LUND UNIVERSITY

Interleaver structures for turbo codes with reduced storage memory requirement

Hokfelt, Johan; Edfors, Ove; Maseng, Torleiv

Published in:
Proc. IEEE Vehicular Technology Conference

DOI:
10.1109/VETECF.1999.801562

1999

Link to publication

Citation for published version (APA):

Hokfelt, J., Edfors, O., & Maseng, T. (1999). Interleaver structures for turbo codes with reduced storage memory
requirement. In Proc. IEEE Vehicular Technology Conference (Vol. 3, pp. 1585-1589). IEEE - Institute of
Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/VETECF.1999.801562

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 04. Jul. 2025


https://doi.org/10.1109/VETECF.1999.801562
https://portal.research.lu.se/en/publications/5326b1d8-a213-4583-9869-3d02735c2017
https://doi.org/10.1109/VETECF.1999.801562

Interleaver Structures for Turbo Codes with Reduced

Storage Memory Requirement

Johan Hokfelt, Ove Edfors and Torleiv Maseng
Department of Applied Electronics, Lund University, Lund, Sweden

Abstract— This paper describes two inter-
leaver structures that reduce the memory re-
quirement for the storage of interleaver rules.
The first structure offer memory reductions of
more than 50%, compared to storing the en-
tire interleaver vector. The second structure is
useful when a range of interleaver sizes are to
be stored, offering memory reductions asymp-
totically approaching 50%. By combining the
two structures, a total memory reduction of
approximately 75% is achieved. This is ob-
tained without any significant reduction of the
error correcting performance of the codes.

I. INTRODUCTION

A turbo code typically consists of two recursive
encoders in parallel, separated by an interleaver
11} as shown in Fig. 1. The design parameters of
a turbo code are primarily the generator polyno-
mials of the constituent encoders, normally cho-
sen to be identical, and the particular choice of
interleaver mapping. The issue of choosing gen-
erator polynomials is discussed in for example
121, [3], [4], while for interleaver design strategies
and interleaver structures, see for example [5],
6], 17], (8], [9).

In some applications, when many, and possibly
large, interleavers are used, the implementation
complexity to generate the interleaver rules is of
importance. For example, in the standardization
of UMTS, such considerations have achieved sig-
nificant attention. There are basically two ap-
proaches that can be used to lower the imple-
mentation complexity of interleaver rules: either
by using algebraic interleavers that can be gen-
erated in real time, or by imposing structures
on the interleavers, which reduce the storage re-
quirement of the interleaver rules.

This paper presents two interleaver structures
that reduce the amount of memory required
to store interleaver rules. The first structure
is referred to as an odd-even symmetric struc-
ture, which reduces the memory requirement
with slightly more than 50% compared to stor-
ing the entire interleaver vector. The second
structure, expanded interleavers, is useful when
a series of interleavers with sizes of the form

' o>

Interleaver

Fig. 1. Example of a turbo code encoder, using
constituent encoders with generator polynomials

(17/15) 0ct-

2*r k = 0,1,2,..., where x is the size of the
smallest desired interleaver, are to be stored.
When a series of interleavers are designed with
the expansion criterion, it is sufficient to store
the largest interleaver only, offering memory sav-
ings approaching 50%. Fortunately, the inter-
leaver structures can be combined, with a total
memory requirement reduction of approximately
75%, compared to storing all the interleaver vec-
tors.

Naturally, every interleaver restriction reduces
the design freedom, and hereby, possibly, deteri-
orates the performance of the interleavers. How-
ever, simulations show that interleavers with the
structures presented in this paper perform essen-
tially the same as unconstrained interleavers, if
designed appropriately.

[I. INTERLEAVER STRUCTURES

Let the interleaver rule be represented by a
vector of N integers, w=[w(1) w(2)... w(N)],
where (i) = j indicates that input position ¢ is
interleaved to position j, and N is the size of the
interleaver. The interleaver structures presented
in this paper impose certain restrictions on the
permissible choices of the mappings m(i). First,
we describe two different restrictions that in-
dividually offer implementation simplifications,
and thereafter these restrictions are merged into
a combined structure, offering total storage sav-
ings of as much as 75%.



