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Summary 

 

In this thesis four new algorithms are presented for automatic segmentation in 
cardiovascular magnetic resonance (CMR); automatic segmentation of the left ventricle, 
myocardial infarction, and myocardium at risk in two different image types. All four 
algorithms were implemented in freely available software for image analysis and were 
validated against reference delineations with a low bias and high regional agreement.  

CMR is the most accurate and reproducible method for assessment of left ventricular mass 
and volumes and reference standard for assessment of myocardial infarction. CMR is also 
validated against single photon emission computed tomography (SPECT) for assessment 
of myocardium at risk up to one week after acute myocardial infarction. However, the 
clinical standard for quantification of left ventricular mass and volumes is manual 
delineation which has been shown to have a large bias between observers from different 
sites and for myocardium at risk and myocardial infarction there is no clinical standard due 
to varying results shown for the previously suggested threshold methods.  

The new automatic algorithms were all based on intensity classification by Expectation 
Maximization (EM) and incorporation of a priori information specific for each application. 
Validation was performed in large cohorts of patients with regards to bias in clinical 
parameters and regional agreement as Dice Similarity Coefficient (DSC). Further, images 
with reference delineation of the left ventricle were made available for future 
benchmarking of left ventricular segmentation, and the new automatic algorithms for 
segmentation of myocardium at risk and myocardial infarction were directly compared to 
the previously suggested intensity threshold methods.  

Combining intensity classification by EM with a priori information as in the new 
automatic algorithms was shown superior to previous methods and specifically to the 
previously suggested threshold methods for myocardium at risk and myocardial infarction. 
Added value of using a priori information and intensity correction was shown significant 
measured by DSC even though not significant for bias. For the previously suggested 
methods of infarct quantification a poorer result was found in the new multi-center, multi-
vendor patient data than in the original validation in animal studies or single center patient 
studies. Thus, the results in this thesis also show the importance ofusing both bias and 
DSC for validation and performing validation in images of representative quality as in 
multi-center, multi-vendor patient studies. 
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Populärvetenskaplig sammanfattning 

 

I denna avhandling presenteras fyra nya metoder för att automatiskt mäta hjärtats förmåga 
att pumpa ut blod i kroppen, mäta storleken på en hjärtinfarkt samt mäta hur stor del av 
hjärtmuskeln som riskerade att dö vid hjärtinfarkten. Dessa nya metoder kan användas för 
att minska skillnader mellan mätningar gjorda av olika läkare, på olika sjukhus och i olika 
forskargrupper. Detta gör mätresultaten mer tillförlitliga och kan i sin tur leda till att 
diagnostik och behandling av hjärt-kärlsjukdomar förbättras.  

Vid en hjärtinfarkt har en blodpropp bildats i ett av de små blodkärlen som försörjer 
hjärtmuskeln med blod och en del av hjärtmuskeln drabbas då av syrebrist. Om inte 
syrebristen åtgärdas snabbt riskerar den delen av hjärtmuskeln att dö. För att patienten 
även efter hjärtinfarkten ska få en god livskvalitet är det viktigt att rädda så mycket som 
möjligt av hjärtmuskeln och därmed bevara hjärtats funktion Därför är det viktigt att få bra 
behandling i tid. För att utvärdera nya behandlingar kan man beräkna hur mycket av 
hjärtmuskeln som räddades genom att mäta både storleken på det område av hjärtmuskeln 
som riskerade att dö och det slutgiltiga området som dog. Detta kräver dock tillförlitliga 
mätmetoder.  

Med nya förbättrade behandlingar kan infarktens storlek minimeras vilket leder till en ökad 
livskvalité för patienten och mindre risk för följdsjukdomar som till exempel hjärtsvikt. 
När patienten drabbas av hjärtsvikt innebär det att hjärtat inte har förmåga att pumpa ut så 
mycket syresatt blod som kroppen behöver. I takt med att hjärtat får ett allt tyngre arbete 
försvagas hjärtat ytterligare och en ond spiral bildas. Hjärtsvikt kan oftast inte botas men 
patientens livskvalité kan förbättras med diagnos och behandling. För diagnos och 
behandling av hjärt-kärlsjukdomar är det viktigt att tillförlitligt mäta både hjärtats 
pumpförmåga och storlek.  

Med bilder från magnetkamera kan man noggrant mäta hjärtats pumpförmåga, 
hjärtinfarktens storlek och riskområdets storlek. Mätningarna görs genom att rita i bilderna 
och detta görs ofta manuellt av läkarna. Det skiljer dock mellan mätningar gjorda av en 
erfaren och en oerfaren läkare samt att det skiljer mellan erfarna läkare på olika sjukhus. 
För att åtgärda detta har flera automatiska metoder utvecklats men trots att manuell 
utlinjering har stora begränsningar har ingen tidigare automatisk metod visats tillräckligt 
bra för att ersätta manuell utlinjering. För att nya automatiska metoder ska kunna användas 
som standard på både sjukhus och i forskning behöver metoderna utvärderas i många 
patienter och bilder med olika bildkvalité. Dessutom behöver andra forskare än de som 
utvecklat den automatiska metoden ha möjlighet att utvärdera de nya metoderna. Därför är 
datorprogrammet och de nya automatiska metoderna som vi utvecklar fria att användas 
inom forskning.  
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I delarbete I presenteras det datorprogram där de nya automatiska metoderna har 
implementerats. I delarbete II presenteras en ny automatisk metod för att mäta hjärtats 
storlek och pumpförmåga. I delarbete III och IV presenteras två olika automatiska 
metoder för att mäta riskområdet vid en hjärtinfarkt i två olika typer av bilder. I delarbete 
V presenteras en ny metod för att mäta hjärtinfarktens storlek. Gemensamt för de fyra nya 
metoderna är att de utvecklades i nära samarbete med läkarna som annars gör manuella 
utlinjeringar. Grunden för att kunna utveckla metoder som automatiskt ritar i bilderna från 
en magnetkamera är att kunna skilja på mörka och ljusa områden i bilderna. Bilderna som 
de fyra metoderna utvecklades för har olika bildkvalité men ändå kunde samma metod 
användas för att särskilja mörka och ljusa områden. Denna metod kallas EM-algoritmen 
och den visades vara bättre på att särskilja mellan mörkt och ljust än tidigare metoder. De 
fyra nya metoderna har i studie II-V utvärderats i patienter och jämförts med manuella 
utlinjeringar utförda av erfarna läkare. Utvärdering gjordes både genom att mäta skillnad i 
storlek men också genom att mäta hur pass bra områdena som ritades automatiskt stämde 
överens med de manuellt utlinjerade.  

De fyra automatiska metoderna gav resultat som stämde väl överens med manuellt 
utlinjerade områden, både vad gäller storlek och överlapp mellan områdena. Skillnaden 
mellan automatisk och manuell mätning av hjärtats storlek, riskområdet och hjärtinfarktens 
storlek var nästan lika liten som mellan två erfarna läkare inom samma forskargrupp. De 
nya metoderna kan användas för att minska skillnaden mellan mätningar utförda av olika 
läkare, framförallt på olika sjukhus eller med olika erfarenhet. Att använda EM-algoritmen 
för att särskilja mellan ljusa och mörka områden tillsammans med expertkunskaper från 
läkarna visades vara bättre än tidigare utvecklade metoder. Dessutom visades vikten av att 
göra utvärderingar med både skillnad i volymer och överlapp mellan område och att göra 
denna utvärdering i många patienter från olika sjukhus. 
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Abbreviations 

AHA: American Heart Association 
bSSFP: balanced steady state free precession 
CE-SSFP: contrasted enhanced steady state free precession 
CMR: cardiovascular magnetic resonance 
DSC: Dice similarity coefficient 
ECG: electrogardiogram 
EDV: end-diastolic volume 
EF: ejection fraction 
ESV: end-systolic volume 
EM: expectation maximization 
FWHM: full width half maximum 
IR: inversion recovery 
LAD: left anterior descending coronary artery 
LCx: left circumflex coronary artery 
LGE: late gadolinium enhancement 
LM: left main coronary artery 
LVM: left ventricular mass 
%LVM: percentage of left ventricular mass 
MaR: myocardium at risk 
MI: Myocardial infarction 
MRI: magnetic resonance imaging 
MVO: microvascular obstruction 
P2C: point to curve distance 
PCI: percutaneous coronary intervention 
PSIR: phase sensitive inversion recovery 
RCA: right coronary artery 
RF: radio frequency 
SD: standard deviations 
SPECT: single photon emission computed tomography 
STEMI: st-elevation myocardial infarction 
SV: stroke volume 
T2-STIR: T2 weighted triple inversion turbo spin echo 
TI: inverstion time 
T1: spin-lattice property of tissue 
T2: spin-spin property of tissue 
TTC: triphenyltetrazolium chloride 
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Introduction 
 

Cardiovascular magnetic resonance (CMR) is the most accurate and reproducible method 
for quantifying left ventricular mass and volumes [1]. It is reference standard for 
assessment of myocardial infarct size [2-3] and has been validated against SPECT for 
assessment of myocardium at risk after acute myocardial infarction [4-5]. For 
quantification it is necessary to delineate left ventricular myocardial borders, and hyper-
enhanced regions of the myocardium representative of myocardial infarction and 
myocardium at risk. Manual delineation is clinical standard for left ventricular mass and 
volumes and has high reproducibility for experienced observers within single centers but 
has recently been shown to have a large bias between experienced observers from different 
centers [6]. For quantification of myocardial infarct size and myocardium at risk both 
manual delineation, simple threshold methods and advanced automatic segmentation 
methods have been suggested but there is no accepted clinical standard [7].  

To reduce observer dependency and time for analysis automatic segmentation methods are 
desirable. For a new method to be considered clinical standard it needs to be validated and 
available for clinical use. However, automatic segmentation algorithms tend to become 
complex and thereby hard to re-implement and many promising algorithms never reach 
clinical routine if not implemented in already existing software.  

Automatic quantification of the left ventricle is commonly implemented in software for 
CMR analysis and there is a rich literature on the multiple methods for automatic 
quantification of the left ventricle [8-9]. However, there is a continued use of manual 
delineation which indicates that previously suggested methods do not give satisfactory 
results. Not all segmentation methods have included the most basal part of the left 
ventricle in which the segmentation is complicated by the long axis motion of left ventricle 
causing the outflow tract to move in and out of the imaging plane during a heartbeat. The 
long axis motion is a major contributor to the stroke volume [10] and previous automatic 
segmentation methods which have included the outflow tract have either not defined the 
detection of outflow tract [11] or long axis motion [12], or has detected the long axis 
motion manually [13]. Further it is hard to conclude on the superiority of the suggested 
methods since the results have been obtained on images from different patient populations 
and with different image quality [9]. 

For quantification of myocardium at risk in T2-weighted CMR several methods have been 
suggested such as manual delineation [4] and thresholds by two standard deviations from 
remote (2SD) [14-15], full width half maximum (FWHM) [16] and Otsu's threshold [17] 
and have been evaluated for intra- and inter-observer variability and test-retest scans [18]. 
More advanced automatic segmentation algorithms with regional analysis [19-20] have 
also been suggested but not compared head-to-head with the threshold methods. Threshold 
methods was shown less reproducible than manual delineation when taking into account 
intra- and inter-observer variability and test-retest scans [18]. For manual delineation 
observers take into account both regional intensity differences, transmurality and a priori 
knowledge on perfusion territories. This is not taken into account by the threshold methods 
nor was the perfusion territories taken into account in two proposed automatic 
segmentation algorithms [19-20]. Assessment of MaR by contrast enhanced SSFP (CE-
SSFP) is not as established as T2-weighted imaging and only manual delineation [5] has 
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been proposed for quantification of MaR. Although both T2-weighted imaging and CE-
SSFP have been used in two clinical trials and CE-SSFP was shown to produce more 
diagnostic images [21].   

For quantification of myocardial infarct (MI) size in late gadolinium enhancement (LGE) 
multiple methods have been proposed. Manual delineation, thresholds by n-SD from 
remote, FWHM [22] and Otsu [23], and more advanced automatic algorithms [24-25] have 
been validated in experimental studies [22, 25-26] and patient studies [26-28] with varying 
results. Manual delineation was also for MI quantification shown more reproducible than 
threshold method when considering test-retest scans [18] in addition to inter- and intra-
observer variability [29]. Further, clinical assessment of myocardial infarct size is 
performed using either of two techniques, inversion recovery (IR) and phase sensitive 
inversion recovery (PSIR) and a bias has been shown between the threshold methods in IR 
and PSIR images [30]. The more advanced automatic algorithms [24-25] included regional 
analysis and accounted for partial volume effects but have only been developed and 
validated for either IR or PSIR images in single center studies. 
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Aim 

The overall aim was to develop and supply the research community in cardiovascular 
magnetic resonance with freely available, well validated algorithms for automatic 
segmentation of left ventricular function, myocardium at risk and myocardial infarction.   

 

The specific aims for each study were: 

I. Present the design and validation of the cardiovascular image analysis software 
Segment and to announce its release in a source code format. 

II. Develop an automatic algorithm for time resolved segmentation of the left 
ventricle from the basal slices with outflow tract to the apex, validate the 
algorithm with regard to clinical parameters and regional agreement for 
comparison to previous methods and to enable benchmarking for future 
algorithms. 

III. Develop and validate an automatic algorithm for segmentation of myocardium at 
risk in T2-weighted images which uses a priori knowledge on the appearance of 
MaR and cardiac anatomy. 

IV. Develop the automatic segmentation of myocardium at risk for  contrast enhanced 
SSFP images and validate the new algorithm against manual delineation in multi-
center, multi-vendor patient data and against SPECT.  

V. Develop an automatic algorithm for segmentation of myocardial infarction which 
can account for both partial volume effects and varying image quality as seen in 
magnitude inversion recovery and phase sensitive inversion recovery LGE images 
and to validate the new algorithm experimentally and in multi-center, multi-
vendor patient data. 
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Background 

 

The human heart 

The heart is a muscle which has one important task; to supply the whole body with 
oxygenated blood. The heart consists of four chambers, one atrium and one ventricle on 
the right and left side. The atria and ventricles are separated by the atrio-ventricular plane 
in which four valves are situated, through which the blood flows when open. Blood flows 
from the right atria (RA) through the tricuspid valve into the right ventricle (RV) from 
which it is pumped through the pulmonary valve into the pulmonary artery. The blood is 
oxygenated in the lungs and returned to the left side of the heart via the pulmonary veins to 
the left atria (LA) and flows through the mitral valve into the left ventricle (LV). te left 
ventricle pumps the blood through the aortic valve into the aorta and further out in the 
body to supply muscles and organs with oxygenated blood. Deoxygenated blood is 
returned to the heart via superior and inferior vena cava. The heart muscle is called 
myocardium and is thicker in LV than RV due to the higher pressure in the systemic 
circulation. Figure 1 shows a schematic drawing of the blood flow through the human 
heart.  

Cardiac pumping 

Cardiac pumping can be divided into two phases, contraction or ejection, called systole, 
and relaxation or filling, called diastole. During systole the myocardium of LV and RV 
contracts and blood is ejected to the aorta and pulmonary artery and during diastole the 
myocardium relaxes and blood from the atria is filling the ventricles. The ejected blood 
volume is called stroke volume (SV) and is the difference between the blood volume after 
filling, end-diastolic volume (EDV),and the blood volume after ejection, end-systolic 
volume (ESV). The stroke volume is also expressed as percentage of the end diastolic 
volume and then called ejection fraction (EF).  

The contraction of the myocardium causes the atrio-ventricular valve plane to move 
towards the base, the myocardium to thicken, and the myocardium to move inwards. The 
combined effect of the thickening and the inward motion of the myocardium cause the 
inner border of the myocardium, the endocardium, to move inwards and the outer border of 
the myocardium, the epicardium, to move slightly inwards or outwards.  The atrio-
ventricular plane displacement, also called long axis motion, causes the outflow tract in the  
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Figure 1 Overview of the blood flow through the human heart 

Schematic drawing of the blood flow through the human heart. Right atrium - right ventricle - pulmonary artery -
lungs - pulmonary veins - left atria - left ventricle - aorta - body - inferior and superior vena cava. 

Image used with permission from author (Creative Commons Attribution-ShareAlike (CC BY-SA) 3.0):
http://en.wikimedia.org/wiki/User:Wapcaplet 
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most basal slices to move towards the apex in end-systole and is a major contributor to the 
stroke volume [10].  

For analysis of left ventricular volumes and mass the papillary muscles should be included 
in the blood volume and excluded from the myocardial mass [7]. The papillary muscles are 
situated in the ventricles and connected to the mitral and tricuspid valve and contracts as 
the myocardium contracts. In end-systole it is hard to separate the endocardial border from 
the papillary muscles but it is important to pay attention to the separation between the 
papillary muscles and the endocardial border during the heart beat since both the 
myocardial and papillary muscle mass is constant over time.  

Myocardial infarction 

In order for the heart to contract normally, the myocardium itself also needs blood supply 
through the coronary arteries. The coronary arteries originate from the root of the aorta as 
right coronary artery (RCA) and the left main artery (LM), which is divided into the left 
anterior descending artery (LAD) and left circumflex artery (LCx). The coronary arteries 
are responsible for the blood supply to different perfusion territories and if the blood 
supply is insufficient ischemia occurs in the affected region. The ischemic region is called 
myocardium at risk (MaR) in the acute setting of an occluded coronary artery and the 
ischemic region is then at risk for myocardial cell death, necrosis, also called myocardial 
infarction (MI). Figure 2 shows a schematic view of a coronary occlusion LAD with 
subsequent MaR. To save as much myocardium as possible it is important to restore 
perfusion as soon as possible, which can be done pharmacologically and by invasive 
methods of percutaneous coronary intervention (PCI) or coronary artery bypass surgery. 
The amount of myocardial salvage depends on the time to reperfusion as the myocardial 
infarction propagates from the endocardial border against the epicardial border in a 
wavefront manner [31] to finally become a transmural MI, extending the full MaR region, 
if blood flow is not restored (Figure 3). Reperfusion of the ischemic region can however 
also cause injuries to the myocardium and new treatments are constantly under 
development to reduce myocardial injury and improve treatment of myocardial infarction. 
One such myocardial injury is microvascular obstruction (MVO) [32] which is a region of 
no blood flow within the previously ischemic region. Efficacy of new treatments can be 
assessed as the infarct size alone or be put in relation MaR as myocardial salvage index 
(MSI), MSI=1-MI/MaR. By assessing efficacy as MSI instead of only MI the number of 
patients needed in clinical trials can be reduced and new treatments can be developed 
faster. Both MI [2-3] and MaR [33] can be assessed by CMR days, up to one week, after 
treatment of MI and thus efficacy of treatment can be evaluated in one single CMR 
examination. 
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Figure 2 Schematic representation of a heart with coronary occlusion 

A coronary occlusion, shown in red, causes a region of no blood flow, represented in blue, which becomes
ischemic myocardium at risk (MaR), that may become necrotic if the occlusion is not resolved and thus becoming
myocardial infarction.  

Images used and modified with permission from the author Jablonowski R: Assessment of myocardial viability
using magnetic resonance imaging .Lund University 2015. 
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Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is an imaging modality free from ionization which can 
obtain images of the body in any imaging plane and which can be designed to acquire 
contrast between a variety of different tissues and organs. MRI exploits the magnetic 
properties of the hydrogen atoms, which for example are present in water and fat in our 
bodies. There are four main components to the MR scanner, firstly, a strong magnetic field 
called B0 of typically 1.5 or 3T, with which the hydrogen atoms are either aligned to or 
against once the patient is placed in the scanner. The hydrogen atoms also spins around its 
own nuclei with a specific frequency, called the Larmor frequency. This Larmor frequency 
is exploited by the second main part of the MR scanner, the radio frequency (RF) 
transmitter. The RF transmitter modifies, or flips, the main magnetic field B0 by 
transmitting RF pulses proportional to the Larmor frequency and the B0 field to create 
resonance. An electric signal is created which can be detected by the third main part of the 
MR scanner, a receiver. The final main part of the MR scanner is gradient coils which 
affect the magnetic field in order to encode spatial information to the signals and thus an 
MR image can be created. 

Figure 3 Schematic representation of the wavefront propagation of myocardial infarction 

A coronary occlusion in the left anterior descending artery is represented in a short-axis slice of the left
ventricle. With increasing duration of ischemia, myocardial necrosis (yellow) will evolve within the ischemic
myocardium (pink) in a wavefront manner from the endocardial border to the epicardial border. Myocardial
salvage can be seen as the remaining part of the ischemic myocardium, myocardium at risk, which was not
turned into necrotic myocardium, myocardial infarction.  

Image used with permission from the author Ubachs J: Quantitative and qualitative assessment of the
myocardium at risk. Lund University 2011. 
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The signal created in the MR scanner is affected by two magnetic properties of the tissue, 
T1 and T2 relaxation, which both can be exploited to create contrast between different 
tissues. T1 relaxation is due to the energy from the RF pulse, being transmitted to 
neighboring molecules which causes a decay of the signal over time. T2 relaxation is due 
to the spins affecting each other, called spin-spin interaction, which also causes a decay of 
the signal, which is faster than the T1 relaxation. By programming the MR scanner with 
different RF pulse sequences the T1 and T2 properties can be exploited to create contrast 
between different types of tissue. For cardiovascular magnetic resonance (CMR) contrast 
is for example created between blood and myocardium, normal and pathological 
myocardium, such as edema and myocardial infarction.  

Assessment of cardiac pumping 

Assessment of cardiac function requires imaging with good temporal resolution and a good 
contrast between blood and myocardium. Balanced steady state free precession (bSSFP) is 
based on the ratio between T2 and T1 and the RF pulses can be applied with short 
intervals, repetition times, and thus can acquire both good contrast and temporal 
resolution.  However, there are two basic challenges in imaging the heart, the heart is 
beating and the heart is moving due to the breathing of the patient. To overcome these 
difficulties imaging is synchronized to the beating of the heart by using an 
electrocardiogram (ECG) and either the breathing of the patient can be detected and 
compensated for or the imaging can be performed during breath hold. Magnetic resonance 
imaging can be performed in any imaging plane and for assessment of cardiac pumping a 
short axis view with multiple slices covering the left ventricle is clinical standard with 3 
standardized long axis views, called 2-chamber, 3-chamber and 4-chamber, as 
complement. Figure 4 shows the three standardized long axis views and one slice of a 
short axis view of the left ventricle. Using cine bSSFP, CMR is the most accurate and 
reproducible method for assessing ventricular volumes and masses.  

Infarct imaging 

Cardiovascular magnetic resonance is also gold standard for assessment of myocardial 
infarction using late gadolinium enhancement (LGE) which is based on using a gadolinium 
based contrast agent and a pulse sequence of inversion recovery(IR) [2-3, 34]. The 
gadolinium based contrast is injected intravenously and distributes in the extra cellular 
volume of all tissues and reaches a steady state after approximately 20 minutes. In an acute 
MI the cell membrane has ruptured and therefore the extra cellular volume is increased in 
comparison to normal myocardium and in a chronic MI the extra cellular volume is 
increased due to the scarred tissue. The gadolinium based contrast affect the T1 relaxation 
of the surrounding tissue to become shorter and thereby the regions of increased 
extracellular volume, as in the myocardial infarction, can appear brighter in T1-weighted 
images. By using an IR sequence the signal from tissues with a given T1-value can be 
nulled by choosing an appropriate inversion time (TI). The TI is chosen to null the signal 
of normal myocardium and the normal myocardium will hence appear black and the 
myocardial infarction will appear hyperenhanced, bright. Choosing the appropriate  



  

19 

  

Longaxis 2ch Longaxis 3ch
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Figure 4 Standardized view of the heart in cardiovascular magnetic resonance 

Three standardized long axis views of the human heart in cardiovascular magnetic resonance with a 2 chamber
view (top left panel), 3 chamber view (top right panel) and a 4 chamber view (bottom left panel). The short axis
view (bottom right panel) consists of multiple slices covering the whole heart.  
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inversion time is important to get a nulled signal from the myocardium and as good 
contrast as possible to the MI. The phase sensitive inversion recovery (PSIR) sequence was 
developed to decrease the sensitivity of TI and to increase image quality. Both IR and 
PSIR images have somewhat different characteristics. In usual magnitude IR images the 
nulled myocardium appears black and tissues with both shorter and longer T1 appears 
brighter. In PSIR images on the other hand the nulled myocardium is represented as gray 
and the hyperenhanced tissues with shorter T1 is brighter and the tissues with longer T1 
are represented as darker than the normal myocardium. Both IR and PSIR LGE images are 
used as clinical standard and for visual assessment of myocardial infarction the intensity 
levels in the images are often set by the observer so that the normal myocardium is 
represented as black and the hyperenhancement represented as white. In these windowed 
images partial volume effects are then seen as a grey region between the bright and black 
region. Partial volume effects are due to the pixel volume containing more than one type of 
tissue for which the intensities are averaged and often seen at the border between different 
types of tissues. For myocardial infarction, however, there is a larger region seen as partial 
volume effects, representing partially infarcted regions. The partial volume effects 
representative of partially infarcted myocardium affects the quantification since the 
intensity does not represent fully infarcted regions of the myocardium. Also microvascular 
obstruction affects the quantification of myocardial infarction since it is seen as a darker 
region within the myocardial infarction and not shown as hyperenhancement despite being 
a region of no blood flow. In Figure 5 examples of partial volume effects and 
microvascular obstruction in LGE images are shown.   

Edema imaging 

With CMR it is also possible to image edema [33] due to the increased water content in the 
tissue which increases the time for T2 relaxation. The extent of the edema in acute 
myocardial infarction has been shown to correlate well with the myocardium at risk 
defined by microspheres in dogs [33] and the pathologically defined myocardium at risk in 
pigs [35]. T2-weighted imaging has also been validated against SPECT in pigs as well as 
in patients and shown to depict the myocardium at risk (MaR) up to one week after acute 
MI [4]. Lately, also contrast enhanced SSFP (CE-SSFP) has been validated for assessment 
of myocardium at risk (MaR) up to one week after acute MI [5]. Five minutes after 
gadolinium injection a balanced SSFP imaging sequence is applied. In the edematous 
region the extracellular volume is increased and thereby the water content increases T2 and 
the gadolinium based contrast agent decreases the T1 relaxation. The SSFP sequence is 
affected by the ratio of T2/T1 and an increased signal can thus be seen in the edematous 
region. The two techniques of assessing MaR has been shown to correlate well in a direct 
comparison [36] and CE-SSFP has recently been shown to have a higher degree of 
diagnostic image quality across vendors and sites [21]. Figure 6 shows an example of T2-
weighted imaging and CE-SSFP in the same patient.  
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Magnitude IR LGE Phase sensitive IR LGE

Partial volume effects

Microvascular obstruction

T2‐weighted Contrast enhanced SSFP

Figure 5 Partial volume effects and microvascular obstruction in late gadolinium 
enhancement 

Myocardial infarction is not always seen as a compact region of increased signal intensity.
Myocardial infarction can be affected by partial volume effects seen as a gray region,
inidicated by the arrows in the upper panels and by microvascular obsturction seen as a 
dark region within the myocardial infarction delineated in red and indicated by the arrows
in the bottom panel. Myocardial borders are delineated in red (endocardium) and green
(epicardium), myocardial infarction is delineated in yellow with a pink line indicating the
core of the infarct and a red line indicating microvascular obstruction. 

Figure 6 Myocardium at risk as visualized in T2-weighted and contrast enhanced 
SSFP images  

Myocardium at risk can be visualized by cardiovascular magnetic resonance using either
T2-weighted (left panel) or contrast enhanced SSFP images(right panel).Myocardium at
risk is seen as a brighter region in the myocardium. and delineated in white. The
myocardial borders are delineated in red (endocardium) and green (epicardium).  
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Image segmentation 

Intensity classification 

Image the intensity is the most important feature for automatic segmentation in CMR 
images. Analysis of the intensities is required both for simple threshold methods and as 
input to more advanced segmentation methods. Especially for segmentation of 
myocardium at risk and myocardial infarction simple threshold methods have been 
proposed to distinguish hyperenhanced myocardium from normal myocardium. The 
intensity thresholds that have been proposed are standard deviations from remote (n-SD), 
full width half maximum (FWHM) [22, 25], Otsu's threshold [17, 23] and Expectation 
Maximization (EM) [37-38]. The threshold methods of n-SD, FWHM and Otsu have been 
evaluated in several studies [18, 22, 27, 29] but there is no clinical standard [7] for 
quantification of myocardial infarction and myocardium at risk due to the differing results 
in the studies. 

Using standard deviations from remote is a semi-automatic threshold method in which the 
user defines a remote region, representative of the normal myocardium. The threshold is 
then defined from the mean and standard deviation (SD) of the intensity of the remote 
region as mean + n-SD. The number of standard deviations, n, to use is dependent on the 
image quality regarding contrast intensity between normal and hyperenhanced 
myocardium, however this contrast may change between different MR scanners. 
Therefore, in addition to the difficulty in defining a remote region representative of normal 
myocardium, the n-SD threshold also has the drawback of not taking any information on 
the intensity of hyperenhancement into consideration when setting the threshold. 

Amado et al. [22] proposed the threshold of FWHM in which the maximal intensity of 
hyperenhancement and the minimal intensity of the normal myocardium are used to define 
the threshold. The FWHM threshold is then set to half the distance between the minimum 
intensity of normal myocardium and maximal intensity of hyperenhancement. Thereby 
both the normal and hyperenhanced myocardium is taken into consideration. However, 
only minimal information on the intensity distributions are used with two intensity values 
and the FWHM threshold assumes equal standard deviation of the normal and 
hyperenhanced myocardium for the threshold to result in minimal errorneous 
classification. Hsu et al. [25] developed a more advanced segmentation algorithm, the 
FACT algorithm, for quantification of myocardial infarction in which a modified FWHM 
threshold was used to take partial volume effects of myocardial infarction into account. 
The modified FWHM threshold is defined from the mean intensity in a remote region and 
the maximum of the hyperenhancement.  

Both the thresholds of n-SD from remote and FWHM from minimum intensity [22] and 
FWHM from mean remote intensity [25] needs user input and only a limited amount of 
information of the intensity distributions is utilized to define the threshold. Otsu's threshold 
[23] utilizes the whole intensity histogram to find a threshold. The threshold is found 
through exhaustive search of the histogram to find the threshold which minimizes the 
variance of the pixels below and above the threshold and thereby also maximizes the 
distance between the mean of the intensities above and below the threshold. As constructed 
Otsu's threshold will though favor equal distribution above and below the threshold and 
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this may result in close to 50 % myocardium at risk respectively myocardial infarction if 
there is a poor contrast between normal myocardium and hyperenhancement. 

Expectation Maximization [37] is a statistical method which can be used to define an 
intensity threshold from the intensity histogram. Expectation Maximization was in this 
thesis implemented to assume a mixture of normal intensity distributions and estimate the 
mean and standard deviation of the intensity distributions. The maximum likelihood 
estimate of mean, standard deviation and the proportion of the distributions is iteratively 
estimated from an initial classification of the intensities as belonging to one or the other 
intensity distribution. To get an optimal threshold the initial estimation is of importance, 
especially if there is a small proportion for one of the intensity distributions for which 
there is a similar tendency to favor equal distribution above and below the threshold as for 
Otsu's threshold.  

Segmentation methods 

More advanced methods for quantification of myocardial infarction [25-26] and 
myocardial edema [19-20] has been suggested by also incorporating post processing and 
regional analysis of the segmentations. For detection of microvascular obstruction both 
morphological operations [25] and a flood fill algorithm has been used [26]. 
Morphological operation is a method which can be specifically used to remove 
irregularities in the segmentation. Morphological operations shrink and expand objects and 
by combining these operations holes, as microvascular obstruction, and islands, as 
artifacts, can be removed from the segmentation. By using a flood fill method regions of 
the same intensity can be found and this can also be used to fill larger holes in the 
segmentation. The flood fill method is a segmentation method which finds connected 
regions of the same intensity and it can be used as a separate segmentation method or as 
post processing such as detection of microvascular obstruction. 

