandwidth, we found it hard to
achieve an acceptable image quality at 4 bpp, while preserving the full dynamic
range. For future work, it would be interesting to incorporate an alpha channel in
the 8 bpp budget.
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Original ST3C RGB

ST3C YUV Our algorithm

Original ST3C RGB

ST3C YUV Our algorithm

Original ST3C RGB

ST3C YUV Our algorithm

Original ST3C RGB

ST3C YUV Our algorithm

Figure 13: This figure shows magnified parts of the test images (c), (d), (h), and (i), com-
pressed with our algorithm and the two S3TC-based methods. In difficult parts of the im-
ages, the S3TC algorithms sometimes produce quite obvious artifacts, while this rarely
happens with our algorithm due to its separated encoding of luminance and chrominance.

Original ST3C RGB

ST3C YUV Our algorithm

Figure 14: A difficult scenario for our algorithm is an over-exposed image (c) with sharp
color transitions. S3TC YUV does, however, handle this case even worse. Surprisingly,
S3TC RGB performs very well here.

Our algorithm performs very well, both visually and in the chosen error metrics.
However, more research in meaningful error measures for HDR images is needed.
The HDR VDP by Mantiuk et al. [13] is a promising approach, and it would be
interesting to extend it to handle chroma as well. We hope that our work will
further accelerate the use of HDR images in real-time rendering, and provide a
basis for future research in HDR texture compression.
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Rafal Mantiuk for letting us use his HDR VDP program, and Apple for the tem-
porary Shake license. Image (f) is courtesy of Paul Debevec. (g) and (l) are cour-
tesy of Dani Lischinski. (h) was borrowed from the RIT MCSL High Dynamic
Range Image Database. The image (i) was created using HDRI data courtesy
of HDRIMaps (www.hdrimaps.com) from the LightWorks HDRI Starter Collec-
tion (www.lightworkdesign.com). (k) and (n) are courtesy of Greg Ward. (m)
is courtesy of Jack Tumblin, Northwestern University. (o) is courtesy of Karol
Myszkowski. The remaining images were taken from the OpenEXR test suite.

A mPSNR Parameters

In this appendix, we summarize the parameters used when computing the mPSNR
quality measure for the images in Figure 10 (a–p). For all mPSNR computations,
we have computed the mean square error (MSE) only for the integers between the
start and stop exposures (as shown in the table below). For example, if the start
exposure is −10, and the stop exposure is +5, then we compute the MSE for all
exposures in the set: {−10,−9, . . . ,+4,+5}.

Test image a b c d e f g h
Start exposure -9 -8 -8 -9 -3 -9 -4 0
Stop exposure +4 +2 +5 +3 +7 +3 +7 8
Test image i j k l m n o p
Start exposure -6 -12 -7 -6 -8 -6 -12 -4
Stop exposure +3 +1 +2 +5 +2 +3 +1 +5
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B Shape Transform Coordinates

Below we present coordinates, (α,β ), for each of the template shapes in Figure 8.

Shape p1 p2 p3 p4
A (0, 0) (11/32, 0) (21/32, 0) (1, 0)
B (0, 0) (1/4, 0) (3/4, 0) (1, 0)
C (0, 0) (1/8, 0) (1/4, 0) (1, 0)
D (0, 0) (1/2, 0) (3/4, 1/4) (1, 0)
E (0, 0) (1/2, 0) (1/2, 1/2) (1, 0)
F (0, 0) (11/32, 11/32) (21/32, 11/32) (1, 0)
G (0, 0) (0, 1/2) (1, 1/2) (1, 0)
H (0, 0) (1/4, 1/4) (1/2, 0) (1, 0)
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ABSTRACT

The use of high dynamic range (HDR) textures in real-time graph-
ics applications can increase realism and provide a more vivid experi-
ence. However, the increased bandwidth and storage requirements for
uncompressed HDR data can become a major bottleneck. Hence, sev-
eral recent algorithms for HDR texture compression have been pro-
posed. In this paper, we discuss several practical issues one has to
confront in order to develop and implement HDR texture compres-
sion schemes. These include improved texture filtering and efficient
offline compression. For compression, we describe how Procrustes
analysis can be used to quickly match a predefined template shape
against chrominance data. To reduce the cost of HDR texture filter-
ing, we perform filtering prior to the color transformation, and use a
simple trick to reduce the incurred errors. We also introduce a number
of novel compression modes, which can be combined with existing
compression schemes, or used on their own.

Computer Graphics Forum 27(6):1664–1676, 2008.





1. INTRODUCTION

1 Introduction

A general trend in computer architecture is that computing power growth is much
faster than the corresponding growth in memory access speeds [10]. This implies
that the available memory bandwidth should be regarded as a scarce resource and
be exploited as best as possible. One way is to use different compression tech-
niques to reduce the required memory bandwidth. For graphics processing units
(GPUs), there are many types of compression, such as buffer compression (e.g.,
depth, color, and stencil), vertex compression, and texture compression.
The focus in this paper is on texture compression (TC), where a texture is simply
a read-only image. A texture is stored in compressed form in memory, and when
the GPU requests access to a small part of the texture, the desired part is sent
in compressed form over the bus. The GPU then decompresses the data. The
pixels in a texture can be accessed in any order, any number of times, and hence
it is of uttermost importance to provide random access in constant time. This has
a number of implications, including that the majority of TC schemes operate on
blocks of pixels (e.g., 4×4), and compress such a block to a fixed number of bits
(e.g., 4 bits per pixel). In general, this also means that TC schemes are lossy.
High dynamic range (HDR) images [12] have had a big impact on the computer
graphics community. Lately, these are used as textures in real-time rendering as
well, and therefore, methods for HDR texture compression [9, 15, 19] have been
developed. Roimela et al. [15] try to minimize the hardware cost, and propose a
simplified color space. They subsample chrominance, and use a quick floating-
point trick to convert to approximately logarithmic luminance. In a recent pa-
per [14], they extend the algorithm with a more compact chrominance encoding
and higher luminance fidelity.
Munkberg et al. [9] also develop a new compression algorithm, which uses an
S3TC-like [4] encoding for the luminance, and introduce shape transforms for
flexible chrominance encoding. All of these methods compress 4×4 pixel blocks
down to eight bits per pixel (bpp). Wang et al. [19] propose an algorithm based on
existing texture compression hardware, rather than targeting new hardware mech-
anisms, but only achieve a compression rate of 16 bpp. Some details of these
schemes will be discussed in later sections. In this paper, we bring to light several
practical issues when dealing with HDR texture compression.
To evaluate the quality of a compression algorithm, an error metric has to be used.
However, standard error metrics are not suitable for HDR data due to the larger
dynamic range and higher precision of floating-point numbers. A few HDR error
metrics have been proposed, although more work needs to be done in this area.
Section 2 gives a brief review of existing metrics. Similarly, color spaces must be
defined with HDR data in mind so that efficient compression is achieved, which
often means that a non-linear color space is preferred. In Section 3, we review the
color spaces currently used for HDR texture compression. The use of non-linear
color spaces complicates texture filtering, as each fragment must be converted to
RGB-space prior to filtering for correct results. In Section 4, we introduce a novel
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algorithm for texture filtering in non-linear color spaces. This is important as it
reduces the cost of hardware filtering.
To improve the compression quality, Section 5 introduces a new algorithm with
better quality than previous algorithms at 8 bpp. Our algorithm builds on the
method of Munkberg et al. [9], but adds a novel compression mode focused on
improving the chrominance precision. In addition, several other ideas on HDR
texture compression algorithms are described in Section 6. The implementation of
our codec is discussed in Section 7, where the details of how we use Procrustes
analysis and clustering are presented for the first time. Furthermore, we use a non-
linear optimization trick for improved chrominance quality and we analyze the
desired precision for luminance. We compare all existing algorithms, including
our new HDR TC scheme in Section 8, and finally we offer some conclusions in
Section 9.

2 HDR Error Metrics

When you cannot foresee or predict the usage of an HDR texture, you need to make
sure the accuracy of every value, regardless of its absolute magnitude, is preserved
as well as possible. For example, a very dark region can become bright and details
can appear after tone-mapping. Similarly, the details of a very bright region can
become visible if the exposure is low. Standard LDR error metrics are therefore
not suitable. In this paper, we use three HDR error metrics: the logarithmic error,
multi-exposure PSNR, and HDR-VDP.
Xu et al. [20] compute the root mean square error (RMSE) of the compressed im-
age in the log[RGB] color space. More formally, if (r̂, ĝ, b̂) denotes the compressed
texel color and (r,g,b) is the original color, the error is defined as:√√√√ 1

N ∑

(
log2

(
r̂
r

))2

+
(

log2

(
ĝ
g

))2

+

(
log2

(
b̂
b

))2

, (1)

where N is the number of pixels in the texture.
The multi-exposure PSNR (mPSNR) error measure computes the standard mean
square error for a range of tone-mapped exposures of the HDR image, and aver-
ages them together. Then the standard formula for computing peak signal-to-noise
ratio (PSNR) is applied. For details, see Munkberg et al. [9]. Roimela et al. [14]
compute the PSNR on the L∗ and a∗b∗ channels in the CIE 1976 L∗a∗b∗ color
space with the motivation that it is perceptually linear.
HDR-VDP [6] is an extension of the visual difference predictor, which finds per-
ceived differences over the dynamic range of the image. The current implementa-
tion only works on the luminance channel, so perceived chrominance artifacts are
not detected.
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3 HDR Color Spaces

In this section, we will present the color spaces used in previous HDR texture
compression schemes, and shortly discuss their characteristics.

3.1 LogYuv

Munkberg et al. [9] use a logYuv color space with logarithmic luminance and two
chrominance channels:

Y = wrR+wgG+wbB

(Ȳ , ū, v̄) =
(

log2 Y,wb
B
Y

,wr
R
Y

)
(2)

(R,G,B) =
(

1
wr

v̄2Ȳ ,
1

wg
(1− ū− v̄)2Ȳ ,

1
wb

ū2Ȳ
)

The luminance channel is encoded as a weighted combination of the RGB chan-
nels, with weights according to the Rec. 601 [11] standard. By storing log-
luminance, Ȳ = log2 Y , the maximum relative luminance error can be effectively
bounded over the entire dynamic range. The two chrominance channels are con-
structed to be in the [0,1] interval. This gives a decorrelated and compact represen-
tation of HDR texture data, with HDR information concentrated to the luminance
channel. This color space is used in the proposed format in Section 5 of this paper.
A minor issue with logarithm-based luminance encodings is that entirely black
pixels, RGB=(0,0,0), need to be treated with care, as logx→−∞ when x→ 0+ A
simple solution is to clamp the log-luminance to the smallest representable value,
Ȳmin. However, in some cases it may be desirable to have a true (0,0,0) black level.
A possible solution, which we use, is to define the inverse luminance transform as:

Y =
{

0, if Ȳ = Ȳmin,

2Ȳ , otherwise.
(3)

However, it should be noted that true black pixels rarely occur in natural images,
and only sometimes in artificial images.

3.2 Roimela et al.

Roimela et al. [15] use a different transform in order to provide very efficient
decoding. The forward and inverse transforms are shown below:

Ỹ =
R+2G+B

4

(Ỹ , ũ, ṽ) =
(

Ỹ ,
R

4Ỹ
,

B
4Ỹ

)
(4)

(R,G,B) = Ỹ (4ũ,2(1− ũ− ṽ),4ṽ)
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Compared with logYuv of Munkberg et al. [9], the luminance is here encoded
with simplified weights with hardware-friendly constants. Again, the color space
decorrelates the HDR data in one luminance and two chrominance channels.

3.3 LUVW

Wang et al. [19] use a color space called LUVW with four channels, where the
luminance information is concentrated to the L channel as follows:

L =
√

R2 +G2 +B2

(U,V,W ) =
(

R
L

,
G
L

,
B
L

)
(5)

The L channel is the length of the RGB vector, and the UVW channels are divided
by L to get three values in the range [0,1]. This is not as compact as the previous
approaches, as four channels are stored, but allows for simplified texture filtering
on existing hardware.

3.4 Log[RGB]

The log[RGB] color space [20] is simply defined as the logarithm of the R, G and
B components:

(R′,G′,B′) = (log2 R, log2 G, log2 B) (6)

The motivation is that quantization gives a constant, or nearly constant, relative
error over the entire dynamic range. This makes it a good choice for measuring
the error in each color channel. However, this transform often fails to decorrelate
the image data, so all channels needs to be stored with equal resolution, which
makes it less suitable for compression algorithms.

4 Texture Filtering

Texture filtering is crucial in real-time graphics, and all modern GPUs support fast
bilinear and trilinear filtering. As the most widely used color space on GPUs is
RGB, a filtered texture lookup is expected to perform a linear weighting of each of
the R, G, and B channels. In the one-dimensional case, we have:

r = (1−α)r1 +αr2, (7)

for linear interpolation between the red components, r1 and r2, of two texels (sim-
ilarly for green and blue).
For compressed HDR textures using a non-RGB space, texture filtering can be per-
formed before or after converting to RGB. In post-conversion filtering, we have to
perform multiple color transforms for each filtered lookup, e.g., four Ȳ ūv̄→RGB
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transforms in a bilinear two-dimensional lookup, which may harm performance,
or increase the cost in terms of extra hardware for duplicated color space transform
units. However, filtering before conversion gives deviating results, as the currently
used HDR color spaces (Section 3) involve a non-linear transform, i.e., division
by the luminance. According to Wang et al. [19], this is a minor issue as most
blocks have a small dynamic range. However, in areas with sharp luminance tran-
sitions, we have observed clearly visible artifacts (color shifts). See Figure 2 for
an example. We propose a simple way to reduce the problem.
Consider the logYuv color space in Section 3.1. The red channel is reconstructed
as r = v̄Y/wr, and correct post-transform filtering yields:

r = (1−α)r1 +αr2 =
1

wr
[(1−α)v̄1Y1 +α v̄2Y2] . (8)

If we instead interpolate the Y , ū, and v̄ components prior to the color transform,
i.e., Y = (1−α)Y1 +αY2 and similarly for ū and v̄, we get:

r =
1

wr
v̄Y =

1
wr

((1−α)v̄1 +α v̄2)((1−α)Y1 +αY2)

=
1

wr
[(1−α)v̄1Y1 +α v̄2Y2] + ε, (9)

where the error term, ε , depends on the difference between the two luminance
values, ∆Y = Y2−Y1, as follows:

ε =
1

wr
α(α−1)(v̄2− v̄1)∆Y. (10)

This error is due to the non-linearity of the color transform. However, we note
that the error goes to zero as ∆Y gets smaller. We can exploit this to improve
the interpolation quality by normalizing the luminance values so that Y1 ≈ Y2. By
shifting the bits of Y2 to make it roughly the same magnitude as Y1, we drastically
reduce the error. At the same time, we must also shift the bits of v̄2 in the opposite
direction to keep the term v̄2Y2 constant. The net effect is a change of variables to
Y ′2 = Y2/c and v̄′2 = cv̄2, where c = 2k. The number of bits to shift, k, is chosen by
comparing the magnitudes of Y1 and Y2.
Consider the example of interpolating between two texels with v̄1 = 0.25, v̄2 = 0.1,
Y1 = 1, and Y2 varying between 0.1 and 10. The absolute error in the red component
with α arbitrarily set to 0.5, grows from roughly−0.1 to over 1.1 as the luminance
Y2 increases. This is shown as the blue line in Figure 1. With our luminance
normalization, the error is much smaller (red line).
With our color transform (Section 3.1), the green component is computed by sub-
traction of the two chrominance channels: G = (1− ū− v̄)Y/wg. This causes a
minor difficulty, as this formula is no longer valid if we rescale Y , ū, and v̄. One
solution is to replace the constant 1 with the bit shift factor, c = 2k, in the trans-
form, i.e., G = (c− ū′− v̄′)Y ′/wg. Note, as c may differ for the two pixels, we
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Figure 1: Example of the interpolation error (blue line) introduced by performing texture
filtering in the log-luminance color space prior to color transformation. By normalizing the
luminance values with simple bit shifts, we effectively reduce the error (red line).

need to interpolate its value: c = (1−α)c1 +αc2. This adds a small cost, but the
savings compared to performing a full color transform for all pixels prior to filter-
ing should be significant. In this discussion, we have studied the one-dimensional
case, but the theory extends naturally to bilinear and trilinear filtering, as well as
higher dimensions. We show comparison images with and without this pre-filter
correction in Figure 2. These images were first compressed using our algorithm
and then bilinearly filtered with and without the texture filtering correction dis-
cussed above.

5 Improved Shape Transform Compression

In this section, we extend the HDR compression algorithm based on shape trans-
forms [9] (see also Section 7.1) to allow for more freedom in the chrominance
representation. The original algorithm quantizes the chrominance information ag-
gressively to allocate enough space for a high quality luminance encoding. The
ratio between bits spent on luminance and chrominance is 5 : 3. In most cases, this
is a preferred bit layout, as luminance artifacts are more visually disturbing. How-
ever, in regions with smaller luminance range but large chrominance variations, a
different bit layout may be more appropriate.
In the original encoder, each luminance value was encoded with 4 bits selecting
a value linearly interpolated between two 8-bit end points, resulting in 80 bits for
a 4×4 block of pixels (16×4 + 2×8 = 80). Reducing the luminance resolution
to 3 bits, we can encode the luminance for a 4× 4 block in 16× 3 + 16 = 64
bits. On a 128-bit budget, this leaves 64 bits to encode chrominance, resulting in
a ratio 1 : 1 between luminance and chrominance. Figure 3 shows the bit layout
of the two modes. In the original paper, one source of artifacts is the chrominance
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RGB-filtered YUV-filtered diff image YUV-filtered with correction

RGB-filtered YUV-filtered YUV-filtered with correction

Figure 2: Bilinear filtering examples. The upper row shows a filtered cutout from the
’memorial’ image with difference images to highlight the errors. In natural images, pixel-
sharp edges are rare, and filtering artifacts are not very visually disturbing. In the example,
there are no clearly visible differences, so we present only difference images (×10) for this
example. The lower row shows a worst-case bilinear filtering scenario (after tone-mapping)
where there are sharp color and luminance transitions. Here the artifacts are clearly vis-
ible. The four colors are (0.1,0,0), (0,10,0), (0,0,1000) and (1,0,0). As can be seen, our
texture filtering correction reduces the errors for both examples.

subsampling, forcing nearby texels to have the same encoded chrominance. With
an increased chrominance bit budget, we avoid subsampling and allow for higher
chrominance detail.
By combining these two modes, we have an algorithm that is more flexible and
handles difficult chrominance regions better than before. In practice, we need one
bit for indicating which of these two modes is used per block. We remove the
option of non-linear luminance distribution from the format [9], and use that bit.
The hardware cost of our algorithm is very modest as many parts of the decoder can
be shared between the two modes. It is mostly a matter of reallocating the existing
resources required for the original algorithm. Our new format is also more suitable
for LDR textures, as they have a limited luminance range. A standard test suite of
images is evaluated in Figure 10.
A remaining difficult case for the combined algorithm is slow chrominance gra-
dients. Each block has only four chrominance values to choose from, resulting in
a limited color resolution. It can be argued that most gradients in natural images
are due to luminance changes from shadow/occlusion and these are covered by the
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high luminance resolution of the algorithm. However, one can construct examples
where the limited chrominance resolution is obvious. To handle these cases, one
approach is to include a high resolution variant of S3TC, using a line in RGB or
logYuv space with higher end point resolution and more values along the line. This
is further described below, but this mode is not included in our results presented in
Section 8.

per-pixel
indices

base
luminances

per-block
indices

base
colors

mode
bits

2·8 16·4 2 2·(8+7) 8·2

luminance chrominance

per-pixel
indices

base
luminances

per-block
indices

base
colors

mode
bits

2·8 16·3 2 2·(8+7) 16·2

luminance chrominance

Figure 3: The bit allocation for the two modes included in our new format. The upper figure
shows the bit layout used by Munkberg et al. [9], and the lower shows the bit layout for our
new mode, allocating more bits for chrominance.

6 Rejected Compression Modes

Our algorithm presented in Section 5 includes two compression modes based on
shape transforms [9], with different bit allocations between the luminance and
chrominance channels. If more resources are available, it may be beneficial to
include other compression modes in the format. In this section, we discuss a num-
ber of alternative compression modes that were tried during the development of
Munkberg et al.’s format. Although not included in our current format, we be-
lieve these new modes present many valueable insights and may be of use to other
people in the field.
During the encoding of a block, each of the compression modes is tested, and
the one with the smallest error in the chosen metric (we use log[RGB] error) is se-
lected. Hence, the inclusion of alternative compression modes can ideally only im-
prove the result, never increase the error. This assumes we have one or more spare
bits to indicate which compression mode a block uses. If no extra bits are avail-
able, we have to “steal” them from the encoded data, e.g., by quantizing harder,
which may reduce the quality.
An illustration of the usage frequency of the presented additional modes is given in
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11%4%
2%

40%

43%

shape I
shape II
eS3TC
DCT
plane

Average freq. BigFogMap Memorial Cathedral Room

Figure 4: The leftmost diagram shows the average usage frequency of each of our presented
algorithms on our suite of test images. shape I refers to the new mode (Section 5) with
increased chrominance precision, shape II to Munkberg et al. [9], S3TC is an S3TC line
with 32 levels in RGB space, DCT a fixed-rate DCT codec, and plane encodes luminance
with two planes and chrominance as in the shape I mode. The color-coded images to the
right illustrate the usage of the algorithms in different image regions. As seen in the figures,
the proposed format (shape I + shape II) is used in more than 80% of the blocks, with the
two modes complementing each other well.

Figure 4. In total, the new modes are only used in on average 17% of the blocks.
Thus, we do not believe the added hardware complexity is motivated by a large
enough increase in quality.

6.1 Extended S3TC

It is easy to extend the S3 texture compression (S3TC) format [4] to handle HDR
images. Traditional S3TC compresses a 4×4 pixel block by storing two reference
colors with 16 bits (RGB565) each, and creates a color palette from the reference
colors and two additional colors computed through linear interpolation. Each pixel
in the block is given a 2-bit index, which is used to select one color from the palette.
The format thus requires 16×2+4×4×2 = 64 bits per block.
We extend S3TC by using 2× 24 bits (RGB888) for the reference colors and a
color palette with 32 entries, computed using linear interpolation between the base
colors just like traditional S3TC. As a consequence, a 5-bit index is needed for
each pixel, resulting in 2×24+16×5 = 128 bits per block, which was our target
bit-rate. We also experimented with a palette of 16 colors and 2× 32 bits for the
reference colors.
Our extended S3TC works remarkably well for blocks with smooth gradients, and
blocks with mostly luminance features. However, the linear approach fails for
blocks with three or more distinct colors. This often shows as block artifacts in
regions with complex chrominance.
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6.2 Fixed-rate DCT-based Compression

The discrete cosine transform (DCT) is an energy compaction transform that is
popular in image and video compression. It is, for example, used in the JPEG and
MPEG standards [11]. These formats use a variable bit rate to allow for a higher
precision in important transform coefficients.
In our application, where we require a fixed rate and no global per-texture data, the
best we can do is to design an algorithm that works well on average. We work in
the logYuv space, and allocate 64 bits to the luminance channel and 32 bits to each
of the chrominance channels. To select the bit allocation within each channel, we
estimated the variance of each DCT coefficient over all 4×4 blocks in a set of 18
HDR images of both natural and synthetic origin. These estimated variances were
used to find a bit allocation table that minimizes the average reconstruction error
using Lagrange minimization [1, 16].
The quantization method plays a vital role in the performance of the algorithm.
For the DC-components, we used uniform quantization over the range of possi-
ble values, as we do not want to favor any particular luminance or chrominance
range. Consistent with previous work [13, 17], we found that the AC-components
approximately follow a Laplacian distribution. Therefore, we applied non-uniform
midtread quantization [16] optimized for the Laplacian distributions given by the
estimated variances. The additional cost of using non-uniform quantization as op-
posed to uniform quantization was well motivated by the increase in quality. In
hardware, the reconstruction translates to simple table lookups.
The fixed-rate DCT-based approach works well for a large number of blocks. How-
ever, it has a number of drawbacks. First, block artifacts between adjacent blocks
are relatively common. These look like typical JPEG-artifacts, and are rather dis-
turbing. To some extent, this could be remedied by taking a larger neighborhood
into account when computing the quantization levels. For blocks with a large
dynamic range, it proved difficult to find quantization levels that work well. In
addition, the decompression is relatively expensive. In summary, the best option
is probably to limit the use of DCT-based compression to blocks with smooth gra-
dients and other low-frequency features.

6.3 Plane Encoders for Luminance

The luminance values in a block can be seen as a height-field, z = f (x,y), where
x,y is the pixel coordinate of a point, and the z-value is the luminance. One option
for encoding luminance is to store the equation of the plane that approximates the
z-values as closely as possible: f (x,y) = z0 + x ·∆x+ y ·∆y, where z0 is a constant
offset, and ∆x and ∆y are the slopes. Finding the optimal plane parameters is a
simple linear optimization problem. However, an encoder based on a single plane
is rather restricted, as only linear luminance gradients can be represented.
A more general approach is to store two (or more) plane equations for each block,
and a per-pixel index to choose between them. If more bits are available, it is also
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possible to add intermediate levels in between the planes. For example, a 2-bit
per-pixel index can be used to select between the two planes and two additional
levels at 1/3 and 2/3 between the planes, similar to the work by Fenney [3].
We have implemented a simple plane encoder for luminance information, storing
two plane equations with a 10-bit offset and two 7-bit deltas each. A 16-bit mask
was used to select which of the two planes each pixel belongs to. This gives a
total bit count of 2×(10+7+7)+16 = 64 for the luminance encoder. To find the
plane equations, we used exhaustive search and regression, but more intelligent
methods can be developed. Our luminance plane encoder was combined with the
chrominance encoding using shape transforms as described in Section 5.
Our experiments with the plane encoders yielded promising results. Many blocks
contain relatively smooth gradients, and the two-plane encoder is good at handling
the case of two partially overlapping surfaces of different luminance. However,
areas with complex high-frequency features are poorly represented. The main
drawback of the method is that the restriction of the luminance to linear planes can
lead to visually noticeable block artifacts. Hence, the method must be combined
with other, more flexible, encodings.

7 Implementation

In this section, we describe the details of the compression algorithms based on
shape transforms (Section 5).

7.1 Shape Transforms

Shape transforms [9] is a compact way of encoding the 2D chrominance points of
a block. Each block stores a scaled and rotated template shape chosen out of the
set of pre-defined shapes shown in Figure 5, and a 2-bit index is used to indicate
the nearest chrominance point for each pixel or group of pixels. The transform
parameters, i.e., scale and rotation, are implicitly encoded by storing the location
of two base colors, marked as black dots in the figure.

Figure 5: The set of template shapes used for representing chrominance information of a
block.

To find the transform parameters that give the best match for the chrominance
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information, we have to minimize the shape fitting error. We use the squared
distance between the original and the compressed chrominance points:

E =
16

∑
i=1

[
(ūi− ū′i)

2 +(v̄i− v̄′i)
2] , (11)

where (ūi, v̄i) is the original chrominance point for pixel i, and (ū′i, v̄
′
i) is the cor-

responding point after compression. The error is evaluated for the best fit of each
template shape, and we select the shape with the smallest overall error.
In practice, minimizing the shape fitting error (Equation 11) is a relatively hard
problem. The error function has four degrees of freedom (the location of two base
colors), and 16 different (ūi, v̄i)-pairs for a 4×4 block, that each snaps to the near-
est compressed chrominance point. Exhaustive search is possible, but impractical.
If the base colors are quantized to 8 bits per component, there are 232 combinations
to try for each block. For a quick approximate solution, it is possible to use Pro-
crustes analysis, which is further described in the next section. Other alternatives
we have tried include simulated annealing and exhaustive search (see below).
After shape fitting, the position of the two base colors are encoded as two fixed-
point values. The limited precision introduces some additional compression error.
To further improve the solution, we search in a small radius of quantized values
around each base point to minimize the mean square error for the reconstructed
chrominance block.

Procrustes Analysis and Clustering

A landmark is a specific feature of an object, in our case represented as 2D co-
ordinates. The idea behind Procrustes analysis [2] is to compare the shapes of
objects, represented as sets of landmarks, by removing translation, rotation and
scaling. More formally, this analysis finds the similarity transformations to be ap-
plied to one set of landmarks, X1 (template shape coordinates), which minimize
its Euclidean distance from a second set, X2 (chrominance values). These are: b
(uniform scaling), R (rotation) and v (translation), which minimize the functional:

‖X2−bX1R−1kvT‖2. (12)

The problem of finding the parameters that minimize this functional has an ex-
act, fast solution: First, center X1 and X2 by subtracting the average from each
coordinate. v is given as the average of X2 prior to centering. Form the matrix
A = X2

T X1, and apply a singular value decomposition A = VSUT . The transform
parameters that minimize the functional above are given by (where trace is the sum
of the diagonal elements of a square matrix):

R = UVT ,

b =
trace(AR)

trace(X1
T X1)

. (13)
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With 2D points, the matrix A is of size 2× 2, so the SVD decomposition is
lightweight.
We use blocks of 4× 4 texels, containing 16 chrominance points, so the problem
is to fit a shape with four landmarks to 16 chrominance points (ū, v̄) ∈ [0,1]2. To
set up the point correspondences, we create up to four clusters of the chrominance
points using pnn-clustering and the k-means algorithm [16]. Clustering the points
is an approximation of the optimal solution to the fitting problem, but it allows us
to compare blocks against template shapes in constant time.
Procrustes analysis needs consistent ordering of the two sets of landmark points.
Therefore, each cluster is linked to a point on the template shape. With four land-
marks per shape, the number of unique mappings is 4! = 24, and we test all com-
binations. It is worth noting that for a problem with a larger set of landmarks per
shape, this is obviously not a feasible approach. Numbering schemes based on the
template shape geometry can be developed to avoid this brute-force solution.
Once the point correspondences are set up, each cluster k ∈ {1 . . .4}, is assigned a
gravity point and a weight wk = nk/16, where nk is the number of points in cluster
k. In order to take the number of points per cluster into account, we multiply the
functional above with a diagonal matrix:

W =


w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

 , (14)

containing the cluster weights wk. Our new functional is:

‖W(X2−bX1R−1kvT )‖2, (15)

which favors solutions with close fits for clusters containing many points. Another
possibility is to duplicate template points according to the number of points in
the matching cluster, avoiding the need of cluster weights altogether. We have
evaluated both approaches, and they give equal quality in our tests. We use the
former approach in our implementation as it is slightly faster.
The shape fitting routines were implemented in C++. The Procrustes step is fast,
as we are only interested in a 2D fit, and the most complex step is the singular
value decomposition of a 2×2 matrix. As previously discussed, we need to set
up point correspondences in order to use Procrustes analysis, and we tested both
ordering schemes and a brute-force solution. The latter was selected as the many
special cases of the former made it more error-prone and inflexible when adding
new template shapes. A 1024× 1024 image is encoded in about a minute, using
non-optimized code. The same image is decompressed in a fraction of a second
using our software decompressor.
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Simulated Annealing and Exhaustive Search

Our shape fitting algorithm based on Procrustes analysis and clustering works very
well in practice, but it should be noted that it is a heuristic and is not guaranteed
to yield optimal results. We have also examined two other approaches for finding
shape parameters, based on simulated annealing and exhaustive search.
Simulated annealing (SA) [5] is a probabilistic optimization algorithm that finds
some minimum (not necessarily the global minimum) through a series of small
random steps of decreasing length. Unlike greedier methods, spurious “uphill”
moves are allowed, which makes the algorithm less prone to getting stuck at
local minima. In our case, we wish to minimize the four-dimensional function
f (u1,v1,u2,v2), which takes the two base colors used to represent a shape as input
and computes the error according to Equation 11.
When compared to Procrustes analysis, we found that SA is prone to generate
a few bad blocks per image due to its probabilistic nature. This problem can be
reduced by running more iterations for blocks with higher errors, but it is very hard
to reach the same level of stability and performance as we got with Procrustes
analysis. SA can potentially generate better shape fits, but only if a very large
number of iterations are used, leading to excessive compression times.
Our exhaustive search used the same functional representation as for simulated
annealing, but here we redefine the problem using interval arithmetic [8]. That
is, the function takes intervals as parameters and computes interval bounds of the
error. We search for the global minimum by evaluating the function over the entire
search space, and then recursively split the search space into two halves. The
traversal of splits are sorted by error intervals, and when we find a solution, it can
be used to cull further traversal. This search is exhaustive since we continue the
recursion until we reach the resolution used to store the base colors.
Although exhaustive search provides optimal results, it is not practically useful
due to the extreme compression times. Even images of moderate sizes take over a
day to compress. However, exhaustive search can be used as a reference solution,
against which other optimization algorithms can be compared.

