
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Gateway-based call admission in distributed object oriented systems

Widell, Niklas; Nyberg, Christian

Published in:
Proceedings fifteenth Nordic Teletraffic Seminar, NTS-15, Lund University, August 22-24, 2000

2000

Link to publication

Citation for published version (APA):
Widell, N., & Nyberg, C. (2000). Gateway-based call admission in distributed object oriented systems. In J. M.
Karlsson, U. Körner, & C. Nyberg (Eds.), Proceedings fifteenth Nordic Teletraffic Seminar, NTS-15, Lund
University, August 22-24, 2000 Lund University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/68e9e658-a88c-4678-9333-85d5e5005296

This is an author produced version of a paper presented at
Fifteenth Nordic Teletraffic Seminar, NTS-15,

Lund University, August 22-24, 2000.
This paper may not include the final publisher

 proof-corrections or pagination.

Citation for the published paper:
Widell, Niklas, Nyberg, Christian, 2000,

"Gateway-based call admission in distributed object oriented systems",
Proceedings fifteenth Nordic Teletraffic Seminar, NTS-15, Lund

University, August 22-24, 2000.
 Publisher: Lund University.

Gateway-based Call Admission in Distributed Object Oriented Systems

Niklas Widell and Christian Nyberg

Department of Communication Systems,
Lund Institute of Technology, Sweden,
e-mail: {niklasw, cn}@telecom.lth.se

Abstract

Many applications in telecommunications will depend on distributed systems to pro-
vide enough capacity. In a distributed system a service is split up into a number of modules
(often called objects) that can be placed at different nodes or processors in a network. A
service can be seen as a number of invocations of the objects in a certain order. There
are a number of performance problems which have to be solved. How shall objects be
distributed on the nodes? How shall the load be distributed among the nodes for a given
object distribution? How shall the distributed system be protected from temporary over-
load situations?

In our paper we investigate these questions for distributed systems where requests for
service arrive to a gateway from which they distributed to the nodes of the system. We
assume that the object distribution is given and we concentrate on protecting the system
using three different external load control mechanisms: Percent Thinning, Call Gapping
and Tokens. Using simulations, we find that Tokens provide the best system protection.

1 Introduction
In the future the development of telecommunication technology will be characterized by:

• Integration of services in networks. The networks will to a larger and larger extent be
based on the TCP/IP protocol stack.

• Many new services with very different demands on network resources like transmis-
sion and processing capacity will be developed. Examples of such services are video
conferencing, multimedia services and Internet services.

• The demand for both personal and terminal mobility will increase.

• The role as service provider and operator will be separated in the future.

To be able to handle these developments, new service architectures have been or are be-
ing developed. Examples of these are the different versions of Intelligent Networks, where
services and data are located at special nodes in the network, and the Telecommunications
Information Networking Architecture (TINA), which provides a fully distributed service ar-
chitecture. Both IN and TINA have been standardized by work groups with representatives

from all large operators and vendors. A problem with TINA is the large complexity of the
architecture, which has halted its use. Instead, distributed architectures based on the TCP/IP
stack are being developed and they are likely dominate in the future.

There are a number of performance issues which need to be solved for distributed archi-
tectures. Some of the most important are:

• How shall objects be distributed on the nodes? Observe that there may exist more than
one instance of an object in a distributed system. From a performance point of view the
best would be to have one instance of each object type in all nodes. Then a call would
only have to be executed in one node. However, this is not feasible. For instance, having
multiple copies of large databases is not feasible for administrative reasons

• How shall the load be distributed among the nodes for a given object distribution? Com-
munications between nodes is fairly expensive in terms of processing, while at the same
time distribution without inter-node communication is useless.

• How shall the distributed system be protected from temporary overload situations? We
need overload protection on both internal (node) and external (system) levels.

• What traffic models shall be used? It has been observed that the packet traffic in net-
works might have a fractal behavior which is very different from the Poisson traffic used
to model telephone traffic.

Performance models of distributed systems are thus needed to be able to study, among
other things, response times, optimal allocation of computational objects and overload control
algorithms. In this paper we will concentrate on some aspects of overload control.

Overload control of nodes in telecommunication networks has been an active research area
for many years and many studies have been published. One example of this is [1], which is a
survey of early results with many references. [2] compares the efficiency of different throttling
mechanisms (especially call gapping and percent blocking) that can be used to reject calls.
What is common to these early studies is that they concentrate on protecting one node with
one processor from being overloaded. As pointed out above, distributed system architectures
are likely to get more and more common. Thus there is a need to investigate the performance
of these architectures.

