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Gaussian integrals and Rice
series in crossing distributions
�
to compute the distribution
of maxima and other features
of Gaussian processes
Georg Lindgren

Lund University

Abstract. We describe and compare how methods based on the classi-
cal Rice's formula for the expected number, and higher moments, of
level crossings by a Gaussian process stand up to contemporary numer-
ical methods to accurately compute the statistical distribution of the
maximum over a �xed interval, the length of excursions above a level,
and the geometry of oscillations, and other characteristics of the sample
paths.

We illustrate the relative merits in accuracy and computing time
of the Rice moment methods and the exact numerical method, devel-
oped since the late 1990s, on three groups of distribution problems, the
maximum over a �nite interval and the waiting time to �rst crossing,
the length of excursions over a level, and the joint period/amplitude of
oscillations.

We also treat the notoriously di�cult problem of dependence between
successive zero crossing distances. The exact solution has been known
since at least 2000, but it has remained largely unnoticed outside the
ocean science community.

Extensive simulation studies illustrate the accuracy of the numerical
methods. As a historical introduction an attempt is made to illustrate
the relation between Rice's original formulation and arguments and the
exact numerical methods.

MSC 2010 subject classi�cations: Primary 60G17; secondary 60-08, 60G10,
60G70, 65C50.
Key words and phrases: distribution of maximum, Durbin's formula,
excursion length distribution, �rst passage, multivariate normal proba-
bilities, period/amplitude distribution, Rice's formula, RIND program,
statistical computation, successive crossing distance distribution, trun-
cated normal moments, WAFO toolbox.
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2 GEORG LINDGREN

1. CROSSING DISTRIBUTIONS � WHY AND HOW

�In 1944 and 1945, S.O. Rice published a monumental study of noise, generally
regarded to be the single most useful source of information about Gaussian noise,�
(Millman, 1984, p.41). The two papers, Rice (1944, 1945), were reprinted in (Wax,
1954, pages 133�294).

The strong words in the quote illustrate how it came about that abstract theo-
retical concepts, like Gaussian process, correlation function and power spectrum,
linear and non-linear �lters, became common goods in one, very specialized, �eld
of engineering, namely communication theory. Steve Rice was a member of the Bell
Labs Mathematical and statistical research center. Rice, quoting Wiener (1930),
Khinchin (1934), and Cramér (1940) on Fourier representation of the covariance
function, remarks (Rice, 1944, p. 32) that �Khintchine and Cramér appear to be in-
terested primarily in questions of existence, representation, etc., and do not stress
the concept of the power spectrum�. Middleton (1988) gives a personal history.

Rice's formula for the average number of level crossings in correlated Gaussian
noise in continuous time is perhaps the most well-known of the many original
contributions in the two articles. The formula was presented as part of an inves-
tigation of the �uctuations in the length of the intervals between crossings, but
it has earned its reputation as a fundamental property of stationary stochastic
processes.

In wider perspectives, Rice's study of random noise in communication sys-
tems had far-reaching consequences outside communication engineering to lift
the statistical methods beyond simple distributions, correlation, and energy spec-
tra. Gaussian processes and Gaussian �elds in linear and non-linear �lters were
quickly accepted as standard tools in ocean engineering (StDenis and Pierson,
1953), aviation engineering (Miles, 1954), acoustics (Lyon, 1956), automatic con-
trol (Lanning and Battin, 1956), mechanical engineering (Crandall, 1958), and
many other �elds of science and engineering. Blake and Lindsey (1973) give an
overview of the early history, with a short follow up by Abrahams (1986). Kratz
(2006) gives a more up to date and theoretical synthesis.

A recurring theme in the mentioned applications is the topographical features
of a random function, such as the crossing intervals and excursion lengths, wave
height and wave length, amplitude of fatigue-causing �uctuations in a mechan-
ical load process. We have found more than two dozen scienti�c publications in
the English language during 1950�1959 dealing with such features and half of
them deal with the expected number of axis crossings and the distribution of axis
crossing intervals. Slepian (1962) summarizes known results and gives many new
ones, with strict proofs, including the �Slepian's comparison lemma�, (Leadbetter
et al., 1983, Thm. 7.4.2). Even today, Rice's approximations based on crossing mo-
ments continue to �nd new applications, i.a. in material science, (Estrade et al.,
2012), laser physics and optics, (Youssef et al., 1996), to mention a few. A sur-
vey of solved and unsolved crossing problems from science and technology was
presented by Munakata (1998).

Rice's generalized crossing formulae are also used to approximate the distribu-
tion of the maximum value of a random process in time or in combined time and
space. Crossing moments in two and three dimensions are simple to calculate and
they often give good results when used for extreme value distributions over short
intervals.
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GAUSSIAN INTEGRALS AND RICE SERIES 3

We shall, in the present paper, describe how Rice's �in and exclusion� series,
(Rice, 1945, Eq. (3.4-11)), is replaced by Durbin formula (Durbin, 1985), later
re�ned by Rychlik (1987b, 1990), to give the exact ��rst crossing� distribution.
Highly e�cient algorithms for high-dimensional normal integration, developed by
i.a. Genz (1992, 2012), Azaïs and Genz (2013), and Brodtkorb (2006), made the
theoretical Durbin's formula useful, and we shall illustrate how these are imple-
mented in dedicated and simple-to-use software for computation of topographical
distributions in Gaussian processes.

In Section 2 we summarize and comment on Rice's original arguments around
three topographical themes, the expected number of axis crossings, the distribu-
tion of the interval between, and number of crossings, and the distribution of local
extremes. We emphasize their relations to modern terminology and formulations.

The next three sections intend to show how the Rice series and the modern
computational tools can be used on three types of general statistical problems.
The focus is more on the �exibility and generality of the di�erent methods and less
on the formal complexity and di�culties of the numerical computations, which
are well described in the cited works, (Genz, 1992, 2012; Azaïs and Genz, 2013;
Brodtkorb, 2006). We deal with single-parameter problems only, leaving the very
di�erent area of extremes of Gaussian �elds outside the treatment.

Section 3 deals with the distribution of two related quantities that can be
observed in a continuous stochastic process: the time from start to the �rst up-
crossing of a �xed level, and the maximum value over a �nite length interval. We
discuss the software by Brodtkorb and Genz, for calculating the distribution of
the maximum, and compare the results with bounds based on Rice's crossings for-
mula. The applications are plenty, just to mention a few from statistics, multiple
tests and con�dence bands in regression, (Rychlik, 1992a; Efron, 1997; Azaïs and
Genz, 2013; Azaïs et al., 2018), statistical machine learning and Gaussian process
regression, (Rasmussen and Williams, 2006), as well as applications in science and
engineering.

Section 4 deals with the statistical distribution of the length of excursions
over a critical level, and with the dependence between successive zero crossings
intervals, one of Rice's original problems. We compare the Rice series solutions
with the exact solutions based on Gaussian integration, with regards to generality
and computational e�ciency. A new numerical algorithm is introduced for exact
computation of the joint distribution of successive zero crossing intervals.

In Section 5 we give examples of a more complicated characteristic of a sta-
tionary Gaussian process, the distribution of wave amplitude and period. This
is a quantity of great importance in mechanical and ocean engineering, regularly
employed in fatigue analysis and marine safety studies.

An appendix contains details about the example processes, technical details
about the computations, and a presentation of the computational tool, the RIND
function in the Wafo toolbox, (WAFO-group, 2017a).

2. RICE'S FORMULA FOR AXIS CROSSINGS AND EXCURSIONS

In the second of the two papers, Rice (1945) introduces i.a. three themes of
particular interest for the present study: the expected number of axis crossings,
the distribution of the interval between and the number of crossings, and the
distribution of local extremes.
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4 GEORG LINDGREN

Table 1

Some examples of notation; +/− = upcrossing/downcrossing

ν+u (t), ν
+
u (X, t) upcrossing intensity of level u at time t by process X(·)

ν+−u (s, t) bivariate intensity of upcrossing at s and downcrossing at t

νm+
u (t) m-variate upcrossing intensity at t = (t1, . . . , tm)
αu,αu(t) expected number of u-upcrossings in [0, t]

αum,αum(t) mth factorial moment of number of u-upcrossings in interval [0, t]

ν̃m+
u (t) m-variate upcrossing intensity at t = (t1, . . . , tm)

when sample path satis�es an initial condition,
e.g. X(0) < u or X(0) = u, upcrossing

α̃um(t) mth factorial moment for selected sample paths
X(t) = u and Xt = u X(tk) = u for k = 1, . . . ,m,
XI ≤ u X(t) ≤ u for t ∈ I,
µ+
u (X, t) u-upcrossing intensity at t with X[0,t] ≤ u.

2.1 �Expected number of zeros� (Rice, 1945, Sec. 3.3)

Rice's formula for the expected number of level crossings per time unit in
a stationary stochastic process does not occupy any prominent place in Rice's
pioneering work. Rather, it is expressed as the probability that a di�erentiable
stochastic process X(t), stationary or not, will have a zero crossing in a time
interval τ , τ + dτ , (Rice, 1945, Eq. (3.3-2)).

Rice's formula for crossings. The probability that the [di�erentiable]
process X(t) has a zero crossing in τ , τ + dτ is equal to

ν0(τ) dτ = dτ

∫ ∞
−∞
|y| p(0, y; τ) dy,

where p(u, y; τ) is the joint probability density of X(τ) and X ′(τ).

Rice's arguments do not require that X(t) is stationary. On the contrary, he
argues from a �random curve� generated by random variables a1, a2, . . . , aN ,

y = F (x; a1, a2, . . . , aN ).

In the vein of (Kac, 1943), Rice presents the formula for the expected number of
solutions to the equation F (x) = 0 as the integral of the crossing intensity ν0(x),
which obviously may depend on x. Rainal (1988) gives an interesting and personal
history of the origin of Rice's formula.

