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13. Erik Lindström, Jonas Ströjby, Stefan Ingi Adalbjörnsson, “Non-Linear

Portmanteau Tests”, 15th IFAC Symposium on System Identification, St. Malo,

France, July 6-8, 2009.

vii





Introduction

This thesis is concerned with applications of sparse and robust modeling of vari-

ous parameter estimation problems in audio modeling, audio localizations, DNA

sequencing, and spectroscopy. These problems share the common characteristics

of being well modeled using a sparse model formulation, such that the main para-

meters of interest are linked to only a few components, out of a large set of possible

candidates. By imposing sparse constraints on the signal models one thereby al-

lows for efficient estimation algorithms. In this introduction, we introduce the

methodology and some of the underlying theory used in the following papers, as

well as give some background to the studied problems, emphasizing their connec-

tion to the applied methods, and present an overview of the contributions in the

thesis.

1 Background

During the recent decades, there has been a growing interest in the use of sparse

linear models, where one considers signals that may be well modeled as the linear

combination of a few vectors, out of a large set of feasible candidates. Originating

as heuristics for solving under-determined system of equations, sparse modeling

has become a thoroughly developed field with a rigorous mathematical and stat-

istical theory, as well as a widely used tool in applications. Such models occur in

a surprising number of applications, with one of the earliest examples being from

reflection seismology [1], where one measures the reflections, stemming from ab-

rupt changes in the earth’s subsurfaces, from a series of shocks (impulses) to the

surface. Other notable examples include genomics, where one commonly tries to

infer what combination of DNA symbols that may be linked to various kinds of

the experimental data, as seen in, for example, motif regression and prediction of

DNA splice sites [2]. Further examples include various engineering applications

related to line spectral analysis [3–5], such as direction of arrival estimation [6],

radar imaging [7], and spectroscopy [8], as well as, for example, in numerous

imaging and machine learning applications (see [9] for further examples as well

1



Introduction

as a general overview on sparse modeling). As an illustrative example, consider

the modeling of voiced speech, which may be well modeled using a few sinusoidal

components. Such a signal can be represented using a sparse model by considering

the signal as being formed by a few Fourier vectors, with frequencies correspond-

ing to each of the sinusoids, and with the sinusoidal amplitudes forming the sparse

set of coefficients, wherein one views the contribution from all other frequencies

as contributing with zero coefficients. Since one does not know beforehand the

signals frequencies, one instead considers a large number of possible frequencies,

each thus represented by a Fourier vector and a corresponding coefficient. Con-

sider a signal consisting of n samples; This may then be expressed in matrix-vector

notation as

y = a1x1 + a2x2 . . . apxp (1)

=
[
a1 . . . ap

]






x1
...

xp




 (2)

, Ax (3)

where xk denotes element k of the vector x ∈ C
p, y ∈ C

n is the observation vector,

A ∈ C
n×p is termed a dictionary matrix, such that each column represents one

particular Fourier vector and the corresponding coefficient (or amplitude) is thus

an element in the vector x. Here, one might, for example, choose the frequen-

cies in the dictionary such that ak is a Fourier vector with normalized frequency

k/p. Thus, given an harmonic signal, such as voiced speech, the signal could be

approximated by finding for each frequency component in the signal, a corres-

ponding Fourier vector in the dictionary, and setting its coefficient equal to the

amplitude of the sinusoid, with all the other coefficients being set to zero. Note

that if we use the previously suggested choice of dictionary, the worst approxima-

tion error would be ± 1
2k/p. Thus, as the quality of the approximation becomes

better as one considers more and more Fourier vectors, for this form of signal

representation to be useful, the model necessarily exhibits the typically undesir-

able characteristic of containing more unknowns than measurement, yielding an

under-determined system of equations. Since we can assume that the dictionary

matrix has full rank, the resulting systems of equations will be difficult to work

with, given that they offer an infinite number of feasible solutions, were any two

solutions can have wildly different characteristics. However, with prior know-

ledge that the system of equations has a sparse solution, i.e., that the coefficient

2



2. Sparse modeling and estimation

vector should be sparse and contains mostly zeros, one is, perhaps somewhat sur-

prisingly, able to formulate highly efficient algorithms that are actually able to

accurately reconstruct the signal using only the non-zero elements, offering, with

high probability, a unique solution. This reconstruction can be done in various

ways; some common choices include greedy methods that build up a solution

one vector at a time, Bayesian methods, that use various prior distributions to

promote sparsity, and convex relaxation techniques, where a difficult problem is

approximated with a convex problem. In this thesis, we will mainly examine the

last of these approaches. This choice of methodology, i.e., by mainly relying on

convex relaxation, is a pragmatic one, allowing for sufficient flexibility for our

purposes, i.e., the models are sufficiently detailed to include the relevant charac-

teristics of the signals in question, and since the resulting criteria are convex, the

computational effort will be tractable using the well developed theory that exist

for convex optimization. In the next sections, we will give a brief overview of

when and how this is possible, as well as present some of the basic theory that is

useful for the analysis of such problems.

2 Sparse modeling and estimation

We are in this work primarily interested in modeling and estimation for separable
models, formed as a linear combination of K components a(jk), each scaled with

the coefficient xk, such that

y =

K∑

k=1

xka(jk) + e (4)

where y ∈ R
n is the vector of observations, jk ∈ W ⊂ R

M is the para-

meter vector containing the M unknown parameters, a(·) is function such that

a(·) : RM → C
n, and e is a noise vector which is here, for simplicity, assumed

to be uncorrelated (circularly symmetric) Gaussian distributed random variables.

As is common for this form of signal models, a straightforward least squares or

maximum likelihood solution will yield a complicated multi-modal optimization

problem, typically having far too many local maxima for a gradient based, or

similar, non-linear optimization to be applicable (see also, e.g. [3]). Thus, the

resulting optimization is commonly done by evaluating the likelihood on a grid

of values which leads to a high computational cost, especially in the multidimen-

sional case. Furthermore, since the number of components, i.e., the model order,

3
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K , is in general not known, one often needs to resort to solving the optimization

problem for a possibly large number of different model orders and combined such

solutions with an appropriate model choice criteria before a final estimate can be

produced (see, e.g., [10] for an overview of the model order selection problem).

Both of these difficulties are addressed by the sparse modeling approach to para-

meter estimation. The central idea is to approximate the non-linear model with

a linear model. This is accomplished by assuming that the signal can be well

approximated as a linear combination of vectors, where each vector corresponds

to a particular grid point, such that the grid covers the entire parameter space.

As a result, given a large enough dictionary, each signal component may be well

approximated by an element that lies soe close to the true value that the resulting

approximation error is small. The resulting linear system can be written in matrix

form as

y =

p
∑

k=1

xkak + e (5)

, Ax + e (6)

where p is the total number of grid points considered, assumed to be far larger

than the number of observations, and each ak corresponds to the vector repres-

enting the contribution from a specific grid point jk. Clearly, given that the

dictionary needs to be fine enough, the size of the overall dictionary matrix A,

will grow rapidly, especially for multidimensional data set sets, quickly making

it an unmanageable representation, both in terms of complexity and in terms of

the necessary memory requirements. In Paper D, we examine an example of this

problem, wherein we treat N -dimensional spectroscopy, such that the parameters

space contains 2 dimensions for each of the N -dimensions. Even for low dimen-

sional problems, forming a fine dictionary over 2N dimensions quickly becomes

unfeasible, necessitating alternative solutions. We will examine this aspect further

later on in Paper D.

As compared to the direct maximum likelihood approach using a grid of val-

ues, the difference with using the dictionary model in (5) is that the latter does

not require a priori knowledge of the model order, and is rather only assuming

that most of the amplitudes xk are zero. Clearly, in case A is full rank, there are

infinitely many solutions to the system of equations. To avoid this difficulty, one

4



3. Sparse recovery

may then select the solution that only has K non-zero elements, such that

minimize
x

1

2
||y− Ax||2ℓ2

+ l||x||ℓ0 (7)

where l is a positive tuning parameter that weighs the importance of the model

fit and the sparsity level, and ‖x‖ℓ0
=
∑p

k=1 1xk 6=0, i.e., the function that counts

the number of non-zero entries in a vector, and the ℓq-norm defined as

‖x‖q
ℓq
=

p
∑

k=1

|xk|q (8)

Such a solution would nicely impose the assumed sparsity structure, although it

would require knowledge of the model order, K . Unfortunately, this problem

is usually impossible to solve as it requires solving a least squares problem for

all combination of K vectors (see, e.g., the discussion in [11]). This form of

combinatorial problems are well known to be so-called NP-hard, meaning that

they are as difficult to solve as some other problems that have a computational

cost that will grow exponentially with the problem size, making it a daunting task

even for small problems. As we here consider problems where the fidelity of the

solution depends on having a large, or even a very large, dictionary, it is unfeasible

to form this kind of solution. However, as we present in the next section there

exist relaxations of (7) that are both easy to compute as well as having recovery

guarantees for certain problems, i.e., instances when the relaxation will with high

probability yield the same solution as (7).

3 Sparse recovery

The most well studied relaxation of (7) is the convex relaxation obtained by re-

placing the ℓ0 penalty with the ℓ1 norm, i.e., the convex optimization problem

minimize
x

1

2
||y− Ax||2ℓ2

+ l||x||ℓ1 (9)

which is commonly referred to as either the least absolute shrinkage and selec-

tion operator (LASSO) [12] or basis pursuit denoising (BPDN) [13]. Although

(9) does in general not offer a closed form solution, it can be recast as a second

order cone program, allowing it to be solved using well developed interior point

5



Introduction

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

x

y

Figure 1: The straight line in both figures represent the solution set of an equation

with two variables, on the left the intersection with the smallest ℓ1 ball and on the

right with the smallest ℓ2 ball. As can be seen from the figures, the ℓ1 solution has

one of the coordinates as zero, whereas both are nonzero for the ℓ2 solution. As

a result, imposing a ℓ1 norm constraint will favor sparser solution as compared to

using an ℓ2 criteria.

methods (see, e.g., [14]). Some intuition as to why the ℓ1 penalty promotes

sparse solutions can be gained by studying Figure 1, where a line is used to rep-

resent all solutions to an under-determined linear system with one equation and

two variables. When comparing the minimum ℓ1 solution with the minimum ℓ2

solution, one can see that the ℓ1 solution has one of the variables being exactly

equal to zero, whereas both are non-zero for the ℓ2 solution. Imposing the ℓ1

norm as a penalty will thus favor a sparser solution as compared to the one found

using an ℓ2 criteria. This intuition can be made concrete by considering the first

order Karush-Kuhn-Tucker (KKT) necessary condition for a solution to (9) to

be optimal (see also ,e.g., [14,15]). For many convex optimization problems, this

condition is simply that if the gradient is equal to zero, one can be assured that the

point is optimal. It may be noted that this implies that any locally optimal point

is globally optimal, perhaps the most important attribute of convex optimization

problems. However, since the here considered functions are not differentiable,

the analysis needs to be performed using subdifferential calculus, where one sim-

ilarly to the differential case may show that the necessary condition is that zero

should be included in the subdifferential set (see, e.g., [15]). Thus, for the real

valued version of (9), a necessary and sufficient condition for a minimizer x∗ to

6



3. Sparse recovery

be optimal is that (see [2] for a more thorough treatment than presented here)

0 ∈ AT (Ax∗ − y) + le (10)

where e is a vector such that the k:th element in the vector is either ek = sign(x∗k ),

if x∗k is non-zero, or ek ∈ [−1, 1], if x∗k is zero. For the zero elements, this thus

implies that if, say, variable x∗s = 0, then

|aT
s (Ax∗ − y)| ≤ l (11)

where as denotes column s of A. Thus, now assuming as has unit norm for sim-

plicity, if one were to solve

minimize
z

1

2
||Ax∗ − y− asz||2ℓ2

(12)

this will yield an solution such that |z∗| ≤ l, with the intuitive interpretation

being that if a least squares estimate using the residual leads to an estimated coef-

ficient that is less than l, then the coefficient is set to zero. For the non-zero

variables, the KKT conditions are

0 = ÃT (Ãx̃∗ − y) + l sign(x̃∗) (13)

where Ã is a matrix formed out of the columns of A that correspond to nonzero

variables in x∗, and x̃∗ is the corresponding nonzero variables. When this is com-

pared with the KKT conditions for the unpenalized least squares problem, it be-

comes clear that the estimated variables are shrunk by l. As this shrinkage causes

a bias towards zero, which can be troublesome in some applications, alternative

penalty functions have been considered that minimize this effect, e.g., ℓq with

0 < q < 1 [4, 7, 16] or the reweighted ℓ1 [17], which is equivalent with a log

penalty. In Figure 2, the comparison between the log penalty, the ℓ1, and the

ℓ0 penalty is given. As can be seen the reweighted ℓ1 penalizes larger amplitudes

proportionally less than the ℓ1 penalty, mimicking the ℓ0 penalty more closely.

This analysis framework is general enough to handle many other sparse criteria,

e.g., in Paper A, we perform a similar analysis for the block sparse model (with

sparsity within each block) making the intuitive connection between the tuning

parameters and signal amplitudes concrete. Furthermore, in some cases the KKT

conditions can be solved with a closed form expression, allowing for much im-

proved computational complexity (see also Section 4.1).

7
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Figure 2: The log penalty is a better approximation for the ℓ0 penalty than the

convex ℓ1 penalty.

4 Convex optimization

Most of the convex optimization problems considered in this thesis can be ap-

proached using the methodology of disciplined convex programming, a concept

introduced in [18,19] with a corresponding software package [20]. The method-

ology allows for transformation from a problem statement to a solvable form that

may be performed automatically by a computer, a task that is far from trivial in

many cases. This is done by formalizing how expert practitioners and theoreti-

cians of convex optimization often approach mathematical modeling; a criterion

is then formed by including function and restrictions that are known to be con-

vex and manipulated in such ways that convexity is preserved. Once in standard

form, the problem can be solved using interior point methods implemented in

commonly available software packages such as SeDuMi [21] and SDPT3 [22].

However, convenient as it may be for prototyping new algorithms or methods,

this approach applied to sparse modeling problems often leads to a prohibitive

computational cost, which can give an overly pessimistic view of the feasibil-

ity of the approach. In the thesis, we consider two well studied approaches for

solving the optimization problems encountered, namely, the alternating direction

8



4. Convex optimization

Algorithm 1 The general ADMM algorithm

1: Initiate z = z(0),u = u(0), and ℓ = 0

2: repeat

3: z(ℓ+ 1) = argmin
z

f1(z) + m
2 ||Gz− u(ℓ)− d(ℓ)||22

4: u(ℓ+ 1) = argmin
u

f2(u) + m
2 ||Gz(ℓ+ 1)− u− d(ℓ)||22

5: d(ℓ+ 1) = d(ℓ)− (Gz(ℓ+ 1)− u(ℓ+ 1))

6: ℓ← ℓ+ 1

7: until convergence

method of multipliers (ADMM) framework [23] and the cyclic coordinate des-

cent (CCD) [24]. With these methods, the knowledge that a sparse solution is

sought can be utilized in the calculations, resulting in a great increase in speed.

For example, for (9), each step in such an implementation only requires a compu-

tational cost linear in the number of parameters, whereas each step of the interior

point method requires a Newton step, and is thus approximately proportional to

the number of parameters cubed.

4.1 Efficient implementation - the ADMM

We proceed by examining the two efficient optimization approaches used in the

thesis, beginning with the ADMM. The ADMM formulation has been gaining

notable attention in the recent literature as a method for solving distributed, large-

scale, optimization problems (see, e.g., [23] for an overview of the technique).

The framework is quite general and offers provable convergence with minimal

assumptions. For example, the non-differentiable functions that commonly ap-

pear in sparse modeling applications are no problem. The way the ADMM works

is by solving the considered optimization problem by increasing the number of

variables so that the problem may be divided into smaller sub-problems, which

are then coordinated to achieve a global optima that solves also the original prob-

lem. As it turns out, when introducing these variables for the problems involving

sparsity promoting penalties, one can often find closed form solution for the KKT

conditions of the sub-problems, thereby allowing for fast algorithms. More con-

cretely, ADMM considers the convex optimization problem

minimize
z

f1(z) + f2(Gz) (14)

9
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where z ∈ R
p is the optimization variable, f1(·) and f2(·) are convex functions,

and G ∈ R
N×p is a known matrix. If one introduces an auxiliary variable, u, then

(14) may be equivalently expressed as

minimize
z, u

f1(z) + f2(u) +
m
2
||Gz − u||22

subject to Gz− u = 0
(15)

Note from (15) that the constraint Gz−u = 0 ensures that the penalty function in

the minimization will disappear for a feasible solution, ensuring that (14) and (15)

actually solve the same problem. The ADMM solves the optimization problem

in (15) via the dual function, defined as the infimum with respect to u and z of

the augmented Lagrangian, i.e.,

Lm(z,u, d) = f1(z) + f2(u) + dT (Gz− u) +
m
2
||Gz− u||22 (16)

This is done in an iterative fashion, such that at step ℓ+1, one minimizes the

Lagrangian for one of the variables, while holding the other one fixed at its most

recent value, and then alternating, i.e.,

z(ℓ+ 1) = argmin
z

Lm(z,u(ℓ), d(ℓ)) (17)

u(ℓ+ 1) = argmin
u

Lm(z(ℓ+ 1),u, d(ℓ)) (18)

where the notation x(ℓ) denotes the vector x at iteration ℓ. Finally, one updates

the dual variable by taking a gradient ascent step to maximize the dual function,

resulting in

d̃(ℓ+ 1) = d̃(ℓ)− m(Gz(ℓ+ 1)− u(ℓ+ 1)) (19)

The general ADMM steps are outlined in Algorithm 1, using the scaled version

of the dual variable dk = d̃k/m, which is more convenient for implementation.

Clearly, the ADMM is only relevant when the optimizations in steps 3 and 4

in Algorithm 1 can be carried out easily as compared to the original problem.

As it turns out, for many sparse recovery criteria, step 3 will involve solving a

problem that is equivalent with a ridge regression least squares problem, solvable

with a computational complexity that is approximately the square of the number

of observations, but linear in the number of variables, while for step 4, one will

10



5. Recovery guarantees

Algorithm 2 Cyclic coordinate descent for a general function f

1: Initiate z = z(0), ℓ = 1. zk denotes coordinate k in the vector z.

2: repeat

3: zℓ ← argmin
zℓ

f (z1, . . . , zp)

4: ℓ← ℓ+ 1 mod p
5: until convergence

often have a close formed solution that can be calculated with a computational

complexity that is approximately linear in the number of parameters. In Paper A,

we examine the ADMM implementation for the multi-pitch problem in further

detail, also discussing how the general ADMM algorithm may be extended to

more than two convex functions, as is required there.

4.2 Efficient implementation - the CCD

We proceed to examine the CCD, where the cost function is minimized by keep-

ing all variables fixed except one, separating the optimization problem in a cyclic

manner into one sub-problem per variable. In general, the CCD can fail to con-

verge, or may converge very slowly. However, for many of the convex optimiza-

tion problems commonly arising in sparse modeling, the situation is the opposite,

and there even exists convergence proofs for these cases [2, 24]. In fact, in many

applications, CCD implementations have empirically been shown to be the fast-

est algorithm available [25, 26]. The steps involved are outlined in Algorithm 2.

Note that a significant performance increase is often possible, especially in batch

applications, where a recursive algorithm is needed, by the so called active set
strategy. The strategy simply involves not updating the parameters that are cur-

rently zero in every iteration, and perhaps only doing so once every tenth iteration

or so. However, as compared to the ADMM approach, the CCD algorithm has a

smaller scope of applicability.

5 Recovery guarantees

Substantial efforts have gone into determining recovery guarantees, statistical ef-

ficiency and uniqueness for sparse reconstruction and related problems, with not-

able contributions being made (primarily) by researchers in mathematics, statist-

11
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ics, and signal processing. Here, we are mainly concerned with applying sparse

modeling. As the provable theoretical results are quite pessimistic, posing much

stronger restrictions on problem than has been empirically observed, we here only

review some of the simpler existing results, as the conditions involved can be seen

as giving some clues as to when sparse models can be applicable. The interested

reader is referred to [2, 11] for further details. To begin with, we examine the

noiseless scenario, i.e.,

minimize
x

‖x‖ℓ0
subject to y = Ax (20)

where A ∈ R
n×p is assumed to be full rank with p≫ n. Clearly, a unique solution

to (20) is not possible for every choice of matrix A. As it turns out, the relevant

property of A is how linearly dependent the columns are. We often use the notion

of the spark of the matrix A to describe this.

Definition 1. The spark of a given matrix A is the smallest number of columns

from A that are linearly dependent.

Thus, if Ax = 0, it implies that ‖x‖ℓ0
≥ spark (A), which coupled with the

triangle inequality for the ℓ0 penalty can be used to prove:

Theorem 1. If a system of linear equation Ax = y has a solution obeying ‖x‖ℓ0
<

spark(A)/2, this solution is necessarily the sparsest possible.

Proof. Assume x and y both satisfy the linear system and the spark condition,

then A(x− y) = 0, and

‖x‖ℓ0
︸ ︷︷ ︸

<spark(A)/2

+ ‖y‖ℓ0
︸ ︷︷ ︸

<spark(A)/2

≥ ‖x− y‖ℓ0
≥ spark(A) (21)

which is a contradiction, implying that any alternative solution has more than

spark(A)/2 non-zero elements. See, e.g., [11] for further details.

Despite its similarity to the rank of a matrix, the spark is unfortunately very diffi-

cult to calculate, in general requiring an infeasible combinatorial search. However,

a simple bound of the spark is possible to obtain using the mutual-coherence.

Definition 2. The mutual-coherence of a given matrix A is the largest absolute

normalized inner product between different columns from A, where ai denotes

column i of Am(A) = maximize
1≤i, j≤p, i 6=j

|aT
i aj|

‖ai‖ℓ2
‖ai‖ℓ2

(22)

12
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here it is possible to show that spark(A) ≥ 1 + 1/m(A). Thus, if one has a heur-

istic for finding a sparse solution to a linear system and it satisfies Theorem 1, with

the spark replaced by this upper bound, one can claim that the found solution is

indeed the sparsest one possible. Furthermore, it is possible to show that convex

relaxation, using the ℓ1 norm in (20), will always find any solution that satisfies

‖x‖ℓ0
< 1

2 (1 + 1/m(A). A similar analysis is possible for the noisy case, but

the intuition is the same; the more linearly independent, or smaller the mutual-

coherence is, the easier it is to find sparse solution. Similar results exist for the

block sparse model, with a bound which depends on a generalization of the

mutual-coherence that depends on both the coherence in each block as well as

the coherence between different blocks (see, e.g., [27]).

6 Outline of the papers

This section gives an overview of the papers included in the thesis. Paper A

through D compose the main contribution of the thesis, treating sparse modeling

applied to different parameter estimation problems in audio modeling, audio loc-

alizations, DNA sequencing, and spectroscopy, whereas paper E treats robustness,

and examines how one may extended the non-parametric idea of multidimen-

sional covariance fitting presented in [28] to fundamental frequency estimation

of inharmonic audio sources.

Paper A: Block sparse pitch estimation

In this paper, we consider the estimation of the fundamental frequency of a signal

consisting of multiple pitches, i.e., a sum of components, where each component

contains a sum of frequencies being integer multiples of the sought-after fun-

damental frequency. We model the signal using a block structure that groups

together the variables that correspond to each possible fundamental frequency,

then use sparse heuristics to obtain which groups and thus which fundamental

frequencies that are present in the signal. We also present a novel idea to account

for a possible ambiguity between the fundamental frequency and the half of that

frequency. An efficient implementation is proposed using the ADMM method-

ology. The method does not need to assumed detailed prior knowledge about

model orders, but nevertheless is shown in numerical simulations to attain similar

or better results than previously proposed approaches which use such knowledge.

The work in Paper A has been published in part as
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Stefan Ingi Adalbjörnsson, Andreas Jakobsson, and Mads G. Christensen,

“Estimating Multiple Pitches using Block Sparsity”, 38th International Con-
ference on Acoustics, Speech, and Signal Processing, Vancouver, Canada, May

26-31, 2013.

and will appear as

Stefan Ingi Adalbjörnsson, Andreas Jakobsson, and Mads G. Christensen,

“Multi-pitch estimation exploiting block sparsity”, Elsevier Signal Processing.

Paper B: Harmonic Audio localization

In the second paper, we consider the problem of localizing multiple audio sources

in a possibly reverberant environment using sound measurements obtained by an

array of microphones with an arbitrary, but known, geometry. Only considering

harmonic sources, the localization is accomplished using a two step procedure.

In the first step, a generalization of Paper A to the case of multiple measurement

vectors is used to estimate the phases and amplitudes of the pitches in the signal,

whereafter a dictionary is created by mapping possible locations to amplitude at-

tenuations and phase offsets for each pitch, using a similar variable grouping as in

Paper A. The performance of the resulting algorithm is examined using simulated

data, and is shown to attain a performance close to or even following the corres-

ponding Cramér-Rao lower bound. The performance is further evaluated using

real audio measurement, and is shown to yield accurate localization estimation

also in such situations. The work in Paper B has been published in part as

Ted Kronvall, Stefan Ingi Adalbjörnsson, Andreas Jakobsson, “Joint DOA

and Multi-Pitch Estimation Via Block Sparse Dictionary Learning”, 22nd
European Signal Processing Conference, Lisbon, Portugal, September 1-5,

2014.

Ted Kronvall, Stefan Ingi Adalbjörnsson, Andreas Jakobsson, “Joint DOA

and Multi-Pitch estimation using Block Sparsity”, 39th International Con-
ference on Acoustics, Speech, and Signal Processing, Florence, Italy, May 4-9,

2014.

and is submitted for possible publication as

Stefan Ingi Adalbjörnsson, Ted Kronvall, Simon Burgess, Kalle Åström,

and Andreas Jakobsson, “Harmonic audio localization”, submitted to: IEEE
Journal of Selected Topics in Signal Processing.
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Paper C: Estimation of periodicities in symbolic data

In the third paper, we consider the problem of finding hidden periodicities in

symbolic data sequences. Commonly, this problem is approached by mapping the

symbolic sequences to complex numbers, after which the analysis is done using

various frequency estimation techniques. Our model instead uses a novel sparse

logistic regression model to explicitly model the distribution of each symbol. The

possible periodicities are thus accounted for by considering a possible change in

distribution on each index sets that corresponds to a specific periodicity. Two

algorithm are proposed for maximizing the resulting likelihood, the first being a

greedy iterative approach that adds one index sets at a time, using an hypothesis

testing framework as a stopping criterion, and the second an CCD algorithm

that maximizes the penalized maximum likelihood. Using simulated data, the

algorithms are shown to have superior performance as compared to previously

published methods using simulated sequences. The work in Paper C has been

published in part as

Stefan Ingi Adalbjörnsson, Johan Swärd, Andreas Jakobsson, “Likelihood-

based Estimation of Perioditicies in Symbolic Sequences”, 21st European

Signal Processing Conference, Marrakech, Morocco, September 9-13, 2013.

and is submitted for possible publication as

Stefan Ingi Adalbjörnsson, Johan Swärd, Jonas Wallin, and Andreas Jakobsson,

“Estimating periodicities in symbolic sequences using sparse modelling”,

submitted to: IEEE Transactions on Signal Processing.