7.2 Optimizing with a Non-linear Error Function

The shape transform algorithm enables a compact representation of chrominance
information. However, the quantization of the base colors and the limited set of
shapes introduce small errors. We have noticed that the (ū, v̄) values in natural im-
ages are typically concentrated to a small region close to the ū and v̄ axes. Figure 6
(left) shows an example of this. Therefore, it is often better to use a non-linear
error function that gives more weight to small chrominance values.
We employ a transform, f (x)=xα , to the (ū, v̄) points prior to measuring the shape
fitting error. By choosing the constant α in the range [0,1], we effectively “stretch”
the (ū, v̄) space, as illustrated in Figure 6 (right). The drawback is that errors in

74



7. IMPLEMENTATION

v

u

Figure 6: The chrominance information in the test image ’desk’. The left image shows all
(ū, v̄) pairs in the image, and the right shows the same points after stretching the (ū, v̄)-
space.

the green component, 1− ū− v̄, get slightly smaller weights. We use a value
α = 0.455, which is inspired by the gamma-adjustment step typically included
in tone-mapping operators. This works well in practice, but it should be noted
that other transforms may perform better, and we have not performed extensive
experiments with this.
Note that this trick of using a non-linear error function when minimizing the shape
fitting error is only applied during the compression step. Hence, the shapes are
stored exactly as before, and no modifications to the decompression hardware are
needed. The drawback is slightly longer compression times. As seen in Table 1,
the log[RGB] error decreases by 20% on average, compared to performing shape
optimization using the original linear error function (Equation 11).

Image Non-linear Linear Improvement (%)
bigFogMap 0.06 0.07 12
cathedral 0.17 0.21 18
memorial 0.13 0.18 27
room 0.08 0.09 11
desk 0.22 0.53 59
tubes 0.28 0.31 10

Table 1: log[RGB] error comparison with non-linear vs linear error functions for the
chrominance points.

7.3 Luminance Precision

In this section, we discuss the necessary precision for encoding logarithmic lumi-
nance, as used in the color space defined in Section 3.1. Assume we work with
values in the range Ȳ ∈ [Ȳmin,Ȳmax], and uniformly quantize Ȳ using k bits. Then,
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the maximum absolute quantization error, |∆Ȳ |, is:

|∆Ȳ |= 1
2

Ȳmax− Ȳmin

2k . (16)

In linear luminance values, this quantization error translates to a maximum relative
luminance error, |∆Y |, equal to:

|∆Y |= max

∣∣∣∣∣2Ȳ±|∆Ȳ |

2Ȳ
−1

∣∣∣∣∣= 2|∆Ȳ |−1 (17)

As an example, consider the dynamic range supported by the 16-bit half type,
which is approximately [2−16,216]. The maximum relative error after quantization
to k = 6 . . .16 bits are presented in Figure 7. It is widely accepted that a relative
luminance error of about 1% is the smallest visually detectable difference [18]. Ac-
cordingly, a log-luminance precision of 10 bits (i.e., 1.09% relative error) should
be sufficient. Mantiuk et al. [7] came to the same conclusion after a similar rea-
soning based on measured luminance threshold curves of the human visual system.
Note that they use a perceptual quantization of luminance, so the results are not
directly comparable.

6 7 8 9 10 11 12 13 14 15 16
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14
16
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20

number of bits

r (
%

)
orre evital er

Figure 7: Maximum relative luminance error with uniform quantization of the log-
luminance.

Munkberg et al. [9] encode luminance values by quantizing the minimum and max-
imum log-luminance over a 4×4 block to 8 bits precision. Then, a 4-bit per-pixel
index is used to choose between 16 intermediate luminance levels, uniformly dis-
tributed between the block’s minimum and maximum. In practice, this gives a
variable luminance precision, where blocks with a small dynamic range will have
the best precision.
Figure 8 shows a histogram over the difference between the maximum and min-
imum log-luminance over all blocks in our test images (Figure 11). With our
luminance encoding, the histogram shows that we get 10 bits precision or better
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Figure 8: Histogram over the difference between the smallest and the largest log-luminance
values over all 4×4 blocks in our suite of test images (Figure 11).

for 51.0% of the blocks (maximum difference 0.5), 84.7% falls within 8 bits pre-
cision, and 99.8% within 6 bits. However, as described by Munkberg et al. [9], we
search in a small neighborhood around the end-points of the luminance range to
minimize the error. In many cases, it is possible to find a combination that better
fits the data, as illustrated in Figure 9.

(a) (b)

Figure 9: By searching around the end-points of the luminance range, we can often find a
better match (b) for the luminance values in a block, rather than just picking the min and
max as in (a). The example shows a quantization to 4 distinct levels for clarity, although
our format supports 16 different levels.

8 Results

Here, we compare our combined compression mode (Section 5) against state-of-
the-art HDR texture compression schemes. We also show that our algorithm works
well on regular LDR textures.
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8.1 Comparison with Other Approaches

We compare our algorithm with the recently published HDR texture compression
formats [9, 15, 19]. We would like to point out that the approaches have different
goals: Roimela et al.’s algorithm is very fast and designed for a simple hardware
implementation, while Wang et al. present a format that can be directly imple-
mented in DX9/10 without any hardware changes. Munkberg et al. focus on
image quality, while keeping the decompression hardware simple. Our algorithm
extends this by including a chrominance mode without subsampling.
A set of six test images was used, as shown in Figure 11. One image (’tubes’)
is artificial, while the others are natural images commonly used in the research
community. Table 2 shows the log[RGB] error (Section 2) for the test images.
Our combined mode shows slightly better or equal results for all images. Not sur-
prisingly, the largest improvement is in the ’tubes’ image, which contains sharp
chrominance transitions. The combined mode handles this better by avoiding
chrominance subsampling. Table 3 shows that the mPSNR error (Section 2) fol-
lows a similar pattern.
Table 4 shows the HDR-VDP (Section 2) error at 75% detection probability at an
adaptation luminance manually adjusted per image so that it is close to 300 cd/m2.
We found that the implementation of the HDR-VDP we used (v1.6) had problems
with true zeros in images, indicating errors even in totally black areas, e.g., in the
’tubes’ image. The results for this image are therefore overly conservative. Our al-
gorithm has one mode with lower luminance resolution, and as the encoder selects
the best mode based on the log[RGB] error, the HDR-VDP scores are somewhat
higher than with Munkberg et al.’s algorithm. This is because HDR-VDP only
measures perceived luminance, so chrominance artifacts are not captured.

Our Munkberg Roimela Wang
image 8 bpp 8 bpp 8 bpp 16 bpp
bigFogMap 0.06 0.06 0.10 0.14
cathedral 0.17 0.20 0.33 0.36
memorial 0.13 0.14 0.26 0.69
room 0.08 0.09 0.23 0.71
desk 0.22 0.25 1.14 2.92
tubes 0.28 0.43 0.85 0.81

Table 2: Log[RGB] error (smaller is better).

A visual comparison is presented in Figure 11, where the compressed images are
diagonally split, showing the squared log differences in the upper left triangle,
and the compressed result in the lower right. As can be seen, the images obtained
using Wang et al.’s algorithm (fourth column) often (1st, 2nd, 4th, and 5th row) have
relatively large errors in the luminance channel. This can be seen in that the error
images contain gray regions. In addition, there are also often larger chrominance
errors than for the other algorithms (except for the last row, where the method
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Our Munkberg Roimela Wang
image 8 bpp 8 bpp 8 bpp 16 bpp
bigFogMap 51.9 51.7 47.1 46.3
cathedral 40.0 38.9 34.2 35.8
memorial 46.5 46.1 41.3 38.0
room 48.6 48.1 41.6 34.1
desk 40.3 39.7 31.1 21.3
tubes 35.7 32.2 26.6 29.1

Table 3: Multi-exposure PSNR (larger is better).

Our Munkberg Roimela Wang
image 8 bpp 8 bpp 8 bpp 16 bpp
bigFogMap 0.00 0.00 0.01 7.18
cathedral 0.02 0.00 0.19 0.04
memorial 0.01 0.01 0.15 15.4
room 0.02 0.02 0.64 26.4
desk 0.03 0.00 2.58 4.34
tubes 1.59 0.66 3.35 2.00

Table 4: HDR-VDP error with 75% detection probability at an adaptation luminance of
300 cd/m2 (smaller is better). Note that the HDR-VDP only measures luminance errors,
while our format improves the chrominance precision. Hence the higher scores.

of Roimela et al. seems to produce the largest errors). Our algorithm and that of
Roimela et al. reproduce the luminance quite accurately. However, Roimela et al.’s
subsampling strategy for the chrominance gives a higher error than our algorithm
in all test images. We believe it is clear from these images that our algorithm is
more robust and accurate than previous methods.

8.2 LDR Measures

We have also compared the quality of our algorithm on a set of standard low dy-
namic range (RGB888) images. Here we have used a standard RGB to YUV color
transform [11] instead of the HDR color spaces discussed earlier. All other parts
of the algorithm were left unchanged. Figure 10 shows the results for a set of stan-
dard test images, and it is clear that our format performs significantly better than
the industry standard (S3TC), though at a higher bit-rate.

9 Conclusion

The HDR texture compression algorithm by Wang et al. [19] focuses on reusing
existing hardware for texture compression, and therefore arrive at an algorithm
using 16 bits per pixel with rather low image quality. However, the algorithm can
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Figure 10: PSNR for a set of standard 24-bit LDR images. We compare our algorithm
against S3TC and Munkberg et al.’s algorithm. Our new format gives up to 10 dB improve-
ment over S3TC, but note that S3TC uses only 4 bpp (compared to 8 bpp for the other
formats). The ’colors’ image consists entirely of color gradients along directed lines, which
is well captured by S3TC.

be used today on all DX9 hardware, which is a major advantage. The algorithm by
Roimela et al. [15] is a proposal for new hardware, and their focus was to provide
very simple decompression hardware, and still the image quality is rather high.
In contrast, our focus has been to increase the image quality as much as possi-
ble, as we think this is very important for content creators. We have introduced a
new mode for blocks of pixels with difficult chrominance, and combined that with
the algorithm of Munkberg et al. [9]. To make this usable, we provide an inex-
pensive texture filtering method. In addition, the details of our compressor using
Procrustes analysis and k-means clustering have been described. We hope that all
this information will be useful to many when developing new HDR TC schemes.
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ABSTRACT

Normal mapping is a widely used technique in real-time graphics,
but so far little research has focused on compressing normal maps.
Therefore, we present several simple techniques that improve the qual-
ity of ATI’s 3Dc normal map compression algorithm. We use varying
point distributions, rotation, and differential encoding. On average,
this improves the peak-signal-to-noise-ratio by 3 dB, which is clearly
visible in rendered images. Our algorithm also allows us to better han-
dle slowly varying normals, which often occurs in real-world normal
maps. We also describe the decoding process in detail.
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1. INTRODUCTION

1 Introduction

Bump mapping [3] is a widespread technique which adds the illusion of detail to
geometrical objects in an inexpensive way. More specifically, a texture, called a
bump map or normal map, is used at each pixel to perturb the surface normal. A
common approach to generate normal maps is to start with a high polygon count
model and create a low complexity model using some geometrical simplification
algorithm (see, for example, Cohen et al’s work [4]). The “difference” between
these two models is then “baked” into a normal map. For real-time rendering,
the normal map is applied to the low complexity model, giving it a more detailed
appearance. These techniques are heavily used in recent games.
A possible disadvantage is that the savings in transform and rendering due to the
lower vertex count is translated into an increase in bandwidth usage of textures
(normal maps). A traditional technique to alleviate this problem is lossy texture
compression (TC), which was introduced in 1996 [2, 8, 9]. TC developed primarily
for color can also be applied to normal maps [6], but the quality can be higher if
specialized algorithms are developed. One such technique, called 3Dc, has been
proposed by ATI [1].
However, little effort has been spent on developing new algorithms for normal
map compression. One problem with 3Dc is that it cannot handle slowly varying
normal maps well. This is illustrated in Figure 10. In this paper, we develop
several variations and extensions of 3Dc that perform much better on average, and
handle slowly varying data particularly well. We present visual proof showing that
our normal mapping algorithms give higher quality renderings, and we also show
that the peak-signal-to-noise ratio (PSNR) is improved.

2 Previous Work

The first example of normal compression in graphics that we know of is described
in the context of geometry compression [5], i.e., it was not targeted towards normal
map compression. Deering presents a method for compressing surface normals,
arguing that about 100,000 normals distributed over the unit sphere would give
sufficient quality. These normals can be represented by a single 17-bit index, and
by exploring symmetries on the sphere, only a 1/48 of the sphere needs to be
represented. A regular grid in the angular space of one such patch is used as sample
distribution. Nearby normals are encoded differentially. With these techniques he
manages to compress a normal to about 12 bits. However, the decompression step
includes a number of trigonometric operations and is quite costly compared to the
schemes described below.
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Figure 1: 3Dc selects a rectangle in the xy-plane (left), and places 8× 8 points uniformly
over this rectangle (in this figure, only 4× 4 points were placed to make the illustration
clearer). These points can be seen as a “palette” of xy pairs, and each texel in a 4×4 tile
can select one of these pairs. To the right, one such (x,y)-point has been used to generate a
normal, n = (x,y,z). This is done by requiring that we use unit normals.

2.1 3Dc Normal Compression

Next, we will review ATI’s normal map compression scheme called 3Dc [1]. As far
as we know, this is the only format dedicated to this purpose alone. In the majority
of cases today, bump mapping is performed in local tangent space, (X ,Y,Z), of
each rendering primitive (e.g. a triangle). Since the length of the normal is not
of interest, 3Dc uses units normals, and hence it suffices to compress the x- and
y-components. The third component is obtained through normalization:

z =
√

1− x2− y2, (1)

and this computation can either be done in the pixel shader, or by special purpose
hardware.
The x- and y-components are compressed independently using a variant of the
S3TC/DXTC [7] format. A block of 4× 4 texels (a.k.a. a tile) is compressed
into 128 bits, i.e., at eight bits per pixel (bpp). The x-coordinates are encoded in
the following way. Two eight-bit values, xstart and xstop, representing an interval
enclosing the x-values in the tile, are found. Each texel can select from eight
different x-values: xk = xstart +k(xstop−xstart)/7, k = 0 . . .7, which are thus spread
uniformly over the interval. This requires three bits per texel. To encode the x-
values of a tile, we need 2× 8 bits for xstart and xstop, and 16× 3 bits for the
per-pixel indices. This sums up to 64 bits. The y-components are encoded in the
same way, and the total cost per tile is 128 bits. An illustration of 3Dc is shown in
Figure 1.
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Figure 2: By rotating the coordinate frame, we can often find a much tighter bounding box.
This will improve the encoding precision.

3 Improved Normal Compression

In the following three subsections, we present three simple general techniques for
improving the quality of the 3Dc normal compression scheme. These are com-
bined into a single compression format in Section 4, while keeping a bit budget
of 8 bits per pixel (bpp). Compared to 3Dc, the extra cost is a more expensive
decompression phase (Section 4.1).
First, however, we will explain how we can incorporate three new modes into
3Dc. It stems from the fact that swapping the values xstart and xstop will produce
exactly the same reconstruction levels x0 . . .x7, albeit in the reversed order. Since
these two representations are equivalent, it is possible to signal one extra bit, b: If
xstart < xstop, then b← 0, else b← 1. The same trick is used in DXT1 to signal
whether a block is RGB or RGBA, and we call this trick the ordering technique.
In 3Dc, the ordering technique can be used on both x and y, and hence two extra
bits can be used.

3.1 Rotation Compression

When the major axis of a minimal box around the (x,y) points of a tile do not
coincide with either the x- or the y-axis, the quality of 3Dc decreases. By rotating
the coordinate frame, a much tighter fit can be obtained, and the extra storage
cost is only an angle per block. Figure 2 illustrates this scenario. For example,
using a single extra bit, one can select to use an angle in the set {0,π/4}, and two
bits increase the set to {0,π/8,π/4,3π/8}. Note that the standard 3Dc case is
included, thus, this technique can only achieve results equivalent to or better than
3Dc. As seen in Figure 3, the peak-signal-to-noise-ratio (PSNR) improves with
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Figure 3: The average PSNR for a set of 20 normal maps as a function of the number of
angles in the compressor. Angle count 1 represent no rotation, 2 represent the two angles
{0, π

4 } and generally, for an angle count a, the set of angles is {0, π
2a , ...,

π(a−1)
2a }.

more than a decibel on average, already with a set of three angles. Visual results
are shown in Section 5.

3.2 Variable Point Distribution

Normally, the 3Dc technique places the sample points uniformly in a grid over the
axis-aligned box defined by (xmin,ymin) and (xmax,ymax), where

xmin = min(xstart ,xstop), xmax = max(xstart ,xstop),

and ditto for ymin and ymax. However, other distributions may allow for better
compression. A simple way of altering the sample distribution is to use different
distributions depending on the aspect ratio of the box. For example, if the box is
more than twice as wide as it is high, then it could be beneficial to use a 16× 4-
distribution rather than the standard 8× 8-distribution. See Figure 4. No extra
bits are needed to signal this, since the point distribution is automatically triggered
by the aspect ratio, a = ymax−ymin

xmax−xmin
, of the box. For 3Dc, the per-texel indices are

encoded in six bits (3 + 3 bits for an (x,y) pair). However, if the aspect ratio
triggers, say, the distribution 2× 32, we simply move two bits, 3 + 3→ 1 + 5. It
should be noted that this approach cannot guarantee higher quality in all cases. We
have tested this technique on a set of 20 normal maps, with improved PSNR values
on all maps. The bounds for selecting a distribution were chosen empirically and
are presented in Table 1. The distributions 1×64 and 64×1 did not improve the
quality, and are not used in our compressor.
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2 x 32 4 x 16 8 x 8 16 x 4 32 x 2

Figure 4: Different point distributions are triggered automatically dependent on the aspect
ratio, a = ymax−ymin

xmax−xmin
, of the bounding box.

aspect ratio (a = ymax−ymin
xmax−xmin

) distribution (dx×dy)
a < 1/8 32×2

1/8≤ a < 1/2 16×4
1/2≤ a≤ 2 8×8

2 < a≤ 8 4×16
a > 8 2×32

Table 1: The bounding box aspect ratio automatically selects a point distribution.

3.3 Differential Encoding

One of the case where it is easy to detect compression artifacts is in areas that
have a slight curvature, for example, on a car hood. The smoothness of the surface
makes it easy for the viewer to predict what the image “should” look like, which
is not as simple for a rough surface.
Compressing such slow varying normals with 3Dc poses two problems. First,
the smallest representative interval is too wide. Since the quantized resolution is
only eight bits, an interval of 1/255 of the range might be to coarse for represent-
ing nearly constant normals (see Figure 5a and b). Second, the smallest interval
cannot be placed accurately enough, as the interval limits must coincide with the
quantization steps. Thus, if values of a block are present on both sides of a quan-
tized step (Figure 5c), the smallest interval covering all values will be at least twice
the minimum interval (Figure 5d) . In this section, we will present a technique to
make the precision higher in order to solve these two problems.
Our idea is to use the 32 bits that are normally used for storing xstart , xstop, ystart
and ystop in a different way, with an encoding that is specialiced for representing
small intervals accurately. However, we must be able to flag this mode of encoding,
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a
b c

d

x

Figure 5: The x-axis is shown with quantized values marked with bold vertical lines. Left:
a is the desired interval, but the smallest interval representable in 3Dc is b. Right: With
values on both sides of a quantized value, the smallest interval in 3Dc that covers the desired
interval c is d, twice the size of the smallest representable interval b.

xstart
0 1 2 3 4 5 6 7

xstop 0 0 1 2 3 4 5 6 7
1 9 10 11 12 13 14 15
2 18 19 20 21 22 23
3 27 28 29 30 31
4 x 26 25 24
5 x 17 16
6 x 8
7 x

Table 2: By mirroring the positions for number 8, 16, 17, 24, 25 and 26, it is possible to fit
the numbers 0 through 31 without using positions where xstart < xstop (marked with black).

so some bits are irretrievably lost. Using a simple mapping technique described
in the next paragraph, we can exploit 30 bits for a differential mode that handles
slowly varying normals. In this mode, we use eleven bits each to encode xmin and
ymin using 8.3 (eight bits for the integer part and three bits for the fractional part),
and we spend four bits each on two delta values, ∆x and ∆y, using 2.2 bits. xmax is
calculated as xmax = xmin + ∆x, and ditto for ymax. Due to the differential coding,
we call this mode the differential mode, and it addresses both problems identified
above: the smallest representable interval is now four times smaller, and since
the precision of the location of the interval (3 fractional bits) is twice that of the
smallest length (2 fractional bits), we can handle values on both sides of a border
as in Figure 5c without doubling the interval.
In the following, we will present a general method useful when exploiting the
ordering technique (see beginning of Section 3). Assume that we have detected
a special mode signaled by xstart ≥ xstop. Unfortunately, we cannot set the bits
of xstart and xstop arbitrarily, since xstop must be less than or equal to xstart . We
thus want to solve the problem of exploiting a maximum number of the sixteen
bits occupied by xstart and xstop, while preserving xstart ≥ xstop. This can be solved
by a simple mapping, illustrated in Table 2, where xstart and xstop are 3-bit values
instead of 8-bit values for simplicity. Here, we have entered the numbers 0 through
31 into the table, while avoiding the black boxes where xstart < xstop. The numbers
are entered row-by-row, except for the numbers which would have fallen in the
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forbidden positions, namely numbers 8, 16, 17, 24, 25 and 26. The positions for
these numbers are therefore mirrored both in the vertical and horizontal direction
relative to the center of the table. As can be seen, we have stored 32 numbers, and
we can therefore extract five bits. This is the maximum number of bits we can
obtain since roughly half the values are marked with black.
Decoding this 5-bit number is especially simple for the upper half (rows 0 through
3) using

value = (xstop << 3) OR xstart ,

where << represents a left shift and OR is the bit-wise logical OR operator. For
the lower half (rows 4 through 7), we have to mirror xstart and xstop first to (7−
xstart) and (7− xstop), which is the same as inverting their bits, and we can use

value = (NOT(xstop) << 3) OR NOT(xstart),

where NOT(·) denotes bit-wise inversion. For eight bit x-values, we shift with 8
instead of 3, and we can store 15 bits in value. Encoding is straightforward—we
use the lower part of value for xstart and the upper part for xstop, and invert both if
xstop > xstart according to the pseudocode below:

xstart = value AND 0xff
xstop = (value >> 8) AND 0x7f
if xstop > xstart

xstart = NOT(xstart)
xstop = NOT(xstop)

end

where NOT operates on all eight bits.

4 Proposed Scheme

In this section, we will combine the three techniques described above into a format
that fits in an 8 bpp budget. The foundation for our combined mode is 3Dc, but we
exploit redundancy in its encoding to allow for more modes. Next, we will describe
how these two extra bits can be used to improve the quality of 3Dc substantially.
We allow two rotations and limit the differential mode to tiles where both the x- and
the y-components can be encoded differentially. Altogether, we have four different
modes: I) the standard 3Dc mode, II) a rotation with 30 degrees, III) a rotation with
60 degrees, and IV) a differential mode, encoded with 8.3 + 2.2 bits. As seen in
Figure 3, using three angles gives a significant improvement in quality. It would
be possible to add yet another angle, but that mode is more wisely spent on the
differential mode in terms of PSNR. The variable point distribution is applied to
all modes except the differential one where it did not increase quality. Table 4
shows the quality contribution that each technique adds on a test series. The usage
of each mode is further illustrated in Figure 6, showing how often the different
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Figure 6: The frequencies of the different algorithms for the images used in the test.

modes are used for each test image. All modes are used quite frequently, which
indicates a balanced algorithm.
Note that mode I differs slightly from 3Dc in that it uses variable point distribution.
Alternatively, it is possible to avoid using variable point distribution in mode I.

mode X Y bits vpd
I: rot 0◦ xstart < xstop ystart < ystop 8+8 yes
II: rot 30◦ xstart ≥ xstop ystart < ystop 8+8 yes
III: rot 60◦ xstart < xstop ystart ≥ ystop 8+8 yes
IV: diff xstart ≥ xstop ystart ≥ ystop 8.3+2.2 no

Table 3: The encoding modes for the combined normal compressor. vpd indicates “variable
point distribution.”

mode PSNR (dB)
3Dc 36.4
3Dc + Point Distr. 37.5
3Dc + Point Distr. + Rot 38.8
3Dc + Point Distr. + Rot + Diff 39.4

Table 4: The average PSNR for the normal maps presented in Figure 8.
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This would mean that existing 3Dc hardware designs could be reused to decode
this mode. Maybe more important, it would allow existing 3Dc textures to be
transcoded to our new format without loss, by swapping xstart and xstop if xstart >
xstop (and performing bit-wise NOT on the per-pixel indices to reflect the inverted
ordering). However, this backward compatibility would come at a cost: On the test
images of Section 5, the average PSNR for this alternative solution is about 1.3 dB
lower than the proposed scheme.

4.1 Decoding

The decoding of a block is performed as follows:

1. First, xstart , xstop, ystart and ystop are tested to see which mode the block
belongs to, according to Table 3. For instance, if xstart < xstop and ystart ≥
ystop, then mode III is selected.

2. The next step is to calculate xmin and xmax. For modes I through III, this
is simply done using xmin = min(xstart ,xstop) and xmax = max(xstart ,xstop),
and likewise for ymin and ymax. All resulting numbers will be between 0 and
255. For mode IV, the 15-bit value is first calculated from xstart and xstop
as described in Section 3.3. Then, the first eleven bits of value are used to
decode xmin in format 8.3, i.e., with eight bits for the integer part and three
for the fractional part, resulting in a number between 0 and 255.875. The
last four bits of value are decoded as an offset, ∆x, in fixed-point format
2.2, resulting in a number between 0 and 2.75. xmax is finally calculated as
xmin +∆x. Similar computations are performed for ymin and ymax.

3. The aspect ratio a = ymax−ymin
xmax−xmin

is computed, and a point distribution is se-
lected according to Table 1. Denote the distribution dx× dy. For mode IV,
the distribution is always 8×8.

4. The reconstruction levels are calculated using xk = xmin + k
dx−1 (xmax−xmin), k =

0, . . . ,dx−1, and likewise for yk.

5. The pixel indices are now used to determine which reconstruction level to
use. For instance, a value of 010bin selects reconstruction level x2 for x. The
y-value is obtained analogously.

6. For modes II and III, we will also rotate the coordinates using
(

x′

y′

)
=

M
(

x
y

)
, where M =

(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
is a rotation matrix and φ is−π/6

or −π/3. See Section 4.2 for an efficient implementation. For modes I and
IV, we just use x′ = x and y′ = y.

7. Division by 255, and remapping to [−1,1] follows: x′′ = 2x′/255− 1 and
y′′ = 2y′/255−1. In the differential mode, clamping the values to the inter-
val [−1,1] can also be necessary.
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Figure 7: A hardware decompressor unit for our normal map compression algorithm. To
the left, 128 bits of data are shown, and these are used to decode one of the 16 normals in
a 4×4 tile. As can be seen, our three techniques have been clearly marked. The remaining
parts is basically 3Dc (except that 3Dc only divides by 7).

8. Finally, the z coordinate is calculated as z′′ =
√

1− x′′2− y′′2. The decom-
pressed normal for the pixel is (x′′,y′′,z′′).

The last two steps can be performed in the pixel shader.

4.2 Efficient Rotation

In this section, we suggest a hardware-friendly rotation. For modes II and III of our
algorithm, the decompressor needs to rotate a two-dimensional point by -30 and
-60 degrees. In the following, we develop an inexpensive, approximate rotation for
−30◦. The case with −60◦ uses the same constants, but at different locations in
the matrices, so this is omitted from our description. The matrix for rotating −30
degrees is:

M=
(

cos(−π/6) −sin(−π/6)
sin(−π/6) cos(−π/6)

)
=
(

0.86602... 0.5
−0.5 0.86602...

)
. (2)

The 0.5-terms above are not expensive to implement, but multiplication by
√

3/2≈
0.86602 is. To that end, we suggest that the hardware-friendly matrix M̃ is used
instead:

M≈ M̃=
(

1− 1
8 0.5

−0.5 1− 1
8

)
=
(

0.875 0.5
−0.5 0.875

)
, (3)
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where multiplication by 0.875 can be implemented as a shift by three and a sub-
traction. Note that M̃ is not an orthogonal matrix, i.e., M̃M̃T 6= I. Therefore, we
emphasize that we cannot use MT during compression, because it also holds that
M̃MT 6= I. Instead, we must use the inverse of M̃ during compression:

M̃−1 =
64
65

(
0.875 −0.5

0.5 0.875

)
≈
(

0.8615... −0.4923...
0.4923... 0.8615...

)
. (4)

If M̃−1 is used to transform a rectangle, the result will be different from the rect-
angle obtained by using M−1 = MT. In fact, when using M̃−1, the rectangle will
get a slight skew due to the fact that the transform is not orthogonal. However, the
average PSNR for all our test images was only reduced by 0.03 dB on average,
which is not significant.
See Figure 7 for a possible hardware implementation.