Segmentation methods for the left ventricle  segmentation methods are not only based on 
intensity thresholds and post processing but commonly based on more advanced 
segmentation methods [9]. Deformable models [39] and level set methods [40] are used to 
incorporate information on intensity and edges in the image and smoothness of the 
segmentation. This is achieved by modifying an initial segmentation to reach a position in 
which an artificial energy is minimized. The energy to minimize can be customized to the 
application at hand by which forces it is comprised of and their weights. The most 
important force is the mapping of the image intensities, often referred to as a balloon 
image in deformable models and a speed image in level set methods. The force based on 
intensities are then balanced by for example a curvature force, smoothing force and edge 
force. A priori information on the object to segment is most commonly incorporated in the 
deformable model or level set methods by user input or by creating a model of the object. 
Active shape models [41] is a specific type of deformable models for which a model of the 
object to segment is created from a training set which in the segmentation process is 
refined to fit the image. Active shape models incorporate a lot of a priori information, and 
can thus be used to design automatic algorithms for specific problems. However, active 
shape models require a training set of images with manual delineation of the object to 
segment and a drawback of the method is that it can be more difficult to perform 
segmentation of objects with a shape that was not represented in the training set.  
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Validation 

In the development of automatic algorithms for segmentation of the left ventricle a variety 
of different error measures have been used and the algorithms have been applied to 
different images. Manual delineations are used as reference for quantitative assessment of 
the automatic algorithms. The error to reference delineation as bias in clinical parameters 
as EDV, ESV, EF and LVM are reported for clinical relevance but also common image 
processing errors are commonly reported. In the review by Petitjean and Dacher [9] the 
perpendicular distance between the automatic and manual delineation, point-to-curve 
(P2C) was found to be the error most often reported for LV segmentation in CMR and was 
at the focus of their comparison. Petitjean and Dacher pointed out the difficulty in 
comparing the performance of the different segmentation methods due to the large 
variation in image quality and patient populations in which the algorithms have been 
applied. Two challenges, MICCAI'091 [9] and STACOM'112 [42], have been arranged for 
left ventricular segmentation in which patient data was supplied and a wide range of error 
measurements were computed. Amongst others the Dice similarity coefficient was used 
which was also suggested by Petitjean and Dacher [9] for future validation in combination 
with P2C and clinical parameters. By using DSC the overlap between the region of manual 
delineation and automatic segmentation is measured where, 1 indicate perfect overlap, 0 no 
overlap and DSC>0.7 is considered good [43]. Peitjean and Dacher  [9] also concluded that 
the challenge databases should be used to overcome the differences in image quality. 
However, images in the MICCAI challenge were acquired without parallel imaging which 
is now clinical standard and in STACOM'11 not all results were derived using manual 
delineation as ground truth. Therefore a new training set and test set is needed for 
validation of left ventricular segmentation. 

Validation of the more advanced algorithms for myocardial infarction has been performed 
both in animal studies [25-26] and in patient studies [26, 28] and simple threshold methods 
have been validated in animal studies [22] and patient studies with manual delineation as 
reference [18, 27]. Manual delineation has though been shown to have a large inter 
observer and intra observer variability [29] therefore validation in animal studies with an 
independent reference method is of importance [22, 25-26]. However, validation in patient 
studies is also necessary and this has only been performed in single center studies [26, 28] 
and thus it is not known if the results are applicable in other research and clinical centers. 

For segmentation of myocardium at risk simple thresholds of 2-SD [14, 44], FWHM[17] 
and Otsu have been applied and compared to manual delineation [18, 45]. A more 
advanced method was developed by Johnstone et al. [19] who reported both bias to manual 
delineation and regional overlap by DSC. T2-weighted imaging has been validated in 
animal studies [33] but most importantly for validation of automatic segmentation methods 
both T2-weighted imaging and CE-SSFP have been validated against single photon 
emission computed tomography (SPECT), making it possible to perform independent 
validation in patient studies.    

                                                      
1 http://sourceforge.net/projects/cardiac-mr/files 
2 htttp://www.cardiacatlas.org 
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 Methods 

The new automatic algorithms were all implemented using a priori information for pre and 
post processing in combination with intensity classification by Expectation Maximization 
(EM). All algorithms were validated against reference delineation in patient data and 
where available to an independent reference standard. Further, the proposed algorithms 
were compared to previously suggested segmentation methods. 

Automatic segmentation algorithms 

Four automatic algorithms were developed, segmentation of the left ventricle in cine SSFP 
images (Paper II), quantification of myocardium at risk in T2-weighted images (Paper III) 
myocardium at risk in contrast enhanced SSFP images (Paper IV), and finally 
quantification of myocardial infarction in LGE images (Paper V). All four algorithms are 
based on using Expectation Maximization (EM) for intensity classification and utilize a 
priori information for pre and post processing. Simplified flow charts of the algorithms are 
shown in Figure 7. All four algorithms require initial user input, for left ventricular 
segmentation (Paper II) slices containing any myocardium are selected after which the LV 
center point is automatically detected, for segmentation of myocardium at risk and 
myocardial infarction (Paper III-V) the user indicates culprit artery and rotation of the LV 
after which a priori information on perfusion territories of the coronary arteries can be 
applied. Surface coil intensity correction was implemented for segmentation of 
myocardium at risk in CE-SSFP (Paper IV) and segmentation of myocardial infarction in 
LGE images (Paper V). Intensity classification by EM was used with initializations and 
constraints specifically designed for each of the segmentation algorithms. Segmentation 
was performed using a deformable model for the left ventricle, using a model of 
transmural, connected myocardial sectors for myocardium at risk and using a level set 
method for infarct quantification. Post processing was performed using a priori 
information on left ventricular function to detect outflow tract and papillaries (Paper II) 
and a priori information on microvascular obstruction (Paper III-V). In Paper V partial 
volume effects were taken into consideration by using a weighted summation of pixel 
intensities. All four algorithms were implemented in the software Segment 
(htttp://segment.heiberg.se) which is described in Paper I and freely available for research.  
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Figure 7 Flow chart of the four algorithms implemented in Paper II-V 

Flow chart of the four automatic algorithms, segmentation of the left ventricle (LV) in SSFP
images (Paper II), myocardium at risk (MaR) in T2-weighted images (Paper III) and contrast 
enhanced SSFP (CE-SSFP) images (Paper IV) and myocardial infarction in late gadolinium
enhancement (LGE, Paper V). All algorithms are shown with simplified processing blocks.
Intensity classification by Expectation Maximization (EM, green) is the basis for all four
algorithms with different segmentation methods (blue) and a priori information utilized in both pre 
processing (orange), intensity correction (yellow) and post processing (purple). User input is 
shown in pink and the weighted summation of pixel intensities to account for partial volume
effects in segmentation of myocardial infarction is shown in red.     
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A priori information 

Left ventricular function 
For segmentation of the left ventricle it is important to get endocardial and epicardial 
segmentation as close as possible to reference delineation and to detect both papillary 
muscles and outflow tract. A priori information was incorporated by using a training set of 
40 subjects for optimization of parameters in the segmentation algorithm. For inclusion of 
papillary muscles in the endocardial segmentation a convex hull was used and the 
endocardial segmentation was further expanded by assuming constant papillary volume 
over time. In basal slices the outflow tract was detected as sectors for which the intensities 
were not typical of myocardium and as sectors with a mean wall thickness less than 2 
millimeters. Intensities were considered not typical for myocardium if the intensities were 
above mean + two standard deviations of the myocardial intensities. Figure 8 shows an 
endocardial and epicardial segmentation pre and post detection of the outflow tract.    

Coronary artery perfusion territories   
For segmentation of myocardium at risk and myocardial infarction an extent model of the 
perfusion territories of the coronary artery was used as a priori information and the user 
selected culprit artery as input to the automatic algorithm. Normal and maximal extent for 
the perfusion territories of each coronary artery was defined in consensus by three 
experienced observers from their combined experience of CMR and SPECT. Normal and 
maximal extent models were defined by each observer and discussed until consensus was 
reached for left anterior descending artery (LAD), left circumflex artery (LCx) and right  

Figure 8 Detection of outflow tract in left ventricular segmentation  

The left ventricular segmentation needs to be adjusted in the basal slices using a priori information on the
outflow tract moving in and out of the imaging plane during a heartbeat. Endocardial (red) and epicardial (green)
segmentations are shown in one basal slice in end diastole prior to detection of the outflow tract (left panel) and
after adjustment for the outflow tract (right panel). 
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Figure 9 A priori information on perfurions territories 

Bulls-eye representation of maximal extent model (left column) and normal extent model (right column) for the
perfusion territories of left anterior descending artery (LAD) , left circumflex artery (LCx), right coronary artery
(RCA), and left main artery (LM). Models for LAD, LCX and RCA were defined in consensus by three
experienced observers in an extended 17-segment AHA model and models for LM were defined from the
models of LAD, LCX and RCA. The 17-segment model is extended to three slices in each of the basal, mid-
ventricular and apical zones and 24 sectors in each slice. Black sectors are included in the maximal and normal
extent model, respectively. The septal part of the left ventricle is represented in the left of the bulls-eye plot, the
lateral part in the right, anterior part in the top, inferior part in the bottom, the apical slices in the center and the
basal slices in the outer part of the bulls-eye plot.  
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coronary artery (RCA). The models for left main artery (LM) were defined from the 
models of LAD, LCx and RCA. The extent was defined in the 17 segment American Heart 
Association (AHA) model [46] which was extended to 24 sectors circumferentially and 3 
slices in each of the basal, midventricular and apical parts of the left ventricle. The 
maximal and normal extent models as defined in consensus are shown in Figure 9.  

The normal extent model was only used for initialization of the EM-algorithm in 
segmentation of myocardium at risk in T2-weighted images (Paper III). The maximal 
extent model was used for initialization of the EM-algorithm in segmentation of 
myocardium at risk in CE-SSFP (Paper IV) and to remove artifacts outside the maximal 
extent of the perfusion territory (Paper III-V). The maximal extent model was further used 
to define remote myocardium for surface coil intensity correction in CE-SSFP and LGE 
images (Paper IV and V).  

 Microvascular obstruction  
Microvascular obstruction is in LGE images as well as in T2-weighted and CE-SSFP 
images seen as a hypo enhanced region within the myocardial infarction.  Microvascular 
obstruction should be included in the region of myocardial infarction respectively 
myocardium at risk despite being manifested as a dark region [32]. For myocardium at risk 
(Paper III and IV) segmentation was performed sector wise and myocardium at risk was 
required to be transmural. Microvascular obstruction was detected as missing sectors 
within the region of connected sectors by use of morphological closing. For segmentation 
of myocardial infarction (Paper V) transmurality is not required and microvascular 
obstruction was instead detected as a hole within the region of infarct by using a flood fill 
algorithm. The flood fill algorithm was also combined with morphological closing to 
detect large regions of microvascular obstruction with a thin border of surrounding hyper 
enhanced myocardial infarction.  

Surface coil intensity correction  
Varying surface coil sensitivity causes an intensity gradient through the CMR images. This 
can cause a larger variability in the myocardium than the contrast between normal 
myocardium and hyper enhancement representative of myocardium at risk or myocardial 
infarction. In CE-SSFP and LGE images (Paper IV and V) a surface coil intensity 
correction was implemented based on the intensity of the blood pool and the remote 
myocardium, defined by the maximal extent model. A second order linear intensity 
correction was applied to account for a gradient proportional to the squared distance to the 
surface coil. The intensity correction should result in a reduced variability in the remote 
region and a mean intensity in the culprit region higher than in the remote region, 
otherwise the correction was not applied. Intensity correction was not applied in T2-
weighted images (Paper III) due to the black blood property and instead intensity 
classification was applied slice by slice to overcome the intensity gradient across slices.  

Partial volume effects  
Partial volume effects can be seen in all CMR images due to limited spatial resolution, 
especially in through plane direction but can also be due to partially infarcted regions as in 
LGE images (Paper V). To account for partial volume effects in LGE images Heiberg et al. 
[26] calculated scar size as a weighted sum with weights representative of the amount of 
scared cells within the pixel. Heiberg et al. [26]  though used a fixed threshold of 1.8SD to 
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define the infarct region and a fixed minimum weight of 0.1 at the minimum intensity. In 
Paper V an adaptable threshold was implemented by EM and hence adaptable weights 
were also needed. The weights for normal myocardium should be set to 0 for pixels 
representative of normal myocardium and 1 for pixels representative of fully scarred 
myocardium. Fully scarred myocardium was chosen as the 90th percentile of the pixels 
within the scar region and weights were calculated as a linear function from 0 at the mean 
intensity of normal myocardium.  

Intensity classification by Expectation Maximization  

For classification of pixel intensities a Bayesian probability is calculated by use of an 
Expectation Maximization algorithm (EM) [37]. The EM-algorithm iteratively refines an 
initial classification to find the maximum likelihood estimate of mean and standard 
deviation for the assumed Gaussian intensity distributions. For endocardial segmentation 
(Paper II) EM was used to estimate the intensity distributions of blood and myocardium 
and for epicardial segmentation the intensity distribution of surrounding tissues was also 
estimated. For segmentation of myocardium at risk (Paper III and IV) the intensity 
distributions of normal myocardium and myocardium at risk were estimated and for 
myocardial infarction (Paper V) the intensity distributions of normal myocardium and 
myocardial infarction were estimated. Intensity classification by EM can be sensitive to the 
initial classification and it was therefore chosen carefully. In LV segmentation (Paper II) 
the initial classification between blood and myocardium was set as two standard deviations 
above the mean intensity of a cylinder with radius 10 mm placed at the LV center point in 
the midventricular slices. For segmentation of myocardium at risk in T2-weighted images 
(Paper III) the normal extent model of the culprit artery was used to initialize all pixels 
within the normal extent as myocardium at risk and all pixels outside as normal 
myocardium. For segmentation of myocardium at risk in CE-SSFP (Paper IV) the initial 
classification was modified to use the maximal extent model instead to get an initial 
classification of normal myocardium as representative as possible. In paper IV a larger 
overlap between normal myocardium and myocardium at risk was seen and a constraint of 
keeping initial classifications was presented. Pixels with intensity below the 50th 
percentile in the remote region were kept classified as normal myocardium and intensities 
above the 75th percentile in the culprit region were kept classified as myocardium at risk. 
For infarct segmentation (Paper V) initialization of EM was based on assuming a small 
myocardial infarction represented as the intensities above the 90th percentile of the 
intensity histogram. The constraints was set to keep the intensities below the 5th percentile 
of the remote region classified as normal myocardium and pixels above the 95th percentile 
were kept classified as myocardial infarction.  
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Validation 

Software for cardiac image analysis (Paper I) 

Validation of the Segment software was performed by implementing an extensive test 
script that runs on archived test data. The test script output is then compared with known 
accurate results from previously validated scientific publications.   

Left ventricular segmentation (Paper II) 

In total 90 subjects were included in the study, both patients referred for clinical evaluation 
of known or suspected coronary artery disease as well as healthy subjects and athletes. The 
subjects were scanned using a 1.5T MR scanner (Philips Intera CV, Philips, Best, The 
Netherlands). The sequence used was a balanced steady state free precession (bSSFP) 
sequence with retrospective ECG triggering.  

The subjects were divided into a training set (n=40) and a test set (n=50). The test set 
consisted of 20 patients, 20 healthy volunteers and 10 athletes. Manual segmentation was 
performed for all slices in end-diastole and end-systole by an experienced observer. A 
subset of 25 subjects from the test set (10 patients, 10 healthy volunteers and 5 athletes) 
were used for second observer analysis of manual delineation. 

In the test set the difference between manual delineation and automatic segmentation was 
computed for the clinical parameters end-diastolic volume (EDV), end-systolic volume 
(ESV), ejection fraction (EF) and left ventricular mass (LVM) as well as the image 
processing error measurements of dice similarity coefficient (DSC) [47] and point to curve 
distance (P2C). All errors were reported as mean ± standard deviation. Calculation of both 
clinical parameters and image processing errors allowed for comparison against previous 
methods and both training set and test set are available upon request for benchmarking of 
future algorithms.  

Myocardium at risk in T2-weighted CMR (Paper III) 

Forty seven patients with first time ST-elevation myocardial infarction (STEMI) treated 
with primary percutaneous coronary intervention (PCI) were included in this study. Within 
a week after admission patients were imaged using 1.5T scanner from Siemens (Magentom 
Vision, Siemens, Erlangen, Germany) or Philips (Philips Intera CV or Achieva, Philips, 
Best, The Netherlands). The sequence used was a T2-weighted triple inversion turbo spin 
echo sequence (T2-STIR). Regions of hyper enhanced myocardium was manually 
delineated as myocardium at risk MaR) by an experienced observer and expressed as 
percent of left ventricular mass (%LVM). Hypo-intense regions within MaR was 
considered microvascular occlusion and included as MaR.  

Quantification of MaR by the new automatic algorithm, manual second observer 
delineation  and the threshold methods of 2SD from remote, FWHM from remote as 
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implemented by Hsu [25] and Otsu's threshold [23] were all compared against the 
reference observer using Bland-Altman bias (mean ± standard deviation) and linear 
regression analysis (correlation coefficient). Regional agreement to reference observer was 
evaluated as DSC (mean ± standard deviation) [47]. 

Myocardium at risk in CE-SSFP (Paper IV) 

For validation of the new automatic algorithm 183 patients from the clinical cardio 
protection trials CHILL-MI [48] (n=92) and MITOCARE [49]  (n=91) were included. 
Patients who had undergone CMR examination 2-6 days following first time STEMI 
treated with PCI with LGE images and CE-SSFP images of diagnostic quality were 
included. For validation against an independent reference method, an additional set of 
patients who had undergone both CE-SSFP CMR and single photon emission computed 
tomography (SPECT)  [5] (n=16) were included in this study.  

All CMR examinations were performed on 1.5T scanners from Philips (Philips healthcare, 
Best, The Netherlands), Siemens (Siemens AG, Erlangen, Germany) or GE (GE 
Healthcare, Waukesha, WI, USA). Cine CE-SSFP images were obtained approximately 5 
minutes after injection of an extracellular gadolinium -based contrast agent and LGE 
images were acquired approximately 15 minutes after injection of the gadolinium-based 
contrast agent. Surface coil intensity correction was not generally applied across vendors 
and sites. Myocardial perfusion SPECT was performed in the additional set of 16 patients 
within four hours after PCI using either of two dual head cameras GE (Ventri, GE 
Healthcare, Waukesha, WI, USA) or Sopha (DST-XL, Sopha Medical Vision, Bue, Cedex, 
France).  

In CE-SSFP images, hyper-intense regions within the myocardium were manually 
delineated as MaR and in LGE images, hyper-intense regions were delineated as 
myocardial infarction using a previously validated automatic segmentation algorithm [26], 
followed by manual corrections when needed.  Hypo-intense myocardium within the area 
of increased signal intensity was regarded as microvascular obstruction and thus included. 
The delineation of each data set was performed by one of three experienced observers with 
a quality control of the delineations by a second opinion for each case. Different opinions 
for the delineation were resolved in consensus between all three observers when necessary. 
In a subset of 15 patients from the multi-center studies, second observer manual 
delineation of MaR was performed to evaluate inter-observer variability. In SPECT 
images, MaR was delineated by use of an 55 % threshold [50] and manual corrections after 
automatic delineation of epicardial and endocardial borders [51]. MaR was expressed as 
percent of left ventricular mass (%LVM).   

Bland-Altman bias (mean ± standard deviation), linear regression analysis (correlation 
coefficient) and regional agreement DSC to manual delineation was evaluated for the new 
automatic algorithm, and the threshold methods of 2SD from remote, FWHM from remote 
[25] and Otsu's threshold [23]  as well as for inter-observer analysis. Quantification of 
MaR in CE-SSFP images by the new automatic algorithm and manual delineation was 
compared to quantification of MaR in SPECT using bias (mean ± standard deviation) and 
linear regression analysis (correlation coefficient). The added value of the processing 
blocks in the new automatic algorithm was assessed by both bias and DSC and evaluated 
using two-sided paired t-test with Bonferroni correction.  
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Myocardial infarction (Paper V) 

The new automatic algorithm was validated experimentally against TTC and ex-vivo high 
resolution T1-weighted images. Pigs with induced myocardial infarction was included 
from three previous studies, one mechanistic basic research study [52], one cardio 
protection study [53] and one cardio protection study also used for validating the original 
weighted algorithm for infarct quantification [26]. All pigs were subjected to 40 minutes 
occlusion with a balloon placed after the first or second diagonal branch of the LAD. 
Myocardial infarction was imaged after four hours [26, 53], six hours [52] or seven days of 
reperfusion [52] with one or more of the following CMR images, in-vivo 3D IR LGE 
(n=20), in-vivo 2D PSIR LGE (n=12)  and ex-vivo high resolution T1-weighted images 
(n=38). Six pigs with myocardial infarction were imaged after seven days of reperfusion 
with all three CMR images and following ex-vivo imaging, hearts were sliced into five mm 
slices and incubated in triphenyltetrazolium-chloride (TTC) for five minutes. CMR 
imaging was performed on a 1.5T Philips scanner (Philips Healthcare, Best, The 
Netherlands). In-vivo LGE images were acquired approximately 20 minutes after injection 
of gadolinium-based contrast agent. Ex-vivo high resolution T1-weighed images were 
acquired with the explanted hearts placed in plastic containers and the ventricles filled with 
balloons containing deuterated water.  

The new automatic algorithm was also applied in multi-center, multi-vendor patient studies 
with expert delineation as reference Patients with first time ST-elevation myocardial 
infarction (STEMI) treated with percutaneous coronary intervention (PCI) were included 
from the recently published clinical cardioprotection trials CHILL-MI [48] and 
MITOCARE [49].  All CMR examinations were performed on 1.5T scanners from Philips 
(Philips Healthcare, Best, The Netherlands), Siemens (Siemens AG, Erlangen, Germany) 
or GE (GE Healthcare, Waukesha, WI, USA). LGE images covering the entire left 
ventricle were acquired approximately 15 minutes after injection of the gadolinium-based 
contrast agent using inversion recovery gradient-recalled echo sequence. Inversion time 
was manually adjusted to null the signal of viable myocardium and surface coil intensity 
correction was not generally applied across vendors and sites. Patients with LGE images of 
diagnostic quality acquired with IR (n=75) or paired IR and PSIR images (n=49) were 
included in this study.  

In LGE images, reference delineation of myocardial infarction was performed using the 
weighted method based on 1.8SD [26], with manual corrections by an experienced 
observer when needed. Hypo-intense regions within the region of gadolinium enhancement 
were considered as micro vascular obstruction and hence included in the analysis as 100 % 
scar. In the patient data, delineation of each data set was performed by one of three 
experienced observers with a quality control of the delineations by a second opinion and 
different opinions resolved in consensus between all three observers. In a subset of 17 
patients a second observer delineation of myocardial infarction was performed to evaluate 
inter-observer variability of the reference delineation. In experimental LGE images 
delineation was performed by one experienced observer using the same methodology in 
LGE images [26] and using a threshold of 8SD from remote in T1-weighted images [26], 
with manual corrections where needed and hypo intense regions included as microvascular 
obstruction. In TTC images myocardial scar was manually delineated as the non-stained 
parts of the myocardium.  
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Validation was performed for in-vivo IR, in-vivo PSIR, and ex-vivo high resolution T1-
weighted images against TTC for myocardial infarction imaged after seven days of 
reperfusion and against ex-vivo high resolution T1-weighted images. The new automatic 
algorithm was applied in multi-center, multi-vendor patient data with expert delineation as 
reference. Comparisons were performed using bias (mean ± standard deviation) and linear 
regression analysis (correlation coefficient). The applicability of the new automatic 
algorithm was assessed in paired IR and PSIR images using bias (mean ± standard 
deviation), linear regression analysis (correlation coefficient) and regional agreement DSC 
(mean ± standard deviation) for the new automatic algorithm, the original weighted 
algorithm and the threshold methods by EM, 2, 3 and 5 SD from remote, FWHM from 
minimum intensity as implemented by Amado et al. [22], FWHM from mean remote 
intensity as implemented by Hsu et al. [25], and Otsu's threshold [23].  
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Results and comments 

Software for cardiac image analysis (Paper I) 

The Segment software is a comprehensive software for cardiovascular image analysis 
which has been used in a wide range of publications. The software includes loading of 
DICOM images, image display, flow quantification with automatic vessel segmentation, 
automatic segmentation of the left ventricle and myocardial infacrtion, tools for manual 
delineation and a tool for general object segmentation. The Segment software was 
extended with possibility to write own dedicated plug-ins in Matlab and an automatic test 
script for validation. The test script is continuously refined as new features are added to the 
software and the output of the test script is compared to known accurate results from 
previously validated scientific publications.  

The automatic test script enabled an FDA 510 (k) application which was approved and the 
software is being used in hospitals both in Europe and USA. The test script is continuously 
expanded as the Segment software is improved and new algorithms developed. The 
algorithms developed in this thesis are all implemented in the software and made freely 
available upon publication of the papers.      

Left ventricular segmentation (Paper II) 

The new automatic left ventricular segmentation was validated against manual delineation 
in a test set of 49 subjects and compared to inter observer variability in a subset of 24 
patients. A typical example is shown in end diastole and end systole in Figure 10. Bias to 
manual delineation in the test set was EDV -11 ± 11 ml (R=0.96), 
ESV 1 ± 10 ml (R=0.95), EF -3 ± 4 % (R=0.86) and LVM 4 ± 15 g (R=0.87) (Figure 11). 
Regional agreement to manual delineation was for endocardial segmentation 
DSC 0.91 ± 0.03 and for epicardial segmentation DSC 0.93 ± 0.02. Inter observer 
variability of manual delineation in the second observer subset was EDV 10 ± 4 ml, 
ESV 5 ± 5 ml, EF 0 ± 2 % and LVM -7 ± 9 g. 

These results can be compared to the recent study by Suinesiaputra et al. [6] with manual 
delineation by seven expert observers from different sites compared to an algorithmically 
created consensus for 15 patients. A large range of bias to consensus was found for the 
seven observers EDV -37 to 40 ml, ESV -33 to 41ml, EF -12 to 13 % and LVM -44 to 60 g 
and the average precision amongst the observers was EDV 9 ml, ESV 9 ml, EF 4 % and 
LVM 11 g, similar to the variability of the new automatic algorithm.  
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In paper I the Segment software was presented with an automatic algorithm for 
segmentation of the left ventricle implemented by Heiberg et al. [24] in 2005 and bias to 
manual delineation was EDV -1 ± 11ml (R2=0.99) and LVM 4 ± 15 g (R2=0.94). 
Variability of EDV and LVM for the new automatic algorithm was similar to the previous 
algorithm whereas bias was higher for the new automatic algorithm, however, ESV and EF 
was not reported for the previous algorithm and the new automatic algorithm included 
detection of the outflow tract (Figure 10) and was validated in a larger set of data (Figure 
11).  

  

* *

ED

ES

Figure 10 Example of segmentation in end-diastole and end-systole.  

An example of automatic segmentation is shown in end-diastole (top panel) and end-systole (bottom panel). Each
panel shows the short axis stack covering the left ventricle from base to apex with endocardial (red) and
epicardial (green) segmentations. Note how the outflow tract has moved out of the two most basal slices in end-
systole (bottom panel, images marked ), compared to end-diastole (top panel) and that the algorithm has
automatically corrected for this long-axis motion 



  

37 

 

  

Figure 11 Validation of automatic left ventricular segmentation  

Agreement between automatic segmentation and manual delineation of the left ventricle. Automatic segmentation
plotted against end-diastolic volume (EDV, top left), end-systolic volume (ESV, top right), ejection fraction (EF,
bottom left) and left ventricular mass (LVM, bottom right) for 49 patients in the test set. Solid lines indicate line
of identity. 
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Myocardium at risk (Paper III and IV) 

In paper III and IV automatic segmentation of myocardium at risk was developed for T2-
weighted images and CE-SSFP images and compared to the previously suggested 
threshold methods. Figure 12 shows a typical example of automatic segmentation of MaR 
in T2-weighted images in comparison to inter observer variability of manual delineation 
and the threshold methods of 2SD from remote, FWHM from mean remote intensity [25] 
and Otsu's threshold [23].  

In paper III the automatic algorithm was validated against manual delineation in 47 
patients with T2-weighted images from a single center with two different scanner vendors 
with a bias to manual delineation of -2 ± 6 %LVM (R=0.81) and regional agreement of 
DSC 0.85 ± 0.07 (Figure 13). Inter observer analysis for manual delineation was 
performed in all 47 patients with a bias of -2 ± 5 %LVM with regional agreement 
DSC 0.90 ± 0.08. In paper IV the automatic algorithm was validated in 183 patients with 
CE-SSFP images from multi-center, multi-vendor studies with a bias to manual delineation 
of 1 ± 6 %LVM (R=0.83) and regional agreement DSC 0.85 ± 0.08 (Figure 14). Inter 
observer analysis of manual delineation was performed in 15 patients with a bias of 
0 ± 3 %LVM and regional agreement DSC 0.92 ± 0.04. Bias against SPECT was 
2 ± 7 %LVM (R=0.73) for the new automatic algorithm in comparison to 1 ± 5 %LVM 
(R=0.90) for the manual delineation in CE-SSFP.  

A) Segment MaR

B) Second observer delineation

C) 2SD from remote threshold

D) FWHM threshold

E) Otsu threshold

Figure 12 Typical segmentation result of myocardium at risk in T2-weighted images 

Typical MaR segmentation shown in red for the automatic Segment MaR (panel A), second observer delineation
(panel B), the threshold methods of two standard deviations from remote (2SD, panel C), full width half
maximum (FWHM, panel D) and Otsu (panel E), compared to manual delineation by the reference observer,
shown in yellow. The most basal slice is shown in the left of the panel and the most apical slice in the right of the
panel. Note the continuous appearance of the segmentation for Segment MaR and manual delineation compared
to the threshold methods of 2SD, FWHM and Otsu. 
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Figure 13 Validation of myocardium at risk in T2-weighted images.  

Agreement to manual delineation of myocardium at risk (MaR) as % of left ventricular mass (%LVM) for the
automatic algorithm Segment MaR (top left), and the threshold methods of two standard deviations from remote
(2SD, top right), full width half maximum(FWHM, bottom left) and Otsu's threshold (bottom right). Solid lines
indicate line of identity. 
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Figure 14 Validation of myocardium at risk in CE-SSFP images.  

Agreement to manual delineation of myocardium at risk (MaR) as % of left ventricular mass (%LVM) for the
automatic algorithm Segment MaR CE-SSFP (top left), and the threshold methods of two standard deviations
from remote (2SD, top right), full width half maximum (FWHM, bottom left) and Otsu's threshold (bottom right).
Solid lines indicate line of identity. 
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In both Paper III and Paper IV the threshold methods of 2SD, FWHM from remote and 
Otsu's threshold showed a higher bias, lower regression R-value and poorer regional 
agreement DSC than for the respective automatic algorithms of Segment MaR T2 and 
Segment MaR CE-SSFP (Table 1). The performance of both automatic algorithms was 
evaluated step by step or block by block. In paper III all steps of the algorithm was shown 
to decrease bias except the final step which smoothed the MaR region across slices to get a 
physiological appearance. In paper IV not all processing blocks of the algorithm decreased 
bias to manual delineation however regional agreement DSC was increased in each block. 
The results in Paper IV thereby highlighted the importance of using both regional 
agreement and bias of clinical parameters to evaluate performance. Figure 15 shows the 
block by block analysis of the new automatic algorithm in Paper IV. 