A. Odd-even symmetric interleaver structure

Consider an interleaver rule that swaps pairs of
positions, i.e. a symmetric interleaver. If all the
pairs are known, the interleaver rule is known.
Since there are only N /2 such pairs, if organized
properly, the storage of these pairs requires less
memory than storing an entire interleaver vec-
tor with N addresses. One possible organization
strategy is to require every position in the first
half of the input sequence to be swapped with
a position in the second half. However, this re-
striction severely reduces the design freedom of
the interleaver, notably deteriorating the error
correcting performance of the code. There are
however other sequence partitions that yield a
simple organization of the swapping pairs, with-
out degrading the interleaver performance. One
such partition is to swap every odd position with
an even position, and vice versa. This interleaver
structure, denoted odd-even symmetric, is thus
achieved with the following two restrictions:

1. tmod2 # = (i) mod 2, Vi (odd to even),
2. (i) = j = n(j) = ¢ (symmetry).

With these restrictions, it is sufficient to store the
interleaver rules for all the odd positions, since
by performing swaps, the even positioned bits are
automatically interleaved.

Assume that only the odd positions in the in-
terleaver vector are stored. All the stored ad-
dresses are then even integers, implying that the
least significant bit (LSB) in the binary repre-
sentation of each address is always zero. Thus,
the LSB need not be stored, which offers addi-
tional memory savings if the interleaver rule is
stored with custom made memory cells. This
shift of the binary representation corresponds to
dividing each number by 2, so that the stored
vector consists of N/2 integers ranging from 1 to
N/2. This vector will in the following be denoted
7, and it is given by 7 (i) = 7 (21 -1) /2,71 €
{1,2,...,N/2}.

As an example, the swapping pairs of an 8-bit
odd-even symmetric interleaver are illustrated in
Fig. 2. The shown interleaver vector is 7=[6 3 2
7 8 14 5], and the reduced memory-requirement
vector is =(3 1 4 2].

The implementation of the interleaving rule of
an odd-even symmetric interleaver is straightfor-
ward: elements at even positions are interleaved
by storing them sequentially and reading them
in the order specified by 7; elements at odd po-
sitions are interleaved by storing them in the
order specified by 7 and reading them sequen-
tially. As an example, we study the interleav-

input

p@tim‘“‘*%ﬂg‘l% EEB
interleaved — 0. 3 21718/ 145

position

7=[63278145)
7=[3142]

Fig. 2. Example of an 8-bit odd-even symmetric
interleaver. Each odd position in the input se-
quence is mapped to an even position, and vice
versa. Further, if input ¢ is mapped to position 7,
then input j is mapped to position i (symmetry).

Input sequence:

Fig. 3. Implementation example of an 8-bit odd-
even symmetric interleaver. The interleaver rule
is stored by the 4-element vector 7=[3 1 4 2|.

ing of the extrinsic outputs produced by the first
constituent decoder. For illustrative purposes, it
is suitable to partition the memory used to store
the extrinsic information between the decoders
into two logically separated memory areas, A
and B. With these, odd extrinsic outputs on the
form 2n - 1, n € {1,2,...,N/2} are stored at
address 7 (n) in memory A, while even outputs,
2n, n € {1,2,...,N/2}, are stored at address n
in memory B. The second constituent decoder
performs a similar action when reading its extrin-
sic inputs: odd inputs are read from memory B
at address 7 (n), and even inputs are read from
memory A at address n. Such an interleaver im-
plementation is illustrated in Fig. 3. The dein-
terleaver implementation is identical, due to the
symmetric property.