Several papers have discussed load balancing and load sharing in computer networks.
However, very few of these examine load balancing in distributed systems. [3] discussed
load sharing algorithms for distributed systems. [4] examined how the network nodes should
exchange load status information to be used in load balancing schemes. [5] investigated call
admission policies for communication networks that support several services. [9] investigate
how to assign a number of tasks to to a number of processors in order to minimize, for exam-
ple, the maximum completion time. The ACTS project MARINER has published extensively
on using market-based agent technology to protect distributed systems in Intelligent Networks,
see [10].

This paper extends the work of [2] by comparing different throttling mechanisms used not
only to protect one single processor but a distributed system built up by several processors. It
also extends the work in [10], since there only one throttling mechanism (tokens) was used.

2 Call Admission Strategy - External Load Control
If the call arrival rate is higher than what a system can handle, calls must be rejected in order
to preserve system sanity. We assume that all calls arrive at one node, called gateway. At the
gateway, calls can be rejected if the system is overloaded. If a call is accepted it may proceed
to the distributed system which consists of a number of nodes. A call has to be served at
several of these nodes. Also these nodes can reject a request if they are too heavily loaded in
order to preserve system sanity. If a request is not rejected at the gateway or at any other node,
it is eventually served. However, if it takes too long time to serve a call, it will be regarded
as a failure, because that might trigger timeouts or make users of the system impatient which
in its turn might cause unwanted system behavior. Thus we can divide all requests into four
classes:

1. Requests that are rejected at the gateway.

2. Requests that are accepted at the gateway but are rejected by a node in the distributed
system.

3. Requests that are not rejected at the gateway or at any other node but are not finished in
time.

4. Requests that are not rejected and finished in time.

The goal of overload control is that the number of requests of class 4 shall be as large as
possible. Naturally, the number of requests of class 2 and 3 shall be as small as possible since
they are not successful and the processing time spent on them is wasted.

Three different throttling algorithms that can be used in the gateway namely Call Gapping,
Tokens and Percent Thinning are investigated. The algorithms are described in more detail in
the description of our model. Two different arrival processes are used, a Poisson process with
constant rate and a Poisson process with a variable rate. It is reasonable to assume that request
rates will show large variations in many new services triggered by different kinds of events.

3 System Model
In this section we develop a useful model for studying performance in distributed object ori-
ented systems. The model is generic, but contains all the important parts from real architec-
tures.

3.1 A Generic Model
Distributed object oriented systems tend to be immensely complex, with several thousands
of objects and many physical nodes of varying capabilities. Figure 1 presents a model of a
simple four node network, with a number of objects named A to E. The network is a set of
connected nodes. Connections between nodes are considered to be links of high capacity,
so that transmission times are negligible. Service requests arrive to a special gateway node
with an intensity λ. The gateway does some processing to decide whether to accept a service

request or not. If a service request is accepted to the system it is forwarded to the nodes where
the actual service execution takes place.

The nodes represent the physical processing hardware in model. Nodes are processors,
that can execute tasks given to them. For our purposes, each node consists of three parts; a
queue, marked Q in figure 1, a server and finally a router, marked S and R respectively. All
arriving jobs that cannot be handled immediately are placed in the queue. The server model
the actual processing of a job. The router takes a finished job from the server and sends it
along to another node for more processing.

The router is the component in each node that decides where to send a job when it has
finished executing. It is in this routing procedure that we can take into account load balancing
and load sharing by making intelligent choices of where to direct a job when it is finished on
one node.

3.1.1 Objects

An object in our model is a representation of an independent piece of software that can perform
one or more functions as well as interact with other objects. Every function call takes a certain
amount of time to execute depending on the complexity of the call. The sequence of function
calls made by the objects is described by a service, see below.

As objects represent software, they can migrate between nodes in the network. The mi-
gration process makes it easy to reconfigure the system by moving objects around. However,
migration is a very processing intensive operation and using migration to move objects around
to help in an overload situation is not a very likely situation. On the other hand, in longer
time perspectives migration is a very useful way to change system configuration to increase
performance as traffic patterns change. As we are interested in studying the real-time behavior
of the system, we assume that a steady state has been reached for the object distribution.