Rice applies the crossings formula to the sum of random harmonics and arrives
at the stationary Gaussian form for the expected number of upcrossings of a level
u per time unit, (Rice, 1945, Eqn. (3.3-15)),

�Rice's formula�

ν+u = e−u
2/2ψ0

1

2π

[
−ψ

′′
0

ψ0

]1/2
,

assuming the mean is zero and with ψt denoting the covariance function.
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GAUSSIAN INTEGRALS AND RICE SERIES 5

2.2 �The distribution of zeros� (Rice, 1945, Sec. 3.4)

For the distribution of crossing intervals and the number of zeros Rice acknowl-
edges the di�culty and suggests a partial solution and a hint for an approximating
scheme.

The Rice inclusion-exclusion series (Rice, 1945, Eq. (3.4-11)) for the proba-
bility density of the length of axis crossing intervals is a Bonferroni type series.
It reads as follows, in Rice's arguments and notation and with slightly modi�ed
formulation, valid for a stationary process.

Rice's in- and exclusion series for excursions. Consider the class of
sample curves having a zero at t = 0 and compute the functions p0(τ), p1(r, τ),
p2(r, s, τ), etc., associated with this class, where

• p0(τ) dτ (= ν0(τ) dτ) is the probability the curve having a zero in dτ ; (i.e.
in τ , τ + dτ)
• p1(r, τ) dτ dr is the probability the curve having zeros in dτ and dr
• p2(r, s, τ) dτ dr ds is the probability the curve having zeros in dτ , dr, and

ds
• etc.

The method then leads to an expression for P0(τ) dτ , the probability of having a
zero at 0 and a zero in τ , τ + dτ but none between 0 and τ . It is, without the dτ
factor,

(1)

P0(τ) = p0(τ)− 1

1!

∫ τ

0
p1(r, τ) dr +

1

2!

∫ τ

0

∫ τ

0
p2(r, s, τ) dr ds

− 1

3!

∫ τ

0

∫ τ

0

∫ τ

0
p3(r, s, t, τ) dr dsdt+ · · ·

The restriction to �the class of sample curves having a zero at t = 0� does not
imply that the probabilities in (1) are conditional probabilities, �given the process
takes the value 0 at t = 0�, and not any other value. Rather, it means that we have
selected one of the time points where the process crosses the zero level, and called
it t = 0. The conditional probability density is obtained by dividing throughout
by ν0(0).

Rice backed away from the di�cult integrals involved in the higher order ap-
proximations. Interestingly enough, he mentions (Rice, 1945, p.70) the possibility
to amend the condition leading to p0(τ) with the condition that the process has
constant sign at equally spaced points between 0 and τ . He concludes that also
these integrals are hard to evaluate; cf. Durbin's formula, Fact 2 in Section 3.1.

Example 1 (Up- to downcrossing interval). We illustrate the use of the in-
and exclusion formula to �nd a partial solution to the density of the interval
between an upcrossing and the following downcrossing of the mean value level.
Details about the numerical computations are given in Section 4.

In Rice's words, we �rst seek the probability that the process passes through
zero in the interval τ , τ +dτ with a negative slope, when it is known that it passes
through zero at τ = 0 with a positive slope. Let, with Rice (1945, Eq. (3.4-12)),

ν+−0 (s, t) ds dt = dsdt

∫ ∞
y1=0

∫ 0

y2=−∞
y1(−y2) p(0, 0, y1, y2; s, t) dy1 dy2(2)
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6 GEORG LINDGREN

be the probability that the process has a zero upcrossing in ds and a zero down-
crossing in dt. We use here the signed superscript notation that became standard in
applications of the �inclusion and exclusion� series for crossing analysis, (Longuet-
Higgins, 1962). For example, in (1),

p1(r, τ) = ν±±(r, τ) =

∫ ∞
−∞

∫ ∞
−∞
|y1||y2| p(0, 0, y1, y2; r, τ) dy1 dy2.

Expressed in terms of a conditional expectation of

X ′(0)+ = max(0,X ′(0)), X ′(t)− = −min(0,X ′(0)) ≥ 0,

we can write the intensity in (2) as

ν+−0 (0, t) = E[X ′(0)+X ′(t)−
∣∣ X(0) = X(t) = 0]× fX(0),X(t)(0, 0),

which is the form we shall use in the examples. Rice computes ν+−0 (0, τ)/ν+(0)
as an explicit �rst approximation to the up-to-down zero-crossing distance in a
stationary Gaussian process.

To get more terms in the series we have to add extra downcrossings between 0
and t,

ν+−−0 (0, s, t) = E[X ′(0)+X ′(s)−X ′(t)−
∣∣ X(0) = X(s) = X(t) = 0]

× fX(0),X(s),X(t)(0, 0, 0),

ν+−−−0 (0, s1, s2, t)

= E[X ′(0)+X ′(s1)
−X ′(s2)

−X ′(t)−
∣∣ X(0) = X(s1) = X(s2) = X(t) = 0]

× fX(0),X(s1),X(s2),X(t)(0, 0, 0, 0).

The excursion time density approximated with the �rst three terms in the Rice
in- and exclusion series is then

fT (t) ≈ 1

ν+0 (0)

{
ν+−0 (0, t)−

∫ t

s=0
ν+−−0 (0, s, t) ds

+

∫∫
0<s1<s2<t

ν+−−−0 (0, s1, s2, t) ds1ds2

}
.

Figure 1 shows the over- and underestimation of the excursion density with one,
two, and three terms in the series. The process is low frequency Gaussian white
noise with variance one and mean excursion length π ≈ 3.14. In Section 4.4 we
will see the exact density, Figure 7.

2.3 �Distribution of local maxima� (Rice, 1945, Sec.3.6)

Rice (1945, Sec.3.6) presented a result of quite some practical interest, namely
the distribution of the height of local maxima (and minima) of a normal process.

Rice's distribution for local maxima. Let y = F (x; a1, . . . , aN ) be a
random curve. If suitable conditions are satis�ed, the probability that y has a
maximum in the rectangle (x1,x1 + dx1, y1, y1 + dy1), dx1 and dy1 being of the
same order of magnitude, is

−dx1 dy1

∫ 0

−∞
ζ p(y1, 0, ζ) dζ,
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GAUSSIAN INTEGRALS AND RICE SERIES 7

Fig 1. Rice series ap-
proximations to the
axis excursion time
density for low fre-
quency white Gaussian
noise. First order
(dash-dotted) and
third order (dashed)
overestimates the
density, second or-
der (solid) under-
estimates it.

and the expected number of maxima of y in a ≤ x ≤ b is obtained by integrating
this expression over the range −∞ < y1 < ∞, a ≤ x1 ≤ b. Here p(ξ, η, ζ) is
the probability density function of ξ = F (x1; a1, . . . , aN ) and the �rst and second
order derivatives of F (x1).

Applying the formula to a Gaussian process, Rice derives the explicit density for
the height of a maximum selected at random from the universe of maxima. Rice's
formulation is actually very close to the frequency interpretation of the horizontal
window conditioning by Kac and Slepian (1959). The beauty of the result is not
in the analytical form of the density (see (Lindgren, 2013, Eq. (8.37))) but in its
probabilistic representation.

Rice's representation of local maxima. The distribution of the height
of a local maximum X(tmax) in a Gaussian process with variance σ2X is equal
to the distribution of a weighted sum of a standard Rayleigh variable R and a
standard normal variable U ,

X(tmax)
L
= σX{

√
1− ε2R+ εU},

where ε =
√

1− σ2X′/(σXσX′′) is a measure of the width of the spectral density of

the process.

3. MAXIMUM AND THE FIRST LEVEL CROSSING

We start our exposé of Rice's formula and its extensions with the simplest,
and perhaps most important, of applications, namely how to approximate the
distribution of the maximum of a di�erentiable Gaussian process over a bounded
interval. We �rst give the modern formulation of the Kac-Rice formula for the in-
tensity of level upcrossings, and the related formula by Durbin (1985), extended
by Rychlik (1987b), for the exact intensity of �rst upcrossing time and for the
maximum distribution. In subsequent subsections we present and discuss the two
available alternatives to compute the distribution: the Rice method with alternat-
ing Rice series of factorial moments up to third order, and the numerical method
based on numerical integration of Gaussian distributions.
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8 GEORG LINDGREN

3.1 Rice's and Durbin's formulae

Let {X(t), t ≥ 0} denote a stochastic process, not necessarily stationary, that
satis�es some quite natural conditions (see Azaïs and Wschebor, 2009, Ch. 3).
Speci�cally, we assume that the sample paths are continuously di�erentiable with
non-degenerate joint density fX(t),X′(t)(x,u), and that, for any �xed level u and �-
nite interval I, there are no points in I where X(t) = u,X ′(t) = 0. This, of course,
implies that each crossing is either a strict upcrossing or a strict downcrossing.
Write

Mt = max
0≤s≤t

X(s), N+
u (t) = N+

u (t;X),

for the maximum over [0, t] and the number of u-upcrossings in [0, t], respectively.

Fact 1 (Rice's formula). The intensity of u-upcrossings by X(t) at time t is

ν+u (X, t) = E[X ′(t)+
∣∣ X(t) = u] fX(t)(u),

and the expected number of upcrossings in [0, t] is the integral

αu1(X, t) =

∫ t

0
ν+u (X, s) ds =

∫ t

0
E[X ′(s)+

∣∣ X(s) = u] fX(s)(u) ds.

For a stationary Gaussian process with mean 0, V[X(t)] = λ0, V[X ′(t)] = λ2,

ν+u =
1

2π

√
λ2/λ0 exp{−u2/2λ0}.

As anticipated by Rice, the intensity of �rst crossing can be obtained by adding
conditions on the process in the interval preceding the crossing, for example, that
X(s) does not have any u-upcrossings before t. To formulate an exact relationship
we need to incorporate the starting value, and introduce the indicator function
that the process starts below u and has no u-upcrossings in (0, t),

1u(X, t) = 1{X(0) ≤ u} × 10u(X, t) = 1{X(s) ≤ u for 0 ≤ s ≤ t}.

