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Abstract. This paper presents a number of facts related to the
output feedback stabilization of the Moore-Greitzer compres-
sor model. We show that quadratic feedback stabilization of
the surge subsystem of the three-state Moore-Greitzer com-
pressor model, which ensures absence of additional equilibria
and cycles in the closed-loop system augmented with stall
dynamics, implies convergence of all solutions to the unique
equilibrium at the origin. Then some steps in developing such
output feedback controller for surge subsystem are discussed.
Keywords: Circle Criterion, Output Feedback Design

I. INTRODUCTION

This paper is devoted to design of output feedback con-
trollers for a nonlinear control system—the so-called Moore-
Greitzer model (MG model) [1]-[3]—that has been exten-
sively used as approximation to model compressor dynamics
[3], [1], [2], [5]

φ̇ = −ψ +
3

2
φ +

1 − (1 + φ)3

2
− 3R(1 + φ) (1)

ψ̇ = (φ − u) /β2 (2)

Ṙ = −σR2 − σR
(
2φ + φ2

)
, R(0) ≥ 0 (3)

y = ψ (4)

Here, u is the control variable to be defined and y is available
to measurement; σ is a positive constant.

The main difficulty in designing feedback controllers for
(1)–(3) is due to the presence of two nonlinearities in the
equations (1) and (3) of the model. They make the search
for an output feedback controller and an associated Lyapunov
function for the closed-loop system a quite nontrivial math-
ematical problem that still appears to be open.

The common approach [8], [7], [9] is to consider an output
feedback controller design only for the surge subsystem, i.e.,
for the equations (1), (2); and then on the next step to analyze
the behavior of the closed loop with the augmented stall
dynamics (3). It turns out that this approach might not lead
to a successful design of an output feedback controller for
the system (1)–(3); even robust quadratic stabilization of the
surge subsystem can result in unstable behavior of the closed
loop when the stall dynamics are taken into consideration.
An example of such problems is given below.

This paper suggests a test, which can be used for analysis
of the closed-loop system with an output feedback controller
designed to stabilize only the surge subsystem. It is shown
that if such a controller ensures that the closed-loop system
will dissipate so that all solutions enter a compact set of the
phase space and remain there after some transition and that
there are no additional equilibria and cycles for the closed-
loop, then one can state that any solution of the closed-loop
system converges to the origin. As for local stability based
on a separation principle, results are reported in [11].

As a second contribution, this note suggests a series of
steps for designing such an output feedback controller based
on Quadratic Constraints (QC)—i.e., the structural property
of the nonlinearity in the surge dynamics (1)-(2).

The paper is organized as follows. Section II suggests a
general test for global attractivity of the equilibrium of the
MG model at the origin based on successful surge subsystem
stabilization (Theorem 1). Section III collects design steps
for developing stabilizing controllers for the surge subsystem
based on the QC method to meet conditions of Theorem 1.
Results of computer simulations are reported in Section IV,
and some conclusions are drawn in Section V.

II. NEW TEST FOR GLOBAL ATTRACTIVITY OF THE

ORIGIN OF THE MOORE-GREITZER MODEL

Theorem 1: Assume that:

1) (The case R(t) ≡ 0) The output feedback controller

ż = F(z, y), u(t) = U(z, y) (5)

makes the surge subsystem (1)–(2), quadratically sta-
ble, i.e., there are matrices P = P T > 0 and Q =
QT > 0 such that the inequality

d

dt

⎧⎨
⎩

⎡
⎣ φ

ψ
z

⎤
⎦

T

P

⎡
⎣ φ

ψ
z

⎤
⎦
⎫⎬
⎭≤−

⎡
⎣ φ

ψ
z

⎤
⎦

T

Q

⎡
⎣ φ

ψ
z

⎤
⎦ (6)

holds along any solution of (1)–(2), (5);
2) The controller (5) satisfies the implication1

If y(t) = y∗, u(t) = u∗ ∀ t ⇒ z(t) = z∗, (7)

1This is the formal restriction imposed on set of admissible controllers.
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i.e. its internal state does not possess any dynamics
that cannot be observed from the input y;

3) (The case R(t) �≡ 0) The closed-loop system (1)–(3),
(5) has no cycles and only one stationary solution - the
equilibrium at the origin.