In object oriented programming it is common to use the term class as something from
which objects are instantiated from. As we look at systems during runtime, what we see are
instantiated objects or nodes where objects of a certain class can be instantiated. Some objects
might be very long lived, such as databases, while others may last only during the lifetime of a

λ
Gateway

Q RS

Node 1
Objects A, B and C

Node 2

Node 3
Objects C and D

Object EObjects A and B

S

S SQ Q

Q R

RR

Node 4

Figure 1: A simple four node network with a gateway

service. For our purposes we do not make any difference between long or short lived objects.
Each object can perform only one action at a time. It does not matter whether all function calls
to an object type goes to one particular object or to several different ones, it will still take the
same amount of time to process them.

3.1.2 Services

A service is a request by a user for the system to do something, for instance to set up a
telephone call. In the model it is a sequence of tasks that a system can perform. Each task can
be performed by one object type, so a service describes the order in which objects are called.

LoginOK

Login("A")

Service_Provider

StartService("FreePhone")

GetListOfServices

AvailableServices("FreePhone, ...")

User_A Access_Agent

Figure 2: Message sequence chart for a service scenario

In figure 3 a typical generic service scenario is shown. The scenario is a generalized
and simplified form of a TINA access and service session, see below. A user (represented
by the object User_A) wishes to start a service, for instance FreePhone. Object User_A first
interacts with an Access_Agent object that can authenticate the user, for instance by the user
typing in a password. When authentication is ready, User_A requests a list of services from
a Service_Provider. The Service_Provider returns a list of available services that User_A can
choose from. Execution then continues with the system providing the service or services the
user asked for, until the user logs out.

3.2 Algorithms
As mentioned above, we have studied three different algorithms: Percent Thinning, Call Gap-
ping and Token. Below is a description of these.

3.2.1 Percent Thinning

For each arrival to the system, a random number is generated. This random number is com-
pared to a given blocking probability. If the random number is above the blocking probability,
the arriving session request is passed in to the system.

In a real system the blocking probability should be continually updated by some kind of
control loop, to take into account fluctuation in arriving traffic. However, in this paper no such
loop is used.

3.2.2 Call Gapping

Arriving session requests are only allowed into the system at certain times. Only the first
arriving service request will be allowed into the system during a given interval. If more than
one requests arrive during a interval, the following ones are rejected.

In a real system the interval length should be continually updated by some kind of control
loop, to take into account fluctuations in arriving traffic. However, in this paper no such loop
is used.

3.2.3 Tokens

The gateway has a number of tokens, that are handed out to arriving session requests. If an
arriving session request finds a free token, it immediately continues execution. Otherwise, it
is rejected. When a session is fully served, the token is handed back to the gateway. Thus, the
number of tokens in use is the same as the number of sessions presently in the system.

The token as such should not be thought of something that “travels with” the session as
execution brings through the system. A better representation is that there is a limit to the
number of initial objects that can be in use at the same time (object A in simulations below).
If a session is lost (blocked by an internal node), the initial object discovers this by some kind
of time-out, and the token can be returned to the gateway.

4 Simulations
This section describes a number of simulations that we have run to study the behaviour of
the different algorithms. We first present the parameters used, and then describe the different
simulation cases.

4.1 Simulation parameters
The following table lists the input values used in the simulations:

Parameter Value Comments
Nodes 5 Node 1 is gateway node
Objects 5 Named A - E
Session sequence A-B-A-C-D-C-A-C-E-C-A-B-A
xA 0.01s per session step
xB 0.01s per session step
xC 0.01s per session step
xD 0.05s per session step
xE 0.12s per session step
xmarshall 0.01s per session step
xunmarshall 0.01s per session step
xsession 0.52s “empty system”
Ttimeout 2.25s time before timeout

The table below contains object distribution and respective routing probabilities. A dash
means that this type of object is not available on this node. Routing inside the network was
random.

Object Node 1 Node 2 Node 3 Node 4 Node 5
A 1.0 — — — —
B — 0.50 0.50 — —
C — 0.33 0.33 0.34 —
D — — 0.5 0.5 —
E — — — — 1.0

The used arrival process was Poissonian, with the following arrival intensities.

CONSTANT Constant arrival rate, with λ = 10s−1. This arrival intensity causes overload in
nodes 1 and 5.

TRANSIENT First 40 seconds with λ = 5s−1, then λ = 20s−1 for 30 seconds, and finally
λ = 5s−1 again for another 40 seconds.