B. FEzpanded interleaver structure

The expanded interleaver is also a structure
where the mappings are restricted to two sep-
arate partitions of the input sequence. In the
case of the odd-even partitioning in the previ-
ous section, the mappings were constrained to
be from one set to the other. We will now study
the benefits of instead requiring the mappings to
be within each of the two sets. The advantage
of this restriction is that the resulting interleaver
can be viewed as a combination of two separate
interleavers, each half the size of the combined
interleaver. Assume that the two sets consist of
the odd and even positions respectively. Then,
by using every second element in the stored in-
terleaver vector, an interleaver half as large as
the original interleaver is achieved. Naturally,



(H LTI E
\J

Fig. 4.

(a) Expansion of a 4-bit interleaver to an
8-bit interleaver, and (b) Expansion of the 8-bit
interleaver to a 16-bit interleaver. Both the orig-
inal 4-bit and the intermediate B-bit interleavers
can be retrieved from the final 16-bit interleaver.

it is possible to require that also the mappings
of the new, smaller interleaver are restricted to
additional, similar, partitions. As long as this re-
quirement is fulfilled, smaller and smaller inter-
leavers can be produced, by simply using every
second element in the nearest larger interleaver.

A straightforward way of constructing a se-
ries of expanded interleavers is to start with the
smallest desired interleaver size, and expand this
by inserting undefined elements between the al-
ready existing positions in the interleaver. The
new, undefined positions are then assigned with
mappings according to some interleaver design
criteria, independent of the restrictions imposed
by the expansion structure. After the expanded
interleaver is designed, further expansions can
be performed until the largest desired interleaver
size is obtained. Two such expansions are shown
in Fig. 4, first from a 4-bit interleaver to an 8-bit,
and then from the 8-bit to a 16-bit interleaver.

The advantage of expanding interleavers as de-
scribed is the reduction of storage memory re-
quired for the interleaver rules; the expanded
16-bit interleaver in Fig. 2(b) can be used to
interleave 4-bit, 8-bit and 16-bit sequences. This
interleaver structure is thus useful when a range
of interleaver sizes are to be stored. The amount
of storage memory saved approaches 50%, as the
number of interleaver sizes increases.

C. Ezxpanded odd-even symmetric interleavers

The described structures can be merged into
a combined interleaver structure which is both
expanded and odd-even symmetric. Due to the
contradictory constraints on the odd/even sub-
sets, the expansion need to be modified com-
pared to the description above. One way to
maintain the odd-even property in an expanded

A

NS
T

Fig. 5. An interleaver expansion that preserves the
odd-even symmetric properties of an interleaver.
Instead of inserting one unassigned element after
every original interleaver entry, two unassigned
elements are inserted after every second original
entry.

interleaver is to insert two undefined elements af-
ter every second entry in the original interleaver.
This modification ensures that each element on
an even position in the original interleaver re-
mains on an even position after expansion, and
vice versa. Thus, if the original interleaver meets
the odd-even symmetric constraints, and if the
assignment of the inserted elements is performed
with these restrictions, the new interleaver will
be an expanded, odd-even symmetric inferleaver.
The expansion of an 8-bit odd-even symmetric
interleaver to a 16-bit odd-even symmetric inter-
leaver is illustrated in Fig. 5.

The expanded and designed 16-bit interleaver
in Fig. 5 can be stored on hardware as 716=(5 8
7612 3 4|. For these small interleaver sizes, the
restrictions imposed on the interleavers reduce
the design freedom substantially. However, when
designing interleavers with more reasonable sizes
(at least one hundred bits), the imposed restric-
tions do not severely reduce the design freedom
of the interleavers.

The implementation of expanded odd-even
symmetric interleavers is identical to the odd-
even symmetric implementation — with the ad-
dition that the same hardware can be used for
a range of interleaver sizes. Interleaving of 16-
, 8- and 4-bit sequences with the interleaver in
Fig. 5 are illustrated in Fig. 6. The only differ-
ence between interleaving an 8-bit sequence in-
stead of a 16-bit sequence is that the interleaver
index-counter is clocked twice between each new
bit to be stored/read. This holds also for the
index-counter for the sequentially stored/read
bits, which now use addresses 1, 3,5, ..., instead

of 1,2,3,.. ..