Then any solution of the closed-loop system (1)–(3), (5)
converges to the origin.

Proof of Theorem 1 consists of checking a number of
statements, which are quoted and briefly commented below.

Step 1: “The quadratic stability of the surge subsystem
(1)–(2) and the controller (5) implies that any solution
of the closed-loop system (1)–(3), (5), that is the system
with nontrivial stall dynamics, is bounded. Furthermore, the
stall variable R(t) resides within the interval [0, 1] after
transition.”

This technical statement is proven based on the inequality
(6). The details are excluded here due to the lack of space.

Step 2: If for a solution [φ(t), ψ(t), R(t), z(t)] of the
closed-loop the stall variable R(t) tends to zero as t → +∞,
then the other components of the solution tend to zero as well

φ(t) → 0, ψ(t) → 0, z(t) → 0 as t → +∞.

This is proven following common arguments applied for
quadratically stable systems with vanishing perturbations.

Step 3: If the closed-loop system (1)–(3), (5) has a solution
that does not converge to the origin, then there exists a
solution of (1)–(3), (5), which is periodic in time and is not
an equilibrium.

Consider first the case when along a solution the function
Ṙ(t) preserves its sign, say, Ṙ > 0, i.e., R(t) is monoton-
ically growing approaching some constant value R∗ > 0
remaining within the interval [0, 1].

This solution has an ω-limit set γ0, which is non-empty,
compact and consists of solutions of the closed-loop system.
Then one can easily deduce from Eq. (3) that along any
closed loop system solution belonging to γ0 the variable
φ(t) remains constant. In the same fashion, it follows from
Eq. (1) that the variable ψ(t) along any solution on γ0 is
some constant. Hence, Eq. (2) shows that the control action
u(t) becomes equal to constant value. Based on Assumption
2, one concludes then that z(t) is also a constant on γ0.
Summarizing, the set γ0 is an equilibrium of the closed loop
system, but by Assumption 3 it can only be the origin. This
contradicts the hypothesis that Ṙ always is positive.

In the same way, one can prove that if Ṙ preserves its sign
remaining negative along some solution, then by necessity
this solution will converge to the origin.

Consider now a solution of the closed-loop system, if it
exists, that does not converge to the origin. Then by necessity
its time derivative should change its sign infinitely many
times. Therefore, such a solution should pass through the
hypersurface

Γ = {[φ, ψ,R, z] : Ṙ = 0} (8)

infinitely many times. In turn, the intersection of Γ with a
ball of sufficiently large radius centered at the origin, gives

a compact subset Γc of Γ, where all the passages of this
solution through Γ take place. Following standard arguments,
one concludes that there is at least one accumulation point
of these passages on Γc and this accumulation point cor-
responds to the presence of a cycle in the dynamics for the
closed-loop system. By assumption, there are no cycles in the
closed-loop system. Therefore, we conclude that any solution
of (1)–(3), (5) converges to the origin in positive time.

III. DESIGN OF OUTPUT FEEDBACK CONTROLLERS (5)
BASED THE QUADRATIC CONSTRAINTS METHOD

Following Theorem 1 one can separate the output con-
troller design problem for the MG model into two steps:
Firstly, to elaborate output feedback controller(s) for the
surge subsystem; and secondly, to check that the closed-loop
system with the stall dynamics (3) taken into consideration
does not have equilibria other than the one at the origin and
does not have nontrivial cycles. Here we present a series
of static and dynamical feedback controllers for the surge
subsystem.