All the cases above have the same total number of requests over the simulation interval.
For all arrival intensity cases the same realization of the input process was used for the different
algorithms.

5 Results And Conclusions
This section contains the results from the simulations, as well as a discussion of these results.

The success rate given is the ratio of fully successful jobs to the total number of jobs
arriving to the system.

5.1 Constant arrival intensity
The table below contains the best results gathered for the given arrival intensity. The parame-
ters for each algorithm was set to give the highest possible success rate.

Algorithm Success rate xsession Comment
Token 71% 1.73s # of tokens was 14
Percent Thinning 63% 1.36s Allow percentage was 68%
Call Gapping 67% 1.32s Gap interval length was 0.08s

5.2 Changing arrival intensity
At first, simulations were run with the same algorithm parameters as in the previous cases.

Algorithm Success rate xsession Algorithm parameters
Token 62% 1.23s # of tokens was 14
Percent Thinning 42% 1.30 Allow percentage was 68%
Call Gapping 34% 1.33 Gap interval length was 0.08s

Obviously, this comparison is not fair to neither Percent Thinning nor Call Gapping, as
the algorithm parameters could not change due to changing input traffic. Therefore, we also
investigated how these algorithms would behave if the parameters were set in an “optimal”
way. The following table contains the results from these simulations:

Algorithm Success rate xsession Algorithm parameters
Percent Thinning 58% 0.88s 100%/34%/100%
Call Gapping 60% 1.06s 0.001s/0.13s/0.001s

The same arrival intensities as in the previous cases. However, Call Gapping and Percent
Thinning both uses optimal values for interval lengths and blocking percentage when intensi-
ties change. This is similar to having a perfect control system that follows the imput process
exactly.

Note that parameters are given for low/high/low intensities.

5.3 Conclusions
Given the results above, it can be seen that the token algorithm performs very well indeed, even
when the other two are given “optimal” parameters in terms of interval length and blocking
percentage.

While calculating the best values to use for algorithm parameters, Call Gapping proved to
be very sensitive to even small changes in interval length.

In line with Berger, Call Gapping performs better than Percent Thinning, except in the
transient case with constant algorithm parameters. This might be another sign that Call Gap-
ping is very sensitive and that the interval length must be set very carefully.

6 Future Work
This paper presents a snapshot of some work in progress in the research of distributed object
oriented systems. Many more areas remain to be investigated.

As services are likely to have varying processing requirements, tokens could possibly be
refined to something like a currency system, where different services need different amounts
of tokens to be allowed into the system.

References
[1] U. Körner and C. Nyberg, Overload Control in Communication Networks, GLOBECOM

’91, Phoenix 1991.

[2] A. W. Berger, Comparison of Call Gapping and Percent Blocking for Overload Control
in Distributed Switching Systems and Telecommunication Networks, IEEE Transactions
on Communications, vol. 39, no.4, April 1991.

[3] O. Kreimen and J. Kramer, Methodical analysis of adaptive load sharing algorithms,
IEEE Transactions on parallel and Distributed systems, Vol. 3, No. 6, Nov. 1992.

[4] T. Kunz, The influence of different workload descriptions on a heuristic load balancing
scheme, IEEE Transactions on Software Engineering, vol. 17, no. 7, July 1991.

[5] S. Jordan and P. Varaiya, Control of multiple service, multiple resource communication
networks, Proceedings of Infocom’91, Bal Harbour, Florida, 1991.

[6] A. Parhar and M. Rumsewicz, A preliminary investigation of performance issues associ-
ated with freephone service in a TINA consistent network, Proceedings of the TINA’95
Conference, Melbourne, Australia. 1995.

[7] N. Widell, M. Kihl and C. Nyberg, Measuring real-time performance in distributed
object-oriented systems, Proceedings of Performance and Control of Network Systems
III, Boston, 1999.

[8] M. Kihl, N. Widell and C. Nyberg, Load Balancing Algorithms for TINA Networks, The
16:th International Teletraffic Congress, Edinburgh, 1999.

[9] C. McArdle, N. Widell, C. Nyberg, E. Lilja, J. Nyström and T. Curran, Simulation of a
Distributed CORBA-based SCP, IS&N 2000, Athens, Greece, 2000.

[10] ACTS Project AC333 MARINER, Deliverable 9: Project Final Report, Dublin, 2000.