Paper D: High resolution sparse estimation of exponentially decaying
N -D signals

In the fourth paper, we examine the estimation of N -dimensional damped com-

plex exponentials using sparse heuristics. We introduce the novel idea of using

a dictionary learning to iterate between updating the frequency estimation using

sparse heuristic, where the dictionary is composed of a grid of possible frequency

components with fixed damping, and to updating the damping parameter for

each mode using the residual and model fit from the sparse heuristics step. We

also show how the model can be implemented using a dictionary composed of

Kronecker products of smaller dictionary matrices, each containing the frequency

15



Introduction

grid for one of the N -dimensions, resulting in a dramatic decrease in computa-

tional complexity. The method is shown to attain similar results as a statistically

efficient parametric method, for medium to high signal to noise ratios, for well

separated modes, as well as attaining a resolution superior to a zero-padded peri-

odogram for closely space modes. The work in Paper D has been published in

part as

Johan Swärd, Stefan Ingi Adalbjörnsson, Andreas Jakobsson, “High Resol-

ution Sparse Estimation of Exponentially Decaying Signals”, 39th Interna-
tional Conference on Acoustics, Speech, and Signal Processing, Florence, Italy,

May 4-9, 2014.

Stefan Ingi Adalbjörnsson, Johan Swärd, Andreas Jakobsson, “High Resol-

ution Sparse Estimation of Exponentially Decaying Two-Dimensional Sig-

nals”, 22nd European Signal Processing Conference, Lisbon, Portugal, Septem-

ber 1-5, 2014.

and is submitted for possible publication as

Johan Swärd, Andreas Jakobsson, Stefan Ingi Adalbjörnsson, “High Res-

olution Sparse Estimation of Exponentially Decaying N -Dimensional Sig-

nals”, submitted to: IEEE Transactions on Signal Processing.

Paper E: Joint Model-Order and Fundamental-Frequency Estimation
in the Presence of Inharmonicity

In the final paper, we consider the robust estimation of a fundamental frequency

for signals where the harmonics are allowed to deviate from being perfect mul-

tiples of the fundamental frequency. We approach the problem by adapting the

non-parametric robust covariance fitting approach presented in [28] to the para-

meter uncertainty in the pitch model. Furthermore, we propose a scheme to

estimate the commonly unknown number of harmonics. The resulting algorithm

is shown to give good results as compared to a previously proposed method. The

work in Paper E has been published in part as

Tommy Nilsson, Stefan Ingi Adalbjörnsson, Naveed R. Butt, Andreas Jakobsson,

“Multi-Pitch Estimation of Inharmonic Signals”, 21st European Signal Pro-
cessing Conference, Marrakech, Morocco, September 9-13, 2013.
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Naveed R. Butt, Stefan Ingi Adalbjörnsson, Samuel Somasundaram, An-

dreas Jakobsson: “Robust Fundamental Frequency Estimation in the Pres-

ence of Inharmonicities”, 38th International Conference on Acoustics, Speech,
and Signal Processing, Vancouver, Canada, May 26-31, 2013.

The extended version presented herein is planned to be submitted as a full paper.

7 Topics for future research

The papers presented in this thesis have been formulated focused on specific ap-

plications. However, they often share the common problem of formulating an

efficient optimization, exploiting the inherent sparsity of the problem. This struc-

ture might of course be found in other problems, offering similar benefits. Thus,

one might build on this thesis to form two main possible paths of future research;

the first would be to build upon the methods and adapting them to variations on

the presented problems, whereas the other would be to find problems that exhibit

similar structure.

• As examples of the first path, Paper A has already been extended in [29]

to the detection of tonals of rotating machinery. A possible extension of

both these works would be a detection algorithm for audio chroma, i.e.,

the problem of detecting which of the 12 distinct semitones of the musical

octave is present in an audio recording. This research direction might lead

to possible applications such as automatic music transcription and cover

song detection. However, the signal model might need to be modified to

take into account some of the niceties of audio signals, such as timbre, amp-

litude modulation and, perhaps, inharmonicity, which is also an interesting

research topic in itself.

• An example of the other path is the following: by interpreting the two stage

procedure in paper D as a way of promoting sparsity, such that for each fre-

quency there is only one damping, one allows for similar 2-dimensional

parameter estimation problem to be approached in the same manner. Pos-

sible applications of this idea could include extending the algorithm in Pa-

per B such that only one source is allowed from any one direction, or ex-

tending the work in Paper A, allowing each block of frequencies to depend

on a parameter controlling inharmonicity, e.g., the one parameter string in-

harmonicity model briefly described in Paper E. Similarly, many commonly
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used dictionaries, such as the Gabor dictionary, can be characterized in a

similar manner, e.g., for the Gabor case, one might restrict every frequency

to have only one width.

• An example that could be classified as belonging to both paths could be

an extension of Paper A to harmonic audio sources where the fundamental

frequency component varies over time. This could be done by using a

chirp model for the fundamental frequencies, where the linear change in

frequency over time would correspond to the damping parameter reminis-

cent of what is done in Paper D.

• In paper D, dimensionality reduction using compressive sampling would

be a natural extension to the paper (see, e.g., [30,31]). In broad terms, this

approach relies on taking relatively few measurements of the signal using

weighted linear combination of samples in a given basis, usually taken to

consist of identically distributed random variables, and then performing

the analysis on these samples.

• The robust estimator presented in paper E also has some interesting open

questions: for example, a straightforward analysis reveals that if only one of

the steering vectors/harmonics is allowed to vary, the non-convex criterion

can be seen to be similar to a non-convex quadratic optimization problem,

with two quadratic constraints, which is a problem recently shown not to

have a duality gap [32], allowing for some interesting interpretations and

perhaps optimization options.

• In Paper E, one might be able to decrease the high computational cost

of the algorithm, by considering either an ADMM formulation or alternat-

ively, interior point methods specifically geared toward convex optimization

problems involving the log-determinant (see, e.g., [33]).

Clearly the field is abundant with open research problem, just waiting to be ex-

amined, offering a range of interesting and challenging topics to study. What are

you waiting for? Lets get on with it! But first, lets proceed to examine the five

papers constituting this thesis.
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Multi-pitch estimation exploiting
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Abstract

We study the problem of estimating the fundamental frequencies of a signal con-

taining multiple harmonically related sinusoidal components using a novel block

sparse signal representation. An efficient algorithm for solving the resulting op-

timization problem is devised exploiting a novel variable step-size alternating dir-

ection method of multipliers (ADMM). The resulting algorithm has guaranteed

convergence and shows notable robustness to the f0 vs f0/2 ambiguity problem.

The superiority of the proposed method, as compared to earlier presented es-

timation techniques, is demonstrated using both simulated and measured audio

signals, clearly indicating the preferable performance of the proposed technique.

Key words: Pitch estimation, block sparsity, total variation, spectral smoothness,

order estimation.
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1 Introduction

Estimating the fundamental frequency of harmonically related signals form an

integral part in a wide range of signal processing applications, and perhaps es-

pecially so in speech and audio processing. For example, the fundamental fre-

quency, or pitch, is necessary when forming the long-term prediction used in lin-

ear prediction-based speech codecs [1], and is similarly the key component in mu-

sic information retrieval applications, such as automatic music transcription, and

in musical genre classification [2]. The fundamental frequency is also of notable

importance in problem such as source separation, enhancement, compression,

and classification (see, e.g., [3, 4] and the references therein), as well as in several

biomedical, mechanical and acoustic applications, and the topic has for these reas-

ons attracted a notable interest during the recent decades. Commonly, the pitch

estimate is formed assuming a single source model, such that only a single funda-

mental frequency and its harmonics are assumed to be present in the signal, using

different kinds of similarity measures, such as the cross-correlation, cepstrum,

or the average squared difference function (see, e.g., [5–11]), although notable

exceptions treating the multi-pitch problem can be found in, e.g., [3,12–23]. Re-

grettably, the problem is hard, and most of these techniques will suffer from not

yielding unique estimates even in the ideal case, even for a single source, and/or

will typically also require perfect a priori knowledge of both the number of sources

and the model order of each of these sources. Often, such limitations necessit-

ate notable post-processing or correction steps in order to improve on an initially

poor pitch estimate. In this work, we focus on improving the initial pitch estim-

ate, proposing a novel multi-pitch estimation approach making no a priori model

order assumptions. The method is based on a sparse signal recovery framework,

wherein a signal is assumed to consist of only a small number of components from

a large set of potential signal vectors. This approach has been found to yield high

quality estimates in a wide variety of fields (see, e.g., [24–26]), and has also earlier

been exploited in machine learning settings, where sparse modeling of pitch sig-

nals is accomplished by learning a dictionary of pitches from a training data set

(see, e.g., [16, 21, 22]). For sinusoidal signals, it was early on shown that using a

sparse representation technique allowed for high resolution frequency estimates;

typical examples include [27, 28], wherein the sparse signal reconstruction from

noisy observations was accomplished with the by now well-known sparse least

squares (LS) technique. A similar approach may clearly also be applied to the

pitch estimation problem, although one is then not fully exploiting the harmonic
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signal structure. Herein, we instead propose a novel block sparse signal represent-

ation, such that each signal source is grouped in one data block for each pitch fre-

quency. By then extending the representation to all considered pitch frequencies,

reminiscent to the extended dictionaries used in, e.g., [13, 27, 29], the resulting

model will be sparse in the sense that it will be formed from only a few of the pos-

sible blocks in the dictionary. Different from estimates such as the ones presented

in [16, 21, 22], the presented method does not exploit any training data, with

the method inferring the pitch parameters and the model orders from the spectral

content of the signal. The proposed pitch estimation method instead exploits the

group sparse structure, without requiring any prior knowledge of either the num-

ber of sources present, or their number of harmonics. The presented algorithm,

in its presented form, does not take into account for any possible inharmonicity

in the pitch structure, such that the higher order frequencies would not occur

precisely as a multiple of the fundamental frequency. Such inharmonicities are

common in audio signals, and should be taken into account for such signals. As

we are here focusing on the general problem, occurring also for numerous other

forms of signals, we have here opted to exclude the treatment of inharmonicity,

although note that the algorithm may be extended to allow for this along the lines

presented in [30, 31], or using a dictionary learning approach such as in [32, 33].

The theoretical study of block sparse signals was initially suggested in [34], where

it is shown that including this structure in the estimation procedure has great

practical consequences, improving both theoretical recovery limits and numerical

results in many cases (see, e.g., [34–37]). Generally, this form of group sparse

convex optimization problems are computationally cumbersome; for this reason,

we also derive an efficient algorithm to form the estimate based on the alternating

directions methods of multipliers (ADMM) (see, e.g., [38, 39]). The resulting

algorithm will have a guaranteed convergence as well as exhibit a significant ro-

bustness to the common problem of the f0 vs f0/2 ambiguity, i.e., when a pitch

candidate at half the nominal frequency fits the observed signal as well, or possibly

even better, than the true pitch frequency. The remainder of this paper is organ-

ized as follows: in the next section, we briefly present the data model. Then,

in Section 3, we introduce the proposed pitch estimation technique. Section 4

introduces the efficient ADMM-based implementation, and Section 5 includes

numerical evaluations of the proposed method as compared to earlier techniques.

Finally, Section 6 concludes on the work.
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2 Block sparse signal model

Consider a complex-valued signal, y(n), consisting of K harmonically related (sig-

nal) sources with fundamental frequencies fk, for k = 1, . . . , K , such that (see

also [3])

y(n) =

K∑

k=1

Lk∑

ℓ=1

ak,ℓe
j2pfkℓn + e(n) (1)

for n = 1, . . . ,N , where ak,ℓ and Lk denote the (complex-valued) amplitude

of the ℓ:th harmonic of the k:th source, and the number of harmonically related

sinusoids for the k:th source, respectively, and where e(n) is an additive noise term,

here assumed to be an identically distributed independent circularly symmetric

complex Gaussian process with variance s2
e . It is worth noting that due to the

restriction of the allowed frequency range, the number of harmonics are restricted

as a function of the fundamental frequency, such that Lk < ⌊1/fk⌋, ∀k, where ⌊·⌋
denotes the round-down to nearest integer operation. Let

y =
[

y(1) . . . y(N )
]T

(2)

where (·)T denotes the transpose. Then, (1) may be expressed succinctly as

y =

K∑

k=1

Vkak + e
D
= Wa + e (3)

where e is a vector of noise terms constructed in the same manner as y, and

W =
[

V1 . . . VK

]
(4)

Vk =

[

zk z2
k . . . z

Lk
k

]

(5)

a =
[

aT
1 . . . aT

K

]T
(6)

ak =
[

ak,1 . . . ak,Lk

]T
(7)

with the vector powers, zℓk, being evaluated element-wise,

zℓk =
[

ej2pfkℓ . . . ej2pfkN ℓ
]T

(8)

Reminiscent to the models considered for line spectra (see, e.g., [13, 27, 29]), the

matrix W may be expanded to be formed instead over a (large) range of possible

28



3. Pitch estimation using block sparsity

fundamental frequencies, nℓ, for ℓ = 1, . . . ,P, where P denotes the total number

of considered frequencies, such that the corresponding amplitude vector, a, will

have elements different from zero only for those frequencies actually coinciding

with the frequencies in the signal. Thus, for the signal in (1), for each source in

the signal, there will be a corresponding non-zero block in the amplitude vector,

i.e., if the source has fundamental frequency nℓ, the sub-block aℓ will be non-zero.

It should be noted that this formulation thus implicitly assumes that P is selected

large enough so that the true pitch frequencies lie close to the used grid. Practical

experience with similar methods, e.g., [27, 28], shows that they are quite robust

to this approximation (see also the related discussions in [29, 40, 41]). Given

the structure of (3), the resulting approximation of the signal is not only sparse,

but thus also block sparse, since for each source present, several harmonics will be

included in the signal.

3 Pitch estimation using block sparsity

Reminiscent of the block sparse formulations introduced in [34], one may thus

form an estimate of the present sources as

minimize
a

1

2
||y−Wa||22 + a P∑

k=1

||ak||2 (9)

where || · ||p denotes the ℓp norm, and with a > 0 denoting a tuning parameter

that controls the relative importance of the block sparsity promoting ℓ2 norm and

the squared ℓ2 norm fitting term, discussed further below. It should be noted that

the cost function is clearly convex as it is a sum of a norm and the composition

of a norm and an affine function. The second term in (9) is included to promote

a block sparse solution, i.e., a solution with the property that most blocks, ai, are

zero (see also Appendix A). As noted, the number of harmonics of each source, Lk,

is generally not known, and to be able to use the presented sparse approximation

model, one needs to set some maximum allowed number of harmonics for all

possible fundamental frequencies, say Lmax. This implies that the data blocks, ak,

as given in (7), will typically contain some amplitudes that are close to zero, for

those harmonics that are not present in the source signal. To allow for this, we

introduce a further ℓ1 penalty term, generally forcing small amplitudes to zero,

resulting in the following sparse group lasso (see also [42] and the discussion in
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Appendix B)

minimize
a

1

2
||y −Wa||22 + l||a||1 + a P∑

k=1

||ak||2 (10)

where a > 0 is a tuning parameter. Using the formulation in (10), this would

imply that the (generic) f0 harmonics will make up a subset of the block detailing

the f0/2 harmonics, i.e., the frequencies {f0, 2f0, 3f0, ...,Lf0 f0} will be present in

both blocks, and thus the minimization in (10) will then in all cases prefer the

block corresponding the lower frequency. In order to partly resolve this problem,

we introduce a further scaling of the norms in the minimization, such that the

blocks are given comparable weights, instead forming the minimization as

minimize
a

1

2
||y−Wa||22 + l||a||1 + a P∑

k=1

√

Lk||ak||2 (11)

However, this does not completely remove the ambiguity from the model since

one might well consider, in certain scenarios, restricting the maximum number

of allowed harmonics such that the sub-vectors corresponding to some f0 and

f0/2 could have the same number of elements. Thus, a signal composed of a

fundamental frequency f0, with Lf0 harmonics, can be written interchangeably

using the first Lf0 elements of the sub-vector corresponding to the fundamental

frequency f0, or every other element of the first 2Lf0 elements of the sub-vector

corresponding to f0/2. By instead including a total variation penalty function

Tv(ak) =

Lk−1∑

i=1

∣
∣ak,i − ak,i+1

∣
∣

in the cost function, blocks with constant amplitudes will not be penalized, whereas

f0/2 vectors, such as af0/2 mentioned above, will incur a large penalty. The result-

ing spectral smoothnes is similar to often imposed assumption in the modeling of

audio signals, see e.g., [14]. Note that the total variation function is convex since

it may be written as composition of an affine function, say F, and the ℓ1 norm,

i.e.,

P∑

k=1

Tv(ak) = ||Fa||1 (12)
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where F ∈ R

∑P
k=1 Lk×

∑P
k=1 Lk is created such that the rows corresponding to the

first Lk − 1 elements of each block have a one on the diagonal and minus one

on the first super-diagonal, and the row corresponding to element Lk is zero, or

equivalently, a difference operator with rows L1,L1+L2 . . . ,
∑P

k=1 Lk set to zero.

Thus, we propose forming the pitch estimate via the minimization

minimize
a

1

2
||y−Wa||22 + l||a||1 + a P∑

k=1

||ak||2 + g P∑

k=1

Tv(ak) (13)

where g > 0 is a tuning parameter, which should be set small enough such that

the total effect of adding the TV term is only to resolve the f0 and f0/2 am-

biguity in a consistent and correct manner; in the numerical section it was set

to 0.01 for all simulations. The tuning parameters, l and a may, for instance,

be estimated for example with a cross validation approach. However, in our ex-

perience, if the signal to noise ratio (SNR) is high enough, they may preferably

be set by simply inspecting the amplitudes in the zero padded discrete Fourier

transform, as is shown in Appendix B, i.e., by setting a as the smallest significant

amplitude above the noise floor, and by setting l similarly, but for each pitch. It

is worth noting that an alternative formulation may be obtained by instead using

a covariance fitting formulation; as recently shown in [43, 44], the sparse SPICE

covariance fitting algorithm [45] may be equivalently expressed using an weighted

penalized ℓ1 formulation, for a particular choice of l. One may similarly form a

covariance fitting style minimization of the here proposed minimization by repla-

cing the squared ℓ2 fitting term in (11) or (13) with a corresponding ℓ1 fitting

term; we will below examine what such a choice would imply. Reminiscent of the

work in [28, 46–48], another approach would be to instead consider other pen-

alties, e.g., the ℓq penalties with 0 < q < 1, or the reweighted ℓ1, which would

both lead to non-convex optimization problems, that can nevertheless often be

efficiently solved with the benefit of, in many cases, sparser solutions, with less

biased amplitude estimates, although with local minima being a recurring prob-

lem and without the global optimality conditions of convex optimization prob-

lems. Herein, given that our main objective is the estimation of the non-linear

fundamental frequency parameters, we restrict our attention to convex criteria,

but note that especially the reweighted ℓ1 algorithm and the ℓq-like criteria sug-

gested in [46] are easily adapted to the algorithm and the here presented criteria.

Considering that the signals of interest are only approximately sparse in W, and

as two closely spaced fundamental frequencies will result in that the correspond-
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ing matrices, Ws and Wr , will be rather similar, one cannot expect the resulting

(block) pseudo spectral solution, formed over the peaks of the 2-norm of the

estimated amplitudes, ||âk||2, to have exactly as many non-zero blocks as there

are sources present in the signal. In order to determine the number of sources

present, we therefore introduce a novel BIC-style criterion, such that the number

of sources are selected as (cf. [29, 49])

K̂ = argmin
k∈[1,Kmax]

BICk(l, a) (14)

where Kmax denotes the maximum number of considered sources, here selected as

the number of peaks present in the initially obtained (block) pseudo-spectra, and

where the (l, a)-dependent BIC cost function is formed as

BICk(l, a) = 2N ln(ŝ2
k) + (2Hk + 1) ln(N ) (15)

with ŝ2
k denoting the variance of the estimation residual when modeling the pitch

signal using

Hk =

k∑

ℓ=1

L̂kℓ (16)

(dependent) sinusoidal components (see also [3]), where L̂kℓ is the number of fre-

quencies corresponding to the non-zero elements of âkℓ . It should be stressed that

the L̂kℓ considered harmonics are not necessarily consecutive, thereby allowing

for the case of missing harmonics (including the possibility that the signal lacks

the fundamental frequency component), which is a case commonly occurring in

many form of acoustic signals.

4 An efficient ADMM implementation

As the minimizations in (11) and (13) are composed of simple convex functions,

they may be solved using one of the freely available interior point based solvers,

such as SeDuMi [50] and SDPT3 [51], although such solvers will scale badly both

with increased data length and with the use of a finer grid size for the fundamental

frequency. As a result, such a solution will in many cases be too computationally

intensive to be practically useful. In order to form a more efficient implement-

ation, we therefore reformulate the minimization in (11) using an ADMM for-

mulation, which may be used to solve convex optimization problems which are
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4. An efficient ADMM implementation

Algorithm 1 The general ADMM algorithm

1: Initiate z = z(0),u = u(0), and ℓ = 0

2: repeat

3: z(ℓ+ 1) = argmin
z

f1(z) + m
2 ||Gz− u(ℓ)− d(ℓ)||22

4: u(ℓ+ 1) = argmin
u

f2(u) + m
2 ||Gz(ℓ+ 1)− u− d(ℓ)||22

5: d(ℓ+ 1) = d(ℓ)− (Gz(ℓ+ 1)− u(ℓ+ 1))

6: ℓ← ℓ+ 1

7: until convergence

the sum of two convex functions by decomposing the optimization into two sim-

pler problems, which are then solved in an iterative fashion (see, e.g., [38]). For

completeness and to introduce our notation, we here include a brief outline of the

main steps involved.

Consider the convex optimization problem

minimize
z

f1(z) + f2(Gz) (17)

where z ∈ R
p is the optimization variable, f1(·) and f2(·) are convex functions,

and G ∈ R
N×p is a known matrix. If one introduces an auxiliary variable, u, then

(17) may be equivalently be expressed as

minimize
z, u

f1(z) + f2(u) +
m
2
||Gz− u||22

subject to Gz− u = 0
(18)

Under the assumption that there is no duality gap, which is true for all the optim-

ization problems considered herein, one can solve the optimization problem via

the dual function defined as the infimum with respect to u and z of the augmented

Lagrangian [38]

Lm(z,u, d) = f1(z) + f2(u) + dT (Gz− u) +
m
2
||Gz− u||22 (19)

which holds for all m, since at any feasible point ||Gz − u||22 = 0. The ADMM

does this by iteratively maximizing the dual function, such that at step ℓ+1, one

minimizes the Lagrangian for one of the variables, while holding the other fixed
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at its most recent value, i.e.,

z(ℓ+ 1) = argmin
z

Lm(z,u(ℓ), d(ℓ)) (20)

u(ℓ+ 1) = argmin
u

Lm(z(ℓ+ 1),u, d(ℓ)) (21)

where the notation x(ℓ) denotes the vector x at iteration ℓ. Finally one updates

the dual variable by taking a gradient ascent step to maximize the dual function,

resulting in

d̃(ℓ+ 1) = d̃(ℓ)− m(Gz(ℓ+ 1)− u(ℓ+ 1)) (22)

from which the interpretation of m as the dual variable step size may be seen (see

also [38] for further details). The general ADMM steps are outlined in Algorithm

1, using the scaled version of the dual variable dk = d̃k/m, which is more con-

venient for implementation. As a stopping criterion, it is shown in [38] that by

studying the necessary and sufficient conditions for the optimality of a solution,

say z∗,u∗, and d∗, of the minimization in (18), i.e., the primal feasibility

Gz∗ − u∗
= 0 (23)

and the dual feasibility

0 ∈ ∂f1(z∗) + GT d∗ (24)

0 ∈ ∂f2(d∗)− d∗ (25)

where ∂ is the sub-differential operator, imply that the so-called primal and dual

residuals, which are defined as rk = Gzk − uk and sk = mGT (uk − uk−1), re-

spectively, will converge to zero. Thus, as a stopping criterion, one may use that

the norm of the primal and dual residuals are small enough. Clearly, the ADMM

is only relevant when the optimizations in steps 3 and 4 in Algorithm 1 can be

carried out easily as compared to the original problem. We begin by examining

the implementation of (11), and then proceed to extending this to form (13).

One possibility to reformulate (11) in this fashion would be to choose f1(·) as the

2-norm fitting term and f2(·) as the sum of the sparse regularization term, i.e.,

with G = I and

f1(z) =
1

2
||y−Wz||22 (26)

f2(u) = l||u||1 + a P∑

k=1

√Dk||uk||2 (27)
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which yields

z(ℓ+ 1) = argmin
z

1

2
||y−Wz||22 +

m
2
||z− u(ℓ)− d(ℓ)||22 (28)

=
(
WH W + mI

)−1 (
WH y− u(ℓ)− d(ℓ)

)
(29)

where (·)H denotes the Hermitian (conjugate) transpose. It should be noted that

the matrix inversion lemma can be used such that the solution can be calculated

by solving an N × N system corresponding to the matrix WWH + I/m, i.e.,

(
WH W + mI

)−1 k =
ym + 1/mWH

(
I/m+ WWH

)−1
Wk (30)

for some vector k ∈ C
p, thus transforming the P × P matrix inversion into that

of an N × N matrix inversion. Moreover,

u(ℓ+ 1) = argmin
u

l||u||1 + a P∑

k=1

√Dk||uk||2 +
m
2
||z(ℓ+ 1)− u− d(ℓ)||22

(31)

which decouples into P optimization problems as

uk(ℓ+ 1) = argmin
uk

l||uk||1 + a√Dk||uk||2 +
m
2
||zk(ℓ+ 1)− uk − dk(ℓ)||22

(32)

Here one can solve the sub-differential equationslr + a√Dks + m(z̃(ℓ+ 1)− ũk − d̃(ℓ)) = 0 (33)

where the notation x̃ denotes the real valued version of the complex vector x,

created as specified in Appendix A, and the vectors s and r are real-valued and are

defined such that

s =

{
ũk

||ũk||2 if ũk 6= 0

v otherwise
(34)

with ||v||2 ≤ 1, and

[
ri

ri+Lk

]

=







[

ũk,i , ũk,i+Lk

]T

∥

∥

∥

[

ũk,i , ũk,i+Lk

]
∥

∥

∥

2

if
[
ũk,i, ũk,i+Lk

]T 6= 0

pi otherwise

(35)
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Algorithm 2 PEBS2 via ADMM

1: Initiate z = z(0),u = u(0), and ℓ := 0

2: repeat

3: z(ℓ+ 1) =
(
WH W + mI

)−1 (
WH y− u(ℓ)− d(ℓ)

)

4: u(ℓ+ 1) = Ȳ (Y (z(ℓ+ 1)− d(ℓ+ 1), lm) , a√Dkm )

5: d(ℓ+ 1) = d(ℓ)− (z(ℓ+ 1)− u(ℓ+ 1))
6: ℓ← ℓ+ 1

7: until convergence

with ||pi||2 ≤ 1, for i = 1, . . . ,Lk, where ai,j denotes element j of sub-vector i
and [a, b] denoting a vector with two scalars a and b, and

r =
[

r1 . . . r2Lk

]T
(36)

This leads to

u(ℓ+ 1) = Ȳ (Y (z(ℓ+ 1)− d(ℓ),
lm) ,

a√Dkm )

(37)

where Y(·) is an element-wise shrinkage function, defined asY(a,g) =
max(|a| − g, 0)

max(|a| − g, 0) + g ⊙ a (38)

where the max function acts element-wise on the vector, and ⊙ denotes the

element-wise multiplication of two vectors. Similarly, Ȳ (·) is a vector shrinkage

functions formed asȲ(a,g) =
max(||a||2 − g, 0)

max(||a||2 − g, 0) + ga

The resulting ADMM algorithm for (11), here termed the Pitch Estimation using

ℓ2 norm and Block Sparsity (PEBS2), is summarized in Algorithm 2. For (13), one

could similarly define f1(·) as the sum of all the regularization terms. However, the

subdifferential equations can then unfortunately not be solved as easily as before.