A. Quadratic Constraints for Nonlinearity in the Surge Sub-
system

The nonlinearity of the surge subsystem w(φ) and a linear
output

w(φ) = 1 − (1 + φ)3 (9)

v = −φ (10)

satisfy the inequality

w · v =
[
1 − (1 + φ)3

]
(−φ)

= φ2
(
1 + (1 + φ) + (1 + φ)2

)
= φ2

(
3 + 3φ + φ2

)
≥ 3φ2/4 = 3 v2/4 (11)

along a solution of the MG model with any feedback.
Another QC of an incremental nature can be mentioned

for (9). Indeed, ∀φ1 and ∀φ2 the inequality below holds

(φ1−φ2) [w(φ2) − w(φ1)] = (12)

=(φ1−φ2)
2
[
(φ1+1)2 + (φ2+1)2 + (φ1+1)(φ2+1)

]≥0

B. State Feedback Law Design for the Surge Subsystem

Suppose that both components φ and ψ of the surge system
(1)–(2) are available from measurements. Introduce a family
of feedback controllers of the form

u = φ − β2
{
λ1φ + λ2ψ + α(1 − (1 + φ)3)

}
(13)

where λ1, λ2 and α are constant to be defined. With such a
choice of feedback, the surge subsystem looks as

d

dt

[
φ
ψ

]
=

[
3/2 −1
λ1 λ2

] [
φ
ψ

]
+

[
1/2
α

]
w(φ) (14)

where w(φ) is defined in (9). Applying conditions of the
Circle criterion to the closed-loop system (14) with the QC
(11), results in parameters λ1, λ2 and α of the controller
(13), which makes the closed-loop quadratically stable.
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Theorem 2: Those constant parameters λ1, λ2 and α that
satisfy the following two conditions:

1) the inequality

Re{G(jω)} − 3|G(jω)|2/4 < 0 (15)

holds2 for any ω ∈ R1, where

G(s) =
−s + α + λ2/2

s2 − s(λ2 + 3/2) + λ1 + 3λ2/2
; (16)

2) the following matrix is strictly Hurwitz[
3/2 −1
λ1 λ2

]
+

3

4

[
0.5
α

]
[−1, 0]

characterize the feedback controllers (13), which make the
closed-loop system (14) quadratically stable.

The conditions mentioned in Theorem 2 describe a non-
empty set of parameters. For example, the values

λ1 = 5, λ2 = −3, α = 1 (17)

belong to this set, the transfer function (16) is then

G(s) =
−s − 1/2

s2 + 3s/2 + 1/2
.

It is seen that −G(s) satisfies the SPR condition [4]. As
known, the conditions of Theorem 2 are equivalent to the
fact that there exists a 2 × 2 matrix P = P T > 0 such that
the following matrix relations hold[

3/2 −1
λ1 λ2

]
T

P + P

[
3/2 −1
λ1 λ2

]
<

[
3/4 0
0 0

]
(18)

[ 1/2, α ] P = [ 1, 0 ] (19)

C. State Feedback with Integrator for the Surge Subsystem

One of the critical conditions of Theorem 1 is the absence
of equilibria in the closed-loop system different from the
equilibrium at the origin. From this perspective, modify the
state feedback controller (13) by adding an integrator of φ
in the loop

u = φ − β2
{
λ1φ+λ2ψ+α(1−(1+φ)3)+ε q

}
q̇ = −φ

(20)

where ε is a constant. The surge subsystem with the con-
troller (20) takes on the form

d

dt

⎡
⎣ φ

ψ
q

⎤
⎦=

⎡
⎣ 3/2 −1 0

λ1 λ2 ε
−1 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ φ

ψ
q

⎤
⎦+

⎡
⎣ 1/2

α
0

⎤
⎦

︸ ︷︷ ︸
B

w(φ) (21)

and the linear output (10) is now

v = −φ = [−1, 0, 0 ]︸ ︷︷ ︸
C

⎡
⎣ φ

ψ
q

⎤
⎦ (22)

2The inequalities (15), (23) degenerate at ω = ±∞ because G(s) is a
strictly proper transfer function, but (15), (23) are assumed to remain valid
when ω approaching ±∞ provided that the left hand side of (15) and (23),
respectively, is premultiplied by ω2.

The stability conditions of the closed-loop system (21) could
be obtained from the Circle criterion applied to the QC (11),
in the same way as it was done in Theorem 2.