III. SIMULATION RESULTS

The error correcting performances of turbo
codes using interleavers with the described struc-
tures have been simulated for AWGN channels.
We use rate-1/3 turbo codes with up to 15 de-



A B 7=[58761234]
]
(a)
A B A B|
i
(b) (c)
Fig. 6. Implementation of a 16-bit expanded odd-

even symmetric interleaver, used to interleave
(a)16-bit-, (b) 8-bit- and (c) 4-bit input se-
quences. For each step down in input sequence
length, the clock speed of the index counter for
7 is doubled. For example, when interleaving the
4-bit sequence, the only addresses used in 7 is 5
and 1.

coding iterations, where each constituent de-
coder employ the log-MAP decoding algorithm.
The generator polynomials of the constituent en-
coders were (1, 17/15)oct. The first encoder was
terminated with tail bits, while the second en-
coder was truncated in an unknown state,

Simulations were performed with interleavers
of sizes 320, 640, 1280, 2560 and 5120 bits. The
320-bit interleaver is an odd-even symmetric in-
terleaver, while all the rest are expanded, odd-
even symmetric. Aside from these interleaver re-
strictions, the interleavers were designed to yield
good correlation properties of the extrinsic in-
formation [9], as well as good distance prop-
erties of the resulting turbo codes. The bit-
and frame-error rate results after 8 and 15 de-
coding iterations are shown in Fig. 7 and Fig.
8 respectively. In these figures, the structured
interleavers are denoted EOES-CDI; expanded
odd-even symmetric, correlation designed inter-
leaver. As a performance reference, we use
interleavers designed completely without struc-
ture restrictions, denoted CDI. This type of in-
terleavers have shown very competitive perfor-
mances in comparison to interleavers designed by
many other design strategies, see for example (9],
[10]. When only one line is visible in the perfor-
mance plots, it is because the performances are
right on top of each other. The results indicate
that the presented interleaver structures have es-
sentially no influence on the performance of the
compared turbo codes, as long as the interleavers

101 '
——— EOES-CDI

-~=- CDI
10-2
8 10-% Interleaver size, bits |
-4
E 10 { 1
L —
10 1 5120 1
2560
m“[ 1280 640 {
lu—',f i i i
0 0.5 1.0 1.5 2.0
Ey/Ny (dB)
(a)
10° — N
EOES-CDI |
~--- CDI
lu—l 1 1
‘E Interleaver size, bits
o 1072 |
£
=4]
&
g 1079 §
320 |
-4 f 1
10 1280 640
10-3 . . .
0 0.5 1.0 1.5 2.0
Ey /Ny (dB)
(b)
Fig. 7. Simulated bit- and frame-error rates after

8 decoding iterations of rate-1/3 turbo codes of
various interleaver sizes, on an AWGN channel.
The expanded odd-even symmetric (EOES-CDI)
interleavers perform essentially as well as the in-
terleavers designed entirely without the structure
restrictions (CDI).

are properly designed.

We present here only the performances of in-
terleavers designed with both the expanded and
the odd-even symmetric restrictions. However,
interleavers designed with only one of the con-
straints, as presented in Section II-A and II-B re-
spectively, perform the same as the performances
shown in Fig. 7 and Fig. 8.

IV. DISCUSSION AND CONCLUSIONS

The concept of pruning interleavers were dis-
cussed in [7]. When pruning interleavers, very
high interleaver size granularity is achieved by
disregarding the interleaver mappings to posi-



'~ : - .
- EQES-CDI
~-=- CDI
10~2
% 1077 ; Interleaver size, bits
|
E 10 |’
“ m“‘f
320
2560 -
107 ¢ 1280  yoi0
2120
10=7 . " :
0 0.5 1.0 1.5 2.0
Ey /Ny (dB)
(a)
10° ™ v - 1
— EOES-CDI
- - ~- CDI
10! ]
‘E Interleaver size, bits |
% 1072 } 1
g7 ?
: 290 ‘
104 ¢ 2560 2
512{1 125‘] LY b
r .
105 . 1 .
0 0.5 1.0 1.5 2.0
Ey/Ny (dB)
(b)
Fig. 8. Simulated bit- and frame-error rates after