Instead, we exploit the recent idea introduced in [39], where, by a clever choice

of functions the f1(·) and f2(·), one may extend (17) to a minimization of a sum
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of B convex functions, i.e.,

minimize
z

B∑

k=1

gk(Hz) (39)

where Hk ∈ RN×p are known matrices, and gk(·) convex functions. This is

accomplished by setting f1(z) = 0, and

f2(Gu) =

B∑

k=1

gk(Gu) =

B∑

k=1

gk(Hku(k)) (40)

where

G =
[

HT
1 . . . HT

K

]T
(41)

u =
[

(u(1))T . . . (u(K ))T
]T

(42)

Thereby step 4 in Algorithm 1 is allowed to be decomposed into B independent

optimization problems. Rewriting (13) on the form in (39), noting that for this

case, B = 3, and

f2(Gu) =
1

2
||u(1) − y||+ l||u(2)||1 + a P∑

k=1

√Dk||u(2)
k ||2 + g||u(3)||1

(43)

where G =
[

AT I FT
]T

, and

u =
[

(u(1))T (u(2))T (u(3))T
]T

(44)

This implies that step 3 in Algorithm 1 can be solved as

z(ℓ+ 1) = argmin
z
||Gz− u(ℓ)− d(ℓ)||22 (45)

=
[
AH A + FH F + I

]−1
(

AHx(1)(ℓ) + FHx(2)(ℓ) + x(3)(ℓ)
)

(46)
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where d is decomposed in the same manner as u, andx(m)(ℓ)
D
= u(m)(ℓ) + d(m)(ℓ) (47)

for m = 1, 2, 3. Here, we are mostly interested in situations where the number

of parameters far outnumbers the number of measurements, i.e., N ≪ p. Thus,

since (45) needs to be solved at each iteration, one may solve it efficiently using

the matrix inversion lemma, i.e.,

z(ℓ+ 1) = q(ℓ)−
(
FH F + I

)−1
AH
(

I + A
(
FH F + I

)−1
AH
)−1

Aq(ℓ)

(48)

with q(ℓ) =
(
FH F + I

)−1
(

AHx(1)(ℓ) + FHx(2)(ℓ) + x(3)(ℓ)
)

(49)

where we instead of solving one full p×p system of equations solve two tridiagonal

systems of equations, which may be solved usingO(p) operations [52, p. 153] and

one N × N system of equations. Furthermore, since

(

I + A
(
FH F + I

)−1
AH
)−1

Aqk (50)

needs to be calculated at each step, the computational complexity can be decreased

even further by calculating the Cholesky factor, and at each stop solving two

triangular systems of equations. Thus, for a one time cost of O(N 3) operations,

one can at each step solve two triangular systems of equations at cost of O(N 2)

operations. Step 4 in Algorithm 1 thereby decomposes into three different and

decoupled optimization problems; firstly, for the first block,

u(1)(ℓ+ 1) = argmin
u

1

2

∥
∥
∥u− y

∥
∥
∥

2

2
+

m
2

∥
∥
∥Az(ℓ+ 1)− u− d(1)(ℓ)

∥
∥
∥

2

2

=

y− m(Az(ℓ+ 1)− d(1)(ℓ)
)

1 + m (51)

Secondly, the optimization problem for the second block is equivalent to (31),
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leading again to

u(2)(ℓ+ 1) = argmin
u

l||u||1 + a P∑

k=1

√Dk||uk||2 (52)

+
m
2
||z(ℓ+ 1)− u− d(2)(ℓ)||22 (53)

= Ȳ (Y (z(ℓ+ 1)− d(2)(ℓ),
lm) ,

a√Dkm )

(54)

Finally, the third block can be similarly updated to

u(3)(ℓ+ 1) = argmin
u

g||u||1 + m
2
||Fzk+1 − u− d(3)

k ||22 (55)

= Y (Fz(ℓ+ 1)− d(3)(ℓ),
gm) (56)

The resulting ADMM algorithm for the block sparse pitch estimation problem,

including the TV penalty (PEBS2TV), is summarized in Algorithm 3. Alternat-

ively, if one wish to use an ℓ1 norm for the model fit, as discussed above, one may

simply change the appropriate step, i.e., the update for u(1)
k+1 in Algorithm 3 leads

to

u(1)(ℓ+ 1) = argmin
u

1

2

∥
∥
∥u− y

∥
∥
∥

1
+

m
2

∥
∥
∥Az(ℓ+ 1)− u− d(1)(ℓ)

∥
∥
∥

2

2

= y +Y (Az(1)(ℓ+ 1)− d(1)(ℓ),
1m)

We denote the thus resulting estimators the PEBS1 and PEBS1TV, where the

latter includes the TV penalty.

The computational cost of each iteration of Algorithm 2 and 3 is, for typical

problem dimensions, dominated by calculating Ax and AH y, for various vectors

x and y, and requires considerably less operations than the O(p3) needed for the

solvers mentioned earlier. It is worth noting that the cost of the PEBS algorithms

may be significantly reduced for signals sampled at equidistant time-points by

using fast Fourier transform (FFT) techniques. Further improvements are possible

by addressing the choice of the dual variable step size, m. Instead of tuning it for

each problem depending on the typical sizes of the various inputs and outputs,

an adaptive approach is possible using the following heuristic [38]: considering
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Algorithm 3 PEBS2TV via ADMM

1: Initiate z = z(0),u = u(0), and ℓ := 0

2: repeat

3: z(ℓ) =
[
AH A + FH F + I

]−1
(

AHx(1)(ℓ) + FHx(2)(ℓ) + x(3)(ℓ)
)

4: u(1)(ℓ+ 1) =
y−m(Az(ℓ+1)−d(1)(ℓ)

)

1+m
5: u(2)(ℓ+ 1) = Ȳ (Y (z(ℓ+ 1)− d(2)(ℓ), lm) , a√Dkm )

6: u(3)(ℓ+ 1) = Y (Fz(ℓ+ 1)− d(3)(ℓ), gm)
7: d(ℓ+ 1) = d(ℓ)− (Gz(ℓ+ 1)− u(ℓ+ 1))
8: ℓ← ℓ+ 1

9: until convergence

the fact that m can be seen as controlling the relative importance of the dual and

primal feasibility condition suggests an adaptive choice by comparing the norms

of the primal and dual residuals and adjusting m appropriately, i.e., after step 9 in

Algorithm 3, one may update m according tom(ℓ+ 1) =







m(ℓ)t if ||r(ℓ)||2 > r||s(ℓ)||2m(ℓ)/t if ||s(ℓ)||2 > r||r(ℓ)||2m(ℓ) otherwise

(57)

where t is the multiplicative change in the step size, and m set such that the

step size is changed to keep the ratio between the norms of the primal and dual

residuals within a factor m. In our experience, setting t = 2 and r = 10 results

in about an order of magnitude fewer steps being needed. Note that changing m
here does not cause any additional computational cost in any of the above steps,

except for the negligible cost of rescaling the dual variables, i.e., d̃ (ℓ + 1) =mℓ/mℓ+1d (ℓ+ 1).

5 Numerical results

We proceed to examine the robustness and performance of the proposed estim-

ators, using both simulated and real audio signals, comparing with the optimal

filtering (Capon), approximative nonlinear least squares (ANLS), and multi-pitch
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estimator based on subspace orthogonality (ORTH) algorithms [9,53]. These es-

timators have in several studies been found to offer state-of-the-art performance,

and have freely available implementations, allowing for easily reproducible com-

parisons in future studies. Initially, examining simulated signals, the performance

of the estimates for the different algorithms are computed using 250 Monte-Carlo

simulations and N = 160 samples, wherein the number of harmonics are selec-

ted uniformly over
[
3,min(floor(1/f ), 10)

]
in each simulation, where f denotes

the fundamental frequency, in order to ensure that all frequencies are below the

Nyquist limit. Here, frequencies are given as normalized frequencies with unit

cycles/sample, in the interval [0, 1], unless otherwise specified. The signal to

noise ratio (SNR), defined as 10log10(||y||2/||w||2), is set to 18 dB, unless other-

wise stated. To ensure the best possible performance, the reference methods are

allowed perfect a priori knowledge of both the number of present sources and

their respective number of harmonics, whereas the proposed estimators are only

given that the maximum number of harmonics for any present source is 10. All

methods are given the same grid size, equivalent to 1000 equally spaced points in

[0.025, 0.1]. We begin by examining the performance of the estimators in a case

with one source when random harmonics are allowed to be missing. As shown in

earlier studies (see, e.g., [9]), the reference methods are well able to estimate the

pitch of a single source, but can be expected to suffer somewhat of a loss of per-

formance when the number of assumed harmonics differ from the actual number

present in the signal. To illustrate this, we simulate a signal with the fundamental

frequency drawn uniformly on [0.025, 0.05], with L1 = 10 with 2− 8 harmon-

ics missing at random, with all the amplitudes set to 1 with uniformly distributed

phases. The results are shown in Figure 1, illustrating the ratio of estimates for

which the estimated pitch is within ±0.0002, i.e., approximately within two grid

points from the true value, for a varying number of missing harmonics. As seen

in the figure, it is clear that the PEBS estimators are performing as well as, or even

better, than the reference methods. Of the methods, only ORTH is seen to suffer

noticeably by the missing harmonics, which is natural due to the resulting loss

of orthogonality between the subspaces. It is worth noting that the fundamental

frequency is here allowed to be one of the randomly missing harmonics. We have

here used a = cq, l = (1 − c)q, for c = 0.5 and q = 0.2. Next, we illustrate

how the TV penalty influences the performance of the estimate. Figure 2 shows

the results for a single pitch signal with fundamental frequency chosen uniformly

in [0.04, 0.0625], with four harmonics, where, as before, all the amplitudes are
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Figure 1: Ratio of estimated pitches where the fundamental frequency lies at most

0.0002 from the ground truth, plotted as a function of the number of harmonics

that are missing for a = l = 0.5q and q = 0.2. The fundamental frequency is

uniformly distributed on [0.025, 0.05].

set to 1 with random phases, and the dictionary for both methods is chosen such

that a maximum of 8 harmonics are allowed for the frequency range [0.02, 0.1].

The result of this choice of signal and dictionary is that the cost function for

PEBS2 will not be able to distinguish between the block corresponding to f0 and

f0/2 in a consistent manner. This is clearly visible in the figure, where one can

see that the fundamental frequency is only correctly identified in roughly 60 %

of the simulation for the PEBS2 estimator, with noise in the spectrum basically

deciding if f0 or f0/2 is chosen, whereas the PEBS2TV estimate yields consist-

ent performance for all SNRs. Here, and in all other simulations, g was set to

0.01. We proceed with the more interesting case of more than one signal source,

forming a signal consisting of two sources with the fundamental frequencies, fk,
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Figure 2: Ratio of estimated pitches where both fundamental frequencies lie at

most two grid points from the ground truth, plotted as a function of SNR. The

dictionary and signal are chosen such that there is ambiguity in the choice of f0 vs

f0/2 .

drawn uniformly on [0.025, 0.1], where we have ensured that the minimum dif-

ference between the frequencies is at least 1/25 of the frequency range. To illus-

trate the effect of non-equal amplitudes, the amplitudes are here drawn such that

both pitches have equal power, with ai,k ∼ N(1, 1), i.e., Gaussian with expected

value one and variance one, with uniformly distributed phase, which also means

that no harmonics will be missing, but some might have small amplitudes. Fig-

ure 3 shows the ratio of estimates where the estimated pitches are both within

two grid points from the true value, for varying SNR, clearly showing the prefer-

able performance of the proposed PEBS algorithms. As seen from the figure, the

PEBS2 estimates achieve almost perfect performance for SNRs greater than 5 dB,

whereas the other examined estimators fail to do so, even for larger SNRs. The

reference methods thus fail to properly identify the pitches for the two sources,
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Figure 3: Ratio of estimated pitches where both fundamental frequencies lie at

most two gridpoints from the ground truth, plotted as a function of SNR for a =l = 0.5q and q = 2.1se . The fundamental frequency is uniformly distributed

on [0.025, 0.1].

even though being provided perfect a priori information of the number of sources

and harmonics. This can to some extent be explained by the fact that, being ran-

dom variables, some of the amplitudes may well be quite small, mimicking the

missing harmonics case previously studied. Also, as the fundamental frequency

decreases, the harmonics become more closely spaced, implying a more difficult

estimation problem. To examine the effects of closely spaced fundamental fre-

quencies, we proceed to consider the pitches f1 = 0.02 + x, where the random

variable x, uniformly distributed on [0, 0.00005] and redrawn for each Monte-

Carlo simulation, is added to make sure that the signal is not lying exactly on

the grid of proposed fundamental frequencies, and with f2 = f1 + Df . Here,

to clarify the effects of the source separation, L1 = 4 and L2 = 4, ak,l = 1,

44



5. Numerical results

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1

∆f

R
at

io
 w

ith
in

 li
m

its

 

 

Capon
ANLS
ORTH
PEBS2
PEBS2TV
PEBS1

Figure 4: Ratio of estimated pitches where both fundamental frequencies lie at

most two grid points from the ground truth, plotted as a function of Df , for

f0 = 0.025, a = l = 0.5q, L1 = 7,L2 = 5 and q = 0.2.

∀k, l , with the amplitudes having a uniformly distributed phase. Figure 4 shows

the resulting performance as a function of Df , again confirming the preferable

performance of the proposed estimators. In particular, it is worth noting how the

Capon and ORTH estimators suffers loss in performance as frequencies corres-

ponding to the overtones of the fundamental frequencies. Here, the performance

of the reference methods can be largely explained by the difficulty of estimating

lower fundamental frequencies. To illustrate this, Figure 5 shows the ratio when

selecting larger fundamental frequencies, f0 = 0.05 instead of 0.025 in the pre-

vious example. As can be seen in the figure, the more well separated pitches are

easier for the reference methods to resolve. As is clear from both figures, the pro-

posed estimator does not suffer this shortcoming, and offer a uniformly preferable

performance. We continue on to examine the robustness to the selection of the

user parameters. Figure 6 illustrates the resulting performance as a function of q
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Figure 5: Ratio of estimated pitches where both fundamental frequencies lie at

most two grid points from the ground truth, plotted as a function of Df , for

f0 = 0.05, a = l = 0.5q, L1 = 7,L2 = 5 and q = 0.2.

for different values of c, for SNR=15 dB, while the other signal parameters are the

same as for the signals used for Figure 3.To increase clarity, the results are here only

compared to the ORTH estimator, which exhibited the best performance of the

reference methods. As shown in the figure, the performance of the PEBS estimate

is quite insensitive to the choice of the user parameters, although their relative

ratio, typically estimated using a modified cross validation approach, where the

prediction of the estimated model is done with a re-estimated LS solution using

only the non-zero blocks chosen (see, e.g., [54]), does make some difference in

performance. The figure illustrates that a better results was obtained by including

the ℓ1 penalty (c 6= 0), as compared to using only the block penalty (c = 0).

Turning our attention to actual audio recordings, we consider a real audio signal1

1The authors are grateful to Mr Tommy Nilsson for this recording.
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Figure 6: Ratio of estimated pitches where both fundamental frequencies lie at

most two grid points from the ground truth, plotted as a function of q for a = cq,l = (1− c)q, for c ∈ {0, 1/2, 1/3, 2/3}.

using a recorded guitar playing in succession three chords, first a single note, then

a 2-note chord, and, finally, a 3-note chord. Figures 7-9 show the spectrogram

of the recorded signal as well as the resulting PEBS2TV and ORTH estimates,

respectively. For this signal, where one may expect a fundamental frequency in

the range 80 to 1600 Hz, and with varying number of pitches and harmonics,

the f0 vs f0/2 ambiguity should be expected. As can be seen in the figures, the

PEBS2TV method estimates the fundamental frequencies consistently with the

actual number of sources, as well as the fundamental frequencies of the under-

lying notes. Figure 8 also shows the (estimated) scaled standard deviation of the

signal, clearly illustrating the initial uncertainty in the measurement when the

chord is struck. The dictionary is chosen using the entire span of the funda-

mental frequency range of a guitar, and the number of harmonics is chosen to be
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Figure 7: Spectrogram of recorded guitar sound.

at a maximum 8, c was set to 0.3 and q was set to equal the standard deviation

of the signal. Overall, PEBS2TV manages to find the correct number of pitches

and the true fundamental frequency. Since the estimator is not given the number

of pitches, artificial fundamental frequency estimates appear when string is struck

or damped. This shows the importance of better preprocessing or modeling for

music signal applications. Furthermore, the frequency estimate at around 990 Hz

might be due to the inharmonicity in the guitar (see, e.g., [55]). For comparison,

we in Figure 9 show, the resulting estimates for the ORTH estimator, which was

best performing of the reference methods for this signal. The model order was

here set using oracle information of the number of pitches and manually tuning

the number of pitches to give the best results. As can be seen, the ORTH es-

timator manages to do reasonably well, with the most troublesome region being

between 1 and 1.5 seconds, where several cases of f0/2 or 2f0 being chosen instead

of the correct fundamental frequency.Finally, we examine a signal obtained by su-
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Figure 8: The PEBS estimate of the guitar recording, showing that the correct

number of pitches and their corresponding frequencies are revealed. The scaled

standard deviation of the signal is superimposed to illustrate at what time points

the notes are struck or muted.

perimposing two recordings from the SQAM database [56], being a viola and the

voice of a female speaker. The viola has a single fundamental frequency of about

131 Hz with roughly 15 overtones, although it may be noted that both the first

and fifth harmonics are missing, and several other harmonics are quite small. For

the speech signal, we have selected a part of the phrase ”to administer”, analyzing

the two vowels ”o” and ”a”, corresponding to the first third of the spectrogram in

Figure 10. To allow the speech signal to be reasonably stationary, we use (non-

overlapping and un-windowed) 20 ms time windows. During the examined time

period, the voice varies considerable, and the number of harmonics can be seen

to vary over the segments from one to eight with a fundamental frequency vary-
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Figure 9: The ORTH estimate of the guitar recording, using oracle information

of the model-orders. The scaled standard deviation of the signal is superimposed

to illustrate at what time points the notes are struck or muted.

ing between 180 and 220 Hz. The spectrogram of the resulting signal is shown

in Figure 10. To allow for the range of possible pitch frequencies a viola and a

female voice may be expected to span, the dictionary was selected to cover the

frequency range 130–1200 Hz, using 500 grid points, with the maximum num-

ber of harmonics set to Lmax = 15. Figures 11 and 12 show the resulting pitch

estimates for PEBS2TV and the ORTH estimator, respectively. Here, ORTH has

been allowed oracle knowledge of the number of harmonics of each source, as well

as the number of sources. As can be seen from the figures, the PEBS2TV estim-

ator is able to correctly identify the two pitch signals throughout, except in the

transition period when the speech signal is too weak to be detected, whereas the

ORTH estimate gives poor pitch estimates for the latter part of the signal, where
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Figure 10: Spectrogram of recorded speech and viola.

it yields pitch estimates which are multiples of the correct pitch, corresponding

to the higher order overtones. As the PEBS2TV estimator does not assume prior

knowledge of the number of sources, it may yield spurious pitches. This may be

seen, for instance, at time 0.15 s, where a (weak) third pitch appears. By tun-

ing the estimator better, or by allowing for information from previous frames, for

instance via pitch tracking (see, e.g., [57]), this may easily be remedied.

6 Conclusions

In this work, we introduced the idea of using block sparsity in the estimation of

the fundamental frequencies of a multi-pitch signal. Formulating the estimation

as a sum of a fitting term and convex sparsity inducing norms, ensuring a block

sparse solution, the proposed algorithm is shown to offer significantly improved

performance as compared to a range of state-of-the-art multi-pitch estimators.
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Figure 11: The PEBS2TV estimate of the speech and viola recording. The scaled

standard deviation of the signal is superimposed to illustrate at what time points

the voice is silent.

Furthermore, by including a total variation penalty on each block, the algorithm

avoids the f0 vs f0/2 ambiguity that many estimators suffer from. The algorithm

is shown to be capable of handling issues such as missing harmonics as well as

closely spaced fundamental frequencies. Furthermore, novel ADMM algorithms

are devised for the entailing optimizations, resulting in a iterative dual ascent

method, where each step has a simple closed form expression that scales well with

the problem dimensions.
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Figure 12: The ORTH estimate of the speech and viola recording, using oracle

information of the model-orders. The scaled standard deviation of the signal is

superimposed to illustrate at what time points the voice is silent.

7 Appendix

Appendix A

Insight into how the penalty term in (9) induces a block sparse solution can be

gained by studying the sub-differential equations of the equivalent real-valued

cost function (see also [42]), which may be expressed as

W̃T
ℓ

(

ỹ−
P∑

k=1

W̃k ãk

)

+ asℓ = 0 (58)
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for ℓ = 1, 2, . . . ,P, where sℓ is either a vector such that ||sℓ||2 ≤ 1, or equal to

ãℓ/||ãℓ||, depending on if ãℓ = 0 or not, W̃ is the real counterpart of W, created

such that

W̃ℓ =

[
Re {Wℓ} − Im {Wℓ}
Im {Wℓ} Re {Wℓ}

]

where Re{·} and Im{·} denote the real and imaginary part of a matrix, and ỹ

and ã are formed similarly, i.e.,

ỹ =
[
Re {y} Im {y}

]

ãℓ =
[
Re {aℓ} Im {aℓ}

]

Thus, for any minimizing vector ă, a necessary and sufficient condition for a sub-

vector, or block, ăℓ, to be zero is that [42]

∥
∥
∥
∥
∥

W̃T
ℓ

(

ỹ−
P∑

k=1

W̃k
˘̃ak

)∥
∥
∥
∥
∥

2

< a (59)

which shows the (block) sparsifying effect of the (block) 2-norm. Note further

that if the inequality does not hold, ãℓ could have been found by solving

ãℓ =

(

W̃T
ℓ W̃ℓ + a/||ãℓ||)−1

W̃T
ℓ



y −
∑

k 6=ℓ

W̃k ãk



 (60)

This can be recognized as being similar to the solution of a Tikhonov regularized

LS, or ridge regression, solution which is known to lack a sparsifying effect. Thus,

if the block is non-zero, one may expect each element in the block to be non-zero.

Appendix B

Similarily as in Appendix A, the sparsity of the solution of (11) may be understood

by studying the subdifferential equations for the equivalent real-valued problem,

which are given by

W̃T
ℓ

(

ỹ−
P∑

k=1

W̃k ãk

)

+ asℓ + lrℓ = 0 (61)
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for ℓ = 1, . . . ,P, where sℓ and rℓ are real-valued vectors defined such that

sℓ =

{
ãℓ

||ãℓ||2 if ãℓ 6= 0

v otherwise
(62)

where ||v||2 ≤ 1, and

[
rℓ,i

rℓ,i+Lk

]

=







[

ãk,i , ãk,i+Lk

]T

∥

∥

∥

[

ãk,i , ãk,i+Lk

]
∥

∥

∥

2

if
[
ãk,i, ãk,i+Lk

]T 6= 0

p otherwise

(63)

with ||p||2 ≤ 1, for i = 1, . . . ,Lk, where ai,j denotes element j of sub-vector i,
[a, b] a vector with two scalars a and b, and

rℓ =
[

rℓ,1 . . . rℓ,2Lk

]T
(64)

This implies that for any minimizing vector ă, it holds that ăℓ = 0 if

∥
∥
∥
∥
∥

W̃T
ℓ

(

ỹ−
P∑

k=1

W̃k
˘̃ak

)

− lr

∥
∥
∥
∥
∥

2

≤ a (65)

or, equivalently, if

Lℓ∑

k=1

∥
∥zk(‖zk‖2 − l)+

∥
∥2

2
≤ a2 (66)

where zk is a vector composed of the elements k and k + Lℓ of the vector

z = W̃T
ℓ

(

ỹ−
P∑

k=1

W̃k
˘̃ak

)

(67)

Interestingly, but perhaps not surprisingly, this is a similar solution as one would

obtain from the analysis of the real-valued version of (10) analyzed in [42]. How-

ever, in this case, the analysis holds for any kind of non-overlapping sub-division

of the sub-vectors, not only into the two variables corresponding to the same com-

plex variables. This insight was used in [58] to generalize the above results to the

case of multiple measurements vectors (array) case.
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Abstract

In this paper, we propose a novel method for estimating the locations of near-

and/or far-field harmonic audio sources impinging on an arbitrary, but calibrated,

sensor array. Using a two-step procedure, we first estimate the fundamental fre-

quencies and complex amplitudes under a sinusoidal model assumption, where-

after the location of each source is found by utilizing both the difference in phase

and the relative attenuation of the amplitude estimates. As audio recordings of-

ten consist of multi-pitch signals exhibiting some degree of reverberation, where

both the number of pitches and the source locations are unknown, we propose

to use sparse heuristics to avoid the necessity of detailed a priori assumptions on

the spectral and spatial model orders. The method’s performance is evaluated us-

ing both simulated and measured audio data, with the former showing that the

proposed method achieves near-optimal performance, whereas the latter confirms

the method’s feasibility when used with real recordings.