Theorem 3: Those constant parameters λ1, λ2, α and ε
that satisfy the two conditions:

1) the inequality

Re{G(jω)} − 3|G(jω)|2/4 < 0 (23)

holds2 for any ω ∈ R1, where

G(s) = C(sI−A)−1B

=
− 1

2
s2 +

(
α + 1

2
λ2

)
s

s3 − (
λ2 + 3

2

)
s2 +

(
λ1 + 3

2
λ2

)
s − ε

; (24)

2) the matrix
(
A + 3

4
BC

)
is strictly Hurwitz,

describe the feedback controllers (20), which make the
closed-loop system (21) quadratically stable. Here the ma-
trices A, B and C are defined in (21) and (22).

Theorem 3 describes a non-empty set of parameters, e.g.

λ1 = 5, λ2 = −3, α = 1, ε = −0.8 (25)

belong to this set. Furthermore, as in Theorem 2 the condi-
tions of Theorem 3 are equivalent to the the fact the there
exists a 3× 3 positive definite matrix P = P T such that the
following matrix relations hold (cf. Eqs. (18-19), [4])

AT P + PA − 3CT C/4 < 0 (26)

PB = −C (27)

D. Output Feedback Control for the Surge Subsystem

Unfortunately, the controllers suggested in Theorems 2–
3 cannot be directly used for output feedback stabilization
of the surge subsystem (1)-(2). Indeed both controllers (13)
and (20) use the φ component of the surge state, while it is
not available to measurement, see Eq. (4). Here we present
modifications and dynamical extension of the controllers
(13), (20) that result in a new family of output feedback
stabilizing controllers for the surge subsystem.

Consider a dynamical output feedback controller

u = λ1ψ + λ2z + αu

(
1 − (1 + cψψ + czz)3

)
(28)

ż = λ3ψ + λ4z + αz

(
1 − (1 + cψψ + czz)3

)
(29)

where λ1-λ4, αu, αz , cψ and cz are constant parameters.
Augmenting the surge subsystem (1)-(2) with such feed-

back results in the dynamical system

d

dt

⎡
⎣ φ

ψ
z

⎤
⎦ =

⎡
⎣ 1.5 −1 0

1/β2 −λ1/β2 −λ2/β2

0 λ3 λ4

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ φ

ψ
z

⎤
⎦+

+

⎡
⎢⎣

0

−αu

β2

αz

⎤
⎥⎦

︸ ︷︷ ︸
B2

w2 +

⎡
⎣ 0.5

0
0

⎤
⎦

︸ ︷︷ ︸
B1

w1

(30)
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Here w1 and w2 are the nonlinearities with the first one
defined in (9), w1(φ) = w(φ), while the second one is
introduced into the system (30) by the controller (28)-(29)

w2 =
(
1 − (1 + cψψ + czz)3

)
(31)

The new nonlinearity (31) is of particular form and added to
the controller so that both the quadratic constraints (11) and
(12) can be re-used for developing stability conditions for
the closed-loop system (30). Indeed, based on the relations
(11) and (12) at least 3 QCs could be mentioned

−φ w1 ≥ 3φ2/4 (32)

(−cψψ − czz)w2 ≥ 3 (−cψψ − czz)
2
/4 (33)

(cψψ + czz − φ) (w1 − w2) ≥ 0 (34)

which hold along a solution of the closed-loop system (30).
The Circle criterion applied to the closed-loop system (30)

with the QCs (32)–(34) states that (30) is quadratically stable
if

1) the ‘frequency condition’ holds, i.e., there exist non-
negative τ1, τ2, τ3 such that τ1 + τ2 + τ3 > 0 and the
inequality

Re

{
τ1

(
v∗

1
ξ1 − 3

4
|ξ1|2

)
+ τ2

(
v∗

2
ξ2 − 3

4
|ξ2|2

)
+

+τ3 (v1 − v2)
∗

(ξ1 − ξ2)
}

< 0
(35)

is valid for any ξ1, ξ2 ∈ C and any ω ∈ R, where

v1 = [−1, 0, 0]︸ ︷︷ ︸
C1

(jωI3 − A)−1 (B2ξ2 + B1ξ1) (36)

v2 = [0,−cψ,−cz]︸ ︷︷ ︸
C2

(jωI3 − A)−1 (B2ξ2 + B1ξ1) (37)