This leads ultimately to a modi�ed Durbin's formula for the restricted �rst
upcrossing intensity, given in the following form by Rychlik (1987b, Theorem 2).

Fact 2 (Durbin's formula). The intensity at time t of �rst u-level upcrossing
by X(t) is

µ+u (X, t) = E[1u(X, t)X ′(t)+
∣∣ X(t) = u] fX(t)(u).(3)

Fact 3 (The record method). (Rychlik, 1990) The relation between the max-
imum distribution P(Mt > u) = 1− E[1u(X, t)] and the restricted �rst upcrossing
intensity d(1)(X, t) is

P(Mt > u) = P(X(0) > u) +

∫ t

0
E[1u(X, s)X ′(s)+

∣∣ X(s) = u] fX(s)(u) ds,

representing the fact that either the process starts above u, or it starts below u and
has a �rst u-upcrossing before t.

The normalized function

fTu(t) =
1

P(X(0) ≤ u)
µ+u (X, t), t > 0,(4)

is the density of time to �rst upcrossing for sample paths that start below u.
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GAUSSIAN INTEGRALS AND RICE SERIES 9

3.2 Maximum of a stationary Gaussian process; simple Rice method

Due to its simplicity, the Rice method has found wide applications in engineer-
ing and science. It simply bounds the probability of high values in a continuous
process by means of the expected number of level crossings, which involves the
joint distribution of the process and its derivative.

The upper Rice bound for the maximum tail reads,

P(Mt > u) ≤ P(X(0) ≥ u) + P(N+
u (t) > 0) ≤ P(X(0) ≥ u) + E[N+

u (t)]

= P(X(0) ≥ u) +

∫ t

s=0

∫ ∞
z=0

z fX(s),X′(s)(u, z) dz ds.

If X(t) is stationary, the bound is P(Mt > u) ≤ P(X(0) ≥ u) + t ν+(1), and,
explicitly for a stationary Gaussian process,

P(Mt > u) ≤ 1− Φ

(
u−mX

σX

)
+

t

2π

σX′

σX
exp

{
−(u−mX)2

σ2X

}
.

We will see, in Section 3.4, that the Rice bound for the maximum cdf can
be very accurate: as a rule of thumb, above the upper tenth percentile of the
distribution.

3.3 Calculation of the maximum distribution by Gaussian integrals

To be useful for numerical calculations, the �in�nite dimensional� expectation
E[1u(X, s)X ′(s)+

∣∣ X(s) = u] has to be replaced by a �nite dimensional one,
before it is integrated over time. For a smooth Gaussian process over a short
interval one could hope that few points would su�ce; Arellano-Valle and Genton
(2008) give an example of how to proceed. A long interval or a non-stationary
mean/covariance function should require a large and sometimes dense point grid,
and lead to almost singular covariance matrices. Long computation times and
numerical complications should be expected.

The �rst algorithm that had a potential to develop into a general tool for
fast and accurate computation of the distribution of the maximum of a smooth
Gaussian process over a �nite interval seems to have been published by Genz
(1992, 1993). The algorithm was based on an ordered Cholesky factorization of
the covariance matrix (as all subsequent algorithms); it was later improved by
Genz and Kwong (2000).

Another line of development was followed by Rychlik (1992b) and Podgórski
et al. (2000), who used an explicit regression technique to select the integration di-
mensions (Lindgren and Rychlik, 1991a). This regression technique is very similar
to and playes the same role in the integration algorithm as the Gaussian processes
regression to reduce uncertainty in modern bayesian Machine learning; see e.g.,
(O'Hagan, 2006; Rasmussen and Williams, 2006).

Brodtkorb (2006) combined the technique in (Genz, 1992; Genz and Kwong,
2000) with the regression technique. Together with removal of redundant variables
and truncation of the Cholesky factorization, this led to additional improvements
in speed and accuracy.

Implementations of the various dialects of the Genz-Brodtkorb algorithms ex-
ist, either as �stand-alone� packets or as parts of general projects. The Matlab

function RIND is part of the Wafo toolbox; (WAFO-group, 2017a,b). It is built on
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10 GEORG LINDGREN

compiled Fortran and C++ routines and is very fast. There is also a Python
implementation for Linux systems. The Matlab package MAGP written by Mer-
cadier (2006b) is available at (Mercadier, 2006a), and is based on RIND.

Genz (2012) presents a list ofMatlab routines for computation of the Gaussian
maximum distribution, i.a. MGP. Many of the underlying algorithms are available
as options in the Wafo toolbox. An R-package is available at (Genz et al., 2017).

3.4 Examples of the �exact� methods

We give examples of the use of the Rice, RIND, and MGP methods for the
maximum of a stationary Gaussian process, and compare speed and accuracy. We
also compute the �rst upcrossing time distribution, and compare with observa-
tions, generated by exact simulation from the covariance function in the Gaussian
model. The Matlab code for RIND is described in Appendix D, and that for
MGP in (Azaïs and Genz, 2013). Both MGP and RIND can use symbolic covari-
ance functions as arguments.

3.4.1 Maximum of Gaussian processes with �sinc� and �Gaussian� covariance
The low frequency white noise process has constant spectral density up to a �nite
cut-o� point and its covariance function is the �sinc� function. The standardized
version, with V[X(t)] = V[X ′(t)] = 1, has the covariance function

rX(t) =
sin
√

3t√
3t

.

Figure 2 shows the maximum distribution approximated by the Rice method
and by the RIND approach, compared to the empirical distribution function from a
simulation experiment. We illustrate the results for three di�erent interval lengths,
t = 10, 20, 80. The �gure shows the lower bound to the tail 1− FMt(u) as a solid
curve. The Rice bound, which is an upper bound to the tail, is shown as dots.
The empirical distribution, based of 10000 replicates, is shown as the dashed line.
The RIND approximation is very accurate.
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Fig 2. Distribution of maximum over intervals of length t = 10, 20, 80 for standardized low
frequency white Gaussian noise. Left: the tail of the CDF. right: the CDF. Solid curve: the RIND
approximation; Dots: the Rice bound; Dashed curve: the simulated CDF.

To get an idea of the uncertainties and reproducibility we computed the ap-
proximations for two interval lengths, 2, 10 seconds, and six di�erent levels, -2, -1,
. . . , 3, for the Gaussian low-frequency white noise process. Table 2 shows: com-
puted upper and lower bounds for P(Mt > u) from MGP, and computed lower
bound from RIND.
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GAUSSIAN INTEGRALS AND RICE SERIES 11

Table 2

Computed and simulated exceedance probabilities for Gaussian �sinc� process, computed with
MGP and RIND, together with simulated values; interval length = 2 and 10 seconds.

T = 2 Levels: -2 -1 0 1 2 3

MGP upper 0.9997 0.9821 0.7921 0.3502 0.0660 0.0049
lower 0.9997 0.9817 0.7895 0.3489 0.0647 0.0048

RIND lower 0.9997 0.9820 0.7916 0.3496 0.0653 0.0049

simulation 4 000 000 repl 0.9997 0.9819 0.7912 0.3494 0.0657 0.0049

T = 10 Levels: -2 -1 0 1 2 3

MGP upper 1.0000 1.0002 0.9954 0.7750 0.2209 0.0189
lower 1.0000 1.0000 0.9944 0.7712 0.2179 0.0179

RIND lower 1.0000 1.0000 0.9947 0.7751 0.2199 0.0183

simulation 4 000 000 repl 1.0000 1.0000 0.9947 0.7752 0.2206 0.0190

As a second example we compare MGP and RIND on a Gaussian process with
�Gaussian�, i.e. squared exponential covariance function

rX(t) = exp(−t2/2),

which is an example in (Azaïs and Genz, 2013, Ex. 5.1). In contrast to the oscil-
lating �sinc� covariance, the Gaussian covariance decreases with time, and there
is no typical periodicity in the sample functions. The results in Table 3 deviate
slightly from those in (Azaïs and Genz, 2013, Table 1), since we use a denser in-
tegration grid. Both methods give good results, but RIND is the fastest. For large
levels the simple Rice method is best.

Table 3

Computed and simulated exceedance probabilities with �Gaussian� covariance, computed with
MGP and RIND, together with simulated values; interval length = 1 second.

T = 1 Levels: -2 -1 0 1 2 3

MGP upper 0.9944 0.9279 0.6528 0.2542 0.0443 0.0031
lower 0.9944 0.9275 0.6524 0.2540 0.0441 0.0030

RIND lower 0.9944 0.9279 0.6527 0.2543 0.0446 0.0029

simulation 4 000 000 repl 0.9944 0.9280 0.6527 0.2543 0.0445 0.0032

Experiments with longer intervals, up to 100 seconds, reveal that RIND, for
some covariances, can give good results up to at least the upper one percent
quantile, but for others, it underestimates the exceedance probability.

3.4.2 Time to �rst upcrossing The time to �rst upcrossing is a �dual� to the
maximum over an interval, and the normalized function fTu(t), (4), is the density
of �rst upcrossing time for samples that start below u. It can be computed directly
by the RIND function, as described in Appendix D.

Figure 3 shows the conditional pdf, fTu(t), for time to �rst upcrossing of levels
u = 0, 1 for realizations starting below u. The histograms are based on about
650 000 realizations. The oscillating �sinc� covariance function induces small os-
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12 GEORG LINDGREN

cillations in the �rst crossing density for level u = 1, and these are found by the
algorithm.
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Fig 3. Left: Pdf computed by RIND for time to �rst upcrossing of zero level for low frequency
Gaussian white noise, for realizations starting below zero. Right: Similar for level u = 1. The
histograms are based on about 650 000 realizations.