Key words: Multi-pitch estimation, near- and far-field localization, TDOA,

block sparsity, convex optimization, ADMM, non-convex sparsity.
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1 Introduction

Sound localization has been a topic of interest in a wide range of applications for

centuries, and is well known to be a difficult problem, especially in a reverberating

room environment (see, e.g., [1–7], and the references therein). Typically, local-

ization estimates are formed by exploiting time of arrival (TOA), time difference

of arrival (TDOA), and gain ratios of arrival as estimated over an array of sensors,

often using cross-correlation or canonical correlation analysis (CCA) techniques,

allowing the source positions to be determined using tri- och multilateration (see,

e.g., [8], [9]). In cases when the sources are located far from the sensor array, so-

called far-field sources, the range to the sources may not be determined due to the

lack of curvature of the impinging sound pressure wavefront, which in this case is

essentially planar, restricting the problem to that of determining the direction of

arrival (DOA) to the source relative to the sensor array [10–12]. The problem of

near-field source localization, and of far-field DOA estimation, has attracted sub-

stantial interest in the literature. Commonly, these problem are treated separately,

such that the sources are either treated as being far- or near-field. In this work,

we take on a different approach, considering both cases simultaneously, allowing

for signals from both kind of sources, without requiring any a priori knowledge

of either the number of sources, or if they are near- or far-field sources, or of de-

tailed knowledge of the impinging signals. To allow for this very general problem

formulation, we restrict our attention to harmonically related sound sources, such

as voiced speech [13] and/or the many forms of harmonic audio sources, such

as stringed, wind, and pitched percussion instruments [14]. Such sources may

be well modelled as a sum of sinusoidal components, with frequencies which are

integer multiples (or closely so in case of inharmonicity) of some fundamental

(pitch) frequency [15]. Due to the sinusoidal nature of the signals, the measured

signals may be well modelled as scaled and phase shifted versions of the source

signals, or, typically, as a sum of such signals if measured in a reverberating room

environment. Exploiting this, the joint estimation of the DOA and the pitch

frequency has been addressed in [16–18], wherein the authors consider the estim-

ation of the DOA of a single harmonic sound source using a uniform linear array

(ULA) of receiver sensor, typically assuming oracle knowledge of the number of

harmonic signals in the sound source. Here, we extend on these works, allowing

for an unknown number of sources, each having an unknown number of harmon-

ics, impinging in a reverberant room environment from either (or both) near- and

far-field sources. This is done by exploiting a sparse recovery framework, for the
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number of pitches, and, for each pitch, the number of harmonics, as well as the

number of sources. Sparse recovery frameworks have in earlier works been found

to allow for high quality estimates; typical examples include [19–22], wherein the

sparse signal reconstruction from noisy observations were accomplished with the

by now well-known sparse least squares (LS) technique. More recently, the tech-

nique has been extended to the case of harmonically related audio signals [23,24].

Using the techniques introduced there, we propose a two-stage procedure, first

creating a dictionary of candidate pitches to model the harmonic components of

the sources, without taking the locations of the sources into account, and then, in

a second stage, a dictionary of possible locations, including simultaneously near-

and far-field locations, to model the observed phase differences, as well as the

relative attenuations, of the amplitudes of each sinusoidal component.

The remainder of this paper is organized as follows: in the next section, we

present the assumed signal model and discuss the imposed restrictions on the

sensor array. Then, in section 3, we present the proposed pitch and localization

estimator. Section 4 introduces a computationally efficient implementation based

on the alternating direction method of multipliers (ADMM), followed in sec-

tion 5 with an evaluation of the presented technique using both simulated and

measured audio signals. Finally, we conclude on our work in section 6.

2 Signal model

In this work, we restrict our attention to complex-valued1 harmonically related

audio signals, formed from K separate audio sources, xk(t), for k = 1, . . . ,K ,

each consisting of Lk harmonically related sinusoids, such that (see also [15])

xk(t) =

Lk∑

ℓ=1

ak,ℓe
jwkℓt (1)

where wk = 2pfk/fs are the normalized fundamental frequencies, with sampling

frequency fs, and ak,l the complex amplitude of each harmonic. The resulting

1Clearly, the measured audio sources will be real-valued, but to simplify notation and in order
to reduce complexity, we will here initially compute the discrete-time analytic signal versions of the
measured signals, whereafter all processing is done on these signals (see also [15, 25]).
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Figure 1: Illustration of a two sensor scenario, with spherical wavefronts propagat-

ing from the source. The dashed line shows the scaled TDOA of the second sensor

with respect to the first sensor, i.e., t2.

multi-pitch signal

x(t) =
K∑

k=1

xk(t) (2)

may be the result of a combination of multi-pitch sources, for example, such as

resulting from an instrument playing a musical chord, or from multiple speakers,

or from combinations of such signals. When this form of signals impinge on a

sensor array, the received k:th pitch at the m:th sensor may be expressed as

xk,m(t) ,
1

dk,m
xk(t − tk,m) (3)

for each pitch k over sensors m = 1, . . . ,M , with tk,m denoting the relative

propagation delay, i.e., the TDOA, of the sound signal with respect to the time it
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is measured by a selected reference sensor, so that tk,1 , 0, and where

dk,m = ‖sk − rm‖2 (4)

is the distance between the source having the k:th pitch and the m:th sensor, ac-

counting for the attenuation of the signal when propagating in (3). Furthermore,

sk and rm denote the coordinates of the k:th sound source and the m:th sensor,

respectively, and with ‖·‖2 denoting the Euclidean norm. An illustration of this

is shown in Figure 1, for the case of a single source and two sensors. As is clear

from the figure, the relative time delay between the first and mth sensors will betk,m =
dk,m − dk,1

c
(5)

where c is the propagation velocity. The impinging signal at sensor m may thus

be expressed as

ym(t) =
K∑

k=1

xk,m(t) + em(t) (6)

=

K∑

k=1

Lk∑

ℓ=1

ak,ℓd
−1
k,mejwkℓ(t−tk,m)

+ em(t) (7)

=

K∑

k=1

Lk∑

ℓ=1

bk,ℓ,mejwkℓt + em(t) (8)

where the TDOA phase information of the k:th pitch, for overtone ℓ and sensor

m, is gathered in the complex amplitude of the signal, bk,ℓ,m, i.e.,

bk,ℓ,m , ak,ℓd
−1
k,me−jwkℓtk,m (9)

and with em(t) denoting an additive noise, which is here assumed to be circularly

symmetric Gaussian distributed. For reverberating environments, or for other

cases of coherent signals sharing the same fundamental frequency, each such con-

tribution may be modelled as a separate source, increasing K accordingly. Here,

we have selected to instead allow each source to have Sk coherent reflections (or,

equivalently, allowing for Sk sources with the same fundamental frequency), ex-

tending the expected TDOA phase information accordingly, such that

bk,ℓ,m =

Sk∑

s=1

ak,ℓ,sd
−1
k,m,se

−jwkℓtk,m,s (10)
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where ak,ℓ,s, dk,m,s, and tk,m,s denote the amplitude, the distance to the mth sensor,

and the TDOA for the sth reflection, respectively. To simplify notation, and

without loss of generality, we will here restrict our attention to the case when

all sources and signals are restricted to a 2-D plane. The results generalize to 3-

D by extending the parameter sets accordingly. Furthermore, we here assume a

calibrated, although arbitrary, sensor array, only being chosen with enough sensors

to avoid ambiguity. Such ambiguities arise as the phase difference between signals

may, in general, map to several feasible source locations. To see this, consider a

nominal complex amplitude from a single (near-field) sinusoidal signal, b, such

that

bm =
a

‖s− rm‖2

eiwt
=

a

‖s− rm‖2

eiwt+k2p (11)

is ambiguous for any k ∈ Z. The reverse triangle inequality implies that
∣
∣
∣‖s− rm‖2 − ‖s− r1‖2

∣
∣
∣ ≤ ‖rm − r1‖2 (12)

and, given (5), that the TDOA for such a feasible source location must fulfilltc ∈
[

−‖rm − r1‖2, ‖rm − r1‖2

]

(13)

limiting the TDOA to an interval that depends on the distance between the

sensors, where the endpoints of the interval corresponds to source positions that

are on either side of the sensors, positioned exactly on a line running through

both. Thus, using (11), one may note that the same phase information is ob-

tained for any TDOA such thattkc =
l arg b

2p + lk (14)

where k ∈ Z, arg b ∈ [−p, p], and l = 2pc/w is the wavelength of the signal,

which, given (13), implies that only such TDOAs that satisfytkc =
l arg b

2p + lk ∈
[

−‖rm − r1‖2, ‖rm − r1‖2

]

(15)

are feasible solutions. Therefore, if sensors are distanced by less than l/2, the feas-

ible t is unique, and there is no ambiguity in the resulting estimates. In such cases,

the TDOA for each sensor pair will form a single half of a hyperbola, as given by
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Figure 2: The three hyperbolas represent the possible locations of a source when

the TDOA is estimated from the phase of the amplitude of a sinusoid with

wavelength l. As the distance between sensor 1 and 2 is greater than l/2, two

possible TDOAs and thus two hyperbolas, spaced l/2 apart, are in the solution

set for that sensor pair. However, the only feasible solution is the one marked with

an ’x’, as it is the only point which exists in the solution sets from both pairs of

sensors.

(5), indicating feasible source locations. If instead some sensors are spaced further

apart than l/2, then, for all such sensor pairs, there will be more than one feasible

TDOA, thereby yielding multiple hyperbolas indicating feasible source locations,

with a minimum distance of l/2 apart. When using multiple sensors, the feas-

ible source locations are restricted to the intersection of hyperbolas for all sensor

pairs. This is illustrated in Figure 2, where a single source emits a 1000 Hz signal,

which is recorded by three sensors. As shown in the figure, between sensors one

and three, which are less than l/2 apart, the source gives a single TDOA and a
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corresponding hyperbola, where the source may be located. Between sensors one

and two, which are spaced by more than l/2 apart, a second TDOA is feasible,l/c apart from the true one, which yields the same same phase in the complex

plane. However, as shown in the figure, the combined hyperbolas coincide in

only a single feasible location, thus still allowing for an unambiguous estimate of

the source location. For harmonic signals, consisting of multiple sinusoidal sig-

nals, each overtone will yield a separate set of hyperbolas, thus also expanding the

range of possible locations. However, as we consider finding the location using all

harmonics simultaneously, adding a harmonic does not increase the set of possible

locations (as we only consider the intersection of all the harmonic’s solution sets).

Furthermore, using the amplitude attenuation information between sensors, as

given by (9), the measured amplitudes may be expressed as

|bm| =
|a|

‖s− rm‖2

(16)

For each pair of microphones, these equations limit s to be on a circle. As each

harmonic follows the same path loss model, each harmonic yields the same circle

as the pitch, and thus does not add any information to the question of uniqueness.

Instead, in the noisy case, adding more harmonics only adds to the precision of

the location, as the signal-to-noise ratio (SNR) increases. Finally, as more sensors

are added to the array, the set of possible locations quickly becomes small, and a

unique solution generally exists. We thus deem that the imposed restriction on

the array’s geometry is mild.

3 Joint pitch and localization estimation

We proceed to detail the proposed two-step procedure to form reliable estimates

of both the pitches and locations of the sources impinging on the array, without

assuming detailed model knowledge of either the number of sources, K , the num-

ber of overtones for each source, Lk, the number of reflections experienced due to

a possibly reverberant environment, Sk, or requiring knowledge about if sources

are far- or near-field. In the first step, the amplitudes, phases, fundamental fre-

quencies, and model orders of the present pitches are estimated, whereas, in the

second step, the phase estimates are used to find the locations of these sources.

72



3. Joint pitch and localization estimation

Let F =

{
{

bk,ℓ,m

}

ℓ=1,...,Lk
m=1,...,M

,wk,Lk

}

k=1,...,K

(17)

denote the set of unknown parameters to be determined in the first step. Min-

imizing the squared model residual in (8), an estimate of F may thus be formed

as F̂ = arg minF N∑

t=1

M∑

m=1

∣
∣
∣
∣
∣
ym(t)−

K∑

k=1

Lk∑

ℓ=1

bk,ℓ,mejwkℓt

∣
∣
∣
∣
∣

2

(18)

Clearly, given the dimensionality of the problem, and the required model order

estimation steps in order to determine K and Lk, this is a non-trivial problem, and

needs to be modified to allow for an efficient solution, as is detailed below. In the

second step, the found amplitude and phase estimates, b̂k,l,m, are then exploited

to form estimates of the source locations. LetYk =

{{
ak,ℓ,s

}

ℓ=1,...,Lk
, ss

}

s=1,...,Sk

(19)

Then, the locations may be determined by minimizing the squared model residual

in (10), i.e.,Ŷk = arg minYk

L̂k∑

ℓ=1

M∑

m=1

∣
∣
∣
∣
∣
b̂k,ℓ,m −

Sk∑

s=1

ak,ℓ,sd
−1
k,m,se

−jwkℓtk,m,s

∣
∣
∣
∣
∣

2

(20)

where tk,m,s and dk,m,s are functions of the location ss, as defined in (4) and (5). As

before, this minimization is also non-trivial, requiring an estimate of Sk, and also

needs to be modified to allow for a reasonably efficient solution. In the following,

we will elaborate on the proposed modifications of the above minimizations. In

order to do so, we first extend the sparse pitch estimation algorithm presented in

[23,24] to allow for multiple measurement vectors. For the second minimization,

we then introduce a similar sparsity pattern to solve the localization problem. We

begin by examining the extended pitch estimation algorithm.

3.1 Sparse pitch estimation

Define the measurement matrix

Y =
[

y(1) . . . y(N )
]T

(21)
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Figure 3: The PWL and RMSE for a single-pitch signal as compared with the

optimal performance of an estimator reaching the CRB.

where

y(t) =
[

y0(t) . . . yM−1(t)
]T

(22)

denotes a sensor snapshot for each time point t = 1, . . . ,N , with (·)T being the

transpose. The measurements may then be concisely expressed as

Y =

K∑

k=1

WkBk + E (23)

where E denotes the combined noise term constructed similar to Y, and

Wk =

[

w1
k . . . w

Lk
k

]

(24)

wk =
[

ejwk . . . ejwkN
]T

(25)

Bk =
[

bk,1 . . . bk,Lk

]T
(26)

bk,ℓ =
[

bk,ℓ,1 . . . bk,ℓ,M

]T
(27)
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Figure 4: The PWL and RMSE for a multi-pitch signal with two pitches, as

compared to the corresponding CRB.

Reminiscent to the sparse estimation framework proposed in [19], we form an

extended dictionary of feasible fundamental frequencies, w1, . . . ,wP , where P ≫
K , being chosen so large that K of these will reasonably well coincide with the

true pitches in the signal. In the same manner, the number of harmonics of each

pitch is extended to an arbitrary upper level, say Lmax, for all dictionary elements.

The signal model may thus be expressed as

Y =

P∑

p=1

WpBk + E = WB+ E (28)

where the block dictionary matrices are formed by stacking the matrices such that

W =
[

W1 . . . WP

]
(29)

B =
[

BT
1 . . . BT

P

]T
(30)
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Note from (28) that if the element (ℓ, r) of the matrix Bk is non-zero, the fre-

quency ℓwk is present in the signal at sensor r. Furthermore, since we assume

all sensors to receive essentially the same signal, although time-delayed, we may

assume that for a harmonic signal, the rows off a non-zero Bk will either be non-

zero, implying that the harmonic ℓ is present in the pitch, or zero, if the harmonic

is missing. An appropriate criterion, that promotes a combination of model to

data fit and the sparsity pattern just described, may thus be formed as

minimize
B

1

2
‖Y−WB‖2

F + l P∑

p=1

Lp
∑

ℓ=1

∥
∥bp,ℓ

∥
∥

2
+

P∑

p=1

gp

∥
∥Bp

∥
∥
F (31)

where two different kinds of group sparsities are imposed, and with ‖·‖F denoting

the Frobenius norm. This can be seen to be a generalization of the sparse group

lasso to the multiple measurement case (see also [24, 26]). Here, the double sum

of 2-norms, which is in the second entry of the minimization, should enforce

sparsity in the solution in the rows of B, and ideally only have as many non-

zero rows as there are sinusoids in the signal. The third entry makes the solution

(matrix) block sparse over the candidate pitches, penalizing the number of pitches

with non-zero magnitude in the signal, ideally making them as many as there are

pitches in the signal, i.e., K . Given an optimal point, B̂, the number of pitches

is thus estimated as the number of non-zero matrices B̂k, and, for each pitch, the

number of harmonics, Lk, is estimated as the number of non-zero rows. The user

parameters l,gp ∈ R+ weighs the fit of the solution to its vector and matrix

sparsity, respectively.

It is well known (see, e.g., [27]) that the amplitudes in the sparse estimate will

be increasingly biased towards zero as sparse regularizers are increased. As we here

intend to use both the estimated phases and the amplitudes, we propose to refine

the amplitude estimates using a reweighting scheme similar to the one presented

in [28]. This is accomplished by iteratively solving (31), such that at iteration

j + 1, one updatesg(j+1)
p =

g(0)
p

∥
∥
∥B̂

(j)
p

∥
∥
∥
F
+ e (32)

where B̂
(j)
p is block p of the optimal point for iteration j, and all g(0)

p are set to

be equal in the first iteration. As a result, the block matrices, B̂
(j)
p , which have
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3. Joint pitch and localization estimation

a small Frobenius norm at iteration j will be penalized harder in the next step,

whereas the ones that have a larger Frobenius norm will be penalized less, and as

a result reducing the bias. The resulting algorithm can be seen as a sequence of

iterative convex programs to approximate the concave log(
∑P

p=1 g(0)
p

∥
∥Bp

∥
∥
F + e)

penalty function [29], where e is chosen as a small number to avoid numerical

difficulties. The introduction of the reweighting yields sparser estimates due to

the introduction of the log penalty [28, 30], and the resulting technique may be

viewed as an alternative to using an information criterion (as was done in [24], to

avoid spurious peaks caused by the signal model and data miss-match).

It is worth noting that as we are here focusing on localization, we have se-

lected to use a somewhat simplistic audio model that ignores several important

features in harmonic audio signals, such as issues of inharmonicities, pitch halv-

ings and doublings, and the commonly occurring forms of amplitude modulation

exhibited by most audio sources (see also [15]). Clearly, the used model could be

refined reminiscent to models such as the one used in [24,31], introducing a total

variation penalty to each column of B, and/or using an uncertainty volume to

allow for inharmonicity. However, for localization purposes, these issues are of

less concern, as halvings/doublings and/or amplitude modulations will not affect

the below localization procedure more than marginally. Inharmonicity is more

pressing, but we have in our numerical studies found that given the size of the

calibration errors, the inharmonicity is not affecting the solution significantly, and

in the interest of reducing the complexity, we have opted to exclude this aspect

from the estimator.

As for the selection of the tuning parameters, one may use, for example, cross

validation techniques, although it may be noted that, in high SNR cases, one can

often get good results by simply inspecting the periodogram and by then setting

the tuning parameters appropriately (see also [24] for a further discussion on this

issue). Furthermore, we note that in the case of different noise variances at each

sensor in the array, the Frobenius norm in the first entry of the minimization

criterion may be replaced with a weighed Frobenius norm. Finally, we note that

non-Gaussian noise distributions can also be used as long as the negative log-

likelihood is convex.

3.2 Sparse phase- and attenuation- based localization

As the phase estimates in B̂ will inherently contain estimates of the TDOAs,

this enables a range of post-processing steps to, for instance, estimate positions,
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track, and/or calibrate the sensors. Here, we limit our attention to estimating the

source positions. Let B̂ denote the solution obtained from minimizing (31), and

consider a scenario where the sources are well separated in their pitch frequencies,

and, initially, suffering from negligible reverberation, implying that S1 = . . . =
SP = 1. Then, the minimization in (20) may be seen as a generalization of the

time-varying amplitude modulation problem examined in [32] (see also [12]) to

the case of several realizations of the same signal, sampled at irregular time points,

and with a different initial phase for each realization. Reminiscent to the solution

presented in [12, p. 186], one may thus find the source locations, for far-field

signals, for every pitch p with non-zero amplitudes in Bp, as

ŝp = arg max
sp

Lp
∑

ℓ=1

∣
∣
∣
∣
∣

M∑

m=1

b̂2
p,ℓ,me−j2wpℓtp,ℓ,m

∣
∣
∣
∣
∣

2

(33)

where the TDOAs tp,ℓ,m are found as a function of the source location sp, using

(5). This minimization may be well approximated by 1-D searches over range and

DOA (or over azimuth and elevation in the 3-D case). Considering also reverber-

ating room environments, wherein each of the pitches may appear as originating

from many different locations, the minimization needs to be extended to allow

for varying number of reflections, Sk. To allow for such reflections, we proceed to

model every non-zero amplitude block from the pitch estimation step as

Bk =

Sk∑

s=1

diag
(
ak,s

)
Uk,s + Ek (34)

with diag(x) denoting a diagonal matrix with the vector x along its diagonal, Ek

the combined noise term constructed in the same manner as Bk, and

Uk,s =

[

u1
k,s . . . u

L̂k
k,s

]

(35)

uk,s =

[
e

jwktk,1,s

dk,1,s
. . . e

jwktk,M,s

dk,M,s

]T
(36)

ak,s =

[

ak,1,s . . . ak,L̂k,s

]T
(37)

where tk,m,s and dk,m,s are related to the source location as given by (4) and (5),

respecively. Analogously to the above procedure for the pitch estimation, we then

extend the dictionary of feasible source locations for the kth source, s1, . . . , sSk
,
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4. An efficient ADMM implementation

onto a grid of Q ≫ Sk candidate locations sq, for q = 1, . . . ,Q, with Q chosen

large enough to allow some of the introduced dictionary elements to coincide, or

closely so, with the true source locations in the signal. Clearly, this may force Q
to be very large. Striving to keep the size of the dictionary as small as possible, we

consider grid points in polar coordinates, with equal resolution for all considered

DOAs, and linearly spaced grid points over the distance in each DOA. Thus, we

get a denser grid in the close proximity to the sensor array, where the resolution

capacity is highest, and then a less and less dense grid for sources further away

from the array. Finally, to also allow for far-field sources, we can include one

dictionary element for each direction at an infinite range, for which all the relative

attenuations, dk,l,s, are set to be equal to 1. Thus, we may estimate the source

locations for the k:th pitch using a sparse modeling framework as

minimize
ak,1,...,ak,Q

1

2

∥
∥
∥
∥
∥
∥

Bk −
Q
∑

q=1

diag ak,qUk,q

∥
∥
∥
∥
∥
∥

2

F

+

Q
∑

q=1

kq

∥
∥ak,q

∥
∥

2
+ r Q

∑

q=1

∥
∥ak,q

∥
∥

1

(38)

where, again, two types of sparsity is imposed on the solution. The 2-norm pen-

alty term imposes sparsity to the blocks ak,q, i.e., penalizing the number of source

locations present in the signal. Furthermore, the 1-norm term penalizes the num-

ber of harmonics, to allow for cases when some sources may have missing har-

monics. Thus, here the number of sources is estimated as the number of nonzero

blocks in an optimal point and any zero elements within a block corresponding

to a missing harmonic. Here, kq, r ∈ R+ are tuning parameters, controlling the

amount of sparsity and the weight between sparsity in pitches and in harmonics,

respectively, whereas the factor r is only used if two sources share the same fun-

damental frequency but differ in which harmonics are present. Finally, kq may

be updated in the same manner as described in section III.A. As shown in the

following section, the optimization problem in (31) and (38) are equivalent, so

these tuning parameters may be set in a similar fashion.

4 An efficient ADMM implementation

It is worth noting that both the minimization in (31) and (38) are convex, as the

tuning parameters are non-negative and all the functions are convex. Their solu-

tions may thus be found using standard convex minimization techniques, e.g.,
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Algorithm 1 The ADMM algorithm

1: Initiate z = z0,u = u0, and k = 0

2: repeat

3: zk+1 = argmin
z

f (z) + m
2 ||z − uk − dk||22

4: uk+1 = argmin
u

g(u) + m
2 ||zk+1 − u− dk||22

5: dk+1 = dk − (zk+1 − uk+1)

6: k ← k + 1

7: until convergence

using CVX [33,34], SeDuMi [35], or SDPT3 [36]. Regrettably, such solvers will

scale poorly both with increasing data length, the use of a finer grid for the fun-

damental frequencies, and with the number of sensors. Furthermore, such imple-

mentations are unable to utilize the full structure of the minimization, and may, as

a result, be computationally cumbersome in practical situations. To alleviate this,

we proceed to introduce a novel ADMM re-formulation of the minimizations,

offering efficient and fast implementations of both minimizations. For complete-

ness and to introduce our notation, we briefly review the main steps involved in

an ADMM (we refer the reader to [37, 38] for further details on the ADMM).

Considering the convex optimization problem

minimize
z

f (z) + g(z) (39)

where z ∈ R
p is the optimization variable, with f (·) and g(·) being convex func-

tions. Introducing the auxiliary variable, u (39) may be equivalently be expressed

as

minimize
z,u

f (z) + g(u), subject to z− u = 0 (40)

since at any feasible point z = u. Under the assumption that there is no dual-

ity gap, which is true for the here considered minimizations, one may solve the

optimization problem via the dual function defined as the infimum of the aug-

mented Lagrangian, with respect to x and z, i.e., (see also [37])

Lm(z,u, d) = f (z) + g(u) + dT (z − u) +
m
2
||z − u||22
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4. An efficient ADMM implementation

The ADMM does this by iteratively maximizing the dual function such that at

step k + 1, one minimizes the Lagrangian for one of the variables, while holding

the other fixed at its most recent value, i.e.,

zk+1 = arg min
z

Lm (z,uk, dk) (41)

uk+1 = arg min
u

Lm (zk+1,uk, dk

)
(42)

Finally, one updates the dual variable by taking a gradient ascent step to maximize

the dual function, resulting in

d̃k+1 = d̃k − m(zk+1 − d̃k+1

)

(43)

where m is the dual variable step size. The general ADMM steps are summarized

in Algorithm 1, using the scaled version of the dual variable dk = d̃/m, which

is more convenient for implementation. Thus, in cases when steps 3 and 4 of

Algorithm 1 may be carried out more efficiently than for the original problem,

the ADMM may be useful to form an efficient implementation of the considered

minimization.