5 Results

To evaluate the visual quality of our compressor, we have tested several normal
maps, taken from the set in Figure 8, in a real-time shader development appli-
cation, in order to mimic a typical user scenario. We have also rendered images
using a high-end renderer, with anisotropic mipmap filtering, HDR environment
mapping and screen space anti-aliasing. When compressing with 3Dc, we per-
form exhaustive search for the base values in the x- and y-direction separately, to
ensure that our 3Dc compressor is near-optimal. A full exhaustive search over x
and y simultaneously was too costly.
In Figure 10, we show visual results obtained using a normal map with slowly
varying normals. The pixel shader implemented simple environment mapping in
order to better show the quality. As can be seen, our technique provides supe-
rior results compared to ATI’s 3Dc technique. For this particular map, we have
observed an increase of 10 dB in PSNR compared to 3Dc.
Figure 11 illustrates a test with a typical game normal map [6] with sharp edges.
Our algorithm handles many difficult tiles better due to the flexibility offered by the
extra rotation and variable point distribution. We rendered the images in Figure 10
and 11 using an NVIDIA GeForce FX 6800 graphics card. In the tests, we use
RGBfp16 textures, which are supported by the GPU.
Another visual test is shown in Figure 12, which was rendered using a high-quality
offline renderer.
In addition to obtaining visual results, we also used the mean square error (MSE),
which is computed as a summation over all normals in the image:

MSE =
1

w×h ∑(x̂− x)2 +(ŷ− y)2 +(ẑ− z)2, (5)

where w and h are the width and the height of the image, x ∈ [−1,1] is the x-
component of the uncompressed normal and x̂ ∈ [−1,1] is the corresponding com-
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a. Bumpy b. Car c. dot1 d. dot2

e. dot3 f. dot4 g. lumpy h. metal

i. normalmap j. onetile k. turtle l. voronoi

m. slowMap n. bulge o. multiBulge p. star

q. boxes r. torus s. skin t. barrel

Figure 8: The set of normal maps used for evaluating our compression algorithm. m, n, o,
p, q, and r are 32 bit/channel maps, all other maps are 8 bit/channel.

pressed x-component, and similar for y and z. For normal values, we use the Peak
Signal to Noise Ratio (PSNR):

PSNR = 10log10

(
1

MSE

)
, (6)

where the nominator is one, since the peak signal for a normal of unit length will
always be equal to one, by construction. PSNR values for all images tested, for
3Dc and our combined algorithm are presented in Figure 9, with improved values
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Figure 9: This chart shows the PSNR values for the images in Figure 8 for 3Dc and our
algorithm. Our algorithm is the combined algorithm, using a standard 3Dc mode, rotations
(30 and 60 degrees), a differential mode and variable point distribution.

Figure 10: A grid cube-map environment is used for these images. The normal map is a
very slowly varying map (m) from Figure 8. Left: normal map compressed with ATI’s 3Dc
technique. Middle: rendered using original normal map. Right: normal map compressed
with our algorithm.

on all maps. The average improvement is about 3 dB.1 We see large differences on
slowly varying maps and maps with sharp egdes.

1As discussed in Paper IV, PSNR values should not be directly averaged, since PSNR is a non-
linear operator. Averaging the MSE and computing the PSNR of the result avoids this pitfall, and the
average improvement is then about 2 dB.
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Figure 11: A typical game normal map (t), rendered in a real-time shader development
application, with a cube reflection map. Left: normal map compressed with ATI’s 3Dc
technique. Middle: rendered using original normal map. Right: normal map compressed
with our technique.

Figure 12: The normal map (k), rendered in a high-end off-line renderer, with HDR en-
vironment mapping, texture filtering and advanced anti-aliasing. Left: 3Dc. Middle: un-
compressed map. Right: our algorithm. As can be seen in the images, 3Dc shows more
"wobbling" artifacts, and some features even disappear. Our new algorithm shows higher
quality, even though some artifacts remain.

6 Conclusions

We have designed three new techniques which can be used in conjunction to the
3Dc normal compression format. As shown in our paper, the combination of these
handles many of 3Dc’s weaknesses much better. Our techniques are combined into
a scheme that still fits into a bit budget of 8 bpp and requires only small additions to
a hardware decompressor. The new format is more flexible, with 3Dc as a subset,
and we have obtained better results on all normal maps tested, both visually and
in the PSNR error measure. For a series of 20 normal maps, the average PSNR
increased with 3 dB.

100



6. CONCLUSIONS

Acknowledgements

We acknowledge support from the Swedish Foundation for Strategic Research and
Vetenskapsrådet.

101



PAPER III: HIGH-QUALITY NORMAL MAP COMPRESSION

102



Bibliography

[1] ATI. Radeon X800: 3Dc White Paper. Technical report, 2005.

[2] A.C. Beers, M. Agrawala, and Navin Chadda. Rendering from Compressed
Textures. In Proceedings of SIGGRAPH, pages 373–378, 1996.

[3] Jim Blinn. Simulation of Wrinkled Surfaces. In Proceedings of SIGGRAPH,
pages 286–292, 1978.

[4] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving
Simplification. In Proceedings of SIGGRAPH, pages 115–122. ACM Press,
1998.

[5] Michael Deering. Geometry Compression. In Proceedings of SIGGRAPH,
pages 13–20. ACM Press, 1995.

[6] Simon Green. Bump Map Compression. Technical report, NVIDIA, 2004.

[7] Konstantine Iourcha, Krishna Nayak, and Zhou Hong. System and Method
for Fixed-Rate Block-based Image Compression with Inferred Pixels Values.
In US Patent 5,956,431, 1999.

[8] Günter Knittel, Andreas G. Schilling, Anders Kugler, and Wolfgang Straßer.
Hardware for Superior Texture Performance. Computers & Graphics,
20(4):475–481, 1996.

[9] Jay Torborg and Jim Kajiya. Talisman: Commodity Real-time 3D Graphics
for the PC. In Proceedings of SIGGRAPH, pages 353–364, 1996.

103



BIBLIOGRAPHY

104



Pa
pe

rI
V

Paper IV

Tight Frame Normal Map Compression

Jacob Munkberg† Ola Olsson† Jacob Ström‡ Tomas Akenine-Möller†

†Lund University ‡Ericsson Research

ABSTRACT

We present a new powerful and flexible fixed-rate normal map
compression algorithm with higher quality than existing schemes on
a test suite of normal maps. Our algorithm encodes a tight box with
uniform normals inside the box, and in addition, a special mode is
introduced for handling slowly varying normals. We also discuss sev-
eral error measures needed to understand the qualities of different al-
gorithms. We believe the high quality of our technique makes it a
potential candidate for inclusion in OpenGL ES.
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1. INTRODUCTION

1 Introduction

Normal maps, also called bump maps [3], allow for significant geometry savings,
while preserving the illusion of geometric detail. Therefore, they are very popular
in the latest generation of games. Texture bandwidth is a limiting factor, and to
allow heavy use of normal maps in a real-time engine, there is a need of a compact
representation of these textures. The focus of this article is twofold. First, we will
discuss error measures for evaluating the quality of normal maps, and second, we
will present a new compression algorithm. We argue that it is important to study
not only the PSNR of the resulting maps, but also the maximum pixel error, and the
error distribution over the images alongside with rendered results of the maps in
use. Governed by our error measures, we present a new high quality compression
algorithm, suitable for hardware implementation. Our technique supports very fast
decompression, and robust behavior for a large range of input data.

2 Previous Work

A number of algorithms have been suggested for normal map compression. Most
of these are fixed rate algorithms, which allows for fast random access without
index tables, palettes or traversal trees.
Standard color texture compression techniques are not well suited for normal maps,
which often contain many sharp features. To the best of our knowledge, Deering
was the first to present compression of normals [4]. By using symmetries on the
sphere, and encoding the “sextants” of the octants, each normal could be stored
in 12 bits. Note that this work was targeted for geometry compression. Fenney
and Butler [5] also encode by the octants, but select one of four octant-pairs, each
parameterized with 7+7 bits. Each normal uses 16 bits.
The 3Dc format [2] is a dedicated normal map compression technique, which
compresses blocks of 4× 4 pixels. The 16 (unit length) normals in a block are
projected onto the unit circle, and the axis-aligned bounding box of the projected
values is quantized into an 8× 8 grid, giving 64 positions to choose from inside
the box. Four values are encoded to determine the size of the box, and 3 + 3 bits
are encoded per normal in the block to determine which point in the grid to select.
This results in a total of 128 bits per block of 16 pixels, or 8 bits per pixel. By
exploiting unused encoding combinations, and using them as additional compres-
sion modes, an enhanced 3Dc (here abbreviated e3Dc) algorithm was defined [6].
This algorithm handles very slowly varying normal maps (e.g., car hoods), rotated
frames and more uniform reconstruction point distributions. We have borrowed
techniques for better point distributions and bit extraction from this work.
Normal map encodings with adaptive bit rates [9, 12] achieve better compression
rates than fixed-rate approaches with comparable quality, but rely on complex ad-
dressing for decompression along with more memory accesses to index tables,
which can make a hardware implementation significantly more complex. Vector
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quantization allows for more compact normal map compression and achieves im-
pressive quality and compression rates [10]. However, the approach is limited to
8-bit normals, which is shown to be insufficient for slowly varying normal maps.
An error analysis for normal maps based on unity condition [11] discussed the
impact of the popular elimination of the z-component while compressing normal
maps. An interesting conclusion is that as long as the normals have small x, y and
small errors in those components, the z-error will be even smaller.

3 Error Analysis

As normal maps are not viewed directly, but rather used in shaders to define the
local normal vector, standard image quality metrics are not directly applicable. It
can be argued that the mean square error (MSE), is a good measure, as it gives
an (averaged) error that indicates the quality of the normal map. However, it does
not tell us whether there is a constant small error over all pixels or a small set of
pixels with large errors. An excellent discussion of the limitations of the MSE is
described in Wang et. al’s paper about structural similarity [8], where different
distortions are added to an image, all with equal MSE. A smooth normal map with
a few isolated divergent normals will often look unacceptable as the divergent
normals will give rise to cracks in the smooth surface. Therefore, we also use the
max error, and histograms of the angle error (defined below) per image together
with MSE values, to ensure that the algorithms behave robustly.
MSE is computed as a summation over all normals in the image:

MSE =
1

w×h ∑(x̂− x)2 +(ŷ− y)2 +(ẑ− z)2, (1)

where w and h are the width and the height of the image, x ∈ [−1,1] is the x-
component of the uncompressed normal and x̂ ∈ [−1,1] is the corresponding com-
pressed x-component, and similar for y and z. For normals, we use the Peak Signal
to Noise Ratio (PSNR):

PSNR = 10log10

(
1

MSE

)
, (2)

where the nominator is one, since the peak signal for a normal of unit length will
always be equal to one by construction.
There are mainly three components which will be affected by the precision of the
normal in real-time graphics: diffuse shading, specular shading, and specular re-
flection. The errors in a rendered image due to the diffuse and specular shading
are relatively small compared to that of the specular reflection. Even a small an-
gular error in a normal may result in a different texture access in the environment
map. Therefore, it is important to look at the direct angle difference between the
compressed and original normal, as well as studying bump mapped images with
environment mapping.
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We propose using the angular deviation [1], denoted Ead , defined as:

Ead = arccos(no ·nc) , (3)

which measures the difference in angle between the uncompressed normal (no)
and the compressed one (nc).
In addition, we will show false color images of the errors in the normals maps,
and also render images with environment mapped and bump mapped surfaces. For
these, we will compute the structural similarity [8] quality measure.

4 New Algorithm

38 / 46 / 50 36 / 39 / 46 38 / 39 / 46 40 / 42 / 49 36 / 40 / 46

Figure 1: An example with strong directed features. PSNR values are listed for 3Dc / e3Dc
/ Tight Frame respectively.

Let us start with a simple motivating example. Imagine we have a normal map,
as in Figure 1, consisting mainly of parallel lines. If the lines are axis-aligned,
3Dc will handle this example pretty well, as a tight axis-aligned bounding box
(AABB) would capture the details. If the lines are rotated, however, the projected
values will be more spread out. Thus, the AABB will inevitably grow, resulting
in less accurate encoding. The enhanced 3Dc (e3Dc) algorithm handles this by
including a small set of angles, thus making the encoder less sensitive to directed
features. However, we would like generalize this. The artist should not need to
try out the “best” initial position before baking the texture for best compressed
quality. We also note that texture atlases contain many small maps, which are
packed into a single texture. This is often an automatic process, and can create
arbitrarily oriented small texture pieces. This is another case where a rotation-
invariant normal map compression scheme would be desired.

4.1 Tight Frame Encoding

Here, we describe our rotation-invariant normal map compression algorithm. In-
stead of creating a bounded interval for our x- and y-values, we express a bounding
box in a new coordinate frame using only two points, p = (px, py) & q = (qx,qy),
and the aspect ratio, a = height

width , where width is ||p−q||, and height is the height of

109



PAPER IV: TIGHT FRAME NORMAL MAP COMPRESSION

p
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e₂̂
e₁̂
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Figure 2: The coordinate system of our tight frame (TF) coding algorithm.

the rotated box. Figure 2 shows this setup. The two axes of this coordinate frame
are simply ê1 = q−p, and ê2 = (−ê1y , ê1x). The lower left point in this frame is
s = p−0.5aê2. It should be noted that a similar setup has been discussed in HDR
texture compression [7].
Once we have defined this oriented bounding box (OBB), we distribute points
uniformly in the box, using the aspect ratio to select the number of divisions along
the two axes. For example, in the case of a very wide OBB, it makes more sense to
use more points along the widest axis. This variable point distribution (VPD) [6]
becomes more powerful in our algorithm, as it is easier to find a compact OBB
than a compact AABB (3Dc), or fix-rotation AABB (e3DC). See Figure 3 for an
illustration of the benefits of VPD.

h  =i 0,1 2-7 8-15

Figure 3: Without (top) and with (bottom) variable point distribution (VPD). By adapt-
ing the point distribution to the aspect ratio of the bounding box, the area is more evenly
sampled. hi is a four bit number, as described below.

The flexibility of the OBB combined with the redistribution of sample points
(VPD) makes for a simple, yet powerful algorithm which gives high quality com-
pression when there is correlation to exploit between the x- and y-channels. Here-
after, this technique is called tight frame (TF) coding. The target of our algorithm
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is 8 bits per pixel (bpp), i.e., 128 bits for 4× 4 pixels. Similar to 3Dc and e3Dc,
we use six bpp for indices. This leaves 32 bits for encoding the bounding box.
The information needed to reconstruct the bounding box comprises the two points
p & q and the aspect ratio a. To stay in the bit budget of 32 bits, p and q are
quantized to 7+7 bits per point, leaving four bits to a. Note that the points p and
q can always be oriented so that a is a number between zero and one. Being able
to encode a = 1.0 means that there are two ways of expressing the same bounding
box (rotate the first box 90 degrees). In order to avoid this redundancy, we use
a maximum value of a which is somewhat smaller than 1.0. In addition, a = 0.0
is not particularly useful. For these reasons, we use the following reconstruction
levels: a = 1

32 + hi
1
16 , where hi is the 4-bit number stored. Since a increases in

steps of 1
16 , the height can be inexpensively calculated from the width using shifts,

additions, and integer multiplication with hi only.

4.2 Differential Mode

Similarly to e3Dc, we include a special mode for handling slowly varying normals
inside a block. This is mode is triggered when px ≥ qx and py ≥ qy [6], and the
same trick is used to recover the payload bits for this mode. However, our encoding
is slightly different. To increase the accuracy of the bounding box positions (p and
q) of this mode, we encode normals inside a (non-rotated) square. We encode the
lower-left corner of the square using 2×11 bits, and the length of the square side
is coded using 8 bits. Inside the square, we use 8×8 uniformly distributed points,
which costs 3+3 index bits per pixel. All in all, this mode costs 22+8+16×6 =
126 bits per block. Since we target slowly varying normals with this mode, we
limit the square’s side length for added precision. As an example, we can use
a maximum length of 1/4. This implies that the minimum side of the square is

1
4×28 = 1

1024 . If we select a smaller maximum size, say 1/32, we get square sizes
in [ 1

32768 , 1
32 ]. For the test series used in this paper, a max length of 1/4 worked

well. For comparison, e3Dc uses a differential mode with 2×11 bits for positions
and 2× 4 bits for a differential vector. This implies a length of the differential
vector in the smaller interval [ 1

512 , 1
32 ], but the mode is not restricted to squares,

making it a bit more flexible, where applicable.

4.3 Decompression

A proposal for a hardware decompressor is illustrated in Figure 4. The two vectors
spanning the bounding box, v̂ = aê2 and ê1, as well as the lower left point s, are
calculated by the green part. The red part calculates the same values for the dif-
ferential version of the coder. The blue part assigns the right bits for the variable
point distribution.
Without implemeting 3Dc, e3Dc and TF in VHDL, it is hard to estimate relative
gate counts for the different algorithms. However, comparing Figure 4 with the
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Figure 4: Diagram of a proposal for a hardware implementation of the decoder. Green:
calculates v̂ = aê2 and ê1 which are the two vectors spanning the bounding box. It also
calculates s, which is the lower left point of the bounding box. Red: calculates, v̂, ê1 and s
for the differential version of the decoder. Note that, if px ≥ qx and py ≥ qy, differential data
is stored in px, py,qx and qy. Blue: assigns the right bits for the variable bit distribution
using the multiplexors marked with m. Likewise, the multiplexors marked with d choose
between regular and differential input. Note that multiplication with 1/127 can be approxi-
mated efficiently as 1/128 + 1/16384 which is implementable with shifts and additions (not
shown). Likewise for 1/255 and 1/1023.

diagram of e3Dc [6], we see that TF has twice the number of "multiply and divide"
units compared to e3Dc, plus two extra smaller multipliers in the green area. Thus
a fair guess would be that TF is up to twice as complex as e3DC, which in turn is
slightly more complex than 3Dc.

5 Results

To evaluate the visual quality of our compressor, we have used 20 representative
normal maps, which are the same ones used previously in normal map compression
research [6].

In Figure 8, we present both individual PSNR and maximum angle deviation for
the test suite. As can be seen, our algorithm has slightly better scores than e3Dc
for the majority of the normal maps, and significantly better scores than 3Dc for
all maps. For the “bumpy”-map, e3Dc is better due to that our algorithm uses
7+7 bits for the endpoints, while e3Dc uses 8+8. Further, as all normals in that
image are essentially along a horizontal line, there is no gain from being able to
rotate the boxes. In the table to the right, we present PSNR values obtained by first
averaging the MSE values for all the normal maps. PSNR is then computed on this
accumulated MSE using Equation 2. Note that it is
not correct to simply average the PSNR scores of the
individual images, since this is not a linear operator.

3Dc e3Dc TF
30.87 32.74 33.50

In the extreme — if one image would get zero error, it would get infinite PSNR
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and the aggregate PSNR figure would also be infinite, irrespectively of the errors
in the other images. Averaging the MSE and then calculating the PSNR avoids this
pitfall. As can be seen, our algorithm has better scores than both 3Dc and e3Dc.

Figure 5: False color images of the pixel errors: From left to right: Original map, 3Dc,
e3Dc and TF. We can clearly see improved performance of the TF algorithm over the two
3Dc compressor variants.

Original 3Dc e3Dc Tight Frame
100% 93.3% 95.7% 96.3%

Figure 6: Rendered quality in a real-time engine. Note that the figures below the zoomed
images are Structural Similarity values for the entire screenshot.
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Figure 7: The error distribution of the algorithms.
The maximum angle error (bottom part of Figure 8) indicates that our algorithm is
more robust than the other algorithms in all but one image. In Figure 7, we show
the histograms over the angular error. Intuitively, it is better to have less area to
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the right, and more area to the left. As can be seen, our TF algorithm consistently
performs a bit better in this respect.
To further illustrate the improvement of our algorithm, we show false color images
of the compressed normal maps in Figure 5, and zoomed-in renderings in Figure 6.
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Figure 8: The PSNR (top) and the maximal angular error (bottom) of all images in the test.
We can clearly see a more robust behavior for our tight frame (TF) algorithm in both error
measures. Please note that all encoders are optimized for MSE.

114



6. CONCLUSION

6 Conclusion

In a sense, our work here is quite incremental, since we have basically put together
building blocks from other texture & normal map compression research. However,
we have shown that this novel combination gives a powerful normal map com-
pression algorithm with high quality under a wide set of error/quality measures.
Furthermore, for mobile devices, compression algorithms are very important, and
we hope that our technique can be considered for inclusion in OpenGL ES.
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ABSTRACT

We present a novel algorithm for stochastic rasterization, which
can rasterize triangles with attributes depending on a parameter, t,
varying continuously from t = 0 to t = 1 inside a single frame. This
can be used to render motion blur. We develop efficient techniques for
rasterizing our primitive, and specialized sampling and filtering algo-
rithms for improved image quality. Our algorithm needs some new
hardware mechanisms implemented on top of today’s graphics hard-
ware pipelines. However, our algorithm can leverage on much of the
already existing hardware units in contemporary GPUs, which makes
the implementation fairly inexpensive. By using time-dependent tex-
tures, we show that motion blurred shadows and motion blurred reflec-
tions can be handled in our framework. In addition, we also present
new techniques for efficient rendering of depth of field and glossy
planar reflections using our stochastic rasterizer.
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1. INTRODUCTION

1 Introduction

If objects in the field of view of the camera, or the camera itself move, and the shut-
ter of the camera is open for a finite amount of time, an image with motion blur
is obtained. Real photographs and video often contain motion blur, and therefore,
this effect is commonly and heavily used in the movie industry using offline ren-
dering tools. In contrast, most real-time graphics applications assume the shutter
is open only for an infinitesimal amount of time, which means that motion blur is
absent. However, it is our impression that motion blur is a highly desirable feature
even for real-time games.
Rendering motion blur is a hard problem to attack since it involves solving visibil-
ity in the spatio-temporal domain, i.e., both in screen space and in time. Currently
there exists only a few algorithms capable of rendering this effect in real time.
However, they usually only solve the problem for a limited domain, e.g., only the
textures of the objects are blurred and not the geometrical objects themselves, and
consequently, visibility is solved incorrectly.
Cook et al. [8] concluded the following on rendering correct motion blur, and this
appear to hold true even today:

“Point sampling seems to be the only approach that
offers any promise of solving the motion blur problem.”

Therefore, we introduce an algorithm for rasterization-based point sampling in
time using a time-continuous triangle representation. This makes it possible to
render motion blurred images with sufficient quality for real-time graphics at only
four samples per pixel. Since current GPUs already support spatial supersampling
with that amount of samples, we can integrate our algorithm into an existing GPU
without increasing the number of samples. In addition, some parts of our algorithm
can be executed using geometry and pixel shaders. Only a small portion of our
algorithm needs new hardware mechanisms on top of the existing units already
available in contemporary GPUs.
This introduction and the entire description of our our algorithms (Section 3) focus
on rendering the motion blur effect only. The reason for this is that it greatly
simplifies the presentation. However, in our results (Section 4), we show that the
exact same framework can be used to render depth of field and glossy reflections
as well.

2 Previous Work

An excellent overview of previous work in motion blur research is presented by
Sung et al. [31]. In the following, we will review related work that is of particular
interest to our research. This means, for example, that we avoid discussing algo-
rithms that produce motion blur only as a post-process, as these cannot solve the
problem properly.
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Several analytical models for motion blur have been developed [5, 14, 20] for
scanline renderers. Due to the evolution of the GPUs into stream processors, these
algorithms are not directly well suited for hardware implementation in their current
state, since they require a sorting pass to resolve time-space visibility per pixel.
Rendering motion blur using graphics hardware can be done by rendering n im-
ages at different points in time, and then averaging these using an accumulation
buffer [10, 15]. It should be noted that strobing artifacts appear unless many im-
ages are used. However, the final image converges to the correct result when more
images are added. These algorithms are expensive in terms of geometry process-
ing, since the entire scene needs to be sent to the graphics pipeline n times.
A variant of these accumulation buffer techniques is practically frameless render-
ing (PFR) [35], which is a rasterization-based version of the original frameless
rendering algorithm for ray tracing [4]. In PFR, less than one sample per pixel is
generated per frame. For example, one can choose to render to only one fourth of
the pixels every frame. After four frames, a complete image has been rendered. A
variant of this, called temporal anti-aliasing, is supported by some ATI graphics
cards [3].
In the REYES rendering architecture [7], primitives are diced until they reach sub-
pixel size, then shading is computed, and finally the primitives are sampled. This
is basically a high-quality rasterization engine. However, motion blurred shading
cannot be handled correctly since shading is done before sampling. Furthermore,
in this original approach, shadows appear to lack motion blur.
For offline high-quality rendering, Wexler et al. [32] conclude that accumulation
buffering works well when many images are used, and so they use that approach
in their Gelato renderer. However, they also investigate whether a specialized
shader can be used to sample stochastically in time. This approach degrades more
gracefully than uniform sampling when decreasing the number of samples. They
abandon this technique due to inefficient rasterization and because early Z-culling
cannot be used, since they write to the depth buffer in the shader. Our work was in-
spired by Wexler et al’s stochastic sampling, but instead of focusing on using only
existing hardware, we also develop new hardware mechanisms suitable for imple-
mentation on top of today’s pipelines for potentially much higher performance.
The remaining motion blur algorithms which we will describe are targeted for real-
time graphics. A common disadvantage for these is that the rendered images do not
converge to the correct result even if more computations or more samples are used.
Some algorithms compute the silhouette of motion, extend the silhouette geometry
in the direction of motion and then render semi-transparent primitives [18, 34].
These algorithms cannot correctly handle shaded and textured objects, and so in
practice, they are not very useful.
In contrast, Loviscach [23] has presented an algorithm that deals with motion
blurred textures. However, blurring takes place only in texture space, and hence
spatio-temporal visibility is not solved at all. Another approach is to render an ob-
ject once into a texture, and at the same time create a vector field of the per-pixel

122



3. STOCHASTIC RASTERIZATION

q0

q1

q2

r0

r1

r2

t=0.0 t=1.0t1=0.37

Figure 1: A time-continuous triangle (TCT) defined by a starting triangle, ∆q0q1q2, at
t = 0, and an ending triangle, ∆r0r1r2, at t = 1. The TCT is simply the continuous set of
linearly interpolated triangles between t = 0 and t = 1.

motion [29]. In a final pass, the texture is blurred according to the vector field.
Again, spatio-temporal visibility is not handled correctly.
Depth of field (DOF) is the effect in which objects outside some distance range
appear out of focus. A good survey of techniques to simulate DOF is presented
by Demers [11]. Correct DOF can be rendered by distributing rays stochastically
over the camera lens, rather than shooting a ray from a single point, or equivalently,
render the scene from multiple cameras and accumulate the results. However, for
acceptable quality, these approaches require many rays or render passes and are
currently too costly for real-time graphics. Faster methods using depth layers,
point splatting and variable blur kernels exist, but they cannot resolve visibility
correctly.

3 Stochastic Rasterization

In this section, we present our algorithm for stochastic rasterization. As a high-
level overview, we rasterize one time-continuous triangle (TCT) at a time, and
sample it both spatially and in time on a per-tile basis. The design choice of pro-
cessing one TCT at a time was simple as we would otherwise break the feed-
forward principle of contemporary GPUs. Note again that our presentation fo-
cuses on rendering motion blur, however in Section 4, we will show that the same
algorithm can be used to render other effects, such as depth of field and glossy
reflections.
We assume that a TCT is defined at two different instants, t = 0 and t = 1. See
Figure 1. This basically adds another “dimension” to a triangle. If the instants
are interpreted as different times at a beginning and end of a frame, we can render
images with motion blur, for example. The vertices in homogeneous clip space,
i.e., after application of the projection matrix (but before division by w), at t = 0
are denoted qk, and at t = 1 they are denoted rk, k ∈ {0,1,2}. Furthermore, we
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assume that the vertices are interpolated linearly in this space,1 which is equivalent
to linear interpolation in world space. For a certain instant, t ∈ [0,1), the vertices
are: pk(t) = (1− t)qk + trk. This is illustrated in Figure 1. All vertex attributes
are linearly interpolated as well for different values of t. A major advantage of
the TCT is that we only need to perform geometry processing once, which enables
sampling of a triangle at arbitrary t-values, t ∈ [0,1).

3.1 Overview

The basic algorithm works as follows for each time-continuous triangle (with
respect to Figure 1), where each pixel is sampled at n different times, ti, i ∈
{0, . . . ,n−1}:

1. Find tight bounding volume (BV) of time-continuous triangle (Section 3.3).

2. Compute time-dependent edge functions (Section 3.3).

3. For each quad (2× 2 pixels) that overlaps the BV, fetch (or compute) the
times, ti, for the samples in that quad.

4. For each time, ti, compute edge functions for the triangle ∆p0(ti)p1(ti)p2(ti)
using the time-dependent edge functions. Check whether the quad overlaps
this triangle.

5. If overlap from previous step, linearly interpolate vertex attributes using ti,
and execute the pixel shader for the current quad.

Next, we present the details of our algorithm. We start by describing an inex-
pensive sampling strategy, and continue by developing robust and efficient raster-
ization of a TCT with Zmin/Zmax-culling. Finally, we introduce time-dependent
textures, which can be used for shadow mapping, for example.

3.2 Sampling Strategy

In this section, we will describe our sampling strategy that makes it possible to use
as few as four samples per pixel to get usable motion blur. However, our algorithm
is not limited by this, and can be generalized to using more samples per pixel.
Today, most GPUs have spatial antialiasing schemes with 4–8 samples per pixel
or more, and each sample can even execute the pixel shader separately for higher
quality. To keep the cost low, we simply want to add the time dimension to each
of the samples for such hardware.

1This is in contrast to the approach taken by Sung et al. [31], where interpolation takes place in
screen space. As a consequence, they cannot handle perspective foreshortening of moving primitives
correctly.
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Figure 2: 3×3 pixels with RGSS sampling. One spatio-temporal sample lies in each colored
subpixel. For the lower left quad (outlined in purple), the time samples, t0, t1, t2, and t3,
all appear once in each pixel. This gives rise to a undesired quad-sized “pixelation” effect.
Notice that all samples that belong to the same time interval, Ti, have the same color. For
example, all samples in T0 are light blue.

Our approach is to use n spatio-temporal samples, si = (xi,yi, ti), i ∈ {0,n−1} per
pixel, where (xi,yi) is the spatial position and ti is the sample time. Contemporary
GPUs always rasterize one quad, i.e., 2× 2 pixels, at a time, since the GPU then
can compute derivatives based on differences in x and y. Our algorithm clearly
needs to comply with that requirement. Therefore, a certain time sample, ti, must
occur in each of the 2× 2 pixels in a quad. Adjacent quads may preferably have
a different set of times. Note that each sample has its own depth value, just as in
super/multi-sampling.
All our spatio-temporal sampling patterns are completely deterministic, and do
not change from frame to frame. In general, if a pixel uses n samples, we let each
sample use a predetermined random time, such that ti ∈ Ti, where Ti is the interval[ i

n , i+1
n

)
and i ∈ {0, . . . ,n− 1}. This set will be used in one quad and gives us

jittered sampling in time. For an adjacent quad, a new set of time samples t ′i ∈ Ti
is used.
Virtually all contemporary GPUs have some form of rotated grid supersampling
(RGSS) implemented. This scheme fulfils the N-rooks requirement [30], and it is
illustrated in Figure 2. It is generally accepted that it gives good quality at a cost
of only four samples per pixel. In the following, we describe an example of our
sampling scheme that uses RGSS. Note that our algorithm is not at all limited to
this particular pattern, nor the number of samples. We focus instead on temporal
sampling, while allowing different spatial sampling schemes. When adding time to
each of these samples, the quad requirement makes the samples share four different
times in each quad, and this basically means that the “pixels in time” will appear
to have a size of 2×2 instead of the ideal case of 1×1 pixel.
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To avoid this problem, we offset the quads depending on which time interval, Ti,
the sample belong to. See Figure 3. For all samples within the time interval T0,
we use the standard quads, but for T1 we offset the quad by one pixel to the right.
For samples in T2, we offset the quad one pixel upwards, and finally for T3, the
quad is offset one pixel to the right, and one pixel upwards. As can be seen, this
guarantees that the set of time samples inside a pixel is different from neighboring
pixels, which reduces the previously mentioned pixelation effect.
A common strategy to improve the quality of spatial antialiasing is to use larger
filter kernels when computing the final color of a pixel. When increasing the kernel
for spatio-temporal filtering, we would ideally like to include samples with times
different from the times inside the pixel, in order to improve the sampling reso-
lution in the time dimension. In the following, we extend RGSS so that another
four samples are used in the filter kernel, and we simply choose the four spatially
closest samples. Note that our reasoning applies with minor modifications to any
number of samples.
Assume we want to compute the final pixel color of the center pixel in Figure 3
by weighting together the samples with these times: t0, t1, t2, t3, t ′0, t ′′1 , t ′′2 , and t ′3.
From the figure, we notice that t0 ∈ T0 shares subpixel row with t ′0 ∈ T0, and t1 ∈ T1
shares subpixel column with t ′′1 ∈ T1, and so on. This is not ideal, at least not from
an N-rooks perspective.
To remove this disadvantage, and thus improve sampling and filtering quality, we
have devised a solution, which is shown in Figure 4. It is a straightforward task
to verify that our sampling scheme gives eight different times for the eight spatio-
temporal samples used for computing the final color of a pixel. As a final improve-
ment of the time samples, consider two time samples belonging to the same time
interval, Ti, inside the filter kernel. An example consists of t0 and t ′′0 (Figure 4),
which both belong to the time interval T0 = [0,0.25). To further improve the sam-
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t0 t0 t0́

t0́

t1

t1t1
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t3́́t3́́´

tt00t0

tt22t2 tt33t3

Figure 3: By offsetting the quads (purple) for the different samples in time, we obtain a
sampling scheme where neighboring pixels have different sets of times.