3.5 Theoretical aspects on Rice series for maximum and �rst upcrossing

The Rice in- and exclusion series for the time to �rst upcrossing is a simpli�ed
version of the original Rice series for crossing intervals, (1), the di�erence being the
starting condition: X(0) < u instead of X(0) = u, upcrossing. Even though the
formula is simple and often referred to in applications, the theoretical foundations
are only partially explored, and its value as a computational tool is limited. We
here refer to the investigations by Azaïs and Wschebor (2002); see also (Azaïs
and Wschebor, 2009, Ch. 5).

Let Uu = Uu(X,T ) be the number of upcrossings of the level u by X(t) in the

interval [0,T ], and write U
[m]
u = Uu(Uu− 1) · · · (Uu−m+ 1) for the mth factorial.

Then,

α̃m = E[U [m]
u 1{X(0)<u}]

is the factorial moment of the number of upcrossings, counting only samples that
start below u. We state the Rice series for P(Mt > u), and then give some details
on its validity.

�The Rice series�

1− FMt(u) = P(X(0) ≥ u) +

∞∑
m=1

(−1)m+1 α̃m(t)

m!
,(5)

where, with t = (t1, . . . , tm),

α̃m(t) =

∫
[0,t]m

ν̃m(t) dt1 · · · dtm,(6)

is the factorial moment, and

ν̃m(t) =

∫ u

x=−∞
E
[∏m

k=1
X ′(tk)

+
∣∣ X(0) = x,X(t1) = · · ·X(tm) = u

]
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GAUSSIAN INTEGRALS AND RICE SERIES 13

× fX(0),X(t1),...,X(tm)(x,u, . . . ,u) dx,

=

∫ u

−∞
fX(0)(x) E

[∏m

k=1
X ′(tk)

+
∣∣ X(0) = x,X(t1) = · · ·X(tm) = u

]
(7)

× fX(t1),...,X(tm)|X(0)=x(u, . . . ,u) dx,

the mth order u-upcrossing intensity for sample paths starting below u.
The alternating Rice series o�ers an automatic error control if one wants to

compute the maximum distribution, under the condition that the factorial mo-
ments are �nite and the series converges. We quote the results by Azaïs and
Wschebor (2002) for Gaussian stationary processes.

Fact 4. (Azaïs and Wschebor, 2009, Thm. 5.6 and 5.7) a) If the covariance
function r(t) for the stationary Gaussian process X(t), t ≥ 0, has a Taylor ex-
pansion at the origin that is convergent at 2t, and the sample paths are in�nitely
di�erentiable, then the Rice series for max[0,t]X(s) converges and (5) can be used
to compute the maximum distribution.

b) If the sample functions are su�ciently di�erentiable, the truncated sum

P(X(0) > u) +
K∑
m=1

(−1)m+1 α̃m(t)

m!
(8)

over- or underestimates P(Mt > u), depending on if K is odd or even. (For precise
conditions on the degree of di�erentiability, see (Azaïs and Wschebor, 2009).)

In (4) we encountered the (conditional) density f̃Tu(t) for the time Tu of �rst
upcrossing for sample paths that start below u, and obviously

P(Mt ≥ u) = P(X(0) ≥ u) + P(X(0) < u)× P(Tu ≤ t | X(0) < u)

= P(X(0) ≥ u) + P(X(0) < u)×
∫ t

0
f̃Tu(s) ds.

The same inclusion-exclusion arguments that lead to the alternating bounds (8),
will lead to bounds for the density f̃Tu(t) in terms of the intensities (7), a fact we
will use later.

3.6 Numerical aspects on Rice series for maximum and �rst upcrossing

Formula (5) contains truncated moments of derivatives in the conditional Gaus-
sian distribution, conditioned on the process values at the selected time points,
and on the starting value X(0) = x < u. Indeed, these moment can be expressed
as functions of conditional expectations and covariances; Rosenbaum (1961) gives
the explicit expression for bivariate normal variables, Kan and Robotti (2017)
give an overview of recursion formulas for general dimension and also a reference
to e�cient software. We describe how to calculate the �rst three terms in the Rice
series by exact truncated moments. Azaïs and Wschebor (2009) refer to explicit
expressions for the �rst two terms given in (Cierco-Ayrolles et al., 2003) but use
Monte-Carlo simulation for the third.

To evaluate (6) we compute the intensity, conditioned on X(0) = x,

ν̃m(t;x) = E
[∏m

k=1
X ′(tk)

+
∣∣ X(0) = x,X(t1) = · · ·X(tm) = u

]
(9)
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14 GEORG LINDGREN

× fX(t1),...,X(tm)|X(0)=x(u, . . . ,u),

before we integrate over [0, t]m and take the average over X(0) = x < u.
We express the �rst three expectations,

(10)

E[X ′(t1)
+
∣∣ X(0) = x,X(t1) = u],

E[X ′(t1)
+X ′(t2)

+
∣∣ X(0) = x,X(t1) = X(t2) = u],

E[X ′(t1)
+X ′(t2)

+X ′(t3)
+
∣∣ X(0) = x,X(t1) = X(t2) = X(t3) = u],

as follows.
With y+ = max(0, y), the moments E(Y +

1 ), E(Y +
1 Y

+
2 ), and E(Y +

1 Y
+
2 Y

+
3 ) for

Gaussian variables can be expressed by means of functions, ψ1, ψ2, and ψ3. The
�rst two are,

ψ1(y) = φ(y) + yΦ(y)

ψ2(y1, y2, ρ) = (y1y2 + ρ) Φ2(y1, y2; ρ) + y2φ(y1)Φ(w2·1)

+ y1φ(y2)Φ(w1·2) + (1− ρ2)φ2(y1, y2; ρ),

where φ,φ1 and Φ, Φ2 are the standard uni- and bi-variate, with correlation ρ,
normal densities and distribution functions, and wi·j = (yi−ρyj)/(1−ρ2)1/2. The
third function, ψ3, has a similar structure as ψ2 but the expression is lengthy and
we give it in the appendix, (21).

Fact 5. For Gaussian variables Y1,Y2,Y3 with meanm = (m1,m2,m2), vari-
ances (s21, s

2
2, s

2
3, covariance matrix R =

(
Cov(Yi,Yj)

)
, and correlation matrix

ρ =
(
Corr(Yi,Yj)

)
,

(11)

E(Y +
1 ) = Ψ1(m1, s1) := sψ1(m/s),

E(Y +
1 Y

+
2 ) = Ψ2(m,R) := s1s2 ψ2(m1/s1,m2/s2;ρ),

E(Y +
1 Y

+
2 Y

+
3 ) = Ψ3(m,R) := s1s2s3 ψ3(m1/s1,m2/s2,m3/s3;ρ).

We express the truncated expectations in (10) in terms of the Ψ-functions. We
need the joint normal distribution of derivatives X ′(s) and process values X(t),

with Cov(X ′(s),X(t)) = ∂
∂sr(s, t) and Cov(X ′(s),X ′(t)) = ∂2

∂s ∂tr(s, t).
To simplify notation we use mk

2·1,R
k
2·1 to denote the conditional mean and

covariance matrix for derivatives, given process values:

(12)

X ′(t)
∣∣ X(0) = x,X(t) = u ∼N1(m

1
2·1,R

1
2·1),

(X ′(s),X ′(t))
∣∣ X(0) = x, (X(s),X(t)) = (u,u)

∼N2(m
2
2·1,R

2
2·1),

(X ′(r),X ′(s),X ′(t))
∣∣ X(0) = x, (X(r),X(s),X(t)) = (u,u,u)

∼N3(m
3
2·1,R

3
2·1).

Fact 6. The conditional expectations (10) are given by (11), Ψk(m
k
2·1,R

k
2·1).
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GAUSSIAN INTEGRALS AND RICE SERIES 15

Finally, the factorial moments and intensities have to be evaluated by numerical
integration, for example, as

α̃m(t) =

∫ u

x=−∞
fX(0)(x)

[ ∫
[0,t]m

Ψm(mm
2·1,R

m
2·1)

× fX(t1),...,X(tm)|X(0)=x(u, . . . ,u) dt1 . . . dtm

]
dx.

Remark 1. Note that all normal distributions involved in (9-12) are condi-
tional on X(0) = x. This means that mean values and covariances for the involved
X(tk),X

′(tk) are conditioned on X(0) = x. For example, if the unconditioned pro-
cess is stationary Gaussian with mean 0 and covariance function r(t), r(0) = λ0,

(13)

E[X(t) | X(0) = x] = x r(t)/λ0,

Cov[X(s),X(t)] | X(0) = x] = r(s− t)− r(s)r(t)/λ0,

Cov[X ′(s),X ′(t) | X(0) = x] = −r′′(s− t)− r′(s)r′(t)/λ0.

3.7 How e�cient is the Rice method?

How e�cient is the moment based Rice method for maximum and �rst cross-
ing, compared to the exact method, based on numerical integration? The answer
depends on the character of the covariance function and on the length of the
interval. We shall illustrate this on the two Gaussian processes with �sinc� and
�Gaussian� covariance, and compare with the examples in (Azaïs and Wschebor,
2009, Ch. 5).

We use one, two, and three terms in the Rice approximation of the density for
�rst upcrossing, and compare with simulations and with the density derived by
RIND. It should be noted, however, that Azaïs and Wschebor (2009) use the un-
conditional α3(t), without the initial condition X(0) < u, and that it is computed
by simulation in their work, while we integrate to get α̃3(t).

Figure 4, left diagram, shows Rice approximations in Gaussian white noise for
the conditional density of �rst upcrossing time of level u = 1 when X(0) < u,
and the RIND pdf f̃Tu(t), together with histogram for simulated data. The latter
two agree for the entire interval [0, 40]. The oscillating 1st order approximation is
correct for t ≤ 3, and the 2nd order for t ≤ 7, and both are computed in reasonable
time. The 3rd order approximation takes considerable time and is correct for
t < 12. One can observe that these approximations fail to work after the respective
local minima in the covariance function; see Figure 17 in Appendix A.