It may be noted that the minimizations in (31) and (38) are rather similar,

both containing an affine function in a Frobenius norm, as well as a sum of the

norm of different subset of the variable. In fact, by using the vec operation, both

minimizations may be shown to be equivalent with the problem

minimize
z

1

2
‖y− Az‖2

2 + g P∑

k=1

‖zk‖2 + d P∑

k=1

Gk∑

g=1

∥
∥zk,g

∥
∥

2

where the complex variable z is given as

z =
[

zT
1 . . . zT

P

]T
(44)

zk =

[

zT
k,1 . . . zT

k,Gk

]T
(45)

where each zk and zk,g denote complex vectors with Gk and O elements, respect-

ively. For the minimization in (31), this implies that

y = vec(Y) (46)

z = vec(B) (47)

A = I⊗W (48)
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Figure 5: The two-source and eight-sensor layout in 2D. The 2D position of each

sensor, shown in the plot with Cartesian coordinates as rm = [x, y], was obtained

in an a priori calibration step.

where ⊗ and I denote the Kronecker product and an M-dimensional identity

matrix, respectively, with Gk being equal to the number of harmonics, Lk, and O
equals the number of sensors, M . Similarly, for the minimization in (38),

y = vec(Bp) (49)

z = ak (50)

A = Ṽk (51)

where

ak =

[

aT
k,1 . . . aT

k,Q

]T
(52)

Ṽk =
[

Ṽk,1 . . . Ṽk,Q

]
(53)
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and Vk,q = Uk,q ⊗ I, with Ṽk,q being formed by removing all columns from Vk,q

that correspond to zeros in the vector vec(diag(ak,q)), and Gk being equal to Lk

and O equals 1. Thus, we can formulate and ADMM solution for (44) that solves

both problem (31) and (38). To that end, defining

f (z) =
1

2
‖y− Az‖2

2 (54)

g(u) = g P∑

k=1

‖uk‖2 + d P∑

k=1

Qk∑

g=1

∥
∥uk,g

∥
∥

2
(55)

yields a quadratic problem in step 3 in Algorithm 1, with a closed form solution

given by

zk+1 =
(mI + AH A

)−1
(m (uk − dk) + AH y

)

with (·)H denoting the Hermitian transpose, whereas in step 4, by solving the

sub-differential equations (see [24] for further details), one obtains

uk+1 = S
o
(
S

i
(
zk − dk, k/m) , d/m) (56)

where the shrinkage operators So and S
i are defined using the vector shrinkage

operator S, defined for any vector v and positive scalar x such that

S(v, x) = v
(
1− x/||v||2)+ (57)

where (·)+ is the positive part of the scalar, and

S(z, x)o
=
[

S
T (z1, x) . . . S

T (zP , x)
]T

(58)

S(z, x)i
=
[

S
T (z1,1, x) . . . S

T (z1,G1, x) . . .

S
T (zP,1, x) . . . S

T (zP,GP , x)
]T

(59)

The resulting algorithm is here termed the Harmonic Audio LOcalization using

block sparsity (HALO) estimator.

5 Numerical comparisons

We proceed to examine the performance of the proposed estimator using both

synthetic and measured audio signals, initially examining the performance using
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simulated audio signals. In the first examples, we limit ourselves to the case of

letting a far-field signal impinge on a uniform linear array (ULA). Figure 3 shows

the percentage within limits (PWL), defined as the ratio of pitch estimates within

a limit of ±0.1 Hz from the true pitch, and the root mean square error (RMSE)

of the DOA, defined as

RMSEj =

√
√
√
√

1

nK

K∑

k=1

n∑

i=1

(ĵk,i − jk

)2
(60)

where n denotes the number of Monte Carlo (MC) simulation estimates, and

K the number of pitches in the signal, for the resulting estimates. For compar-

ison, we use the Cramér-Rao lower bound (CRB), the NLS estimator, and the

Sub approach (see [16] for further details on these methods and for the corres-

ponding CRB). These results have been obtained using n = 250 MC simulations

of a single pitch signal, with w1 = 220 Hz and L1 = 7 harmonics, impinging

from j1 = −30◦, where both the NLS and the Sub estimators have been al-

lowed perfect a priori knowledge of both the number of sources and their number

of harmonics, whereas the proposed method is allowed no such knowledge. As

is clear from the figures, the HALO method offers a preferable performance as

compared to the Sub estimator, and only marginally worse than the NLS estim-

ator, in spite of both the latter being allowed perfect model orders information.

Here, the number of sensors in the array was M = 5 and we used 20 ms of data

sampled at fs = 8820 Hz, i.e., N = 176 samples. Furthermore, c = 343 m/s and

d = c/fs ≈ 0.0389 m. We proceed to consider the case of multi-pitch signals

impinging on the array. Measuring as in the single-pitch case, we now form a

multi-pitch signal with two pitches and fundamental frequencies {150, 220} Hz

containing {6, 7} harmonics, coming from j1 = −30◦. Figure 4 shows the

RMSE and PWL estimates, as obtained using 250 Monte Carlo simulations,

clearly showing that the HALO estimator is able to reach close to optimal per-

formance also in this case. Here, no comparison is made with the NLS and Sub

estimators of [16] as these are restricted to the single-pitch case. Throughout

these evaluations, we have used Lmax = 15. Also, as the resulting estimates were

found to be appropriately sparse when using only the convex penalties, and no

reweighing steps were used.

We next proceed to examine real measured signals. The measurements were

made in an anechoic chamber, approximately 4 × 4 × 3 meters in size, with the

sensors and speakers located as shown in Figures 5 and 7. Two speakers were
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Figure 6: Time-domain data at a sensor (lined), overlaid with the signal model

reconstruction (dotted). Panels (a) and (b) correspond to a speech recording,

while Panels (c) and (d) correspond to a violin recording, in both cases, at sensor

6 and 8, respectively.
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placed at locations (in polar coordinates) s1 = [j1,R1] = [115.03◦, 1.15 m] and

s2 = [j2,R2] = [−74.53◦, 1.33 m], with respect to the central microphone,

respectively. The positions of the sensors were determined by placing them to-

gether with the sources, using the acoustic method detailed in [39]. This is done

by calibrating the sensors with a single moving source, using a correlation-based

methodology. The positions were also confirmed via a computer vision approach

were the positions were found by taking several photos and reconstructing the en-

vironment. The maximum deviation in position between these methods was less

than 1 mm, which was considered to be precise enough. As the spatial impulse

responses of the microphones were deemed to be reasonably omni-directional,

as well as roughly the same for all the microphones, no further calibration of

the sensor gains were performed. The positions were then projected onto a 2-D

plane using principal component analysis. In order to illustrate the HALO es-

timator’s ability to handle an environment with the same pitch signal originating

from different sources, as in a reverberating room environment, we examine a case

with two sources playing the same signal content. Both sources plays a (TIMIT)

recording of a female voice saying ’Why were you away a year, Roy?’, timing the

source’s playback so that the recording at each microphone sounds slightly echoic.

The eight microphones all record at a sample rate of fs = 96 kHz. The data is

then divided into time frames of 10 ms, i.e., N = 960 samples, which allow each

frame to be well modeled as being stationary. Examining a part of the speech that

is voiced, arbitrarily selected as the frame starting 380 ms into the recording, about

when the voice is saying the voiced phonetic sound ’a’ in ’why’, Panel (a) and (b)

in Figure 6 show the signal measured at the 6th and 8th microphone, respectively,

together with the reconstructed signal obtained from the pitch estimation step in

HALO, obtained as

Ŷ = WB̂ (61)

using the resulting model orders and estimates. The estimator indicate that the

signal contains a single pitch at ŵ/2p = 193.5 Hz, having L̂ = 12 overtones. As

is clear from the figures, the estimator is well able to model the measured signal

in spite of the presence of the reverberation. Comparing the figures, one may also

note the time shift between the sensors, due to the additional time-delay for the

wavefront traveling between them, corresponding to a linear combination of the

two sources, each with their particular TDOA and attenuation. It should also

be noted that the signals are not simply time-shifted versions of each other due
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Figure 7: A photo showing the experimental setup in the anechoic chamber.

to the room environment and the attenuation of the signal when propagating in

space (which would thus create problems for an estimator based on the cross-

correlation between the sensors). The same situation is illustrated in Panel (c) and

(d) in Figure 6 showing the results when the signal source is replaced with that of

a part of a (SQAM) violin signal. Again, the estimator can be seen to be able to

well model the impinging signals, which is estimated as being a single pitch with

the fundamental frequency ŵ/2p = 198.0 Hz, containing L̂ = 14 harmonics.

In order to examine the location estimation, we construct a 2-D grid of feasible

locations, chosen such that the space is discretized into 1008 points, consisting

of 72 directions between [−180◦, 180◦), spaced every 5◦, where each direction

allows for ranges R ∈ [0.7, 2] m, spaced 10 cm apart. The resulting grid is shown

in Figure 8, which is roughly covering the entirety of the anechoic chamber. To

also allow for far-field sources, a range of R =∞ is also added to the grid for each

direction, which we have chosen to illustrate by the outer circle in Figure 8. For
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Figure 8: The experimental setup in the anechoic chamber, showing the sensor

and loudspeaker locations, the considered dictionary grid, as well as the resulting

estimated as obtained by the proposed algorithm.

these far-field grid points, the time-delays are instead computed as (see also [10])tm =

min
z
‖rm − ℓ(z)‖2

c
(62)

for a location z on the line ℓ(·), which is perpendicular to the DOA and goes

through r1. The figure also shows the locations for the sensors and the sound

sources, as well as the estimated locations, as obtained by the second step of the

HALO estimator (the estimated locations were identical for both audio record-

ings). The errors in position were 5 cm in range for each source, where a bias,

overestimating the range, accounts for almost all of the error. On the other hand,

as shown in the figure, the angles of the sources j were accurately estimated. The

overestimation of the range may to a large extent likely be explained by poor
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scaling when calibrating the array.

Finally, we illustrate the algorithm’s performance using Monte Carlo (MC)

simulations, using simulated sources, one near- and one far-field source, de-

tailed with w = [200, 270] Hz, L = [15, 14] harmonics, impinging from j =

[110◦,−70◦] at R = [1.3,∞] m, respectively. The sensors are placed as a uni-

form circular array, with 7 sensor placed evenly at a 0.5 m radius, together with a

sensor being placed in the center of the array. First, we examine the position estim-

ates using a coarse spacing for the possible sources, spaced by 11 cm in angle for

all angles j ∈ [−180◦, 180◦), and spaced by 10 cm in range, at R ∈ [0.7, 3] m.

In each MC simulation, the true location of each source was offset by a (uni-

formly distributed) range offset of plus minus one half the grid spacing. In all

simulations, we ensured that neither of the sources were placed on a dictionary

grid point. Figure 9 shows the PWL for the angle and range estimates, where

the limit is chosen to be the same as the grid spacing, i.e., the ratio of estimates

that are within ±1 dm in range, and ±5◦ in angle. As seen from the figure, both

the range and the DOA of the sources are well determined, indicating that even

with the use of a coarse grid, one is able to obtain reliable estimates. Proceeding

to instead using a fine grid, the coarse estimates may then be refined by zooming

in the grid over the found locations. Using a dictionary of the same size as the

coarse grid, although centered around the found estimates, yields a resolution of

±5 mm in range and ±0.25◦ in angle. Figure 10 shows the resulting RMSE for

the angle and pitch estimates on the finer grid, as compared to the CRB (given in

the Appendix). As can be seen from the figure, the RMSE (and the correspond-

ing CRB) of the far-field source is somewhat lower than the near-field source,

although both sources are well estimated, yielding a performance close to being

optimal. The slight offset from the CRB is deemed to be largely due to a small

bias in the final estimates, resulting from the smoothness of the approximative

cost function resulting from the additive convex constraints. As is clear from the

above presentation, the HALO estimate exploits the harmonic structure in the

received audio signals to position the sources, using the pitch estimates to form

a sparse estimate over a wide range of feasible positions. Obviously, most audio

signals are not harmonic at all times, and the estimator should thus be used in

combination with a tracking technique, possibly using a methodology reminis-

cent to the one presented in [40, 41]. In such a tracking scheme, the estimated

pitch amplitudes should be used as an indicator for the reliability of the obtained

positioning, yielding poor or maybe even erroneous positioning for unvoiced or
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Figure 9: The PWL ratio for the angle and range estimates when using a coarsely

spaced grid, indicating the ratio of estimates that are within ±10 cm in range,

and ±5◦ in angle.

non-harmonic audio signals, whereas reasonably accurate positions may be expec-

ted for more harmonic signals.

6 Conclusions

In this paper, we have presented an efficient sparse modeling approach for loc-

alizing harmonic audio sources using a calibrated sensor array. Assuming that

each harmonic components in each pitch can only come from one source, the

localization estimate is based on the phase and attenuation information for all

of the harmonics jointly. The resulting model phases and attenuation will then
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Figure 10: The RMSE for the angle and range estimates when using a finely

spaced grid, approximately ±5 mm in range and ±0.25◦ in angle.

depend on the source location. By using sparse modeling, the method inherently

estimates both the number of sources, the number of harmonics in each source,

as well as the extent of a possibly occurring reverberation. The effectiveness of the

resulting algorithm is shown using both simulated and measured audio sources.

Acknowledgements

The authors wish to express their gratitude to the Signal Processing Group at

Electrical and Information Technology, Lund University, for allowing use of their

experimental facilities, as well as to the authors of [16] for sharing their Mat-

lab implementations. This work was supported in part by the Swedish Research

Council and Carl Trygger’s foundation. This work has been presented in part at

the ICASSP 2014 conference [42].

91



Paper B

7 Appendix

In this appendix, we briefly summarize the Cramér-Rao lower bound (CRB) for

the examined localization problem. As is well known, under the assumption of

complex circularly symmetric Gaussian distributed noise, the Slepian-Bangs for-

mula yields [12, p. 382]

[
P−1

cr

]

ij
= trace

[G−1G′
iG−1G′

j

]

+ 2R
[m′H

i G−1m′
j

]

(63)

where R denotes the real part of a complex scalar, G the covariance matrix of

the noise process, and m is the deterministic signal component, with G′
i and m′

i
denoting the derivative of G and m with respect to element i of the parameter

vector, respectively. For the case of uncorrelated noise with a known variance s2,

this simplifies to

[
P−1

cr

]

ij
= 2R

[m′H
i m′

j

]

/s2 (64)

Using the assumed signal model as measured at sensor m, stacking the observa-

tions as in (21), and then using the vec operator on the resulting matrix results,

one obtains the m function needed for the CRB calculations. Here, the paramet-

ers to be estimated areD =

{{
ak,ℓ,fk,ℓ

}

ℓ=1,...,Lk
,wk,js,k,Rs,k

}

s=1,...,S
k=1,...,K

(65)

Clearly, the resulting function may easily be derivated with respect to the amp-

litude, frequency and phase parameters. However, since the location parameter,js,k and Rs,k, enter into the expression in a complicated manner depending on

the sensor geometry, the corresponding derivatives are not straight forward for

an arbitrary array. For this reason, for the considered array geometries, we here

simply approximate the resulting expressions using numerically differentiated ex-

pressions.
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Andreas Jakobsson1

1Centre for Mathematical Sciences, Lund University, Lund, Sweden
2Department of Mathematical Sciences, Chalmers University of Technology,

Gothenburg, Sweden

Abstract

In this work, we propose a method for estimating statistical periodicities in sym-

bolic sequences. Different from other common approaches used for the estima-

tion of periodicities of sequences of arbitrary, finite, symbol sets, that often map

the symbolic sequence to a numerical representation, we here exploit a likelihood-

based formulation in a sparse modeling framework to represent the periodic be-

havior of the sequence. The resulting criterion includes a restriction on the car-

dinality of the solution; two approximate solutions are suggested, one greedy and

one using an iterative convex relaxation strategy to ease the cardinality restriction.

The performance of the proposed methods are illustrated using both simulated

and real DNA data, showing a notable performance gain as compared to other

common estimators.

Key words: Periodicity, symbolic sequences, spectral estimation, data analysis,

DNA
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1 Introduction

Sequences formed from a finite set of symbols, or alphabet, occur in a variety of

fields, such as, for instance, in genomics, semantic analysis, and categorical time

series [1, 2]. Frequently, there is an interest in determining reoccurring patterns,

periodicities, in such sequences. For instance, in DNA analysis, the latent period-

icities in DNA sequences have been found to be correlated with various forms of

functional roles of importance [3–10]. Traditional spectral estimation techniques

are not suitable for this problem as symbolic sequences lack the required algebraic

structures. For DNA analysis, there is no natural ordering among the four occur-

ring symbols, A, C, G, and T. In earlier literature, several authors have addressed

the problem of estimating symbolic periodicity using heuristic mappings from

the symbol set to sets of complex numbers. After the transformation the period-

icities are estimated through standard estimation methods like, for instance, the

periodogram. However, such estimates will suffer from the well-known high vari-

ability and/or poor resolution inherent to the periodogram [11]. Other examples

of methods that use a mapping to transform the symbolic data include PAM- or

QPSK-based mappings, minimum entropy mapping, mapping equivalences, or

other transformations [4–7, 9, 10]. Generally, these mappings are computation-

ally intensive, and/or suffer from difficulties expanding to a larger symbol sets,

and often inadvertently impose a non-existing structure on the symbols. In this

work, we instead use a probabilistic approach, modeling the symbolic sequences

using a categorical distribution for each observation and try to infer not only the

unknown probabilities but also the unknown indices where the distribution dif-

fers, resulting in a likelihood ratio test, which, for a given index set, is equivalent

with the well studied problem of testing for independence in 2 × J contingency

tables, where J denotes the number of categories, see, e.g., [2]. However, if more

than one statistical periodicity is considered at the same time, the number of pos-

sible combinations of index sets grows rapidly and an exact test will in many cases

be computationally infeasible. By formulating the estimation of the unknown

index sets, and the unknown probabilities, as a sparse logistic regression problem,

we device two approximate solutions to the combinatorial problem using sparse

heuristics. Namely, one greedy approach which builds up the solution by adding

the sets in a sequential manner, and one using a convex relaxation of the cardin-

ality constraint, resulting in the well-known (reweighted) LASSO problem. The

resulting methods are firmly based in statistical theory, and also easily generalized

to any finite symbol set.
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The remainder of the paper is organized as follows: in the next section, we intro-

duce the considered data model and show how the problem of choosing which

indices that show a periodic change in the distribution can be interpreted as a

sparse estimation problem. Then, in section III, we introduce a greedy algorithm

that approximately solves the sparse problem, as well as a convex relaxation of the

original problem, which may be efficiently solved using convex optimization al-

gorithms. Then, in section IV, we outline some implementation issues, including

a cyclic coordinate descent algorithm for solving the resulting convex relaxation

problem. In section V, we examine the performance of the discussed estimators,

showing the benefits of the proposed approach as compared to previously pub-

lished methods. Finally, we conclude on the work in section VI.

2 Probabilistic model for symbolic sequences

Consider a symbolic sequence, {sk}N
k=1, where each symbol, sk, is a stochastic

variable drawn from a finite set, A = {a1, . . . , aB}, where B denotes the size

of the alphabet. Assume that the symbols in the sequence are independent and

identically distributed, such that

pj , Prob(sk = aj) (1)

Then, if gathering a sequence of observations, x1, . . . , xN , into the vector x, the

probability mass function (PMF) of x is given as

q0(x|p) , Prob(s = x) (2)

=

N∏

j=1

B∏

ℓ=1

p
[xj=aℓ]

ℓ =

B∏

ℓ=1

pGℓ

ℓ (3)

where [·] denotes the Iverson’s bracket, which equals one if the statement inside

the brackets is true, and zero otherwise, with each of the symbols appearing Gk

times, and where p and s denote the vector of probabilities and the sequence of

random variables, respectively, i.e.,

p =
[

p1 . . . pB

]T
(4)

s =
[

s1 . . . sN
]T

(5)

with (·)T denoting the transpose. As a result, the PMF is a function depending

only on the number of times each symbol appears, and on the probability given
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to each symbol. In general, the probabilities, pk, are unknown and need to be

estimated from the observed sequence. This can be done using the maximum

likelihood (ML) estimate, formed as

p̂j =
Gj

N
(6)

for j = 1, . . . ,B, which is an unbiased and asymptotically efficient estimate (see,

e.g., [12, p. 475]). Furthermore, note that a symbol a ∈ A, occurring with

periodicity m, i.e., with the symbol appearing at every mth index in the sequence,

implies that all elements of the sequence should be equal to the symbol a in one

of the m possible (disjoint) index sets

I (m, ℓ) =

{

ℓ, ℓ+ m, . . . , ℓ+

⌊
N − ℓ

m

⌋

m

}

(7)

for all offsets ℓ ∈ {1, . . . ,m}, where ⌊·⌋ denotes the rounding down operation.

This means that if a periodicity m is present in a sequence, the sequence is clearly

also periodic on the subharmonics i.e., for every mr:th symbol, for all natural

numbers r [8]. To avoid ambiguity, we here refer to the period as the lowest

possible such periodicity. Considering a sequence, s, with a periodicity m in

the symbol a, with offset n, this implies that all the symbols in the sequence at

index k, will equal a, for k ∈ I (m, n). Thus, it is a deterministic and not a

statistical problem to determine if such a (deterministic) periodicity is present.

However, of more interest are typically the statistical periodicities that occur in

many forms of symbolic sequences, such as, e.g., DNA sequences. These are

characterized by certain index sets having different distributions, such that the

sequence may contain the periodicity over only a limited interval, and/or with

some of the periodically occurring symbols occasionally being replaced by some

other symbol, which may occur, for example, due to the presence of measurement

noise, coding errors, or some, perhaps unknown, functional equivalence between

symbols [3]. In such cases, the PMF for a symbolic sequence might instead be

formed from two distribution, one for the indices, say I1, corresponding to some

unknown periodic index set I (m, l), and another distribution for the complement

index set, here denoted I0. In this case, the PMF is

q1(x|p0, p1) ,

N∏

j=1

B∏

ℓ=1

p
[xj=Aℓ][j∈I0]

0,ℓ p
[xj=Aℓ][j∈I1]

1,ℓ
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=

B∏

ℓ=1

p
G0,ℓ

0,ℓ p
G1,ℓ

1,ℓ (8)

where p0, and similarly for p1, is a parameter vector containing the probabilities

p0,k, denoting the probability of a symbol, ak, occurring in the index set I0, and

with G0,k and G1,k denoting the number of times the symbol ak occurs in the set

I (m, n) and in its complement, respectively. The corresponding ML estimates are

found as

p̂0,j =
G0,j

|I0|
(9)

p̂1,j =
G1,j

|I1|
(10)

for j = 1, . . . ,B, where |S| denotes the cardinality of a set S, i.e., the number

of elements in S. In a similar fashion, the addition of more than one periodicity

can be accomplished by defining the distribution on more index sets, e.g. if one

considers M disjoint index sets, I0, . . . , IM−1, so that their union corresponds to

the entire sequence, the PMF is

q1(x|p0, . . . , pM−1) ,

M−1∏

m=0

B∏

k=1

p
Gm,k

m,k (11)

where Gm,k denotes the number of times the symbol ak occurs in the set Im. A

similar model was considered in [8], although there they defined a statistical peri-

odicity, say k, to be present when all index set I (k, ℓ), for ℓ = 1 . . . , k, have

different distributions, and then set out to find the periodicity, k, by maximizing

the log-likelihood using an information criteria penalty term to select the correct

periodicity. If doing so, and the signal has a periodicity of k, then each index

set corresponding to a different offset also has a unique distribution, implying a

subdivision of the data into ⌊N/k⌋ disjoint data sets, resulting in less data to be

used to estimate these probabilities. For multiple periodicities, i.e., several index

sets with different distributions, this results in a necessity to consider the overall

periodicity of the sequence, i.e., if periods l and k are present, then the sequence

will have a periodicity of lk, resulting in the need for substantially more data to

achieve a similar performance as if only a single periodicity was present, as well

as the need to perform on additional analysis to identify the factors constituting
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lk. Furthermore, in the case when the sequence contains more than two peri-

odicities, the problem quickly becomes infeasible. We instead want to find the

index sets where the distributions differ as much as possible from the rest of the

sequence. To that end, we recast the estimation problem in a sparse modeling

framework. To do so, we note that one can interpret (11) as a multi-response

logistic regression problem, which, as we will show, will be particularly useful for

the case of several simultaneous periodicities. Furthermore, this mapping allows

us to consider sequences one symbol at a time, which is particularly useful when

the periodicity in a certain symbol is sought, or if the distribution of a particular

symbol deviates especially much on a given index set. This, when applicable, de-

creases the variance of the estimated probabilities, thus improving the detection of

periodicities only occurring in one symbol, or one subset of symbols. Rewriting

(11) using logistic regression is accomplished by modeling the probability of each

observation separately using a logistic function to map a linear model to the inter-

val [0, 1]. To clarify the exposition, we first consider the case of a binary symbol

set, a special case which will be shown to be particularly useful. Thus, consider

a binary sequence which has a statistical periodicity on the indices I1, and some

other distribution on the indices I0, so that the PMF may be expressed as

q1(x|g(c)) ,

N∏

k=1

gk(c)xk(1− gk(c))1−xk (12)

where g(c) ∈ RN is a vector of probabilities, such that

Pr(sk = 1) = gk(c) (13)

and the vector c ∈ R2 models the probabilities for the index sets I1 and its com-

plement, I0, such thatg(c) =
[ g1(c) . . . gN (c)

]T
(14)gk(c) =

ehT
k c

1 + ehT
k c

(15)

where

hk =







[

1 1
]T

if k ∈ I1
[

1 0
]T

if k /∈ I1

(16)
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Thus, there is a simple relationship between the parameters p0,1 and p1,1 in the

original model in (8), i.e.,

P(sk = 1) = p0,1 for k ∈ I0 (17)

P(sk = 1) = p1,1 for k ∈ I0 (18)

and the parameter vector, c, introduced in (12), i.e.,

log

(
p0,1

1− p0,1

)

=
[

1 0
]T

c (19)

log

(
p1,1

1− p1,1

)

=
[

1 1
]T

c (20)

It should be noted that (19) implies that the probability of a symbol appearing in

the set I0 is given by the first element of the vector c, and, similarly, one may by

substituting (19) into (20) and simplifying, note that

log

(
p1,1

1− p1,1

)

− log

(
p0,1

1− p0,1

)

=
[

0 1
]T

c (21)

Thus, the second element in hk control the change in probability on the index set,

I1, as compared to the indices in the set, I0, e.g., if the second element is zero, then

the probabilities are the same for both sets, whereas a positive or negative second

element implies higher or lower probabilities on the set I1, respectively. Extending

the model to allow for the possibility of several periodicities using the logistic

regression parameterization can be achieved by adding elements to the c vector

such that each new element adjusts the probability for an additional index set. To

that end, consider the case with M index sets, Ij, for j = 1, . . . ,M , corresponding

to some specific periodicities with their different offsets, then c ∈ RM and every

element of hT
k ∈ RM is zero except the elements where k is in the corresponding

index set, i.e.,

hk,j =

{

1 k ∈ Ij

0 otherwise
(22)
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for j = 1, . . . ,M , and dk,j denotes element j of the vector dk. The resulting

model can then be seen as the solution of the following optimization criterion

maximize
c

N∏

k=1

gk(c)xk (1− gk(c))1−xk

subject to







||c||0 ≤ Lgk(c) = ehT
k c

1+ehT c

(23)

where || · ||0 denotes the ℓ0 (pseudo) norm, which counts the number of nonzero

elements of a vector, and L is the maximum number of periodicities that will

be included in the model. It is worth noting that the expression for gk(c) does

not pose a restriction to the minimization, but has been included to emphasize

that the probabilities for each observation are being modeled explicitly. Solving

(23) for a given L, i.e., finding the maximum allowed number of simultaneous

periodic sets, can be accomplished using an exhaustive search, since for each fixed

k there are (M)!/ (M − k)! index sets. For each such set, the ML estimates may

then be found using (6). However, the dimension of the parameter vector will

grow quadratically with the maximum periodicity considered, since

M =

mmax∑

k=1

k =
mmax(mmax + 1)

2
(24)

where mmax is the maximum allowed periodicity, since each period k has k corres-

ponding index sets, one for each possible offset. Thus, to evaluate the likelihood

for all combinations of index sets will soon lead to a computationally infeasible

problem. Generalization to larger symbol sets may be carried out in a similar

manner, leading to the multi-response logistic regression model (see, e.g., [2] for

a further discussion on multi-response logistic regression). The corresponding op-

timization problem is therefore given as the maximum of the log-likelihood with

a cardinality constraint [13]

maximize
c1,...,cB

1

N

N∑

i=1

[
B∑

ℓ=1

xiℓ(h
T
i cℓ)− log

(
B∑

ℓ=1

ehT
i cℓ

)]

subject to ||Ck·||0 ≤ L, for k = 1, . . . ,R

(25)

where C is a matrix constructed such that its k:th column is formed by the vector

ck, and R is the number of considered index sets, with Ck· denoting the restriction
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3. Relaxation of the cardinality constraint

that ||Ck·||0 forces the solution to adjust the B parameters corresponding to every

index set simultaneously. Thus, the distributions can be changed on at most L
index sets. As a result, the framework allows for flexibility in what is deemed a

periodicity, e.g., one might test for a high probability of a certain symbol appear-

ing, or even for if some symbols appear with low probability. Both of these ideas

will be explored further in the following, where we outline a couple of possible

algorithms for estimating periodicities for some commonly occurring situations,

namely, estimation of an unknown periodicity, detection of an unknown period-

icity, and, finally, estimation of multiple periodicities.