The first block of both methods was to use intensity classification by EM. However, it was 
only in Paper IV that the pure threshold by EM was superior to the thresholds of 2SD, 
FWHM and Otsu. This is probably due to the different constraint on the EM classification 
for T2-weighted images and CE-SSFP images. The constraint for T2-weighted images was 
set to keep initial classification of 80% of the pixels within the normal extent model as 
myocardium at risk whereas for segmentation of MaR in CE-SSFP the top 25% of the 
pixels within the maximal extent model were kept classified as MaR. For segmentation in 
T2-weighted images the MaR region is thereby likely to initially be overestimated. 
However, the remainder of the algorithm was built upon this threshold and a low bias and 
high regional agreement was found against manual delineation. The approach of initially 
overestimating a region and then applying a priori information has also been successfully 
implemented by Hsu et al. [25] for infarct segmentation in LGE images.  

Both algorithms for segmentation of myocardium at risk (Paper III-IV) showed a low bias 
and high regional agreement to manual delineation; close to inter observer variability for 
manual delineation by expert observers. A limitation to Paper III was that T2-weighted 
images from a single center were used and no independent reference method was used 
whereas, in Paper IV multi-center, multi-vendor CE-SSFP images were used and the 
automatic algorithm was evaluated against SPECT with equally low bias and high regional 
agreement.   
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Figure 15 Block by block analysis with both bias and DSC 

Block by block analysis of the new automatic algorithm for MaR quantification in CE-SSFP images. Incremental 
value of each block in the automatic segmentation algorithm analyzed by bias to manual delineation as %LVM
(left panel) and by regional agreement as Dice similarity coefficient DSC (right panel). Bias and DSC was 
calculated with segmentation based on only  intensity classification by Expectation Maximization and calculated
after the addition of the processing blocks of intensity correction, a priori on myocardium at risk (MaR) and 
infarct region from late gadolinium enhancement (LGE). For each block of the algorithm the upper limit of the
box indicate upper quartile, middle line indicate median, lower limit of box indicate lower quartile, whiskers 
indicate minimum and maximum and points (+) indicate outliers. Bias zero is shown as dotted black line in the
left panel, DSC above of 0.7 indicates good regional agreement, and is shown as dotted black line in the right
panel. Two sided paired t-test was performed for each block in comparison to previous block and first block, ns:
non significant, ***: p<0.0001. 

 

T2 weighted CE SSFP
Bias to
manual
delineation
[%LVM]

Regression
R value DSC

Bias to
manual
delineation
[%LVM]

Regression R
value DSC

Segment MaR 2 ± 6 0.81 0.85± 0.07 1 ± 6 0.83 0.85 ± 0.08
2SD threshold 8 ± 11 0.38 0.69± 0.14 13 ± 15 0.47 0.54 ± 0.27
FWHM threshold 21 ± 10 0.41 0.46± 0.14 22 ± 11 0.42 0.42 ± 0.21
Otsu threshold 5 ± 10 0.47 0.68± 0.10 10 ± 12 0.05 0.65 ± 0.12

Table 1 Validation of segmentation of myocardium at risk in T2-weighted and CE-SSFP images 

 Bias as % of left ventricular mass (%LVM), regression R-value and regional agreement as Dice similarity
Coefficient (DSC) for segmentation of myocardium at risk in T2-weighted (n=47 patients) and CE-SSFP images
(n=183 patients) for Segment MaR, and thresholds by two standard deviations from remote (2SD), full width half
maximum  (FWHM) and Otsu's threshold. Results are expressed as mean ± standard deviation.   
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Myocardial infarction (Paper V) 

The new automatic algorithm, called EWA, showed a bias to TTC of -1 ± 1 %LVM 
(R=0.99) in IR images, -2 ± 3 %LVM (R=0.88) in PSIR images and -1 ± 4 %LVM 
(R=0.75, p=0.08) in ex-vivo high resolution T1-weighted images (Figure 16). Bias to TTC 
by reference delineation was -1 ± 1 %LVM (R=0.999) in IR images, 0 ± 0 %LVM 
(R=0.994) in PSIR images and -1 ± 1 %LVM (R=0.99) in ex-vivo high resolution T1-
weighted images (Figure 16).  

Infarct size by the EWA algorithm was 15 ± 8 %LVM in IR images (n=124) with a bias of 
-2 ± 6 %LVM (R=0.81) compared to the expert delineation. In patients with paired IR and 
PSIR images (n=49) infarct size by the EWA algorithm was 17 ± 10 %LVM in both IR 
and PSIR images with a bias of -1 ± 5 %LVM (R=0.89) in both IR and PSIR images 
(Figure 17). Bias and variability to reference delineation was lower and regional 
agreement higher for the EWA algorithm than for the original weighted algorithm and 
thresholds by EM, 2SD, 3SD and 5SD from remote, FWHM from minimum intensity [22] 
and FWHM from mean intensity in remote [25] and Otsu's threshold [23]for segmentation 
in both magnitude and phase sensitive reconstruction (Table 2, Figure 18).  

The EWA algorithm was validated against TTC with bias similar to FWHM from 
minimum intensity as suggested by Amado et al. [22], the FACT algorithm by Hsu et al. 
[25] and the original weighted algorithm by Heiberg et al. [26]. However, in our multi-
center, multi-vendor patient data a larger variability was found for the original weighted 
algorithm, and thresholds by n-SD from remote and FWHM from minimum intensity 
compared to the original experimental validation [22, 26] and single center validation [26], 
highlighting the importance of validation in representative data such as in multi-center, 
multi-vendor patient studies. The new automatic algorithm was shown to have a low bias 
in both experimental validation and multi-center, multi-vendor patients studies for both 
magnitude and phase sensitive IR LGE images and in T1-weighted high resolution images 
which showed the capability of intensity classification by EM to adapt to different contrast 
and image quality.  
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Figure 16 Validation of the EWA algorithm against TTC 

 A) Scatter plots (left column) and Bland-Altman plots (right column) of infarct size expressed as
LVM for the EWA algorithm against infarct size by TTC in pigs with myocardial infarction imaged
after seven days (n=6) with IR images (top row), PSIR images (middle row) and ex-vivo high
resolution T1-weighted images (T1w, bottom row). Left column:  solid line = line of identity; dashed
line = regression line. Right column: solid line = mean bias; dashed line = mean ± two standard
deviations. 

B) Infarct segmentation by the EWA algorithm in one pig shown in IR LGE, PSIR LGE, high
resolution T1-weighted and corresponding TTC-stained slice. Infarct segmentation by the EWA
algorithm and by manual delineation in TTC images is shown in yellow. For the automatic EWA
segmentation the core of the infarct is shown in pink and microvascular obstruction is shown as the
red line within the infarct. Endocardium is delineated in red and epicardium in green.  
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Applicability in paired IR and PSIR LGE images from patients
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Figure 17 Applicability of the EWA algorithm in paired IR and PSIR LGE images from patients in
multi-center, multi-vendor studies: 

 A) Scatter plots (left column) and Bland-Altman plots (right column) of infarct size expressed as % LVM
for the EWA algorithm against infarct size by expert delineation in 49 patients from multi-center studies
with paired IR (top row) and PSIR LGE images (bottom row). Left column:  solid line = line of identity;
dashed line = regression line. Right column: solid line = mean bias; dashed line = mean ± two standard
deviations.  

B) Typical segmentation by the EWA algorithm in one patient with paired IR (top row) and PSIR images
(bottom row). The automatic EWA segmentation of the infarct is shown in yellow, the core of the infarct is
shown in pink and microvascular obstruction is shown as the red line within the infarct. Endocardium is
delineated in red and epicardium in green. 
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Magnitude IR Phase sensitive IR

Bias to reference
delineation
[%LVM] DSC core extent

Bias to
reference
delineation
[%LVM] DSC core extent

EWA algorithm 3 ± 5 0.81 ± 0.15 1 ± 5 0.79 ± 0.15
Original weighted algorithm 7 ± 8 0.67 ± 0.32 * *
EM threshold 6 ± 7 0.67 ± 0.14 6 ± 8 0.68 ± 0.14
2SD threshold 7 ± 7 0.69 ± 0.15 8 ± 6 0.70 ± 0.13
3SD threshold 0 ± 7 0.70 ± 0.21 2 ± 7 0.70 ± 0.19
5SD threshold 8 ± 8 0.50 ± 0.33 13 ± 10 0.36 ± 0.31
FWHM(min) threshold 8 ± 9 0.58 ± 0.20 9 ± 12 0.69 ± 0.17
FWHM(remote) threshold ** ** 8 ± 7 0.66 ± 0.19
Otsu threshold 8 ± 11 0.50 ± 0.35 10 ± 15 0.64 ± 0.20

Table 2 Bias and regional agreement in paired IR and PSIR LGE images from multi-center patient 
studies: 

Bias as % of left ventricular mass (%LVM), and regional agreement by DSC to expert delineation for the EWA
algorithm, the original weighted algorithm and the threshold method of EM, 2SD, 3SD and 5SD from remote, and
FWHM from minimum intensity, FWHM from mean intensity in remote  and Otsu's threshold  in paired
magnitude inversion recovery (IR) and phase sensitive inversion recovery (PSIR) images (n=49). * the original 
weighted algorithm was developed for IR images and therefore only applied in such. ** the FWHM remote 
threshold was developed for PSIR images as and therefore only applied in such.   
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Applicability in paired IR and PSIR LGE images
compared to previously suggested methods

Figure 18 Applicability in paired IR and PSIR LGE images from multi-center patient studies compared to 
previously suggested methods for MI quantification:   

Scatter plots of infarct size expressed as % of left ventricular mass (% LVM) against infarct size by expert
delineation in 49 patients for the EWA algorithm, the original weighted algorithm and the threshold method of 
Expectation Maximization (EM), (top row), 2SD, 3SD and 5SD from remote (middle row), and FWHM from
minimum intensity, FWHM from mean intensity in remote and Otsu's threshold (bottom row) in paired 
magnitude inversion recovery (IR) and phase sensitive inversion recovery (PSIR) LGE  images. Solid lines = line 
of identity. * the original weighted algorithm was developed for IR images and therefore only applied in such.  
** the FWHM remote threshold was developed for PSIR and therefore only applied in such.     
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Conclusions 

 

In this thesis four new algorithms has been developed for automatic segmentation in CMR; 
automatic segmentation of the left ventricle in cine SSFP, myocardium at risk in T2-
weighted images, myocardium at risk in contrast enhanced SSFP and myocardial infarction 
in IR and PSIR LGE images. All four algorithms were implemented in the freely available 
software Segment and all four algorithms were validated against reference delineation with 
a low bias and high regional agreement to reference delineation.  

The major conclusions of each study were 

I. Segment is a well-validated and comprehensive software for cardiovascular image 
analysis that has been used in a wide range of peer reviewed scientific 
publications. The software is freely available for research purposes provided that 
relevant original research related to the software are cited.  

II. The new automatic algorithm for segmentation of the left ventricle was validated 
in SSFP images from 49 subjects with bias comparable to inter observer 
variability of manual delineation. With a low level of user input and a regional 
agreement similar to previous methods the new automatic algorithm is one step 
closer to automatic segmentation applicable for clinical standard. 

III. The automatic algorithm for myocardium at risk in T2-weighted images was 
validated in 47 patients with a low bias and high regional agreement to manual 
delineation. Bias and variability was comparable to inter observer variability of 
manual delineation and the new algorithm was shown superior to the threshold 
methods of two standard deviations from remote, full width half maximum and 
Otsu with regards to both quantitative and regional agreement.   

IV. The automatic algorithm for myocardium at risk in CE-SSFP was validated 
against manual delineation in 183 patients from multi-center, multi-vendor studies 
and against SPECT in 16 patients. The new algorithm was shown to have a low 
bias to manual delineation and SPECT. Bias and variability was comparable to 
inter observer variability of manual delineation and the new algorithm was shown 
superior to the threshold methods of two standard deviations from remote, full 
width half maximum and Otsu with regards to quantitative and regional 
agreement.   

V. The new automatic algorithm, EWA, for segmentation of myocardial infarction 
was shown superior to previous threshold methods of standard deviations from 
remote, full width half maximum and Otsu. The EWA algorithm performed well 
for both magnitude and phase sensitive LGE images when validated both in 
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animal studies and multi-center, multi-vendor patient data. Thus, using EM and a 
weighted approach, as with the EWA algorithm, may serve as a candidate for a 
clinical standard in quantifying myocardial infarction.   

Overall conclusions drawn from the papers included in this thesis are 1) combining 
intensity classification by EM with a priori information was shown superior to previous 
methods and specifically to threshold methods commonly used, 2) it is important to assess 
both bias in clinical parameters and regional agreement in validation of new automatic 
algorithms and 3), it is important to use representative data for validation as in multi-
center, multi-vendor patient data.  
.  
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SOFTWARE Open Access

Design and validation of Segment - freely
available software for cardiovascular image
analysis
Einar Heiberg*, Jane Sjögren, Martin Ugander, Marcus Carlsson, Henrik Engblom, Håkan Arheden

Abstract

Background: Commercially available software for cardiovascular image analysis often has limited functionality and
frequently lacks the careful validation that is required for clinical studies. We have already implemented a
cardiovascular image analysis software package and released it as freeware for the research community. However,
it was distributed as a stand-alone application and other researchers could not extend it by writing their own
custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can
be reduced by making the software extensible, so that researchers can develop their own modules or
improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular
research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis
software package (Segment) and to announce its release in a source code format.

Results: Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography
(CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its
main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple
image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow,
tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability
analysis and image fusion tools. Here we present an overview of the validation results and validation procedures
for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the
software by implementing and using a test script that tests the functionality of the software and validates the
output. The software has been made freely available for research purposes in a source code format on the project
home page http://segment.heiberg.se.

Conclusions: Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is
freely available for research purposes provided that relevant original research publications related to the software
are cited.

Background
Applied medical research is becoming more and more
dependent on imaging for evaluation of the therapeutic
effects of new drugs or therapies. Thus, dedicated image
analysis software is needed for quantitative medical ima-
ging. Commercially available software often offers lim-
ited functionality and frequently lacks the validation that
is required for clinical studies. On the other hand, open
source software offers transparency and the ability to

modify the source code is well-suited to academic
research since it gives researchers the ability to see
exactly how the algorithms are implemented. The cur-
rent trend among research grant organisations is that
the results of government-funded projects should be
published in open access journals or should be other-
wise publicly available. Consequently, open access pub-
lishing has had a noticeable effect on the ease with
which scientific results become available.
Publication of results in peer-reviewed journals is the

traditional way of documenting and mediating progress
in science. For classical sciences such as medicine and
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physics, this is normally sufficient since the reader can
incorporate the information given in the publication
into his or her own research. However, medical image
analysis research often involves complex algorithms, and
one cannot easily incorporate the results into one’s own
research since the algorithms described in the scientific
papers usually need to be re-implemented for use by
other research groups [1]. Thus, we believe that releas-
ing medical image analysis software to other research
groups as freeware has the potential to have a profound
effect on medical image analysis and applied medical
imaging research. If the source code is reusable and
written in a standardized way, the application can be
modified or extended with new algorithms. This would
permit the development of new algorithms or refine-
ment of existing algorithms in order to satisfy require-
ments that arise in a clinical research setting.
Furthermore, scripting capabilities for medical image
analysis software may open up new lines of research
that were previously untestable, since manual analysis
would not have been feasible. For example, in a recent
study it was possible to classify 72 regional myocardial
sectors according to the neighbouring sectors and to
track them in 22 patients over 5 points in time, thus
generating over 50,000 classified data points [2]. This
task would have been impossible without advanced
scripting capabilities in the analysis software.
The Segment cardiac image analysis software package,

which is the subject of this article, was originally devel-
oped by the first author and was released in 2005 on a
freely available basis. Since then it has been downloaded
by more than 2,000 unique users in 74 countries, and
approximately 300 research groups. To date, it has been
referenced in more than 40 scientific publications. One
advantage of freely available medical image analysis soft-
ware is that it facilitates multi-centre clinical trials since
all the participating sites can use the same software. The
authors are aware of two ongoing multi-national and
multi-centre studies that are using Segment software.
Until recently, the software was distributed as a precom-
piled Windows application. If the software was available
in a source code format, other researchers could contri-
bute with their own modules and improvements. Image
processing experts could then directly integrate new fea-
tures into the software and make these improved algo-
rithms available to other researchers. In this way,
algorithm developers would be able to focus on algo-
rithm development and make use of the common basic
functionality of the software such as image loading,
image display, user interactions etc. We believe that this
may not only increase scientific productivity, but more
importantly it may also provide a bridge between the
very latest image processing ideas and applied clinical
research. Today, many very promising image processing

ideas never reach clinical routine because it is too cum-
bersome to write prototype software that is sufficiently
user-friendly to be used by clinical researchers. Thus,
the aim of this article is to present the design and vali-
dation of a cardiovascular image analysis software pack-
age and to announce its release in a source code format.

Implementation
What follows is an outline of some of the important
details concerning design and implementation of the
software.
A. Overview
The software can be divided into 14 main functional
blocks. An overview of how these building blocks com-
municate and relate to each other is given in Figure 1.
Each block is implemented as a separate Matlab file and
documented in detail in the technical manual. Closer
descriptions of each building block are beyond the
scope of this article. The grey blocks are not included in
the source code, but will be accessible as precompiled
code.
An overview of the image processing algorithms is

given in Table 1, an overview of manual image proces-
sing tools is given in Table 2, and finally the export,
import and reporting capabilities are described in Table
3. For each algorithm or functionality, appropriate refer-
ences to publications where the functionality has pre-
viously been described, if applicable.
Each loaded image or image stack (a single image

(2D), a time-resolved single image (2D+T), a stack of a
images covering a multi-slice image volume (3D) or a
time-resolved multi-slice image volume (3D+T)) is
stored as a struct, and has fields for storing contours,
image data, image orientation, resolution, image acquisi-
tion details, delineations, annotations and measure-
ments. Handles to the graphical user interface and some
temporary data are stored in a global data structure. A
set of low-level input and output user interface routines
was implemented to improve portability of the code. An
object-oriented system for graphical user interfaces is
employed to improve the ability to maintain the code
and simplify development of new user interfaces.
The software was designed with clinical research in

mind, and to maximise work flow and user-friendliness.
A screen shot of the main graphical user interface is
shown in Figure 2. The internal file format used by Seg-
ment was designed so that a complete patient examina-
tion can be stored together with all measurements and
annotations. This allows the clinical researcher to go
back and see how the delineations were made, which is
often not possible with commercially available software
packages. The internal file format also allows the user to
batch process multiple data sets and to export quantita-
tive data in a spreadsheet format.
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Figure 1 Overview of the main building blocks of Segment and transaction analysis. Red arrows indicate communication that is initiated
from a user interface. Green arrows indicate call of calculation sub-routines. Blue arrows indicate requests for graphical update or call of low-
level user input and output routines.
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Table 1 Automated or semi-automated image processing tools in Segment

Algorithm Dimensionality Reference Section

Ventricle segmentation

- Left ventricle 2D, 2D+T, 3D, 3D+T [5] C.

- Semi-automatic tools for right ventricle 2D, 2D+T, 3D, 3D+T * C.

Flow

- Phase unwrapping algorithm 2D+T, 3D+T, 3+3D+T * D.

- Phase background correction 2D+T, 3D+T, 3+3D+T * D.

- Automated vessel tracking 2D+T, 3D+T * D.

- Flow visualization 2D+T * D.

Delayed enhancement/viability

- Quantification of infarct size 3D [3,4] H.

- Infarct extent 3D [11,22] H.

General Object Segmentation

- Fast levelset 3D, 2D+T, 3D+T [25] I.

3D, 2D+T, 3D+T * I.

SPECT

- Left ventricle segmentation 3D [28] J.

- Defect size 3D # J.

- Gated SPECT segmentation 3D+T # J.

Dimensionality: 2D) works on two dimensional images, 2D+T) works on time resolved two dimensional images, 3D) works on three dimensional images, 3D+T)
works on time resolved three dimensional images, 3+3D+T) works on three component three dimensional time resolved images. Reference: [X]) previously
published in reference X, #) previously unpublished data, manuscript submitted, *) algorithm presented for the first time in this study. Section: Refers to the
Result section where functionality is described.

Table 2 Manual image processing tools in Segment

Algorithm Dimensionality Ref Section

Image visualization tools

- Contrast adjust + auto contrast 2D, 2D+T, 3D, 3D+T, 3+3D+T * B.

- Multi view/panel support 2D, 2D+T, 3D, 3D+T, 3+3D+T * B.

- Image plane intersection 3D, 3D+T, 3+3D+T * B.

Manual contouring tools 2D, 2D+T, 3D, 3D+T * E.

Region of interest analysis (ROI)

- Signal intensity quantification 2D, 2D+T, 3D+T * F.

- Histogram analysis 2D, 2D+T, 3D+T * F.

- Visual ROI analysis 2D, 2D+T * F.

- Area tools 2D,2D+T * F.

- Volume tools 3D,3D+T * F.

Linear measurements 2D, 2D+T * G.

Annotation points 2D, 2D+T, 3D, 3D+T * G.

Image fusion 3D [27] K.

Reformating image tools

- Multi planar reconstruction 3D, 3D+T * L.

- Resampling 2D, 2D+T, 3D, 3D+T * L.

Dimensionality: 2D) works on two dimensional images, 2D+T) works on time resolved two dimensional images, 3D) works on three dimensional images, 3D+T)
works on time resolved three dimensional images, 3+3D+T) works on three component three dimensional time resolved images. Reference: [X]) previously
published in reference X, #) previously unpublished data, manuscript submitted, *) algorithm presented for the first time in this study. Section: Refers to the
Result section where functionality is described.
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B. Programming environment
The software package is written in Matlab and, for time-
critical sections of the code, standard ANSI-C is used
coded with Mex-wrappers so that they can be called
from Matlab. The complete software project consists of
about 90,000 lines of Matlab code and about 10,000
lines of C code. In total, there are 44 separate user
interface panels. Proper version control software is

necessary when managing a programming project of this
size. Version control is managed using the open source
solution Subversion (SVN, http://subversion.tigris.org)
with Tortoise SVN http://tortoisesvn.tigris.org as a shell
extension. Feature requests and bug reports are mana-
ged using the web-based open source software Trac
http://trac.edgewall.org. Up until now, the whole appli-
cation has been compiled as a stand-alone application

Table 3 Export, import and reporting capabilities of Segment

Algorithm Dimensionality Reference Section

DICOM import and manipulation 2D, 2D+T, 3D, 3D+T * A

Movie recording capacity - * B

Wall thickening analysis 2D+T, 3D+T * C

Polar plot of function and infarct 3D, 3D+T [29] M

Batch export to statistical software - * N

Communication module to facilitate multicenter trials - * O

Plug-in capabilities - * P

Dimensionality: 2D) works on two dimensional images, 2D+T) works on time resolved two dimensional images, 3D) works on three dimensional images, 3D+T)
works on time resolved three dimensional images, 3+3D+T) works on three component three dimensional time resolved images, -) dimensionality not applicable.
Reference: [X]) previously published in reference X, #) previously unpublished data, manuscript submitted, *) algorithm presented for the first time in this study.
Section: Refers to the Result section where functionality is described.

Figure 2 Annotated screen shot of the main user interface of Segment. The circles indicate functional units in the user interface. Example
images from one patient have been loaded and displayed in different viewing panels. The yellow box around one image panel indicates the
current image stack.
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and distributed together with the Matlab Compiler Run-
time Environment. Upon publication of this article, the
source code, the user manual and the technical manual
will be available on the Segment home page http://seg-
ment.heiberg.se. Precompiled versions of Segment will
still be available for Windows and Linux (Ubuntu distri-
bution). Precompiled object files for the C code will be
made available for 32-bit and 64-bit Windows operating
systems, 32-bit and 64 bit Linux, and Mac OS X.
C. Stability, accuracy and validity
For clinical image analysis, the following requirements
of a software package are crucial: (1) stability, (2) high
performance, and (3) accuracy and validity.
To achieve stability, the software was designed so that

even when run-time errors occur, the application should
not crash and the user interface should not end up in a
state in which the user must to restart the application.
To optimise performance, effective memory manage-

ment and highly optimised routines are essential when
designing the software. Cardiac imaging is particularly
demanding since the data sets are frequently large and
multidimensional with regard to space and time. Great
care was taken to avoid duplicating image data unless
absolutely necessary. Also, time-critical routines were
optimised and coded in C.
To achieve accuracy and validity, validation considera-

tions were incorporated into the design process by pla-
cing all calculations of distances, areas, volumes and
region of interest mask generation in well-validated sub-
functions. Care was taken at the design phase to avoid
loss of accuracy due to loss of numerical precision. One
such consideration was to represent contours, measure-
ments and regions of interest with double-precision
floating point numbers. Surprisingly, this is not often
the case in commercially available software tools where
pixel-based approaches are frequently used, which can
be quite misleading–especially in small regions of inter-
est. Even with a robust underlying design, it remains a
challenge to maintain a strict quality policy that allows
use for clinical research. The solution that we have cho-
sen is to write an extensive test script that runs on
archived test data. The test script output from the soft-
ware is then compared with known accurate results
from previously validated scientific publications. To
ensure that the software maintains a high standard, the
complete software repository will only be made available
to a limited number of trained developers and incor-
poration of user-contributed code in the code base will
only be done after careful testing and quality control.
With the use of the test script, it is possible to quickly
test the entire software project and uncover unexpected
side effects when the code is modified. Coding standards
and quality policies are given in the technical manual,
which is available on the project home page.

D. Software maintenance
Medical imaging is developing rapidly and as a result
medical image analysis software must be continuously
refined and maintained. To ensure long-term mainte-
nance of the code, we have chosen a solution whereby a
company was formed to support and commercialise the
software for use in clinical practice or by commercial
users. Lund University is a shareholder in this company,
and researchers have and will continue to have access to
the current and future versions of the source code of
the software.
E. Terms of licence
Segment is freely available for academic investigational
research use (studies paid by government-derived funds
or donations) provided that the original research publi-
cations relevant to the software are cited. The software
is also free for educational purposes. Note that the
license terms do not generally include trials paid by
pharmaceutical companies. For commercial use, Seg-
ment is sold and supported by the company Medviso
AB, Lund, Sweden. Individuals or organisations are not
allowed to compile software products derived from Seg-
ment that are to be sold commercially or shipped
together with other commercial products without writ-
ten permission from Medviso AB.

Results
Segment is a full-featured software tool for cardiovascu-
lar image analysis and to date, it has been used in a
wide range of publications ranging from technical algo-
rithm descriptions [3-5] to applied research on the
effects of cardiac gene therapy [6], perfusion MRI [7],
perfusion multidetector CT [8], applied human physiol-
ogy [9], validation of an imaging technique in clinical
cardiology [10], analysis of infarction with MRI [11] and
MDCT [12], and analysis of microinfarction [7], regional
cardiac function [13], for the first time quantitatively
determine the infarct evolution in man [14], brain ima-
ging [15] and also experimental imaging in rodents [16].
The software has been developed with a view to its use
in cardiovascular magnetic resonance imaging (MRI)
and myocardial perfusion single-photon emission com-
puted tomography (SPECT), but in principle it can be
used for image analysis in any organ system, and it has
also been used for image analysis in computed tomogra-
phy (CT) and positron emission tomography (PET). The
following sections deal with the main features of Seg-
ment. Each section presents an overview of validation
results and procedures where applicable.
A. Loading of DICOM images
DICOM images from all major MRI vendors, including
both human and animal scanners (Bruker, GE, Philips,
Siemens and Varian) can be loaded into the software.
Correctness of the loaded image data is validated by the
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test script, which loads a large number of image types
from all vendors and compares the results to previously
manually validated results using ImageJ or proprietary
vendor software. Checks are made for correct image
sorting, image resolution, time increment between time
frames, slice thickness etc.
B. Image display
A large set of image display tools has been implemen-
ted. Examples of functionality include simultaneous dis-
play of multiple image stacks, viewing of contours and
regions of interest, image stack intersections, adjustment
of image contrast and brightness, and scrolling over
time and between image slices. Each image stack can
have its own colour scale or contrast settings, and 12-bit
color mapping is used internally. The user interface was
developed to maximise the image display area without
compromising user friendliness. Furthermore, multiple
monitors are supported to maximise the display area
and improve the work flow. Image display tools cannot
be evaluated quantitatively, but the functionality is care-
fully tested by the test script. Tools for recording movies
are also incorporated in the software. This greatly facili-
tates preparation of scientific presentations that include
movies.
C. Automated segmentation of cardiac ventricular
dimensions in MRI
Automated segmentation of the left ventricle in MRI
was the first image process algorithm implemented in
Segment. The algorithm has been described and vali-
dated [5,17]. There was an excellent correlation between
automated segmentation and manual segmentation for
end diastolic volume (EDV), R2 = 0.99, with a mean
error of -1 ± 11 ml, and left ventricle mass (LVM), R2 =
0.94, with a mean error of 4 ± 15 ml [5]. Tools for
semi-automatic delineation of the right ventricle have
also been incorporated. From the automatically or semi-
automatically segmented surfaces, wall thickness, wall
thickening, and fractional wall thickening can be calcu-
lated [5,17]. Typical computational time for a standard
Windows XP desktop PC (Intel Dual Core 2 GHz, Buss
speed 770 MHz and 2 GB RAM) is about 10 seconds
for a typical data set with 12 slices, and 30 timeframes.
D. Flow quantification
Flow measurements are of major importance in cardio-
vascular research, and velocity encoded phase contrast
(PC) magnetic resonance imaging (MRI) is the golden
standard for the in vivo quantification of blood flow in
large vessels. It has been shown that modern MRI scan-
ners may have phase offsets due to eddy currents, which
can have a large effect on clinical flow measurements
[18]. Segment has tools for compensation of linear and
higher-order background phase offsets due to eddy cur-
rents or Maxwell effects [19]. It is possible to use auto-
matic detection of stationary tissue based on the

temporal standard deviation of the phase or to use man-
ual regions of interest.
When imaging velocities higher than the chosen velo-

city encoding range, phase aliasing will occur and cause
wrap-around artifacts in the quantitative visualization of
velocities. Tools to compensate for such aliasing effects
have been implemented and used successfully [20]. The
algorithm detects temporal discontinuities in the phase,
and pixels with a temporal phase jump pair are
unwrapped. The tool also includes a graphical user
interface for manual correction.
Validation of flow measurements has been performed

both in phantom experiments and in patients. Phantom
measurements were performed using gravity-driven flow
at 5 different flow rates through a silicon gel with two
holes 26 mm in diameter. The true rate of flow was
measured by beaker and timer. The agreement between
measured flow and beaker and timer was excellent (y =
1.009 x - 2.2 ml, R2 = 1.00). Figure 3 shows a correlation
plot for this experiment. In patient images, one experi-
enced observer outlined the ascending and descending
aorta in 32 patients. In total, 64 regions of interest were
analysed both manually and using automated vessel deli-
neation. In the automated vessel delineation, the manu-
ally outlined vessel contour from the first time frame
was taken as input to the algorithm. In 4 of the 64 ves-
sels (6%), the automated vessel tracking failed due to
poor image contrast and imaging artifacts, and resulted
in a difference greater than 10 ml and large visual over-
estimation in vessel area. These vessels were excluded
from further analysis. Bias and variability between total
net flow for the manual vessel delineation and

Figure 3 Correlation plot where timer and beaker flow
measurements are plotted versus velocity encoded MR flow
quantification.
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automated vessel delineation was -0.5 ± 2.8 ml/beat for
the remaining 60 vessels. Figure 4 illustrates the differ-
ence in total net flow between automated and manual
vessel delineation. Total time for automated vessel
tracking is about 1.5 seconds on an ordinary desktop PC
for a typical data set with 35 time frames. Besides the
quantitative tools for flow mapping, there are also visua-
lisation tools for visualisation of flow profiles. Figure 5
illustrates vessel flow profiles over time. The first time

frame is at the top left, and time is increasing along
each row.
E. Tools for drawing object contours
All the necessary tools for manually drawing object con-
tours, and regions of interest, linear measurements and
annotations are implemented. The same tools can be
used transparently to correct automated delineated
object contours. All drawing tools include full undo cap-
abilities. All quantitative measures from object contours

Figure 4 Difference in total net flow comparing automated and manual vessel delineation. Bias ± 2 SD is indicated in the plot.