Figure 4, right diagram, shows the result for a Gaussian process with Gaussian
covariance, AW-1 in Figure 17. Here, the Rice method gives almost correct results
for time up to t = 1.5, 4.5, 7.5, for the three approximations, respectively. The
RIND method gives entirely correct result.

A direct comparison with (Azaïs and Wschebor, 2009, Table 5.1) is obtained
by integrating the densities in Figure 4 to get approximations of P(Mt ≥ u) for
di�erent interval lengths t,

P(Mt ≥ u) = P(X(0) ≥ u) + P(X(0) < u)×
∫ t

0
fTu(s) ds.
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16 GEORG LINDGREN

Fig 4. Comparison between Rice approximations and exact pdf for time to �rst upcrossing by
Gaussian process. Left: Gaussian low frequency white noise (�sinc� covariance WN) that starts
below level u = 1. Right: Gaussian process with �Gaussian� covariance (AW-1) that starts below
u = 0. The RIND pdf agrees with simulated histogram in both cases.

Fig 5. Comparison between Rice approximations and exact P(Mt > u) by Gaussian process. Left:
Gaussian low frequency white noise (�sinc� covariance WN), u = 1. Right: Gaussian process with
�Gaussian� covariance (AW-1), u = 0. The RIND curves agree with simulation in both cases.

The result is seen in Figure 5 for the �sinc� and �Gaussian� cases in Figure 4. As
anticipated in (Azaïs and Wschebor, 2009, page 151), the 3rd order Rice approxi-
mation gives somewhat better approximation than in that work, since we use the
full initial condition X(0) < u.

The conclusion is that the Rice approximations work for moderate interval
lengths, depending on the covariance function, but that the computational cost is
high. Direct integration or exact simulation from the covariance function are fast
and more generally applicable.

4. LENGTH OF EXCURSIONS

The statistical problem of zero-crossing distance in Gaussian noise was one
of the main motivations behind Rice's analysis, (Rice, 1944, 1945), and it was
the main topic of research in the early years. Longuet-Higgins (1962, 1963) gave
an authoritative and complete account of the knowledge at the time, comparing
many alternatives to the Rice series, including new estimates of the distribution
for short intervals. Wong (1966) derived the only known, non-trivial, zero crossing
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GAUSSIAN INTEGRALS AND RICE SERIES 17

distribution for a di�erentiable Gaussian process.
Crossing intervals have remained an issue in physical and engineering appli-

cations, often generalized to length of excursions over a �xed or variable level.
Estrade et al. (2012) give a theoretical overview, with many references, from a
material science perspective, and discuss Rice series versus numerical integration
alternatives. Most applied publications in geostatistics, material science, physics,
and telecommunication use Rice series; see for example (Smith et al., 2008; Brain-
ina, 2013) for the type of problems that appear. We �rst describe the analogy
between �rst crossing distribution and the excursion distribution, and then we
give examples for di�erent types of covariance functions. At the end of the section
we discuss the dependence between successive intervals and present a numerical
exact solution.

4.1 Comparison between �rst upcrossing and excursion problems

The excursion length problem for a stationary Gaussian process has a striking
similarity with the �rst crossing problem in Section 3, and one can use the same
Rice series and Gaussian integration routines to calculate the distributions, with
just one important di�erence: the choice of initial condition, illustrated in Figure 6.

Fig 6. Upper diagram illustrates the ��rst upcrossing time� for a process that starts at a random
ξ < u; ξ is truncated normal. . The Rice method and the exact method both put restrictions on
the dashed curve. Lower diagram illustrates the �excursion length density� for a process that has
an upcrossing at a time Tk, selected among all upcrossings; the random slope ζ at the upcrossing
has a Rayleigh distribution, (Kac and Slepian, 1959).

For the ��rst upcrossing density�, illustrated in the upper diagram, we compute
the intensity of an upcrossing at T = t, under restrictions on the process from a
�xed starting point, 0, chosen independently of the process. For the Rice series,
restrictions were laid on the number of additional upcrossings, 0, 1, 2, between 0
and t. In the exact integration method, the restriction required that the process
stayed below the level in the entire interval. The curve in the diagram is a real-
ization of a non-stationary Gaussian process with mean and covariance function
(13), that starts at the randomly selected X(0) = ξ < u; obviously ξ has an upper
truncated Gaussian distribution.

For the �excursion length density�, illustrated in the lower diagram, we shall
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18 GEORG LINDGREN

compute the intensity of a downcrossing a time T = t after an upcrossing at time
Tk. The restrictions will be almost the same as in the ��rst upcrossing case�, but
the choice of initial point is di�erent, it is a point of upcrossing. The distribution
we seek is what we observe, in the long run, if we identify all u-upcrossings in
an increasing time interval. Kac and Slepian (1959) proved that the empirical
excursion distribution approaches the Rice formulation if the process is ergodic.

4.2 Rice bounds and Gaussian integrals for excursion length pdf

The Rice bounds for the excursion length density are built on the mth order
downcrossing intensities, writing X(t) = u,

ν̃m(t) = E
[
X ′(0)+

∏m

k=1
X ′(tk)

− ∣∣ X(0) = u,X(t) = u
]

× fX(0),X(t1),...,X(tm)(u,u, . . . ,u) dx,

=

∫ ∞
0

z fX(0),X′(0)(u, z)

E
[∏m

k=1
X ′(tk)

+
∣∣ X(0) = u,X ′(0) = z,X(t) = u

]
(14)

× fX(t1),...,X(tm)|X(0)=u,X′(0)=z(u, . . . ,u) dz.

To obtain the exact crossing intensity we supplement (14) with the indicator

1+u (X, t) = 1{X(s) > u for 0 < s < t},

and get the exact density expression, when normalizing by dividing by the up-
crossing intensity ν+u , cf. (Rychlik, 1987b) and (Podgórski et al., 2000, Eqn. 9),

(15)

fT (t) =
1

ν+u
E[1+u (X, t)X ′(0)+X ′(t)−

∣∣ X(0) = X(t) = u] fX(0),X(t)(u,u)

=

∫ ∞
0

z

λ2
e−z

2/2λ2 E[1+u (X, t)X ′(t)−
∣∣ X(0) = X(t) = u,X ′(0) = z]

× fX(0),X(t),X′(0)(u,u, z) dz.

The in�nite-dimensional expectation in either of the expressions (15) has to
be approximated by a �nite-dimensional one. The routine RIND, that we used
in Section 3 implemented in the wave analysis package Wafo, (WAFO-group,
2017a,b), does that to a high degree of accuracy; see Section 4.4.

4.3 Slepian models

The integration over z in (15) represents an averaging over the initial random
slope ζ at the start of the excursion; see Figure 6. As shown by Kac and Slepian
(1959) the derivative at a generic mean level upcrossing of a stationary Gaussian
process has a Rayleigh distribution, with λ2 = V[X(t)],

fζ(z) =
z

λ2
e−z

2/2λ2 , z ≥ 0.

Slepian (1963) later derived what he called �the conditional process x̂(t)� for the
process after a zero upcrossing. We present the model Xu(t) after upcrossings of
a general level u, and allow a non-standardized variance, λ0 = V[X(t)].
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For a stationary ergodic Gaussian process X(t) with mean zero, the model for
X(tk + t), conditioned on an upcrossing of level u at tk, is

Xu(t) = ur(t)/λ0 − ζr′(t)/λ2 + ∆(t),

where ur(t)/λ0 − ζr′(t)/λ2 is a regression on X(tk) = u,X ′(tk) = ζ, and ∆(t)
is a non-stationary zero mean Gaussian residual process, independent of ζ, with
covariance function (cf. the conditional covariance in (13)),

C(s, t) = r(t− s)− r(s)r(t)/λ0 − r′(s)r′(t)/λ2,

The interpretation of the model is as the limit of the empirical distribution of
the process X(tk + t) observed after all upcrossings tk ∈ [0,∞], the long run
distribution.

Slepian (1963) also derived a doubly conditioned model for a process with
upcrossing at tk and downcrossing at tk + t. Crossing conditioned models of this
and similar types are named �Slepian models�; see (Leadbetter et al., 1983, Ch. 10).

It should be noted that Slepian type models can be formulated also for non-
stationary Gaussian processes, even if the interpretation is not the long run sense
but in Kac & Slepian's �horizontal window� sense. Gadrich and Adler (1993) give
a general treatment for crossings and local maxima. Slepian's doubly-conditioned
model is another example. Still other types of non-stationary Slepian models were
used by Grigoriu (1989) and Lazarov and Ditlevsen (2005), in reliability appli-
cations, where both the level and the process characteristics change with each
occurred crossing. Abrahams (1982), inspired by Wong (1966), found an explicit
expression for the crossing problem for a special type of non-stationary Gaus-
sian process. Podgórski et al. (2015) used a Slepian model to describe vehicle
movements on a non-Gaussian road. Gradient information in Gaussian processes
regression is still another example, (Prüher and Särkkä, 2016).

4.4 Examples

We give examples of crossing intervals for regular Gaussian processes with twice
di�erentiable sample paths, and whos covariance functions have an expansion

r(t) = 1− λ2t2/2 + λ4t
4/4! + o(|t|4+ε), t→ 0.(16)

Longuet-Higgins (1962) showed that for this type of processes, the zero-crossing
distance density approaches 0 at the origin. For irregular processes, like the linear
Gaussian oscillator, with a non-vanishing 3rd order term, C|t|3/3! in (16), the
density has a non-zero limit at the origin; (Longuet-Higgins, 1963).

The excursion length distribution can take many di�erent shapes, depending on
the covariance function/spectrum and on the level, and it can not be �t into any
standard form. We illustrate the variety of shapes on three processes from the list
in Appendix A: the low-frequency white noise (WN) process, the ocean Jonswap

wave spectrum, and the rational (AW-4) spectrum from (Azaïs and Wschebor,
2009).