126



3. STOCHASTIC RASTERIZATION

t0

t0

t0

t0

t0́

t0́t1

t1

t1

t1

t1́

t1́

t2

t2

t2

t2

t2́

t2́

t3

t3

t3

t3

t3́

t3́

t0́́ t0́́´

t0́́ t1́́

t1́́

t1́́´

t2́́´t2́́

t2́́

tt11t1tt00t0

tt22t2 tt33t3

t3́́

t3́́

t3́́´

Figure 4: We have redistributed the time samples inside the quads in order to avoid two
samples with same color (i.e., belonging to the same time interval, Ti) being on the same
subpixel column or row. To the right, this is clearly so for the samples inside the gray filter
kernel. Note that only one quad is shown, while they in reality repeat over the entire pixel
grid. Furthermore, the spatial sampling pattern repeats after 2×2 pixels, but the times of
the samples have a longer period (typically, a 32×32 random table is used).

pling quality, we make certain that t0 ∈ T−0 and t ′′0 ∈ T +
0 , where T−0 = [0,0.125)

and T +
0 = [0.125,0.25). In general, we split Ti in the middle into T−i and T +

i . This
can be ensured when the sampling pattern is generated. The result is a sampling
scheme with four generating samples per pixel, and with the larger filter kernel we
obtain eight jittered time samples per pixel. Compared to RGSS, the added cost is
essentially only more expensive filtering, which is done only once per pixel when
the image has been rendered.

Note that the actual spatial positions can easily be redistributed to form another
pattern. For example, we could use the pattern, inspired by Laine and Aila [21],
shown to the right instead. In our experience, the spatial anti-aliasing would
change a little bit compared to RGSS, but the temporal anti-aliasing
remains very close to constant due to that we still get eight jittered
time samples. Recall that the focus of our paper is not on the spatial
sampling pattern.
Next, we describe how the filtering of the samples is done. Assume the colors of
the samples inside a pixel are denoted, c0

l , where l ∈ {0,1,2,3}, and the colors of
the four closest samples in the neighboring pixels by c1

l , again with l ∈ {0,1,2,3}.
We use a low-pass filter to compute the final pixel color:

C = w0

3

∑
l=0

c0
l +w1

3

∑
l=0

c1
l (1)

For all our tests, we use w0 = 5/32 and w1 = 3/32. This gives a good trade-
off between spatial and temporal blurring. Naturally, it is simple to change the
weights according to the purpose. We attempted to use another four samples from
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the neighboring pixels, but this did not give much of an effect on the quality.
It should be noted that the spatial positions can be jittered inside the subpixel using,
for example, multi-jittering [26]. By using a smaller grid of such spatial samples,
we basically get a spatial interleaved sampling scheme [19]. Extending the ideas
of this subsection to schemes with more samples per pixel is straightforward, and
is therefore omitted.

3.3 Traversal of Time-Continuous Triangles

In this section, we describe how a time-continuous triangle (TCT) can be traversed,
i.e., how the pixels inside a TCT can be found efficiently. Notice that the quadri-
lateral sides of a TCT are, in general, bilinear patches, and hence not necessarily
planar. This makes clipping a TCT against the canonical view volume a complex
procedure. Instead we decided to use edge functions [28] derived directly from
the homogeneous coordinates [24, 27], qk and rk with k ∈ {0,1,2}, of the TCT.
This avoids clipping altogether. Using the two-dimensional axis-aligned bounding
box of the TCT to limit the rasterization can make the traversal algorithm visit an
excessive amount of pixels that are outside the TCT [32].
Therefore, we propose a two-level algorithm for efficient rasterization of a TCT.
First, a tight three-dimensional oriented bounding box (OBB) around the TCT is
rasterized (Section 3.3). Second, for fragments inside the OBB, per-pixel evalu-
ation of time-dependent edge functions (Section 3.3) follows. For samples inside
the time-dependent edge functions, the pixel shader is executed.

OBB Traversal

We decided to use oriented bounding boxes (OBBs) around our TCTs to limit
the number of pixels visited during traversal. To robustly handle cases where a
TCT moves from in front of the viewer to behind the viewer, we rasterize only the
backfaces of the OBB without any depth testing (which is done in the next stage
of our algorithm). This is similar to how shadow volume rendering [9] handles
the case when the viewer is inside a shadow volume and when a shadow volume
intersects the near plane. For pixels covered by the OBB backfaces, we proceed to
testing with time-dependent edge functions (next section).
Our method for computing a tight OBB is simple and gives very good results in the
majority of all cases. All computations are done before division by w, and so we
use the (x,y,w)-coordinates of the vertices of the TCT. The major axis of the OBB
is computed as the difference between the center of the starting and ending triangle
of the TCT. If this vector is near zero, an axis-aligned bounding box (AABB) is
computed instead. Otherwise, we project the edges of the TCT onto the plane
whose normal is the major axis. For the second axis of the OBB, we use the
longest projected edge. Again, if there is no such non-zero vector, we revert to
using an AABB. The third axis is obtained with a cross product. This algorithm
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can be implemented in a geometry shader.
Discussion Several different possibilities for this stage of the algorithm were ex-
plored. We tried using the convex hull of the homogeneous coordinates of the
TCT, and we devised a hardware-friendly algorithm for this. However, it is very
difficult to obtain a robust algorithm without handling a large set of special cases.
In addition, the starting triangle of the TCT may be behind the camera, and in such
situations, it is not even clear what the definition of the convex hull using homo-
geneous edge functions is. Another possibility is to use bounding prisms (BP) as
used for caustic primitives [13], for example. The construction algorithm for BPs
works well for typical caustic rendering, but for more general settings, we have
found that BPs with infinite size can result. In addition, the computation of BPs
was more costly than OBBs. Hence, using OBBs is a good trade-off in terms of
robustness, speed, and simplicity.

Time-Dependent Edge Functions

Due to the traversal from the previous section, we know that a quad overlaps with
the OBB of the TCT. Now, we need to determine whether the samples, si (see
beginning of Section 3.2 for the definition of samples), overlaps with the TCT. To
be able to do this efficiently, we introduce time-dependent edge functions.
First, recall that the vertices, qk and rk, k∈{0,1,2}, are in homogeneous clip space
after application of the projection matrix (but before division by w), and that the
camera is located in (0,0,0). Furthermore, let us introduce a “truncated” variant of
a vector v as v̂ = (vx,vy,vw). This simply means that we create a three-dimensional
vector from a four-dimensional by skipping the z-coordinate.2 The edge function
through two vertices, say p̂0 and p̂1, is then [24, 27]:

e(x,y,w) = (p̂1× p̂0) · (x,y,w) = ax+by+ cw, (2)

where (p̂1× p̂0) = (a,b,c). Now, since the vertices are functions of time, p̂k(t) =
(1− t)q̂k + t r̂k, we simplify the expression for the edge function parameters:

(a,b,c) = (p̂1× p̂0) = ((1− t)q̂1 + t r̂1)× ((1− t)q̂0 + t r̂0)
= t2 f̂+ tĝ+ ĥ,

(3)

where:

m̂ = q̂1× r̂0 + r̂1× q̂0

ĥ = q̂1× q̂0,

f̂ = ĥ− m̂+ r̂1× r̂0,

ĝ = −2ĥ+ m̂, (4)

This means that we have simple expressions for all the edge function parameters,
(a,b,c). For example, we have: a(t) = fxt2 +gxt +hx. Note that f̂, ĝ, and ĥ can be

2Note that due to the projection matrix (e.g., OpenGL or DirectX), this vector is in a scaled and
translated camera space. This can be verified by examining the elements of the projection matrix.
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computed in the triangle setup. For a specific time, ti, and spatial sample position,
(xi,yi), we now arrive at the time-dependent edge function:

e(si) = e(xi,yi, ti) = a(ti)xi +b(ti)yi + c(ti), (5)

where w = 1 since we now are dealing with screen space (x,y)-coordinates.
Once the three edge functions, e j(si), have been computed, we can determine
whether a sample, si, is inside the TCT at time ti. If this is true, we linearly
interpolate the vertex attributes of the starting and ending triangle of the TCT with
respect to ti, and pass them on downwards the pipeline.
Note that since each time-dependent edge function is defined by four vertices,
cracks “in time” between two TCTs sharing an edge can be avoided using a simple
tie-breaker rule [24]. However, to avoid small numerical inaccuracies when eval-
uating the expressions in Equation 4, we also make sure that two TCTs sharing
an edge always compute the parameters f̂, ĝ, ĥ in exactly the same way. This is
done by swapping q1 and q0 so that the first point is always the one with small-
est x-value before calculation of the parameters starts. If the x’s are equal, testing
continues with y, and so on.
Discussion Another possible solution would be to interpolate edge functions in
screen space. Consider one edge function, e0(x,y) = a0x + b0y + c0, for the first
triangle, ∆q0q1q2, and the corresponding edge function, e1(x,y) = a1x +b1y+ c1
for triangle ∆r0r1r2. To find the edge function for a specific time, t ∈ [0,1), one
could interpolate the edge functions parameters, e.g., a(t) = (1− t)a0 + ta1, and
so on. However, this does not take perspective foreshortening into account, and in
addition, it requires the TCT to be clipped, which we also want to avoid.
For simplicity, we have limited ourselves to linear interpolation of vertex positions
and attributes. To get curved motion blur, we can use our technique together with
an accumulation buffer for faster performance. Higher-order interpolation, such
as quadratic or cubic Bézier curves, is of course also possible. Besides the actual
interpolation, only the OBB computation need to be altered, since more vertices
need to be processed.

3.4 Zmin/Zmax-Culling

Zmin- and Zmax-culling [2, 25] are crucial for good depth buffer and texture ac-
cess performance. Therefore, one of our goals has been to make stochastic raster-
ization work with this type of algorithms. Hence, a conservative estimate of min-
imum and maximum depth inside a tile (often 8× 8 pixels) for a time-dependent
triangle is needed.
We limit our discussion here to Zmax-culling, where a conservative estimate of
the minimum depth value, denoted ztri

min, of a triangle inside a tile is needed. The
maximum of the depth values inside a tile is denoted zmax. If ztri

min > zmax we
can avoid processing the triangle in that tile. Extending this to Zmin-culling is
straightforward.
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Figure 5: A time continuous triangle (TCT) defined by a starting triangle, ∆q0q1q2, and
an ending triangle, ∆r0r1r2, here shown in two dimensions. Due to that these triangles do
not have the same orientation, problems in Zmax-culling can occur. Normally, we compute
ztri

min = max(zv
min,z

c
min). In this case, this is not correct, since at, e.g., t = 0.375, the true

depth at the tile corner (blue square) is smaller than zc
min which is computed using the plane

equations of the two triangles of the TCT. Our solution is simply to use ztri
min = zv

min when
the orientation of the triangles changes. This gives a conservative estimate.

A conservative estimate of the minimum depth value of a triangle inside a tile is
simply the minimum of the vertices of the triangle being rendered. Let us denote
this value by zv

min, where the superscript indicates vertices. However, this can
become overly conservative, for example, when rendering a large triangle with a
normal almost perpendicular to the view direction. To improve this, one can also
compute the depth at the tile corners using the plane equation of the triangle, and
computing the minimum of these. Let us call this value zc

min, where the superscript
indicates corners. An improved estimate of the minimum depth of the triangle
inside a tile is then:

ztri
min = max(zv

min,z
c
min). (6)

This is a commonly used technique. In the case of rendering a TCT, we again
evaluate Equation 6, but the computation of the terms in the max-function becomes
a bit more complex. The value zv

min is computed using the six vertices of the
TCT, and zc

min is computed using the plane equations of the starting and the ending
triangles of the TCT. This is conservatively correct as long as the orientations of
the starting and ending triangle are the same. When this is not true, you may not
always get a correct conservative value. One reason for this, is that the depth at the
corners of a tile can become unbounded when the orientation of a TCT changes
from, for example, backfacing to frontfacing. An example is illustrated in Figure 5.

However, there is a straightforward solution to this. If there is no change in orien-
tation, we compute ztri

min using Equation 6. In the case of a change in orientation,
we simply use the minimum of the depths at the vertices of the starting and ending
triangles, i.e., ztri

min = zv
min.
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Discussion In the description above, we have assumed that we store one zmax-value
per tile for all different times of the sample inside a tile. An alternative would be to
store, for example, four values per tile: zi

max, i∈ {0,1,2,3}, where zi
max is the max-

value of the depths belonging to the time interval, Ti. In a sense, the low-resolution
depth buffer that contains zmax-values, is extended in the time dimension. While
this is clearly possible and would provide more efficient culling, we have decided
to leave this for future work, since it does not fit well with contemporary GPUs as
they store only one zmax-value per tile.

3.5 Time-Dependent Textures

Motion blurred geometry without motion blurred shadows spoils the entire con-
cept, almost. Hence, we would like to support motion blurred shadows in our
spatio-temporal framework. Shadow mapping [33] is a commonly used technique
for (static) shadow generation. Lokovic and Veach [22] introduce deep shadow
maps, where motion blur is handled by associating a random time with every
shadow map sample within a texel. The time samples are averaged together, which
means that the time dimension is reduced to a single blurred value. As a conse-
quence, the authors concluded that this approach will be correct only for static
shadow receivers as seen from the light source.
We alleviate this problem by introducing time-dependent textures, which holds a
set of time samples per texel and support time-dependent reads and writes. When
generating the shadow map, we use the sampling strategy of Section 3.2 and store
n depth values per texel, each associated with a unique time, ts. When rendering
from the camera, the visible sample will be associated with a time ti. During time-
dependent texture lookup, we ensure that the screen space sample, ti ∈ Ti, access
the shadow map sample with time ts also in Ti. This will reduce self-shadowing
artifacts for cases with moving receivers. With n jittered time samples per texel
in screen and light space, our approach guarantees that |ti− ts| < 1/n. If more
time samples are added per pixel, the result converges towards the correct image.
With uniform time sampling, ti = ts, the images instead contain apparent strobing
artifacts.
In general, time-dependent textures are useful as render targets for dynamically
generated effects, where we need to store time-dependent depth or color values. A
simple technique for generating reflections for curved geometry is to first render a
cube map from the position of the object, and then access this map with the reflec-
tion vectors during rendering of reflecting objects. If we use time-dependent tex-
tures for cube map generation and lookups, we can handle correct motion blurred
reflections, even when both the reflection vector and the cube map changes over
time. See Figure 8 for an example.
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A. Motion Blur + Blurred Reflections B. Motion Blurred + Shadows

C. DOF D. Glossy Reflections

Figure 6: Our stochastic rasterization algorithm can render images with a variety of effects.
A+B: motion blur with only four samples per pixel. Notice the motion blurred reflections in
A, and the motion blurred shadows and highlights in B. C: depth of field rendered with only
eight passes with four samples per pixel. D: glossy planar reflections using four passes.
Note that the target is real-time graphics, and so to be fair, the quality is best judged from
our video.

4 Results

We have implemented a subset of OpenGL 2.0 in a functional simulator in C++.
Currently, there are two ways to specify vertex positions. For the first method,
you set all your transforms (model + view + projection), and then ask the API to
“remember” the composite matrix. This is the transform matrix for t = 0. After
that you set the all the matrices again (this time for t = 1), and then render your
objects. The other method simply specifies a double set of vertex positions. We
call one such rendering an SR pass.
Note that we use the abbreviation ABT for accumulation buffering of static images.
However, we can also accumulate images rendered with SR. We call this stochastic
rasterization accumulation (SRA).
We emphasize the fact that still images only reveal a small part of the perceived
image quality. Since our target is real-time rendering, we refer the reader to the
videos of this submission in order to judge the quality of our motion blur, depth of
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Figure 7: Motion blur caused by both translation and rotation. Note the strobing artifacts
obtained using four samples per pixel with uniform sampling, i.e., similar to Wexler et al’s
method [2005]. The left column shows a slow motion, while the right shows a five times
faster motion.

field, and glossy reflections.
For Zmax-culling, we have not gathered statistical results. We note that if the
geometry is static, the algorithm works as well as the old Zmax-algorithm. For
moving geometry, culling will occur when possible, but there is really no algorithm
to compare to, so this has been omitted for now.
In the following, we report our results for motion blur, depth of field, and glossy
planar reflections. It should be noted that our framework can only handle one
extra dimension at a time, and therefore only one effect at a time. For example, we
cannot handle DOF and motion blur in the same image and pass.

4.1 Motion Blur

For our motion blur rendering results, we use only a single SR pass with four
samples per pixel, except where otherwise mentioned.
Cook et al. [8] point out a number of hard cases of motion blur: specular high-
lights, intersecting objects, shadows and reflections. As seen in Figure 6A and B,
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A B C

Figure 8: A moving blue ball and a static red ball are reflected in a chrome sphere using
cube mapping. A. Static camera. Notice the blurred blue ball and the sharp red ball. B.
The camera is moving in the same path as the blue ball so that there is no relative motion
between them. With a standard cube map, both balls appear blurred. C. With a time-
dependent cube map, the reflected blue ball approaches the correct result, which is a sharp
reflection. Four samples per pixel are used in all these examples.

our algorithm handles these cases due to its stochastic nature. The chain elements
intersect, and have complex motion, and the staircase scene shows specular high-
lights and blurred shadows using time-dependent shadow maps. Note that these
images were rendered using only four samples per pixel. As the algorithm allows
sampling at arbitrary times within the frame, strobing artifacts are replaced by (less
noticeable) noise without increasing the sampling cost. It should be noted that the
algorithm correctly handles scenes where both the camera and geometry are ani-
mated as the total motion simply becomes composite transform matrices applied
at t = 0 and t = 1.
In Figure 7, a simple model of a textured wheel is shown. The model is translated
and its texture coordinates rotated, which means that motion blur is both obtained
due to the translation and rotation. This kind of effect is not handled correctly
by methods where a static image is rendered first, and then that image is blurred
according to motion vectors [29].
This example clearly shows the flexibility and power of our method, and indicates
that the quality converges towards the reference solution (bottom row in Figure 7)
in this case, which is a major advantage.
An example of blurred reflections from moving objects using a time-dependent
cube map is shown in Figure 8.
Since the TCT uses linear interpolation, the algorithm cannot render higher order
movement directly. For example, a rotating sphere gets a blurry edge where the
relative motion is largest, and a fast circular arc movement of, say, a sword will get
a triangular motion trail. Artifacts from such non-linear motion can be found in our
video. These situations can be improved using an SRA technique, and generating
TCTs for uniform subintervals of the time inside a frame. Our video shows that
stochastic rasterization quickly resembles the ground truth, while accumulation
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Point sampling Line sampling Improved line sampling

Figure 9: DOF sampling patterns

buffering techniques suffer severely from strobing artifacts in these cases.
In Figure 10, we compare motion blur renderings with 4 samples per pixel against
8 samples per pixel in a single pass. Naturally, the quality is higher the more
samples being used.
Blurred shadow maps inherit the shadow bias problem from standard shadow
maps, which is somewhat enhanced by the added uncertainty in time. However,
already with four jittered time shadow samples per pixel, we can render nice-
looking, blurred shadows suitable for real-time content.

4.2 Depth of Field

Computing images with depth of field (DOF) is computationally expensive. Hae-
berli and Akeley [15] render DOF using an accumulation buffer with point sam-
pling on the aperture of the camera lens, which is illustrated to the left of Figure 9.
In this example, we use 32 uniform random points. For DOF with our algorithm,
we use an SRA approach, i.e., we accumulate several images from SR passes.
With our SR algorithm, we can instead sample an entire line on the lens area in a
single pass. This is illustrated in the middle illustration of Figure 9 with four hori-
zontal and four vertical lines. Doing this, is a simple matter of setting the camera
matrix for the start point of the line, then ask the API to “remember” the composite
matrix, and then set the camera matrix for the end point of the line. This gives a
DOF-effect in the direction of the line. For example, if we use a horizontal line,
the DOF-effect will only be horizontal, but it will be stochastically sampled, i.e.,
with good quality. Using a multi-pass technique, we can average the results from
a number of “line samples.”
Using the line sample scheme above, it is quite clear that banding artifacts can
appear, both horizontally and vertically. For best results, we need to sample using
as long lines as possible, while also maximizing the number of angles of the lines.
One such sampling pattern is shown to the right in Figure 9. However, this scheme
has increased sample density the closer to the center you get. Our solution is to
redistribute the sample times, ti, which is illustrated by the circles. Theoretically,
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this should be done with a
√

t-like function being reflected around (0.5,0.5). In
practice, we do it with a smoothstep-function, si = t2

i (3−2ti), which is accurate
enough. When this transform has been applied, the time-dependent edge functions
use si (instead of ti) for inclusion testing as usual.
To the best of our knowledge, we have not seen any DOF algorithm using line
samples on the lens aperture. In our experience, this works really well already
using only eight lines, i.e., eight passes, with four samples per pixel. This should
be compared to grid point sampling the lens, which can require more than 100
samples to get stable results during animation [16]. In our experience, however,
similar results to ours can be obtained with uniform random sampling over the lens
using 32 image passes. Again, note that such an approach requires the scene ge-
ometry to be processed 32 times. See Figure 6C for an example of DOF rendering
using our algorithm.

4.3 Glossy Reflections

For rendering planar glossy reflections, Diefenbach and Badler [12] suggested that

the reflected object is sheared in the x- and z-directions, with increased shearing
effect the smaller y gets. This is illustrated for shearing in x to the right. Ren-
dering the scene many times with different amounts of
shear gives glossy reflections in the accumulated image.
Our stochastic rasterizer can again be used to advantage
even in this case, using an SRA approach, as shown
in the bottom right illustration. By using the concept
of line samples from the previous subsection, we real-
ize that a shearing pass in x is done as a line sample,
where the outer vertex points are sheared the maximum
amount in both directions. In practice, the shearing ef-

x
y

z

fect can be computed in the vertex shader. Figure 6D shows this effect using
stochastic rasterization in the x-direction, and only four passes in z. As shown in
the animation, no banding artifacts are noticeable.

4.4 Bandwidth Analysis

One can easily imagine that the random nature of our algorithm can break several
of the features in a modern GPU, which exploits coherency in the rendering. This
includes buffer compression and texture cache performance, for example.
The two scenes with most motion on textured objects are the Sponza DOF (Fig-
ure 6C), and the rotating/translating wheel (Figure 7). For all our tests, we used a
single 6 kB texture cache, which is perfectly reasonable (for comparison, a Geforce
8800 has 8 kB per multi-processor). Also, our algorithm used four samples per
pixel, while ABT used four passes, which also gives four samples per pixel. In
the wheel scene, our algorithm used 225 MB of off-chip texture bandwidth, while
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Figure 10: Motion blur rendering in a single pass. Left: 4 samples per pixel. Right: 8
samples per pixel. Note that the motion is about 100 pixels wide in the fastest moving region.
Recall that to halve the variance, we need to quadruple (4×) the number of samples.

ABT used 314 MB. For Sponza DOF, the advantage of our algorithm becomes
more pronounced: ABT used 2314 MB, while our algorithm used only 1056 MB.
In addition to this improvement, we believe that a texture cache coherent rasteri-
zation order can improve our numbers further. This is left for future work at this
point.
For the depth buffer, we implemented depth offset compression (DOC) [17]. When
using this on the chain scene (Figure 6A), the depth is compressed down to 62.5%.
Hasselgren and Akenine-Möller report compression rates of about 60% on a set of
static scenes [17]. This gives an indication that depth buffer compression can work
quite well. However, we believe that clever new algorithms can be implemented to
further increase compression. For example, using four layers in DOC could help
quite a bit. An interesting avenue for future work would be to compress all samples
in each time subinterval separately. For example, we can compress all samples
inside the time interval [0.0,0.25) separately. This would increase the coherence,
and improve compression. We note that this is important, and we would like to
investigate buffer compression for SR in the future.

5 Discussion

Our algorithm for stochastic rasterization (SR) should be seen as a complement to
standard rasterization. It is a feature that the programmer can turn on exactly when
needed. For parts of a scene with little or no relative motion, standard rasterization
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can be used together with multi-sampling.3 This gives spatial antialiasing at a low
cost.
However, for parts with faster relative motion, the more expensive stochastic ras-
terization can be activated with supersampling to obtain spatio-temporal antialias-
ing. Thus, the rendering can be seen as a combination of multi-sampling and
supersampling. Note that for motion-blurred regions, the spatial positions of the
samples do not matter that much. Instead, it is the temporal distribution of the
samples that determine quality. For static parts, we get the same quality as using
spatial anti-aliasing only, and our algorithm is not directly dependent on any par-
ticular scheme. We choose RGSS because it gives good spatial antialiasing, and is
accepted in the industry.
We also want to emphasize a few very important features of using stochastic raster-
ization. First, if stochastic rasterization use n samples per pixel, we can compare
this to accumulation buffering techniques (ABT) rendered with n passes, where
each pass renders a static image. Our video clearly shows that the strobing arti-
facts of ABT are more noticeable. However, there is also a significant advantage in
terms of sending geometry over the bus and geometry processing. With stochastic
rasterization we only send the geometry once, and transform that geometry twice
in the geometry shader (using different matrices for t = 0 and t = 1). In contrast,
ABT would send the geometry n times over the bus, and process the geometry n
times. This makes for a substantial improvement already at four samples per pixel.
Note that ABT (as defined in the previous paragraph) converges to a correct re-
sult the more static images that are accumulated. Our SR algorithm can render n
images and accumulate them as well, but in our case convergence will be much
quicker due to the stochastic nature of our algorithm. Furthermore, SR degrades
more gracefully than ABT, which makes SR useable over a wider range of sam-
pling rates.
A further use of SR is “practically frameless rendering” [35], which is described
briefly in Section 2. Assuming that it is possible to disable writing to a specific
set of pixels or samples, we can use SR to render motion blurred triangles into,
say, only every 4th pixel. This would give better image quality compared to the
original approach, since SR can provide stochastic sampling of the geometry in
each rendering pass.
Direct hardware support of our stochastic rasterization algorithm would require
rather moderate additions since we could leverage on existing supersampling and
multisampling hardware in contemporary GPUs. Transforming and setting up a
time-continuous triangle can be done in the geometry shader, as well as computing
an OBB. For a full implementation, our sampling/filtering, Zmin/Zmax-culling,
and time-dependent texture lookups would require some small hardware modifi-
cations.
We did a partial implementation of the “inner loop” of our algorithm in a frag-

3We use the following terminology: for multi-sampling, the pixel shader is executed only once per
pixel, while for supersampling, the pixel shader is executed once per sample.
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ment program. The time of the sample is computed through a texture lookup, and
we interpolate the time-dependent edge functions based on that time, evaluate the
interpolated edge functions based on spatial coordinates, and finally compute the
perspective-correct barycentric coordinates for the sample. We assumed that the
edge-function setup was done in a previous step, and used uniform parameters to
pass per-triangle data in lack of better alternatives.
By analyzing this program using a shader performance tool, nvshaderperf, we
found that this shader program took 11 clock cycles to execute on a GeForce7800,
with an expected fillrate of 872.73 Mpixels/s. This kind of performance can fill the
screen eight times in 100 fps at 1024×1024. With a GeForce 8800, this would be
much higher, but nvshaderperf did not support this card when we did our tests.
Our conclusion is that we need native hardware support for time-dependent edge
functions and interpolation using these to reach higher performance. In our current
implementation, we practically perform inside-outside test and interpolation twice
(first using native hardware, and then in the pixel shader), and it would be nice to
avoid that.
For the pseudo-random time pattern, we use a fixed time table of 32×32 random
numbers in the interval [0,1), as described in Section 3.2. We have not seen any
visual difference between a 128×128 and a 32×32 table. Smaller tables start to
alter the image quality. Due to our sampling strategy with the interval [0,1) split
into eight subintervals, and random sampling done inside each such subinterval,
we already have three bits of the random number implicitly. Empirically, we found
that adding another three bits is enough per x and y for the sampling locations. This
means that we need a table of 32×32×6 bits constant pseudo-random numbers.
In our experience, such fixed tables can be realized with very few gates.

6 Conclusion and Future Work

One could argue that all we do in this paper is to implement “stochastic rasteriza-
tion” (SR)—a 20-year old technique [6, 7]. However, we contribute with several
techniques well-suited for GPUs. We develop tight-fitting robust OBBs around
moving triangles, and introduce time-dependent edge functions for efficient inside-
test and interpolation. In addition, we construct a clever scheme using only four
samples per pixel, which gives eight samples (perfectly jittered in time) for pixel
reconstruction, and still comply to using 2× 2 quads. Furthermore, we create a
Zmin/Zmax-culling variant, which is crucial to good performance today. We show
that SR can be used for depth-of-field, glossy reflections, and motion blur with
shadows, highlights, & reflections. In conclusion, we strongly believe our research
advances the field of rasterization.
Even though we think that rasterization and ray tracing are somewhat complemen-
tary techniques, there is an ongoing debate about which is the preferred rendering
algorithm. We have showed that SR is a powerful alternative for motion blur, since
we can sample the moving triangles at any particular time. For ray tracing, spatial
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data structures need to be partly rebuilt for every instant of time where we want to
sample the geometry, and this is expensive and impractical.
For future work, we want to investigate how texture-cache coherent rasterization
order can be adapted to the case of SR, and work on depth and color buffer com-
pression. Furthermore, we want to combine SR with delay streams [1] for better
culling. It would also be important to analyze shader branch efficiency. Also, when
motion blur is used, the acceptable frame rate can, in general, be lower compared
to not using motion blur. It would be interesting to see whether this can be used to
conserve energy in mobile devices.
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A Correction

After the publication of the paper, we have realized that the following statement
from Section 3.4 is not always correct:

“zc
min is computed using the plane equations of the starting and the ending tri-

angles of the TCT. This is conservatively correct as long as the orientations of the
starting and ending triangle are the same.”