3 Relaxation of the cardinality constraint

For cardinality constrained, or sparse, least squares problems, there are a wide

range of tools for forming approximate solutions, with many methods falling into

two broad categories, namely greedy methods that build up a solution one vari-

able at a time until either fitting criterion is satisfied, or the number of variables

reaches the constraint, or methods that replace the cardinality constraint with a

penalty function that promotes solutions that have few non-zero variables [14].

This implies that the optimization can be carried out without the combinatorial

computation complexity inherent in cardinality constrained optimization prob-

lems. Typically, the penalty function is selected as the ℓ1 norm, leading to a

simple convex optimization problem. In the following two subsections, we pro-

pose both kinds of algorithms, first a greedy approach and then an iterative convex

relaxation.

3.1 Greedy approach

In order to form a greedy estimate of the minimization in (25), one may note the

analogy between this formulation and that of simple hypothesis test for testing if

a distribution is different on some index sets (see also [3]). Thus, one may form

a test to determine the hypothesis that a given sequence has a different distribu-

tion for the indices corresponding to I (m, ℓ), i.e., that the PMF is formed using

(8), against the null hypothesis that the entire sequence has the same categorical

distribution, such that the PMF instead follows (3), i.e.,

H0 : p0 = p1 (26)

H1 : p0 6= p1 (27)
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Such a test may be formed as a likelihood ratio (LR) test (see, e.g., [15, p. 375])lm,ℓ(xN ) =
q0(xN |p0,H0)

q1(x|p0, p1,H1)
(28)

where the probabilities are determined using (6) under H0, and using (9) and

(10) under H1. Thus, if one only seek to find a single index set, a suitable choice

would be the one maximizing the LR, i.e.,

arg max
m,ℓ,i

lm,ℓ(fi(xN )) (29)

If the number of periodicities is unknown, i.e., the problem is one of detection

and not estimation, one can allow for the possibility of no set being added by

considering that if H0 is true, it holds asymptotically that [15, p. 489]

−2 log(lm,ℓ(xN ))
d→ q2

B−1 (30)

where
d→ denotes convergence in distribution and q2

k denotes the chi-squared

distribution with k degrees of freedom. Thus, if no periodicity is present, a critical

value, denoted Ta, for the likelihood ratio, below which no periodicity is deemed

to be present, can be constructed for the likelihood ratio for each of the tests.

Since M tests are formed in order to compute (29), and if assuming that these

are independent, the critical value may be well approximated using extreme value

theory as a quantile of the random variabley = max (z1, . . . , zM ) (31)

where each zk is q2 distributed, implying that y will follow a Gumbel distribution

(see, e.g., [16, p. 156]). In the case when multiple periodicities may be present,

one can extend this procedure using a step-wise approach. To do so, first define I1

as the index set containing all the indices in the sequence. Then, the initial step

is performed by using the above algorithm to determine an index set I2 = Im1,ℓ1 ,

where m1 and ℓ1 denote the initially estimated periodicity and offset, respectively,

found in the maximization of (29). In order to determine the next periodicity, the

H0 distribution is formed from (11), using one distribution for the found index

set I2 and one for all the other indices, I1 \ I2, where \ denotes set subtraction

operation. The second phase, m2, and periodicity, ℓ2, may be determined using
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3. Relaxation of the cardinality constraint

(29). This procedure can then be repeated until the zero hypothesis can not be

rejected using a suitable quantile of (31), i.e., at iteration s the corresponding

likelihood ratio test may be formed asl(s)
m,ℓ(xN ) =

q0(xN |p0, . . . , ps−1,H0)

q1(x|p0, . . . , ps,H1)
(32)

Note that this assumes that the sets Ik being added to the zero hypothesis are

disjoint, otherwise the likelihood would include some data points more than once.

To ensure this we propose to only consider the indices that have not all ready

been added to H0 when evaluating q1(x|p0, p1,H1) in (28), i.e., at iteration k the

sets I (m, ℓ) are replaced with I (m, l) ← I (m, l) \ Ik−1, for all m and ℓ, where

← denotes that the quantity on the left is replaced with the one on the right.

The resulting greedy algorithm, here termed the greedy Periodicity Estimation of

Categorical Sequences (PECSG) estimator, is outlined in Algorithm 1 below, with

each step in the iteration requiring about mmaxN operations.

3.2 Iterative convex relaxation

It is worth noting that the optimization criterion in (25) is not convex as it restricts

the parameter space to lie in a non-convex set. A commonly used relaxation for

problems of this kind is to replace the ℓ0 restriction with the convex ℓ1 ball,

which by taking the negative logarithm and using the Lagrange duality, results in

the relaxed convex optimization criterion

minimize
c

N∑

k=1

−xkhT
k c + log(1 + ehT

k c) + l||c||1 (33)

where we have exploited the equality constraint for pk(c). Some adjustments may

be done to this criterion; firstly, the penalty on c includes the first element. This is

not appropriate since the first element controls the probability for all observations,

and we have no reason to want to bias that probability towards 1/2. This is easily

accomplished by only penalizing the other elements of the vector, i.e., replacing

||c||1 with ||c||1, where c denotes the resulting vector once the first element of c is

removed. However, the resulting expression will also have an undesirable ambigu-

ity due to the lack of distinction being made between if the probability is higher

or lower on the periodic indices. For instance, consider a case when every third

index starting with 1 has the probability 0.1 of being 1, and all other indices have
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Algorithm 1 The PECSG estimator

1: Given a categorical sequence, x of length N
2: I0 = {1, . . . ,N}
3: for s = 1 to maxiteration do

4: {ms, ℓs} = arg max
m,ℓ

lm,ℓ(xN )

5: if lm,ℓ(xN ) > Ca then

6: Is = Ims ,ℓs

7: else

8: break

9: end if

10: I (m, l)← I (m, l) \ Is for all m and l
11: I0 ← I0 \ Is

12: H0 distribution is replaced with (11) using I0, . . . , Is

13: end for

probability 0.9 of being 1. Should this be considered two periodicities of 3 with

probability 0.9, or one periodicity of 3 with probability 0.1? Such a distinction

is of course not a problem specific for this model. However, since one is com-

monly interested in finding periodic indices where the probability is either higher

or lower, such an ambiguous result would result in a non-consistent interpretation

of the estimates. Fortunately, this can be easily handled by adding a constraint on

c, ensuring that only periodicities with greater probability of a symbol appearing

are considered, i.e., ck > 0, for k = 2, . . . ,M , where ci is the i:th element of the

vector c. This yields

minimize
c

N∑

k=1

−xkhT
k c + log(1 + ehT

k c) + l||c||1
subject to ck ≥ 0 for k = 2, . . . ,M

(34)

The resulting optimization is thus a sum of an affine function and the logar-

ithm of a sum of exponential functions, and is thus a convex function. (see,

e.g., [17, p. 93]). Thus, since the constraints can be seen as inequalities involving

inner products with the Cartesian coordinate basis vectors, they are affine, and

therefore convex functions, and the criterion is as a result a convex optimization

problem in the standard form, as defined in [17, p. 136]. However, the cri-
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terion in (34) will not yield sufficiently sparse estimates, as a result of the rather

coarse approximation of the ℓ1 norm to the desired ℓ0 norm. Recently, interest

in non-convex penalties that are closer, in some sense, to the ℓ0 norm have been

suggested, such as the use of the ℓq norm, for 0 < q < 1 (see e.g., [18, 19]).

Herein, we consider an alternative approach where the ℓ1 penalty is replaced with

the concave log(·) penalty. The resulting optimization is then solved with an it-

eratively reweighted ℓ1 minimization, using a technique suggested in [20]. The

resulting algorithm thus solves, at iteration j + 1, the minimization

min.
c

N∑

k=1

−xkhT
k c + xk log(1 + ehT

k c) + l M∑

k=1

|ck|
|̂c(j)

k |+ e
s. t. ck ≥ 0 for k = 2, . . . ,M

(35)

where ĉ
(j)
k is the k:th element of the c estimate resulting from the j:th iteration, ande is chosen as a small number to avoid numerical problems as well as to enable zero

valued elements of c to transition from zero to non-zero values (see also [20]). The

resulting sequence of convex minimizations yields a sufficiently sparse estimate of

the periodicities (although at a high a computational complexity if implemented

directly using a standard interior point-based solver). The resulting estimator is

in the following referred to as the Periodicity Estimation of Categorical Sequences

using Logistic regression, PECSL.

Comparing the two methods, PECSG offers a faster solution, whereas PECSL

yields better results in the case of multiple periodicities. This is due to the fact

that the iterative greedy procedure in PECSG does not take into account the over-

lap between the two index sets, e.g., the index sets I (k, 1) ∩ I (l , 1) = I (kl , 1),

whereas, the logistic regression approach also takes the overlap into account in the

estimation procedure.

4 An efficient implementation

In order to form an efficient solver for the minimization in (35), we proceed

to develop a cyclic coordinate descent (CCD) algorithm. The CCD algorithm

minimize the cost function in (35) one variable at a time, in a cyclical fashion,

holding the other variables fixed at their most recent estimates. This will thus

transform the M−dimensional optimization problem into a scheme where one

instead repeatedly solves simpler one-dimensional problems.
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Figure 1: Rate of success in estimating deterministic periods.

It should be noted that such an approach is, in general, converging notori-

ously slowly, or in some cases, not at all. However, for the optimization problems

often ecountered in sparse modeling, this does no longer hold, as in fact, con-

vergence proofs exist [21, 22] and in many applications, CCD implementations

have empirically been shown to be the fastest algorithm available [13,23]. Below,

we outline the steps involved in a CCD algorithm for the case of ck ≥ 0, with

the other case being handled in a similar manner. Thus, consider c(r)
i as the r:th

estimate of element i of the vector c, then, for i > 2,

c(r+1)
i = arg min

ci

N∑

k=1

−xkhT
k c + log(1 + ehT

k c) + l||c||1
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4. An efficient implementation

Algorithm 2 The PECSL estimator

1: Initiate c = c0

2: for r = 1, . . . do

3: for i = 1, . . . ,M do

4: if maximum of (41) ≥ 0 then

5: c(r)
i = 0

6: else

7: Update c(r)
i according to (36)

8: end if

9: end for

10: end for

= arg min
ci
−xT H(·,i)ci + l|ci|+

N∑

k=1

log(1 + ak,ie
hk,ici ) (36)

The notation H(·,i) denotes the i:th column of the matrix H, hk,i the i:th element

of the vector hk, and

x =
[

x1 . . . xN

]
(37)

H =
[

h1 . . . hN

]T
(38)

c =

[

c(r+1)
1 . . . c(r+1)

(i−1) c(r)
i . . . c(r+1)

N

]T
(39)

ak,i = exp




∑

j, j 6=i

hk,jcj



 (40)

If the maximum value of the subdifferential set

∂f0 = −xT H(·,i) + lw +

N∑

k=1

ak,ihk,ie
hk,ici

1 + ak,ie
hk,ici

(41)

with ci = 0 is positive and {w ∈ [−1, 1]}, then the optimum is attained at ci = 0

for the constrained optimization problem. On the other hand, if the maximum

is negative, the stationary point may be found using a gradient approach (since

the cost function is differentiable for all positive ci). Note that this analysis gives
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insight into both the sparsity promoting effect of the ℓ1 norm as well as the role

of the tuning parameter l, in fact, rewriting (41) as

∂f0 = −xT H(·,i) + lw + rT
i H(·,i) (42)

where ri =

[
a1,i

1+a1,i
. . .

aN ,i

1+aN ,i

]

can be interpreted as probabilities for each

index. Furthermore, rT
i H(·,i) is the expected number of symbols on the period-

icity corresponding to i and xT H(·,i) is the observed number of symbols on that

periodicity, thus if

|rT
i H(·,i) − xT H(·,i)| < l (43)

implying that, if the expectation for the model with ci = 0 is closer than l to the

observed number in the data, then set c(i+1)=0
i . The resulting CCD algorithm is

outlined in Algorithm 2.

5 Numerical results

We proceed to examine the performance of the proposed likelihood-based estim-

ators using simulated DNA sequences, binary sequences, and measured DNA

data. For DNA sequences, only B = 4 different symbols are present, namely A,

C, G, and T. Initially, we examine a simulated DNA sequence containing one

deterministic periodicity. Figure 1 illustrates the rate of successfully determining

this periodicity as a function of the length of the periodicity, comparing the pro-

posed PECSG estimator with the MEM [10], PAM [7], QSPK [5], and SPE [24]

estimators, as well as with a Fourier-based estimator detailed in [24]. Here, and

in the following, the success rate has been determined using 250 Monte-Carlo

simulations using N = 1000 equiprobable symbols, with the sought periodicity

being inserted appropriately. As is clear from Figure 1, the proposed estimator

succeeds in successfully determining all the considered periodicities, whereas all

the other methods lose performance as the length of the periodicity grows. Of

the other examined estimators, the SPE estimator seems to offer the second best

performance, and we will for this reason only show the results for this estimator

in the following comparisons, noting that all the other discussed estimators ex-

hibits a notably worse performance than the SPE estimator in all the considered

cases (see also [1]). Proceeding to examine also statistical periodicities, we vary

p1 for the index set corresponding to the generated periodicity, with p0 = 1/4
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Figure 2: The error rate of finding the periodicity as a function of the negative

probability, 1− p1,1 =, and the periodicity for the SPE algorithm.

on the complement set. Figures 2 and 3 show the resulting success rate for the

SPE and PECSG estimators as a function of the periodicity and the probability

p1, again clearly illustrating how PECSG outperform SPE (and thus also all the

other mentioned estimators) for all periodicities and p1.

Next, we investigate how well PECSG and PECSL are able to resolves two

periodicities in a binary sequence. In this case, some care needs to be taken when

setting up the simulations, as when generating two periodicities, these may over-

lap or combine to create a new periodicity, e.g., if generating two periodicities of

period six, these may be placed such that they instead form just a single period-

icity with period three. Similarly, two periodicities with period four and twelve

may cause the resulting sequence to have only a single periodicity of four. In order

to avoid such ambiguities in the resulting performance measure, the test data has
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Figure 3: The error rate of finding the periodicity as a function of 1 − p1,1, and

the periodicity for the proposed PECSG method.

been generated such that it avoids this form of ambiguities. Figure 4 illustrates the

success rate of determining both periodicities correctly, as a function of the length

of the two periodicities, with N = 500 and again using p1 = 3/4 and p0 = 1/4.

Each point on the x-axis should be interpreted as the average error for all combin-

ations of periodicities within the brackets, i.e., for instance (14, 14− 17) denotes

all combinations (14, 14), (14, 15), (14, 16) and (14, 17). As may be seen from

the figure, even when the sequence contains two periodicities of lengths up to 12,

when most of the other discussed estimators completely fail to find even a single

perfect periodicity, both PECS algorithms have a very low proportion of errors.

From the figure, one can also observe that, as expected, the PECSL outperforms

the PECSG when there is more than one periodicity present in the sequence. For

the last simulated data experiment, we recreate a simulation experiment similar to
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the one that was used in [8], where a deterministic periodicity of 11 and 31 are

present simultaineously in a signal generated from a 4 element set being uniformly

distributed on the other indices. As can be seen in Figure 5, the PECSG estimator

achieves almost 100 % success rate even before the method presented in [8] can

start to be used, since it requires a minimum of 11 × 31 = 341 data points.

Finally, we examine the performance of the PECSG estimator on measured gen-

omic data, in the form of the gene C. elegans F56F11.4 [25]. Since genomic data

is generally not stationary, the estimate has been formed using a sliding window
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Figure 5: Rate of success for PECSG in estimating the periodicites of a signal with

periodicites at 11 and 31, as a function of signal length. The dashed line denotes

the minimum data needed for using [8].

with length N = 360. The results obtained by PECSG are shown in Figure 6,

where the periodicities with a likelihood ratio greater than the 95% quantile of the

maximum of M = 465 q2 distributed random variables are shown for each sym-

bol. In earlier work, such as [10] and [24], a period of three was found at around

index 7000. This period was also found when using PECSG , but when looking

at the corresponding p̃, one may note that this periodicity is actually constituted

by the lack of the symbol C, i.e., this period is detected since the symbols A, G,

and T are alternating in a non-periodic fashion, and since C is always absent at

these indices, this apparently causes the Fourier based methods to indicate a peri-

odicity of three. If one is not interested in finding these sorts of periodicities, one
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Figure 6: The periodicities of each symbol in the gene C.elegans F56F11.4 com-

puted using a sliding window.

may restrict p1 to be in [1/2, 1], in the same manner as mentioned above. This

will ensure that PECSG only finds periodicities that are made up by an increased

probability in the presence of a symbol.

6 Conclusion

In this work, we have presented a likelihood-based approach for modeling peri-

odicities in symbolic sequences. Modeling the observations using a categorical

distribution with periodic indices, possibly having a different distribution, leads

to a difficult combinatorial problem. Here, we have proposed two algorithms to

relax the problem using sparse heuristics: namely, one fast greedy approach which

builds up the solution set in an iterative fashion, and one based on convex relaxa-
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tion ideas, which has the benefit of a more efficient usage of the data. Finally, we

show the benefits of the proposed algorithms as compared to previously published

methods using simulation experiments as well as with real DNA data examples.
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Abstract

In this work, we consider the problem of high-resolution estimation of the para-

meters detailing an N-dimensional (N-D) signal consisting of an unknown num-

ber of exponentially decaying sinusoidal components. Since such signals are not

sparse in an oversampled Fourier matrix, earlier approaches typically exploit large

dictionary matrices that include not only a finely spaced frequency grid, but also

a grid over the considered damping factors. Even in the 2-D case, the result-

ing dictionary is typically very large, resulting in a computationally cumbersome

optimization problem. Here, we introduce a sparse modeling framework for N-

dimensional exponentially damped sinusoids using the Kronecker structure in-

herit in the model, as well as introduce a novel dictionary learning approach that

iteratively refines the estimate of the candidate frequency and damping coeffi-

cients for each component, thus allowing for smaller dictionaries, and for fre-

quency and damping parameter that are not restricted to a grid. The performance

of the proposed method is illustrated using simulated data, clearly showing the

improved performance as compared to previous techniques.

Key words: Sparse signal modeling, Spectral analysis, sparse reconstruction,

parameter estimation, dictionary learning, damped sinusoids.
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1 Introduction

High-dimensional decaying sinusoidal signals occur in a wide variety of fields,

such as spectroscopy, geology, sonar, and radar, and given the importance of such

signals in a variety of applications, the topic has attracted notable attention in the

recent literature (see, e.g. [1–11]). Common solutions include subspace-based al-

gorithms [3–8], which are typically making relatively strong model assumptions,

or the use of high-dimensional representations necessitating an iterative zooming

procedure over multiple dimensions, such as the technique introduced in [11].

These kind of approaches often suffer from high complexity and sub-optimal

performance, typically requiring an accurate initialization or model order inform-

ation to yield reliable results, information which is commonly not available in

many of the discussed applications. Often, the measurements are also assumed to

be uniformly sampled, which may well be undesired in applications such as, for

instance, spectroscopy. Furthermore, the number of modes present in the signal

is generally unknown, or may vary over time, typically necessitating some form

of model order selection decision. Given such difficulties, it is often of interest

to formulate non-parametric or semi-parametric modeling techniques, imposing

only mild assumptions of the a priori knowledge of the signal structure. Popu-

lar solutions include the so-called dCapon, dAPES, and dIAA spectral estimators,

which all form generalized spectral estimates of the signal, constructing spectral

representations over both the frequency and damping dimensions [12, 13] (see

also [14,15]). Although this form of techniques are robust to the made model or-

der assumptions, they suffer difficulties in separating closely spaced modes from

each other, and typically require notable computational efforts if not implemented

carefully [15]. As an alternative, one may use sparse modeling of the signal, form-

ing a large dictionary of all potential frequencies and damping candidates, thus

generally having vastly more columns than rows. For a given signal and the result-

ing dictionary matrix, one thus wishes to find the sparsest solution to the resulting

linear set of equations, mapping the signal to a linear combination of a few of the

columns of the dictionary. Such techniques have successfully been applied to line

spectral data, and the topic has attracted notable attention in the recent literature

(see, e.g., [16–22]). Although these algorithms appear quite different from each

other, they share the property that the considered dictionary grid should be selec-

ted sufficiently fine to allow for a sparse signal representation (see also [23, 24]),

which, if extended to also consider damped modes, necessitates a large dictionary

matrix containing elements with a sufficiently fine grid over the range of both
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the potential frequencies and damping candidates (see, e.g., [13, 25, 26]); this

will be particularly noticeable if treating large data sets, or data sets with multiple

measurement dimensions. In order to mitigate this problem, we here introduce

a tensor representation of the signal model, allowing us to exploit the resulting

inherent Kronecker structure, which may be exploited to significantly reduce the

required complexity as compared to a naive implementation of the sparse model-

ing framework. Furthermore, we propose a novel dictionary learning approach,

wherein one iteratively decomposes the signal with a fixed small dictionary, adapt-

ively learning the dictionary elements best suited to enhance sparsity. To this ef-

fect, we initially form a coarsely spaced dictionary with undamped modes over the

range of considered frequency candidates, iteratively adapting both the frequency

and damping settings for the dictionary elements, thereby also allowing for both

a reduction and an expansion of the number of dictionary elements considered

in each iteration of the optimization. In order to further reduce complexity, we

propose a computationally efficient implementation based on the concept of the

alternating direction method of multipliers (ADMM) (see, e.g., [27]), where the

Kronecker structure of the resulting dictionary matrices may be exploited to dra-

matically decrease the cost of each iteration.

The remainder of the paper is organized as follows: in the next section, we

introduce the considered data model. Then, in Section 3, we introduce the idea

behind decoupling the search dimensions. Section 4 introduces the ADMM for-

mulation of the estimator, and Section 5 illustrates the performance of the pro-

posed estimator using simulated data. Finally, Section 6 contains our conclusions.

In the remainder of the paper, we use the following notation: scalars are rep-

resented using lower case letters, whereas vectors are represented with lower case

bold-face letters. Matrices are represented with capital bold-face letters, tensors

with capital bold Euler script letter, (·)T denotes the transpose, and (·)H the con-

jugate transpose.

2 The N -D signal model

Consider an N -dimensional signal consisting of a sum of K modes, i.e., K N -

dimensional damped sinusoids such that observation xt at a sampling point t,

where t =

[

t(1)
i1

t(2)
i2

. . . t(N )
iN

]T
(1)
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and t(ℓ)
iℓ

denotes the iℓ:th sampling point in dimension ℓ, may be well modeled as

xt = K∑

k=1

gk

N∏

ℓ=1

xt (ℓ)
iℓ

k,ℓ + et (2)

where xk,ℓ = ejw(ℓ)
k −b (ℓ)

k (3)

and with gk denoting the complex amplitude of mode k, and et is an additive

noise term, here for simplicity assumed to be an independent identically distrib-

uted circularly symmetric Gaussian random variable. Assuming the signal is ob-

served over t(n)
in , for in = 1, . . . , In, and n = 1, . . . ,N , the entire sequence may

be stored in an N-way tensor X ∈ C
I1×I2×···×IN . It is worth noting that this

formulation makes no restriction on any of the dimensions to have a sampling

scheme that is equidistant, thus encompassing both missing data scenarios as well

as irregular sampling. The entire model may thus be written in tensor format as

the sum of K rank one tensors, such that

X =

K∑

k=1

gkã(1)(k) ◦ ã(2)(k) · · · ◦ ã(N )(k) + E (4)

where ◦ denotes the outer product, E is the tensor containing the noise terms,

and

ã(n)(k) =
[ xt (n)

1

k,n . . . xt (n)
In

k,n

]T
(5)

For an overview of tensor algebra sufficient for the here discussed results see, e.g.,

[28], which also use a notation consistent with the one used in this article. The

model thus contain (2N + 1)K + 1 unknown parameters, namelyj ,

[

{{w(n)
k , b (n)

k }N
n=1, gk}K

k=1, K
]T

(6)

of which 2NK are non-linear parameters. Clearly, one could, in theory, form a

non-linear least squares (LS) minimization over these parameters, as well as form

a model order estimate from the resulting model order residuals for varying pos-

sible candidate model sizes. However, such a solution would in most practical
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situations be computationally unfeasible, even for low dimensional data sets, es-

pecially as the optimization is well known to have numerous local minima [29].

To avoid this, we introduce a sparse modeling heuristic to approximate the model.