15 decoding iterations, of rate-1/3 turbo codes of
various interleaver sizes, on an AWGN channel.
The expanded odd-even symmetric (EQES-CDI)
interleavers perform essentially as well as the in-
terleavers designed entirely without the structure
restrictions (CDI).

tions above the size of the desired interleaver.
For example, a 570-bit interleaver is obtained by
disregarding all the elements that are larger than
570 in the nearest larger interleaver, i.e. the 640-
bit interleaver in our case. However, for the in-
terleavers evaluated in this paper we found that
the correlation properties of the extrinsic infor-
mation are better preserved, if the pruning is
performed at both ends of an interleaver. This
means that elements both below and above a
certain number, depending on the desired inter-
leaver size, are disregarded.

The storage of an expanded odd-even symmet-
ric interleaver of size 5120 bits requires 2560 ad-

dresses to be stored, each address represented by
12 bits. This amounts to approximately 3.1 - 10*
memory cells. As described, this interleaver can
be used to interleave all sequences with lengths
on the form 5120/2% k = 0,1,2,..., down to
the size of the original interleaver used for the
first expansion. Assuming instead that inter-
leavers with sizes ranging from 320 to 5120 bits
are to be stored using unstructured interleavers,
these interleavers require a total of 3 %_,320 -

2k [lngg (32{] - 2"‘)1 ~ 1.2 - 10° memory cells for

storage. The reduction using the expanded odd-
even symmetric interleaver is thus 74% in terms
of storage area. Furthermore, switching between
interleaver sizes is very easily implemented by
shifting the bits in the interleaver index counter
to the left, one position for each step down in
interleaver size. Simulations show that the pre-
sented interleaver constraints have essentially no
influence on the error correcting performances of
the codes.

REFERENCES

[1] C. Berrou and A. Glavieux, “Near optimum er-
ror correcting coding and decoding: Turbo-Codes,”
IEEE Transactions on Communications, vol. 44,
pp- 1261-1271, October 1996.

2] S. Benedetto and G. Montorsi, “Design of parallel
concatenated convolutional codes,” JEEE Transac-
tions on Communications, vol. 44, pp. 591-600, May
1996.

3] S. Benedetto, R. Garello, and G. Montorsi, “A search
for good convolutional codes to be used in the con-
struction of turbo codes,” JEEFE Transactions on
Communications, vol. 46, Sep. 1998,

'4] D. Divsalar and R. J. McEliece, “Effective free dis-
tance of turbo codes,” Electronic Letters, vol. 32,
Feb. 1996.

5] 8. Dolinar and D. Divsalar, “Weight distributions for
turbo codes using random and nonrandom permuta-
tions.” TDA progress report 42-122, Jet propulsion
Lab., Pasadena, CA, August 1995,

[6! S. Crozier, J. Lodge, P. Guinand, and A. Hunt, “Per-
formance of turbo codes with relative prime and
golden interleaving strategies,” in Sizth International
Mobile Satellite Conference, Ottawa, Canada, June
1999.

7) M. Eroz and A. R. Hammons, “On the design of
prunable interleavers for turbo codes,” in Vehicular
Technology Conference, Houston, USA, May 1999.

8] A.S. Barbulescu and S. S. Pietrobon, “Terminating
the trellis of turbo-codes in the same state,” FElec-
tronics Letters, vol. 31, pp. 22-23, January 1995.

9] J. Hokfelt, O. Edfors, and T. Maseng, “Interleaver
design for turbo codes based on the performance of
iterative decoding,” in IEEFE International Confer-
ence on Communications, Vancouver, BC, Canada,
June 1999,

10] A. Henriksson, J. Hokfelt, and O. Edfors, “Evalu-
ation of an interleaver design algorithm for turbo
codes in UMTS.” Tdoc 419/98, ETSI SMG2 UMTS
L1 Expert Group, Meeting no 7, Sweden, Oct. 1998,