Below, we present a counterexample, where the minimal depth for a triangle with
linear vertex motion occurs in the interior of the temporal interval. Thus, to conser-
vatively derive the minimal depth, it is not sufficient to only test the plane equations
of the moving triangle at t = 0 and t = 1.
Consider the following moving triangle:

p0(t) = (0,0,1), p1(t) = (−1, t, t +1), p2(t) = (0,1, t +1) (7)

where t ∈ [0,1] denotes time. The triangle has a normal n(t) given by:

n(t) = (p1(t)−p0(t))× (p2(t)−p0(t)) = (t2− t, t,−1) (8)

The intersection depth at a certain position χ = (x,y,1) on screen is a function of
t, given by:

d(t) =
p0(t) ·n(t)

χ ·n(t)
. (9)

This is the plane-ray intersection of the triangle’s plane against the ray from the
origin through the point χ . Note that the numerator is the backface criterion for a
triangle. With our choice of triangle vertices, the numerator is the constant value
−1, indicating that the triangle is frontfacing during the entire motion.
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Now, we pick χ = (α,0,1), which results in

d(t) =
p0(t) ·n(t)

χ ·n(t)
=

−1
α(t2− t)−1

. (10)

This rational function has a local minima at t = 0.5 if α > 0.
The minimum of the depths at the triangle’s vertices at the start and end of the
motion gives a conservative minimal depth, but can be a coarse approximation
for the depth per tile of a large triangle. A more accurate approximation can be
obtained by bounding Equation 9 over the exents of the tile.
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ABSTRACT

We present a technique that modifies the tessellator in current
graphics hardware so that the result is a more uniformly distributed
tessellation in screen space. For increased flexibility, vertex tessel-
lation weights are introduced. Our results show that the tessellation
quality is improved at a moderate cost. To guarantee consistent qual-
ity, care must be taken when a triangle intersects the view frustum.
Therefore, we introduce an edge interpolation technique for smooth
adjustments of the tessellation scheme when camera frustum planes
intersect a base triangle. This interpolation technique is a preferred
alternative to clipping against the entire view frustum, and avoids cre-
ation of many sliver triangles. Edge interpolation also allows speci-
fication of a unique interpolation function per triangle edge, and we
illustrate the case of Bézier remappings per triangle edge. These tech-
niques allow fine adjustments of GPU-generated tessellation patterns,
and avoid dense tessellation outside the camera’s view frustum.

A short version of this paper is published as:
Non-Uniform Fractional Tessellation,

Graphics Hardware 2008, pages 41–45





1. INTRODUCTION

1 Introduction

Recent graphics processors [7, 16] include a tessellation unit, allowing data am-
plification by tessellating base triangles to many smaller triangles in the graphics
hardware. This helps lowering the bus traffic from the host computer to the graph-
ics processor, by sending higher level surface representations instead of finely tes-
sellated geometry.
Surface tessellation is a vast area of research, and we will limit the discussion here
to work directly related to our approach. The REYES architecture [6] splits the
input primitives in eye-space iteratively until they have a size smaller than a certain
threshold. Then, these smaller primitives are diced into pixel-sized bilinear patches
called micro-polygons. The dicing rate is determined by the projected screen-space
size of each primitive. This results in an approximately uniform tessellation in
screen space. Notice that dicing is performed prior to displacement shading, so
there is no guarantee for fully uniform screen-space tessellation, which is similar
to the approach we will present.
On current graphics hardware, an input primitive (line, triangle or quad) is tes-
sellated in parameter space and the vertex positions in the generated mesh are
determined by a domain shader. This allows approximations of higher order sur-
faces, such as Beziér patches and subdivision surfaces [3, 12]. It is hard to adapt
the tessellation to the final projection on-screen before the domain shader, as the
shader may move the vertex position arbitrarily. However, micro-triangles closer
to the camera should generally be smaller than micro-triangles far away.
To allow for continuous level-of-detail (LOD) without visual “popping” and T-
junctions, a fractional tessellation scheme [13], hereafter denoted regular frac-
tional tessellation, can be used, where a floating point tessellation factor per edge
is provided. An overview of this approach is provided in Section 2.
In this paper, we present a modification of regular fractional tessellation. By us-
ing perspective-correct interpolation [1, 10] and complementary vertex weights,
we obtain an almost uniform tessellation in screen space. We warp the paramet-
ric coordinates of each tessellated mesh vertex before the domain shader so that
the screen-space projection of the tessellation pattern has triangles with as uni-
form areas as possible. The only assumption is that the domain shader contains a
perspective projection transform. This work is an extended version of our earlier
work [14]. The new research include tessellation edge blending (Section 4) as the
main contribution, along with a more thorough evaluation of the consequences of
triangle/frustum plane intersections. Another example of a non-uniform warping
function is also presented is Section 5.
There are many published adaptive tessellation techniques that use information
of the tessellated surface after surface evaluation [2, 4, 5], which achieve higher
quality, but with a substantially higher computational cost. Given a graphics card
with regular fractional tessellation, our algorithm can be implemented directly as
a first step in a domain shader.
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Regular Our technique

equal number
of triangles

Figure 1: Comparison between tessellation on a PN-displaced triangle [17]. Our algorithm
places more vertices (non-uniformly) closer to the camera, which results in more uniform
screen-space triangle areas.

For a base triangle with an edge along the view vector, regular fractional tessella-
tion adapts poorly. We adjust the scheme to better distribute the vertices over the
triangle, while retaining many of its strong advantages. Figure 1 shows an example
of our technique.

2 Regular Fractional Tessellation

Regular fractional tessellation is a continuous tessellation scheme where floating-
point weights are assigned to each edge of a triangle. The description in this
section is heavily influenced by the original presentation by Moreton [13], but
is included here for clarity. To allow for a continuous level of detail, new vertices
emerge symmetrically from the center of each edge. Furthermore, vertices must
move continuously with respect to the tessellation factors. The scheme consists of
one inner, regular part, and a transitional part (the outermost edges). An example
of the continuous introduction of new vertices is shown in Figure 2. Each outer
edge is divided in two for symmetry, and each half-edge can be treated indepen-
dently. Given an edge with tessellation factor f , first compute the integer part of
f : n = b f c. Then step n times with a step size 1/ f (assuming an half-edge length
of one), and finally, connect the current vertex with the mid-point of the edge.
This allows for efficient surface evaluation schemes, such as forward differencing,
which need uniform step sizes. The other half-edge is tessellated symmetrically,
resulting in two smaller distances close to the mid-point.
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f=1.0 f=1.1

f=1.5 f=2.0

f1=4.3

f2=1.6f3=2.9

Figure 2: Left: Four regular fractional tessellation examples are shown with a common
tessellation factor ( f ) on all edges, from f=1.0 up to f=2.0. As can be seen in the lower left
triangle, for each inner triangle, the number of vertices decreases with two per edge. Right:
Each edge of a triangle can also have a unique tessellation factor

.
2.1 Edge tessellation factors

In the uniform case, the edges of an inner triangle have two vertices fewer than
the triangle edges one level further out (see Figure 2). In the case of equal tessel-
lation weights, f , on all three edges, the first inner triangle will be regular with a
tessellation factor of f −1 on all three sides.
In the general setting, each edge has a unique tessellation factor. With different
tessellation factors, the symmetric interior and the outermost edges can be con-
nected by a stitching state-machine based on Bresenham’s line drawing algorithm
(see Moreton’s paper [13] for details). Figure 2 illustrates an example triangle with
three different edge tessellation factors, fi. The tessellation factor for the interior
part can, for example, be chosen as max( f1, f2, f3)−1.
The edge tessellation factors can be computed by, for example, projecting each
triangle edge on the image plane and computing their screen-space lengths, giving
larger weights to edges closer to the camera. This is reasonable, as one strives
for having equal area of each generated triangle. For displacement-mapped sur-
faces, local characteristics of the displacement map, such as heights and normal
variations, can also be exploited to determine the tessellation rate [8].

2.2 Fractional Tessellation on Current GPUs

Recent graphics hardware from AMD/ATI supports regular fractional tessellation.
In their implementation, the tessellation unit takes vertices and edge tessellation
factors of a base triangle as inputs, and generates a set of new vertices. The tessel-
lation unit computes the barycentric coordinates, (u,v), for every created vertex,
and executes a domain shader [3]. The task of this shader is to compute the posi-
tion of a vertex as a function of its barycentric coordinates and the three vertices
of the base triangle.
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(Y1,Z1)

Figure 3: Perspective-correct interpolation.

The edge tessellation factors can be computed either on the CPU, or by adding
an additional pass on the GPU and using “render to vertex buffer” capabilities to
execute a shader program that computes the factor for each edge.

3 Non-Uniform Fractional Tessellation

A disadvantage of regular fractional tessellation is that vertices along an edge are
distributed uniformly (except locally around the center, where new vertices are
introduced). If an edge is parallel to the view direction, a uniform tessellation
along this edge is far from optimal. Our goal is to create a tessellation pattern that
preserves the qualities of regular fractional tessellation, such as continuous level
of detail and introduction of new vertices at an existing vertex. In addition, we
strive for uniform micro-triangle sizes in screen space before the domain shader is
executed, similar to what is done in the REYES architecture [6].
Given a base triangle, we first tessellate using the regular fractional tessellation
algorithm as described in Section 2. We then modify the barycentric coordinate of
each vertex in the generated tessellation so that its projection in screen space results
in uniform micro-triangle sizes. This is achieved by using reverse projection, as
described in the following section.

3.1 Reverse Projection

We start with a simple example in two dimensions. Figure 3 shows a line l =
(1− t ′)(Y0,Z0) + t ′(Y1,Z1) in perspective. Let t ′ denote a parameter along the
line in camera space and t a parameter along the projection of the line in screen
space. Using similar triangles and linear interpolation in t and t ′, we can derive a
relationship between these parameters as:

t ′ =
t/Z1

(1− t)/Z0 + t/Z1
. (1)
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Z0=1 Z1=1

Z0=1 Z1=2

Z0=1 Z1=4

t´

Figure 4: Perspective remapping of a uniform edge in t for three different combinations of
vertex depths.

Now, assume we have a uniform distribution of points in t. Figure 4 shows the
corresponding distributions in t ′ for various depth values Z0 and Z1. The bigger
the depth difference, the more non-uniform distribution in t ′. All the distributions
t ′ from Figure 4 will project back to a uniform distribution in screen space, by
construction.
Next, this is generalized to two dimensions. Denote the barycentric coordinates of
the triangle (u′,v′), and the projected barycentric coordinates in screen space as:
(u,v). Regular fractional tessellation will create a uniform pattern in the plane
of the triangle, but when projected on-screen, this will no longer be uniform.
However, assume we have a regular fractional tessellation in screen space, and
reverse-project the pattern out on the triangle in camera space. If we know the ver-
tex depths in camera space of our base triangle, we can generalize the derivation
above to form the standard perspective-correct barycentric coordinates [1, 10] for
triangles:

u′ =
u/Z1

(1−u− v)/Z0 +u/Z1 + v/Z2
,

v′ =
v/Z2

(1−u− v)/Z0 +u/Z1 + v/Z2
. (2)

These are the barycentric coordinates in camera space that project to a uniform tes-
sellation in screen space. This can also be seen a function that adjust the barycen-
tric coordinates of the triangle (u′,v′) before projection so that they create a uni-
form distribution of (u,v) in screen space, using three vertex weights, {Zi}.
In the GPU pipeline, the domain shader typically receives barycentric coordinates
before projection as input, and by simply applying Equation 2 to these barycentric
coordinates as a first step in the domain shader, the pattern will be roughly uniform
in screen space after projection. Note that we need the depth values (in camera
space) for each vertex of the base triangle. One approach is to compute these vertex
weights in a shader in a preceding pass, similar to how edge tessellation factors
are handled in current hardware solutions (see Section 2.2). Another possibility is
to compute the depth values in the domain shader (a dot product), just before we
perform the reverse projection. This solution avoids sending data between different
passes, but performs redundant work.
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z z

regular

non-uni

near near

Figure 5: Left: for triangles that are fully in front of the near plane, but straddle another
view frustum plane, regular tessellation can be better than our non-uniform algorithm.
Right: By clipping the base primitives to the frustum, and update the vertex weights for
the clipped triangles, we alleviate this situation.

The same correction technique works for quad primitives by using generalized
barycentric coordinates. For example, mean value coordinates work as generalized
barycentric coordinates for quads. Please refer to Hormann and Tarini’s work on
quad rendering [11] for details.

Discussion Note that reverse projection gives a (roughly) constant triangle area
tessellation in screen space only if the base triangle is not undergoing any trans-
formations other than the projection. In practice, this is not true as subdivision
surfaces and displacement mapping are the most common applications of tessel-
lation. However, the resulting tessellation quality is more likely to be better if we
start with a uniform tessellation in screen space, even when an arbitrary vertex
shader follows.

3.2 Clipping

Our reverse projection is based on perspective-correct interpolation, which means
that problems occur when part of a triangle is behind the camera (straddling tri-
angles). The mathematics of the perspective-correct interpolation breaks down as
the projected triangle “wraps around” infinity. In most settings, this problem is
avoided, as triangles are clipped to the near-plane of the view-frustum. Our algo-
rithm is executed prior to clipping, and must handle this case.
A further complication is that triangles with one or two vertices in front of the near
plane, but outside the view frustum will get an unnecessary concentration of ver-
tices outside the view frustum, as shown in the left part of Figure 5. We propose
to clip the base triangles against the view frustum (we use Cohen-Sutherland clip-
ping [15]), and split the straddling triangles in smaller triangles entirely on either
side of the clip volume. For triangles partly outside the frustum, we compute new
weights so that the interpolation distributes triangles closer to the frustum edge.
The right-hand-side of Figure 5 shows this. This approach simply updates the ver-
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tex weights for each base primitive in the clipping pass, and no detection is needed
in the domain shader. Although the clipping is costly, it is only performed on the
coarser base geometry in a preceeding shader pass, and usually only a fraction of
the base triangles need to execute the inner (expensive) loop of clipping.
We want to stress that the domain shader is not known, and that it may displace
the tessellated vertices arbitrarily. For instance, it may move a vertex over the
near clipping plane, thereby making it visible. Our mirrored projection is well
motivated in that it distributes many vertices around the intersection with the view
frustum. Under the assumption that the vertex displacement is reasonably local, it
is more likely that a vertex close to a frustum border is moved in front of it, than a
vertex further away.

4 Edge Blending

R

R

R N

N

N R

N

R

Figure 6: Edge blending on tessellation. From left to right: A triangle with three regular
edges resulting in regular fractional tessellation over the whole triangle, a triangle with
triangle with three non-uniform edges resulting in our non-uniform tessellation pattern, a
triangle with two regular edges and one non-uniform resulting in a smooth blend between
the two patterns in the interior of the triangle.

Let us return to the subtle issue presented in Figure 5, where a triangle is entirely
in front of the near-plane, but intersects another frustum plane. Although clipping
against the entire camera frustum solves this issue, the operation may be costly, and
introduces sliver triangles, which may potentially degrade the tessellation quality.
In this section, we present an alternative and novel solution, which is based on us-
ing regular fractional tessellation for triangle edges straddling a frustum plane, and
non-uniform tessellation on all other edges. For this purpose, we introduce a new
edge interpolation technique to blend between different edge vertex distribution
functions over a triangle. See Figure 6 for an example.

4.1 Edge Interpolation

In order to prevent surface cracks between a base primitive tessellated with the
regular fractional tessellation scheme and a base primitive with the non-uniform
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fractional tessellation scheme from Section 3, we need a technique that a) allows
us to define a vertex distribution per triangle edge, and b) smoothly blends the
distributions in the interior of the triangle.
To motivate our approach, we start by looking at how Gouraud shading interpolates
three vertex color values Cpi over the triangle using the barycentric coordinates:

Cinterp = (1−u− v)Cp0 +uCp1 + vCp2 . (3)

As can be seen, the color varies linearly between two color values along each edge
and is a barycentric combination in the inside of the triangle. This interpolation
formula is used heavily in the graphics pipeline to interpolate vertex attributes.
In our case, we will tag each edge as either R (using regular fractional tessella-
tion) or N (using non-uniform fractional tessellation) depending on whether the
edge straddles a frustum plane. For a consistent result, we thus need to be able to
interpolate smoothly inside the triangle with different “tessellation tags” per edge.
For edge blending, we need an interpolation method that is constant along each
edge and varies smoothly inside the triangle. Our strategy is to base the new edge
interpolationon on barycentric coordinates, (u,v,w), and we define three new in-
terpolation coordinates, (α,β ,γ). We want α = 1 on the edge where u = 0, so we
make α proportional to 1− u. Also, to ensure that β and γ are zero on the edge
u = 0, we make them both proportional to u. Taking this into consideration for all
three edges, we arrive at the following formulae:

α = (1−u)vw

β = u(1− v)w
γ = uv(1−w). (4)

These variables lead to the following interpolation formula, which is constant
along edges (except for at the corners), and can be used to interpolate edge at-
tributes.

Cinterp =
αCe1 +βCe2 + γCe3

α +β + γ
(5)

With Ce1 = (1,0,0), Ce2 = (0,1,0), and Ce3 = (0,0,1), we get a color blend as
illustrated by Figure 7.
Now, we apply this technique to our tessellation schemes. As shown in Figure 6,
each edge of the triangle is tagged as either regular or non-uniform. Given regular
barycentric coordinates (u,v) and non-uniform ones (u′,v′), we blend between
them in the interior of the triangle using a formula similar to Equation 4 above. If
the first two edges are regular (use (u,v)), and the third edge non-uniform (uses
(u′,v′)), we modify the barycentric coordinates as follows:

uinterp =
αu+βu+ γu′

α +β + γ

vinterp =
αv+βv+ γv′

α +β + γ
, (6)
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Figure 7: Edge blending. We want a constant color along each edge of the triangle and a
smooth blend in the interior.

and the scheme in the interior is warped smoothly to enforce the constraints of the
edges. The rightmost part of Figure 6 shows the resulting tessellation pattern.

4.2 Smooth Edge Transitions

Finally, we want to smoothly introduce this transition when a triangle intersects
a frustum plane to avoid a discrete change in the tessellation pattern (popping).
This is performed by introducing an additional blend when edges start intersecting
the frustum and smoothly transform from non-uniform fractional tessellation to
regular fractional tessellation. At the edge which intersects the frustum plane, we
compute the barycentric coordinate of the intersection point, and use a smoothstep
function to blend between the regular and non-uniform pattern for that edge, prior
to the edge interpolation described above.
Given a parameter x ∈ [0,1] along the edge, and a transition zone w in which we
want to blend, the interpolation kernel is simply a smoothstep function:

h(x) =
{

3( x
w )2−2( x

w )3 x≤ w
1 x > w

(7)

Figure 8 illustrates this in two dimensions.
In practice, for an edge fully inside or outside the camera frustum, the choice
of tessellation scheme per edge is binary; either (u,v) or (u′,v′), as discussed in
Section 4.1 (Equation 6). However, for an edge that intersects a frustum plane, the
choice of tessellation scheme is a smooth blend:

(ub,vb) = (1−h(x))(u′,v′)+h(x)(u,v), (8)

and it is (ub,vb) that are fed into Equation 6 for that edge. Figure 9 shows eight
frames from an animation where a frustum plane intersects a couple of triangles,
and the transition to regular fractional tessellation is introduced smoothly.
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x

h(x)

w

Figure 8: A frustum plane (green) is intersecting a triangle edge (bold black). Based on the
parametric coordinate x∈ [0,1] along the edge, we apply a smooth step-funtion h(x)∈ [0,1],
so that in the transition zone, x ∈ [0,w], h(x) specify a smooth blending weight. Thus, as
the triangle edge intersect the frustum plane, the edge will transform smoothly from non-
uniform to regular fractional tessellation.

Figure 9: Eight frames that show the gradual blending between uniform and non-uniform
tessellation when four base triangles are intersected by a frustum plane. The camera starts
in the lower left corner and moves diagonally upwards. The frustum intersection line is
marked with green. All triangle edges partly or fully outside the frustum are marked with
red. Please note that as the frustum plane moves upwards, all intersected edges smoothly
becomes uniform, without introducing any cracks or t-junctions

4.3 Frustum Intersections

In a pre-pass, preferably when the tessellation factors for each edge of the base
primitive edge are determined, we also test if a triangle edge intersects any of the
camera view frustum planes. In Figure 8, the distance to an intersection along
the edge is marked with x, and x is used for smooth edge transitions, as described
in the previous section. For clarity of presentation, we have up until now only
described the case of one frustum plane intersecting the base triangle. However,
as illustrated in Figure 10, a triangle may intersect several frustum planes, and to
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Figure 10: Triangle-frustum intersections in clip space. As can be seen, each triangle edge
has at most two intersections with the frustum.

Figure 11: A highly tessellated triangle intersecting the camera frustum. As can be seen
in the figure, most of the generated triangles end up outside the camera frustum. In order
to guarantee high quality close to the camera, the triangle must be highly tessellated. As a
result, many unnecessary triangles will be generated outside the view frustum

handle all cases, we store the fraction of the edge outside the frustum, ( f ) for each
edge, instead of the distance to an intersection. A fraction f = 0 means that the
edge is inside the frustum, f ∈ [0,1] means that the edge intersects the frustum
once or twice, and a f = 1 means fully outside the frustum. If the triangle moves
continuously, so will the fractions, and we use f (in place of x) as parameter in
Equation 7.

5 Bézier Edge Interpolation

In this section, we present an alternative remapping approach that defines a unique
vertex distribution function per base triangle edge. There are cases where a per-
spective remapping, as described in Section 3, would not alleviate the situation.
One such case is illustrated in Figure 11, where a distribution function that can
gather vertices around a point along a triangle edge, would help. That would push
many generated triangles inside the view frustum, where they are more useful. Be-
low, we present a flexible algorithm that uses constrained Bézier curves, defined
per edge and blended together, to address these cases.
We use a third order Bézier curve to remap the vertex distributions along each
edge, as shown in Figure 12. The Bézier curve goes through p0 = (0,0) and p3 =
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p1

p0
p2

p3

Figure 12: Each edge can specify a unique Bézier curve with two degrees of freedom: the y-
coordinates of p1 and p2. The image shows three different curves and the remapping when
applied to a uniform distribution in [0,1]. The curves are used to remap the distribution
along each edge, as shown in the rightmost figure, and edge interpolation is used to blend
between the distributions in the interior of the triangle.

(1,1) and remaps all the points in between. We allow for two degrees of freedom,
y1,y2 ∈ [0,1] and choose the two remaining control points as p1 = (0,y1) and
p2 = (1,y2).
A third order Bézier curve is given by:

b(t) = (1− t)3p0 +3(1− t)2tp1 +3(1− t)t2p2 + t3p3. (9)

We are interested in the y-component of this curve, and denote it b(t) (to simplify
the notation in this chapter). Given our values of {pi}, i∈ 0 . . .3, b(t) can be written
as:

b(t)≡ by(t) = 3(1− t)2t y1 +3(1− t)t2 y2 + t3. (10)

Note that b(t) must be monotonically increasing for t ∈ [0,1], to avoid reordering
of vertices along the edge, so we constrain y1 and y2 to y1,y2 ∈ [0,1]. Thus, a uni-
form distribution t ∈ [0,1] is warped to t ′ = b(t) ∈ [0,1]. This allows us, with only
two parameters per triangle edge, to define a set of useful distributions. Examples
are shown in Figure 12.
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w=1

(0,v,1-v) (1-v,v,0)

u=1
u

v=1

e1

e2
e3

Figure 13: The geometry for a sweep in the positive v-direction

5.1 Blending Edge Functions

Each Bézier curve is specified per edge and should decline as we move away from
the edge. Given a triangle with standard barycentric coordinates (u,v) as in Fig-
ure 13, let us look at the edge e1, where the barycentric coordinate v = 0. Assume
also that we have defined a Bézier curve, as described above, along this edge. We
denote this curve be1(t). As parameter along edge e1, we choose u, which goes
from zero to one along the edge. The remapped u-coordinate is thus u′ = be1(u).
If we move a line perpendicular from the edge into the triangle in the increasing
v-direction, as shown in Figure 13, the interval in u shrinks to u ∈ [0,1−v] and we
adjust the parameter so that the start and end points of the interval in u still maps
to zero and one respectively. We also scale the amplitude so that it fades linearly
to zero as we approach v = 1. This gives us:

u′e1
= (1− v)be1(

u
1− v

), v′e1
= v, and w′e1

= (1− v)(1−be1(
u

1− v
)), (11)

ensuring that the curve has maximum influence on the edge e1 and smoothly de-
clines as we approach v=1. The same procedure is applied to the edges e2 and e3,
by permutations of the barycentric coordinates. Finally, the three edge remappings
are blended together using Equation 5. This interpolation scheme is similar to the
derivation of triangular Gregory patches [9].
Given be1(u),be2(v) and be3(w) defined on the edges e1,e2 and e3 respectively, the
remapped barycentric coordinates (uinterp,vinterp) are:

uinterp =
αu+β (1− v)be1(

u
1−v )+ γ(1−w)(1−be2(

v
1−w ))

α +β + γ

vinterp =
α(1−u)(1−be3(

w
1−u ))+βv+ γ(1−w)be2(

v
1−w )

α +β + γ
.
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Discussion The Bézier edge remapping gives more freedom in selecting edge
distributions with two parameters per edge. Even more control can be given by
allowing p1 and p2 to move also in the x-direction, or raise the degree of the Bézier
curve, but this means more storage cost per base triangle edge and a higher shader
evaluation cost.
It is also possible to replace the Bézier edge curves with other mathematical func-
tions. We have tried a power function as a modified gain function, g(t) with two
parameters c and n:

g(t) =
{

c( t
c )

n t ≤ c
1− (1− c)( 1−t

1−c )
n t > c (12)

This curve allows us to set a point along the edge of interest (c) and determine the
slopes around this point by adjusting the exponent n. However, in our tests, this
curve is harder to control, and tend to warp the tessellation pattern more aggres-
sively compared to the Bézier remapping.

6 Implementation

Our algorithm can be implemented in hardware, as well as in shader code. Cur-
rent fractional tessellation hardware already feeds barycentric coordinates to the
domain shader. We can essentially just insert code for our reverse projection al-
gorithm in the beginning of the domain shader to compute new barycentric coor-
dinates. These coordinates are fed to the remainder of the domain shader, which
may differ depending on the application.
In our implementation, we perform regular fractional tessellation on the CPU.
This could have been done by recent GPUs, but currently there are no public
APIs for using the tessellation unit. To estimate the cost of reverse projection,
we modified a standard vertex shader, inspired by the evaluation shader approach
by AMD [7, 16]. The inputs to the vertex shader are: a) the positions of all three
vertices of the base triangle, b) the barycentric coordinates of the current tessel-
lated vertex, and c) vertex weights for all three vertices (typically camera space
depth values). Given this setup, our reverse projection code compiles to 11 vertex
shader assembly instructions. By comparison, an extremely simple vertex shader
that interpolates a single position attribute and transforms it to clip space, compiles
to 9 instructions. Edge interpolation and smooth edge transitions use an additional
22 instructions, and needs three additional attributes (blend factors between regu-
lar and non-uniform distributions along the three edges) so in total, our complete
algorithm compiles to about 33 vertex shader instructions, if frustum intersections
should be handled.
Bézier Edge Interpolation comes with a higher cost. Our implementation, using
third order Bézier curves with two parameters per edge, as outlined in Section 5,
compiles to 55 vertex shader instructions.
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Figure 14: Brick road test scene. We use low tessellation to stress the algorithms. As can
be seen, the triangle density is more uniformly spread out in screen space, and the close-up
detail is better preserved. This can especially be seen in the front of the images where the
bricks have a smoother look with our remapping, and in the far back where more triangles
are gathered for regular fractional tessellation.

7 Results

Figure 14 shows regular fractional tessellation and perspective remapping for a dis-
placed brick road. For our technique, the triangle density is more uniformly spread
out in screen space, and the close-up detail is better preserved. Similar effects are
shown in Figure 1, where a Bézier-triangle has been generated in a domain shader.
These images use exactly the same number of micro-triangles. However, as can
be seen, the micro-triangles are more uniform in terms of projected micro-triangle
area with our technique, which was our goal.
One potential problem is vertex “swimming” during animation, as we warp the
parametric space. However, this is true for any scheme using fractional tessel-
lation with tessellation weights computed per frame. In practice, we found that
our scheme shows about the same or less swimming artifacts compared to regular
adaptive fractional tessellation. The accompanying video compares these artifacts
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during animation.
Both edge interpolation and clipping handle the frustum intersection problem. The
clipping pre-pass is more costly, but the quality can be fine-tuned close to the cam-
era. However, sliver triangles will likely be a big issue in practice. The attached
video shows an comparison between clipping and edge interpolation for a simple
case.

8 Conclusions and Future Work

The warping technique presented here is not limited to perspective-correction. It
should be seen as a more general approach to achieve better control over surface
tessellation, where edge and/or vertex weight can be combined to give fine controls
over tessellation patterns. Bézier Edge Interpolation in Section 5 is a more flexible
example of edge interpolation with a unique distribution function per edge. It
further handles near-plane intersections more gracefully (no perspective divide),
but comes at a higher cost.
It should also be noted that the warping techniques here are not limited to fractional
tessellation patterns, but can be applied to any tessellation schemes that specify
vertex positions using barycentric coordinates.
As future work, it would be interesting to investigate more elaborate LOD mea-
sures for the edge and vertex weights. We hope that this paper will stimulate
further research in the field.
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Automatic Pre-Tessellation Culling
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ABSTRACT

Graphics processing units supporting tessellation of curved sur-
faces with displacement mapping exist today. Still, to our knowledge,
culling only occurs after tessellation, i.e., after the base primitives
have been tessellated into triangles. We introduce an algorithm for
automatically computing tight positional and normal bounds on the
fly for a base primitive. These bounds are derived from an arbitrary
vertex shader program, which may include a curved surface evalua-
tion and different types of displacements, for example. The obtained
bounds are used for backface, view frustum, and occlusion culling
before tessellation. For highly tessellated scenes, we show that up to
80% of the vertex shader instructions can be avoided, which implies
an “instruction speedup” of 5×. Our technique can also be used for
offline software rendering.

ACM Transactions on Graphics, 28(2):19, 2009.





1. INTRODUCTION

1 Introduction

To provide rich surface representations for real-time rendering, it is expected that
most graphics hardware in the near future will have support for tessellation of
curved surfaces with displacement mapping. The Xbox 360 [5] and the ATI Radeon
HD 2000 series [25] already have support for this. A primitive with a triangular or
square domain is tessellated, and barycentric coordinates are forwarded to the ver-
tex shader, which may compute an arbitrary position based on these coordinates,
and more. To the best of our knowledge, these systems only perform culling after
tessellation using the conventional graphics pipeline. Clearly, it would be advanta-
geous to be able to cull before tessellation occurs, and Figure 1 shows an example
of this.