Figure 5 Example of vessel flow profile visualisation over time in the human aorta of a healthy volunteer. The first time frame is at the
top left and time is increasing along each row. Top right vessel is peak systolic time frame. Note the relative skewedness of the flow in the
healthy volunteer.
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rely on the same low-level quantification algorithms.
These low-level algorithms were validated using compu-
ter phantoms implemented in the software, and are
included in the test script.
F. Region of interest analysis
Tools for analysing regions of interest (ROIs) are imple-
mented. Details about signal intensities and area are
available. Areas of the regions of interest are measured
by accurate polygon calculations, but signal intensity
and signal intensity statistics are calculated by perform-
ing statistics on discrete pixels inside the ROI. Basic sta-
tistics such as mean intensity and standard deviations
over time are available. Typical calculation time for cal-
culating statistics for one ROI in a typical data set with
35 time frames is about 0.2 s on an ordinary Windows
XP desktop PC, Intel Dual Core 2 GHz, Buss speed 770
MHz and 2 GB RAM.
Image intensities are stored in Segment as single pre-

cision floating-point numbers and internally scaled into
the range 0-1. Signal intensity measurements are done
with single-precision arithmetics which give relative
errors of about 10-6). However, note that the DICOM
standard specifies storage of images using between 12
and 16 bits. For CT images, they are internally stored in
Segment as 16-bit signed integers and are converted to
single-precision floats before any arithmetics besides
general object segmentation or display.
Detailed statistics such as distribution are available as

histograms of pixel intensities. Measuring signal intensi-
ties in small ROIs using discrete pixels introduces a
sampling error. This sampling error is quantified in Fig-
ure 6 for circular ROIs. For regions of interest of a size
between 0 and 1 cm2, the corresponding error is 0.07 ±
2.5 for a pixel resolution of 1 mm, -0.17 ± 0.88 for a
pixel resolution of 0.5 mm, and -0.1 ± 0.27 for a pixel
resolution of 0.25 mm. Measurements for maximum
values, minimum values, and full-width half maximum
values, and minimum and maximum temporal deriva-
tives can also be exported. It is also possible to apply
smoothing prior to these calculations. The optional
smoothing applied is a user-adjustable Gaussian filter-
ing, and is implemented using Normalized Averaging to
account for edge effects at the beginning and end of the
signal.
G. Linear measurements and annotation points
Linear measurements can be made in single time frame
and the distances between start and end points are cal-
culated as the standard Euclidian distance. Distances
and positions are stored as double-precision floats, and
thus positions and distances can be measured with sub-
pixel accuracy. Annotation points, both static in time
and time-resolved, can be placed in the image volume,
and coordinates for these annotation points can be

exported. This also allows measurement of distances in
time-resolved three-dimensional space.
H. MRI viability analysis
Delayed contrast enhancement MRI can be used to dif-
ferentiate between viable and necrotic or fibrotic tissue,
owing to changes in the extracellular distribution
volume after irreversible cell injury [21]. Automated
tools for delineation of hyper-enhanced regions are
implemented and have been clinically validated [3] and
used in several studies, such as [22] and [11]. Hyper-
enhanced regions can be expressed in ml, as a percen-
tage of left ventricle mass, or as endocardial extent [22].
Furthermore, the method for delineation of hyper-
enhanced regions has been improved with a novel para-
digm to account for the partial volume effect, where the
hyper-enhanced pixels are weighted depending on the
image intensity [4]. The method was validated in 8 ani-
mals by in vivo MRI compared to high-resolution ex
vivo MRI. Further validation was performed in 40 com-
puter phantoms and 40 patients, by comparing the
results to manual delineations from three experienced
observers. Values of mean bias ± variability (or standard
deviation), expressed as a percentage of left ventricular
myocardium (%LVM), were -0.3 ± 1.3% (animals), -1.2 ±
1.7% (phantoms) and 0.3 ± 2.7% (patients). The new
weighted algorithm had lower variability than the pre-
viously published approach of dichotomously classifying
pixels as wholly infracted or not (2.7 vs 7.7%LVM, P <
0.01) and was not statistically significantly different from
inter-observer variability for bias (P = 0.31) or variability
(P = 0.38). Also, calculation of weighted infarct trans-
murality has been implemented and validated [23]. Typi-
cal calculation time for automated infarct delineation for
a typical data set with 12 slices is about 0.1 s on an
ordinary desktop PC.
I. General image object segmentation tools
Tools for segmentation of general objects have been
implemented, and they are based on an approximate
fast-level set algorithm [24]. The segmentation can be
exported as a three-dimensional mesh. This method has
been described in detail already [25]. Moreover, a novel
prototype-based segmentation algorithm has been devel-
oped. This algorithm is capable of learning how to seg-
ment an object based on few examples, typically 5-10.
This can be contrasted to traditional statistical model-
based approaches, which generally required 50-100
training cases. In a test case the aorta was delineated in
10 healthy volunteers imaged using a steady-state free
precession sequence, resolution 1.6 × 1.6 × 1.0 mm.
Five volunteers were used as a learning set and five as
test case. The volumetric error was 4 ± 5% when mea-
sured as volumetric error and 0.58 ± 0.06 mm when
measured as distance error.
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J. Left ventricle segmentation in SPECT images
Automated delineation of the left ventricle in myocardial
perfusion SPECT has been implemented. The result of
the fully automated segmentation in myocardial perfu-
sion SPECT images of 100 patients was compared to
that from manual planimetry of MRI images of the
same patients as a reference standard. The mean error
and variability compared to MRI was 6 ± 15%LVM,
which was significantly lower than for the commercially
available algorithm Quantitative Perfusion SPECT (QPS,
Cedars-Sinai Health Systems): 18 ± 19%LVM [26]. Typi-
cal time for fully automated LV segmentation is about
8 s on an ordinary desktop PC.
K. Image fusion
A tool for manual rigid body co-registration of image
stacks was implemented and was evaluated in an ima-
ging study where ex vivo data from 19 pigs using myo-
cardial perfusion SPECT and MRI were successfully
co-registered [27].
L. Reformatting image tools
General image tools such as multi-planar reconstruction,
re-sampling and rotation have been implemented. Accu-
racy of re-sampling was validated by re-sampling of
computer phantoms with known geometric properties.
The image quality of re-sampled images is maximized

by using bi-cubic interpolation with anti-aliasing filters.
Testing of the general image tools is included in the test
script.
M. Polar plots
Quantitative results of regional functional parameters
such as wall thickening and infarct transmurality from
viability analysis can be displayed as polar plots, includ-
ing segmentalisation of the left ventricle according to
the 17-segment model endorsed by the American Heart
Association [28]. Development and validation of this
functionality has been described [29], and an example of
how this can be used to register quantitative data in
consecutive MRI studies has been published [2].
N. Export capabilities
A wide range of exportation algorithms were implemen-
ted. Export direct to the system clipboard can be done
from most graphical user interface panels. Data in the
clipboard can then be pasted directly into statistical
spread-sheet software such as Microsoft Excel. Tools for
batch exportation from multiple files are also implemen-
ted. This avoids tedious manual interaction, and it also
eliminates manual mistakes in the exportation process.
O. Communication module
A module to facilitate communication between research
groups and to facilitate multi-national and multi-centre
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studies is included in the software. Since the software is
freely available to researchers, all participating sites can
use the same software. Images are loaded into the soft-
ware by the imaging site. Using the software, all images
from one CMR examination are (optionally) analysed,
anonymised, compressed and electronically transferred
to a central server set up by the coordinating centre.
The coordinating centre can control the total image

flow by distributing “site keys” to each participating site.
The site key includes instructions to the imaging centre
and tells the software where images from a specific site
should be stored. No passwords or usernames need to
be sent out to participating sites. The site key also con-
tains the encryption/decryption key.
P. Plug-in and scripting capability
Possibilities for writing one’s own dedicated plug-ins
have been implemented and details are given in the
technical manual. A detailed description is outside the
scope of this article. A plug-in template is available,
consisting of less than 30 lines of Matlab code, and user
plug-ins are available directly main menu in Segment.
Users have access to the complete internal data struc-
ture and have control over all elements of the graphical
user interface. Scripting can be performed directly in
Matlab, thus providing powerful scripting possibilities.
Q. Test script
Testing includes user interface, display, and low-level
algorithms such as automated LV segmentation, vessel
delineation, flow quantification, DE-MRI viability analy-
sis etc. Currently, the test script comprises 66 main test
cases and a total of 316 tests. The test script is continu-
ously refined as new features are added to the program.
A script that checks for broken call-back links in the
user interface is also implemented.

Discussion
Previous work on extendable software for medical ima-
ging can be divided into two major categories: (1) com-
plete applications, and (2) toolkits such as MITK http://
www.mitk.org[1]. These two different approaches to
extendable medical analysis software have their own
strengths and weaknesses. Early on, we considered
whether Segment should be a toolkit or a complete
application. It was decided that an application approach
would be most beneficial to clinical research since it will
allow the great majority of users to be able to use it
without having to write any source code. One pioneer-
ing and freely available extendable medical imaging soft-
ware package is ImageJ http://rsbweb.nih.gov/ij/, written
by Rasband at the U.S. National Institutes of Health.
ImageJ has become widely popular, probably because of
the open platform that allows users to write their own
plug-ins, thus rapidly increasing the applicability of the
software. Another open source general viewing and

image processing application that also has a complete
plug-in architecture is OsiriX http://www.osirix-viewer.
com/, which runs under Mac OS X. Yet another well-
known application is Slicer http://www.slicer.org/[30].
One example of extendable software for medical ima-
ging that is not open source is Analyze (AnalyzeDirect,
Lenexa, KS; http://www.analyzedirect.com/). The major-
ity of freely available medical research software
approaches have been designed for analysis of the brain,
such as SPM http://www.fil.ion.ucl.ac.uk/spm/software/
spm2/ and Internet Image Viewer http://james.psych.
umn.edu/iiV/[31], and not cardiovascular applications.
In summary, Segment differs compared to previous

approaches in that to our knowledge it is the first
source code extendable software application dedicated
for cardiac image analysis. It is also to our knowledge
by far the largest solution for applied medical imaging
written in Matlab, a computer language that is widely
used for image processing research. The strength of Seg-
ment lies in the combination of both a clinically applic-
able tool and a tool that easily can be further expanded
by image processing experts and directly be used for
clinical research.
Predicted use of Segment
We predict that Segment will continue to be used by
cardiovascular researchers and in research groups with
engineering teams. New functionality required to answer
clinical research questions will be implemented and
made available to the research community. The scripting
functionality will enhance and facilitate larger clinical
studies that are required to help cardiovascular imaging,
and cardiovascular MRI in particular, to become an out-
come-based imaging modality in medicine. Our hope is
that Segment will function as a bridge between research-
ers in the field of image processing and researchers in
cardiovascular research, both clinical and pre-clinical.
Importance of validation
Accurate and careful validation is of crucial importance
in cardiovascular research. One feature that makes this
project stand out from many other freely available medi-
cal image analysis software packages is the careful scien-
tific validation that is performed when developing the
new algorithms used in the software. However, one
must remember that a chain is no stronger than its
weakest link, and this is certainly true of quantitative
image analysis. One such example is that flow quantifi-
cation by MRI is validated in Segment, but it has been
shown that each MRI scanner is unique; different pulse
sequences have to be individually validated for each
scanner since some scanners can introduce large sources
of errors [18]. Another example is automated segmenta-
tion algorithms, which need to be supervised by trained
and experienced observers to achieve the highest accu-
racy in clinically relevant measures.
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Conclusions
Segment is a cardiovascular image analysis software
package that has been used in over 40 peer-reviewed
scientific publications, indicating that the software has
had an impact on cardiovascular research. Segment is a
well-validated and comprehensive package that is freely
available in an open source format for research
purposes.

Availability and requirements
The project name is Segment and the project home
page is http://segment.heiberg.se. Pre-compiled versions
of the software will be made available for Windows and
Linux. The Matlab source code version of the program
requires Matlab R2008a or later. The software is known
to run under Mac OS X, but at the moment this is not
supported. Segment is freely available for academic
investigational research use, provided that relevant origi-
nal research publications related to the software are
cited. The software is also free for educational purposes.
The terms of the licence do not generally include trials
paid by pharmaceutical companies. For commercial use,
Segment is sold and supported by Medviso AB, Lund,
Sweden. Individuals or organisations are not allowed to
compile software products derived from Segment that
are to be sold commercially or shipped together with
other commercial products without the express written
permission of Medviso AB.

Abbreviations
DE-MRI: Delayed Enhanced Magnetic Resonance Imaging; MRI: Magnetic
Resonance Imaging; LV: Left Ventricle; LVM: Left Ventricle Mass; PACS: Picture
Archiving Communication System; SPECT: Single Photon Emission Computed
Tomography; CT: Computed Tomography; PET: Positron Emission
Tomography.
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Introduction. Manual delineation of the left ventricle is clinical standard for quantification of cardiovascular magnetic resonance
images despite being time consuming and observer dependent. Previous automatic methods generally do not account for one
major contributor to stroke volume, the long-axis motion.Therefore, the aim of this study was to develop and validate an automatic
algorithm for time-resolved segmentation covering the whole left ventricle, including basal slices affected by long-axis motion.
Methods.Ninety subjects imaged with a cine balanced steady state free precession sequence were included in the study (training set
𝑛 = 40, test set 𝑛 = 50). Manual delineation was reference standard and second observer analysis was performed in a subset (𝑛 =
25). The automatic algorithm uses deformable model with expectation-maximization, followed by automatic removal of papillary
muscles and detection of the outflow tract. Results.Themean differences between automatic segmentation and manual delineation
were EDV −11mL, ESV 1mL, EF −3%, and LVM 4 g in the test set. Conclusions.The automatic LV segmentation algorithm reached
accuracy comparable to interobserver for manual delineation, thereby bringing automatic segmentation one step closer to clinical
routine. The algorithm and all images with manual delineations are available for benchmarking.

1. Introduction

Cardiovascularmagnetic resonance (CMR) imaging can pro-
vide diagnostic information about the left ventricle (LV) with
clinical parameters such as end-diastolic volume (EDV), end-
systolic volume (ESV), ejection fraction (EF), left ventricular
mass (LVM), stroke volume (SV), cardiac output (CO), peak
ejection rate, peak filling rate, and regional wall thickening.
To extract these clinical parameters current clinical practice is
to perform endocardial and epicardial delineationsmanually,
which is time consuming and therefore often only performed
in end-diastole and end-systole [1]. However, delineations in
two frames only will not give peak filling rate and peak ejec-
tion rate which require time-resolved segmentation. There is

also a need for segmentation throughout the cardiac cycle in
the evaluation of patients with dyssynchrony, for example, to
determine first and last segments with contraction [2]. With
a typical time resolution of 30 frames per heartbeat, time-
resolved manual delineation thus requires 15 times longer
than manual delineation in only end-diastole and endsystole.

Automatic segmentation is desirable to reduce both
analysis time and observer dependency. The continued need
for manual delineation indicates that previously suggested
automatic methods do not give satisfactory results. Often
they do not cover the whole LV and there is a need for
much manual interaction. Petitjean and Dacher [3] pointed
out that it is hard to conclude on superiority of any of the
previously proposed methods since the results are obtained
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on images with different quality and in different patient
populations. Also, the methods are validated using different
error measurements, both clinical parameters and image
processing error measurements. In midventricular slices the
errorswere by Petitjean andDacher concluded to be generally
satisfactory [3]. However, basal and apical slices generally
yield higher errors [4].

Inclusion of all basal slices in the segmentation is
important since the atrioventricular plane displacement is a
major contributor to cardiac pumping [5, 6]. The long-axis
motion causes the outflow tract to move in and out of the
imaging plane during a cardiac cycle. Thereby, segmentation
of endocardial and epicardial borders become more difficult
in the most basal slices and an automatic detection of the
long-axis motion is needed. To our knowledge three studies
have included slices with outflow tract [4, 7, 8]. However, in
the study by Jolly et al. [4] the detection of outflow tract was
not defined, in the study by Hu et al. [7] the outflow tract
was detected but the detection of long-axis motion was not
defined, and finally in the study by Codella et al. [8] the user
defined the most basal slice in both end-diastole and end-
systole and thus the long-axis motion was not detected by the
algorithm.

The aims of this study were (1) to develop an algorithm
for time-resolved LV segmentation covering the whole LV,
from the basal slices with outflow tract to the apex, and
(2) to validate this new algorithm with regard to clinical
parameters and image processing errors for comparison to
previous algorithms, and (3) to provide software as well as
images with manual delineation to enable benchmarking for
future algorithms.

2. Methods

2.1. Study Population and Design. In total 90 subjects were
included in the study, both patients referred for clinical
evaluation of known or suspected coronary artery disease
as well as healthy subjects and athletes. The subjects were
scanned using a 1.5T MR scanner (Philips Intera CV, Philips,
Best, The Netherlands) with a cardiac synergy coil. The
sequence used was a balanced steady state free precession
(bSSFP) sequence with retrospective ECG triggering. Typical
imaging parameters were repetition time 2.8ms, echo time
1.4ms, flip angle 60∘, SENSE factor of 2, spatial reconstructed
resolution of 1.4 × 1.4 × 8mm, and 30 reconstructed time
frames per cardiac cycle (acquired spatial resolution 2.3 ×
2.7 × 8mm and temporal resolution 50ms).

The subjects were divided into a training set (𝑛 = 40)
and a test set (𝑛 = 50). The training set was used for
the development and optimization of the algorithm, and the
test set was used to validate the algorithm. The training set
consists of 20 patients, 13 healthy volunteers, and 7 athletes.
The test set consists of 20 patients, 20 healthy volunteers,
and 10 athletes. Manual segmentation was performed for all
slices in end-diastole and end-systole in both the training
set and the test set by an experienced clinician (ErH with
14 years of CMR experience). The training set was reviewed
for consensus by another experienced clinician (HA with 20
years of CMR experience). A subset of 25 subjects from the

test set (10 patients, 10 healthy volunteers, and 5 athletes) was
used for second observer analysis, by another experienced
clinician (MC with 14 years of CMR experience).

Image quality was representative of images likely found
in daily clinical routine. Differences in clinical left ventricular
parameters EDV, ESV, EF, LVM, SV, andCO between patients
and healthy subjects in the test set were nonsignificant
for all parameters except SV. The training set and test set
with manual delineations are available upon request to the
corresponding author to enable direct comparison to other
methods.

2.2. Automatic Segmentation Algorithm. An automatic algo-
rithm was developed for time-resolved segmentation of the
endocardial and epicardial borders of the LV covering all
ventricular slices from themost basal slices with outflow tract
to the apex. The user input required by the algorithm is the
definition of slices to analyze as the most basal slice and most
apical slice containing any myocardium.The slices to analyze
were in this study automatically selected to be the same as
selected for the reference manual delineation. The algorithm
was implemented in the freely available cardiac image analy-
sis software Segment (http://segment.heiberg.se/) [9].

The algorithm is based on a deformable model frame-
work. Deformable model is a segmentation method based on
the idea of deforming a model to the location and shape of
minimal energy in a force field. The model to deform is in
this study a model of either the endocardial or the epicardial
border. The initialization of the model is based on the image
to segment and the initialization is further described in Step
3 of the algorithm. The force field which deforms the model
consists of a weighted sum of image-dependent and model-
dependent forces. The image-dependent forces are a balloon
force image, calculated from image intensities and an edge
force image, based on edge detection. The model-dependent
forces are based on the curvature within the slice, between
adjacent slices and between time frames of the cardiac cycle.
The weighting of the forces in the deformable model was
optimized based on the training set to obtain parameters
suitable for the image type and quality in the training set.
The optimization is further described in Deformable Model
Optimization section.

Step 1 of the automatic segmentation algorithm is to
define the center of the left ventricle, which is needed to
calculate the balloon images in Step 2 and to initialize the
deformable model in Step 3. Steps 4 and 5 use the deformable
model for endocardial and epicardial segmentation. In Steps
6–8 the segmentation resulting from the deformable model is
modified to account for the papillaries and the outflow tract.
All steps are further described below.

The steps of the algorithm are as follows:

(1) definition of the left ventricular center point,
(2) calculation of balloon image,
(3) initialization of segmentation,
(4) endocardial segmentation,
(5) epicardial segmentation,
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(6) exclusion of detached papillaries,

(7) detection of outflow tract,

(8) exclusion of attached papillaries.

Definition of the Left Ventricular Center Point (Step 1). First
the center of the whole heart is defined from the largest bright
region by smoothing and thresholding the image. The center
of the left ventricular cavity is then defined as the center of
gravity of the large, bright region closest to the right of the
whole heart center point.

Calculation of Balloon Image (Step 2). The balloon force,
which is the most important part of the deformable model, is
defined using an expectation maximization (EM) algorithm.
The balloon force drives the expansion and contraction of
the curve and thereby should be a distinction between what
to include and exclude in the endocardial and epicardial
segmentations.The balloon image is mapped from the image
intensities by estimating the distribution of intensities in the
images. For endocardial segmentation the intensity distribu-
tions for blood and myocardium are estimated. In addition
for epicardial segmentation, the intensity distribution of
tissues surrounding the left ventricle is estimated. An EM-
algorithm was utilized to estimate assumed Gaussian distri-
bution of intensities for blood,myocardium, and surrounding
tissues. As an initialization to the EM-algorithm, the mean
and standard deviation for the intensity of blood were
estimated in a cylinder with radius of 10mm placed at the
left ventricular center point. The endocardial balloon image
was calculated as the Gaussian distribution for blood divided
by the sum of the Gaussian distributions for blood and
myocardium. The epicardial balloon image was calculated as
theGaussian distribution formyocardiumdivided by the sum
of the Gaussian distributions for blood, myocardium, and
surrounding tissues.The balloon force is positive for intensity
values to include and negative for intensities to exclude and
the balloon force was rescaled to the interval −1 to 1. Figure 1
shows the results from calculation of the balloon image.

Initialization of Segmentation (Step 3). To initialize both the
endocardial and epicardial segmentations the endocardial
balloon image is used. The endocardium is initialized at
an estimated midmural center line and the epicardium
is initialized as an estimate of the epicardial border. The
initialization is divided into five substeps.

(1) Thresholding the endocardial balloon image at zero
to find regions representative of blood. Balloon
force zero is representative of the probability of
myocardium being equal to the probability of blood.

(2) Finding the left ventricular blood pool as a region
in the thresholded image which surrounds the left
ventricular center point.

(3) Estimating the endocardial border as the convex hull
of the left ventricular blood pool. The convex hull
is an estimation of the endocardial border excluding
papillaries.
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Figure 1: Calculation of balloon force (Step 2). A midventricular
slice of a short-axis stack (a) and the endocardial (b) and epicardial
(c) balloon force images calculated in Step 2 with the automatic
algorithm. The color scale indicates how the deformable model
should expand to include pixels with positive values (red) and
contract to exclude pixels with negative values (blue).

(4) Estimating the left ventricular wall thickness in each
time frame by finding the mean distance from the
initial curve to the right ventricular blood pool.

(5) (a) Expanding the endocardial border estimated in
Step 3 by a half wall thickness to get the endocardial
initialization.
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(b) Expanding the endocardial border estimated in
Step 3 by one full wall thickness to get the epicardial
initialization.

Figure 2 shows the initialization of endocardium and epi-
cardium.

Endocardial Segmentation (Step 4). For endocardial segmen-
tation, the deformablemodel is used with endocardial initial-
ization, endocardial balloon force, andweighting of the forces
optimized for endocardial segmentation. The deformable
model formalism used has previously been described [10].
In short, in the deformable model, the node forces are
normalized and projected onto the curve normal and the
parameterization of the node points is kept equidistant.
The deformable model includes balloon force, edge force,
curvature force, temporal acceleration, and damping forces.

Epicardial Segmentation (Step 5). For epicardial segmenta-
tion, the deformable model is used with epicardial initial-
ization, epicardial balloon force, and weighting of the forces
optimized for epicardial segmentation.The epicardial balloon
force is negative for blood and other tissues surrounding the
myocardium and hence the deformable model will contract
to not include any blood. To get an epicardial segmentation
which expands outwards from the endocardial segmentation
the epicardial balloon force was modified to be zero for all
pixels inside the endocardium.

Exclusion of Detached Papillaries (Step 6). For measurement
of ventricular volumes, the clinical standard is to exclude the
papillaries from themyocardium and therefore the algorithm
should also exclude the papillaries. Since papillary muscles
have the same intensity as myocardium and the main driving
force in the deformable model, the balloon force, is based on
intensity, the algorithm may have difficulties with excluding
the papillaries from the myocardium hence including the
papillaries within the endocardial segmentation. The exclu-
sion of papillaries is divided into two steps, this step and
Step 8. In this step, detached papillaries are included inside
the endocardial segmentation by taking the convex hull of
the endocardial segmentation and refining the segmentation.
The segmentation is refined by using the deformable model
with a modified endocardial balloon force. The endocardial
balloon force is modified by setting the balloon force to zero
for papillaries, which are detected as pixels inside the convex
hull with a negative balloon force.

Detection of Outflow Tract (Step 7). The deformable model
gives endocardial and epicardial segmentation in all selected
slices and time frames. Thereafter, long-axis motion and
outflow tract are detected and in the basal slices the segmen-
tation is adjusted accordingly. The detection of the long-axis
motion is based on detecting sectors in the basal slices for
which the intensities between the endocardial and epicardial
segmentation are not typical for myocardium and sectors
with a mean wall thickness of less than 2 millimeters. Basal
slices were for detection of outflow tract defined as the
most basal 40% of the ventricular length in end-diastole
and all slices were divided into 24 sectors circumferentially.

(a)

(b)

Figure 2: Initialization of segmentation (Step 3). The initializations
of endocardial (red) and epicardial (green) borders resulting from
Step 3 in the algorithm, shown in end-diastole (a) and end-systole
(b) in themidventricular slice also used for Figure 1.The endocardial
initialization is an estimation of themidmural line and the epicardial
initialization is an estimation of the epicardial border.

The intensities in basal slices are compared to intensities in
all slices. Sectors with a mean intensity 2 SD above the mean
are marked as sectors to remove. Sectors can only be marked
as sectors to remove if the sectors are also removed in a
more basal slice. Sectors to be removed are smoothed over
time and circumferentially in each slice and a morphological
opening is performed to get a cohesive region to remove.
To remove the marked sectors a straight line is drawn for
both endocardium and epicardium. Thereby a D-shaped
segmentation is obtained after adjustment for presence of
outflow tract. Figure 3 shows the segmentation in a basal slice
before and after the detection of outflow tract.

Exclusion of Attached Papillaries (Step 8). To exclude papil-
laries which are closely attached to the left ventricular wall
in the segmentation, it is not sufficient to take convex hull
and refine as in Step 6 since there is no blood volume which
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(a)

(b)

Figure 3: Detection of outflow tract (Step 7). The endocardial
(red) and epicardial (green) segmentations are shown prior to the
detection of outflow tract in Step 7 (a) and after adjustment of
segmentation for presence of outflow tract (b) in the same basal slice
in end-diastole.

can guide the deformable model on where to expand the
segmentation. Therefore, in this step an expansion of the
endocardial segmentation is calculated based on a constant
papillary volume over time and a similar position of the
papillary muscles over time. Sectors with a lower papillary
volume inside the endocardial segmentation than in end-
diastole are expanded to include more papillary volume. The
long-axis displacement found when detecting the outflow
tract in Step 7 is used to map slices in end-diastole to the
corresponding slice in all other timeframes. Expansion of
the endocardial segmentation is restricted to slices below the
outflow tract in order to not falsely take the mitral valve into
account as papillary muscle.

2.3. DeformableModel Optimization. Weighting of the forces
in the deformable model was optimized with a steepest-
descent method in a 2-factorial design by using the images
in the training set with manual delineation as reference

standard. For the endocardial segmentation the error to min-
imize was the sum of the relative errors of the end-diastolic
volume, and the relative number of falsely segmented pixels
in end-diastole by comparing the automatic segmentation
to manual delineation. Only the end-diastolic errors were
included since the errors in end-systole are largely influenced
by the presence of papillary muscles which is not especially
accounted for within the deformable model.

For the epicardial segmentation the error to minimize
in the optimization was the sum of the relative errors of
left ventricular mass, in end-diastole and end-systole, and
the relative number of falsely segmented pixels, in end-
diastole and end-systole. In order to not take into account
any volumetric errors in left ventricular mass given by
the automatic endocardial segmentation, the left ventricular
mass was during optimization calculated using the manual
delineation of endocardium.

2.4. Statistical Analyses. In the test set the difference between
manual delineation and automatic segmentation was com-
puted for the clinical parameters EDV, ESV, EF, LVM, SV, and
CO as well as the image processing error measurements dice
similarity coefficient (DSC) [11] and point to curve distance
(P2C).

The errors for clinical parameters are given both as abso-
lute errors and as percentage of the result from the manual
delineation. Paired 𝑡-test was performed with significance
level 𝑃 < 0.05 to test for difference compared to manual
delineations. A linear regression was performed for the clin-
ical parameters and a regression 𝑅-value and corresponding
𝑃-value were calculated. The DSC is calculated as two times
the volume of the intersection of two regions divided by
the sum of the volume for those regions [11]. The DSC is
therefore 0 if the regions do not overlap and 1 if the regions
overlap perfectly.TheP2C errorwas calculated as the distance
between two borders in each slice and time frame where both
borders were present. To calculate the distance both borders
were resampled to be represented by 80 points spaced at
every 4.5 degrees. The DSC and P2C errors were calculated
between automatic segmentation and manual delineation for
both endocardial and epicardial segmentation separately.The
DSC and P2C error were calculated as a mean over all slices
in both end-diastole and end-systole as well as separately
for end-diastole and end-systole and separately for basal,
midventricular, and apical slices. Basal, midventricular, and
apical slices were defined as one third each of the ventricular
length in both end-diastole and end-systole. All errors were
reported as mean ± SD.

In the subset for which second observer manual delin-
eation was performed the same error calculations as for
the full test set were performed for automatic segmentation
versus reference manual delineation and for second observer
manual delineation versus reference manual delineation.

3. Results

Automatic segmentation was performed and compared to
manual delineation in the test and compared to interob-
server variability in a second observer subset. In one patient
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Figure 4: Example of segmentation in end-diastole and end-systole. An example of automatic segmentation is shown in end-diastole (a)
and end-systole (b). Each panel shows the short axis stack covering the left ventricle from base to apex with endocardial (red) and epicardial
(green) segmentations. Note how the outflow tract has moved out of the two most basal slices in end-systole (b, images marked ∗), compared
to end-diastole (a) and that the algorithm has automatically corrected for this long-axis motion.

the automatic segmentation failed due to a severe bright fold-
in artifact connecting the right and left ventricle.This patient
was excluded from further analysis resulting in a test set
of 49 patients and a second observer subset of 24 patients.
Figure 4 shows an example of automatic segmentation in all
slices in end-diastole and end-systole. A comparison between
automatic segmentation and manual delineation can be seen
in Figure 5 for a basal, midventricular, and apical slice in
end-diastole and end-systole. In the additional file a time-
resolved 3D-rendering of left ventricle shows the long-axis
motion of the epicardial surface resulting from the automatic
segmentation algorithm. The differences between automatic
segmentation and manual delineation for clinical parameters
were EDV −11±11mL (𝑅 = 0.96), ESV 1±10mL (𝑅 = 0.95),
EF−3±4%(𝑅 = 0.86), LVM 4±15 g (𝑅 = 0.87), SV−12±8mL
(𝑅 = 0.92), and CO −0.7 ± 0.5 L/min (𝑅 = 0.94) (Table 1,
Figures 6 and 7). The image processing error measurements
were for endocardial segmentation DSC = 0.91 ± 0.03 and
P2C = 2.1 ± 0.5mm and for epicardial segmentation DSC =
0.93±0.02 and P2C = 2.1±0.5mmasmean over all slices and
both end-diastole and end-systole (Table 2). End-diastolic
image processing error measurements performed better than
end-systolic (Table 2).Midventricular slices performed better
than basal and apical slices (Table 3).