2) the matrix

A + 3
(
B2C2 + B1C1

)
/4 (38)

is strictly Hurwitz. Here the matrices A, B1, B2, C1

and C2 are defined in (30), (36) and (37).
As known [4], the conditions of the Circle criterion applied
to the QCs (32)–(34) are equivalent to the existence of a
3 × 3 matrix P = P T > 0 satisfying the matrix relations

AT P + PA − 3 (CT

1
C1 + CT

2
C2) /4 < 0 (39)

2PB1 = τ1C
T

1
+ τ3 (CT

1
− CT

2
) (40)

2PB2 = τ2C
T

2
+ τ3 (CT

2
− CT

1
) (41)

These relations are bilinear matrix inequalities (BMIs), and
there are no efficient computational methods for solving
these equations to identify even one set of the feedback
controller parameters, see (28)-(29).

To show that the matrix equations (39)–(41) are feasible,
choose the parameters of the controller (28)-(29) as follows
λ2 = γ1, αu = γ3, cψ = γ4, cz = 1 and

λ1 = γ2 + γ1γ4, αz = 0.5 + γ3γ4/β2

λ3 = γ2

4
(γ1 − 1) /β2 + γ4

(
3/2 + γ2/β2

) − 1
λ4 = 3/2 + γ4 (γ1 − 1) /β2

(42)

where γ1–γ4 are some constants. Introduce new coordinates
for the closed-loop system (30)

ψ = ψ, φ̂ = z + γ4ψ, e = φ − z − γ4ψ (43)

Direct calculations show that in the new coordinates the
closed-loop system is of the form

d

dt

⎡
⎣ φ̂

ψ
e

⎤
⎦ =

⎡
⎣ 3/2 −1 γ4/β2

1/β2 0 1/β2

0 0
(
3/2 − γ4/β2

)
⎤
⎦

⎡
⎣ φ̂

ψ
e

⎤
⎦ (44)

+

⎡
⎣ 0
−1/β2

0

⎤
⎦ u∗+

⎡
⎣ 0.5

0
0

⎤
⎦w2 +

⎡
⎣ 0

0
0.5

⎤
⎦ (w1 − w2)

u∗ = γ1 φ̂+γ2 ψ+γ3 w2 (45)

Let us rewrite (44) as two coupled systems

d

dt

[
φ̂
ψ

]
=

[
3/2 −1
1/β2 0

][
φ̂
ψ

]
+

[
0

−1/β2

]
u∗

+

[
0.5
0

]
w2+

[
γ4

1

]
e

β2
(46)

ė =
(
3/2 − γ4/β2

)
e + 0.5(w1 − w2) (47)

The system (47) is stable with the Lyapunov function

Ve(e) = p2e
2 (48)

with p2 > 0 provided that the linear part is negative3, i.e.

3/2 − γ4/β2 < 0 (49)

Another observation is that the subsystem (46) coincides
with the surge subsystem provided that e = 0, but for this
subsystem (46) the signal φ̂ is available from measurements;
it is a linear combination of ψ and z. Therefore, when e = 0,
(46) can be stabilized by the state feedback laws elaborated
in Theorem 2 and the closed loop has the Lyapunov function

V1(φ̂, ψ) =

[
φ̂
ψ

]T

P1

[
φ̂
ψ

]
. (50)

To prove that such controller is stabilizing when e �= 0,
consider the next Lyapunov function candidate for (46), (47)

V (φ̂, ψ, e) = V1(φ̂, ψ) + ρV2(e), ρ > 0. (51)

Its time derivative along a solution satisfies the inequality

dV

dt
<−

[
φ̂
ψ

]T

Q1

[
φ̂
ψ

]
+ 2

[
φ̂
ψ

]T

P1

[
γ4

1

]
e

β2
− ρq2e

2 (52)

where Q1 is a 2 × 2 positive definite matrix and q2 > 0.
It is then clear that there are some positive values for the
parameter ρ so that the right hand side of (52) is a negative
definite quadratic form, and the quadratic stability is shown.
To summarize, the next statement has just been proven.