Vertex shader:

u

v

Base mesh

backface culled and
occlusion culled
before tessellation

H
W

 tessellator
16    tessellation

x(u, v) = ( 2+ cos(2πv)) ·
cos(2πu) ;

y(u, v) = ( 2+ cos(2πv)) ·
sin(2πu) ;

z(u, v) = sin(2πv)

Figure 1: GPUs with tessellation hardware are given a base mesh over a parameter space,
(u,v), as input. In this case, the tessellator increases the number of triangles by a factor of
sixteen, and a vertex shader evaluates a point on a torus surface. In the lower part, we visu-
alize the base triangles that our culling algorithm automatically can avoid to tessellate, and
where vertex shader evaluations can be avoided. We are able to cull 56% of the triangles
prior to tessellation.
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Over the years, culling techniques have seen many uses in both real-time graphics
and offline rendering. In general, RenderMan implementations [1, 4] use culling
on many different levels. However, the details may vary for different implemen-
tations. View frustum and occlusion culling are performed, often prior to tessella-
tion, and splitting of primitives may also occur. Backface culling is usually done
after tessellation. Wexler et al. [27] describe a GPU-optimized implementation,
where (among other things) occlusion queries are used to accelerate rendering.
However, to bound a displaced surface in RenderMan, the user either has to pro-
vide the renderer with a conservative upper bound, or the displacement shader is
executed on micropolygons, and exact bounds computed from these [1]. In this
latter case, no culling occurs before tessellation.
Shirman and Abi-Ezzi [24] use cones to bound a set of normals on a patch, and
can thus perform efficient backface culling. Kumar and Manocha [15] derive a
different method for backface culling of curved surfaces, and use a conservative
technique to bound the normals and then test for culling. However, neither of these
techniques can handle arbitrary surface evaluations automatically on the fly. Han
et al. [10] describe an alternative GPU implementation, where the part of the vertex
shader that computes the position of a vertex is executed first. After that follows
backface culling. If the triangle is culled then unnecessary lighting calculations
are avoided. Our goal is similar, but we want to perform culling before tessellation
even occurs.
There is a wealth of literature on adaptive on-the-fly tessellation, and as our work
can be combined with such techniques, we only list some of them. Doggett and
Hirche [6] use a summed-area table of the displacement map and a normal test to
guide the tessellation. A similar approach is to use interval arithmetic and interval
textures to focus the tessellation efforts [22]. To provide a continuous level of
detail, Moreton [21] introduces fractional tessellation where tessellation factors
are specified as floating-point numbers per triangle edge. This allows for adaptive
tessellation across a mesh, and similar techniques are used in modern GPUs [25].
In contrast to the previous work described above, we focus on presenting a single
automatic solution. Our paper contributes with a novel pre-tessellation backface,
view frustum, and occlusion culling method which is:

• fully automatic, based only on arbitrary vertex shader code which can in-
clude for example deformations, curved surfaces, and displacement map-
ping.

• implemented with tightly bounded arithmetic on triangular domains.

• suitable for implementing in both hardware and software rendering systems.

Next, we describe our algorithm in detail.
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Triangle traversal

Input

Pixel shader

Output

Vertex shader

Culling unit

Tessellator

Figure 2: To support tessellation in the GPU pipeline, a tessellation unit has recently been
added. We propose to add the culling unit, which automatically determines whether tessel-
lation of a base primitive can be avoided.

2 Tessellation Culling

The goal of our work is to efficiently avoid tessellating the majority of surfaces
which do not contribute to the final image. This occurs when a surface is back-
facing, outside the view frustum, or occluded by previously rendered surfaces.
Furthermore, we believe it is of utmost importance that fully arbitrary vertex dis-
placement shaders can be handled in a completely automatic way. In this section,
we present a novel algorithm for this. Without loss of generality, we restrict our-
selves to triangular domains and tessellation.

2.1 Overview

We extend the current GPU tessellation pipeline [25] with our new culling unit as
illustrated in Figure 2. Note that this type of pipeline is also rather similar to offline
rasterization pipelines. Without our culling unit, base triangles are first injected
into the pipeline, and these can be tessellated to a desired number of triangles
by the hardware. For each created vertex, the tessellator forwards its barycentric
coordinates, (u,v), down the pipeline. The vertex shader then computes the po-
sition, p(u,v), of each vertex as a function of its barycentric coordinates. This
may include, e.g., the evaluation of a Bézier triangle with texture displacement,
procedural noise, and transform matrices. Each term can also depend on a time
parameter, in order to animate a water surface, for example.
Our culling algorithm works as outlined in Fig. 3. First, we analyze the vertex
shader program and isolate all instructions that are used to compute the vertex
position. We then compute geometric bounds for this position over an entire base
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a) Base triangle c) Bernstein expansionb) Taylor model d) Final bounds

Figure 3: Algorithm overview: a) A base triangle (seen from the side) with pre-computed
tessellation factors is sent to the tessellation unit. b) By expressing the vertex program
in Taylor form (polynomial + interval remainder), a conservative estimate of the surface
is obtained. c) The Taylor polynomial is expanded in Bernstein form for efficient range
bounding (using the convex hull property), d) Finally, by adding the interval remainder
term from the Taylor model to the Bernstein bounds, conservative surface bounds (red) are
obtained.

triangle, and use these bounds to perform the culling.
Recently, it has been shown [12] that pixel shaders can be executed, bounded, and
culled over a block of pixels using interval arithmetic [19]. In this case, the pro-
grams used for culling are often short (terminated by a KIL instruction). However,
in our context, the shader programs are significantly more complex, and therefore
we use Taylor models [2] to approximate the shader function over the triangle do-
main. We then use Bernstein expansion [14] to compute tight bounding boxes for
the Taylor models, and use these bounding boxes for culling.
In the following, we first present some background on Taylor models in Sec-
tion 2.2. Then follows an algorithm for computing tight polynomial bounds in Sec-
tion 2.3, and our program analysis and generation in Section 2.4. In Section 2.5,
we describe how selective execution of our culling can be done, and finally, the
culling algorithms are described in Section 2.6.

2.2 Taylor Arithmetic

Taylor arithmetic has seen little use in computer graphics research, but there is a
recent exception in collision detection [28]. Interval arithmetic [19], on the other
hand, has been used extensively in graphics. Intervals are used in Taylor models,
and the following notation is used for an interval â:

â = [a,a] = {x |a≤ x≤ a}. (1)

Given an n + 1 times differentiable function, f (u), where u ∈ [u0,u1], the Taylor
model of f is composed of a Taylor polynomial, Tf , and an interval remainder
term, r̂ f [2]. An nth order Taylor model, here denoted f̃ , over the domain u ∈
[u0,u1] is then:

f̃ (u) =
n

∑
k=0

f (k)(u0)
k!

· (u−u0)k

︸ ︷︷ ︸
Tf

+[r f ,r f ]︸ ︷︷ ︸
r̂ f

=
n

∑
k=0

ckuk + r̂ f . (2)

172



2. TESSELLATION CULLING

This representation is called a Taylor model, and is a conservative enclosure of the
function, f over the domain u ∈ [u0,u1].
Similarly to interval arithmetic, it is also possible to define arithmetic operators on
Taylor models, where the result is a conservative enclosure (another Taylor model)
as well [2]. Addition is defined as follows: Assume that f + g shall be computed
and these functions are represented as Taylor models, f̃ = Tf + r̂ f and g̃ = Tg + r̂g.
The Taylor model of the sum is then

f̃ +g = (Tf +Tg)+(r̂ f + r̂g). (3)

Note here that Tf +Tg is an addition of two polynomials.
Similarly, for multiplication of a Taylor model, f̃ , by a scalar value, λ , we get that:

λ̃ · f = (λ ·Tf )+(λ · r̂ f ). (4)

Multiplication between two Taylor models is more complicated. Assume again
that we want to compute f · g where f and g are represented by Taylor models.
The Taylor model of the product is then

f̃ ·g = Tf ·Tg︸ ︷︷ ︸
Tf ·g

+B
(
Tf ·Tg

)
+B

(
Tf
)
· r̂g +B(Tg) · r̂ f + r̂ f · r̂g︸ ︷︷ ︸
r̂ f ·g

. (5)

The polynomial part of this equation, Tf ·g is simply the multiplication of the poly-
nomials Tf and Tg, but clamped (denoted Tf ·Tg) so that all terms of higher order
than the Taylor model has been removed.
The remainder has several contributing terms. First, we have the part of the poly-
nomial multiplication that overflows and has terms only of higher order than the
Taylor model (Tf ·Tg = Tf ·Tg−Tf ·Tg). Note that we want the remainder term on
interval form, and therefore we must bound the overflow of the polynomial mul-
tiplication over the domain (this is indicated by the bounding operator, B()). To
compute the bounds, we directly evaluate overflowing terms using interval arith-
metic and accumulate them to the remainder. More complex bounding computa-
tions, such as the one presented in Section 2.3, are possible, but since multipli-
cation is such a frequent operation, we must ensure that it is fast to compute its
bounds. The other terms found in the remainder involve computing the bounds of
Tf and Tg and are treated similarly to the overflow from the polynomial multipli-
cation. It should be noted that one or more of the terms in the remainder often are
zero. For instance, if r̂ f or r̂g is zero, then the corresponding terms will be zero as
well. As an optimization, we detect these cases and avoid the computations.
By using Taylor expansion, and the addition and multiplication operations pre-
sented above we can derive more complex arithmetic operators, like sine, log, exp,
reciprocal, and so on. We refer to the work of Berz and Hoffstätter [2] and Makino
and Berz [18] for more details.
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Motivation The motivation for us to use Taylor models is that curved surfaces
and subdivision schemes are often based on polynomials. Polynomial compu-
tations can be represented exactly by Taylor models (provided they are of high
enough order) which leads to very tight bounds. Previous work on shader analy-
sis [7, 13, 12] have successfully used interval and affine arithmetic, which are com-
putationally less expensive than Taylor models. However, note that they subdivide
the domain into small tiles before evaluating the bounded shader. In contrast, we
must bound the shader over the entire domain (the base triangle) in a single evalu-
ation, and consequently we need much tighter bounds. A side by side comparison
between the tightness of interval arithmetic, affine arithmetic and Taylor models
can be found in the example in Section 2.3.
Taylor models also provide a flexible framework since it is essentially a superset of
interval and affine arithmetics. It allows us to tweak interval sharpness versus com-
putational overhead by changing the order of the Taylor model. Orders zero and
one correspond to interval arithmetics, and generalized interval arithmetics [11],
which is similar to affine arithmetics.

2.3 Tight Polynomial Bounds

Our approach to tessellation culling is to evaluate the vertex shader using Tay-
lor arithmetic as described above. We execute the part of the shader that affects
the position attribute using Taylor arithmetic. This results in a Taylor model for
each of the components in the position attribute: (x,y,z,w). To find a geomet-
rical bounding box, one could then find local minima and maxima for each of
these. However, this requires numerical, iterative methods for polynomials of de-
gree n > 4, and also quickly becomes impractical due to the dependence on the
two parametric coordinates, (u,v).
Instead, we use a faster, conservative approach which still produces tight bounds.
The resulting Taylor polynomials are in power form, and the core idea is to convert
these to Bernstein form. The convex hull property of the Bernstein basis guaran-
tees that the actual surface or curve of the polynomial lies inside the convex hull
of the control points. Thus, we compute a bounding box by finding the minimum
and maximum control point value in each dimension.
In practice, we obtain bivariate polynomials from the vertex shader evaluation us-
ing Taylor arithmetic, and for a single component (e.g., x), this can be expressed
in the power basis as follows (where we have omitted the remainder term, r̂ f , for
clarity):

p(u,v) = ∑
i+ j≤n

ci juiv j. (6)

We want to transform Equation 6 into the Bernstein basis:

p(u,v) = ∑
i+ j≤n

pi jBn
i j(u,v), (7)
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x

y

Figure 4: A comparison of the bounds for a parametric curve (px(t), py(t)) of degree 3
in t for interval aritmethic (red), affine arithmetic (blue) and Taylor models with Bernstein
bounds (green).

where Bn
i j(u,v) =

(n
i
)(n−i

j
)
uiv j(1− u− v)n−i− j are the Bernstein polynomials in

the bivariate case over a triangular domain. We can convert a polynomial in the
power basis form, into the Bernstein form using the following formula [14]:

pi j =
i

∑
l=0

j

∑
m=0

(
i
l

)(
j

m

)(n
l
)(

n−l
m

)clm. (8)

To compute a bounding box, we simply compute the minimum and the maximum
value over all pi j for each dimension, x, y, z, and w. This gives us a bounding box,
b̂ = (b̂x, b̂y, b̂z, b̂w), in clip space. Next, we will give an example of the effective-
ness of this technique when compared to interval and affine arithmetic.

Example Assume we have the following parametric curve, p(t) = (px(t), py(t)),
where t ∈ [0,1], px(t) = 1 + 3t + 3t2− 2t3, and py(t) = 1 + 9t− 18t2 + 10t3. We
will illustrate how interval and affine arithmetic compare to our tight polynomial
bounds when computing a two-dimensional axis-aligned bounding box of this
curve over the domain, t ∈ [0,1]. The resulting bounds are visualized in Fig. 4. Us-
ing standard interval arithmetic, we obtain p̂x = [1,1] + [0,3] + [0,3] + [−2,0] =
[−1,7] and p̂y = [1,1] + [0,9] + [−18,0] + [0,10] = [−17,20], and these two in-
tervals represent a box with an area of 296. Similarly, applying affine arith-
metic [3] on the same example gives us px = 3 + 9/4ε1 + 1/2ε2 − 3/4ε3 and
py = 9/4− 3/4ε1− 13/4ε2 + 15/4ε3, where εi ∈ [−1,1] are noise symbols. The
bounding box becomes p̂x = [−0.5,6.5], p̂y = [−5.5,10], which represent a box
with an area of 108.5. To apply our tight polynomial bounds, we first observe that
the polynomials for px and py are essentially in Taylor form already. Our strategy
is therefore to rewrite these on Bernstein form: px(t) = 1 ·(1−t)3 +2 ·3(1−t)2t +
4 ·3(1− t)t2 +5 · t3, and py(t) = 1 · (1− t)3 +4 ·3(1− t)2t +1 ·3(1− t)t2 +2 · t3,
where the control points have been typeset in boldface. The bounding box is then
found as the minimum and maximum of the control points in x and y. This gives
us p̂x = [1,5] and p̂y = [1,4], which has an area of 12. The tightest fit axis-aligned
box has p̂x = [1,5] and p̂y = [1,2.37], with an area of 5.48.
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2.4 Program Analysis and Generation

In a graphics pipeline with a tessellation unit, the vertex shader receives barycen-
tric coordinates and the associated base triangle information, and then outputs a
vertex position in clip space. In the simplest vertex shader, the vertex position is
computed by interpolating the base triangle vertices, using the barycentric coordi-
nates, and transforming this position into clip space by a matrix multiplication. In
the general case, the vertex position is displaced using an arbitrary function (of the
barycentric coordinates) before the clip space transform.
We want to bound this position over the entire barycentric domain, and must there-
fore evaluate the vertex shader output for every possible barycentric coordinate,
since this is the only input that varies over the base triangle. To accomplish this,
we reformulate the vertex shader using Taylor models.
We represent each Taylor model as a coefficient list. Each coefficient has a scalar
value and an id i, indicating that it is the coefficient of the xi term. For example,
the polynomial 4+3x +0.5x2 over the domain x ∈ [0,1] would be represented, as
a Taylor model of order 2, by the list [{4,0},{3,1},{0.5,2}, r̂ = 0]. It could also
be represented as a Taylor model of order one as [{4,0},{3,1}, r̂ = [0,0.5]].
Our only varying input, the barycentric coordinates, are here expressed as two-
dimensional Taylor models. Generalizing the list representation from above to two
dimensions so that a polynomial term αxiy j is represented by a coefficient {α, i, j},
we can write the barycentric coordinates as two-dimensional Taylor models:

u = 0+1 ·u+0 · v = [{1,1,0}]
v = 0+0 ·u+1 · v = [{1,0,1}]
w = 1−1 ·u−1 · v = [{1,0,0},{−1,1,0},{−1,0,1}]

These are Taylor models of order 1 (i, j ≤ 1) over the domain u ∈ [0,1],v ∈ [0,1].
Note that no remainder is needed.
We then proceed by evaluating all instructions using Taylor models. We will
briefly exemplify the implementation of addition and multiplication of Taylor mod-
els, as more complex operations will be expressed in these in the end.
Addition: Addition is done by adding the polynomial part of each Taylor model.
Our internal representation of the polynomial part is a list of non-zero coefficients.
Thus, the polynomial addition essentially becomes a sparse vector addition at run-
time. Here is an example:

u+w = [{1,0,0},{1−1,1,0},{−1,0,1}] = [{1,0,0},{−1,0,1}] = 1− v. (9)

Note that we only need to perform additions for non-zero terms existing in both u
and w, as the other terms can be handled using variable renaming. The remainder
term, if non-zero, is handled using normal interval arithmetic. A more realistic
shader would include linear interpolation between two, at compile time unknown,
positions. This requires us to work with variables rather than constants. Thus the
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example becomes:

p1u+ p0w = [{p0,0,0},{p1−p0,1,0},{−p0,0,1}] = p0 +(p1− p0)u− p0v.
(10)

Multiplication: Here, we loop over the non-zero components in one Taylor model
and multiply it by all non-zero components in the other. Thus, the runtime com-
plexity is roughly O(a ·b) multiplications, where a and b represent the number of
non-zero coefficients in each of the two polynomials being multiplied. We bound
the remainder terms using interval arithmetics. This can be optimized by exploit-
ing that our domain is (u,v) ∈ [0,1], as all multiplications by zero can be omitted.
For multiplication, the order of the Taylor model will increase, so we have the
choice to bound the higher-order terms and add to the remainder, or increase the
order of the model. A higher order Taylor model has more precision (polynomials
up to the order of the model can be represented exactly), but is also more costly
computationally. With the sparse list representation above, we can use a fixed or-
der and models of lower orders will not have any computational overhead, as only
non-zero terms are stored and used in the arithmetic operations.
Polynomial displacement shaders (Bézier surfaces) are simply a sequence of Tay-
lor multiplications and additions, and elementary functions can also be bounded
by Taylor models. Like standard Taylor expansions, a higher-order representation
leads to tighter bounds. Once all arithmetic operations have been converted to
Taylor form, we express them using regular vertex shader code. Therefore, we do
not need to introduce any new specialized instruction set for our bounding shader.
However, the bounding shaders will be significantly longer than the corresponding
vertex shader.
Finally, our program analysis gives us a polynomial approximation of the vertex
position attribute. We then compute its bounds using the algorithm in Section 2.3.
Once again, we generate the necessary vertex shader code for this operation.

Discussion Program analysis is done in the exact same way as a standard imple-
mentation [2] of Taylor models, with the exception that we need to treat symbolic
constants (variables) rather than values, and we need to emit code rather than exe-
cuting the operations.
It should be noted that the Taylor models for the barycentric coordinates are the
same for all base triangles, and thus we can treat them as constants rather than vary-
ing input. This means that the order for all Taylor instructions can be computed
statically at compile time. Furthermore, we can do most standard optimizations
(for example, exploiting c ·0 = 0, and c+0 = c), as well as all control flow that is
internally needed in the Taylor model computations, at compile time. This greatly
increases the runtime shader performance.
In conclusion, the complexity of each Taylor operation is highly dependent on the
“order” of the vertex shader. For instance, for a program with only interpolation
and a matrix multiplication, the Taylor models will have no non-zero coefficients
over order one. In contrast, cubic Bézier triangle evaluation uses polynomials of
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degree 3, and consequently the Taylor models will have more higher-order coeffi-
cients. The instruction ratio between the culling program and vertex shader grows
for more complex shaders (see Section 4). Note that we can determine the number
of instructions during compile time. Thus we can compile the program, see how
expensive it gets, and only trigger culling if there is potential for performance gain.

Texture Mapping

Shaders using texture map lookups are problematic as the texture map may contain
an arbitrarily complex function. However, texture mapping is an important feature
as displacement mapping is a prime use-case of a tessellation unit.
We implement bounded texture mapping using interval-based texture lookups [12,
22], which computes a bounding interval for the texture in a given region. If, for
example, we want to displace a surface in the direction of an interpolated nor-
mal, then the texture interval will be used in subsequent arithmetic computations.
Therefore, we must convert the interval to Taylor form.
A naïve way of doing this is to treat the texture lookup in the interval remainder
term, r̂ f , of the Taylor model. However, we found this approach to be unsatis-
factory as the remainder term in Taylor models is treated using standard interval
arithmetic, which cause the bounds to grow rapidly. Instead, we treat every tex-
ture lookup as a functional parameter. That is, instead of treating the shader as a
two-dimensional Taylor model:

f̃ (u,v) = ∑
i+ j≤n

ci juiv j + r̂ f , (11)

we treat it as a three-dimensional Taylor model:

f̃ (u,v,a(u,v)) = ∑
i+ j+k≤n

ci jkuiv ja(u,v)k + r̂ f , (12)

where a(u,v) is an unknown (texture map) function defined over the interval do-
main, which we computed in the interval texture lookup. By increasing the dimen-
sionality of the Taylor models, we can track correlations for arithmetic operations
which depend on texture lookups. In effect we defer the interval evaluations to the
last part of the shader, which is the bounds computations. To support an arbitrary
number of texture lookups, all Taylor arithmetic, as well as the tight bounding
computations of Section 2.3, can be generalized to n-dimensional domains. For
details, we refer to the work by Berz and Hoffstätter [2], and Lin and Rokne [16].

Branching and Looping

We can easily support branching and looping when the conditional expression is
a value (or equivalently, a zero:th order Taylor model with no remainder). In this
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case, it is uniquely determined which branch we should take, or how many itera-
tions of a loop we should perform. A typical example would be looping over an,
at compile time unknown, number of fractal noise octaves.
We can also handle branches with Taylor models for conditional expressions. In
such cases we compute quick bounds for the Taylor model based on interval arith-
metic (see multiplication in Section 2.2). If the bounds of the condition is am-
biguous, we must execute both branches. Furthermore, if a variable is assigned a
value in both branches, we must assign it the union of those values. A union of
two Taylor models could be derived by computing the average of their polynomial
parts, and growing the remainder term accordingly to enclose both polynomials.
A construct that we cannot handle is loops with a Taylor model as the conditional
expression. For example, some iterative computation on the barycentric coordi-
nates, that loops until the result has converged. As previously explained by Hassel-
gren and Akenine-Möller [12], such computations are not guaranteed to converge
when bounded arithmetics are used, and we may get an infinite loop. Fortunately,
we can easily detect those cases and simply disable our culling.

2.5 Selective Execution

We have observed that the bounding shaders are roughly 3−15× more expensive
than the corresponding vertex shader in terms of instructions. Since this cost is
rather significant, it makes sense to execute the bounding shader only in regions
where we are likely to improve overall performance. A statistical analysis shows
that it is beneficial to execute the bounding shader if the following holds:

c(cull)
c(vertex)

≤ p(cull) ·n. (13)

Where c(cull)
c(vertex) is the cost ratio between the cull and the vertex program, p(cull)

is the probability that a base triangle is culled, and n is the number of vertices that
will be generated during tessellation.

2.6 Culling

In this section, we will describe how the actual culling is performed. We want to
emphasize that the culling algorithm per se is not a novel contribution. However,
some details are given here for the sake of completeness. Recall that the output
from the bounding shader program are geometrical bounds:

p̃(u,v) = (p̃x, p̃y, p̃z, p̃w),

i.e., four Taylor models. As described above, we use the convex hull property of
the Bernstein form to obtain a bounding box from these Taylor models. This box
is denoted b̂ = (b̂x, b̂y, b̂z, b̂w), where each element is an interval, e.g., b̂x = [bx,bx].
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View Frustum Culling

For view frustum culling, we simply need to test the geometrical bounds against
the planes of the frustum. Since we have the bounding box, b̂, in homogeneous
clip space, we can perform the test in this space as well. We use the standard
optimization for plane-box tests [9], where only a single corner of the box is used
to evaluate the plane equation. Each plane test then amounts to an addition and a
comparison. For example, testing if the box is outside the left plane is done with:
bx + bw < 0. Since these tests are inexpensive, our culling always starts with the
view frustum test.

Backface Culling

After the vertex shader has been executed, the vertex p is in homogeneous clip
space (before division by w). This means that the model-view transform has been
applied, so the camera position is at the origin. Now, given a point, p(u,v), on a
surface, backface culling is in general computed as:

c = p(u,v) ·n(u,v), (14)

where n(u,v) is the normal vector at (u,v). If c > 0, then p(u,v) is backfacing
for that particular value of (u,v). For a parameterized surface, the unnormalized
normal, n, can be computed as:

n(u,v) =
∂p(u,v)

∂u
× ∂p(u,v)

∂v
. (15)

After our bounding shader has been executed, we have Taylor models, p̃(u,v), for
the position. As part of the bounding shader program, these are differentiated as
well, resulting in ∂ p̃(u,v)/∂u and ∂ p̃(u,v)/∂v. Finally, the Taylor model of the
normal, ñ(u,v), is computed using these.
There are two issues with this technique, which we need to solve. The first prob-
lem arises if p̃(u,v) contains a non-zero remainder term, r̂p, since this must be ac-
counted for when computing the partial derivatives. We solve this by using knowl-
edge about the tessellation frequency of the base primitive. Assume that a worst-
case sawtooth tessellation pattern is generated by the remainder term, as shown in
Figure 5a. The maximum slope for such a configuration is ( f (x + ∆x)− f (x) +
w)/∆x, where ∆x is the shortest edge generated during tessellation and w is the
width of the interval remainder term. This expression is bounded by f ′(x)+w/∆x
according to the mean value theorem. Similar reasoning holds for the minimum
slope. Thus ∂ p̃(u,v)/∂u is bounded by ∂Tp/∂u± (rp− rp)/∆x.
It should be noted that fractional tessellation may introduce edges that are arbi-
trarily short, since new vertices may be inserted at the position of old ones. This
makes it very hard to bound the derivatives of Taylor models with remainder terms,
as we must assume that ∆x = 0. We propose to modify the fractional tessellation
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q=(1-t)p0+tp1

s=(1-t)q+tf(t)

f(t)

a) b)
Figure 5: We must take special care of the interval remainder term when performing back-
face culling. Figure a) shows a worst case derivative of a Taylor model with a polynomial
f (x) an interval remainder term with width w. The worst case derivative that can be intro-
duced by the remainder term is given by the blue sawtooth pattern, which has a period of
2∆x where ∆x is the length of the shortest edge created during tessellation. Figure b) shows
how we alter the original fractional tessellation algorithm to avoid problems that would
arise in Figure a) if ∆x is very small.

algorithm so that new vertices are inserted in a bi-linearly interpolated fashion. As
shown in Figure 5b, we find the point q(t) by linearly interpolating between the
two neighbors p0 and p1. Then we interpolate again between the actual position,
f(t), and q(t). Given this modification, one can show that the derivative from the
previous section will behave as if the minimum edge length is half of the edge
length in a corresponding uniform tessellator. This means that we can now bound
the slope.
The second issue concerns treatment of texture maps. As can be seen in Equa-
tion 12, a Taylor model with texture lookups will contain terms which depend on
some unknown texture function a(u,v). When such a term is differentiated, we will
obtain partial derivatives ∂a(u,v)/∂u and ∂a(u,v)/∂v. Our solution is to evaluate
these terms using textures of pre-computed differentials. These differential tex-
tures are treated just like the regular textures described in Section 2.4, and increase
the dimension of the Taylor models. It should be noted that this increase in dimen-
sion is not computationally costly as we rarely get more than linear dependencies
of a texture.

Occlusion Culling

Our occlusion culling technique is similar to hierarchical depth buffering [8], ex-
cept that we use only a single extra level (8×8 pixel tiles) in the depth buffer. The
maximum depth value, ztile

max, is stored in each tile. This is a standard technique in
GPUs [20] used when rasterizing triangles. We project our clip-space bounding
box, b̂, and visit all tiles overlapping this axis-aligned box. At each tile, we per-
form the classic occlusion culling test: zbox

min ≥ ztile
max, which indicates that the box

is occluded at the current tile if the comparison is fulfilled. The minimum depth
of the box, zbox

min is obtained from our clip-space bounding box, and the maximum
depth of the tile, ztile

max, from the hierarchical depth buffer (which already exists in
a contemporary GPU). Note that we can terminate the testing as soon as a tile is
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found to be non-occluded, and that it is straightforward to add more levels to the
hierarchical depth buffer. Our occlusion culling test can be seen as a very inex-
pensive pre-rasterizer of the bounding box of the triangle to be tessellated. Since
it operates on a tile basis, it is less expensive than an occlusion query.

3 Implementation

We have implemented our automatic culling unit in a C++ software framework
simulating the GPU pipeline. We execute the bounding shader program before
tessellating each base primitive. We noted that both view frustum and backface
culling may be realized in the bounding shader, and our implementation generates
code for this. The output of our bounding shader is therefore a single boolean indi-
cating if the base triangle should be culled or not, and a positional bounding box.
The bounding box is required for the occlusion culling, which cannot be imple-
mented in vertex shader code as it includes (coarse level) rasterization operations.
Occlusion culling is implemented further down the pipeline as a quick rasterization
algorithm.
We use fourth order Taylor models in our program analysis. This gives us an exact
representation of the position and normal for cubic polynomial surfaces, which are
frequently used. Some examples are curved PN-triangles [26] and bicubic patches,
such as Loop and Shaefer’s Catmull-Clark approximation [17]. Higher-order terms
will be handled by the remainder term in the Taylor model.
We believe that our automatic tessellation culling could be implemented in a graph-
ics hardware system at a moderate cost. For a full implementation, we need addi-
tional hardware that enables us to do the following:

• Execute a bounding shader once per base primitive. The instruction set and
program inputs are identical to the vertex shader. With unified shader archi-
tectures, this should be fairly straightforward to add.

• Perform the occlusion culling described in Section 2.6.

• Remove a base triangle before tessellation based on a boolean culling flag.

The remaining tasks can be done either in the bounding shader code or in a pre-
processing step in a driver.
A partial implementation of our automatic culling algorithm could be realized on
current hardware in two passes. First, we would execute the bounding shader
program and use it to compute tessellation factors for the subsequent rendering
pass. The tessellation factor can then be set to zero for all culled triangles.
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Scene Terrain Ninja

# Base tris 2048 8884
# Instructions (BS / VS) 140 / 50 825 / 69
Cull rate (VF/BF/OC) 31.8% (26.8 / 0 / 5.0) 39.6% (0 / 13.5 / 26.1)
Opt. cull rate 38.7% (27.8 / 5.3 / 5.6) 53.0% (0 / 40.7 / 12.3)
Avg. tri area 8.0 4.0 2.0 0.5 8.0 4.0 2.0 0.5
Instruction speedup 3.39× 3.53× 3.46× 3.23× 0.96× 0.99× 1.08× 1.26×
Scene Figurines Spike Balls

# Base tris 42784 (764 per object) 4480 (560 per object)
# Instructions (BS / VS) 1612 / 126 2400 / 149
Cull rate (VF/BF/OC) 71.0% (18.0 / 29.6 / 23.4) 34.9% (0 / 23.6 / 13.3)
Opt. cull rate 74.1% (18.2 / 33.3 / 22.6) 59.5% (0 / 48.8 / 10.7)
Avg. tri area 8.0 4.0 2.0 0.5 8.0 4.0 2.0 0.5
Instruction speedup 2.03× 2.95× 3.81× 5.55× 0.92× 1.12× 1.24× 1.37×

Table 1: Performance evaluation for our four test scenes. The instructions row shows the
number of scalar instructions for the vertex shader (VS), and the bounding shader (BS). The
cull rate row shows how many base primitives our algorithm can automatically cull. The
bold figure is the total culling rate, and the numbers in the parenthesis are for view frustum
(VF), back face (BF), and occlusion (OC) culling. The Optimal cull rate row shows the
best possible culling. For each scene, we then show Instruction speedup for four different
tessellation rates, so that the average tessellated triangle area is 8, 4, 2, and 0.5. These
figures were computed by dividing the number of instructions to compute the vertex position
of every tessellated triangle by the sum of the instructions used by our bounding shader
program and the instructions used for the non-culled vertices.