In the subset for second observer analysis the differences
between second observer manual delineation and reference
manual delineation were EDV 10 ± 4mL, ESV 5 ± 5mL, EF
0 ± 2%, LVM −7 ± 9 g, SV 5 ± 6mL, and CO 0.3 ± 0.4 L/min
compared to the differences between automatic segmentation
and the reference manual delineation which were EDV −9 ±
10mL, ESV 3 ± 8, EF −3 ± 3%, LVM 2 ± 16 g, SV −12 ± 8mL,
and CO −0.7 ± 0.4 L/min (Table 4). The results for the image
processing error measurements DSC and P2C for the second
observer subset are given in Tables 5 and 6.

Table 1: Clinical parameters in test set. Results for clinical param-
eters in the full test set (𝑛 = 49) as differences between automatic
segmentation and manual delineation.

Absolute
difference

Relative
difference 𝑃 value

EDV −11 ± 11mL −6 ± 6% <0.01
ESV 1 ± 10mL 1 ± 13% 0.57
EF −3 ± 4% −5 ± 7% <0.01
LVM 4 ± 15 g 4 ± 14% 0.07
SV −12 ± 8mL −11 ± 8% <0.01
CO −0.7 ± 0.5 L/min −11 ± 8% <0.01
Absolute and relative values are expressed asmean± SD. EDV=end-diastolic
volume, ESV = end-systolic volume, EF = ejection fraction, and LVM = left
ventricular mass.

Table 2: Image processing error measurement in test set. Image
processing error measurements in the full test set (𝑛 = 49) as
dice similarity coefficient (DSC) and point to curve (P2C) between
automatic segmentation and manual delineation.

Dice similarity
coefficient
(DSC)

Point to curve
(P2C)

Endocardium overall 0.91 ± 0.03 2.1 ± 0.5mm
Endocardium ED 0.93 ± 0.03 1.9 ± 0.6mm
Endocardium ES 0.85 ± 0.04 2.3 ± 0.5mm
Epicardium overall 0.93 ± 0.02 2.1 ± 0.5mm
Epicardium ED 0.94 ± 0.02 2.1 ± 0.6mm
Epicardium ES 0.91 ± 0.03 2.2 ± 0.7mm
Differences are expressed as mean ± SD. For a perfect overlap between the
regions DSC should be 1 and P2C should be 0. ED = end diastole, ES = end
systole.
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Figure 5: Automatic segmentation compared to manual delineation in a basal, midventricular and apical slice. Automatic segmentation
(endocardium in red and epicardium in green) and manual delineation (endocardium in pink and epicardium in light blue) shown in end-
diastole ((a), (b), and (c)) and end-systole ((d) (e), and (f)) for the most basal slice with outflow tract moving out of the imaging plane ((a),
(d)), a midventricular slice with papillaries ((b), (e)) and an apical slice with minimal lumen in end-systole ((c), (f)).

Table 3: Image processing error measurements in test set divided
into slice sections. Image processing error measurements in the
full test set (𝑛 = 49) as dice similarity coefficient (DSC) and
point to curve (P2C) between automatic segmentation and manual
delineation.

Dice similarity
coefficient
(DSC)

Point to curve
(P2C)

Endocardium basal 0.88 ± 0.06 2.7 ± 1.0mm
Endocardium midventricular 0.94 ± 0.02 1.6 ± 0.4mm
Endocardium apical 0.89 ± 0.03 2.1 ± 0.7mm
Epicardium basal 0.89 ± 0.05 3.3 ± 1.2mm
Epicardium midventricular 0.96 ± 0.02 1.3 ± 0.5mm
Epicardium apical 0.92 ± 0.03 2.2 ± 0.8mm
Differences are expressed as mean ± SD. For a perfect overlap between the
regions DSC should be 1 and P2C should be 0. Basal, midventricular, and
apical sections are defined as 1/3 each of the ventricular length in end diastole
and end systole separately.

4. Discussion

We have developed an automatic algorithm for time-resolved
LV segmentation inmagnetic resonance cine balanced steady

state free precession (MRSSFP) images. The segmentation
is performed in all time frames and all ventricular slices
including the slices in which the mitral valve plane and
outflow tract move in and out of the slice during a heartbeat.
The onlymanual user input is definition of themost basal and
most apical slices including any myocardium in end-diastole.
This study brings a state-of-the-art left ventricle segmentation
tool to applied clinical research, as the software and source
code are provided in open access to researchers. Furthermore,
both algorithm and images with ground truth manual delin-
eations are made available for benchmark against future LV
segmentation algorithms.

The major algorithmic contributions towards a clinically
applicable automatic segmentation method in this study is
(1) the use of an EM-algorithm to calculate the distinction
between blood, myocardium, and tissues surrounding the
heart, (2) removal of papillary muscles by convex hull
expansion and expansion to get constant papillary volume,
(3) the detection of the outflow tract whenmoving in and out
of the imaging plane, and (4) usage of an optimization step to
tune otherwise arbitrary set parameters to the images used.

The algorithmwas validated in a test set of 49 subjects and
both the clinical parameters, EDV, ESV, EF, and LVM, and the
image processing error measurements, DSC and P2C, were
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Figure 6: Correlations between automatic segmentation and manual delineation in the test set. Automatic segmentation plotted against
manual delineation for end-diastolic volume (EDV, (a)), end-systolic volume (ESV, (b)), ejection fraction (EF, (c)), left ventricular mass
(LVM, (d)), stroke volume (SV, (e)) and cardiac output (CO, (f)). The line indicates the line of identity.
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Figure 7: Bias between automatic segmentation and manual delineation in the test set. Differences between automatic segmentation and
manual delineation plotted against manual delineation for end-diastolic volume (EDV, (a)), end-systolic volume (ESV, (b)), ejection fraction
(EF, (c)), left ventricular mass (LVM, (d)), stroke volume (SV, (e)) and cardiac output (CO, (f)). Solid line indicates mean and dashed lines
indicate mean ± 2SD.
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Table 4: Clinical parameters in second observer subset. Differences for clinical parameters in the second observer subset (𝑛 = 24) for second
observer manual delineation versus manual reference delineation and for automatic segmentation versus manual reference delineation.

Automatic segmentation versus manual reference Second observer versus manual reference
Absolute difference Relative difference 𝑃 value Absolute difference Relative difference 𝑃 value

EDV −9 ± 10mL −5 ± 5% <0.01 10 ± 4mL 6 ± 2% <0.01
ESV 3 ± 8mL 4 ± 12% 0.1 5 ± 5mL 6 ± 6% <0.01
EF −3 ± 3% −6 ± 6% <0.01 0 ± 2% −1 ± 4% 0.44
LVM 2 ± 16 g 3 ± 13% 0.55 −7 ± 9 g −7 ± 8% <0.01
SV −12 ± 8mL −10 ± 6% <0.01 5 ± 6mL 5 ± 5% <0.01
CO −0.7 ± 0.4 L/min −10 ± 6% <0.01 0.3 ± 0.4 L/min 5 ± 5% <0.01
Absolute and relative difference expressed as mean ± SD. EDV = end-diastolic volume, ESV = end-systolic volume, EF = ejection fraction, and LVM = left
ventricular mass.

Table 5: Image processing error measurements in second observer subset. Image processing error measurements in the second observer
subset (𝑛 = 24) as dice similarity coefficient (DSC) and point to curve (P2C) for second observer manual delineation versus manual reference
delineation and for automatic segmentation versus manual reference delineation.

Automatic segmentation versus manual reference Second observer versus manual reference
DSC P2C DSC P2C

Endocardium overall 0.91 ± 0.02 2.0 ± 0.4mm 0.95 ± 0.01 1.2 ± 0.2mm
Endocardium ED 0.93 ± 0.02 1.8 ± 0.5mm 0.96 ± 0.01 1.1 ± 0.3mm
Endocardium ES 0.85 ± 0.04 2.4 ± 0.5mm 0.92 ± 0.03 1.4 ± 0.3mm
Epicardium overall 0.93 ± 0.01 2.2 ± 0.4mm 0.96 ± 0.01 1.2 ± 0.33mm
Epicardium ED 0.94 ± 0.01 2.0 ± 0.5mm 0.97 ± 0.01 1.1 ± 0.4mm
Epicardium ES 0.91 ± 0.02 2.4 ± 0.6mm 0.95 ± 0.01 1.4 ± 0.4mm
Difference are expressed as mean ± SD. For a perfect overlap between the regions DSC should be 1 and P2C should be 0. ED = end diastole, ES = end systole.

Table 6: Image processing error measurements in second observer set divided into slice sections. Image processing error measurements in
the second observer subset (𝑛 = 24) as dice similarity coefficient (DSC) and point to curve (P2C) for second observer manual delineation
versus manual reference delineation and for automatic segmentation versus manual reference delineation.

Automatic segmentation versus manual reference Second observer versus manual reference
DSC P2C DSC P2C

Endocardium basal 0.88 ± 0.06 2.7 ± 1.1mm 0.94 ± 0.02 1.5 ± 0.4mm
Endocardium midventricular 0.94 ± 0.01 1.6 ± 0.4mm 0.96 ± 0.01 1.1 ± 0.3mm
Endocardium apical 0.90 ± 0.03 2.0 ± 0.7mm 0.94 ± 0.01 1.1 ± 0.3mm
Epicardium basal 0.89 ± 0.05 3.3 ± 1.2mm 0.95 ± 0.02 1.5 ± 0.6mm
Epicardium midventricular 0.96 ± 0.01 1.3 ± 0.4mm 0.97 ± 0.01 0.8 ± 0.2mm
Epicardium apical 0.92 ± 0.02 2.3 ± 0.7mm 0.95 ± 0.01 1.4 ± 0.5mm
Difference are expressed as mean ± SD. For a perfect overlap between the regions DSC should be 1 and P2C should be 0. Basal, midventricular, and apical
sections are defined as 1/3 each of the ventricular length in end diastole and end systole separately.

reported to allow comparison to errors reported in previous
studies. The proposed algorithm has a DSC and P2C error
similar to the ones reported in previous studies [3, 4, 12–14].
However, direct comparison between studies is difficult due
to differences in methodology. In previous studies it is not
defined either how the basal sliceswere selected, or if the basal
slices were excluded or defined separately for end-diastole
and end-systole thereby not including the long-axis motion.
Furthermore, results may not be directly comparable due
to differences in patient population and sequences used for
imaging. For instance the test set in theMICCAI challenge [3]
was acquired without parallel acquisition techniques which
is now clinical standard. In the sequel challenge STACOM
[14] not all results were derived using manual delineation as

ground truth. A new test set and training set were therefore
acquired for this study in order to have images with parallel
acquisition, covering all slices andwithmanual delineation as
ground truth. In comparison to the present study, Codella et
al. [8, 15] reported better results for all clinical parameters,
which is expected with the higher level of user input used
in their algorithm LV-METRIC. The present study has a
low level of user input with only a selection of slices to
include in segmentation. Hu et al. [7] developed a detection
of the outflow tract and reported DSC and P2C similar to
the present study. However, their method description does
not define detection of the outflow tract moving out of
the imaging plane. Since the long-axis motion is a major
contributor to cardiac pumping [5] it is important to include
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the basal slices and account for the contraction along the
long-axis. Segmentation of the most basal slices with outflow
tract becomes more difficult when the myocardium moves
in and out of the imaging plane. The proposed algorithm
includes all slices with results similar to previous studies not
including all basal slices, which brings the algorithm one
step closer to automatic LV segmentation applicable for the
clinical routine.

The proposed algorithm was compared to interobserver
variability of manual delineation in a subset as a major goal
of automatic segmentation methods is to reduce observer
dependency. The proposed method showed a bias compa-
rable to interobserver variability by manual delineation for
the clinical parameters, lower or similar bias for EDV, ESV,
and LVM and higher bias for EF, SV, and CO. The SD for the
clinical parameters was approximately twice the value found
for interobserver variability. The interobserver variability
measured as P2C error was overall 1.2mm compared to 2mm
reported in a previous study [16]. The interobserver variabil-
ity measured as clinical parameters was overall comparable
to those reported in previous studies [17–19]. The standard
deviation of LVM for interobserver variability was in this
study 7 gwhich fallswithin the range of published values from
5 g in a normal material for gradient echo images [20] to 14 g
in a studywhere bSSFP short axis delineationswere compared
to long-axis delineations [21].The large range in interobserver
variability measurements reported in the literature can most
likely be explained by differences in methodology used in
the basal regions, differences in image quality, and amount
of consensus training. Again many of the studies report
differences differently and direct comparisons are difficult.

In order for the algorithm to reach results fully compa-
rable to interobserver variability between two experienced
observers, further improvement is needed. By improving the
use of the EM-algorithm and by improving the detection
of papillary muscles and outflow tract both the accuracy
and precision may be reduced. The algorithm might also be
further improved to have a smoother segmentation over the
cardiac cycle by using more than two time frames in the
optimization of parameters and hence possibly get a higher
weight on the time dependent parameter. As for all automatic
segmentation algorithms a manual approval and possibly
manual corrections are needed in a clinical setting.

A limitation to the study is that the training and test set
used only patients with coronary artery disease. Other patient
categories with, for example, left ventricular dyssynchrony or
pronounced trabeculationsmayneed special consideration in
the algorithm and further validation.

5. Conclusion

We have developed an automatic algorithm for time-resolved
segmentation of all LV slices containing any myocardium
in magnetic resonance balanced steady state free precession
images. The algorithm was quantitatively validated in 49
subjects and both algorithm and images with reference
manual delineations are available for benchmark against
future LV segmentation algorithms. The algorithm showed
a bias comparable to interobserver variability between two

experienced observers for the clinical parameters EDV, ESV,
EF, LVM, SV, and CO. With a dice and P2C error similar to
previous studies the proposed algorithm is favorable due to
low level of user input and automatic correction for long-
axis motion.The algorithm is one step closer to an automatic
segmentation applicable for clinical routine.
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resonance
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Abstract

Background: T2-weighted cardiovascular magnetic resonance (CMR) has been shown to be a promising technique
for determination of ischemic myocardium, referred to as myocardium at risk (MaR), after an acute coronary event.
Quantification of MaR in T2-weighted CMR has been proposed to be performed by manual delineation or the
threshold methods of two standard deviations from remote (2SD), full width half maximum intensity (FWHM) or
Otsu. However, manual delineation is subjective and threshold methods have inherent limitations related to
threshold definition and lack of a priori information about cardiac anatomy and physiology. Therefore, the aim of
this study was to develop an automatic segmentation algorithm for quantification of MaR using anatomical a priori
information.

Methods: Forty-seven patients with first-time acute ST-elevation myocardial infarction underwent T2-weighted
CMR within 1 week after admission. Endocardial and epicardial borders of the left ventricle, as well as the hyper
enhanced MaR regions were manually delineated by experienced observers and used as reference method. A new
automatic segmentation algorithm, called Segment MaR, defines the MaR region as the continuous region most
probable of being MaR, by estimating the intensities of normal myocardium and MaR with an expectation
maximization algorithm and restricting the MaR region by an a priori model of the maximal extent for the user
defined culprit artery. The segmentation by Segment MaR was compared against inter observer variability of
manual delineation and the threshold methods of 2SD, FWHM and Otsu.

Results: MaR was 32.9 ± 10.9% of left ventricular mass (LVM) when assessed by the reference observer and 31.0 ±
8.8% of LVM assessed by Segment MaR. The bias and correlation was, -1.9 ± 6.4% of LVM, R = 0.81 (p < 0.001) for
Segment MaR, -2.3 ± 4.9%, R = 0.91 (p < 0.001) for inter observer variability of manual delineation, -7.7 ± 11.4%, R
= 0.38 (p = 0.008) for 2SD, -21.0 ± 9.9%, R = 0.41 (p = 0.004) for FWHM, and 5.3 ± 9.6%, R = 0.47 (p < 0.001) for
Otsu.

Conclusions: There is a good agreement between automatic Segment MaR and manually assessed MaR in T2-
weighted CMR. Thus, the proposed algorithm seems to be a promising, objective method for standardized MaR
quantification in T2-weighted CMR.

Background
Myocardium at risk (MaR) is defined as the ischemic
myocardium during coronary artery occlusion and is the
region that will be subject to infarction if the blood flow
is not restored. Myocardium at risk can be measured
using T2-weighted cardiovascular magnetic resonance

(CMR) [1] due to the myocardial edema occurring in
the ischemic myocardium [2,3] up to one week after
percutaneous coronary intervention (PCI) [4]. By deter-
mining MaR using T2-weighted CMR and myocardial
infarction (MI) size using late gadolinium enhancement
(LGE), the efficacy of reperfusion therapy can be
assessed as myocardial salvage in a single CMR session.
In the event of an acute coronary occlusion, a single

artery is usually affected. As a consequence of the occlu-
sion, transmural ischemia occurs within the affected
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coronary artery’s perfusion territory [5,6]. The myocar-
dium subjected to ischemia becomes edematous and
shows an increased signal intensity in T2-weighted
CMR compared to non-ischemic myocardium[7]. Sev-
eral techniques have been proposed for quantitative
assessment of MaR in T2-weighted CMR, such as man-
ual delineation [4], and threshold methods of two stan-
dard deviations (2SD) from remote [5,8], full width half
maximum (FWHM) intensity [9] and Otsu [10]. Human
observers delineating MaR take into account both regio-
nal intensity differences and a priori knowledge on per-
fusion territories and transmurality, which may improve
accuracy of MaR quantification. However, manual deli-
neation is subjective and time consuming. Semi-auto-
matic and automatic threshold methods such as 2SD,
FWHM and Otsu have been proposed as more objective
methods. A more advanced automatic algorithm for
quantification of edema in T2-weighted CMR has
recently been developed by Johnstone et al [11]. Their
algorithm shows promising result for an automatic seg-
mentation approach of edema and thereby MaR in T2-
weighted CMR by incorporating regional analysis. How-
ever, neither the threshold methods, (2SD, FWHM and
Otsu), nor the algorithm by Johnstone et al. uses a
priori knowledge on the appearance of MaR and the
cardiac anatomy, which is considered when performing
manual delineations.
Therefore, the aim of this study was to develop an

automatic segmentation algorithm for quantification of
MaR in T2-weighted CMR images which uses a priori
knowledge on the appearance of MaR and cardiac
anatomy.

Methods
Study Population
The study was approved by the local ethics committee
and all patients gave their written informed consent.
Forty seven patients (age 60.3 ± 9.8 years, range 39 - 83,
39 males) with first-time acute ST-elevation myocardial
infarction (STEMI) due to a single occluded coronary
artery confirmed by angiography were prospectively
included in the study. All patients were treated with pri-
mary percutaneous coronary intervention (PCI) with
coronary stenting, resulting in TIMI grade 3 flow in the
culprit artery.

CMR imaging
Within a week after admission patients were imaged in
the supine position using either a 1.5 T system (Magne-
tom Vision, Siemens, Erlangen, Germany) with a CP
body array coil or a 1.5 T system (Philips Intera CV or
Achieva, Philips, Best, the Netherlands) with a cardiac
synergy coil. Initial scout images were acquired to locate
the heart, and a T2-weighted triple inversion turbo spin

echo sequence (STIR) was employed to depict the myo-
cardium at risk. T2-weighted CMR images were
acquired in the short-axis view, covering the left ventri-
cle from the base to apex. Imaging parameters were:
echo time 43 ms (Siemens) or 100 ms (Philips); repeti-
tion time 2 heart beats; number of averages 2; inversion
time 180 ms; typical image resolution 1.5 × 1.5 mm
(Siemens) or 1.4 × 1.7 mm reconstructed to 0.7 × 0.7
mm (Philips); slice thickness 8 mm with a typical slice
gap of 2 mm. When acquiring images with the cardiac
synergy coil no parallel imaging was performed (SENSE
= 1).

Image analysis
The MaR was manually delineated according to the
method previously described by Carlsson et al [4]. In
short, endocardial and epicardial borders of the LV were
traced in all short-axis slices by an experienced observer
and the papillaries were excluded from the myocardium.
Regions of hyper enhanced myocardium was manually
delineated as myocardium at risk (MaR) by an experi-
enced observer and expressed as percent of left ventri-
cular mass (LVM). Hypo-intense myocardium within
the area of increased signal intensity was regarded as
microvascular obstruction [12] and was included in the
MaR.
The new segmentation algorithm, called Segment

MaR, was implemented in the freely available cardiac
image analysis software Segment (http://segment.hei-
berg.se) [13] and will be made available at time of publi-
cation. Segment was also used for manual delineation
and implementation of the threshold methods (2SD,
FWHM and Otsu).

Automatic segmentation algorithm, Segment MaR
The automatic segmentation algorithm, Segment MaR,
defines the MaR within the manually delineated left ven-
tricular myocardium based on the culprit artery defined
by the user. The MaR region is defined as a continuous
region which has a higher probability of being MaR
compared to normal myocardium, based on the signal
intensity, and fulfills a priori criteria for MaR regarding
transmurality, shape, size and extent within the perfu-
sion territory of the culprit artery.
Figure 1 shows a model of normal and maximal extent

for the perfusion territories of each coronary artery as
defined in consensus by three experienced observers
from their combined experience of CMR and SPECT.
Normal and maximal extent models were defined by
each observer and discussed until consensus was
reached for left anterior descending artery (LAD), left
circumflex artery (LCx) and right coronary artery
(RCA). The models for left main artery (LM) were
defined from the models of LAD, LCx and RCA. The
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Figure 1 Maximal and normal extent model. Bulls-eye representation of maximal extent model (left column) and normal extent model (right
column) for the perfusion territories of left anterior descending artery (LAD), left circumflex artery (LCx), right coronary artery (RCA), and left main
artery (LM). Models for LAD, LCX and RCA were defined in consensus by three experienced observers in an extended 17-segment AHA model
and models for LM were defined from the models of LAD, LCX and RCA. The 17-segment model is extended to three slices in each of the basal,
mid-ventricular and apical zones and 24 sectors in each slice. Black sectors are included in the maximal and normal extent model, respectively.
The septal part of the left ventricle is represented in the left of the bulls-eye plot, the lateral part in the right, anterior part in the top, inferior
part in the bottom, the apical slices in the center and the basal slices in the outer part of the bulls-eye plot.
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extent was defined in the 17 segment AHA model [14]
which was extended to 24 sectors circumferentially and
3 slices in each of the basal, mid-ventricular and apical
parts of the left ventricle. The maximal and normal
extent model of the user defined culprit artery is used
as a priori information in the algorithm.
The Segment MaR algorithm can be divided into 7

steps (Figure 2)

1) User input as culprit artery and orientation
2) Estimate intensity distribution for normal myocar-
dium and MaR
3) Define MaR probability from intensity
distributions
4) Calculate MaR probability in 24 sectors for each
short axis slice
5) Find region of connected sectors with high prob-
ability of MaR which fulfills regional criteria
6) Interpolate shape of MaR region over slices by
normalized averaging
7) Define MaR region in the short-axis view from
sector based segmentation

In step 1) the user defines the culprit artery as either,
LAD, LCx, RCA or LM based on the overall appearance
of the hyperenhanced region and indicates the orienta-
tion of the heart by indicating the inferior insertion
point for the right ventricle (Figure 2:1).
In step 2) the intensity distribution for normal myo-

cardium and MaR is estimated from the intensity histo-
gram by an expectation maximization (EM) algorithm
slice by slice [15]. The intensity distributions were ana-
lyzed slice by slice since the intensity can vary between
slices in T2-weighted CMR images. The EM-algorithm
estimates the mean and standard deviation of the inten-
sity distributions for MaR and normal myocardium by
refining an initial estimation. The initial estimation of
mean and standard deviation for MaR is calculated from
the intensities within the normal extent model for the
culprit artery and for normal myocardium calculated
from the intensities outside the maximal extent model
for the culprit artery. The intensity distributions for
MaR and normal myocardium are assumed to be Gaus-
sian and are thereby defined by their mean and standard
deviation as estimated by the EM-algorithm. Figure 2:2
shows the intensity histogram of the myocardium and
the estimated Gaussian intensity distributions for nor-
mal myocardium and MaR.
In step 3) a MaR probability is defined from the inten-

sity distributions for normal myocardium and MaR. The
MaR probability is defined from the Bayesian probability
of MaR given that the intensity is either MaR or normal
myocardium by dividing the Gaussian intensity distribu-
tion for MaR by the sum of the Gaussian distribution

for MaR and normal myocardium. Thus, the probability
function is in the range from 0 to 1 and values above
0.5 indicate higher probability of MaR than normal
myocardium. A probability function and its correspond-
ing Gaussian distributions are shown in Figure 2:3.
In step 4) the MaR probability is calculated for 24 sec-

tors in each short axis slice. The probability function in
step 3) is defined for each short axis slice and mapped
to each pixel in the slice. The probability value is then
averaged for 24 sectors in each slice resulting in a sec-
tor-based MaR probability. The sector-based MaR prob-
ability is shown in Figure 2:4 where bright colors
indicate high probability of MaR and the red border
indicates sectors with a probability value above 0.5.
In step 5) a region of connected sectors with a high

probability for MaR which fulfills regional criteria is
identified. The criteria to be fulfilled is a) sectors with a
probability value above 0.5 should be connected to its
nearest neighboring sector within the slice or in an adja-
cent slice in a 4-neighbourhood to constitute a region,
b) sectors should be localized within the maximal extent
model for the culprit artery, c) in the slices with outflow
tract only sectors on the anterior side of the outflow
tract is considered MaR for LAD and LM and only sec-
tors on the inferior side for LCx and RCA. Finally, the
MaR probability of each region is calculated by sum-
ming the probability value of being MaR for each pixel
within the region and summing the probability of being
normal i.e. 1 minus the probability of being MaR for
each pixel outside the region. If multiple connected
regions are found, the region with the highest probabil-
ity is chosen and the other regions are eliminated from
the MaR region. The outer boundary of the new MaR
region is indicated with a red border in Figure 2:5.
In step 6), the shape of the MaR region is refined by

interpolating the outer boundary of the MaR region
over slices by normalized averaging [16].The normalized
averaging interpolates the outer boundary by using cer-
tainty values for the outer boundary of each slice and a
narrow kernel with width of 3 slices in both apical and
basal direction. The certainty value is lowered if a) the
region is close to the maximal extent model, b) if the
difference in extent deviates from normal difference
between slices and c) if the intensity appearance does
not match the boundary of the MaR region. The cer-
tainty based on closeness to the maximal extent, a), is
calculated by a linear function from one to zero between
the normal and maximal extent model in each slice. The
certainty based on difference in extent between slices,
b), is calculated from a Gaussian function with standard
deviation of two sectors and a mean of increasing two
sectors from base to apex for LAD and LM respectively
a mean of decreasing one sector for RCA and LCx. The
certainty based on intensity appearance, c), was
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1) User input
as culprit artery

4) Calculate MaR
probability in 24
sectors for each slice

and orientation

2) Estimate intensity
distribution for normal

5) Find connected
sectors fullfilling
regional criteria

myocardium and MaR

) l h3) Define MaR
probability from
intensity distributions

6) Interpolate shape
over slices by
normalized averaging

7) Define MaR in
short axis view

Figure 2 Flow chart for automatic segmentation algorithm. Flow chart of the automatic Segment MaR algorithm from user input to
segmentation result. Step 1) shows the user interface for user input, step 2) shows the intensity histogram for a short axis slice and the
estimated intensity distributions for normal myocardium and MaR, step 3) shows the MaR probability function in black and the estimated
intensity distributions in red, step 4) shows the sector based bulls eye plot of MaR probability, with bright colors indicating high probability of
MaR, in step 5) the MaR region of connected sectors fulfilling the regional criteria is marked in red and in step 6) the interpolated shape of the
MaR region is marked in red and finally in step 7) the MaR region is shown in red in a short axis view.
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calculated as the MaR probability, as defined in step 5,
for each slice. The new boundary defined by the nor-
malized averaging is interpolated over slices to give a
smooth appearance of the MaR region (Figure 2:6).
In step 7) the MaR region is defined in a short axis

view from the sector based MaR region. This is done by
defining all pixels within a sector as MaR if the sector is
within the outer boundary of the sector based MaR
region (Figure 2:7).

Comparison to other segmentation methods
The new automatic segmentation method, Segment
MaR, was compared to inter observer variability of man-
ual delineation and three threshold methods, 2 standard
deviations from remote (2SD), full width half maximum
intensity (FWHM) and Otsu. All methods used the
same manual delineation of endocardium and epicar-
dium and were applied slice by slice. A slice by slice
approach was chosen since the intensity varies between
slices in T2-weighted images.
A second experienced and independent observer

manually delineated MaR in all subjects for inter obser-
ver analysis. The 2SD threshold method estimates an
intensity threshold from a remote region as the mean
plus two standard deviations of the intensity within the
remote region. The remote region was defined as the
region outside the maximal extent model of the culprit
artery, indicated by the white sectors in the maximal
extent model in Figure 1. The FWHM threshold method
[17] estimates an intensity threshold from a remote
region as midway between the mean intensity within the
remote region and the maximal intensity within the
myocardium. The remote region was defined in the
same way as for 2SD. The threshold method of Otsu
[18] estimates the intensity threshold from the histo-
gram of all intensities to get minimal variance both
above and below the threshold. The intensity threshold
was calculated and applied slice by slice for all three
threshold methods.

Statistical analysis
The quantification of MaR by the automatic Segment
MaR algorithm, manual second observer delineation, the

threshold methods of 2SD, FWHM and Otsu were all
compared against the reference observer using Bland-
Altman bias (mean ± standard deviation), paired t-test
and linear regression analysis (correlation coefficient
and p-value). Regional agreement to manual delineation
by the reference observer was evaluated by calculating
the Dice similarity coefficient (DSC) [19], which can be
derived from the kappa statistics for the classification of
pixels [20]. The DSC is calculated as two times the
volume of the intersection of the MaR regions divided
by the sum of the volumes of the two MaR regions. The
DSC is therefore 0 if the regions do not overlap and 1 if
the regions overlap perfectly. The DSC was calculated
against the reference observer, for Segment MaR, second
observer delineation, 2SD, FWHM and Otsu, for each
patient and expressed as mean ± standard deviation.

Results
MaR assessed by the reference observer was 32.9 ±
10.9% of LVM and MaR assessed by Segment MaR was
31.0 ± 8.8%. There was a strong correlation, R = 0.81, p
< 0.001, and low bias, -1.9 ± 6.4% of LVM, p = 0.047,
when Segment MaR was compared to the reference deli-
neation of MaR (Table 1, Figure 3). The inter observer
variability of manual delineation as the bias between
reference and second observer was -2.3 ± 4.9% of LVM.
The bias for Segment MaR was lower than for the
threshold methods of 2SD, FWHM and Otsu, -7.7 ±
11.4% of LVM, -21.0 ± 9.9% of LVM and 5.3 ± 9.6% of
LVM, respectively (Table 1). Furthermore there was a
good regional agreement between Segment MaR and the
manual reference delineation, DSC = 0.85 ± 0.07 (Table
1). In Figure 4 typical segmentations for all five methods
are shown in the same patient and compared to manual
delineation by the reference observer. For Segment MaR
and manual delineation by the reference and second
observer, the MaR region is continuous whereas the seg-
mentation by the threshold methods of 2SD, FWHM
and Otsu consist of multiple regions of hyperenhanced
myocardium.
In order to analyze the added value of each step in the

Segment MaR algorithm (Figure 2) the bias to manual
delineation by the reference observer was calculated

Table 1 Results for all five segmentation methods compared to reference delineation

MaR bias Regression

[% of LVM] p-value R-value p-value DSC

Segment MaR -1.9 ± 6.4 0.047 0.81 <0.001 0.85 ± 0.07

Second observer delineation -2.3 ± 4.9 0.003 0.91 <0.001 0.90 ± 0.08

2SD threshold -7.7 ± 11.4 <0.001 0.38 0.008 0.69 ± 0.14

FWHM threshold -21.0 ± 9.9 <0.001 0.41 0.004 0.46 ± 0.14

Otsu threshold 5.3 ± 9.6 <0.001 0.47 <0.001 0.68 ± 0.10

MaR-Myocardium at risk, DSC-Dice similarity coefficient, 2SD-two standard deviations from remote, FWHM-full width half maximum intensity
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Figure 3 Correlation and Bland-Altman plot for all five segmentation methods. Correlation of MaR as % of LVM (panel A-E) and Bland-
Altman plot of MaR bias as % of LVM (panel F-J) against the reference delineation for the automatic Segment MaR algorithm (panel A, F),
second observer delineation (panel B, G), the threshold methods of two standard deviations from remote threshold (2SD)(panel C, H), full width
half maximum (FWHM)(panel D, I) and Otsu (panel E,J).