This can be done by creating a large dictionary of candidate parameters, selected

from a grid fine enough such that each true parameter lies sufficiently close to

some grid point. For instance, if, to simplify our notation, one fixates all but the

first frequency and damping coefficients, one may approximate (4) using a dic-

tionary containing P1 and J1 candidate elements along the (first) frequency and

damping dimension, respectively, such as

X ≈
P1∑

p=1

J1∑

j=1

gp,ja
(1)wp

(bj) ◦ a(2)w2
(b2) ◦ · · · ◦ a(N )wN

(bN ) (7)

where w2, . . . ,wN and b2, . . . , bN denote the (for simplicity) fixed frequency and

damping coefficients along the 2nd to N :th dimensions,

a(n)w (b) =
[ xt (n)

1
n . . . xt (n)

In
n

]T

where xn = ejw(n)−b (n)
(8)

and gk,ℓ denotes the contribution of each of these dictionary elements in the ap-

proximation. Thus, as long as P1 and J1 are selected sufficiently large to allow for a

grid of dictionary elements such that the true frequency and damping coefficients

lie close to one of the grid points, only one gp,j should be non-zero for each of

the K modes. By similarly extending the dictionary for each of the frequency and

damping dimensions, such that gp1,...,pN ,j1,...,jN denotes the contribution of the

corresponding dictionary elements for the pk:th and jr :th frequency and damping

dictionary elements, where k, r ∈ {1, . . . ,N}, the resulting (very large) diction-

ary would allow for a sparse approximative solution of the unknown parameters,

such that most of the dictionary elements would not contribute to the approxim-

ation. Given such an approximative solution, the number of modes, K , may be

estimated as the number of elements with non-zero contribution to the approx-

imation. The non-linear parameters may then be estimated correspondingly, such

that for any non-zero variables, e.g., gh1,...,hN ,i1,...,iN , the non-linear parameters are

estimated as the frequency and damping coefficient that correspond to the found
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coefficients. Such a solution may be obtained by reformulating the problem using

the vec operator, defined here for tensors such that it is the usual vec operation on

the mode-1 matricization, or unfolding (see also [28]), of a given tensor, i.e.,

vec (X ) , vec
(
X(1)

)
(9)

This allows for a sparse LS solution to be found by solving

min
g̃

∥
∥
∥vec (X )− Ãg̃

∥
∥
∥

2

2
+ r(g̃) (10)

where g̃ = vec (G), with G ∈ C
P1×···×JN denoting the tensor formed from the

amplitudes of all of the dictionary elements, and the i:th column of Ã is formed

as

Ã:i = vec
(

a(1)wk1
(bj1) ◦ a(2)wk2

(bj2 ) · · · ◦ a(N )wkN
(bjN )

)

(11)

where the notation A:i denotes the ith column of the matrix A. The penalty termr(·) is added in (10) as the grid is typically chosen such that the number of ele-

ments in vec(X ) is smaller than the number of columns in Ã; thus, if assuming

that Ã is of full rank, the system of equations is under-determined, with infinitely

many solution, out of which one is interested in finding one that appropriately

weighs sparsity and model fit. Ideally, r(·) could be chosen as a function counting

the number of non-zero elements. However, the resulting optimization problem

is well known to be combinatorial in nature and will be unfeasible to solve even

for moderate problem sizes. Common approximative choices include the scaled ℓ1

norm [17, 30], ℓq penalties [16, 31], and the reweighted ℓ1 approach, which may

be seen to correspond to the log penalty [32]. Herein, we consider the ℓ1 and the

log penalty. It is worth noting that the above sparsity restrictions allow for solu-

tions having multiple damping coefficients for a given frequency. Such solutions

imply that the component is not an exponentially damped sinusoid; as this is not

relevant for the here considered application, we proceed to refine the constraint

such that it will only yield unique frequency-damping pairs for each component.

To this end, we propose an iterative dictionary learning approach such that the

damping parameters for each sinusoidal component is held fixed during the sparse

LS step, after which the damping parameters are found using the residual from the

sparse LS step, one mode at the time, thus allowing for damping and frequency
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estimation to be performed with a non-linear optimization algorithm, e.g., New-

ton’s method. Thus, we initially fix all damping parameters to zero, modifying (7)

such that the dictionary is only formed over the unknown frequencies, i.e.,

X ≈
P1∑

p1=1

· · ·
PN∑

pN=1

gp1,...,pN a(1)wp1
(bp1) ◦ · · · ◦ a(N )wpN

(bpN ) (12)

The resulting minimization with respect to the K unknown frequencies, which

may then be used to estimate the damping components, iteratively finding each

of the set of estimates. To allow for a computationally efficient solution, the

considered frequency and damping grids, respectively, are updated in each itera-

tion, such that the dictionary is refined in each step of the iteration. However,

even with such a reduction in complexity, the iterative optimization problems are

clearly daunting, being formed over J1×· · ·× JN and P1×· · ·×PN dimensions,

respectively. In the next two sections, we therefore proceed to examine how these

minimizations may be performed in an efficient manner utilizing the Kronecker

structure of the dictionary matrices for the sparse LS step, and by solving the

non-linear damping parameter estimation one mode at a time.

3 An efficient ADMM implementation

The minimization problem considered in (10) may be solved using an approxim-

ation of the form

min
g̃

∥
∥
∥vec(X )− Ãg̃

∥
∥
∥

2

2
+

P1×···×JN∑

k=1

lk|g̃k| (13)

where lk denotes a set of tuning parameters, for k = 1, . . . ,P1 × · · · × JN . In

case these tuning parameters are all selected equal and the penalty is included as

an inequality constraint, the resulting minimization is equivalent with the reg-

ular ℓ1 penalized LS problem, often called basis pursuit denoising [33], or the

LASSO [30]. For highly correlated dictionary elements, as may be required for

high resolution N -D spectra, one may obtain sparser solutions using a reweighted

LASSO formulation [32], such that the lk:s are instead selected aslk =
f

|g̃k(ℓ)|+ e (14)
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Algorithm 1 Sparse LS via ADMM

1: Initiate z = z(0),u = u(0), and ℓ = 0

2: repeat

3: z(ℓ+ 1) =
(

ÃH Ã + mI
)−1 (

ÃH y− u(ℓ)− d(ℓ)
)

4: u(ℓ+ 1) = Y (z(ℓ+ 1)− d(ℓ+ 1), lm)
5: d(ℓ+ 1) = d(ℓ)− (z(ℓ+ 1)− u(ℓ+ 1))
6: ℓ← ℓ+ 1

7: until convergence

where the constant e is included to avoid numerical problems when gk(ℓ) is close

to zero. Here, g̃k(ℓ) denotes the value of gk at iteration ℓ, and with f > 0 de-

noting a tuning parameter controlling the sparsity at the solution. A general

efficient iterative algorithm for solving problems such as (10), using an ADMM

implementation was proposed in [27], and may be easily adapted to the here con-

sidered reweighted scenario. The steps involved are summarized in Algorithm 1,

where the Y operator is a shrinkage operator, defined asY(x,g) = x(1− g/|x|)+ (15)

where (·)+ denotes the positive part of a scalar. The complexity of each iteration

in the resulting algorithm is approximately O(n2p), where p and n denote the

columns and rows of a, respectively. This is about the same as the computational

cost for many LASSO solvers (see e.g. [34]). In the N -dimensional case, the

overall computational complexity is aboutO(
∏N

n=1 JnPn
∏N

n=1 I 2
n ), implying that

even a 3-dimensional problem with 100 grid points in each dimension would

result in a cost of approximately 10012I1I2 operations, in each step, where In

denotes the number of samples in dimension n. Fortunately, this complexity may

be significantly reduced by exploiting the inherent Kronecker structure of the

model. In order to do so, we rewrite (4) using tensor products as

X = G ×1 A(1) ×2 A(2) · · · ×N A(N )
+ E (16)

where the operator ×n represents the n-mode product of a tensor with a matrix,

and the dictionary matrix for dimension n is given as

A(n) ,

[

a(n)wk1
(bk1

) . . . a(n)wK1
(bK1 )

]

(17)
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Algorithm 2 Mode estimation

1: Use (10) to form initial estimates
{

ggk

}K̂

k=1
2: Compute the residual according to (28)

3: for k = 1, . . . , K̂ do

4: Add the current mode to the residual:

Yk = Rk + ggk
a(1)

k ◦ · · · ◦ a(N )
k

5: Estimate the frequencies and the dampings for the mode

6: Remove the current mode:

Rk = Yk − ggk
a(1)

k ◦ · · · ◦ a(N )
k

7: end for

Expressed in this form, one may note that the matricization may be accomplished

via Kronecker products instead (see, e.g., [28], [35]), yielding

X(1) = A(1)G(1)

(

A(N ) ⊗ A(N−1) ⊗ · · · ⊗ A(2)
)T

(18)

where ⊗ denotes the Kronecker product, and X(1) ∈ C
I1×

∏N
n=2 In is obtained by

stacking all the mode-1 slices of X , and with G(1) defined similarly. Vectorizing

the resulting mode-1 slices yields (see, e.g., [36]),

vec
(
X(1)

)
=

(

A(N ) ⊗ · · · ⊗ A(2) ⊗ A(1)
)

vec
(
G(1)

)
(19)

allowing us to express the parameters in (10) as

g̃ , vec
(
G(1)

)
∈ C

K̃×1 (20)

Ã ,

(

A(N ) ⊗ · · · ⊗ A(2) ⊗ A(1)
)

∈ C
Ĩ×K̃ (21)

As a result, the full Ã matrix does not need to be formed, and vector multiplica-

tion of the form Ãx and ÃH y, for any appropriately sized vector x and y, may be

computed iteratively by each sub-matrix A(n), and by then reshaping the resulting

elements (see, e.g., [37, p. 28] for further details). This allows for a dramatic

complexity reduction. To illustrate this, consider the case where each A(ℓ) matrix

is n × n. Then, the operation Ãx, which would require about O(n2N ) multi-

plications if first forming Ã and then computing the inner-product using this

matrix, may instead be formed using only O(NnN+1) operations (see, e.g., [38]).
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Furthermore, the LS step in the ADMM algorithm for solving (10) may also be

computed significantly cheaper by utilizing its Kronecker structure, simply by cal-

culating the singular value decomposition of each sub-matrix A(n) = UnSnVH
n ,

and then utilizing that the singular value decomposition of Ã is given by (see,

e.g., [36, p. 246])

Ã = UÃSÃVH
Ã

(22)

where

UÃ = U1 ⊗ · · · ⊗ UN (23)SÃ = S1 ⊗ · · · ⊗SN (24)

VH
Ã
= VH

1 ⊗ · · · ⊗ VH
N (25)

As a result, one may solve step 3 in Algorithm 1 by solving the equivalent LS

problem

min
z̃

∥
∥
∥
∥
∥

[

UH
Ã

y

VH
Ã
x ]− [ SÃmI

]

z̃

∥
∥
∥
∥
∥

(26)

where

z̃ =

(S2
Ã
+ m2I

)−1 (SÃUH
Ã

y + m2VH
Ã
x) (27)

with z̃ = VH
Ã

z and x = ÃH y − u(ℓ) − d(ℓ). Thus, the LS step can be solved

by three matrix vector multiplications, two Hadamard products between vectors,

one scalar multiplication of a vector, and a vector-vector addition, which may all

be calculated using their inherent Kronecker structure, significantly reducing the

computational cost. For example if each A(ℓ) is n × n, the cost for our approach

is about O(3NnN+1) versus O(n3N ) for a solution that does not use the inherent

structure of the problem.

4 Sparse dictionary learning

As noted above, the considered grid over the candidate frequency and damping

coefficients are updated in alternating fashion. Let K̂ denote the number of non-

zero amplitudes after the sparse LS step. Then, the dictionary learning may be
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done by forming the residual1

R = X − G∗ ×1 A(1) ×2 A(2) · · · ×N A(N ) (28)

Using a relaxation-based procedure (see also [39]), one then iteratively adds back

one mode at a time to the residual in (28), and form an estimate of the frequency

and damping of this mode using an N -dimensional single mode solver, such as,

for instance, the PUMA estimator [40]. Using the refined parameter estimates,

the mode is then subtracted again, and the next mode is refined similarly. The

procedure is summarized in Algorithm 2. Using the refined modes, the diction-

ary is then updated, such that it is separated into N dictionaries, one over each

dimension, with each dictionary being centered in a fine grid around each of

the found frequencies. As a result, the unused dictionary elements, having zero-

amplitudes, are excluded from the updated dictionary (unless being close to one

of the found modes). This also implies that closely spaced modes may yield over-

lapping dictionary elements; such duplicated dictionary elements are removed to

avoid collinearity in the dictionary. For each grid point, the dictionary element

is scaled according to the found damping coefficient of the corresponding mode,

to ensure that all dictionary elements have the same norm, thus refining the dic-

tionary iteratively over both frequencies and damping coefficients. We coin the

resulting method the Sparse Exponential Mode Analysis (SEMA) algorithm.

5 Numerical examples

We proceed by examine the performance of the proposed method using simulated

data. To simplify the presentation, we focus on the 1-D and 2-D cases, since

problems of these dimensions offer more intuitive results that are also easier to

analyze. Considering first the 1-D case, we illustrate the performance of the pro-

posed method using simulated data. We initially consider a data vector contain-

ing N = 128 samples of a three mode signal, where the frequencies and damping

parameters are chosen uniformly over [0, 1] and [0, 0.025], respectively. We note

that we here use normalized frequencies, lying in the interval [0, 1], denoted by

the letter f . For now, we ensure that no modes are closer in frequency than 1/N .

Figures 1 and 2 depict the resulting performance of the SEMA algorithm, as

compared to the non-parametric damped-Capon (dCapon) estimate [12,15], as a

1To simplify our notation, we have here suppressed the dependencies on the frequency w and
the damping b .
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Figure 1: The RMSE of the frequency estimation as a function of SNR.

function of the signal-to-noise-ratio (SNR), defined as log10(||y||22/Ns2), wheres2 denotes the variance of the noise. The two figures show the root mean squared

error (RMSE) of the frequency and damping estimates, defined as

RMSE =

√
√
√
√

1

MK

M∑

m=1

K∑

k=1

(jm,k − ĵm,k

)2
(29)

where jm,k denotes the estimate of either the frequency or the damping of mode

k for Monte-Carlo simulation m, M is the total number of Monte-Carlo sim-

ulations, and K the number of modes. These results have been obtained using

M = 175 Monte-Carlo simulations. In this example, dCapon have a frequency

grid that is selected to be 6000×6000, uniformly covering frequencies and damp-
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Figure 2: The RMSE of the damping estimation as a function of SNR.

ing factors in [0, 1] and [0, 0.025], respectively, and where the recommended filter

length of N/4 is used. The SEMA algorithm on the other hand uses a diction-

ary containing only 128 elements in the first iteration, and, thereafter, uses only

40 grid points for each found mode when updating the dictionary in each sub-

sequent iteration. As can be seen from the figures, the proposed SEMA algorithm

yields notably better estimates than the dCapon estimator, without requiring a

large dictionary grid over both dimensions, thereby allow for a substantially faster

implementation. It is also worth noting that the dCapon estimation errors are

here larger than the smallest possible error that is attainable given the current grid

size, implying that the grid size does not in itself limit the quality of the estimates.

Next, we examine the ability of the methods to resolve two closely spaced

spectral lines. In this case, we consider a signal containing two sinusoidal compon-
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Figure 3: The result of resolving two closely spaced spectral peaks. The (red)

square indicates the distance 1/(2N ) from the true frequencies.

ents with frequencies, f1 = 0.6417 and f2 = 0.6456, i.e., separated by 0.5/N ,

with random damping constants, being drawn uniformly from [0, 0.025]. Fig-

ure 3 illustrates the resulting frequency estimates as obtained from 5 Monte-Carlo

simulations, and SNR = 20 dB. For comparison, the figure also shows the estim-

ates obtained using 1-D SEMA, dCapon, dIAA [41], and for a Lasso method with

a dictionary containing both frequencies and damping factors, and exploiting a

zooming similar to the one used in SEMA. Here, to speed-up the computations,

the frequency grid for dCapon and dIAA have been selected to only be formed on

[0.63, 0.67], allowing the methods notable a priori information on the frequency

region of interest. The damping grid ranges over [0, 0.025] and has size 500 for

all methods, except for the used Lasso method, where, due to complexity reasons,
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Figure 4: The average RMSE of f (1)
1 and f (1)

2 as a function of SNR.

it is set to 10. As seen in the figure, both the proposed method and the Lasso

method clearly manage to resolve the two peaks, whereas dCapon and dIAA, in

most cases, are unable to find the correct peaks. In the figure, the (red) square

indicates the region 1/(2N ) around the true frequencies.

We proceed to examine the performance of the SEMA algorithm for 2-D sim-

ulated data, examining the RMSE of two well separated peaks, showing that

the proposed method has similar performance to the statistically efficient PUMA

method [7], using simulated data mimicking a 2-D NMR signal, containing two

damped sinusoids and having 33 × 31 samples. Figures 4-7 illustrates the per-

formance of the SEMA estimator as compared to the parametric PUMA estimator

and the corresponding Cramér-Rao lower bound (CRLB) [42]. The frequencies

where randomly selected in the interval from 0 to 1 in normalized frequencies,
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Figure 5: The average RMSE of f (2)
1 and f (2)

2 as a function of SNR.

and selected such that components where separated by at least 3/N in each di-

mension. If the spacing between the peaks is smaller, the estimation will degen-

erate for all methods. The damping parameters were set to b1 = (0.05 0.02)

and b2 = (0.01 0.04) for all simulations. Each node was normalized in amp-

litude, thus making sure that both peaks were equally dominant. The PUMA

algorithm was, as for all examples, allowed 100 iterations, as well as oracle model

order information, and the initial grid for the proposed 2-D method was, as for

the following examples, set to 100. The proposed method was allowed two iter-

ations and used 33 grid points to zoom in on each found mode. The choice ofl governs the number of peaks that may be found. If set too high, peaks with

low amplitude will be suppressed, and if set too low, peaks that originate from

the noise will not be suppressed. However, due to the reweighting step, a too

small l will be compensated for, and therefore the algorithm is relatively robust
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Figure 6: The average RMSE of b (1)
1 and b (1)

2 as a function of SNR.

to the choice of l, as long as it is not set too large. Therefore, it is preferable to

set l to a small value. In these examples, we set l equal to the tenth largest peak

found in the periodogram. One could argue that we thereby limit the number

of peaks that may be found, but that is easily avoided. If l were set to equal

the amplitude of the r:th largest peak and, when using the method, we found r
peaks, one would run the algorithm a second time but with a somewhat smallerl value. In this way, we make sure that we do not in fact limit the algorithm

to a specified number of peaks. The test was performed using 250 Monte-Carlo

simulations, for each value of the considered SNR. Figures 4-7 illustrate the total

RMSE of all the unknown parameters. As can be seen from the figure, both the

parametric PUMA, which has been allowed oracle model order information, and

the proposed semi-parametric SEMA algorithms yield statistically efficient para-

meter estimates especially for larger larger SNR. Here, if the proposed algorithm
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Figure 7: The average RMSE of b (2)
1 and b (2)

2 as a function of SNR.

did not manage to estimate the number of modes correctly, that estimate was then

removed from the RMSE calculations for all methods. This happened two times

out of 1500 Monte-Carlo simulations.

We proceed to examine the methods ability to resolve two closely spaced

peaks. This was done by fixing the first mode at frequency f1 = (0.4, 0.6),

and letting the second mode gradually approach the first. The modes were ini-

tially separated by 1/N1 and 1/N2 in each frequency dimension, and the test was

stopped when the modes were separated by 0.1/N1 and 0.1/N2. The data size for

this example was again 33×31. The same SEMA settings as above were used. We

also compare the estimates to that of a zero-padded 2-D periodogram, where 213

zeros were padded in each dimension, but zoomed in on the correct frequencies

(±0.1 in each frequency). The damping parameters where fixed to 0.02 for all

modes and dimensions, and the SNR was set to 10 dB. Furthermore, PUMA was
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Figure 8: Ability to resolve two peaks as a function of the peak separation.

again allowed complete knowledge of the number of peaks. To determine whether

or not two peak were resolved, we ensured that the method fulfilled at least two

separation criteria: First, the peaks that were found had to be at least within a

rectangle of size 1/N1 × 1/N2 from the correct frequencies; Secondly, the power

of the valley between the peaks where allowed to be at most 90% of the average

power of the peaks. If these two criteria were met, the modes were deemed to

be resolved. The results are shown in Figure 8, where the x-axis should be inter-

preted as the distance divided by N1, i.e., 0.1 means that the distance between

the modes is 0.1/N1. As may be seen from the figure, the periodogram’s ability

to distinguish the two modes drastically decreases as the modes become closer.

As may be expected. the PUMA method on the other hand manages to separate

the modes very well until they are about 0.3 apart from each other. As can be

seen from the figure, the SEMA method achieves about the same performance as
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Figure 9: Resulting estimates using 2-D SEMA on two closely spaced modes.

PUMA until the distance is less than 0.4. It should be stressed that the PUMA

estimator is given perfect prior knowledge about the number of modes, whereas

the 2-D SEMA has no such prior information. As is clear from the figure, the

SEMA estimate seems to be able to separate closely spaced modes almost as well

as the parametric and statistically efficient PUMA estimator, without imposing

any a priori model order information, as well as yielding far better performance

than the periodogram estimate. A typical result is shown in Figures 9 and 10,

where the peaks are separated by 0.5/N 1. It clearly shows how SEMA manages

to separate the two peaks, whereas the periodogram only shows one peak.
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Figure 10: Resulting estimates using two dimensional periodogram on two closely

spaced modes.

6 Conclusions

In this work, we have introduced a semi-parametric separable sparse model for

(possibly non-uniformly sampled) N -dimensional damped sinusoidal signal com-

ponents, forming a computationally efficient implementation exploiting the in-

herent structure of the resulting tensors. The proposed SEMA algorithms is found

to yield highly accurate estimates of the frequency and damping coefficients of

the signal modes, without imposing strong a priori knowledge on the number of

modes present in the signal. The performance of the method is illustrated using

1- and 2-D simulated data as compared to the (parametric) PUMA estimator,

the Cramér-Rao lower bound, and a zero-padded periodogram estimate, as well

as the corresponding non-parametric Capon- and IAA-based estimators, and a

LASSO-based estimator, clearly illustrating the achievable performance gain.
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[2] S. I. Adalbjörnsson, J. Swärd, and A. Jakobsson, “High Resolution Sparse

Estimation of Exponentially Decaying Two-dimensionalimensional Sig-

nals,” in 22nd European Signal Processing Conference, Lisbon, Portugal,

2014.

[3] J. Liu and X. Liu, “An Eigenvector-Based Approach for Multidimensional

Frequency Estimation With Improved Identifiability,” IEEE Transactions on
Signal Processing, vol. 54, pp. 4543–4556, 2006.

[4] Y. Hua, “Estimating Two-Dimensional Frequencies by Matrix Enhance-

ment and Matrix Pencil,” IEEE Transactions on Signal Processing, vol. 40,

no. 9, pp. 2267–2280, September 1992.

[5] J. Sacchini, W. Steedly, and R. Moses, “Two-dimensional Prony modeling

and parameter estimation,” IEEE Transactions on Signal Processing, vol. 41,

no. 11, pp. 3127–3137, November 1993.

[6] S. Rouquette and M. Najim, “Estimation of Frequencies and Damping

Factors by Two-Dimensional ESPRIT Type Methods,” IEEE Transactions
on Signal Processing, vol. 49, no. 49, pp. 237–245, January 2001.

[7] F. K. W. Chan, H. C. So, and W. Sun, “Subspace approach for two-

dimensional parameter estimation of multiple damped sinusoids,” Signal
Process., vol. 92, pp. 2172 – 2179, 2012.

[8] M. Haardt, F. Roemer, and G. Del Galdo, “Higher-Order SVD-Based Sub-

space Estimation to Improve the Parameter Estimation Accuracy in Mul-

tidimensional Harmonic Retrieval Problems,” IEEE Transactions on Signal
Processing, vol. 56, no. 7, pp. 3198–3213, July 2008.

151



Paper D

[9] Y. Li, J. Razavilar, and K. J. R. Liu, “A High-Resolution Technique for

Multidimensional NMR Spectroscopy,” vol. 45, no. 1, pp. 78–86, 1998.

[10] W. Sun and H. C. So, “Accurate and Computationally Efficient Tensor-

Based Subspace Approach for Multidimensional Harmonic Retrieval,” vol.

60, no. 10, pp. 5077–5088, Oct. 2012.

[11] S. Sahnoun, E. H. Djermoune, and D. Brie, “Sparse Modal Estimation of

2-D NMR Signals,” in 38th IEEE Intern. Conf. on Acoustics, Speech, and
Signal Processing, Vancouver, Canada, May 26-31 2013.

[12] P. Stoica and T. Sundin, “Nonparametric NMR Spectroscopy,” J. Magn.
Reson., vol. 152, pp. 57–69, 2001.

[13] E. Gudmundson, P. Stoica, J. Li, A. Jakobsson, M. D. Rowe, J. A. S. Smith,

and J. Ling, “Spectral Estimation of Irregularly Sampled Exponentially De-

caying Signals with Applications to RF Spectroscopy,” J. Magn. Reson., vol.

203, no. 1, pp. 167–176, March 2010.

[14] F. J. Frigo, J. A. Heinen, J. A. Hopkins, T. Niendorf, and B. J. Mock, “Us-

ing Peak-Enhanced 2D-Capon Analysis with Single Voxel Proton Magnetic

Resonance Spectroscopy to Estimate T2* for Metabolites,” in Proc. of IS-
MRM, 2004, vol. 12, p. 2437.

[15] G. O. Glentis and A. Jakobsson, “Computationally efficient damped Capon

and APES spectral estimation,” in 21st European Signal Processing Confer-
ence, Marrakech, Morocco, Sept. 9-13 2013.

[16] I. F. Gorodnitsky and B. D. Rao, “Sparse Signal Reconstruction from Lim-

ited Data Using FOCUSS: A Re-weighted Minimum Norm Algorithm,”

vol. 45, no. 3, pp. 600–616, March 1997.

[17] J. J. Fuchs, “On the Use of Sparse Representations in the Identification of

Line Spectra,” in 17th World Congress IFAC, Seoul, jul 2008, pp. 10225–

10229.

[18] P. Stoica, Jian Li, and Hao He, “Spectral Analysis of Nonuniformly Sampled

Data: A New Approach Versus the Periodogram,” vol. 57, no. 3, pp. 843–

858, March 2009.

152



References

[19] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. B. Baggeroer, “Source Localization

and Sensing: A Nonparametric Iterative Approach Based on Weighted Least

Squares,” vol. 46, no. 1, pp. 425–443, January 2010.

[20] X. Tan, W. Roberts, J. Li, and P. Stoica, “Sparse Learning via Iterative

Minimization With Application to MIMO Radar Imaging,” vol. 59, no. 3,

pp. 1088–1101, March 2011.

[21] P. Stoica, P. Babu, and J. Li, “SPICE : a novel covariance-based sparse es-

timation method for array processing,” vol. 59, no. 2, pp. 629 –638, Feb.

2011.

[22] P. Stoica and P. Babu, “SPICE and LIKES: Two hyperparameter-free meth-

ods for sparse-parameter estimation,” Signal Processing, vol. 92, no. 7, pp.

1580–1590, July 2012.

[23] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to Basis

Mismatch in Compressed Sensing,” vol. 59, no. 5, pp. 2182 –2195, May

2011.

[24] P. Stoica and P. Babu, “Sparse Estimation of Spectral Lines: Grid Selection

Problems and Their Solutions,” vol. 60, no. 2, pp. 962–967, Feb. 2012.

[25] S. I. Adalbjörnsson and A. Jakobsson, “Sparse Estimation of Spectroscopic

Signals,” in 19th European Signal Processing Conference, EUSIPCO 2011,

Barcelona, Spain, 2011.