We compute Rice series of 1st and 2nd order and �exact� distributions by
means of the Wafo routine spec2tpdf for the excursion length after upcrossings
of u = −1, 0, 1, 2. The numerical results are compared with Monte Carlo gener-
ated excursion lengths, observed in simulated trajectories, Fourier simulated in
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Fig 7. Excursion length densities for Low-frequency white noise: Rice series approximations (1st

order, dotted, 2nd order, dashed, and 3rd order, stars) and �exact� Wafo pdf (solid) for excursions
over levels u = −1, 0, 1, 2, compared with simulated histograms. Parameters from Table 5.

Wafo from the spectral density. In some examples we also compute the 3rd order
Rice approximation. The computational cost of this is high and nothing is gained
compared to the Wafo results.

Our main interest is the distribution of excursions above a non-negative level.
Upcrossings of a negative level have the same statistical properties as downcross-
ings of the corresponding positive level and will behave very di�erently from
upcrossings of a positive level. As will be seen, the Rice method does not deal
properly with negative levels, while the Wafo method gives good results for all
covariances and levels, at a moderate or low computational cost.

The low frequency white noise is a standard example with slowly decaying
oscillating covariance function, r(t) = sin t

t . This oscillation implies a similar oscil-
lating density function which is most pronounced for excursions over low negative
thresholds. The Jonswap process is the most regular of the studied processes and
can be easily handled by the Wafo routine.

The processes with non-oscillating covariance are hard to handle for u = −1,
and the 2nd order Rice approximation fails for u = −1, 0 and gives good results
for u = 1, 2. Wafo gives the correct distribution for all levels. When Wafo and
Rice agree, the former is by far the faster routine.

4.4.1 Low frequency white noise (WN). Figure 7 and Table 5 illustrate ex-
cursion length distributions for the WN-process. Most notable is the di�erence
between excursions above non-negative and a negative level, which is equivalent
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Fig 8. Excursion length densities for Jonswap process. Parameters from Table 6.

to downcrossings of a positive level. Excursions above u = −1 have a peak value
about t = 2.5 with a long and oscillating tail, extending beyond T = 40. These
oscillations have been the object of many experimental studies in communication
theory, e.g. (Mimaki et al., 1981). The 2nd order Rice approximation ends be-
fore t = 14, while the Wafo pdf:s catch the oscillations correctly, with reasonable
computing time.

Excursion pdf:s for non-negative levels are more accessible. For u = 0 the
computation time for 2nd order Rice approximation is much larger than that for
Wafo, and the distribution ends before t = 8. The Wafo pdf catches the long tail
correctly. For u = 1 the 2nd order Rice curve agrees with the Wafo curve, and for
u = 2 even the 1st order Rice curve gives the correct distribution.

For u = 0, 1, 2 the time steps used for the two methods are the same; Table 5.
The execution time for the Rice series is almost the same for the three levels.
This is due to the non-adapting straightforward integration method used in the
program. The Wafo routine spec2tpdf adapts to the complexity of the correlation
function, and is very fast.

For levels u = −1, 0 we also computed the 3rd order Rice term for a few time
points to get a Rice upper limit to the density. The results is given as stars in
the upper two plots in Figure 7. For u = −1 the improvement over the 2nd order
approximation is small, while for u = 0 the 3rd order approximation is correct up
to time t = 12. The computation time is very large, and the Wafo routine should
be preferred.

4.4.2 Jonswap spectrum, oscillating covariance function. We use theWafo stan-
dard Jonswap spectrum with Hs = 7m and peak period Tp = 11 s and normalize
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Fig 9. Excursion length densities for covariance function AW-4. Parameters from Table 7.

it to λ0 = λ2 = 1. Its covariance function is the most oscillating one of the studied
processes. TheWafo routine handles even u = −1 within reasonable time. The 2nd

order Rice series ends before t = 17 for u = −1 and it is also too short for u = 0.
For u = 1, 2, the 2nd order Rice approximation works �ne, and for u = 2 also the
1st order gives the correct result. Figures and data in Figure 8 and Table 6. Note
that all methods �nd the small bump in the pdf for t < 2.

4.4.3 Rational spectrum, AW-4, decreasing covariance function. The rational
spectrum AW-4 is rather simple to solve with Wafo. For u = −1, 0, the 2nd order
Rice approximations end too early, before t = 12 and t = 8, respectively, while
the Wafo pdf is correct and fast for all levels with NIT = −2 . For u = 2 also the
2nd order Rice pdf is correct. The 3rd order series diverges quickly. Figures and
data in Figure 9 and Table 7.

4.5 Joint distribution of successive zero-crossing distances

The previous section dealt with the marginal distribution of individual excur-
sion lengths. A problem of considerable practical interest is the joint distribution
of successive crossing intervals, in particular crossings of the mean level. We quote
from Estrade et al. (2012), on a study of porous media:

So the dependence between the chord-lengths [= excursions] remains an issue. Indeed,
on one hand de Maré (1974) and Rychlik (1987a) proved that, in the stationary Gaussian
case, the independence assumption . . . fails . . . . On the other hand in the physics literature,
the chord-length independence is generally assumed, . . . , where one speaks of Independent
Interval Approximation, but with no precision on the concerned probability measure.
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 Successive zero crossing distances for stationary Gaussian processes  383
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Fig 10. Approximation of
joint density for successive
crossing intervals, (Rychlik,
1987a).

In fact, already Longuet-Higgins (1962) proved
that consecutive zero-crossing distances cannot be in-
dependent. We refer to Mimaki (1973) and (Mimaki
et al., 1985) for early experiments on interval de-
pendence and its relation to spectral width, from a
physical signal perspective. The exact solution to the
bivariate dependence of successive crossing intervals
for a stationary Gaussian process has been known
since 2000 when Podgórski et al. (2000) published the
Durbin type solution, and applied it in an ocean wave
context. The solution has remained unnoticed outside
the ocean science community. In physics literature the
independence approximation has remained a popu-
lar theme even if the dependence for non-Markovian
Gaussian processes is acknowledged, Sire (2008).

Wilson and Hopcraft (2017) make a systematic simulation study of the depen-
dence for special class of correlation function, and touch upon the possibility to
approximate the interval sequence by a Markov chain, an idea that goes back to
McFadden (1958) and Slepian (1962). They conclude, as does McFadden, that
successive intervals can be dependent even if their correlation is almost zero, and
that the Markov approximation should be investigated further.

To study the Markov approximation in detail one needs the transition kernel,
i.e. the conditional distribution of the next interval length. We can now, by the
aid of the RIND function, give an exact numerical solution to that problem. It
is based on a generalization of Durbin's formula, formulated by Podgórski et al.
(2000, Eqn. 10), with a formal proof in (Estrade et al., 2012):

fT1,T2(t1, t2) =
fX(−t1),X(0),X(t2)(0, 0, 0)

ν+0
(17)

× E
[
|X ′−t1X

′
0X
′
t2 | {X(−t1,0) < 0 < X(0,t2)}

∣∣ X−t1,0,t2 = 0, 0, 0
]
.

The density (17) for two successive zero-crossing distances, T1,T2, can be com-
puted by RIND as described in Appendix D with moderate computing time, which
gives excellent agreement with simulated data. Figure 11 shows the exact pdf for
low-frequency white noise WN, Jonswap spectrum, shifted Gaussian spectrum SG-
3, and the rational AW-4 spectrum. The level curves in the theoretical pdf:s are
chosen to include 10, 30, . . . , 99, 99.9 % of the distribution, and they are compared
to level curves in a kernel estimated pdf, based on more than 600 000 spectral
simulated waves. The pdf for the parametric Jonswap wave spectrum is similar to
that obtained in (Podgórski et al., 2000) for en empirical ocean wave spectrum.

Despite the great di�erence between the four distributions the between com-
puted distributions and simulations is striking. It is evident that the successive
zero crossing distribution is a very complex type of distribution that hardly lets
itself be described in simple statistical terms. It is also evident that two successive
zero crossings intervals are dependent, contrary to the Independent Interval Ap-
proximation. The correlation coe�cient is 0.01 for the two broad-banded WN and
AW-4 spectra, and 0.42 and 0.20 for the narrow Jonswap and SG-3, respectively.

The conditional density for any zero-crossing distance given the length of the
preceding interval can be obtained from (17). The result shows clear dependence
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for the Jonswap spectrum, moderate dependence for the SG-3 spectrum, and al-
most independence for the WN and the AW-4 spectra.

Fig 11. Simultaneous crest/trough period pdf for low-frequency white noise (WN), Jonswap
spectrum, shifted Gaussian spectrum (SG-3), and rational AW-4 spectrum, (solid) compared
with simulated pdf based on more than 600 000 waves.

5. MAX-MIN PERIOD AND AMPLITUDE

5.1 The problem and some of its history

Rice's treatises (1944; 1945) on random noise as a stationary Gaussian process
inspired much research on stochastic models for ocean waves. StDenis and Pierson
(1953) and Longuet-Higgins (1957) wrote monumental studies on the motion of
ships on a �confused sea�, and the statistical properties of a random surface,
while Cartwright and Longuet-Higgins (1956) elaborated on Rice's results on local
maxima. The Rice series type approximations for interval distributions (wave
length or wave period) were studied in detail by Longuet-Higgins (1962).

Solutions were also sought to the more complex problem of joint period and
amplitude distribution for individual waves, an important distribution in sea-
keeping studies. A partial solution for general spectral shape, based on a Rice
series for an extended Slepian model, cf. Section 4.3, was given in (Lindgren,
1972). For narrow band spectrum an explicit expression for the joint density
was derived by Longuet-Higgins (1975, 1983). Other explicit approximations were
derived by Cavanié et al. (1976) and Lindgren and Rychlik (1982). The work by
Azaïs et al. (2011) contains some interesting recent examples.
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Fig 12. Three realizations of pairs of
local maxima and minima.