Sjögren et al. Journal of Cardiovascular Magnetic Resonance 2012, 14:10
http://www.jcmr-online.com/content/14/1/10

Page 7 of 11



after steps 3, 4, 5 and 6. As a base-line, bias was calcu-
lated for segmentation by the EM-algorithm without a
priori information. The results are shown as mean ±
standard deviation in Figure 5.
In eight of the forty-seven patients multiple hyperen-

hanced regions were detected in step 5 of the algorithm.
In seven out of those the same region as by manual
delineation was identified. In the one case, a dark arti-
fact divided the MaR region into two disconnected
regions, resulting in the Segment MaR algorithm only
identifying one of these and subsequently underestimat-
ing the MaR region.

Discussion
This study has presented an automatic segmentation
algorithm for quantification of MaR from T2-weighted
CMR, based on the EM-algorithm and a priori informa-
tion on normal and maximal perfusion territories for
the culprit artery. Compared to manual delineation by a
reference observer, the new algorithm, Segment MaR,
performed better than previously suggested threshold
methods (2SD, FWHM and Otsu). Quantitative bias and

regional agreement for Segment MaR were similar to
inter observer variability of manual delineation.
The new automatic segmentation algorithm, Segment

MaR, estimates an intensity based probability of MaR
from all intensity information in each short axis slice by
an EM-algorithm. The use of all intensity information
may make the estimate more robust to noise, artifacts
and variation in signal homogeneity. The use of a priori
information in the EM-algorithm showed an added
value compared to using the EM-algorithm without a
priori information in the bias analysis (Figure 5). The
constraint of the extent by a maximal extent model
eliminates artifacts located outside the perfusion terri-
tory and together with the use of only one region of
connected sectors step 5 showed an added value in the
bias analysis. Small non-transmural artifacts within the
perfusion territory of the culprit artery may also be less
likely to be considered as MaR by requiring transmural
regions from the connected sectors. The bias analysis
showed no added value by use of the interpolation
although it is needed for a physiological appearance of
the MaR region.

A) Segment MaR

B) Second observer delineation

C) 2SD from remote threshold

D) FWHM threshold

E) Otsu threshold

Figure 4 Typical segmentation result for all five segmentation methods. Typical MaR segmentation shown in red for the automatic
segmentation Segment MaR (panel A), second observer delineation (panel B), the threshold methods of two standard deviations from remote
(2SD) (panel C), full width half maximum (FWHM) (panel D) and Otsu (panel E), compared to manual delineation by the reference observer,
shown in yellow, all within the manual delineation of myocardial borders (shown in white). The same patient, short-axis slices, manual
delineation of myocardial borders and manual reference delineation of MaR is used for all methods and shown from most basal slice in the left
of the panel to the most apical slice in the right of the panel. Note the continuous appearance of the segmentation for Segment MaR and
manual delineation by the reference and second observer compared to the threshold methods of 2SD, FWHM and Otsu.

Sjögren et al. Journal of Cardiovascular Magnetic Resonance 2012, 14:10
http://www.jcmr-online.com/content/14/1/10

Page 8 of 11



In the edema algorithm by Johnstone et al. [11] an
EM-algorithm was used to estimate the intensity distri-
butions and a threshold was defined as 2 standard devia-
tions above the mean intensity of normal myocardium.
Thereby the threshold is similar to that of 2SD thresh-
old with the exception that the intensity of normal myo-
cardium is defined from the EM-algorithm instead of a
remote region. Using a threshold of 2SD does not utilize
the intensity information on MaR which has been esti-
mated by the EM-algorithm and thereby the variation in
signal intensity may not be taken into consideration.

Another difference between Segment MaR and the
edema algorithm by Johnstone is that the Segment MaR
algorithm is based on 24 sectors in each slice instead of
pixel wise segmentation. The pixel-wise segmentation
does not consider transmurality and may give better
precision on the boundary of MaR. Pixel-wise segmenta-
tion may, however, be more sensitive to artifacts. Quan-
titative results for the edema algorithm, reported by
Johnstone, were a bias of 1.1 ± 10.1% of LVM and DSC
of 0.50 ± 0.27 to their reference of manual delineation
and an aim for future work was set to reach DSC > 0.7

Bias analysis of steps in Segment MaR
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Figure 5 Bias analysis of steps in Segment MaR. Bias as mean ± standard deviation to manual delineation for EM-algorithm without a priori
information, indicated in blue, and for steps 3, 4, 5 and 6 of Segment MaR, indicated in black. Mean is indicated with a horizontal line on the
middle of the vertical line which indicates mean ± standard deviation. The red dashed line shows zero bias to manual delineation by reference
observer. EM-algorithm without a priori information is the baseline. Step 3 is EM algorithm with a priori information, step 4 introduces transmural
sectors, step 5 uses a priori regional criteria and step 6 uses interpolation to get physiological and smooth appearance. Note how the bias and
standard deviation is decreased by utilizing a priori information in step 3 and 5.
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which has been stated to indicate excellent regional
agreement by Zijdenbos et al. [20]. In the present study,
Segment MaR showed a DSC value of 0.85 ± 0.07 and
bias of -1.9 ± 6.4% of LVM compared to the manual
delineation of the reference observer. Note-able is also
the difference in DSC for inter observer variability of
manual delineation which was 0.72 ± 0.14 in the study
by Johnstone compared to 0.90 ± 0.08 in the present
study. This may indicate that the regional agreement
may be lower and the quantitative variability of manual
delineation may be larger between observers than
reported in the present study and thereby the use of an
automatic algorithm such as Segment MaR, which has a
low bias and high regional agreement to manual deli-
neation, may decrease the inter observer variability.
The weak correlation to manual delineation by the

reference observer for the threshold methods of 2SD,
FWHM and Otsu may be explained by the fact that the
methods are solely based on a threshold and by weak-
nesses in defining the threshold for the different meth-
ods. Using a fixed number of standard deviations as in
2SD does not account for the variability of intensity for
MaR and more importantly the contrast in T2-weighted
CMR is lower than for other CMR [21]. The threshold
by FWHM may be sensitive to artifacts since the bright-
est pixel intensity is used to find the threshold. Both
2SD and FWHM are sensitive to the definition of the
remote region which is currently not standardized. The
remote region in this study was automatically defined as
the myocardium outside the maximal extent model of
the culprit artery. This definition of the remote myocar-
dium was chosen to obtain an objective and standar-
dized representation of normal myocardium. This
strategy may, however, result in artifacts being included
in the remote myocardium. An overestimation of the
threshold may for 2SD be caused by the large standard
deviation of the intensity within the remote region. The
border zone between normal myocardium and remote
myocardium influences the remote myocardium propor-
tionally more for larger MaR regions which may result
in a overestimation of the threshold and subsequent
underestimation of the MaR region and thus explain the
trend seen in bias for 2SD (Figure 3). For FWHM an
overestimation of the threshold may be caused by arti-
facts within the myocardium and the remote region.
Bright artifacts may result in a threshold which only
identifies the artifact as the MaR region and this can
explain the trend in bias seen for FWHM since it will
result in a larger underestimation for larger MaR
regions. The threshold defined by Otsu does not depend
on any remote region but may instead be unstable in
the definition of the threshold since it assumes that an
optimal threshold should be found in each short axis
slice. This implies that both MaR and normal

myocardium should be present in each slice, which is
not the case in most patients as for example in the basal
slices of an LAD occlusion or apical slices of an RCA
occlusion. The Otsu threshold may thereby overestimate
the MaR region in slices lacking MaR and underestimate
MaR in slices lacking normal myocardium. This may
explain the large overestimation for small MaR regions
and large underestimation for large MaR regions. The
EM-algorithm used in Segment MaR also assumes two
intensity distributions as in the threshold method of
Otsu but is accompanied by a priori information both
as initialization to the EM-algorithm and in the post
processing of finding connected sectors.
Manual monitoring and possibly manual corrections

are as for all automatic segmentation algorithms needed
for research and clinical use. The use of Segment MaR
may, however, decrease the degree of variability intro-
duced by the subjectivity of manual delineation since
the Segment MaR algorithm showed a low bias and
high correlation to manual delineation regarding quanti-
tative assessment and an excellent regional agreement
according to DSC.
One limitation in this study is the lack of ground truth

for in vivo quantification of MaR. Manual delineation
according to the methodology used by Carlsson et al.
[4] when validating T2-weighted CMR for MaR to
SPECT was chosen as reference method and in this
study there was a good inter observer agreement. Due
to the limited number of patients in the study it was
not possible to use a separate training and test set and
the parameters in the automatic Segment MaR algo-
rithm could not be optimized. The Segment MaR algo-
rithm has not been specifically designed for the imaging
systems of Philips and Siemens. Further research is sug-
gested to investigate the performance of the algorithm
in a larger cohort of patients and possibly optimize and
improve the algorithm for specific imaging systems.

Conclusions
In this study, an automatic segmentation algorithm,
called Segment MaR, for quantification of myocardium
at risk (MaR) in T2-weighted CMR has been presented
and showed to have a good agreement to manual deli-
neation. Both the quantitative and regional agreement to
manual delineation was better for Segment MaR than
for the threshold methods of two standard deviations
from remote, full width half maximum intensity and
Otsu. The Segment MaR algorithm seems to be a pro-
mising, objective method for standardized measurement
of MaR in T2-weighted CMR.
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Automatic segmentation of myocardium at risk from contrast 
enhanced SSFP CMR: validation against expert readers and SPECT 

Jane Tufvesson1,2, Marcus Carlsson1, Anthony H. Aletras1,3, Henrik Engblom1, Jean-François Deux4, Sasha 

Koul5, Peder Sörensson6, John Pernow6, Dan Atar7, David Erlinge5, Håkan Arheden1, Einar Heiberg1,2 

Background 
Efficacy of reperfusion therapy can be assessed as myocardial salvage index (MSI) by determining the size of 
myocardium at risk (MaR) and myocardial infarction (MI), (MSI=1-MI/MaR). Cardiovascular magnetic 
resonance (CMR) can be used to assess MI by late gadolinium enhancement (LGE) and MaR by either T2-
weighted imaging or contrast enhanced SSFP (CE-SSFP). Automatic segmentation algorithms have been 
developed and validated for MI by LGE as well as for MaR by T2-weighted imaging. There are, however, no 
algorithms available for CE-SSFP. Therefore, the aim of this study was to develop and validate automatic 
segmentation of MaR in CE-SSFP. 

Methods  
The automatic algorithm applies surface coil intensity correction and classifies myocardial intensities by 
Expectation Maximization to define a MaR region based on a priori regional criteria, and infarct region from 
LGE. Automatic segmentation was validated against manual delineation by expert readers in 183 patients with 
reperfused acute MI from two multi-center randomized clinical trials (RCT)  (CHILL-MI and MITOCARE) and 
against myocardial perfusion SPECT in an additional set (n=16). Endocardial and epicardial borders were 
manually delineated at end-diastole and end-systole. Manual delineation of MaR was used as reference and inter-
observer variability was assessed for both manual delineation and automatic segmentation of MaR in a subset of 
patients (n=15). MaR was expressed as percent of left ventricular mass (%LVM) and analyzed by bias 
(mean±standard deviation). Regional agreement was analyzed by Dice Similarity Coefficient (DSC) 
(mean±standard deviation).   

Results  
MaR assessed by manual and automatic segmentation were 36±10 % and 37±11 %LVM respectively with bias 
1±6 %LVM and regional agreement DSC 0.85±0.08 (n=183). MaR assessed by SPECT and CE-SSFP automatic 
segmentation were 27±10 %LVM and 29±7 %LVM respectively with bias 2±7 %LVM. Inter-observer 
variability was 0±3 %LVM for manual delineation and -1±2 %LVM for automatic segmentation.   

Conclusions 
Automatic segmentation of MaR in CE-SSFP was validated against manual delineation in multi-center, multi-
vendor studies with low bias and high regional agreement. Bias and variability was similar to inter-observer 
variability of manual delineation and inter-observer variability was decreased by automatic segmentation. Thus, 
the proposed automatic segmentation can be used to reduce subjectivity in quantification of MaR in RCT. 

Background 
Myocardium at risk (MaR) is defined as the 
ischemic myocardium during coronary artery 
occlusion, at risk of infarction if the blood flow in 
the occluded artery is not restored in time. The 
myocardial infarction evolves during time to 
treatment and if blood flow is not restored in time 
the whole region of MaR becomes myocardial 
infarction (MI). If both the size of MaR and final 
MI size is determined, the efficacy of reperfusion 
therapy can be assessed as myocardial salvage 
index (MSI=1-MI/MaR). By using MSI instead of 
MI size alone the number of patients needed in 
clinical trials can be reduced [1] since MI size is 
related to MaR which is specific for each patient 
and coronary occlusion.  

Cardiovascular magnetic resonce (CMR) is 
considered gold standard for assessment of infarct 
size by late gadolinium enhancement (LGE) [2]. 
Myocardial perfusion SPECT is considered gold 
standard for assessment of MaR but requires an 
radioactive isotope to be injected before the blood 
flow is restored in occluded artery and imaging is 
performed only hours after the treatment. By CMR 
MaR can be assessed  by either T2-weighted 
imaging [3] or contrast enhanced steady state free 
precession (CE-SSFP) [4] and both have been 
validated against SPECT for assessment of MaR up 
to one week after MI [5] [4]. Recently, both T2-
weighted imaging and CE-SSFP have been used to 
determine myocardial salvage in two multi-center 
cardioprotective studies, CHILL-MI [6] and 
MITOCARE [7]. In these multi-center trials CE-



SSFP was shown to provide significantly better 
diagnostic image quality than T2-weighted images 
and to be more robust across vendors [8]. CE-SSFP 
may therefore be more suitable than T2-weighted 
imaging for quantification of MaR in multi-center 
settings. 

An automatic segmentation algorithm is preferable 
for objective quantification in order to reduce 
subjectivity as well as time required for image 
analysis. Several algorithms have been developed 
and validated for automatic segmentation of MI size 
in LGE images [9-11]. Two automatic algorithms 
have been developed and validated in T2-weighted 
images, one specifically for MaR [12] and one for 
edema [13]. However, no algorithm has been 
developed yet for quantification of MaR in CE-
SSFP images. Automatic quantification of MaR in 
T2-weighted images has been shown to yield more 
accurate results when utilizing Expectation 
Maximization (EM) to classify myocardial 
intensities and adding an a priori model of the 
perfusion territories compared to thresholding 
methods such as two standard deviations (2SD) 
from remote, full width half maximum (FWHM) 
and Otsu's method for quantification of MaR in T2-
weighted images [12]. Therefore, the aim of this 
study was to develop and validate this automatic 
segmentation algorithm for MaR in CE-SSFP. 

Methods 

Study population and design 
For validation of the automatic algorithm, patients 
with first time ST-elevation myocardial infarction 
(STEMI) treated with percutaneous coronary 
intervention (PCI) who had undergone CMR 
examination with CE-SSFP and LGE images of 
diagnostic quality as a part of the recently published 
clinical cardioprotection trials CHILL-MI [6] 
(n=92) and MITOCARE [7] (n=91) were included 
(n=183). Patients underwent CMR imaging within 
2-6 days following acute MI treated with PCI. 
Inclusion and exclusion criteria for each of the 
clinical trials have been previously published [6, 
14]. In short, all patients had clinical signs of acute 
myocardial infarction defined as clinical symptoms 
and ECG signs consistent with ST-elevation 
infarction or new onset of left bundle branch block 
(LBBB), were ≥ 18 years old and had symptom 
duration of less than 6 hours. Patients with a history 
of previous myocardial infarction or history of 
coronary revascularization were excluded. 

For validation against an independent reference 
method of imaging MaR, an additional set of 
patients who had undergone both CE-SSFP CMR 
and single photon emission computed tomography 
(SPECT) (n=16) [4] were included in this study. 

Inclusion and exclusion criteria for this cohort have 
also been previously published [4]. In short, all 
patients had clinical signs of acute myocardial 
infarction defined as clinical symptoms and ECG 
signs consistent with ST-elevation infarction and 
chest pain ≥ 30 minutes and ≤ 9 hours. Patients with 
a history of previous myocardial infarction or 
history of coronary revascularization were 
excluded. 

All three studies [4, 6-7] from which patients were 
included were approved by the institutional review 
boards/ethics committees, and all patients provided 
written informed consent. No specific ethics 
approval or informed consent was needed for the 
development of the new automatic algorithm in the 
current study.  

Imaging 
All CMR examinations were performed on 1.5 T 
scanners from Philips (Philips Healthcare, Best, 
The Netherlands), Siemens (Siemens AG, Erlangen, 
Germany) or GE (GE Healthcare, Waukesha, WI, 
USA). For visualization of MaR and evaluation of 
left ventricular function, CE-SSFP cine images 
were obtained approximately 5 minutes after 
intravenous injection of 0.2 mmol per kilogram of 
body weight of an extracellular gadolinium-based 
contrast agent [4, 6, 14]. The slice thickness was 8 
mm with no slice gap. In-plane resolution was 
typically 1.5 x 1.5 mm. Typically, 20-30 CE-SSFP 
images were acquired per cardiac cycle. For infarct 
visualization LGE images covering the entire left 
ventricle were acquired approximately 15 minutes 
after injection of the gadolinium-based contrast 
agent. The LGE-images were acquired using an 
inversion-recovery gradient-recalled echo sequence 
with a slice thickness of 8 mm with no slice gap 
[15]. In-plane resolution was typically 1.5 x 1.5 
mm. Inversion time was manually adjusted to null 
the signal of viable myocardium. Surface coil 
intensity correction was not generally applied 
across vendors and cites. 

SPECT was performed in the additional set of 16 
patients. Prior to opening the occluded vessel an 
intravenous injection of 99mTc-tetrofosmin body 
weight adjusted (350-700 MBq) was administered 
to the patient. Myocardial perfusion SPECT 
imaging was performed within four hours to 
visualize and quantify MaR using either of two dual 
head cameras: GE (Ventri, GE Healthcare, 
Waukesha, WI, USA) or Sopha (DST-XL, Sopha 
Medical Vision, Bue, Cedex, France). Typical pixel 
size was 6.4 x 6.4 x6.4 mm (GE) and 3 x 3 x 3 mm 
(Sopha). Short axis images were reconstructed 
semi-automatically on the workstation for each 
camera.   



Image analysis 
Both CMR and SPECT images were analyzed using 
the software Segment (http://segment.heiberg.se) 
[16].  

In CE-SSFP images, MaR was manually assessed 
from short-axis images according to previously 
described methods [4, 6-7]. In short, the left 
ventricular myocardium was defined by manually 
delineating the epicardial and endocardial borders 
both at end-diastole and at end-systole as 
previously described. Hyper-intense regions within 
the myocardium in CE-SSFP images were manually 
delineated for assessment of MaR. Hypo-intense 
myocardium within the area of increased signal 
intensity was regarded as microvascular obstruction 
[17] and was included in the MaR. The delineation 
of each data set was performed by one of three 
primary observers with a quality control of the 
delineations by a second opinion for each case. 
Different opinions for the delineation were resolved 
in consensus between all three observers when 
necessary. All three observers had long experience 
in the field of CMR (HE, MC and HA with 14, 15 
and 20 years of experience, respectively). MaR was 
expressed as percent of left ventricular mass 
(%LVM) [18]. In a subset of 15 patients from the 
multi-center studies, second observer analysis was 
performed to evaluate inter-observer variability 
(MC vs. HE).  

In LGE images, infarct was delineated from the 
short-axis images according to a previously 
validated method [9]. In short, the endocardial and 
epicardial borders were traced manually with 
exclusion of the papillary muscles. The LGE 
myocardium was defined using a previously 
validated automatic segmentation algorithm [9] 
which is based on a 1.8SD from remote threshold, 
region analysis and a weighted summation 
according to pixel intensities to take partial volume 
effects into consideration. Manual adjustments were 
made when obvious image artefacts caused 
misinterpretation by the automatic algorithm and to 
include micro vascular obstruction when not 
detected by the algorithm. Hypointense regions 
within the region of LGE as a sign of microvascular 
obstruction [17], were included in the analysis as 
100 % infarction.  

In SPECT images, MaR was delineated by use of 
an 55 % threshold [19] and manual corrections after 
automatic delineation of epicardial and endocardial 
borders [20]. MaR was expressed as percent of left 
ventricular mass (%LVM). 

Image quality was manually assessed as (1) non-
diagnostic, (2) acceptable or (3) good. Acceptable 
and good images were considered to be of 
diagnostic quality and only CE-SSFP images with 

diagnostic quality and full coverage of the left 
ventricle were included in this study as test set 
(n=183, Supplemental figure 1) and additional set 
(n=16). Patient characteristics of the test set are 
reported in Table 1.  

Table 1 Patient charcteristics from test set n=183 

 medel ± SD (min,max) 

HR[beats/min] 68 ± 12  (31, 111) 

EDV [ml] 178 ± 43  (32, 336) 

ESV [ml] 94 ± 32  (20, 240) 

EF [%] 48 ± 9  (19, 70) 

LVM [g] 124 ± 28  (25, 252) 

IS [%LVM] 17 ± 10  (2, 47) 

MVO [%LVM] 3 ± 5  (0, 27) 

HR: heart rate, EDV: end-diastolic volume, ESV: end-
systolic volume, EF: ejection fraction, LVM: left 
ventricular mass, IS: infarct size, MVO: micorvascular 
obstruction 

Automatic segmentation algorithm 
The automatic segmentation algorithm was 
originally developed for segmentation of MaR in 
T2-weighted images [12] and has in this study been 
developed for CE-SSFP images. Maximal extent 
models of perfusion territories for each coronary 
artery [12] were defined by expert observers and 
used to define remote and culprit region. The 
maximal extent models correspond to the MaR 
region of proximal occlusions and takes anatomy 
variations between patients into consideration. As 
input to the automatic algorithm, the manual 
delineation of endocardial and epicardial borders is 
used and the user defines the culprit artery as either 
left anterior descending artery (LAD), left 
circumflex artery (LCx), right coronary artery 
(RCA), or left main artery (LM) based on the 
overall appearance of the hyper enhanced region 
and defines right ventricular insertion points in CE-
SSFP and LGE images, to find how to rotate the 
maximal extent model. 

The automatic algorithm consist of four processing 
blocks after user input as shown in Figure 1, 1) 
surface coil intensity correction, 2) classification of 
myocardial intensities by Expectation 
Maximization (EM) [21], 3) definition of MaR 
region based on a priori regional criteria, and 4) 
incorporation of infarct region from LGE images.  

 



Figure 1 Automatic segmentation algorithm 

The new automatic algorithm for segmentation of 
myocardium at risk (MaR) in CE-SSFP lets the user 
define the culprit artery and the rotation of the left 
ventricle as input. The algorithm consists of four 
processing blocks, surface coil intensity correction, 
intensity classification by Expectation Maximization 
(EM), segmentation based on a priori information on 
MaR and incorporation of infarct region from LGE 
images.  

Surface coil intensity correction is applied as a 
second order linear correction based on the 
intensities in the blood pool and remote 
myocardium to be able to account for intensity 
gradient proportional to the squared coil distance. 
Classification of myocardial intensities is 
performed using the EM-algorithm to overcome 
varying contrast and noise level between patients, 
centers and vendors.  The EM-algorithm estimates 
the mean and standard deviation of intensity for 
normal myocardium and myocardium at risk based 
on the intensity histogram and was initialized based 
on the maximal extent model. Myocardium at risk 
was defined as a continuous region within the 
maximal perfusion territory of the culprit artery and 
assumed to be transmural. These a priori regional 
criteria were implemented by applying the 
classification by EM sector wise for sectors within 
the maximal extent model. The myocardium is 
divided into 24 sectors circumferentially. Further a 
priori information was implemented by using the 
infarct region from LGE images to define possible 
regions of microvascular obstruction as MaR 
despite the hypoenhancement.  The original 
algorithm for T2-weighted images [12] was based 
on intensity classification by Expectation 
Maximization (EM) and utilization of a priori 
information on MaR. Surface coil intensity 

correction and incorporation of the infarct region 
from LGE images was added in the new algorithm 
based on qualitative assessment of the CE-SSFP 
images. The new segmentation algorithm was 
named "Segment MaR CE-SSFP" and was 
implemented in the cardiac image analysis software 
Segment [9]. The algorithm will be made freely 
available at time of publication 
(http://segment.heiberg.se) and each processing 
block of the algorithm is further described in the 
Appendix.  

Comparison to other automatic 
threshold methods 
The new automatic segmentation method was 
compared to three direct threshold methods which 
have been used for quantification of MaR in T2-
weighted imaging [22-23], two standard deviations 
from remote (2SD) [24-25], full width half 
maximum intensity (FWHM) [26] and Otsu [27]. 
All methods used the same manual delineation of 
endocardium and epicardium. The 2SD threshold 
method estimates an intensity threshold from a 
remote region as the mean plus two standard 
deviations of the intensity within the remote region. 
The remote region was defined as the region 
outside the maximal extent model of the culprit 
artery [12]. The FWHM threshold method [10] 
estimates an intensity threshold from a remote 
region as midway between the mean intensity 
within the remote region and the maximal intensity 
within the myocardium. The remote region was 
defined in the same way as for 2SD. The threshold 
method of Otsu [28] estimates the intensity 
threshold from the histogram of all intensities to get 
minimal variance both above and below the 
threshold. For all three methods the intensity 
threshold was calculated and applied slice by slice 
as generally applied in T2-weighted images to 
account for the intensity gradient across slices. 

Statistical analysis 
In the test set (n=183) quantification of MaR by the 
automatic Segment MaR CE-SSFP algorithm was 
compared to the manual delineation using Bland-
Altman bias (mean ± standard deviation), limits of 
agreement ([mean - 1.96 standard deviations; mean 
+ 1.96 standard deviations]), and linear regression 
analysis (correlation coefficient). Regional 
agreement to manual delineation was evaluated by 
calculating Dice similarity coefficient (DSC) [29] 
(mean ± standard deviation). Dice similarity 
coefficient can be derived from the kappa statistics 
for classification of pixels [30] and is calculated as 
two times the volume of the intersection of the 
MaR regions divided by the sum of the volumes of 
the MaR regions. The DSC is therefore 0 if the 
regions do not overlap and 1 if the regions overlap 
perfectly. Bias, linear regression and regional 
agreement was similarly analyzed for the three 
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Intensity classification by EM

User input of 
culprit artery 
and rotation of LV
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automatic threshold methods, 2SD, FWHM and 
Otsu. Bias to manual delineation was analyzed 
separately for each of the three camera vendors for 
the automatic algorithm. 

In a subset of 15 patients from the multicenter 
studies, inter-observer analysis of manual 
delineation and automatic segmentation was 
performed. Inter-observer analysis was assessed 
using Bland-Altman bias (mean ± standard 
deviation), linear regression (correlation 
coefficient) and regional agreement DSC (mean ± 
standard deviation) for manual delineation and 
automatic segmentation. Bias, linear regression and 
regional agreement was also assessed for automatic 
segmentation against manual delineation in the 
subset for comparison to inter-observer variability.  

In the additional set (n=16), quantification of MaR 
in CE-SSFP images by the automatic Segment MaR 
CE-SSFP algorithm and manual delineation was 
compared to quantification of MaR in SPECT using 
bias (mean ± standard deviation) and linear 
regression analysis (correlation coefficient).  

The added value of each of the four processing 
blocks in the automatic algorithm described above 
was analyzed using bias (mean ± standard 
deviation), linear regression analysis (correlation 
coefficient), regional agreement DSC (mean ± 
standard deviation) and visualized by box-whisker 
plot of median, upper quartile, lower quartile, 
minimum, maximum and outliers. Two sided paired 
t-test of bias and DSC were performed for each 
processing block in comparison to the first block 
and the previous block with Bonferroni correction. 

Results 
In the test set (n=183) MaR assessed by manual 
delineation in CE-SSFP was 36 ± 10 % LVM and 
MaR assessed by Segment MaR CE-SSFP 
automatic segmentation was 37 ± 11 %LVM. Bias 
was 1 ± 6 %LVM [-11; 14] %LVM, R = 0.83 and 
regional agreement DSC 0.85 ± 0.08 when Segment 
MaR CE-SSFP was compared to manual 
delineation (Figure 2, Table 2). Figure 3 shows 
MaR in CE-SSFP at end-distole and end-systole 
with manual delineation and automatic 
segmentation by Segment MaR CE-SSFP. The bias 
was lower, regression stronger and regional 
agreement higher for Segment MaR CE-SSFP than 
for the threshold methods of 2SD, FWHM and Otsu 
(Figure 2, Table 2). Bias to manual delineation 
analyzed per scanner vendors was 0 ± 7 %LVM, 2 
± 6 %LVM, and 2 ± 7 %LVM, for automatic 
segmentation in images from GE (n=23), Philips 
(n=76), and Siemens (n=84), respectively. Inter-
observer variability for manual delineation in CE-
SSFP (n=15) was 0 ± 3 %LVM compared to a bias 

between manual delineation and Segment MaR CE-
SSFP of  2 ± 6 %LVM and inter-observer 
variability of Segment MaR CE-SSFP of -1 ± 2 
%LVM (Table 3). 

In the additional set of patients (n=16), MaR 
assessed by SPECT was 27 ± 10 %LVM. In CE-
SSFP MaR was by manual delineation 28 ± 7 
%LVM and by Segment MaR CE-SSFP 29 ± 7 
%LVM. Bias against SPECT was 1 ± 5 %LVM 
(R=0.90) for CE-SSFP by manual reference 
delineation and 2 ± 7 %LVM (R=0.73) by Segment 
MaR CE-SSFP (Figure 4).  