Theorem 4: Consider the surge subsystem (1)–(2) aug-
mented with the nonlinear dynamical feedback controller
(28)–(29) and rewritten as (30). Then the Circle criterion

3thanks to the QC (34)
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applied to that closed-loop system (30) with the QC (32)–
(34) results in the BMIs, which are feasible and some
solutions can be found as follows:

1) Choose any state feedback (13) developed for the surge
subsystem, this gives values for λ1, λ2 and α;

2) Choose γ4 so that the inequality (49) is valid, and4

γ1 = (1 − β2λ1), γ2 = −β2λ2, γ3 = −β2α; (53)

3) Choose parameters of the controller (28)–(29) based
on the found γ1–γ4 as it is done in (42).

Remark 1: Theorem 4 gives a constructive procedure for
solving the associated BMI, but it does not describe all
stabilizing controllers that could be found with QCs (32)-
(34). For instance, the parameter cz can be different from 1,
and we have not used the constraint (32) in the analysis.

The output feedback law found might not stabilize the
MG model with nontrivial stall dynamics. In fact, additional,
off-origin equilibria can be introduced for the closed-loop
system.

To determine controllers that ensure the presence of only one
equilibrium in the closed loop, consider further modification
of the feedback controller (28)–(29)

u = λ1ψ + λ2z + αu

(
1 − (1 + cψψ + czz)3

)
+ εuq (54)

ż = λ3ψ + λ4z + αz

(
1 − (1 + cψψ + czz)3

)
+ εzq (55)

q̇ = −(cψψ + czz) (56)

where λ1–λ4, αu, αz , cψ , cz , εu and εz are constant
parameters. Here we have added an additional state to the
controller that will later be linked to the integrator in the
state feedback controller (20). The surge subsystem and the
controller (54)–(56) result in the dynamical system

d

dt

⎡
⎢⎢⎣

φ
ψ
z
q

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1.5 −1 0 0
1

β2
−λ1

β2
−λ2

β2
− εu

β2

0 λ3 λ4 εz

0 −cψ −cz 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φ
ψ

z
q

⎤
⎥⎥⎥⎦+

+

⎡
⎢⎢⎣

0
−αu/β2

αz

0

⎤
⎥⎥⎦ w2 +

⎡
⎢⎢⎣

0.5
0
0
0

⎤
⎥⎥⎦ w1

(57)

whose stability can be approached via the Circle criterion
with the QCs (32)-(34) in the same way as it has been done
for the closed-loop system (30).

Following the discussion above, we know that the circle
criterion conditions are equivalent to feasibility of an asso-
ciated BMI and a search for quadratic Lyapunov function.
We will skip repeating such a discussion here, and come to
search of solutions. In doing so it is useful to repeat the
assignments (42) for the parameters of the controller and

4These relations come from equating the coefficients of the state feedback
controller (13) with coefficients of the controller (58) under the assumption
that φ = φ̂.

make the change of coordinates (43) with q = q. Then, the
closed-loop system is

d

dt

⎡
⎢⎢⎣

φ̂
ψ
q
e

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1.5 −1 (εz − εuγ4

β2 ) γ4

β2

1

β2 0 −εu

β2

1

β2

−1 0 0 0

0 0 0 ( 3

2
− γ4

β2 )

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

φ̂
ψ
q
e

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0
−1/β2

0
0

⎤
⎥⎥⎦ u∗ +

⎡
⎢⎢⎣

0.5
0
0
0

⎤
⎥⎥⎦w2 +

⎡
⎢⎢⎣

0
0
0

0.5

⎤
⎥⎥⎦ (w1 − w2)

u∗ = γ1 φ̂ + γ2 ψ + γ3 w2 (58)

Comparing the matrices of the linear part in (21) and the
corresponding 3 × 3 sub-matrix of the linear part of (58),
gives the relation for εu and εz

εz = εuγ4/β2 (59)

With such a choice, we can interpret the closed-loop system
(58) as two coupled quadratically stable subsystem. Its
stability follows from the previous arguments elaborated in
Theorem 4 and proves the next