4 Results

Our test setup and results will be presented in this section. We use the soft-
ware GPU simulator described in the previous section, and render all images in
1920×1280 resolution. Since, to the best of our knowledge, no system exists that
can automatically perform culling based on vertex shader analysis, cull shader
generation, and on-the-fly execution, we decided to compare our system against
an “optimal” culling unit. This unit can, for example, backface cull a base triangle
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only if all tessellated triangles are backfacing. In practice, such optimal culling
uses too much resources and so will not provide much (if any) speedup. However,
from a scientific point of view, it is interesting to find out how close to an optimal
culling unit our algorithm performs.
To investigate the performance of our algorithm, we use four test scenes, two of
which have recently been used in GPU tessellation contexts. These are Ninja, Ter-
rain, Figurines, and Spike balls, as can be seen in Table 1. In addition, we decided
to use four tessellation rates, giving approximate triangle areas of 8, 4, 2, and 0.5
pixels. We motivate these rates by the fact that GPUs were balanced for eight-pixel
triangles already two years ago [23], and the introduction of tessellation units in-
dicates an intention to further decrease the size. Our highest tessellation rate (0.5
pixels) is inspired by production rasterization pipelines [1], which is another pos-
sible application of our culling unit.
The Terrain scene is a common usage area for tessellation. A coarse mesh is
finely tessellated and displaced. The camera moves over the landscape, and so
a fair amount of view frustum culling should be possible. This scene has the
most inexpensive bounding shader, which is only 2.8× as expensive as the vertex
shader. The Ninja scene uses displacement mapping along an interpolated normal.
The model is always inside the view frustum, and so only backface and occlusion
culling can occur. Furthermore, the base mesh is highly tesselated, which makes it
a rather hard case for our algorithm. A highly tesselated base mesh will not gener-
ate as many tesselated vertices, and hence, there is not as much to be gained by the
culling. The Figurines scene consists of a set of models using PN-triangles [26],
i.e., cubic Bézier triangles. We included this scene to demonstrate that render-time
mesh smoothing can be handled efficiently by our culling algorithm. The scene
shows a grid of meshes seen from the front and tests all three types of culling. It has
the highest number of base primitives, but also has many more separate objects and
the most complex geometry. The final scene, Spike Balls, shows PN-triangulated
spheres with displacement mapping. This scene has the most expensive bounding
shader program, approximately 2400 instructions long. Since everything is inside
the view frustum, this scene only uses backface and occlusion culling.
We present our performance figures in Table 1. The culling rates show how
our culling unit compares to the optimal culling unit described above. Note that
our culling unit in some cases performs better than the optimal unit at occlusion
culling. This only occurs because the occluded triangles were removed by the
backface culling test in the optimal culling unit. For the culling rate figures, we
execute our bounding shader for every base triangle in order to make a fair compar-
ison to the optimal culling unit. For the performance figures (Instruction speedup),
we instead execute the bounding shader based on Equation 13, where we chose
p(cull) = 0.5.
It should be noted that the instruction counts for bounding and vertex shaders pre-
sented in Table 1 is the number of scalar instructions used, and not vector in-
structions. The motivation for this is that modern graphics hardware architectures
use scalar instructions internally, and achieve parallelism by operating on multiple
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vertices or pixels instead. Note also that we counted multiplications and additions
separately for simplicity. It is, however, likely that the bounding shader programs
can be significantly shortened using multiply-add.
It should also be noted that our performance numbers do not include the actual
tessellation (i.e., generation of connected vertices) nor execution of instructions in
the vertex shader not dealing with computing vertex position (e.g. vertex lighting,
tangent space transforms etc.). In addition, our simple occlusion culling is not
included either since it has to be implemented in custom hardware, but given its
simple nature it should be very efficient. In summary, we believe that our perfor-
mance would be even better if these factors were taken into account.

Discussion Given that our culling is automatically derived from a vertex shader
program, we consider our culling rates very high, compared to the optimal culling
rates. Note that we have intentionally avoided very simple test scenes where, for
example, a detailed, tessellated character is behind a wall. In such cases, our
occlusion culling would cull the entire character given that the wall was rendered
first. One thing we noted in particular is that backface culling of displacement
mapped surfaces is a very hard task (although our algorithm handles the Ninja and
Spike Balls scenes fairly well).
We also compared our culling results with generalized interval arithmetic (first
order Taylor models), and noted that the results directly dropped to 0% culling for
the scenes with Bézier surfaces, namely, Figurines and Spike Balls. This clearly
motivates our choice of higher-order Taylor models as a suitable arithmetic for
bounding shaders. For the remaining test scenes, Terrain and Ninja, we get the
exact same behavior for generalized interval arithmetic and higher order Taylor
models. This is to be expected, since our Taylor model implementation never use
higher order than necessary. Thus, the culling performance, and the instruction
ratio between the bounding and vertex shader, are identical for these scenes.
Our PN-triangle scenes (Figurines and Spike Balls) use third order surfaces, sim-
ilar to the popular Catmull-Clark subdivision schemes. We also performed initial
experiments with Loop and Schaefer’s [17] implementation of Catmull-Clark, for
the Figurines scene. As the surfaces are bicubic, they contain more high-order
terms than corresponding Bézier triangles, and consequently the bounding shader
becomes more expensive (6536 instructions bounding shader, and 159 instructions
vertex shader, as compared to 1612/126 instructions with PN-triangles). However,
we only need to execute the bounding shader once for every quad, in this case. The
culling rate was within 2% of that of the PN-triangle version. It should be noted
that shaders as long as 6536 instructions may not fit in current instruction caches,
which may harm performance. However, we believe that future hardware will be
able to handle longer shaders.
As can be seen in Table 1, the performance is very high for scenes with view frus-
tum culling (the Terrain and Figurines scenes). In all scenes, we use fractional tes-
sellation and projected edge lengths to determine the tessellation factors for each
edge of the base triangles. A fundamental problem with this approach is that we
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cannot conservatively determine if the edge will be visible or not without tessel-
lating it. Therefore, we chose tessellation factors based on projected edge lengths,
without clipping the edges by the view frustum. This leads to highly tessellated
base triangles close to the (infinite) near clipping plane, and consequently we get a
substantial speedup if we can cull these. This is a general problem in tessellation,
and not bound to our application. In fact, using our culling unit makes it much
simpler to design a tessellation heuristic, since culling is handled automatically.
Our tessellation heuristic also includes a maximum tessellation factor to avoid
generating base triangles being too highly tessellated. This limit is reached when
the Terrain scene is rendered at high tessellation rates. Consequently, the vertex
rate of the base triangles close to the camera (many of which we can cull) goes
down, and this explains why the performance gain (instruction speedup) for this
scene decreases when we increase the tessellation rate.
It should be noted that our culling technique is not limited to polynomial surfaces.
Fig. 1 shows an example of a vertex shader with sines and cosines, wrapping a
planar surface to a torus. Still, we can cull 56% (60% optimal) of the triangles
before tessellation.

5 Conclusion and Future Work
The trend in GPU rendering is steadily continuing to close in on the quality of
rasterization-based production pipelines. Using hardware to obtain highly tessel-
lated objects is another step in this direction. We are therefore excited about the
recent developments in hardware tessellation, and hopefully, our work can be used
in future implementations of GPUs to accelerate rendering further. As we have
shown, this would give significantly better performance, and since our technique
is fully automatic, we believe the application developers would find more motiva-
tion to use hardware tessellation if the culling is done for them by the system. For
future work, we would like to investigate hierarchical tessellation, so that parts of a
base primitive can be culled, or even several base primitives in a single cull opera-
tion. In addition, we have realized that backface culling is the most difficult type of
culling when it comes to handling arbitrary vertex shaders. Therefore, we would
like to do research on novel techniques to further increase the backface cull rate at
a low cost. Furthermore, our work can be used in a software rendering pipeline as
well, and it would be interesting to evaluate exactly what kind of performance can
be obtained in such contexts.
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ABSTRACT

In this paper, we present a new approach to conservative bounding
of displaced Bézier patches. These surfaces are expected to be a com-
mon use case for tessellation in interactive and real-time rendering.
Our algorithm combines efficient normal bounding techniques, min-
max mipmap hierarchies and oriented bounding boxes. This results
in substantially faster convergence for the bounding volumes of dis-
placed surfaces, prior to tessellation and displacement shading. Our
work can be used for different types of culling, ray tracing, and to
sort higher order primitives in tiling architectures. For our hull shader
implementation, we report performance benefits even for moderate
tessellation rates.
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1. INTRODUCTION

CBOX TPATCH

Figure 1: CBOX, which represent previous work, bounds displaced Bézier surfaces by its
control points and a user-provided displacement bound. Our approach, TPATCH, uses
oriented bounding boxes, a min/max hierarchy of the displacement map and an efficient
normal bounding algorithm, that combined bound the patches significantly tighter.

1 Introduction

Modern graphics processors contain dedicated hardware for tessellating paramet-
ric patches into many small triangles. The Direct3D 11 API adds three new stages
to the graphics pipeline to support tessellation: the hull shader, which is executed
once per patch and once per control point, typically to compute tessellation factors
and change control point bases. The fixed-function tessellator, which generates
a large set of vertex positions in the domain of the input primitive. The domain
shader, which is executed once per generated vertex position and outputs a dis-
placed point in clip space. We expect high pressure on these shader stages, due to
significant geometry amplification. It is therefore of utmost importance to reduce
the number of domain shader evaluations. This can be done by culling patches
that do not contribute to the final image. To make this efficient, an algorithm for
computing tight bounds of displaced surfaces is needed.
In tile-based rendering architectures [4, 9], bounds for input primitives are needed
for efficient sorting into tiles. Since the domain shader is programmable, it is hard
to give conservative and tight bounds of the output positions. Thus, the generated
small triangles have to be sorted into tiles individually. This increases the memory
requirements for the tile queues and prevents efficient occlusion culling on a patch
level.

Related Work In some REYES/RenderMan [1, 2] implementations, the user can
provide an explicit displacementbound parameter, so that the primitive can be
bounded and possibly culled during the split-dice step of the pipeline. However,
this places the burden on the user, who has to estimate the maximum displacement
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radius. In addition, this value does not decrease during the split-dice loop, so the
convergence is rather poor, as can be seen in the left side of Figure 1. Our approach
is to compute these bounds based on the domain shader only (i.e., no need for any
user specified parameter), and to adaptively refine the bounds as the primitive is
split into smaller sub-patches.
Previous work on pre-tessellation culling [7] has shown that bounding displaced
surfaces can give performance benefits for sub-pixel sized polygons. In contrast to
that work, we focus on a particular use case (displaced Bézier patches). In addition,
we approach the problem hierarchically in order to improve the total performance.
Several algorithms for normal vector bounding of Bézier surfaces exist [10, 19,
20, 21]. We extend these approaches so that they fit in our framework of bounding
displaced patches. This is a harder problem than bounding the Bézier normal
vector in isolation.
Displacement map lookups can be bounded by min-max mipmap hierarchies [6,
14], storing the minimum and maximum displacement values for each texture foot-
print and miplevel. We use this technique for conservative texture bounds.
The main contribution of this paper is a complete algorithm for conservative and
tight bounding of displaced Bézier patches, using efficient normal bounding, ori-
ented bounding boxes and min-max mipmap hierarchies of the displacement tex-
ture. The algorithm is applicable in DX11 GPUs and for hierarchical bounding in
offline rendering.

2 Bounding Displaced Bézier Patches

Collections of bi-cubic Bézier patches are popular rendering primitives in produc-
tion pipelines and CAGD [16]. Commonly, displacements from high resolution
textures are added in the patch’s normal direction to increase the surface detail.
Furthermore, recent work [11, 12, 15, 17] has shown that Catmull-Clark subdivi-
sion surfaces can be approximated by collections of Bézier patches. This implies
that the Bézier patch with displacement could be a prime use case for domain
shaders in DX11. The Bézier patch is compactly represented by its control points,
and this parametric surface representation can be efficiently evaluated in parallel
(unlike recursive subdivision surfaces).
A Bézier patch, p(u,v), is a surface defined over two parametric coordinates, u and
v. A displaced Bézier patch,

d(u,v) = p(u,v)+ n̂(u,v)t(u,v), (1)

contains the base patch position, p(u,v), and a displacement value, t(u,v), acting
along the normalized surface normal n̂(u,v). Typically t(u,v) is taken from a
texture. The clip space position, q, in homogeneous coordinates, is obtained by
multiplying the displaced point with the model view projection matrix, M:

q(u,v) = M d(u,v) = M(p(u,v)+ n̂(u,v)t(u,v)). (2)
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This equation constitutes the domain shader we want to bound. The task at hand is
finding conservative bounds of q(u,v) over a parametric domain, (u,v) ∈ [a,b]×
[c,d].

3 Algorithm

This section describes how we bound each term in Equation 2.

3.1 Bounding Bézier Patches

Following standard notation for tensor product Bézier surfaces [3], a Bézier patch
p(u,v) : R2→ R3 is defined by:

pm,n(u,v) =
m

∑
i=0

n

∑
j=0

ci, jBm
i (u)Bn

j(v), (3)

where ci, j are the control points, m and n are the degrees of the patch in the para-
metric coordinates, u and v, respectively, and the B(·)’s are Bernstein polynomials.
In the following, we will use the term base patch to denote the Bézier patch which
has not (yet) been displaced. This is to distinguish it from the final displaced sur-
face. Bézier patches have the convex hull property [3], and they can easily be
bounded by their control points. Finding an axis-aligned bounding box (AABB)
for a Bézier patch accounts for 3 min and 3 max operations per control point.

Coordinate Frame from Control Points

We have devised a simple method for finding a coordinate frame which more
tightly encloses the base patch. For a Bézier curve, the vector between the first
and last control point often forms a good, first axis for a two-dimensional OBB.
For a Bézier patch, we simply average the vectors from the corner control points
(Figure 2), to get two axes. Given a patch with m×n control points, we denote the
four corner control points c0,0, cm,0, c0,n and cm,n, and form the two vectors:

t = cm,0− c0,0 + cm,n− c0,n, (4)
b = c0,n− c0,0 + cm,n− cm,0. (5)

t and b can be seen as approximate average gradients in the u and v parametric
directions respectively. Their cross product gives a third axis n = t×b, and to form
an orthonormal coordinate system, we set x = t, y = n×t, and z = n and normalize
each vector. The final coordinate system is: (x̂, ŷ, ẑ). More elaborate OBB fitting
schemes based on the control point cage could be derived, but in practice, the
simple approach above produces axes for OBBs that bound the surface tightly. The
difference in quality between bounding with AABBs and OBBs is highlighted in
Figure 3 for curves and in Figure 1 for a displaced Bézier patch. As we will show
below, the derived OBB axes are reused in the normal bounding algorithms.

195



PAPER VIII: EFFICIENT BOUNDING OF DISPLACED BÉZIER PATCHES

t

b

c0,0 cm,0

c0,n cm,n

Figure 2: By forming vectors between the corners of the patch, the OBB axes can be derived.

AABB OBB

Figure 3: A cubic Bézier curve with high frequency displacement is bounded. The left image
use AABBs, and the right image use OBBs, whose axes are determined by the control points
of the Bézier curve.

3.2 Bounding the Normal

Bounding the patch normal, n̂(u,v), over a domain is considerably more difficult
than bounding the base position. The normal direction is computed as the cross
product of two parametric derivatives of the base patch, p(u,v). The partial deriva-
tives of a Bézier patch (Equation 3) can be written as:

∂p
∂u

(u,v) =
m−1

∑
i=0

n

∑
j=0

ai, jBm−1
i (u)Bn

j(v), (6)

∂p
∂v

(u,v) =
m

∑
i=0

n−1

∑
j=0

bi, jBm
i (u)Bn−1

j (v), (7)

where:
ai, j = m(ci+1, j− ci, j), bi, j = n(ci, j+1− ci, j). (8)

Note that ai, j and bi, j are (scaled) differences of the control points of the base
patch, and therefore vectors. If the bidegree of p(u,v) is (m,n) in the parametric
coordinates (u,v), the first order parametric derivatives have degrees (m−1,n) and
(m,n−1), which can be seen in Equations 6 and 7. As shown below, the bidegree
of the patch after taking the cross product of the patches is (m+n−1,m+n−1). A

196



3. ALGORITHM

patch representing the normal vector of a bi-cubic Bézier patch thus needs bidegree
(5,5) to be represented exactly.

Normal Bounds from the Normal Vector Patch

Here, we describe a normal bounding algorithm, inspired by Bézier cone tech-
niques [19, 20]. In summary, Bézier patches for the parametric derivatives are
computed, and used to calculate a normal vector Bézier patch [21]. Its control vec-
tors are normalized, and the solid angle of this patch on the unit sphere is bounded
in an OBB coordinate frame, resulting in conservative bounds of the normalized
normal.
The Bézier patch’s normal direction is defined by:

n(u,v)=
∂p
∂u

(u,v)× ∂p
∂v

(u,v) =

m−1

∑
i=0

n

∑
j=0

ai, jBm−1
i (u)Bn

j(v)×
m

∑
k=0

n−1

∑
l=0

bk,lBm
k (u)Bn−1

l (v). (9)

Using the formula for products of Bernstein polynomials [3],

Bm
i (u)Bn

j(u) =

(m
i

)(n
j

)(m+n
i+ j

) Bm+n
i+ j (u), (10)

Equation 9 is written as:

∑
i, j,k,l

ai, j×bk,l

(m−1
i

)(m
k

)(n
j

)(n−1
l

)(m+n−1
i+k

)(m+n−1
j+l

) Bm+n−1
i+k (u)Bm+n−1

j+l (v). (11)

This is a Bézier patch of bi-degree (m+n−1,m+n−1) with control vectors, vp,q,
given by:

vp,q = ∑
i+k=p
j+l=q

ai, j×bk,l

(m−1
i

)(m
k

)(n
j

)(n−1
l

)(m+n−1
i+k

)(m+n−1
j+l

) . (12)

To conservatively bound the normal over the patch, we follow the approach by
Sederberg and Myers [19]. The control vectors, vp,q, are normalized and bounded
by a cone on the unit sphere, as shown in Figure 4. For efficiency, we reuse the
ẑ-axis from the OBB coordinate frame derived for the base patch (Section 3.1) as
cone axis, which is an approximation of the patch’s average normal. The minimal
scalar product between this axis and any normalized control vector gives the cosine
of the half-angle, θ , of a cone N : {n̂,θ}, where n̂ = ẑ. The cone N will enclose
all the normals. As shown in Figure 5A, the bounds for the normal expressed in
the OBB coordinate frame are:

([−sinθ ,sinθ ], [−sinθ ,sinθ ], [cosθ ,1]). (13)
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Figure 4: Bounding control vector patches (e.g. normal or tangents). The leftmost image
shows a control vector patch. In the middle image, each control vector is normalized, so
that they map to points on the unit sphere (marked in red). Finally, in the rightmost image,
points on the unit sphere are bounded by a cone.

!
n^

cos !

sin !

T

B
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!
"t
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A B

Figure 5: A. In an OBB coordinate frame with one axis aligned with the cone’s axis, the
bounds of the cone on the unit sphere are easily derived using the cone half angle θ . B.
Given bounding cones for the two parametric derivatives (denoted T and B), a cone that
bounds the cross product of any vector inside T and any vector inside B can be derived,
here denoted N.

In our experience, this approach gives very tight bounds, and as the patch is subdi-
vided, the normal bounds converge quickly. The normal vectors could be bounded
using a more elaborate algorithm for finding a bounding volume on the spherical
surface. However, the cone approach combined with our OBB coordinate frame
is efficient and facilitates the enclosure of the bounds from the base patch and the
displacement along the normal vector. The main disadvantage is the cost of de-
riving the normal vector patch. For a bi-cubic Bézier patch, the computation of
vp,q includes 144 cross products and 36 normalization operations. The binomial
coefficients, though, can be pre-computed in a small lookup table of 36 entries.

Normal Bounds From Tangent Cones

As shown by Sederberg and Myers [19], coarser bounds can be obtained more
quickly by forming two tangent cones from the control vectors of the first order
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parametric derivative patches, ∂p/∂u and ∂p/∂v (see Equations 6 and 7). The
control vectors of the two derivative patches are normalized and bounded on the
unit sphere (as shown in Figure 4), forming two cones T : {t̂,αt} and B : {b̂,αb}.
We use the t̂ and b̂ axes derived in Section 3.1 as axes for the cones T and B. Note
that these are not necessarily orthogonal. As discussed in Section 3.2, the cosine
of the cone angle αt is the minimum scalar product of any normalized control vec-
tor from the tangent patch ∂p/∂u with the t̂ axis. The half angle αb is derived
analogously. If the cones T and B do not overlap, a cone N that bounds all possi-
ble cross products of two vectors, one from each of T and B, can be constructed
(Figure 5B). Its axis is in the direction t×b and its half-angle is given by [19]:

sinθ =

√
sin2 αt +2sinαt sinαb cosβ + sin2 αb

sinβ
, (14)

where β is the smallest of the two angles between the axes in the t̂ and b̂ directions.
The cone, N : {t̂×b,θ}, conservatively bounds the patch’s normalized normal.
Given θ and our choice of tangent cone axes, the normal cone axis is aligned with
the OBB ẑ-axis, and we can again use Equation 13 to obtain normal vector bounds
in the base patch’s OBB coordinate frame.
If the tangent cones overlap (αt +αb > β ), we bound the normal using the unit box
in the OBB coordinate frame. The tangent cone approach results in coarser bounds
than the full normal vector patch approach, but is considerably less expensive.
Furthermore, if the input patch is subdivided, the bounds converge quickly.

3.3 Bounded Texture Lookups

Techniques for bounding texture lookups are covered in previous work [6, 14].
The idea is to keep two extra mipmap hierarchies. The first stores maximum dis-
placement values for each texture footprint and level and the second stores the
corresponding minimum displacement values. In general, when the parametric
domain decreases (e.g. the patch is subdivided), so do the texture bounds, which
is a desirable characteristic.
The final bounds of the displacement vector, o = n̂t, is the product (on interval
arithmetic form) of the interval from the texture lookup [tmin, tmax] times the inter-
vals of the normalized normal vector along each axis. Using the notation [a, ā] to
define an interval, where a is the lower limit and ā is the upper limit, multiplication
of two intervals is defined by [13]:

[a, ā]⊗[b, b̄]=[min(ab,ab̄, āb, āb̄),max(ab,ab̄, āb, āb̄)]. (15)

Hence, the interval version of the x-component of o, is simply: [ox,ox] = [t, t]⊗
[n̂x, n̂x], and the other components are derived similarly.
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3.4 Matrix Transformation

The last step in Equation 2 is the matrix transformation to clip space, so the re-
maining part in obtaining bounds for q is the model view projection matrix, which
does not depend on the parametric domain, and can be seen as a constant. This
constant matrix is multiplied with the eight corners of the OBB obtained for the
displaced patch d, resulting in clip space bounds for q.

3.5 Hierarchical Refinement

To obtain tighter bounds, the patch can be subdivided in its parametric domain. In
each subdivision step, a patch is split in two pieces, pA and pB. The normal bounds
are recomputed for each subpatch and the min/max displacement maps are queried
on the smaller footprints. The de Casteljau steps needed to generate the control
points for pA will generate the control points for pB as a side product. The control
point cage for the base patch converges quickly. The normal bounds and texture
lookups generally become more accurate in each subdivision steps, resulting in
a convergent hierarchical bounding algorithm. Re-evaluating the normal bounds
for each subdivision step is costly, so in some scenarios, we can keep the normal
bounds from a coarse level, and rely on inexpensive base patch subdivision and
bounded texture lookups in the remaining steps. Also, for position bounding in
surface regions without displacement (regions where t(u,v) is zero), no normal
bounding is needed and can be bypassed.
For adaptive refinement, such as in a REYES-like bound & split loop, we can
maintain a priority queue of the bounding boxes of the subdomains and in each
subdivision step, take the top element of the queue, split it, and insert the child
boxes back into the queue. The exact sorting criteria is application dependent, and
may include the screen-space extents of the bounding box, the depth values, or to
prioritize boxes intersecting a frustum plane for view frustum culling.

4 Applications

As mentioned in Section 1, the obtained bounds can be used in a wide array of ren-
dering techniques and optimizations. In this section, we present a few applications
areas and suitable subdivision metrics for each.

Culling View frustum culling is performed by testing the OBB corners against
the frustum planes. We can prioritize sub-patches straddling the camera frustum
planes, so that geometry outside the frustum planes is culled. The culling results
of the patch can also be used to avoid clip-testing the generated triangles when the
patch is completely inside the view frustum.
Given a coarse depth buffer, a subpatch can be occlusion culled if its bounding box
is entirely occluded by already drawn primitives [5]. We can adapt the subdivision
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criterion so that sub-patches closer to the camera are processed and rasterized first,
therefore increasing the likelihood of z-culling.
Backface culling is the hardest type of culling, due to the difficulty of efficiently
bounding the geometric normal after displacement. However, given the tessella-
tion rate, the normal bounds and a tight interval of the displacement, bounds for
the displaced surface normal can be derived [7]. Furthermore, the subdivision
criterion can be adapted to split patches with high normal variation [10].

Tile-Sorting from Bounds A bounded representation of the displaced Bézier
patch can be used to sort patches into tiles before tessellation. Tile-overlap can be
reduced by hierarchical subdivision of the largest screen-space bounding box.

Ray Tracing & Collision Detection In a ray tracing environment, we want to
reduce the total surface area of each bounding box. Using the algorithms from
Section 3, we can build a tight bounding hierarchy for the displaced patches of-
fline, where each split is carefully chosen to minimize the surface area of the child
boxes. This bounding hierarchy can then be used at runtime for efficient hierarchi-
cal intersection testing. Alternatively, the hierarchy can be built on the fly and be
cached for coherent ray paths [8, 18]. In collision detection, the splits should be
chosen to minimize the OBB volumes in world space.

5 Results

In this section, we denote the bounding algorithms as follows: CBOX refers to
bounding the patch by its control points by finding the minimum and maximum
value along the Cartesian axes. A constant displacement bound (the min-max
value of the displacement texture) is added in all directions. In OBBTEX, the
control points are projected on OBB axes, and the displacement value is bounded
by min-max mipmap textures. No normal bounding is applied. NPATCH extends
OBBTEX with the normal patch bounding algorithm from Section 3.2. TPATCH
extends OBBTEX with the tangent cone normal bounding approach from Sec-
tion 3.2. Finally, TAYLOR is Taylor model domain shader bounding [7] of bi-
degree 5 (so that the normal direction of a cubic patch can be represented exactly),
using an OBB for the bounds computations.

5.1 Cost Analysis

We first look at the case of a displaced bi-cubic patch and compare the execution
cost of the bounding shader with the cost of the domain shader (evaluating Equa-
tion 2). We measure the relative performance running the shaders on an Intel Core
i7 3.2 GHz CPU (on one thread) and an ATI Radeon HD5870 graphics card. We
also count the number of scalar shader assembly instructions for reference. As
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#instructions ATI HD5870 CPU
Domain Shader 1 1 1
CBOX 1.5 1.6 1.5
OBBTEX 2.7 2.7 2.4
TPATCH 4.5 3.8 4.5
NPATCH 11 83 11

Table 1: Cost comparison of bounding algorithms. The presented cost is relative to the cost
of executing a single domain shader. The domain shader evaluates a cubic Bézier patch,
including texture based displacement in the normal direction and model view projection.
For reference, we report CPU scores with texture lookups removed (as texture sampling is
considerably more costly on CPUs).

seen in Table 1, the algorithms scale as expected from the instruction count, with
the exception of the NPATCH algorithm which exhausts the hardware resources
(temporary registers) of the ATI card, making it perform very poorly. TAYLOR is
considerably more expensive than the other bounding approaches, due to the nor-
malization operation, which is very costly when implemented using Taylor models.
When measured on the CPU without normalization, TAYLOR has approximately
the same cost as NPATCH, but with the normalization operation included, the cost
increases to about 25× the cost of NPATCH, which makes it non-competitive from
a cost perspective.
It should be noted that although the bounding shaders are more expensive than the
corresponding domain shader, we only need to execute the bounding shader once
per patch, while the domain shader may be executed thousands of times per patch
due to tessellation. Therefore, the total cost of executing the bounding shaders is
typically considerably lower than the total cost of executing the domain shaders.
For example, if we assume that we tessellate only down to the control point level
(16 vertices / patch), the cost of the TPATCH bounding algorithm will only be ap-
proximately 25% of the total domain shader cost. However, it is reasonable that
the tessellation level is higher than the number of control points, since it would
otherwise be better to simply send the vertices and avoid tessellation and Bézier
evaluations altogether. The tessellation factors are often known at the time the
culling shader is applied, which implies that the bounding shader can be dynami-
cally enabled only in areas of high tessellation.

5.2 Quality Analysis

Our test scenes consist of the three subdivision meshes shown in Figure 11, as
well as the Spikelog mesh shown in Figure 9, which is a difficult stress case for
the OBBTEX algorithm. The SubD11 mesh comes from a February 2010 DX11
SDK sample, and the Killeroo and Monsterfrog meshes are popular test cases for
subdivision surfaces.
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Figure 6: Quality comparison of the bounding methods. The left chart shows the total screen
space bounding box area obtained by the different methods, relative to reference screen
space bounding boxes. Similarly, the right chart shows the total volume of the generated
bounding boxes, relative to reference bounds.

CBOX OBBTEX TPATCH NPATCH

Figure 7: Object space volumes for the Killeroo and Monsterfrog models. OBBTEX
bounds are smaller than CBOX thanks to the use of OBBs and the min-max texture hi-
erarchy. The low displacement amplitudes make the benefit of accurate normal bounds
small for these models.

