Participants know best : The effect of calibration method on data quality

Holmqvist, Kenneth; Nyström, Marcus; Andersson, Richard; van de Weijer, Joost

Published in:
[Publication information missing]

2011

Citation for published version (APA):

Total number of authors: 4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Participants know best – the effect of calibration method on data quality

BACKGROUND

1. Automatic calibration
 - Software decides when eye feature samples are recorded.

2. Operator-controlled
 - The operator clicks a button to record eye feature samples.

3. Participant-controlled: The participant clicks a button to record samples.

Challenges

- The participant must look straight at the calibration target, and keep the eye still. Also, optical conditions may confuse gaze estimation.
- The participant may move his eye during calibration for a variety of reasons:
 - Anticipation (looking too soon)
 - Square-wave jerks, glissades, blinks
 - Distraction
 - Poor task instructions
 - Etc.
- Gaze estimation may be hampered due to:
 - Reflection in glasses
 - Split corneal reflection in lenses
 - The corneal reflection is in the sclera
 - The pupil or corneal reflection are covered by eyelashes or eyelids
 - Etc.

METHOD

Data recording

- Four stations with identical SMI HiSpeed 500 Hz binocular eye-trackers.
- Six operators (five experienced, one novice)
- 149 non-prescreened students of economics.
- Two recordings: Just after calibration, and after 15 minutes of reading.

- Automatic (44), Operator-controlled (62), Participant-controlled (43)

Glasses (12), lenses (35), uncorrected vision (102)

- Mascara (37), clean eye-lashes (112)
- Dominant left eye (64), right eye (85)
- Eye-lashes directed down (8), forward (32), up (109)
- Eye colour: medium (13), narrow (3), open (133)

RESULTS

Accuracy (offset) is predicted by:

<table>
<thead>
<tr>
<th>Predictor</th>
<th>min.o6</th>
<th>max.o6</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant-controlled</td>
<td>0.0001</td>
<td>0.0008</td>
<td>0.0001</td>
</tr>
<tr>
<td>Operator-controlled</td>
<td>0.0000</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>Off-center target</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>Target placed low</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>Measurement error</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>EyeColorBlue</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>EyeColorGreen</td>
<td>0.0012</td>
<td>0.0018</td>
<td>0.0018</td>
</tr>
<tr>
<td>VisionAlbGlaze</td>
<td>0.0009</td>
<td>0.0013</td>
<td>0.0002</td>
</tr>
<tr>
<td>VisionAlbLenses</td>
<td>0.0008</td>
<td>0.0012</td>
<td>0.0005</td>
</tr>
<tr>
<td>VisionEyeLash</td>
<td>0.0007</td>
<td>0.0011</td>
<td>0.0005</td>
</tr>
<tr>
<td>OperatorAccuracy</td>
<td>0.0006</td>
<td>0.0010</td>
<td>0.0003</td>
</tr>
<tr>
<td>ParticipantAccuracy</td>
<td>0.0006</td>
<td>0.0010</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Amount of data loss is predicted by:

<table>
<thead>
<tr>
<th>Predictor</th>
<th>min.o6</th>
<th>max.o6</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator-controlled</td>
<td>0.0005</td>
<td>0.0009</td>
<td>0.0003</td>
</tr>
<tr>
<td>VisionAlbGlaze</td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0003</td>
</tr>
<tr>
<td>VisionAlbLenses</td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0003</td>
</tr>
<tr>
<td>VisionEyeLash</td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Data loss: Higher position on monitor better

- Glasses make data loss worse
- Open eye physiology better
- Accuracy decreases over time

RESULTS

Accuracy is better with experienced operators

- Operators 2-6 had extensive experience with this particular eye-tracker.
- Operator 1 had only recorded with head-mounted eye-trackers.

Dominant eye (Miles test) gives better accuracy

- No difference between L and R eye.
- Left dominant (LD) and right dominant (RD) eye give better accuracy than non-dominant eyes (LN and RN).