Theorem 5: Consider the surge subsystem (1)–(2) aug-
mented with the nonlinear dynamical feedback controller
(54)–(56) and rewritten as (57). Then the Circle criterion
applied to the closed-loop system (57) with the QCs (32)–
(34) resulting in feasible BMIs. Some solutions can be found
as follows:

1) Choose a state feedback (20) developed for the surge
subsystem, it gives values for λ1, λ2, α and ε;

2) Choose γ4 so that the inequality (49) is valid, and

γ1 = (1 − β2λ1), γ2 = −β2λ2, γ3 = −β2α; (60)

3) Choose parameters of the controller (54)–(56) based
on the found γ1–γ4 as it is done in the assignments
(42) with εu = −β2ε and εz defined in (59).

Theorem 6: Consider the MG model with nontrivial stall
dynamics, (1)–(3). Suppose that the output feedback con-
troller is chosen as in Theorem 5. Then the closed-loop
system has the unique equilibrium at the origin.

Proof: The equilibria of the closed-loop system are the
points, where the right hand sides of the differential equations
become zero. The first and third lines of (58) are then

0 = q̇ = −φ̂ = −(cψ + czz)

0 =
˙̂
φ = 1.5φ̂ − ψ + 0.5(1 − (1 + φ̂)3) + γ4(φ − φ̂)/β2

and one can conclude that at any equilibrium satisfies ψ =
γ4φ/β2. Furthermore, from equation (3)

0 = Ṙ = −σR(R + φ2 + 2φ)

then either R = 0 or R = −φ2 − 2φ. The first case cannot
lead to any other equilibrium than at the origin, because this
reduces the closed-loop dynamics to the already stabilized
surge subsystem.
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Fig. 1. The solution of the closed-loop system with the dynamical controller
from Theorem 4 that is built from the state feedback with the parameters
(17) when γ4 = 3.1

Consider the second case: Equation (1) then becomes

0 = φ̇ = 1.5φ − ψ + 0.5(1 − (1 + φ)3) − 3R(1 + φ)

= 1.5φ − γ4

β2
φ +

1

2
(1 − (1 + φ)3) + 3(φ2 + 2φ)(1 + φ)

= 2.5φ
[
φ2 + 3φ + 2

(
6 − γ4/β2

)
/5

]
The case φ = 0 is disregarded because then R = 0. Two
other solutions of the last equation are given by

φ1,2 = 0.5
(
−9 ±

√
8γ4/(5β2) − 3/5

)
(61)

Having in mind the inequality (49), it is seen that these roots
are always real and it can be verified that R = −φ2

i −2φi <
0, i = 1, 2, if γ4 is chosen to satisfy (49). However, negative
values for R are not possible.

IV. COMPUTER SIMULATIONS

In this Section some simulations show the performance of
the dynamical output feedback controllers presented above.
The system has two parameters to be chosen; β and σ. Their
values were chosen β = 1/

√
2, σ = 7. The initial conditions

for the simulations were chosen as

φ0 = −2.07, ψ0 = 0.5, R0 = 0.9, q0 = z0 = 0

Figure 1 shows the solution of the closed-loop system with
the controller from Theorem 4 that is made from the state
feedback with the parameters mentioned in Eq. (17) when
γ4 = 3.1. As seen, it robustly stabilizes the surge subsystem,
but it does not stabilize the whole system when the stall
dynamics are added.

Figure 2 shows the solution of the closed-loop system with
the controller from Theorem 5 that is built from the state
feedback with the parameters (25) when γ4 = 3.1. As seen,
it robustly stabilizes the surge subsystem, and it does stabilize
the system when the stall dynamics are added.
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Fig. 2. The solution of the closed-loop system with the dynamical controller
from Theorem 4 that is built from the state feedback with the parameters
(25) with γ4 = 3.1
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VI. CONCLUSIONS

This note has two contributions: Firstly, it is shown when
stabilization of the surge subsystem leads to convergence of
solutions to the origin. Secondly, a family of controllers that
possess such properties are presented.
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