For all our test scenes, the Catmull-Clark subdivision mesh is converted to bi-
cubic Bézier patches with corresponding tangent patches, using Loop & Schaefer’s
ACC algorithm [11]. The conversion gives us 3753 Bézier patches for the SubD11
mesh, 2728 patches for Killeroo, 1292 patches for Monsterfrog, and 96 patches
for Spikelog. It should be noted that all meshes except SubD11 use displacement
maps to add surface detail. For the SubD11 mesh, a constant displacement is
added in the normal direction, replicating the SDK sample. We use a displacement
magnitude of 1.0 for the SubD11 mesh unless explicitly specified.
Figure 6 presents volume and projected screen space area relative to to a near-
optimal reference. The reference is computed by evaluating the domain shader
at 32× 32 domain points per patch and bounding the generated vertices in the
OBB coordinate frame described in Section 3.1. Thereafter we apply our bounding
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algorithms and compare the resulting bounds with the reference bounds. We use
the relative total volume (the total volume for an algorithm divided by the total
reference volume) and relative projected screen space area as accuracy metrics.
The volume metric is intended to represent quality for volume based algorithms,
such as collision detection, and the projected screen space area is an efficiency
metric for tile-based rendering. Both metrics are also indicators for view frustum
and occlusion culling potential.
We observe that OBBTEX is significantly tighter than CBOX for all four scenes.
This indicates that the OBB coordinate frame and min-map displacement lookups
do make the bounds tighter. Also note that for Killeroo and Monsterfrog, OBBTEX
is close in quality to TPATCH and NPATCH despite the lack of normal bounding.
This is due to the low displacement magnitudes relative to the patch sizes in these
scenes. Figure 7 shows the patch bounding boxes visually.
The Spikelog scene contains large displacement amplitudes. This is a difficult
case for the OBBTEX algorithm, where the bounding boxes are expanded in all
directions rather than just around the surface normal. As can be seen in Figure 6
and Figure 9, the TPATCH algorithm gives tighter bounds. Also note that the
TPATCH bounds converge quickly as the patches are subdivided.
In a tile-based architecture, higher order primitives may be sorted into tile-specific
queues based on their screen space extents before they are tessellated into small
triangles. Depending on the rendering architecture, each tile may tessellate and
domain shade its overlapping primitives independently, instead of caching and
reusing processed geometry. This is especially true in highly parallel tiling archi-
tectures where the communication between processing units often should be kept
at a minimum. It is therefore important to reduce the tile overlap so that primi-
tives are not added to more tile-queues than necessary. However, this requires tight
screen space bounds. With accurate bounds, the tile overlap can be significantly
reduced for displaced patches. This is shown in Figure 11, where the screen-space
overlap has been encoded as a heat map.
Figure 8 shows the bounding quality as function of displacement amplitude and
subdivision level for the SubD11 mesh. When the displacement amplitude in-
creases, TPATCH and NPATCH provide significantly tighter bounds, since they
bound the normal more accurately. When the patch is subdivided, the convergence
rate compared to CBOX and OBBTEX is even more significant. As the displace-
ment is a constant offset in this test, the min-max textures do not help, and the
only quality difference between CBOX and OBBTEX is due to the use of the OBB
coordinate frame.
TAYLOR bounds the base patch very tightly, but as soon as displacement is added,
the bounds are similar in quality to OBBTEX, as the Taylor model algorithm strug-
gles to bound the normal efficiently. This is largely due to the high polynomial de-
grees involved in the Taylor model normalization operation. As seen in the right-
most chart in Figure 8, as the patches are subdivided and their normal vectors be-
come more coherent, TAYLOR converges, but it is far from the quality of TPATCH
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Figure 8: Measurements of bounding quality of all patches from the SubD11 sample. The
total volume/area for each algorithm is divided by a reference total volume/area, and we
report this ratio for each algorithm. The upper left chart shows the screen space area as a
function of the displacement height. The upper right chart shows the total volume (before
transformation into clip space). Finally, the bottom chart shows the total volume as a
function of the number of subdivisions applied to each patch. In this chart, the displacement
value is set to 1.0. As can be seen, normal bounding is critical for convergence. Note that
the bottom chart uses a logarithmic scale on the y-axis.

and NPATCH. For very high subdivision levels (> 64), TAYLOR, TPATCH and
NPATCH are very similar in quality, but TAYLOR is considerably more expensive.
The Spikelog scene is an exception, where TAYLOR performs very well. The
reason for this is that the curvatures of the base patches are relatively low, which
means that the normalization operation can be accurately represented. When this
happens, the higher polynomial degree of the Taylor model gives an additional
improvement.
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CBOX OBBTEX TPATCH

Figure 9: The Spikelog scene contains high amplitude displacement compared to the size of
of the base patches. The upper row shows the bounding volumes around the base patches,
and in the lower row, each patch has been divided into 16 subpatches. This is a difficult case
for the CBOX algorithm as it can never refine the texture bounds. Similarly, the OBBTEX
algorithm gives poor bounds, as the displacement is added in all directions. In contrast,
the TPATCH algorithm only applies the displacement around the normal direction. This
gives tighter bounds, that converge towards the underlying surface when the base patches
are subdivided.

5.3 GPU Based Culling

As a stress test case for our bounding algorithms, we implemented culling in the
shaders of the SubD11 sample. Due to the poor GPU scaling of the NPATCH
algorithm that we observed in the cost analysis, we chose not to use that algorithm
for this application.
We implement our bounding algorithms and culling tests in the patch-constant
hull shader. This part of the hull shader may read the Bézier control cage gener-
ated in the control point hull shader, and we use this control cage in our bounding
algorithms. We then perform simple view frustum and backface culling tests and
output a zero tessellation factor if the patch can be culled. Passing zero as tes-
sellation factor will cause the tessellation hardware to discard the patch early in
the pipeline. Due to graphics API limitations, we do not subdivide the patches
hierarchically. The application supports displacement, but in the current version,
all displacement maps contain a constant value that the user can scale by a slider.
Therefore, we can implement backface culling using the normal bounds computed
in the TPATCH algorithm, by creating a cone that bounding both the geometric
normal of the patch and the normal given by the ACC tangent patches. It should
be noted that backface culling can be done even for general displacement maps [7],
but in this case the culling rate is expected to be significantly lower.
For regular patches, there is an exact Bézier surface representation of the Catmull-
Clark surface. However, for irregular patches, the Catmull-Clark surface and its
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Figure 10: Each chart shows the frame time during the SubD11 animation measured on
an ATI HD5870 GPU. In the second part of the animation, the camera zooms in on the
character, and there is more view frustum culling potential. NOCULL represent the orig-
inal demo without culling. As can be seen, for high tessellation levels, and for the regular
patches, TPATCH has a performance edge, but for lower tessellation levels, the naïve
bounding approaches are faster. Note that TPATCH reduces the longest frame time in all
three charts, which is the most important to accelerate for real-time rendering.

normal needs to be approximated by separate Bézier patches for the position and
tangent vectors [11]. Unfortunately, this approximation is relatively complex and
needs to be done in the hull shader. When we add our bounding algorithms, it is
very easy to reach the hardware resource limits mentioned in Section 5.1, which
causes hull shader performance to scale very poorly.
Since this is a limitation of the particular hardware architecture, we ran two bench-
marks, which gave the results shown in Table 2. In the first benchmark, we mod-
ified the SubD11 sample to render only regular patches, which we believe repre-
sents approximately how the culling will scale on future hardware with sufficient
registers or efficient support for register spilling. In the second benchmark, we
perform culling on all patches. As can be seen in Table 2, this approach can still
be beneficial for high-quality GPU accelerated rendering applications where the
tessellation factors are expected to be very high. Figure 10 shows the frame time
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Tessellation: 4×4 8×8 16×16 32×32

R
eg

ul
ar

No Culling 2.39 3.59 15.2 61.3
CBOX 2.42 2.93 11.2 45.0

OBBTEX 2.50 2.93 11.2 45.0
TPATCH 2.48 2.69 9.82 39.1

A
ll

Pa
tc

he
s No Culling 2.75 7.01 30.6 125

CBOX 3.14 5.76 23.1 93.5
OBBTEX 3.27 5.83 23.1 93.6
TPATCH 3.89 6.92 22.7 86.0

Table 2: Average frame time (ms) for the SubD11 animation at different tessellation levels.
In the upper four rows, the sample is modified to render only the regular patches. The lower
four rows is the original sample, including both regular and irregular patches.

variation over the animation for 16×16 and 32×32 tessellation.
For the irregular patches, the pressure on the hull shader is significant, and high
tessellation rates are needed to maintain a consistent performance benefit from the
TPATCH algorithm. For the (cheaper) regular patches, there is a clear performance
benefit even for lower tessellation rates.

6 Conclusions and Future Work

We have presented algorithms for efficient bounding of displaced Bézier patches,
which accelerates early culling of geometry, binning of higher order primitives
and construction of high quality bounding volume hierarchies. In many cases, the
OBBTEX algorithm performs very well, and we expect that this algorithm will be
the best short time alternative for GPU-based culling. However, for high quality
tile-based renderers, larger displacements need to be handled robustly and subdi-
vision convergence rate is important. For these cases, we believe that the TPATCH
algorithm provides a better tradeoff between performance and bounding box tight-
ness. With hardware/pipeline modifications such as support for coarse occlusion
culling based on hull shader bounds, min-max texture filtering and better register
management, we believe this technique can be even faster. As future work, we
want to apply a variant of the TPATCH algorithm for efficient culling of displaced
Gregory patches [12].
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Figure 11: False color images that show the bounding box overlap in screen space. Red
means 128 or more overlapping bounding boxes. For the SubD11 mesh, a constant dis-
placement is added to the base mesh in the base patch’s normal direction. For the Killeroo
and Monsterfrog meshes, the original displacement maps are used.
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Backface Culling for Motion Blur and Depth of Field

Jacob Munkberg Tomas Akenine-Möller

Lund University / Intel Corporation

ABSTRACT

For triangles with linear vertex motion, common practice is to
backface cull a triangle if it is backfacing at both the start and end
of the motion. However, this is not conservative. We derive conserva-
tive tests that guarantee that a moving triangle is backfacing over an
entire time interval and over the area of a lens. In addition, we present
tests for the special cases of only motion blur and only depth of field.
Our techniques apply to real-time and offline rendering, and to both
stochastic point sampling and analytical visibility methods. The ren-
dering errors introduced by the non-conservative test can easily be
detected for large defocus blur, but in the majority of cases, the errors
are hard to detect. We conclude that our tests are needed if one needs
guaranteed artifact-free images. Finally, as a side result, we derive
time-continuous Bézier edge equations.

journal of graphics, gpu, and game tools, to appear.





1. INTRODUCTION
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Figure 1: Left: The triangle is backfacing at t = 0 and t = 1, and frontfacing at t = 0.5.
Right: The surfaces that the moving triangle sweeps out are visualized, and one can see
that the “edge surfaces” intersect when the facing changes. This happens at t = α = 0.3
and t = β = 0.7.

1 Introduction

Backface culling is one of the most important culling techniques in real-time
graphics. When rendering motion blur and depth of field, an excessive amount
of visibility tests may be executed, and therefore, accurate backface culling tests
are needed also for these contexts. For moving triangles, where each vertex moves
along a line in three dimensions, a commonly used technique assumes that a mov-
ing triangle is backfacing over the entire time interval if the triangle is backfacing
at the start and end of the motion. However, this is not true in the general case,
and certainly, this has been known in some groups, but we are not aware of any
documentation of this, nor of any previous solution. We derive tests for the special
cases of using either only motion blur or only depth of field. The combination of
these effects is harder to handle, and therefore, we derive a coarser conservative
test for motion blur with depth of field.
Let us start with a motivating example that clearly shows that a triangle can be
backfacing at the start of the motion (at t = 0), then turns frontfacing, and then
again is backfacing at the end of the motion (at t = 1). Consider a triangle with
vertices in xyw space as follows:

p0 = (α− t,0,1), p1 = (0, t−β ,1), p2 = (0,β − t,1), (1)

where α,β ∈ [0,1], α < β are constants, and t is the time parameter. Each triangle
vertex moves linearly in time, and the triangle is shown at three different times in
Figure 1. In the same figure, the swept triangle is also illustrated. The sign of the
determinant of the three points determines whether the triangle can be backface
culled [5]:

p0 · (p1×p2) =−2(α− t)(β − t), (2)

where a negative sign indicates a backfacing triangle. Given α < β , we note that
the triangle is frontfacing when t ∈ [α,β ], even though the triangle is backfacing
at t = 0 and t = 1. At t = α and t = β , the triangle is degenerate, i.e., it is here that
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the switch from backfacing to frontfacing or vice versa occurs. A stochastically
rasterized example of this configuration is shown to the left in Figure 2.

backfacing frontfacing backfacing frontfacing
A: Quadratic BF function B: Cubic BF function

Figure 2: Motion blur rasterized triangles. The shutter is open in t ∈ [0,1]. A: The triangle
moving according to Equation 1 is rasterized on screen with α = 0.1 and β = 0.9, where
the triangle is backfacing at t = 0 and t = 1. The left image shows the covered samples for
the backfacing region, while the right image shows the covered samples for the frontfacing
region. Note that with naïve backface culling, all the covered samples to the right will
be missed, which is incorrect. B: The triangle moving according to Equation 3 flips from
front to backfacing (or vice versa) three times in the time interval. The left image shows a
rendering of the backfacing region, and the right image shows the frontfacing region.

In general, the determinant is a cubic polynomial, which can be seen when consid-
ering the following time-continuous triangle:

p0 = (α− t,0,1), p1 = (0,β − t,1), p2 = (0,0,γ− t), (3)

where α,β ,γ ∈ [0,1] are constants, and t is the time parameter. The determinant
then becomes:

p0 · (p1×p2) = (α− t)(β − t)(γ− t), (4)

which has three real roots in the interval t ∈ [0,1]. This means that the facing
can change three times. An illustration of such a triangle is shown to the right in
Figure 2. At this point, we have motivated the need for a more correct test, and
derivations for such tests follow in the subsequent sections.

2 Backface Culling for Motion Blur

In general, we follow the notation from previous work in the field of stochastic [1]
and analytical rasterization [3]. Assume that we have a moving triangle, where
the vertices move linearly within a frame, from time t = 0 to t = 1. At t = 0, we
denote the vertices qi and at t = 1 we call them ri. We work in clip space, using 2D
homogeneous coordinates (2DH), so a vertex is defined as p = (px, py, pw) [7]. A
linearly interpolated vertex is then expressed as:

pi(t) = (1− t)qi + tri. (5)
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Given a moving triangle with vertices (p0(t),p1(t),p2(t)), we form the matrix:

M(t) =

p0x p1x p2x

p0y p1y p2y

p0w p1w p2w

 , (6)

where we have omitted the temporal dependence for readability. The triangle can
be backface culled if det(M) < 0, where the determinant is expressed as [5]:

det(M) = p0 · (p1×p2). (7)

Geometrically, this can be interpreted as a (scaled) signed volume computation of
the tetrahedron spanned by the origin and the triangle. Thus, we want to determine
if p0(t) ·(p1(t)×p2(t)) < 0 for t ∈ [0,1]. The cross product of two linearly moving
vertices can be expanded as [1]:

p1×p2 = ((1− t)q1 + tr1)× ((1− t)q2 + tr2) = t2f+ tg+h, (8)

where:

f = (r1−q1)× (r2−q2),
g = (r1−q1)×q2− (r2−q2)×q1,

h = q1×q2. (9)

Using this expression, we can derive the time-dependent determinant:

det(M) = p0(t) · (p1(t)×p2(t))
= ((1− t)q0 + tr0) · (t2f+ tg+h)
= at3 +bt2 + ct +d, (10)

where:

a = (r0−q0) · f,
b = (r0−q0) ·g+q0 · f,
c = (r0−q0) ·h+q0 ·g,

d = q0 ·h. (11)

Note that the coefficient d = q0 · h = q0 · (q1 × q2) is the backface test for the
triangle at t = 0. Also, the value of the polynomial at t = 1 is a + b + c + d =
r0 · (r1× r2), which, analogously, is the backface test at t = 1. The expression for
the coefficient:

a = (r0−q0) · [(r1−q1)× (r2−q2)], (12)

is the determinant test for the motion vectors of the three vertices, and if they all
lie in the same plane, the cubic term is zero, i.e., a = 0. Thus, it is only when the
motion vectors span a volume in 2DH that the determinant will be a cubic function.
We note that if the polynomial does not have any roots in t ∈ [0,1] and d < 0, then
the triangle can be safely backface culled.
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Optimization for Motion Along a Vector If the triangle’s motion vectors are
parallel, such that:

pi(t) = (1− t)qi + tri = qi + tγid, (13)

where γi ∈ R, the computations can be simplified. It follows that f = (q1− r1)×
(q2− r2) = γ1γ2d×d = 0, and the cubic coefficient a = 0. Using f = 0 and Equa-
tion 13, we can show that the coefficient b is zero when the motion vectors are
parallel:

b = (r0−q0) ·g+q0 · f
= (r0−q0) · ((r1−q1)×q2− (r2−q2)×q1)
= γ0γ1d · (d× (q2−q1)) = 0.

Thus, for motion along a common direction, including pure translation, the deter-
minant is a linear function in t, and given that the value of the determinant at both
t = 0 and t = 1 is negative, the triangle can be backface culled.

2.1 Practical Backface Culling Test

The cubic coefficient a (Equation 12) of the backface function is the determinant of
the triangle’s three motion vectors, which are often small or near parallel. There-
fore, directly computing the backfacing function on power form (Equation 10) can
be numerically unstable. To alleviate the problem, we note that a vertex moving
linearly in time as in Equation 5 is a Bézier curve of degree 1. Furthermore, the
time-dependent edge equations are cross products of linearly moving vertices, and
can also be expressed on Bernstein form as:

pi(t)×p j(t) = (1− t)2c0 +2(1− t)tc1 + t2c2, (14)

where:

c0 = qi×q j, c1 =
1
2

(qi× r j + ri×q j) and c2 = ri× r j. (15)

Hence, the full edge equation is expressed on Bernstein form as shown below:

e(t,x,y) =
(
(1− t)2c0 +2(1− t)tc1 + t2c2

)
· (x,y,1). (16)

The backfacing function, given by the determinant (Equation 10) expressed on
cubic Bernstein form then becomes:

det(M(t)) =
3

∑
i=0

bi

(
3
i

)
(1− t)3−it i, (17)

with coefficients, bi, given by:

b0 = q0 · (q1×q2),
b1 = 1/3[q0 · (q1× r2 + r1×q2)+ r0 · (q1×q2)],
b2 = 1/3[r0 · (q1× r2 + r1×q2)+q0 · (r1× r2)],
b3 = r0 · (r1× r2). (18)
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We exploit the convex hull property of the Bernstein basis for our test. By simply
checking if all of the coefficients, bi, i ∈ {0,1,2,3}, are negative, we know that the
triangle is conservatively backfacing. This is a coarser test than testing against the
true maximum of the cubic polynomial, but reduces the risk of numerical precision
issues. Note that b0 and b3 are the backface tests at t=0 and t=1 respectively. The
test can be refined by applying de Casteljau steps to the coefficients and testing if
any generated coefficient is positive.

2.2 Higher-Order Vertex Motion

If the triangle vertex motion can be expressed as a polynomial, we can generalize
the previous test. We express the motion of each triangle vertex as a Bézier curve
of degree n in 2DH:

pi(t) =
n

∑
j=0

bi
jB

n
j(t). (19)

The backface test then becomes:

det(M(t)) = p0(t) · (p1(t)×p2(t))

=
n

∑
i=0

b0
i Bn

i (t) · (
n

∑
j=0

b1
jB

n
j(t)×

n

∑
k=0

b2
kBn

k(t))

=
n

∑
i, j,k=0

B3n
i+ j+k

(n
i

)(n
j

)(n
k

)( 3n
i+ j+k

) b0
i · (b1

j ×b2
k).

This is a Bézier curve of degree 3n, where the control points are sums of scaled
determinants of three control points, one from each of the three curves describing
the vertex motion. A conservative backface test can again be derived by using
the convex hull property and testing the sign of the (scalar) control points. As
expected, we obtain Equation 18 for the linear motion case, i.e., when n = 1.

2.3 Backface Culling for Motion Blur in Screen Space

For screen-space rasterization, a common backface test is given by the sign of the
screen-space area of the triangle. Let us define two edges of the projected triangle
as:

e1(t) =
p1(t)
p1w(t)

− p0(t)
p0w(t)

, e2(t) =
p2(t)
p2w(t)

− p0(t)
p0w(t)

. (20)

Twice the signed area can now be expressed as:

2A(t) = e1(t)× e2(t) =
p2w p0×p1 + p0wp1×p2 + p1wp2×p0

p0w p1w p2w

. (21)

Recall that that each vertex is a function of t (Equation 5), which results in that the
backface test in screen space is a cubic rational function in t. The triangle moves
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in a plane, but the vertex positions are no longer linearly interpolated in t and the
triangle can change facing at most three times.
The magnitude of the denominator p0w p1w p2w is irrelevant for the area test, so if
we know the signs of the vertices w components, the denominator can be omitted.
Similar to the homogeneous case, the signed area is a cubic polynomial.
Linear motion in screen space For this case, the area function becomes: 2A(t) =
(p̄1(t)− p̄0(t))× (p̄2(t)− p̄0(t)), where p̄i are moving vertices derived from lin-
early interpolating the projected start (q̄i) and end (r̄i) vertices. This is a quadratic
polynomial, so even in this case, the moving triangle can be backfacing at t = 0
and t = 1, and still be frontfacing somewhere in between. This is precisely the
scenario illustrated in Figure 1.

3 Backface Culling for Depth of Field

F=near F=far F=near F=far
BF cull at center of lens Conservative BF cull

Figure 3: A red cube with a black front face is rendered with depth of field. Focus is set
at the front and back of the cube. The cube is positioned so that the left face has a normal
perpendicular to the view vector at the center of the lens. The left face can thus be backface
culled for that camera position. For rays starting slightly off-center, the left (red) side is
visible, and contributes to the final image. The two leftmost images show the result when
the backface test is done only at the center of the lens, and the two rightmost images the
reference result.

A naïve backface test for depth of field (DOF) is to only check the backface status
at the center of the lens. Figure 3 shows that this is not correct. Depth of field is a
shear in clip space [2], which can be represented by applying the matrix [8]:

S(u,v) =


1 0 −Hu/J Hu
0 1 −Iv/J Iv
0 0 1 0
0 0 0 1

 , (22)

to the clip space coordinates of the triangle. H, I and J are constants given by the
location of the focal plane, the camera aperture size and the near & far plane. The
location on the lens is given by (u,v). Applying this matrix to a three-dimensional
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homogeneous vertex, p̂i = (pix, piy, piz, piw), in clip space results in a sheared po-
sition

ŝi(u,v) = (pix +αiu, piy +βiv, piz , piw) (23)

where αi = −H/Jpiz + H piw and βi = −I/Jpiz + I piw . To simplify notation be-
low, we introduce li = (αiu,βiv,0) and let si(u,v) and pi(u,v) denote the two-
dimensional homogeneous vertices, consisting of the xyw components of ŝi(u,v)
and p̂i respectively, that is:

si(u,v) = pi + li(u,v). (24)

Note that li× l j = uv(0,0,αiβ j−α jβi) = 0 since αi = H
I βi. The backfacing crite-

rion then becomes:

det(M(u,v)) = s0 · (s1× s2)
= p0 · (p1×p2)+ l0 · (p1×p2)

+l1 · (p2×p0)+ l2 · (p0×p1)
= au+bv+ c. (25)

The coefficients are given by:

a = α0(p1×p2)x +α1(p2×p0)x +α2(p0×p1)x

b = β0(p1×p2)y +β1(p2×p0)y +β2(p0×p1)y

c = p0 · (p1×p2). (26)

The triangle will change its facing somewhere on a circular lens with radius R only
if there is a solution to the following system of equations:

au+bv+ c = 0,

u2 + v2 < R2. (27)

Geometrically, this is an intersection between a circle and a line, which has solu-
tions only if c2 ≤ R2(a2 + b2). Consequently, if the triangle is backfacing at the
center of the lens (c < 0) and there are no face changes when moving over the lens,
the triangle can be backface culled. More formally, if:

c < 0, and
c2 > R2(a2 +b2), (28)

the triangle can be conservatively backface culled. Intuitively, the triangle changes
facing over the lens only if the triangle’s plane equation (in three dimensions)
intersects the shape of the lens.

4 Conservative Backface Culling in 5D

By multiplying the moving vertex in Equation 5 with the shear matrix, S, in Equa-
tion 22, the resulting vertex displacement from motion and DOF, o(u,v, t), is ob-
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tained:

ôi(u,v, t) = S(u,v)p̂i(t) = S(u,v)((1− t)q̂i + t r̂i),
oi(u,v, t) = (pix(t)+αi(t)u, piy(t)+βi(t)v, piw(t)), (29)

where αi(t) = H/Jpiz(t)+H piw(t) and βi(t) = I/Jpiz(t)+ I piw(t) are linear func-
tions in t.
The corresponding backface test from Equation 25 is now expressed as:

det(M(u,v, t)) = o0 · (o1×o2) = a(t)u+b(t)v+ c(t). (30)

The coefficients a(t), b(t), and c(t) are cubic functions in t, and following Equa-
tion 28, the triangle can be conservatively backface culled when:

c(t) < 0, and
c2(t) > R2(a2(t)+b2(t)), t ∈ [0,1]. (31)

4.1 Practical 5D Backface Culling Test

In this section, we sketch a practical implementation of the backface culling test
for motion blurred and defocused triangles.
Solving Equation 31 using a numerical root solver is unlikely to be worth the
effort. Instead, interval arithmetic [6] can be used, where we denote an interval
ĉ = [mint(c),maxt(c)] = [c, c̄]. A conservative test is then:

c < 0, and
c̄2 > R2(max(a2 +b2)), t ∈ [0,1], (32)

where we used c̄ < 0⇒min(c2, c̄2) = c̄2 to simplify the second condition. We first
note that a coarse, but fast approximation of the upper bound of a2(t)+ b2(t) is
given by:

max
t∈[0,1]

(
a2 +b2)≤ max

t∈[0,1]
(a2, ā2)+ max

t∈[0,1]
(b2, b̄2), (33)

which essentially is a Manhattan distance approximation.
In the scenes tested, the t3 and t2 terms of the polynomials a(t),b(t) and c(t) are
close to zero for most triangles. This implies that the a(t),b(t) and c(t) terms in
Equation 32 are approximately linear, but also that care must be taken to avoid
precision issues. By using first-order Taylor models [4], we ensure stability when
the t3 and t2 terms are small, but preserves the linear dependence in t. An arbitrary
cubic polynomial is bounded over t ∈ [0,1] by:

k3t3 + k2t2 + k1t + k0 ≈ k1t + k0 + r̂k, (34)

where r̂ is a remainder interval which bounds the quadratic and cubic terms:

r̂k = [−|k3|− |k2|, |k3|+ |k2|] . (35)
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We use this to conservatively express a2(t)+b2(t) as:

a2(t)+b2(t)≈ (a1t +a0 + r̂a)2 +(b1t +b0 + r̂b)2. (36)

A conservative upper bound is given by:

max
t∈[0,1]

(
a2(t)+b2(t)

)
≤ a2

1 +b2
1 +2max(0,a0a1 +b0b1)+a2

0 +b2
0 + r̄a2+b2 , (37)

where r̄a2+b2 is a linear function in the remainder intervals r̂a and r̂b. If a(t) and
b(t) are linear in t, r̂a = r̂b = 0 and r̄a2+b2 = 0. We use the backface test for motion
blur to determine the backface status at the center of the lens as described above.
The final test is given by the conditions in Equation 32, where a2(t) + b2(t) is
bounded using Equation 37.

Square Lens Approximation If we approximate the lens with a square with side
length 2R, we get a coarser backfacing conditions given by the equations:

c < 0, and
max(±R(a±b)+ c) < 0, t ∈ [0,1]. (38)

However, our experiments show that Equation 32 using the Taylor model bounds
(Equation 37) gives slightly higher cull rates, as the vast majority of false backfac-
ing decisions are due to DOF. This indicates that the test should be optimized for
DOF.

5 Results

In this section, statistics are gathered from a number of key-framed animations
taken from the Utah Animation Repository1 and the UNC Dynamic Scene Bench-
mark.2 We denote the test of only checking backface status at the start and end
time as STARTEND in the evaluation below.

5.1 Cost Estimation

The cost in scalar instructions of the different tests are given in Table 1, with
the assumption that the edge equation coefficients (Equation 15) can be reused.
For DOF, the coefficients αi and βi are triangle constants needed for stochastic
sampling and are therefore not included in the cost. The correct backface test costs
less than a single inside tests (using time-dependent edge functions) for the motion
blur only or DOF only case. For the full 5D test, we do not use 5D edge equations,
but instead position the triangle for each uvt tuple. Therefore, no triangle setup

1http://www.sci.utah.edu/~wald/animrep/
2http://gamma.cs.unc.edu/DYNAMICB/
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Instr. INSIDE STARTEND BFMB BFDOF INSIDE5D BF5D
MAD/MSUB 24 4 12 7 39 100
MUL - 2 6 6 27 54
ADD/SUB - - 3 - 1 60
CMP 3 2 4 1 3 2
MIN/ABS - - - - - 14
SUM: 27 8 25 14 70 > 230

Table 1: Cost of correct backface tests for motion blur and depth of field. INSIDE reports the
cost for one per-sample inside test (without tiebreaker rules). INSIDE5D is the positioning
and inside test for full 5D rasterization. BF5D denotes the 5D backface test with depth
of field and motion blur, and is a lower estimate with coarse bounds of the involved cubic
functions.

Correct BF STARTEND Diff image (×20)

Figure 4: A frame from the Wood Doll animation (∆ = 10) with a camera rotating around
the character (π/2 rad/frame), using 256 spp. In this example, the STARTEND test falsely
rejects about 6% of the triangles. In total, 11k (4%) pixels differ and 5.7k (2%) pixels fail a
perceptual test and the PSNR is 47dB.

computations can be reused, and the backface test becomes considerably more
expensive. As a lower limit, a 5D backface test with coarse bounds of the cubic
polynomials involved in the expressions, costs > 3× of a single 5D inside test.

5.2 Motion Blur

All examples were rendered in 512× 512 pixels using 64 samples per pixel. The
motion blur test scenes are shown in Figure 5 with three different motion blur set-
tings. For each animation, we report the percentage of triangles potentially visible,
but rejected by the STARTEND test. The cubic backfacing function is bounded us-
ing a subdivided Bézier control cage (using 10 control points), so the percentage
reported is slightly higher than the actual miss rate. The number of affected frag-
ments are reported by the per-sample inside test and is an exact measure of the
impact on the final result. The results are presented in Table 2.
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Figure 5: The test scenes with different animation speeds. ∆ denotes the steps in keyframes
in the animations.

The Ben animation shows a running man with 78029 triangles. Cloth contains
complex motion and a large triangle count (92230). Wood Doll is a simple rigid
body animation with modest triangle count (5378 triangles). A camera motion has
been added to highlight the common case when both the object and the camera are
animated. Figure 4 shows a zoomed in version of the animation with exaggerated
camera rotation. Using a perceptual metric [9], 2% of the pixels differ for this
frame.
For motion blur, the number of triangles falsely rejected by the STARTEND test
is modest, and the visual impact is negligible. It is indeed possible to construct
cases where this matters (see Section 1), but for many practical examples with
small triangles, closed meshes and limited motion per frame, we conclude that the
STARTEND backface test is sufficient.
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∆ = 1 ∆ = 5 ∆ = 10
Name rej.tris (%) s̄ rej.tris (%) s̄ rej.tris (%) s̄
Ben 0.1 13 0.2 726 0.7 4450
Cloth 0.004 78 0.02 425 0.1 4162
Wood Doll 0 0 0.1 532 0.3 1539

Table 2: Statistics gathered from animations with motion blur. ∆ indicates the step in
key frames between the start and end position of the triangle. For each ∆, we report the
percentage of triangles potentially visible but culled by the STARTEND backface test, and
s̄ reports the maximum number of samples in any frame that comes from triangles falsely
culled by the STARTEND test.

Exact backface test Center of lens BF test Difference ×10

Figure 6: Two examples with large defocus blur with a correct backface test (left) and the
center of the lens test (middle). Note the white streak in the blur on top of the hand in the
middle image, and the missing occlusion on the right side of the displaced patch.

5.3 Depth of Field

For large apertures, the number of frontfacing triangles increases. The naïve test
of only checking backface status in the center of the lens gives visible artifacts
around silhouettes. This is shown in Figure 3 and Figure 6. The correct test is
inexpensive and we recommend that it is always enabled.

5.4 Depth of Field and Motion Blur

For the combined case of both motion blur and DOF, the vast majority of artifacts
stems from DOF. In our experience the tests should be tuned for a tight DOF test
and a coarser motion blur test, as presented in Section 4.1. An example of this is
shown in Figure 7.
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Sharp MB (0)

DOF (491) MB+DOF (604)

Figure 7: An example with both motion blur and depth of field. The numbers indicate how
many triangles that are falsely culled by the incorrect backface test for each configuration.
The model contains 15855 triangles.
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