Table 2 - Results from test set n=183 for automatic 
Segment MaR CE-SSFP segmentation and threshold 
methods against manual delineation 

 

 Bias     

%LVM 

R-

value DSC 

Segment MaR CE-SSFP 1 ± 6 0.83 0.85 ± 0.08

2SD threshold -13 ± 15 0.47 0.54 ± 0.27

FWHM threshold -22 ± 11 0.42 0.42 ± 0.21

Otsu threshold 10 ± 12 0.05 0.65 ± 0.12

 

MaR-Myocardium at risk, LVM- Left ventricular mass, 
DSC- Dice similarity coefficient, Segment MaR CE-SSFP 
- automatic segmentation proposed in this study, 2SD-two 
standard deviations from remote, FWHM- full width half 
maximum intensity 

Table 3 - Inter-observer variability analysis from subset 
n=15 for manual delienation and automatic Segment 
MaR CE-SSFP segmentation compared to results for 
Segment MaR CE-SSFP agianst manual deleination 

 
Bias      

% LVM 
R-

value DSC 
Manual delineation  
vs.  
manual delineation 0 ± 3 0.93 

0.92 ± 
0.04 

Segment MaR CE-SSFP 
vs.  
Segment MaR CE-SSFP -1 ± 2 0.99 

0.94 ± 
0.03 

Segment MaR CE-SSFP 
vs. 
 manual delineation 2 ± 6 0.77 

0.86 ± 
0.05 

 

MaR-Myocardium at risk, LVM- Left ventricular mass, 
DSC- Dice similarity coefficient, Segment MaR CE-SSFP 
- automatic segmentation proposed in this study, manual 
delineation performed by a reference and a second 
observer, automatic Segment MaR CE-SSFP performed 
by a reference and a second observer 



 

Figure 2 - Correlation and bias for automatic segmentation and threshold methods against manual delineation  

Correlation of MaR as % of LVM (left column) and Bland-Altman plot of MaR bias as % of LVM (right column) for the 
automatic segmentation algorithm (first row), threshold of 2SD from remote (second row), FWHM (third row) and Otsu 
(fourth row), all against manual delineation. The line of identity is shown as a solid line for all correlations plots and mean 
bias (solid line) and mean ± two standard deviations (dashed line) is shown for all Bland-Altman plots. 
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Figure 3 - Example of automatic segmentation and manual delineation of MaR in CE-SSFP 

Typical MaR segmentation in all left ventricular short axis slice images from one patient in end-diastole (ED, top panel) and 
end systole(ES, bottom panel), for automatic segmentation by Segment MaR CE-SSFP, shown in white, and manual 
delineation, shown in purple. Endocardial borders are shown in red and epicardial border in green. For this patient MaR by 
manual segmentation was 44 %LVM and by automatic Segment MaR CE-SSFP 43% LVM with a regional agreement DSC of 
0.85. 

 
A significant difference in regional agreement DSC 
was shown for each of the processing blocks of the 
Segment MaR CE-SSFP algorithm even though the 
difference in bias %LVM was not significant 
(Figure 5, Table 4). 

Discussion 
This study has presented an automatic algorithm for 
quantification of MaR in CE-SSFP images, 
validated against manual delineation in 183 patients 
from two multi-center, multi-vendor studies and 
against SPECT, as reference method, in 16 patients. 
The proposed automatic segmentation, Segment 
MaR CE-SSFP, shows low bias and variability, 
strong correlation and high regional agreement 
compared to manual delineation and SPECT. The 
Segment MaR CE-SSFP algorithm was shown 
superior to thresholding methods (2SD, FWHM and 
Otsu).   

Technical aspects 
The added value of each processing block was 
shown significant by regional agreement DSC even 
though a significant difference in bias was only 
seen when bias changed from overestimation to 
underestimation adding use of a priori information 

on MaR. The significant change seen for DSC 
highlights the importance of analyzing regional 
agreement as a part of the validation in addition to 
bias.  

Expectation Maximization was shown superior to 
2SD, FWHM and Otsu, when considering regional 
agreement DSC, quantitative bias and correlation 
R-value. The EM-algorithm was used by Johnstone 
et al. [13] to find the mean and standard deviation 
of remote myocardium in T2-weighted black blood 
images, but the mean and standard deviation of 
edema was not used to define the threshold which 
may explain the lower regional agreement with 
DSC 0.50 ± 0.27. Gao et al. [31] also used the EM-
algorithm to classify myocardial intensities in T2-
weighted bright blood images, with the assumption 
of Rayleigh-Gaussian mixture model. Rayleigh 
distributed intensities were assumed due to nulling 
of remote myocardium [31] which is not done in 
CE-SSFP and therefore, in this study, Gaussian 
intensity distributions were assumed for both 
normal myocardium and MaR. Surface coil 
intensity correction was shown to increase regional 
agreement. The surface coil correction was based 
on intensities in remote myocardium and blood 
pool and thereby the bright blood property of CE- 

ED

ES

 



 

Figure 4 Correlation and bias against SPECT for automatic segmentation and manual delineation in CE-SSFP 

Correlation of MaR as % of LVM (left column) and Bland-Altman plot of MaR bias as % of LVM (right column) against 
SPECT for automatic segmentation algorithm Segment MaR CE-SSFP (top row) and manual reference delineation (bottom 
row). The line of identity is shown as a solid line for all correlations plots and mean bias (solid line) and mean ± two 
standard deviations (dashed line) is shown for all Bland-Altman plots. Correlation and Bland-Altman plots for manual 
delineation in CE-SSFP against SPECT (bottom row) are adopted from Sorenson et al. [4]. 

SSFP was advantageous to the black blood T2-
STIR images in the original Segment MaR 
algorithm [12] where no intensity correction was 
applied. Gao et al. [31] used intensity correction 
developed for the bright blood ACUT2E [32] 
images with use of proton density maps and 
achieved a DSC 0.7 ± 0.06 before applying feature 
analysis. By incorporating a priori regional criteria 
in the definition of the MaR region the regional 
agreement was further increased from 0.74 to 0.81. 
This is in line with Gao et al. [31] who showed 
increased regional agreement by DSC from 0.7 to 
0.74 by adding feature analysis of the edema 
region. Both regional agreement by DSC and 
quantitative bias as %LVM was improved by the 
addition of information on the infarct region from 
LGE images which has not been implemented in 
previous studies. As for all automatic segmentation 
methods visual assessment and possibly manual 
corrections are needed and will probably influence 
the outliers seen after the fourth block of the 
algorithm and decrease the variability further. 

 

Comparison to previous studies 
Regional agreement to manual delineation was for 
Segment MaR CE-SSFP higher than for the 
automatic segmentation methods by Johnstone et al. 
[13] (DSC 0.50 ± 0.27) and Gao et al. [31] (DSC 
0.74 ± 0.06), and higher respectively similar to 
inter-observer regional agreement of manual 
delineation in the same studies (DSC 0.72 ± 0.14 
[13] and 0.85 ± 0.03 [31]). Regional agreement of 
interobserver variability bias of Segment MaR CE-
SSFP  was comparable to inter-observer variability 
of manual delineation found in this study and 
similar to inter-observer variability previously 
found in CE-SSFP (2 ± 4 %LVM  [4] and 0 ± 6 
%LVM [18]), and in T2-weighted imaging (-2 ± 5 
%LVM [12] and 5 ± 5 %LVM [18]). Bias of 
Segment MaR CE-SSFP to SPECT was low and 
comparable to the results from the validation study 
of CE-SSFP with manual delineation (0 ± 5 %LVM 
[4]). Bias was lower and regional agreement was 
higher for Segment MaR CE-SSFP than for the 
threshold methods of 2SD, FWHM and Otsu. 
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Figure 5 - Analysis of incremental value of blocks in the automatic segmentation algorithm  

Incremental value of each block in the automatic segmentation algorithm analyzed by bias to manual delineation as %LVM, 
left panel and by regional agreement as Dice similarity coefficient DSC(right panel). Bias and DSC was calculated with 
segmentation based on only  intensity classification by Expectation Maximization and calculated after the addition of the 
processing blocks of intensity correction, a priori on myocardium at risk (MaR) and infarct region from late gadolinium 
enhancement (LGE). For each block of the algorithm the upper limit of the box indicate upper quartile, middle line indicate 
median, lower limit of box indicate lower quartile, whiskers indicate minimum and maximum and points (+) indicate outliers. 
Bias zero is shown as dotted black line in the left panel, DSC above of 0.7 indicates good regional agreement [30], and is 
shown as dotted black line in the right panel. Two sided paired t-test was performed for each block in comparison to previous 
block and first block, ns: non significant, ***: p<0.0001. 

Table 4 - Analysis of incremental value of each block in 
the automatic Segment MaR CE-SSFP algorithm 
(n=183) 

 
Bias       
%LVM 

R-
value DSC 

Intensity classification 
 by EM 2 ± 8 0.60 0.65 ± 0.18

+ intensity correction 2 ± 8 0.63 0.74 ± 0.12

+ a priori on MaR -4 ± 10 0.62 0.81 ± 0.16

+ infarct region  
from LGE 1 ± 6 0.83 0.85 ± 0.08

 
EM- Expectation Maximization, MaR-Myocardium at 
risk, LGE- late gadolinium enhancement,       LVM- Left 
ventricular mass, DSC- Dice similarity coefficient 

Recently McAlindon et al. [22] showed that manual 
delineation in T2-weighted images was superior to 
simple threshold methods (2, 3 and 5 SD from 
remote, FWHM and Otsu) with manual corrections 
regarding accuracy and variability of intra-observer, 
inter-observer and test-retest. Khan et al. [23] also 
showed that using simple threshold methods with 
manual corrections for inclusion of 
hypoenhancement and exclusion of artifacts did not 
significantly reduce time for analysis compared to 

manual delineation. Automatic segmentation 
methods are desirable to increase accuracy, 
decrease subjectivity and reduce time for analysis. 
Using simple threshold methods for MaR 
quantification in T2-weighted images seems to 
achieve neither and might be explained by the 
regional agreement seen in T2-weighted images 
(DSC 0.69 ± 0.14, 0.46 ± 0.14 and 0.68 ± 0.10 for 
2SD, FWHM and Otsu respectively) [12] and in 
CE-SSFP images of this study the regional 
agreement for simple threshold methods was even 
lower. The regional agreement of the Segment MaR 
CE-SSFP was however similar to that of the 
original Segment MaR in T2-weighted images 
(DSC 0.85 ±0.07) [12].  

Segment MaR CE-SSFP was  designed to include 
hypoenhancement and exclude artifacts and thereby 
has a greater potential to reduce time for analysis, 
and with a low bias to manual delineation by expert 
readers and a regional agreement and bias to 
manual delineation comparable to inter-observer of 
manual delineation Segment MaR CE-SSFP shows 
potential to increase accuracy and reduce 
subjectivity.  

Limitations 
Limitations to the study are that test-retest scans 
were not performed and the effect of and time 
required for possible manual corrections following 
automatic segmentation was not evaluated. Contrast 
enhanced SSFP are not yet widely used for 
assessment of MaR but has been shown to be more 
robust than T2-weighted imaging in multi-center, 
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multi-vendor studies [8]  and can easily be 
implemented by acquiring cine SSFP images 
approximately 5 minutes after gadolinium injection. 

Conclusion 
This study has presented an automatic algorithm, 
Segment MaR CE-SSFP for quantification of MaR 
in CE-SSFP images based on four processing 
blocks, Expectation Maximization, surface coil 
intensity correction, a priori regional criteria and 
incorporation of infarct region from LGE images. 
Low bias and variability, strong correlation and 
high regional agreement was shown against manual 
delineation in CE-SSFP images from multi-center, 
multi-vendor randomized clinical trials. Bias and 
variability was comparable to inter-observer 
variability of manual delineation and inter-observer 
variability was decreased by use of the Segment 
MaR CE-SSFP algorithm.  
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Supplmental figure 1- Patient inclusion from clinical trials 

Patient inclusion from clinical trials CHILL-MI and MITOCARE resulted in 183 patients in the test set. In total 29 patients 
with CE-SSFP images were excluded due to non-diagnostic image quality or missing LGE images.  
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Appendix 
The automatic segmentation Segment MaR CE-
SSFP was developed for segmentation of MaR in 
CE-SSFP based on ideas from the algorithm 
developed for T2-weighted images [12]. The use of 
Expectation Maximization (EM) algorithm [21] for 
classification of myocardial intensities [12] was 
improved with modified constraints and surface coil 
intensity correction. For definition of the MaR 
region the implementation of a priori regional 
criteria [12] was improved and utilization of 
information on infarct region from LGE images 
was added.  Maximal extent models for the 
perfusion territory of the culprit artery [12] were 
used to define the remote region and the culprit 
region based on user input. Figure A1 shows the 
maximal extent models as defined in consensus by 
three experienced observers [12]. As input to the 
automatic algorithm, the user defines the culprit 
artery as either LAD, LCx, RCA or LM based on 
the overall appearance of the hyper enhanced region 
and defines right ventricular insertion points in CE-
SSFP and LGE images, to define maximal extent 
model and how to rotate the model. The maximal 
extent model is used with the user input of culprit 
artery and LV rotation to define the remote 
myocardium for surface coil intensity correction 
and initialization of the EM-algorithm and to define 
a MaR region within the maximal perfusion 
territory. 

 

Figure A1 - Model of maximal extent for perfusion 
territory of each culprit artery  

Bulls-eye representation of maximal extent model for the 
perfusion territories of left anterior descending artery 
(LAD) , left circumflex artery (LCx), right coronary 
artery (RCA), and left main artery (LM). Models for 
LAD, LCX and RCA were defined in consensus by three 
experienced observers in an extended 17- segment AHA 
model and models for LM were defined from the models 
of LAD, LCX and RCA. The 17-segment model is 
extended to three slices in each of the basal, mid-
ventricular and apical zones and 24 sectors in each slice. 
Black sectors are included in the maximal extent model. 
The septal part of the left ventricle is represented in the 
left of the bulls-eye plot, the lateral part in the right, 
anterior part in the top, inferior part in the bottom, the 
apical slices in the center and the basal slices in the outer 
part of the bulls-eye plot.  

 
 

Varying surface coil sensitivity may cause an 
intensity gradient through the CMR images and can 
in CE-SSFP cause a larger variability in the 
myocardium than the contrast between MaR and 
normal myocardium and hence a surface coil 
correction needs to be applied before the EM-
algorithm. A second order intensity correction is 
applied to account for a gradient proportional to the 
squared distance to the surface coil. The correction 
is calculated based on the intensity in the remote 
myocardium and blood pool with papillaries 
excluded from the blood pool by using a simple 
unconstrained EM-algorithm. The intensity 
correction should result in a reduced intensity 
variability in the remote myocardium and a mean 
intensity in the culprit region higher than in the 
remote region, otherwise the correction is not 
applied. If the mean intensity in the remote 
myocardium is higher than in the culprit region 
both before and after the intensity correction, no 
correction is applied and the user is notified with a 
warning on low image quality. Figure A2 shows 
the intensity histogram before and after intensity 
correction for the remote and culprit region. 

For classification of pixel intensities as normal 
myocardium or MaR, a Bayesian probability is 
calculated by the use of a constrained EM-
algorithm. The EM-algorithm [21] iteratively 
refines an initial classification to find the maximum 
likelihood estimate of the mean and standard 
deviation for the intensity distributions of normal 
myocardium and MaR. The initial classification is 
defined from the maximal extent model with all 
pixels in the remote region initially classified as 
normal myocardium and all pixels in the culprit 
region initially classified as MaR. The EM-
algorithm was constrained to keep the initial 
classification of normal myocardium for pixels with 
intensity below the 50th percentile in the remote 
region, respectively, keeping classification of MaR 
for pixels with intensity above the 75th percentile in 
the culprit region. The Bayesian MaR probability is 
calculated for each myocardial pixel as the intensity 
distribution of MaR divided by the sum of the 
intensity distributions of MaR and normal 
myocardium. The resulting Bayesian MaR 
probability cutoff 0.5 indicates higher probability of 
MaR and is shown in the histogram after intensity 
correction in Figure A2.  

 



 

Figure A2 - Surface coil intensity correction  

Histogram of myocardial intensities within the 
myocardium before intensity correction (top panel) and 
after intensity correction (bottom panel), represented in 
black for culprit region and white for remote region. 
After intensity correction a decreased standard deviation 
of remote region is obtained and the mean intensity of the 
culprit region is higher than remote region. Myocardial 
intensities as after intensity correction (bottom panel) are 
used as input to the EM-algorithm with remote region 
and culprit region as initial classification and dashed 
blue lines indicating the constraints. Intensities below the 
50th percentile of the remote region are kept classified as 
normal myocardium through the iterations of the EM-
algorithm (lower dashed blue line). Intensities above the 
75th percentile of the intensities within the culprit region 
are kept classified as MaR through the iterations of the 
EM-algorithm (upper dashed blue line). Dashed red line 
indicates the resulting cut off 0.5 of the Bayesian 
probability of MaR resulting from the EM-algorithm after 
intensity correction.  

The MaR region is defined as a connected region 
with high MaR probability which fullfills the a 
priori cirteria on transmurality and localization 
within the culprit artery's perfusion territory. The 
mean MaR probability is calculated for each sector 
in a bullseye representation with 24 sectors and 30 
interpolated slices averaged over the time frames. 

Sectors with a mean MaR probability above 0.5 
which are within the maximal extent and connected 
to its nearest neighboring sector within the slice or 
in an adjacent slice in a 4-neighbourhood constitute 
a region. If several connected regions are found the 
region with highest summed MaR probability is 
chosen. Gray scale morphological operations of 
opening and closing are applied to remove holes 
and small peninsulas in a 4-neighbourhood. 
Additionally holes within slices are removed to 
account for larger encapsulated regions of 
microvascular obstruction. Non-physiological 
extent in apical and basal slices is detected for LAD 
and LM as missing apical MaR sectors or false 
basal sectors and for LCx and RCA as false apical 
sectors. False and missing sectors was detected as 
extent larger than mean + 2 standard deviations 
respectively smaller than mean - 2 standard 
deviations of the extent in midventricular slices. If 
any non-physiological extent was detected and 
corrected for, then the user is notified to check 
correctness of MaR region in the basal or apical 
slices. Figure A3 shows one short axis slice with 
MaR segmentation before and after applying a 
priori regional criteria.  

If LGE images with infarct segmentation are 
available the information on the infarct region can 
be used as part of the a priori regional criteria for 
definition of the MaR region. The infarct region is 
always a part of MaR but may due to 
hypoenhancment of microvascular obstruction not 
always be detected as MaR by the EM-algorithm.  
From the LGE images with delineation of the 
infarct, either by manual delineation or automatic 
segmentation [9], and right ventricular insertion 
points the infarct region, represented as a sector-
wise bullseye, is used to define the MaR region. For 
each sector the fraction of infarct is calculated and 
the MaR region is defined from sectors with either 
the infarct fraction above 0.5 or mean MaR 
probability above 0.5. Figure A4 shows a short axis 
slice of a CE-SSFP image with a distinct region of 
microvascular obstruction which can be determined 
as MaR region by the use of the infarct 
segmentation from the LGE images. 

From the bulls eye representation of the MaR 
region a MaR segmentation is defined in the short 
axis slices for each time frame and MaR is 
expressed as %LVM averaged over end-diastole 
and end-systole.



 

Figure  A3 - Utilization of a priori information on extent and transmurality 

Three short axis slice, basal, mid and apical with MaR segmentation, shown in white, based on only the Bayesian probability 
of MaR (top row) and with the addition of a priori regional criteria on extent and transmurality (bottom row).  

 

 

Figure  A4 - Utilization of infarct segmentation from LGE 

Three short axis slices, basal, midventricular and apcial, from LGE (top row) with infarct region in yellow, infarct core in 
pink and microvascular obstruction in red, and CE-SSFP (bottom row) with automatic segmentation by Segment MaR CE-
SSFP after utilization of information on infarct region from LGE. The large region of hypoenhancement in CE-SSFP is 
included as MaR by utilizing the segmentation of infarct region.  
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A new automatic algorithm for quantification of myocardial 

infarction in late gadolinium enhancement cardiac magnetic 

resonance images: experimental validation and implementation in 

multi-center, multi-vendor patient data  

Jane Tufvesson1,2, Robert Jablonowski1, Henrik Engblom1, Marcus Carlsson1, Anthony H. Aletras1,3, Pavel 

Hoffmann4, Alexis Jacquier5, Frank Kober6, Bernhard Metzler7, David Erlinge8, Dan Atar4, Håkan Arheden1, 

Einar Heiberg1,2 

Abstract 

Background 
Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) using magnitude inversion 
recovery (IR) or phase sensitive inversion recovery (PSIR) has become clinical standard for assessment of 
myocardial infarction (MI). However, there is no clinical standard for quantification of MI even though multiple 
methods have been proposed. Simple thresholds have yielded varying results and advanced algorithms have only 
been validated in single center studies. Therefore, the aim of this study was to develop an automatic algorithm 
for MI quantification in IR and PSIR LGE images and to validate the new algorithm experimentally and apply 
the new algorithm in multi-center, multi-vendor patient data. 

Methods  
The new automatic algorithm, EWA (Expectation Maximization, weighted intensity, a priori information), was 
implemented using an intensity threshold by Expectation Maximization (EM) and a weighted summation to 
account for partial volume effects. 

The EWA algorithm was validated in-vivo against triphenyltetrazolium-chloride (TTC) staining (n=6 pigs with 
paired IR and PSIR images) and against ex-vivo high resolution T1-weighted images (n=20 IR and n=12 PSIR 
images). The EWA algorithm was compared to expert delineation in 124 patients from multi-center, multi-
vendor clinical trials 2-6 days following first time ST-elevation myocardial infarction (STEMI) treated with 
percutaneous coronary intervention (PCI) (n=75 IR and n=49 PSIR images).  

Results 
Infarct size by the EWA algorithm showed a bias to TTC of -1 ± 1%LVM (R=0.99) in IR and -2 ± 3%LVM 
(R=0.88) in PSIR images and a bias to ex-vivo T1-weighted images of -1 ± 3%LVM (R=0.96) in IR and 0 ± 
5%LVM (R=0.77) in PSIR images. In multi-center patient studies, infarct size by the EWA algorithm was 15 ± 8 
%LVM in IR images (n=124) and 17 ± 10%LVM in PSIR images (n=49) with a bias to expert delineation of -2 
± 6 %LVM (R=0.81) and -1 ± 5%LVM (R=0.89), respectively.  

Conclusions 
The EWA algorithm was validated experimentally and applied in patient data with a low bias in both IR and 
PSIR LGE images. Thus, the use of EM and a weighted intensity as in the EWA algorithm, may serve as a 
clinical standard for the quantification of myocardial infarction in LGE CMR images. 

Background 
Late gadolinium enhancement (LGE) 
cardiovascular magnetic resonance (CMR) is 
considered the reference standard for the 
assessment of myocardial infarction (MI) [1-2]. 
Visualization of MI by use of gadolinium  

 

enhancement has evolved from T1-weighted 
imaging in 1984 [3] to current use of LGE 
magnitude inversion recovery (IR) [4] and phase 
sensitive inversion recovery (PSIR) sequences [5] 
as clinical standard [6].  



Although multiple methods have been proposed for 
quantification of MI, there is still no clinical 
standard [6]. Manual delineation or visual grading 
of MI is often used clinically but has the 
disadvantage of being subjective and therefore 
threshold techniques have been proposed based on 
different numbers of standard deviations (SD) from 
remote myocardium or based on the full width half 
maximum (FWHM) intensity threshold [7-9]. 
Recently Stirrat et al. [10] showed a difference 
between infarct size derived from IR and PSIR 
LGE images for threshold methods of SD from 
remote and FWHM. More advanced methods for 
MI quantification has been implemented and 
validated as the FACT algorithm by Hsu et al. [11-
12] and the weighted algorithm by Heiberg et al. 
[13]. Both algorithms involve regional analysis of 
the infarcted myocardium to include microvascular 
obstruction (MVO) and exclude artifacts. However, 
the FACT algorithm [11] was developed and 
validated for PSIR images with surface coil 
intensity correction and based on a FWHM 
threshold, whereas the weighted algorithm [13] was 
developed and validated for magnitude IR images. 
Heiberg et al. [13] used a weighted approach to 
account for partial volume effects which was shown 
to decrease variability compared to the use of pure 
signal intensity thresholds. The algorithm was, 
however, based on a SD threshold from remote and 
the weighted approach was not applied in ex-vivo 
high resolution T1-weighted images. Using a 
threshold by Expectation Maximization (EM) [14] 
has been shown superior to FWHM and SD from 
remote for quantification of myocardium at risk in 
T2-weighted images [15] and the EM-algorithm has 
also been implemented for MI quantification in 
LGE images [16]. The EM-algorithm has 
previously not been combined with a weighted 
approach and, to the best of our knowledge, no 
algorithms have been developed for MI 
quantification in both IR and PSIR LGE images and 
applied in multi-center, multi-vendor patient 
studies.   

Therefore, the aim of this study was 1) to develop a 
new automatic algorithm for MI quantification by 
combining intensity threshold by Expectation 
Maximization (EM) with a weighted approach to 
account for partial volume effects, 2) to validate the 
automatic algorithm experimentally for IR and 
PSIR LGE images and ex-vivo high resolution T1-
weighted images, and 3) apply the automatic 
algorithm in multi-center, multi-vendor patient data 
with consensus expert delineations as reference and 
compare the applicability of the new automatic 
algorithm to previously suggested methods for 
infarct quantification in both IR and PSIR LGE 
images. 

     

Methods 

Experimental studies 
Pigs with induced myocardial infarction were 
included from three previous studies, one 
mechanistic study of myocardial infarction (n=15) 
[17]one cardio protection study (n=15) [18] and 
controls from one cardio protection study 
previously used for validating the original weighted 
algorithm for infarct quantification (n=8) [13]. All 
three animal studies conformed to the Guide for the 
Care and Use of Laboratory Animals United States 
National Institutes of Health (NIH Publication 
No.85-23, revised 1996) and were approved by the 
Regional Ethics Committee. The experimental 
protocols for each of the studies have been 
previously published [13, 17-18]. In short, all pigs 
were subjected to 40 minutes occlusion with a 
balloon placed after the first or the second diagonal 
branch of the left anterior descending artery (LAD). 
Myocardial infarction was imaged after four hours 
[13, 18], six hours [17] or seven days [17]of 
reperfusion with either in-vivo 3D IR LGE (n=20), 
in-vivo 2D PSIR LGE (n=12)  and/or ex-vivo high 
resolution T1-weighted images (n=38). CMR 
imaging was performed on a 1.5 T Philips scanner 
(Philips Healthcare, Best, The Netherlands). In-vivo 
LGE images were acquired approximately 20 
minutes after injection of gadolinium-based 
contrast agent. Ex-vivo high resolution (0.5x0.5x0.5 
mm) T1-weighted images were acquired covering 
the entire left ventricle (LV) with the explanted 
hearts placed in plastic containers and the ventricles 
filled with balloons containing deuterated water. 
For ex-vivo imaging, a gadolinium-based contrast 
agent was administered 15 minutes prior to 
administration of a potassium chloride bolus. Six 
pigs with MI were imaged, both in-vivo and ex-
vivo, after seven days of reperfusion and following 
ex-vivo imaging, hearts were sliced into five mm 
slices and incubated in triphenyltetrazolium-
chloride (TTC) for five minutes. The slices were 
subsequently photographed on both apical and basal 
sides for infarct analysis. 

Patient population 
Patients with first time ST-elevation myocardial 
infarction (STEMI) treated with percutaneous 
coronary intervention (PCI) were included from the 
recently published clinical cardioprotection trials 
CHILL-MI [19] (n=58) and MITOCARE [20] 
(n=66). Patients underwent CMR imaging within 2-
6 days following acute MI treated with PCI. 
Inclusion and exclusion criteria for each of the 
clinical trials have been previously published [19, 
21]. In short, all patients had clinical signs of acute 
MI defined as clinical symptoms and ECG signs 
consistent with ST-elevation infarction or new 
onset of left bundle branch block (LBBB), were ≥ 
18 years old and had symptom duration of less than 



6 hours. Patients with a history of previous 
myocardial infarction or history of coronary 
revascularization were excluded. Both studies [19-
20] from which patients were recruited were 
approved by the institutional review boards/Ethics 
Committees, and all patients provided written 
informed consent. All CMR examinations were 
performed on 1.5 T scanners from Philips (Philips 
Healthcare, Best, The Netherlands), Siemens 
(Siemens Healthcare, Erlangen, Germany) or GE 
(GE Healthcare, Waukesha, WI, USA). For infarct 
assessment, LGE images covering the entire LV 
were acquired approximately 15 minutes after 
injection of the gadolinium-based contrast agent. 
The LGE-images were acquired using a magnitude 
inversion-recovery (IR) or phase sensitive inversion 
recovery (PSIR) gradient-recalled echo sequence 
with a slice thickness of 8 mm with no slice gap [4]. 
In-plane resolution was typically 1.5 x 1.5 mm. 
Inversion time was manually adjusted to null the 
signal of viable myocardium. Surface coil intensity 
correction was not mandatory across vendors and 
cites.  

This study included patients who had undergone 
CMR examination with LGE magnitude IR images 
(n=75) or paired LGE magnitude and phase 
sensitive IR images (n=49). Image quality was 
assessed as (1) poor, (2) acceptable or (3) good, 
where acceptable and good images were considered 
for this study. 

Image analysis 
All images were analyzed using the software 
Segment (http://segment.heiberg.se) [22]. 
Endocardial and epicardial borders were traced 
manually with exclusion of the papillary muscles. 
Infarct size was expressed as % of left ventricular 
mass (LVM).  

In LGE images, infarct expert delineation was 
performed using the weighted method based on 
1.8SD [13], with manual corrections where needed. 
Hypointense regions within the region of 
gadolinium enhancement were considered to be 
MVO [23] and were included in the analysis as 100 
% infarction. In the experimental in-vivo data, LGE 
images were delineated with the same method as 
for the patients by one observer (RJ with 5 years of 
CMR experience). In the patient data, delineation of 
each data set was performed by one of three 
primary observers (HE, MC and HA with 14, 15 
and 20 years of experience, respectively) in a core 
lab setting (Imacor AB, Lund Sweden) with a 
quality control of the delineations by a second 
observer for each case. Different opinions for the 
delineations were resolved in consensus between all 
three observers when necessary. In a subset of 17 
patients a second-observer delineation was 
performed using the same endocardial and 
epicardial borders to evaluate inter-observer 

variability of the expert delineation (MC vs. HE). In 
T1-weighted images, infarct delineation was 
performed using a threshold of 8SD from remote 
[13], with manual corrections where needed (RJ or 
HE). Hypointense regions were considered to be 
MVO and included in the infarct delineation. In 
TTC images the myocardial infarction was 
delineated manually by one observer as the non 
TTC-stained parts of the myocardium (RJ). 

Automatic segmentation of MI 
The automatic algorithm for MI quantification was 
implemented and incorporated in the freely 
available software Segment [22]. The new 
automatic algorithm, EWA, is based on three major 
principles: Expectation Maximization for intensity 
classification, weighted summation of infarct size 
to account for partial volume effects according to 
pixel intensity and a priori information utilized for 
pre and post processing. A maximal extent model 
of the perfusion territories [15] was used as a priori 
information and was defined by consensus between 
three experienced observers for each culprit artery 
(Figure 1). The user supplies the EWA algorithm 
with information on culprit artery and indicates the 
rotation of the left ventricle by the inferior and 
anterior right ventricular insertion points. The EWA 
algorithm consists of six steps:  

1) Surface coil intensity correction 
2) Classification of myocardial intensities by means 
of an EM-algorithm 
3) Segmentation of infarct region by means of a 
level set method 
4) Inclusion of microvascular obstruction 
5) Post processing to exclude artifacts  
6) Calculation of the infarct size by weighting the 
pixels based on their intensity.  
 
In step 1, surface coil intensity correction was 
applied as a second order linear correction to be 
able to account for intensity gradient proportional 
to the squared coil distance and was based on the 
intensities in the blood pool and remote 
myocardium. The remote myocardium was defined 
by using the maximal extent model of the culprit 
artery [15].   
In step 2, an EM-algorithm [14] was used to 
classify myocardial pixel intensities as 
representative of normal myocardium or infarct. 
The EM-algorithm iteratively refined an initial 
classification to find the maximum likelihood 
estimate of the mean and standard deviation for the 
Gaussian intensity distributions of normal 
myocardium and MI. The initial classification was 
defined as a small MI of 10% by a pure threshold at 
the 90th percentile of the intensity histogram. To 
increase the stability of the EM-algorithm, a 
constrained version was applied in which pixel 
intensities below the 5th percentile were kept 



 

Figure 1- Maximal extent model of perfusion territories  
Bulls-eye representation of maximal extent model of the perfusion territories of left anterior descending artery (LAD), left 
circumflex artery (LCx), right coronary artery (RCA), and left main artery (LM). Models for LAD, LCX and RCA were 
defined in consensus by three experienced observers in an extended 17- segment AHA model and models for LM were defined 
from the models of LAD, LCX and RCA. The 17-segment model is extended to three slices in each of the basal, mid-
ventricular and apical zones and 24 sectors in each slice. Black sectors are included in the maximal extent model. The septal 
part of the left ventricle was represented in the left of the bulls-eye plot, the lateral part in the right, anterior part in the top, 
inferior part in the bottom, the apical slices in the center and the basal slices in the outer part of the bulls-eye plot. 
 

classified as normal myocardium and pixel 
intensities above the 95th percentile were kept 
classified as MI. The optimal intensity threshold 
was then defined as the intensity for which there 
was an equal probability of being representative of 
normal myocardium and MI calculated from the 
Gaussian distributions with mean and standard 
deviation estimated by the EM-algorithm.  