5.2 The exact period/amplitude distribution

In this section we let us, together with Podgórski et al. (2000), be inspired by
the exact crossing interval density (15) in Section 4.2 to produce an exact formula
for the joint ergodic distribution of the height of a local maximum, the following
local minimum, and the time interval in-between, here called the �half-period�,
illustrated in Figure 12,

X(tmax) = Xmax, X(tmin) = Xmin, tmax − tmin = T .

The distribution is best formulated as a combination of the density of the half-
period T and the conditional distribution function of the maximum = Xmax and
minimum = Xmin, given T = t. De�ne the indicator function

1(t,x1,x2) = 1
(
X ′(s) < 0, 0 < s < t, and X(0) ≤ x1 and X(t) ≤ x2

)
.

Then the joint distribution can be expressed as

fT (t)× P(Xmax ≤ x1,Xmin ≤ x2
∣∣ T = t)(18)

=
1

νmax
E[1(t,x1,x2)X

′′(0)−X ′′(t)+
∣∣ X ′(0) = X ′(t) = 0] fX′(0),X′(t)(0, 0),

where νmax is the intensity of local maxima, i.e. of zero downcrossings by the
derivative. The conditioning, X ′(0) = X ′(t) = 0, indicates local extremes and the
second derivatives, X ′′(0)−,X ′′(t)+, specify to local maximum at 0 and minimum
at t. The indicator quali�es the height of the extremes and the absence of further
local extremes between 0 and t.

We will use the Wafo routine spec2mmtpdf, (WAFO-group, 2017a), to accu-
rately compute the three-dimensional density fM ,m,T (x1,x2, t), corresponding to
the distribution (18), of the height of local maximum,M , the following minimum,
m, and the time T in-between. The routine calls the RIND function, Appendix D,
to calculate the conditional expectation.

Integrating over x1 − x2 = h one then obtains the joint amplitude, Xmax −
Xmin = H, and period, T , distribution. Conditioning on the height of the maxi-
mum,Xmax = u, one also can see how the joint distribution ofHu = u−Xmin and
T depends on u. More examples of cycle distributions can be found in (Lindgren
and Broberg, 2004).
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5.3 Period and amplitude by Rice/Slepian type arguments

Lindgren (1972) used a combination of Rice type arguments and Slepian mod-
els to approximate the max-min period and amplitude distribution for Gaussian
processes with medium width spectrum. The derivation proceeds in the following
steps.

Step 1: Find a 2nd order Rice approximation of the time T from a local maximum
to the next local minimum, under the condition that the maximum has
height u. Since T is actually the length of an excursion below 0 by the
process derivative the approximation f(2)(t) can be found by the technique in
Section 4.2 applied to the derivative with the extra condition thatX(0) = u.

Step 2: Find the joint distribution of the derivative ζ1 at a local maximum and ζ2
at a local minimum at time τ later, without any assumption of intermediate
local extremes.

Step 3: Construct a Slepian model (Section 4.3),

Xu,τ (t) = uAτ (t)− ζ1Bτ ,1(t) + ζ2Bτ ,2(t) + ∆τ (t)

with regression on the height u of the maximum and the derivatives at the
maximum and minimum.

Step 4: Compute the distribution of Xu,τ (τ) as the convolution of the normal
distribution of the residual ∆τ (τ) and the regression uAτ (t) − ζ1Bτ ,1(t) +
ζ2Bτ ,2(t); see Appendix B.2 for how to do it.

5.4 Examples

We illustrate the exact method to compute the max-min period and amplitude
distribution and compare with the Rice method, conditioned on the maximum
height.

Fig 13. Max-min period and amplitude for Low-frequency white noise, conditioned on max-height
= 0, 1, 2. Solid = Wafo pdf, dashed = estimated pdf based on almost 100 000 period-amplitude
pairs, dotted = Rice series.

5.4.1 Low-frequency white noise The low frequency white noise has a moder-
ately oscillating covariance function. The height-conditioned max-min amplitude
and period distribution hints at a mixture of a majority of short waves and oc-
casional longer waves; Figure 13. The Rice method catches the short waves but
cannot identify the longer ones. Figure 14 illustrates the accuracy of the exact
algorithm. The level curves in the theoretic density are almost identical to the
empirical curves, based on almost 2.8 million cycles.
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Fig 14. Unconditional max-
min amplitude and period
density for low-frequency
white noise compared with
empirical pdf from 2.8 million
waves.

5.4.2 Jonswap ocean wave spectrum The Jonswap spectrum is a typical ocean
wave spectrum and the conditional max-min amplitude and period distributions
exhibit the common regular wave shape. The Rice method only catches the central
part of the distribution. Figures 15�16 illustrate the excellent agreement between
the Wafo computed densities and simulations.

Fig 15. Max-min period and amplitude for ocean wave spectrum Jonswap, conditioned on max-
height = 0, 1, 2. Solid = Wafo pdf, dashed = estimated pdf, dotted = Rice series.

Fig 16. Unconditional max-
min amplitude and period
density for Jonswap spectrum
compared with empirical pdf
from 2.9 million waves.

6. CONCLUSIONS

Rice's formula and in- and exclusion series approximations for level crossing
distributions are well known and continue to �nd new applications, but the scope
is limited, both with respect to the type of problems that can be attacked, and
to the range of model parameters. Advances in computational statistics and high-
dimensional numerical quadrature since the early 1990s have made it possible to
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construct fast and accurate numerical routines for many more crossing related
characteristics of a stationary normal process, for which only computer capacity
and time de�ne the limits.

We have compared Rice's approximations and quadrature routines for three
types of problems. The distribution of the maximum of a Gaussian process over a
�nite interval, and the time to �rst curve crossing, have general statistical interest.
We have studied the routinesMGP, designed for the distribution of maximum, and
the general purpose RIND algorithm, focusing on accuracy, computation complex-
ity and time. Another type of problems concern the sequence of crossings and local
extremes. The characteristics studied have been length of excursions over �xed
levels, both the marginal distribution and the notoriously di�cult dependence
between successive crossing distances. The third type is the joint distribution of
cycle period and amplitude.

The RIND method shows excellent agreement with simulated data for all three
problem types and with reasonable, in most cases very short, execution time.
The Rice method works well only for approximation of the tail of the maximum
distribution, and for the length of excursions over high levels.
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SUPPLEMENTARY MATERIAL

Example Matlab �les

(???; .zip). The supplement contains instructions how to obtain the Wafo pack-
age, examples code to some of the �gures, and additional Matlab m-�les.
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APPENDIX A: THE PROCESSES, COVARIANCE AND SPECTRA

The processes in the examples have very di�erent spectral characteristics, When
normalized to have λ0 = λ2 = 1, the average length of an excursion above the
mean level is π for all the studied processes. Three processes have oscillating
covariance functions and two have strictly decreasing covariance functions. The
covariances AW-1, AW-4, and WN listed in Table 4 were used in (Azaïs and
Wschebor, 2009, Ch. 5), WN also in Lindgren (1972). The shifted Gaussian spec-
trum SG-3 is an example of a moderately oscillating process.

The Jonswap spectrum is a realistic standard ocean wave spectrum. The explicit
form is not important here; it can be found, e.g. in (Lindgren, 2013, Eqn. 7.33),
with parameters from the (WAFO-group, 2017a) package.

The table gives one-sided un-normalized spectra, while the covariance functions
are given in normalized form with λ0 = λ2 = 1. The table also gives

√
λ4, which

for normalized spectra is equal to the mean number of local maxima per mean
level upcrossing. The covariances and normalized spectra are shown in Figure 17.

APPENDIX B: SOME TECHNICAL DETAILS

B.1 Truncated multivariate normal moments

Let Y1,Y2,Y3 be correlated normal variables with mean µ1,µ2,µ3, variance
one, and correlation matrix R = (Corr(Yi,Yj)) = (ρij), and de�ne the following
functions, (Kan and Robotti, 2017), to be used for truncated moments:

ψ1(y) = φ(y) + yΦ(y),(19)

ψ2(y1, y2, ρ12) = (y1y2 + ρ12) Φ2(y1, y2; ρ12) + y2φ(y1)Φ(w2·1)(20)

+ y1φ(y2)Φ(w1·2) + (1− ρ212)φ2(y1, y2; ρ12),
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Table 4

Covariance functions and spectra, (�WN� = low-frequency white noise, �SG-3� = shifted
Gaussian, �AW-1� and �AW-4� spectra from (Azaïs and Wschebor, 2009)).

Process Covariance One-sided spectrum
√
λ4

Non-oscillating:

�AW-1� r1(t) = exp(−t2/2) S1(ω) = exp(−ω2/2) 1.732

�AW-4� r3(t) = exp(−|t|
√
5)× P3 S3(ω) =

1
(ω2+5)4

2.236

P3 = 1 +
√
5|t|+ 2t2 + (

√
5/3)|t|3

Oscillating:

�WN� rwn(t) =
sin
√
3t√

3t
Swn(ω) = 1{0<ω<

√
3} 1.342

�Jonswap� rJ(t) SJ(ω) = Jonswap (ω) 1.428

�SG-3� rsg(t) = cos
(

3t√
10

)
exp(−t2/20) Ssg(ω) = 1.38

1√
π/5

(
e−5(ω−ω0)

2

+ e−5(ω+ω0)
2)

where wi·j = (yi − ρijyj)/(1− ρ2ij)1/2, and

ψ3(y1, y2, y3;R) = (µ1µ2µ3 + ρ23µ1 + ρ13µ2 + ρ12µ3)Φ3(µ;R)(21)

+ (µ2µ3 + ρ12ρ13 + ρ23)φ(µ1)Φ2(w2·1,w3·1; ρ23·1)

+ (µ1µ3 + ρ12ρ23 + ρ13)φ(µ2)Φ2(w1·2,w3·2; ρ13·2)

+ (µ1µ2 + ρ13ρ23 + ρ12)φ(µ3)Φ2(w1·3,w2·3; ρ12·3)

+ (1− ρ212)µ3φ2(µ1,µ2; ρ12)Φ(w3·12)

+ (1− ρ213)µ2φ2(µ1,µ3; ρ13)Φ(w2·13)

+ (1− ρ223)µ1φ2(µ2,µ3; ρ23)Φ(w1·23) + det(R)φ3(µ;R)

where

wi·jk = (wi·k − ρij·kwj·k)/(1− ρ2ij·k)1/2,

ρij·k = (ρij − ρikρjk)/
√

(1− ρ2ik)(1− ρ2jk).