[26] S. Sahnoun, E. Djermoune, C. Soussen, and D. Brie, “Sparse multidimen-

sional modal analysis using a multigrid dictionary refinement,” EURASIP J.
Applied SP, vol. 60, pp. 1–10, 2012.

[27] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Op-

timization and Statistical Learning via the Alternating Direction Method of

Multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan.

2011.

[28] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,”

SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[29] P. Stoica and R. Moses, Spectral Analysis of Signals, Prentice Hall, Upper

Saddle River, N.J., 2005.

153



Paper D

[30] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal
of the Royal Statistical Society B, vol. 58, no. 1, pp. 267–288, 1996.

[31] R. Chartrand, “Exact reconstruction of sparse signals via nonconvex min-

imization,” vol. 14, no. 10, pp. 707–710, Oct. 2007.

[32] E. J. Candes, M. B. Wakin, and S. Boyd, “Enhancing Sparsity by Re-

weighted l1 Minimization,” Journal of Fourier Analysis and Applications, vol.

14, no. 5, pp. 877–905, Dec. 2008.

[33] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition

by Basis Pursuit,” SIAM Review, vol. 43, pp. 129–159, 2001.

[34] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani, “Least

angle regression,” The Annals of Statistics, vol. 32, no. 2, pp. 407–499, April

2004.

[35] R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Dover

Publications, Inc., New York, 1968.

[36] R. A. Horn and C. A. Johnson, Topics in Matrix Analysis, Cambridge

University Press, Cambridge, England, 1991.

[37] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins

University Press, 4th edition, 2013.

[38] C. Tadonki and B. Philippe, “Parallel numerical linear algebra,” chapter

Parallel Multiplication of a Vector by a Kronecker Product of Matrices, pp.

71–89. Nova Science Publishers, Inc., Commack, NY, USA, 2001.

[39] J. Li and P. Stoica, “Efficient Mixed-Spectrum Estimation with Applications

to Target Feature Extraction,” vol. 44, no. 2, pp. 281–295, February 1996.

[40] H. C. So, F. Chanand W. H. Lau, and C. Chan, “An efficient approach for

two-dimensional parameter estimation of a single-tone,” IEEE Transactions
on Signal Processing, vol. 58, no. 4, pp. 1999–2009, April 2010.

[41] E. Gudmundson, Jun Ling, P. Stoica, Jian Li, and A. Jakobsson, “Spectral

Estimation of Damped Sinusoids in the Case of Irregularly Sampled Data,”

in Proceedings of the 9th International Symposium on Signals, Circuits and
Systems (ISSCS 2009), Iasi, Romania, July 9-10 2009.

154



References
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Abstract

Estimation of the fundamental frequency of a set of harmonically related sinusoids

is an integral part of many signal processing algorithms with as diverse applica-

tion as speech and audio signal processing and electrocardiography. Often, the

harmonic structure may deviate from being exact multiples of the fundamental

frequency, a phenomenon called inharmonicity, which if not properly accounted

for will degrade the estimation performance. To address this problem, we develop

a general robust fundamental frequency estimator that allows for a larger class of

inharmonicities in the observed signal. We also propose a scheme to include the

estimation of the often unknown number of harmonics in the signal. To this end,

we incorporate the recently developed multi-dimensional covariance fitting ap-

proach by allowing the Fourier vector corresponding to each perturbed harmonic

to lie within a small uncertainty hypersphere centered around its strictly harmonic

counterpart. Within these hyperspheres, we find the best perturbed vectors fitting

the covariance of the observed data. The proposed approach provides the estimate

of the fundamental frequency in two steps, and, unlike other recent methods, in-

volves only a single 1-D search over a range of candidate fundamental frequencies.

Key words: Fundamental frequency, inharmonicity, robust estimator,

model-order estimation, multi-dimensional covariance fitting.
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1 Introduction

The estimation of the fundamental frequency, or pitch, of a set of harmonically

related sinusoids is an integral part of many signal processing algorithms. While

these algorithms most commonly find application in speech and audio signal pro-

cessing, they can, in principle, be applied to harmonically related signals appear-

ing in other fields, such as electrocardiography (ECG) [1]. Most developed estim-

ators assume that the harmonics are exact integer multiples of the fundamental

frequency (see, e.g., [1–3] and references therein). However, this is not always

the case, and the deviation of the higher frequencies from exact integer multiples

of the fundamental frequency, a phenomenon called inharmonicity, is often ob-

served in real-world signals. For instance, it is well known that inharmonicity

arises in piano tones due to the stiffness in the piano strings [4]. Inharmonicity

has also been considered in the modeling and coding of speech signals, and several

different models of inharmonicity have been developed [5, 6], as, if not properly

compensated for, the frequency deviations will lead to poor amplitude and pitch

estimates [7]. To alleviate this problem, several robust fundamental frequency

estimation algorithms have been proposed in the recent literature, allowing for

inharmonicity in the observed signal. Most of these algorithms consider the scen-

ario of stiff-stringed instruments where deviations from exact integer multiples

of the fundamental frequency depend functionally on a single unknown stiffness

parameter [8–11]. However, as discussed in [1, 7], and also elaborated upon be-

low, a more general model that allows for random perturbations in the harmonics

would lead to an estimator that covers a wider range of problems. Existing solu-

tions, such as the maximum a posteriori (MAP) and subspace estimators presented

in [1,7], suffer from requiring exhaustive grid searches, such that the estimates are

formed based on searches close to the expected unperturbed harmonics. Clearly,

such combinatorial grid search approaches would increasingly become computa-

tionally inefficient with increasing number of harmonics, or for signals containing

multiple sources. An additional challenge in the fundamental frequency estima-

tion problem is that the number of harmonics in the observed signal, or the model

order, is not known a priori. To address these limitations, the main objective of

this work is to develop a general robust fundamental-frequency and model-order

estimator that does not require searches over individual perturbed harmonics. In

this regard, we incorporate the recently developed multi-dimensional covariance-

fitting (MDCF) approach from the beamforming literature [12] into the robust

pitch estimation problem by allowing the Fourier vector corresponding to each
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perturbed harmonic to lie within a small uncertainty hypersphere centered around

its strictly harmonic counterpart. Within these hyperspheres, we find the best per-

turbed vectors fitting the covariance of the observed data. The proposed approach

is more general than other recent robust methods such as [8–11] that deal only

with simple parametric inharmonicity of the form in [4], and it avoids the ex-

haustive search approach of [1, 7]. We also note that the proposed approach is

different from several other robust pitch estimators [13–16] that are robust to

different kinds of noise or to missing data. In contrast, our work focuses on

robustness to inharmonicity. Finally, we remark that the single-pitch approach

developed here may be extended to include multi-pitch data, along the group-

sparsity and the iterative relaxation-based ideas in [17] and [18].

The rest of the paper has been organized as follows. A review of the inhar-

monic signal model and some existing robust estimators is provided in Section 2.

Following this review, a detailed derivation of the proposed robust covariance-

fitting pitch estimator is given in Section 3. Section 4 covers the proposed scheme

for the estimation of the model-order, and Section 5 gives the results of the nu-

merical evaluation of the proposed estimator compared to the existing approaches.

Finally, we provide our conclusions in Section 6.

2 Signal model and other estimators

Consider a harmonic signal with the fundamental frequency w0 > 0, corrupted

by an additive noise [1]

x(n) =

L∑

l=1

al e
inwl + e(n) (1)

where n = 0, . . . ,N − 1, L represents the number of harmonics, al = |al |ei∠al

denotes the complex amplitude of the l th harmonic, and e(n) is a zero-mean white

complex circularly symmetric Gaussian noise process with unknown variance s2
e .

The harmonic frequencies, wl , are often formed as wl = w0l , where w0 denotes

the fundamental frequency. As an alternative, the harmonic frequencies for e.g. a

piano have been modelled as [4]wl (w0,B) = lw0

√

1 + l2B (2)

where B ≪ 1 is an unknown positive string stiffness parameter. The main prob-

lem with such parametric models is that they are instrument dependent and one
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may have to consider many such models to develop an estimator that can be ap-

plicable to a wide range of pitch estimations problems. Additionally, in many au-

dio signal processing problems, the inharmonicities may not be so well-behaved.

To avoid such limitations, we will here consider the more general model used

in [1], extending (1) to allow small independent perturbations in the harmonics,

such that

x(n) =

L∑

l=1

al e
iwl (w0,Dl )n + e(n) (3)

where wl (w0,Dl ) = w0l + Dl , with Dl representing a perturbation of the l-
th harmonic. Different from earlier works, we will herein not assume a priori

knowledge of the number of harmonics, L. It is often a difficult problem to form

reliable model-order estimates, and many methods suffer noticeable performance

degradation in case of inaccurate knowledge of an assumed model order. We as-

sume, without loss of generality, that the perturbations are normally distributed

zero-mean random variables with unknown but small variances, s2Dl
. Among the

pitch estimation algorithms available in literature, the maximum likelihood (ML)

estimator offers a very powerful tool for estimating the fundamental frequency

of a perfectly harmonic signal. It is known to be computationally efficient, and

reduces to the optimal nonlinear least squares (NLS) estimator in case of white

noise [1]. A robust version of the ML estimator, that allows for parametric inhar-

monicity of the form (2) has been presented in [1]. The algorithm is, however,

computationally inefficient as it requires a 2-D search over w0 and B. Two of

the relatively recent approaches that cover the general inharmonicity model in (3)

are the MAP method of [1] and the subspace-based method of [7]. The MAP

approach estimates the fundamental frequency and the perturbations by maxim-

izing the posterior likelihood of observing the measured data under an assumed

prior on the distribution of the perturbations. The subspace-based method [7],

on the other hand, exploits a MUSIC-like approach to estimate the perturbed

frequencies. However, both methods form the estimates based on searches over

the parameters (w0, {Dl}), and require reliable a priori information of the model

order, L.
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3 Proposed robust covariance-fitting pitch estimator

In this section, we present a detailed derivation of the proposed robust estimator.

For the sake of simplicity of presentation of the main idea, and without loss of

generality, we initially derive the proposed estimator for a known model order. A

scheme to include model-order selection along with pitch estimation will then be

discussed in the following section.

We begin by defining

x(n) =
[

x(n) x(n− 1) . . . x(n−M + 1)
]T

(4)

AD =
[

aM (w0 +D1) . . . aM (w0L +DL)
]

(5)

where (·)T denotes the transpose, for M < N , with

aM (w) =
[

1 e−iw . . . e−iw(M−1)
]T

(6)

Note that AD is full-rank if w0l + Dl 6= w0m +Dm, ∀ l 6= m. The covariance

matrix of (3) can then be written as

R = E{x(n)x∗(n)} = ADPA∗D + s2
e I (7)

where (·)∗ represents the Hermitian transpose, and

P = diag{
[
|a1|2 . . . |aL|2

]
} (8)

In order to utilize the powerful optimal filtering methods discussed in [1], the per-

formance of which critically depends on knowing the correct frequency of each

Fourier vector, we here propose to allow each perturbed Fourier vector aM (w0l +Dl ) to lie within a small uncertainty hypersphere centered around its strictly har-

monic counterpart aM (w0l). Note that this relaxation of the model, from the

parametric uncertainty to an uncertainty set for the entire vector, is made to avoid

the search over all the perturbations {Dl} simultaneously, which would require

an exponentially increasing number of grid points as the number of harmonics

increases. Defining the nominal Fourier matrix

A =
[

aM (w0) . . . aM (w0L)
]

(9)

the set of constraints on the L Fourier vectors may be written compactly as

‖(AD − A)el‖2 ≤ el , l = 1, . . . ,L (10)
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where the radius, el , of the l th uncertainty hypersphere is a user parameter reflect-

ing on the expected level of inharmonicity, and where el is the l-th column vector

of an L × L identity matrix. We thus seek a perturbation of all the Fourier vec-

tors, each found within the given sphere, such that the resulting optimal filtering

method will have a better performance than if one simply used the assumption of

harmonicity. This is similar to the robust adaptive beamforming problem in array

signal processing, where one seeks to create a beamformer (filter) for the case when

one has uncertain knowledge on the signals impinging on the array (see, e.g., [19]

for a study examining a variation of our problem, although with only uncertainty

in one vector). In [12], it is shown that if there is uncertainty in several of vectors

it will have a detrimental effect on the beamformer, if not properly accounted for.

In the work, the authors also introduce the idea of the MDCF to counteract this

problem. Building on this idea, we employ the MDCF concept to formulate the

problem of simultaneously finding the perturbed Fourier vectors as the solution

of the optimization problem

max
AD,P,s2

e≥0
log det(ADPA∗D + s2

e I) (11)

s.t. ADPA∗D + s2
e I � R̂

‖(AD − A)el‖2 ≤ el , l = 1, . . . ,L

P = P⊙ IL � 0

where A � B denotes that B − A is positive semidefinite, ⊙ is the element-

wise matrix product, and the last constraint ensures that, in accordance with the

definition in (8), P is positive semidefinite and diagonal, and R̂ is the sample

covariance matrix, given as

R̂ =
1

N −M + 1

N−M∑

n=0

x(n)x∗(n) (12)

Additionally, we assume that the frequency vector uncertainty sets are sufficiently

separated from each other to ensure pairwise linear independence between the

columns of AD. As shown in [12], (11) may not be amenable to a standard

numerical solution, and one may instead use semidefinite programming (SDP) to

solve a local convex approximation of (11) as

max
ĂD,s2

e ≥0
2R
{

tr{Ă∗R−1
0 ĂD}}+ tr{R−1

0 }s2
e (13)
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s.t. ĂDĂ∗D + s2
e I � R̂

R{(Ael )
∗ĂDel} ≥ nl‖Ăel‖2; l = 1, . . . ,L

I{(Ael )
∗ĂDel} = 0; l = 1, . . . ,L

whereR{·} and I{·} denote the real and imaginary parts of a complex number,

respectively,nl =

√

‖Ael‖2
2 − e2

l (14)

R0 = ĂĂ∗
+ s2

0I (15)

with

Ă = AP
1
2
0 (16)

where P0 denotes an initial estimate of P obtained through any suitable spectral

estimator, and s2
0 is formed by averaging the M − L smallest eigenvalues of R̂.

There are several reasons why this formulation cannot be directly used to estimate

the perturbed frequencies {wl}. Firstly, as can be seen from (6), the true Fourier

vectors must satisfy

aM (w)e−iw
= aM (w) (17)

where aM (w) and aM (w) are formed by taking, respectively, the first M − 1 and

the last M − 1 elements of the vector aM (w). However, the formulation in (13)

imposes no such constraint on the structure of ĂD. Secondly, we note that, by

virtue of (16), an estimated ĂD would include estimates of the amplitudes of

the harmonics. Thus, the cost function of (13) is not suitable for a grid search

over the fundamental frequency as it may wrongly compensate for the frequency

perturbations by adjusting the estimates of the amplitudes and the noise variance,s2
e . To address these issues for the robust pitch estimation problem, we propose

the following two-step approach that can be applied over a very coarse grid of

fundamental frequencies. We term the proposed two-step approach the robust

covariance-fitting pitch (RCP) estimator.

3.1 Step one: coarse estimates

The main objective of the first step is to obtain an initial estimate of the perturbed

matrix, AD. This estimate will then be used as the assumed matrix in the second

165



Paper E

step, and is formed using a single 1-D grid search over a range of fundamental

frequencies. It is worth noting both that the search grid can be chosen to be

rather coarse, and that the estimate may be formed without any search over the

individual perturbations. The estimate is formed as:

(i) Form a grid of appropriate size, say K , over the expected range of funda-

mental frequencies, and choose a frequency point from the grid, say wk
0,

and, assuming this to be the fundamental frequency, form the matrix A

using (9), and P0 by computing the periodogram estimates at wk
0 and its

perfect harmonics. Using the evaluated A and P0, solve the SDP in (13) to

get an initial estimate of ĂD.

(ii) In line with the discussion under (16), the perturbed harmonics are extrac-

ted from the estimated ĂD by imposing the suggested structural constraint

on its columns. More specifically, denoting the l-th column of the estim-

ated ĂD as bl , and noting that, to be a true Fourier vector for the l-th
harmonic, it must satisfy blgl = bl , where gl = e−iwl , and where bl and

bl are defined similar to aM (w) and aM (w), respectively, form an estimate

of the l-th harmonic frequency as ŵl = −I{ln(ĝl )}, withĝl =
b
∗
l bl

‖bl‖2
2

(18)

(iii) Form an improved estimate of AD, say ÂD, by substituting the estimates

{ŵl} in (5). With the estimate ÂD now available, the problem reduces to

a standard pitch estimation problem. Therefore, we propose to utilize the

cost function

gk , tr

[(

Â∗DR̂−1ÂD)−1
]

(19)

which represents the total output power of a set of L Capon filters, and is

maximized at the true perturbed frequencies (for details, see, e.g., [1, 20]).

(iv) Repeat (i)-(iii) for the K points in the grid, and choose {ŵmax
l } as the L

estimates where {gk}K
k=1 is maximized.
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3.2 Step two: refined estimates

While it is possible to use {ŵmax
l }, obtained in the previous step, one may refine

the estimates of the perturbed frequencies further by solving (13) with the fol-

lowing improved initializations. Firstly, in place of A, ÂmaxD is used as the assumed

Fourier matrix, where ÂmaxD is formed by substituting {ŵmax
l } in (5). Secondly,

to give better initial estimates of the amplitudes of the harmonics, P0 should be

formed by computing the periodogram amplitudes at {ŵmax
l }. These two modi-

fications together assure a better initialization for the SDP problem in (13), lead-

ing therefore to more accurate frequency estimates, which can be formed as in

operation (ii) of the first step. For later use, we represent the final refined fre-

quency estimates as {ˆ̂wmax
l }. We also note that in our numerical studies, further

iterations did not yield any improvements, leading us to conclude that only a

single refinement step was sufficient.

3.3 Selection of el

Noting that the left side of (10) may be written as the summation

M∑

m=1

√

2(1− cos(Dl m)) (20)

one may give a rough range for the selection of el , such that it does not violate

(10), as 0 ≤ el ≤ 2
√

M . Practical experience shows that in order to restrict Dl

to be very small (which is typically the case), one should choose el ≤
√

M/3.

Secondly, one should use a smaller el in the second step of RCP as compared to

the value used in the first step. This is because ÂmaxD is expected to be closer to the

true value of AD, as compared to A (which is used as the assumed matrix in the

first step).

4 Model-order selection

In the previous section, we have considered the number of harmonics, L, to be

exactly known. It is, however, possible that the model-order is known to lie within

a small range. In such situations, it would be beneficial to include the model-

order estimation within the fundamental-frequency estimation problem. We now

discuss this aspect in context of the proposed robust pitch estimator. Define a set
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of candidate modelsMm, m ∈ Zq, where

Zq = {0, 1, . . . , q − 1} (21)

is the set of candidate model indices. One possible approach may then be to

choose the model that maximizes the a posteriori probability of the model given

the observation x, i.e., we choose

M̂ = arg max
Mm,m∈Zq

f (Mm|x) (22)

= arg max
Mm,m∈Zq

f (x|Mm)f (Mm)

f (x)
(23)

Assigning equal probabilities to all the models in the set, i.e., setting

f (Mm) =
1

q
, m ∈ Zq (24)

leads to

M̂ = arg max
Mm,m∈Zq

f (x|Mm) (25)

Further, incorporating the dependency of the models on unknown parameters

such as amplitudes, frequencies, and phases, one may rewrite (23) as

M̂ =

∫J arg max
Mm,m∈Zq

f (x|j,Mm)f (j|Mm)dj (26)

where all the unknown parameters have been gathered in the vector j ∈ J. It

is not generally possible to obtain any simple analytic expression for the integral

in (26). However, an asymptotic solution (for large N ) has been developed in

the literature, leading to the solution (interested readers are referred to [21] for

details)

M̂ = arg min
Mm,m∈Zq

−2 ln f (x|ĵ,Mm) + (5L + 1) ln N (27)

where ĵ is an estimate of the unknown parameters. For the case of additive white

complex Gaussian noise with variance s2
e , the first term in (27), i.e., the log-

likelihood function, is equal to N lns2
e . Replacing s2

e by an estimate of the noise
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Figure 1: RMSE of the fundamental frequency estimates against the level of

inharmonicity, for w0 = 0.2137, at SNR level of 5 dB.

power for each candidate model order L, denoted ŝ2
e (L), we may thus write an

expression for the model-order estimate as

L̂ = arg min
L

2N ln ŝ2
e (L) + (5L + 1) ln N (28)

It remains now to obtain ŝ2
e (L). For any method that estimates a noise-free signal-

of-interest (SOI) for a pre-selected order, L, the noise power estimate may be

written as the difference between the total measured power and power of the

estimated SOI. For the proposed RCP estimator, the estimated power for a model-

order L may therefore be given as (see discussion under (19))

tr

[(

(
ˆ̂
AmaxD )∗R̂−1 ˆ̂AmaxD )−1

]

(29)
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Figure 2: RMSE of the fundamental frequency estimates against the level of

inharmonicity, for w0 = 0.2137, at SNR level of 30 dB.

where
ˆ̂
AmaxD is formed by substituting {ˆ̂wmax

l } obtained in Section 3 into (5). Since

an estimate of the power of the measurement x(n) may be given as 1
M tr(R̂), we

can get an expression for ŝ2
e (L) for the proposed approach asŝ2

e (L) =
1

M
tr(R̂)− 1

M
tr

[(

(
ˆ̂
AmaxD )∗R̂−1 ˆ̂AmaxD )−1

]

(30)

The estimation of the model order may therefore be included in the proposed

RCP estimator as follows.

(i) Choose a set of candidate model orders.

(ii) For each model-order candidate, say L, estimate the noise power ŝ2
e (L)

using (30).
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Figure 3: RMSE of the fundamental frequency estimates against SNR, for w0 =

0.2137 and sD = w0/14.

(iii) Use ŝ2
e (L) in (28) to choose the optimal model order among the candidates.

(iv) Choose the RCP frequency estimates corresponding to the optimal model

order as the final estimates.

5 Simulations and results

We proceed to numerically evaluate the performance of the proposed RCP estim-

ator, comparing to the MLE [1] and the robust MAP (R-MAP) [7] estimators.

The results are obtained through a number of experiments based on Monte Carlo

simulations using synthetic signals. In each case, the synthetic signal was gen-

erated using (3), with L = 4 harmonics having unit amplitudes and uniformly

distributed phases that are randomized in each Monte Carlo run. The experi-
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Figure 4: RMSE of the fundamental frequency estimates against SNR, for w0 =

0.2137 and sD = w0/10.

ments were repeated for several different fundamental frequencies, and for five

different signal-to-noise ratio (SNR) levels from 5 − 30 dB, where the SNR is

defined as 10 log10(tr(P)/s2
e ). All algorithms were tested at different levels of in-

harmonicity by increasing the standard deviation of the perturbations, sD, from

0 to w0/10, where a variance of 0 indicates a perfectly harmonic signal. A total of

J = 150 Monte Carlo simulations were used in each experiment to evaluate the

root mean square error (RMSE), defined for the fundamental frequency estimates

as

RMSE =

√
√
√
√

1

J

J
∑

j=1

(ŵ0,j − w0)2 (31)

where w0 and ŵ0,j represent the true fundamental frequency and the estimated

fundamental frequency in the j-th Monte Carlo run, respectively. A data length
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Figure 5: RMSE at w0 = 0.1425, 0.2137, 0.3206, for SNR = 20 dB and sD =w0/10.

of N = 200 samples was used, while the sub-vector length for RCP was set to

M = 50, which is in accordance with the limit, M ≤ N/2, suggested in fil-

tering literature (see, e.g., [1] and [20]). For this set of tests, the model order

was assumed to be known. Typical results, comparing the proposed RCP estim-

ator to the standard MLE and the R-MAP estimators, are shown in Figures 1-6.

Following the guidelines in Section 3.3, all the results were obtained with the un-

certainty parameter el set to 4 for the first step and to 2 for the second step of RCP.

The fundamental frequency search grid for MLE and R-MAP consisted of 300

equally-spaced points in the range [0.05, 0.5], whereas for the proposed RCP es-

timator, the grid consisted of only 30 equally-spaced points in the same range. To

make the comparison fair, we here allow all the estimators knowledge of the true

model order, L. Figures 1 and 4 show the RMSE of the fundamental frequency

estimates against the level of inharmonicity for w0 = 0.2137 at SNR levels of
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Figure 6: RMSE at w0 = 0.1425, 0.2137, 0.3206, for SNR = 15 dB and sD =w0/12.

5 dB and 30 dB, respectively. As is clear from the figures, the proposed RCP es-

timator performs better at both low SNR and high SNR levels. As expected, the

MLE method, not allowing for inharmonicity, suffers heavily with increase in in-

harmonicity. Figures 3 and 4 show the RMSE against SNR for w0 = 0.2137 forsD equal to w0/14 and w0/10, respectively. We see that while the performance

of all the estimators degrades slightly at lower SNRs, the RCP estimator provides

more accurate estimates at all levels. Figures 5 and 6 show the RMSE at three

different fundamental frequencies w0 = 0.1425, 0.2137, and 0.3206, at SNR

= 20 dB, sD = w0/10 and SNR =15 dB, sD = w0/12, respectively. We re-

mark that the increase in the RMSE of MLE at the higher frequencies is because

of a higher simulated inharmonicity at these frequencies. While both R-MAP

and RCP show robustness to the inharmonicity, the proposed approach clearly

provides more accurate estimates.
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Figure 7: Percentage of correctly estimated model orders as a function of N withsD = w0/10.

In accordance with the discussion in Section 4, the ability of RCP to estimate

the model order was also numerically studied. In these simulations, the candid-

ate model orders were provided as {2 − 8}, and the results were compared to

the R-MAP model-order estimates. Figure 7 shows the percentage of correctly

estimated model orders as a function of the number of samples N . As expected,

the model-order estimates improve with the increase in the number of available

samples. Figure 8 shows percentage of correctly estimated model orders against a

varying level of inharmonicity. While both RCP and R-MAP show similar and

expected trends, the proposed RCP estimator clearly outperforms R-MAP in es-

timating the model order correctly.
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Figure 8: Percentage of correctly estimated model orders as a function of sD.

6 Conclusion

We have proposed a general robust fundamental-frequency and model-order es-

timator that allows for non-parametric inharmonicity in the observed signal. The

proposed approach allows the Fourier vector corresponding to each perturbed har-

monic to lie within a small uncertainty hypersphere centered around its strictly

harmonic counterpart. Within these hyperspheres, we find the best perturbed vec-

tors fitting the covariance of the observed data. The proposed approach provides

the estimate of the fundamental frequency in two steps, and, unlike other recent

methods, involves only a single 1-D search over a range of candidate fundamental

frequencies. It is numerically shown to provide better fundamental frequency

estimates than the MLE and R-MAP approaches under a variety of practical con-

ditions covering various degrees of inharmonicity and SNR levels. The ability of

the estimator to select the correct model-orders is also numerically shown.
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