In step 3, the MI region was segmented using a fast 
level set method [24] in which the main driving 
force was what pixels to include or exclude based 
on intensity with parameters for smoothing as 
previously implemented by Heiberg et al. [13] for 
quantification of infarction. The main driving force 
in a level set method is called the speed image and 
should be defined to be positive for pixels to 
include and negative for pixels to exclude in the 
segmentation. Therefore, the speed image was set to 
a linear function with zero at the optimal threshold 
defined by EM, 1 at the maximal myocardial 
intensity and subsequently negative values for 
intensities below the optimal threshold.  

In step 4, MVO was detected by means of a flood 
fill algorithm and morphological operations. 
Microvascular obstruction is characterized by 
regions of low intensity within the MI and might 
not have been detected as MI by thresholding. In 
the EWA algorithm MVO was detected slice by 
slice as holes in the infarct region by using a flood 
fill algorithm as suggested by Heiberg et al. [13] in 
combination with morphological closing as 

suggested by Hsu et al. [11]. First a flood fill 
algorithm was used to detect dark pixels as MVO if 
totally surrounded by pixels segmented as infarct or 
connected to the endocardial border. Next a 
morphological closing operation was performed by 
first applying a dilation operation with a 3-by-3 
pixel cross shaped kernel to close small gaps in the 
infarct segmentation. Then, the flood fill algorithm 
was reapplied to find any holes arising from the 
morphological closing before performing the 
erosion operation.  

In step 5, post processing of the MI segmentation 
was performed in two steps: removing pixels 
classified as MI outside the culprit region and 
removing small isolated regions classified as MI. 
By using the same maximal extent model as for 
surface coil correction, bright regions outside the 
culprit artery region could be removed from the MI 
segmentation. Regions segmented as MI which 
were smaller than 1.5 cm3 were removed regardless 
of location if not comprising more than 1% of the 
left ventricular mass or if being the only region of 
MI. 

In step 6, the final step, the MI size was calculated 
by a weighted summation, where each pixel within 
the MI was weighed according to its intensity to 
account for partial volume effects. The weight 
represented the amount of infarcted cells within the 
pixel and hence in normal myocardium the weight 
should be 0 and in pixels with the maximal 
intensity the weight should be set to 1. The weight 

Maximal extent model of perfusion territories

LCXLAD RCA LM



 

Figure 2 Validation against TTC:  
A) Scatter plots (left column) and Bland-Altman plots (right column) of infarct size expressed as % of left ventricular mass 
(%LVM) for the EWA algorithm against infarct size by triphenyltetrazolium-chloride (TTC) in pigs with myocardial 
infarction imaged after seven days (n=6) with in-vivo magnitude inversion recovery LGE images (IR, top row), in-vivo phase 
sensitive inversion recovery LGE images (PSIR, middle row) and ex-vivo high resolution T1-weighted images (T1w, bottom 
row). Left column:  solid line = line of identity; dashed line = regression line. Right column: solid line = mean bias; dashed 
line = mean ± two standard deviations. 
B) Infarct segmentation by the EWA algorithm in one pig shown in one slice of in-vivo IR LGE, in-vivo PSIR LGE, ex-vivo 
high resolution T1w and corresponding TTC-stained slice. Infarct segmentation by the EWA algorithm and by manual 
delineation in TTC images is shown in yellow. For the automatic EWA segmentation the core of the infarct is shown in pink 
and microvascular obstruction is shown as the red line within the infarct. Endocardium is delineated in red and epicardium 
in green.
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Table 1- Bias and regional agreement in paired IR and PSIR LGE images from multi-center patient studies: 
Bias as % of left ventricular mass (%LVM), regression R-value and regional agreement by DSC to expert delineation for the 
EWA algorithm, the original weighted algorithm [13] and the threshold method of EM, 2SD, 3SD and 5SD from remote, and 
FWHM from minimum intensity [8], FWHM from mean intensity in remote [11] and Otsu's threshold [25] in paired 
magnitude inversion recovery (IR) and phase sensitive inversion recovery (PSIR) images (n=49) and bias and regression R-
value for PSIR vs IR LGE images. * the original weighted algorithm by Heiberg et al. [13] was developed for IR images and 
therefore only applied in IR images. ** the FWHM remote threshold was developed for PSIR images as part of the FACT 
algorithm by Hsu et al. [11] and therefore only applied in PSIR images.   
 
for each pixel was calculated as a linear function 
from weight 0 at the mean intensity of the remote 
myocardium to weight 1 at the 90th percentile of 
the intensities within the MI.  

The maximal extent model of the culprit artery was 
needed for the intensity correction in step 1 and the 
first part of the post processing in step 5. However, 
the maximal extent model could not be applied in 
experimental studies where the anatomy differs and 
therefore the algorithm was used without the use of 
maximal extent model and user input of insertion 
points and culprit artery in the experimental part of 
this study.   

Statistical analysis 
Experimental validation: Infarct size by the EWA 
algorithm and infarct size by the expert delineation 
in in-vivo IR, in-vivo PSIR and ex-vivo high 
resolution T1-weighted images was compared to 
infarct size by TTC for myocardial infarction 
imaged seven days after reperfusion.  Infarct size by 
the EWA algorithm in in-vivo IR, in-vivo PSIR and 
ex-vivo high resolution T1-weighted images was 
compared to infarct size by expert delineation in ex-
vivo high resolution T1-weighted images regardless 
of timing of imaging. Comparisons were performed 
using Bland-Altman bias (mean ± standard 
deviation) and linear regression analysis 
(correlation coefficient). 

Applicability in patient data: Infarct size by the 
EWA algorithm was compared to infarct size by 
expert delineation using Bland-Altman bias (mean 
± standard deviation) and linear regression analysis 
(correlation coefficient). Performance of the EWA 

algorithm was compared to the original weighted 
algorithm by Heiberg et al. [13], and the thresholds 
of EM, 2, 3 and 5SD from remote, FWHM from 
minimum intensity as implemented by Amado et al. 
[8], FWHM from remote intensity as implemented 
by Hsu et al. [11] and Otsu's threshold [25]. 
Comparison was performed in paired IR and PSIR 
LGE images using bias and linear regression 
analysis with expert delineation as reference. 
Regional agreement with expert delineation was 
evaluated using Dice Similarity Coefficient (DSC) 
[26] for both the full extent of the infarct and the 
core of the MI as represented if no weighting had 
been used.  

Results 
Infarct size by TTC was 9 ± 6 %LVM (n=6) and 
infarct size by the EWA algorithm was 8 ± 6 
%LVM in in-vivo IR LGE images, 8 ± 5 %LVM in 
in-vivo PSIR LGE images and 8 ± 4 %LVM in ex-
vivo high resolution T1-weighted images (T1w). 
The bias compared to TTC was -1 ± 1 %LVM 
(R=0.99) in IR images, -2 ± 3 %LVM (R=0.88) in 
PSIR images and -1 ± 4 %LVM (R=0.75, p=0.08) 
in T1w images (Figure 2). The infarct size by 
expert delineation in the same six animals was 9 ± 6 
%LVM in IR and PSIR images and 9 ± 7 %LVM in 
T1w images, with a bias to TTC of -1 ± 1 %LVM 
(R=0.999) in IR images, 0 ± 0 %LVM (R=0.994) in 
PSIR images and -1 ± 1 %LVM (R=0.99) in T1w 
images (Figure 2). Bias to expert delineation in 
T1w images was for the EWA algorithm -1 ± 3 
%LVM (R=0.96, n=20) in IR LGE images, 0 ± 5 
%LVM (R=0.77, n=12) in PSIR LGE images and -



 

 Figure 3- Validation against ex-vivo high resolution T1-weighted images:  
Scatter plots (left column) and Bland-Altman plots (right column) of infarct size expressed as % of left ventricular mass 
(%LVM) for the EWA algorithm against infarct size by expert delineation in ex-vivo high resolution T1-weighted images 
(T1w). Validation in in-vivo magnitude inversion recovery (IR, top row, n=20 pigs), in-vivo phase sensitive inversion 
recovery (PSIR, middle row, n=12) and ex-vivo high resolution T1-weighted images (T1w, bottom row, n=38). Left column:  
solid line = line of identity; dashed line = regression line. Right column: solid line = mean bias; dashed line = mean ± two 
standard deviations.
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1 ± 4 %LVM (R=0.96, n=38) in T1w images 
(Figure 3).         

Infarct size by the EWA algorithm was 15 ± 8 
%LVM in IR images (n=124) with a bias of -2 ± 6 
%LVM (R=0.81) compared to the expert 
delineation. In patients with paired IR and PSIR 
images (n=49) infarct size by the EWA algorithm 
was 17 ± 10 %LVM in both IR and PSIR images 
with a bias of -1 ± 5 %LVM (R=0.89) in both IR 
and PSIR images (Figure 4). The bias and 
correlation between expert delineation of infarct 
size and the EWA algorithm, the original weighted 
algorithm, thresholds by EM, 2SD, 3SD and 5SD 
from remote, FWHM from minimum intensity [8], 
FWHM from mean intensity in remote [11] and 
Otsu's threshold [25] are summarized in Table 1 
and Figure 5. Inter-observer variability of infarct 
size by expert delineation was 0 ± 1 %LVM 
(R=0.99 

Discussion 
This study has presented a new automatic 
algorithm, the EWA algorithm, for MI 
quantification based on intensity classification by 
Expectation Maximization (EM) and weighting 
each pixel according to its intensity to account for 
partial volume effects. The EWA algorithm was 
validated experimentally and applied in multi-
center, multi-vendor patient data with a low bias 
and high regional agreement in both IR and PSIR 
LGE images.  The performance of the EWA 
algorithm was found superior to several previously 
described methods for MI quantification and the 
EWA algorithm was successfully applied to high 
resolution T1-weighted images, showing the ability 
of the EWA algorithm to adapt to different image 
quality. 

Experimental validation 
The EWA algorithm was validated against TTC 
with bias similar to FWHM from minimum 
intensity as suggested by Amado et al. [8] (4.1 ± 
1.1 %LVM, R=0.94) and the FACT algorithm by 
Hsu et al. [11] (1.9% LVM, R=0.96). The EWA 
algorithm was also validated against ex-vivo high 
resolution T1-weighted images in a larger cohort 
with bias comparable to the original weighted 
algorithm by Heiberg et al. [13] (-0.3 ± 1.3 
%LVM). The EWA algorithm was validated 
against TTC in pigs with myocardial infarction 
imaged after seven days of reperfusion and against 
ex-vivo high resolution T1-weighted images in pigs 
with myocardial infarction imaged after four hours, 
six hours or seven days of reperfusion. 

Hyperenhancement in CMR has been shown to 
overestimate acute MI in comparison to TTC [17, 
27-28] and Jablonowski et al. [17] showed an 
overestimation by CMR after 6 hours of reperfusion 
which was not seen after seven days of reperfusion. 
The overestimation in the acute setting was 
explained by an increased extracellular volume 
adjacent to the infarct which was not seen after 
seven days of reperfusion [17]. Thus, TTC can be 
used as reference in myocardial infarction imaged 
seven days after reperfusion but another reference 
was needed for quantification of acute MI. Ex-vivo 
high resolution T1-weighted images and inversion 
recovery LGE are based on the same principle of 
hyperenhancement proportional to the distribution 
of the gadolinium based contrast agent in the 
extracellular volume. Ex-vivo imaging enables 
highresolution imaging and therefore ex vivo high 
resolution T1-weighted imaging can be used as 
reference for in-vivo IR and PSIR LGE in both the 
acute and chronic setting. 

However, neither TTC nor ex-vivo high resolution 
T1-weighted images can be used for validation in 
patient studies. In this study, expert delineation was 
chosen as the reference for MI quantification in 
patients, performed by using the original weighted 
algorithm by Heiberg et al. [13] followed by 
manual corrections and consensus reading. The 
expert delineation was validated against TTC 
demonstrating a lower bias compared to manual 
delineation in the study by Amado et al. [8] and 
Hsu et al. [11] (8.6 ± 1.9% LVM, R=0.69 and 
5.4%, R=0.96, respectively). Interobserver 
variability was analyzed in patients in a core lab 
setting and showed a lower bias and variability 
compared with previous studies by Flett et al. [9] 
and McAlindon et al. [29]. Thus, the expert 
delineation was used as reference in the patient 
population. 

Applicability in multi-center patient 
data 
The EWA algorithm was applied in 124 patients 
from multi-center, multi-vendor studies with bias to 
expert delineation similar to the FACT algorithm 
by Hsu et al. [12] which was evaluated in 20 
patients from a single center (3.8 %LVM, R=0.95). 
Heiberg et al. [13] found a lower bias for the 
original weighted algorithm (0.3 ± 2.7 %LVM) in a 
two-vendor, single-center study of 40 patients. 
However, in the present study, the performance of 
the EWA algorithm was compared to the original 
weighted algorithm [13] and a higher bias and 
variability was found for the original weighted 
algorithm in the current multi-center, multi-vendor 
study than in the original study [13]. Similarly, 



 

Figure 4- Applicability in paired IR and PSIR LGE images from patients in multi-center, multi-vendor 
studies: 
 A) Scatter plots (left column) and Bland-Altman plots (right column) of infarct size expressed as % of LVM for the EWA 
algorithm against infarct size by expert delineation in 49 patients from multi-center studies with paired magnitude inversion 
recovery (IR, top row) and phase sensitive inversion recovery LGE images (PSIR, bottom row). Left column:  solid line = 
line of identity; dashed line = regression line. Right column: solid line = mean bias; dashed line = mean ± two standard 
deviations.  
B) Typical segmentation by the EWA algorithm in one patient with paired IR (top row) and PSIR images (bottom row). The 
automatic EWA segmentation of the infarct is shown in yellow, the core of the infarct is shown in pink and microvascular 
obstruction is shown as the red line within the infarct. Endocardium is delineated in red and epicardium in green.
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variability was increased for the threshold by 
FWHM from minimum intensity and n-SD from 
remote in comparison to the validation against TTC 
by Amado et al. [8] and in contrast to the study by 
Hsu et al. [11] an underestimation was seen for the 
threshold of FWHM from remote. The changes in 
bias and variability seen in the current multi-center, 
multi-vendor patient study compared to previous 
validations in experimental studies [8, 11, 13] and 
single-center patient studies [12-13] underlines the 
importance of using multi-center, multi-vendor 
patient data. Multi-center, multi-vendor patient data 
has a larger variability in image quality and thus the 
automatic algorithm is faced with a larger challenge 
which may not have been accounted for in the 
algorithm if designed and validated for single-
center patient data or experimental data.  

Additionally, infarct validation needs to be 
performed in both magnitude IR and PSIR images 
since both are used in clinical routine. Stirrat et al. 
[10] recently showed a significant bias of infarct 
size in paired magnitude IR and PSIR images for n-
SD from remote and FWHM from minimum 
intensity. Based on their findings we compared 
infarct size in paired IR and PSIR images to expert 
delineation in 49 patients for the EWA algorithm, 
threshold methods of EM, 2, 3, and 5 SD, FWHM 
from minimum intensity and Otsu's threshold. 
There was a large bias between IR and PSIR 
images for the threshold of FWHM from minimum 
intensity and Otsu's threshold with underestimation 
in IR and overestimation in PSIR images. Bias 
between IR and PSIR for 2, 3 and 5 SD was lower 
in this study than in the study by Stirrat et al. [10] (-
3 %LVM, -4 %LVM and -5 %LVM, respectively) 
and is possibly explained by different definitions of 
remote region. In the present study the remote 
region was defined from the a priori maximal 
extent model for each culprit artery. In the study by 
Stirrat et al. [10] care was taken to manually define 
a large remote region, however, infarct size in 
controls without myocardial infarction was found as 
14 %LVM by 2SD and 9 %LVM by 3SD instead of 
the theoretically defined 2 % and 0.1 %. The 
difficulty in defining a remote region representative 

of normal myocardium is also shown by high 
variability of 2SD in inter- and intra observer 
variability and test-retest repeatability found by 
both Flett et al. [9] and McAlindon et al. [29]. By 
using the EWA algorithm there is no need for 
manual definition of remote regions and the EWA 
algorithm showed a lower variability and higher 
regional agreement than any other of the methods 
and a low bias and variability between IR and PSIR 
images. 

Limitations 
The EWA algorithm was applied in multi-center, 
multi-vendor patient data from clinical trials of first 
time STEMI and experimental studies of a single 
infarction and the EWA algorithm was developed 
for single vessel myocardial infarction. For multi-
vessel myocardial infarction or multiple infarctions 
over time the algorithm can however be used 
without the a priori information of culprit artery 
models. The algorithm would then not be able to 
apply the intensity correction and would need 
further validation for multi-vessel disease. For other 
types of myocardial fibrosis such as in the situation 
of hypertrophic cardiomyopathy and myocarditis 
both a priori information and post processing might 
need to be adjusted and would require additional 
validation for these groups of patients. However, 
the EWA algorithm was applied in the experimental 
data without the use of a priori information on 
culprit artery due to differences in anatomy and 
showed a low bias in IR and PSIR LGE images and 
ex-vivo high resolution T1-weighted images. The 
low bias found in T1-weighted images as well as in 
IR and PSIR LGE images shows the ability of the 
EWA algorithm to assess infarct size in a wide 
range of settings with a variety of different imaging 
strategies. The need for manual corrections was not 
assessed, however, considering the lower bias and 
higher regional agreement than for the original 
weighted algorithm less manual corrections would 
probably be needed. Especially for quantification in 
ex-vivo high resolution T1-weighted images, time 
will be saved by the limited amount of user input in 
comparison to definition of remote regions in all 
0.5 mm slices covering the left ventricle.    

Conclusion 
We have developed a new automatic algorithm, the 
EWA algorithm, for quantification of myocardial 

infarction in LGE images based on combining an 
intensity classification by Expectation 
Maximization (EM) with a pixel intensity 
weighting approach to account for partial 

volume effects. The EWA algorithm performed 
well for both magnitude IR and PSIR LGE images 
when validated in experimental studies against TTC 
and ex-vivo high resolution T1-weighted images, 
and when applied in multi-center, multi-vendor 

patient data. Thus, using EM and a weighted 
approach as with the EWA algorithm, may serve as 
a candidate for a clinical standard in quantifying 
myocardial infarction.  



 
Figure 5- Applicability in paired IR and PSIR LGE images from multi-center patient studies compared to 
previously suggested methods for MI quantification:   
Scatter plots of infarct size expressed as % of left ventricular mass (% LVM) against infarct size by expert delineation in 49 
patients for the EWA algorithm, the original weighted algorithm [13] and the threshold method of Expectation Maximization 
(EM) [14] (top row), 2SD, 3SD and 5SD from remote (middle row), and FWHM from minimum intensity [8], FWHM from 
mean intensity in remote [11] and Otsu's threshold [25] (bottom row) in paired magnitude inversion recovery (IR) and phase 
sensitive inversion recovery (PSIR) LGE  images. Solid lines = line of identity. * the original weighted algorithm by Heiberg 
et al. [13] was developed for IR images and therefore only applied in IR images. ** the FWHM remote threshold was 
developed for PSIR images as part of the FACT algorithm by Hsu et al. [11] and therefore only applied in PSIR images.    
 

Abbreviations 
CMR: cardiovascular magnetic resonance, DSC : 
Dice similarity coefficient, EM : expectation 
maximization, FWHM : full width half maximum, 
IR : inversion recovery, KCl  : potassium chloride, 
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bundle branch block, LCx : left circumflex artery, 

LGE : late gadolinium enhancement, LM : left main 
artery, MI : myocardial infarction, PCI: 
percutaneous coronary intervention, PSIR: phase 
sensitive inversion recovery, RCA : right coronary 
artery, SD: standard deviations, STEMI: ST-
elevation myocardial infarction, %LVM : percent of 
left ventricular mass  

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
2SD-threshold

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
2S

D
-th

re
ho

ld
 [%

LV
M

]

 

 
IR
PSIR

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
3SD-threshold

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
3S

D
-th

re
ho

ld
 [%

LV
M

]

 

 
IR
PSIR

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
5SD-threshold

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
5S

D
-th

re
ho

ld
 [%

LV
M

]
 

 
IR
PSIR

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
EWA algorithm

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
EW

A 
al

go
rit

hm
 [%

LV
M

]

 

 
IR
PSIR

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
FWHM(min)-threshold

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
FW

H
M

(m
in

)-
th

re
ho

ld
 [%

LV
M

]

 

 
IR
PSIR

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
FWHM(remote)-threshold

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
FW

H
M

(r
em

ot
e)

-th
re

ho
ld

 [%
LV

M
]

 

 
PSIR

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
Otsu-threshold

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
O

ts
u-

th
re

ho
ld

 [%
LV

M
]

 

 
IR
PSIR

**

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
Original weighted algorithm

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
or

ig
in

al
 w

ei
gh

te
d 

al
go

rit
hm

 [%
LV

M
]

 

 
IR

*

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
EM-threshold

Infarct by expert delineation [%LVM]

In
fa

rc
t b

y 
EM

-th
re

ho
ld

 [%
LV

M
]

 

 
IR
PSIR

Applicability in paired IR and PSIR LGE images 
compared to previously suggested methods



Acknowledgements 
This study has been funded by the Swedish 
Research Council (2011-3916, 2012-4944) , The 
Swedish Heart and Lung Foundation, The Medical 
Faculty of Lund University, Sweden, and Region of 
Scania, Sweden. Funding for the CHILL-MI trial 
was received from Philips Healthcare. Funding for 
the MITOCARE trial was received from the 
European Commission within the 7th Framework 
Programme for RTD – Project MITOCARE – 
Grant Agreement HEALTH-2010-261034. 

Author details 
1 Clinical Physiology, Dept. of Clinical Sciences 
Lund, Lund University, Skåne University Hospital, 
Sweden, 2Dept. of Biomedical Engineering, Faculty 
of Engineering, Lund University, Lund, Sweden, 
3Laboratory of Medical Informatics, School of 
Medicine, Aristotle University of Thessaloniki, 
Thessaloniki , Greece, 4 Dept. of Cardiology B, 
Oslo, University Hospital Ullevål and Faculty of 
Medicine, University of Oslo, Oslo, Norway,  
5 UMR 7339 CRMBM, Aix-Marseille University, 
Marseille, France, 6 Department of Cardiology, 
Hospital Nord, Marseille, France, 7 Department of 
Cardiology, Medical University of Innsbruck, 
Innsbruck, Austria, 8Dept. of Cardiology, Lund 
University, Lund, Sweden 

Corresponding author: Einar Heiberg, Department 
of Clinical Physiology, Skåne University Hospital, 
Lund, SE 221 85 Lund, Sweden 

Authors’ contributions 
JT developed and implemented the EWA 
algorithm, analyzed and interpreted segmentation 
results, drafted the manuscript and conceived the 
study. HE designed the experimental part of the 
study, contributed to the overall design of the study 
and the automatic algorithm and performed manual 
delineations. RJ and MC contributed to the design 
of the study and the automatic algorithm and 
performed manual delineations. AA contributed to 
the design of the study and the automatic algorithm 
and provided in depth CMR knowledge needed for 
algorithm development. PH, AJ, FK, BM, DE and 
DA were responsible for data collection in the 
multi-center studies. HA contributed to the design 
of the automatic algorithm, performed manual 
delineations and conceived the study. 
EHcontributed to the design of the automatic 
algorithm and conceived the study. All authors 
revised the manuscript, and have read and approved 
the final version of the manuscript. 

Competing interests 
EH is the founder of Medviso AB, Lund, Sweden, 
which sells a commercial version of Segment. JT is 
employed by Medviso AB on a part-time basis. HA 
is a share-holder of Imacor AB, Lund, Sweden, 

which performs core lab analysis of CMR images. 
HA, HE and MC have been employed by Imacor 
AB on a part-time basis. The other authors declare 
that they have no competing interests. 

References 
1. Kim, R.J., et al., Relationship of MRI delayed contrast 

enhancement to irreversible injury, infarct age, and 
contractile function. Circulation, 1999. 100(19): p. 1992-
2002. 

2. Fieno, D.S., et al., Contrast-enhanced magnetic resonance 
imaging of myocardium at risk: distinction between 
reversible and irreversible injury throughout infarct healing. J 
Am Coll Cardiol, 2000. 36(6): p. 1985-91. 

3. Wesbey, G.E., et al., Effect of gadolinium-DTPA on the 
magnetic relaxation times of normal and infarcted 
myocardium. Radiology, 1984. 153(1): p. 165-9. 

4. Simonetti, O.P., et al., An improved MR imaging technique 
for the visualization of myocardial infarction. Radiology, 
2001. 218(1): p. 215-23. 

5. Kellman, P., et al., Phase-sensitive inversion recovery for 
detecting myocardial infarction using gadolinium-delayed 
hyperenhancement. Magn Reson Med, 2002. 47(2): p. 372-
83. 

6. Schulz-Menger, J., et al., Standardized image interpretation 
and post processing in cardiovascular magnetic resonance: 
Society for Cardiovascular Magnetic Resonance (SCMR) 
board of trustees task force on standardized post processing. J 
Cardiovasc Magn Reson, 2013. 15: p. 35. 

7. Bondarenko, O., et al., Standardizing the definition of 
hyperenhancement in the quantitative assessment of infarct 
size and myocardial viability using delayed contrast-
enhanced CMR. J Cardiovasc Magn Reson, 2005. 7(2): p. 
481-5. 

8. Amado, L.C., et al., Accurate and objective infarct sizing by 
contrast-enhanced magnetic resonance imaging in a canine 
myocardial infarction model. J Am Coll Cardiol, 2004. 
44(12): p. 2383-9. 

9. Flett, A.S., et al., Evaluation of techniques for the 
quantification of myocardial scar of differing etiology using 
cardiac magnetic resonance. JACC Cardiovasc Imaging, 
2011. 4(2): p. 150-6. 

10. Stirrat, J., et al., Influence of phase correction of late 
gadolinium enhancement images on scar signal quantification 
in patients with ischemic and non-ischemic cardiomyopathy. 
J Cardiovasc Magn Reson, 2015. 17(1): p. 66. 

11. Hsu, L.Y., et al., Quantitative myocardial infarction on 
delayed enhancement MRI. Part I: Animal validation of an 
automated feature analysis and combined thresholding infarct 
sizing algorithm. J Magn Reson Imaging, 2006. 23(3): p. 
298-308. 

12. Hsu, L.Y., et al., Quantitative myocardial infarction on 
delayed enhancement MRI. Part II: Clinical application of an 
automated feature analysis and combined thresholding infarct 
sizing algorithm. J Magn Reson Imaging, 2006. 23(3): p. 
309-14. 

13. Heiberg, E., et al., Automated quantification of myocardial 
infarction from MR images by accounting for partial volume 
effects: animal, phantom, and human study. Radiology, 2008. 
246(2): p. 581-8. 

14. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum 
Likelihood from Incomplete Data Via Em Algorithm. Journal 
of the Royal Statistical Society Series B-Methodological, 
1977. 39(1): p. 1-38. 

15. Sjogren, J., et al., Semi-automatic segmentation of 
myocardium at risk in T2-weighted cardiovascular magnetic 
resonance. J Cardiovasc Magn Reson, 2012. 14: p. 10. 

16. Wei, D., et al., A comprehensive 3-D framework for 
automatic quantification of late gadolinium enhanced cardiac 
magnetic resonance images. IEEE Trans Biomed Eng, 2013. 
60(6): p. 1499-508. 

17. Jablonowski, R., et al., Contrast-enhanced CMR 
overestimates myocardial infarction size on day 1 but not day 
7 relative to TTC in a swine model: Mechanistic insights 



using extracellular volume measurements. Journal of 
American College of Cardiology Cardiovascular Imaging, 
2015. In Press. 

18. Hansson, M.J., et al., Differences in the profile of protection 
afforded by TRO40303 and mild hypothermia in models of 
cardiac ischemia/reperfusion injury. Eur J Pharmacol, 2015. 
760: p. 7-19. 

19. Erlinge, D., et al., Rapid endovascular catheter core cooling 
combined with cold saline as an adjunct to percutaneous 
coronary intervention for the treatment of acute myocardial 
infarction. The CHILL-MI trial: a randomized controlled 
study of the use of central venous catheter core cooling 
combined with cold saline as an adjunct to percutaneous 
coronary intervention for the treatment of acute myocardial 
infarction. J Am Coll Cardiol, 2014. 63(18): p. 1857-65. 

20. Atar, D., et al., Effect of intravenous TRO40303 as an 
adjunct to primary percutaneous coronary intervention for 
acute ST-elevation myocardial infarction: MITOCARE study 
results. Eur Heart J, 2015. 36(2): p. 112-9. 

21. Rationale and design of the 'MITOCARE' Study: a phase II, 
multicenter, randomized, double-blind, placebo-controlled 
study to assess the safety and efficacy of TRO40303 for the 
reduction of reperfusion injury in patients undergoing 
percutaneous coronary intervention for acute myocardial 
infarction. Cardiology, 2012. 123(4): p. 201-7. 

22. Heiberg, E., et al., Design and validation of Segment--freely 
available software for cardiovascular image analysis. BMC 
Med Imaging, 2010. 10: p. 1. 

23. Beek, A.M., R. Nijveldt, and A.C. van Rossum, 
Intramyocardial hemorrhage and microvascular obstruction 
after primary percutaneous coronary intervention. Int J 
Cardiovasc Imaging, 2010. 26(1): p. 49-55. 

24. Nilsson, B. and A. Heyden, A fast algorithm for level set-like 
active contours. Pattern Recognition Letters, 2003. 24(9–10): 
p. 1331-1337. 

25. Otsu, N., Threshold Selection Method from Gray-Level 
Histograms. Ieee Transactions on Systems Man and 
Cybernetics, 1979. 9(1): p. 62-66. 

26. Dice, L.R., Measures of the Amount of Ecologic Association 
between Species. Ecology, 1945. 26(3): p. 297-302. 

27. Saeed, M., et al., Reperfused myocardial infarction as seen 
with use of necrosis-specific versus standard extracellular 
MR contrast media in rats. Radiology, 1999. 213(1): p. 247-
57. 

28. Saeed, M., et al., Magnetic resonance characterization of the 
peri-infarction zone of reperfused myocardial infarction with 
necrosis-specific and extracellular nonspecific contrast 
media. Circulation, 2001. 103(6): p. 871-6. 

29. McAlindon, E., et al., Quantification of infarct size and 
myocardium at risk: evaluation of different techniques and its 
implications. Eur Heart J Cardiovasc Imaging, 2015. 

 
 






	101015 Jane Tufvesson OMSLAG
	101015 Jane Tufvesson HELA
	Paper IV ny version G5.pdf
	Background
	Methods
	Results
	Conclusions
	Background
	Methods
	Study population and design
	Imaging
	Image analysis
	Automatic segmentation algorithm
	Comparison to other automatic threshold methods
	Statistical analysis

	Results
	Discussion
	Technical aspects
	Comparison to previous studies
	Limitations

	Conclusion
	Abbreviations
	Acknowledgements
	Author details
	Authors’ contributions
	Competing interests
	Additional files
	References:

	Appendix




 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/PREPRESS/5. MONIKA JÖNSSON/Jamie Espinosa/JaimeEspinosa jämna.pdf
     1
     1
     722
     245
    
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

 HistoryList_V1
 qi2base