B.2 The distribution of ζ1B1 − ζ2B2 in Step 4, page 26

The density of ζ1B1− ζ2B2 can be expressed explicitly in terms of the function
ψ1, (19). The density can be expressed as (for simplicity, m = mτ , T = T2·1),

c z1z2 φ2(z;m,T ), z1, z2 > 0,

with c a generic constant. Normalizing (a1, a2) = (B1,−B2)/|B|, we get the den-
sity by integrating over the �rst quadrant 1:

fζ1Bτ ,1(τ)−ζ2Bτ ,2(τ)(y) = c

∫
1∩{a1z1+a2z2=y/|B|}

z1z2 φ2(z;m,T ) dz.(22)

imsart-sts ver. 2014/10/16 file: RiceSeries_r1.tex date: July 11, 2018



GAUSSIAN INTEGRALS AND RICE SERIES 33

Fig 17. Top row: Non-oscillating and oscillating covariance functions. Bottom row: Normalized
spectra for non-oscillating and oscillating covariance functions.

An orthogonal change of integration, v = Az =

(
a1 a2
−a2 a1

)
z, z = ATv, with

corresponding new random variable, ν = Aζ with mean n = Am and covariance
matrix C = ATAT, brings the integral (22) on the form

fζ1Bτ ,1(τ)−ζ2Bτ ,2(τ)(y) = c

∫
A1∩{v1=y/|B|}

(a1v1 − a2v2)(a2v1 + a1v2)φ2(v;n,C) dv

= c

∫
A1∩{v1=y/|B|}

(b2y
2 + b1yv2 − b0v22)φ2(v;n,C) dv,(23)

where we de�ne b2 = a1a2/|B|2, b1 = (a21 − a22)/|B|, b0 = a1a2.
In the integral (23) we can replace the two-dimensional normal density for ζ

by the one-dimensional conditional normal density for ν2 given ν1 = y/|B|. It has
mean and variance

n2·1 = E(ν2
∣∣ ν1 = y/|B|) = n2 +C21(y/|B| − n1)/C11,

σ22·1 = V(ν2
∣∣ ν1 = y/|B|) = C22 −C2

21/C11.

Thus, the density (23) is equal to the normalized sum of three moments in
a normal distribution, truncated to the interval J = {v2; (y/|B|, v2) ∈ A1} =
(j1, j2), j1 < j2,

fζ1Bτ ,1(τ)−ζ2Bτ ,2(τ)(y) = c

∫
J
(b2y

2 + b1yv2 − b0v22)φ1(v2;m2·1,σ
2
2·1) dv2.

For easy reference we give the standard recursion for the truncated moments for
a N(µ,σ2)-distribution, (Kan and Robotti, 2017), with α = (j1 − µ)/σ, β =
(j2 − µ)/σ:∫

J
φ1(v;µ,σ2) dv = F 1

0 = Φ(β)− Φ(α),
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J
v φ1(v;µ,σ2) dv = F 1

1 = σ
{
µ
(
Φ(β)− Φ(α)

)
− σ

(
φ(β)− φ(α)

)}
,∫

J
v2 φ1(v;µ,σ2) dv = F 1

2 = mF 1
1 + σ2F 1

0 − σ
(
j2φ(β)− j1φ(α)

)
.

APPENDIX C: DATA FOR EXCURSION LENGTH COMPUTATION IN
SECTION 4.4

Tables 5-7 show interval lengths Tmax and time steps dt, optional parameters
for RIND and execution times for the system used for the di�erent computations.
For each spectrum, Rice series and RIND were compared on the same computing
system, but di�erent systems were used for the three spectra, so only relative
comparisons can be made.

Table 5

Data for excursion length in low-frequency white noise (WN) example.

u Rice series RIND
Tmax dt time [s] Tmax dt NIT speed time [s]

-1 14 0.1 30 40 0.1 -2 2 69
0 9 0.05 65 15 0.05 -2 2 10
1 8 0.04 57 8 0.04 5 5 0.88
2 4 0.02 59 4 0.02 5 5 0.18

Table 6

Data for excursion length in Jonswap example.

u Rice series RIND
Tmax dt time [s] Tmax dt NIT speed time [s]

-1 17 0.2 8.8 40 0.25 -2 2 51
0 7 0.1 8.3 8 0.05 -2 2 6.2
1 5 0.1 4.7 5 0.1 7 5 0.16
2 4 0.05 7.7 4 0.05 7 5 0.15

Table 7

Data for excursion length in AW-4 example.

u Rice series RIND
Tmax dt time [s] Tmax dt NIT speed time [s]

-1 15 0.1 40 40 0.2 -2 9 3.0
0 8 0.25 1.8 20 0.1 -2 5 4.5
1 8 0.16 4.7 8 0.16 -2 5 1.2
2 5 0.1 4.7 5 0.1 -2 5 1.2

APPENDIX D: THE RIND FUNCTION

D.1 The function

The structure of the restricted �rst upcrossing intensity (3),

E[1u(X, t)X ′(t)+
∣∣ X(t) = u] fX(t)(u),(24)

is recurrent in all crossing problems. It contains a �crossing condition�, X(t) = u,
with density fX(t)(u), for the crossed level, a �bias factor�, X ′(t)+, taking care
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of the over-representation of large gradients at the upcrossing, and a �qualifying
factor�,

1u(X, t) = 1{X(s) ≤ u for 0 ≤ s ≤ t},

for what other conditions need to be satis�ed.
For other crossing intensities the precise form of the factors will be di�erent,

but the structure will be the same. For example, in (17),

E
[
{X(−t1,0 < 0 < X(0,t2)} |X

′
−t1X

′
0X
′
t2 |
∣∣ X−t1,0,t2 = 0, 0, 0

]
fX−t1,0,t2 (0, 0, 0).

Since the indicator functions de�ne in�nite-dimensional events, the conditional
expectations have to be found by a numerical algorithm, approximating by �nite-
dimensional ones. Fortunately, advances in computational statistics has made this
possible for Gaussian processes.

The RIND function is a set of algorithms, originally written in Fortran, for
computation of complex expectations like (24) in high-dimensional normal distri-
butions. Based on ideas in Rychlik (1987c), further presented in (Lindgren and
Rychlik, 1991b; Rychlik, 1992b), Podgórski et al. (2000) designed an early ver-
sion of the basic RIND algorithm to systematically extend the �nite-dimensional
distributions to obtain an accurate value of the in�nite-dimensional integral.

Brodtkorb (2006) combined the RIND algorithm with numerical integration
methods developed by Genz (1992, 1993), Genz and Kwong (2000), and others
to an e�cient and versatile routine. It is now available in the wave analysis Wafo

project, (WAFO-group, 2017a,b), and it is also included in the extreme value
package MAGP by Mercadier (2006b). The Wafo project comes both in a Matlab

version, (WAFO-group, 2017a,b), and in a Python version, (WAFO-group, 2017b).
The RIND algorithm takes as input means and covariances for three groups of

multivariate normal variables. One group consists of the variables to condition on,
Xc = xc, a second group are the derivatives Xd that de�ne the bias factors, and
a third group Xt contains the variables that have to satisfy an interval condition
like xlo ≤ Xt ≤ xup. Such constraints may also be imposed on the derivatives. The
mean vector and joint covariance matrix for the three groups have to be speci�ed;
see the help text for the routine in the Wafo package.

To use RIND to compute crossing distributions one needs to embed it in a
problem speci�c code, depending of the type of crossing distribution. Examples
of speci�c crossing routines in the Wafo package in Matlab are:

spec2tpdf: computes exceedance length density for general level,
spec2ttpdf: computes joint density of successive zero-crossing distances,
spec2thpdf: computes joint density of crest period and amplitude of wave,
spec2mmtpdf: computes di�erent three-dimensional distributions related to

local maxima and minima,
spec2tapdf: computes conditional and unconditional max-min amplitude and

period pdf (based on spec2mmtpdf).

D.2 Calling RIND in Matlab Wafo

[E,err,terr,exTime,options] = rind(S,m,Blo,Bup,indI,xc,Nt,options);

E = expectation/density as explained below, size 1 x Nx
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err = estimated sampling error, with 99% confidence level

terr = estimated truncation error.

exTime = execution time

S = Covariance matrix of X=[Xt;Xd;Xc]

size Ntdc x Ntdc (Ntdc=Nt+Nd+Nc)

m = the expectation of X=[Xt;Xd;Xc] size N x 1

Blo,Bup = Lower and upper barriers used to compute the integration

limits, Hlo and Hup, respectively, size Mb x Nb

indI = vector of indices to the different barriers in the

indicator function, length NI, where NI = Nb+1

(NB! restriction indI(1)=0, indI(NI)=Nt+Nd )

(default indI = 0:Nt+Nd)

xc = values to condition on (default xc = zeros(0,1))

size Nc x Nx

Nt = size of Xt (default Nt = Ntdc - Nc)

options = rindoptions structure or named parameters with corresponding

values, see rindoptset for details

rind computes multivariate normal expectations, i.e.,

E[Jacobian*Indicator|Condition ]*f_{Xc}(xc(:,ix))

where

"Indicator" = I{ Hlo(i) < X(i) < Hup(i), i = 1:N_t+N_d }

"Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is

"Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)|

"condition" = Xc=xc(:,ix), ix=1,...,Nx.

X = [Xt; Xd; Xc], a stochastic vector of Multivariate Gaussian

variables where Xt,Xd and Xc have the length Nt, Nd and Nc,

respectively.

(Recommended limitations Nx,Nt<=100, Nd<=6 and Nc<=10)
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