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Sammanfattning

Denna avhandling handlar om modeller inom partikelfysik, vilka beskriver
naturens minsta beståndsdelar. För att studera dessa små grundläggande
byggstenar behöver man hög energi. Desto större energi ju mindre avstånd
kan man studera. Med höga energier kan man se atomerna, och med ännu
högre energier kan man se kärnan och elektronerna, som atomerna består av.
Sedan 60-talet har vi sett att även protonerna och neutronerna som kärnan
består av, består av ännu mindre partiklar som kallas kvarkar. Partikelac-
celeratorexperiment, som LEP (Large Electron Proton collider), där suba-
tomära partiklar kolliderar med mycket hög energi, avslöjar detaljer om dessa
små partiklar. De partiklar som produceras vid kollisionen studeras och kan
användas för att dra slutsatser om strukturen hos de partiklar som skapats vid
kollisionen.

Experimenten inom partikelfysik är mycket dyra att bygga och därför finns
det endast ett fåtal i världen. LHC vid CERN, som är det största experimentet
hittills, startade 2009. Snart kommer vi att få se nya resultat och testa våra
teorier om vad som förenar de olika partiklar vi observerar.

När fysiker upptäcker nya partiklar, kategoriserar de dem och försöker
hitta mönster som avslöjar hur de grundläggande byggstenarna i universum
växelverkar. Fysiker har utvecklat en teori som kallas Standardmodellen som
förklarar hur de här partiklarna växelverkar genom den starka kraften (som
håller ihop atomkärnor), den svaga kraften (som ger energi till stjärnorna) och
elektromagnetism. Det är en omfattande teori som förklarar alla de hundratals
partiklar som observerats och hur de växelverkar med endast 6 kvarkar, 6 lep-
toner (som elektronen) och kraftbärande partiklar, som fotonen och gluonen.
Standardmodellen formulerades på 1970-talet och har sedan dess utsatts för
många tester. De allra flesta delarna av teorin är bekräftade och teorin beskri-
ver nästan all mätningar som gjorts på ett tillfredsställande sätt. Den enda par-
tikeln som finns i standardmodellen som inte upptäckts än är Higgs-partikeln,
vilken ger de andra partiklarna deras massa.

Men Standardmodellen har brister, både teoretiskt och experimentellt.
Det finns ingen förklaring till att det inte finns lika många partiklar som
anti-partiklar. Neutrinomassan inkluderas inte. Det finns ingen förklaring till
varför partikelmassor bör vara vad de är. I själva verket beskriver Standard-
modellen bara 4% av materien i universum. Den har ingen förklaring till all
mörk materia och mörk energi som står för de resterande 96% av energin
i universum. En annan viktig fråga är att standardmodellen inte inkluderar
gravitation. Vid de små avstånd vi observerar i partikelacceleratorer, är gravi-
tationen försumbar, men det betyder fortfarande att teorin är ofullständig.

Det finns också ett annat problem med Standardmodellen, som är ett
beräkningsproblem snarare än att teoretisk problem. Även om vi vet att det
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är den korrekta beskrivningen av alla partiklarna som hittills undersökts och
deras växelverkan, kan den inte alltid användas för att göra förutsägelser vid
låga energier, där den starka kraften blir starkare. Växelverkan mellan partik-
lar med låg massa, som η-mesoner, pioner och kaoner till exempel, kan inte
beskrivas i termer av kvarkar och gluoner. Istället måste man använda effek-
tiva teorier i detta fall, som till exempel Kiral Störningsteori.

Den första delen av denna avhandling handlar om effektiva teorier. Frågan
vi tar itu med är hur man kan göra mer exakta förutsägelser baserade på dessa
effektiva teorier och hur viktigt det är att införa förbättringar i beräkningarna.

Den andra delen handlar om utökningar av Standardmodellen. Det finns
många teorier för detta, beroende på vilken av Standardmodellens bris-
ter de vill ta itu med. Många modeller innehåller nya partiklar och nya
växelverkningar. Vi vill ta itu med frågan “Om det finns en ny växelverkan,
och nya partiklar med laddning, som vi inte har observerat tidigare, skulle
vi kunna mäta strålningen som kommer från den laddningen i framtida ex-
periment?”. “Och vad kan man säga om denna ny laddning? Vad kan man
förstå om den nya växelverkans struktur genom att observera strålningen?”.
För att besvara denna fråga simulerar vi effekterna av den nya strålningen på
de standardmodell partiklar som kan detectereras vid LHC. Just nu produce-
rar LHC första data, så vi kommer snart att kunna jämföra våra simuleringar
med data och att testa de nya teorierna.





To my aunt Flavia
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Introduction

We shall not cease from exploration,
and the end of all our exploring will be

to arrive where we started,
and know the place for the first time.

T. S. Eliot

As many others before me, I have not worked on one single subject dur-
ing my four years as a PhD student, but rather on several different topics. As
a consequence, this thesis contains publications dealing with very different
aspects of particle physics. One half revolves around the idea of ”Renormal-
ization in Effective Field Theories”, while the other half is dedicated to New
Physics and in particular to the ”Detection of Hidden Radiation”. The first one
is essentially an analytical work, while the second one is rather a phenomeno-
logical study of the New Physics models using Monte Carlo simulations. As
such, it is rather difficult to put all this work into one common framework. In
the following, I will try to explain a bit of the common ground physics behind
the papers, and then go on to discuss the specific background of the first two
and of the last two. The introduction to the general background was brutally
cut short to to make space for the introduction to the papers and of course it
has its limitations, so I recommend reading [1–3], for a deeper understanding.

i.1 Common ground

i.1.1 High-energy particle physics

The picture of high-energy physics today is quite varied. As new particle ac-
celerators are built and we are able to explore higher-and higher energies, the
usual electrons, protons and neutrons from which common matter is made,
are seen to be accompanied by a plethora of new heavier particles (see Fig. i.1),
µ, νµ, τ, ντ , η, π, K, ρ, Λ, ∆, just to mention some. Fortunately most of these parti-
cles and their interactions fit a theory, known as the Standard Model (SM), in

i



2 Introduction

Figure i.1: The new particles discovered since 1964 at SLAC (Stanford Linear Ac-
celerator), CERN (Conseil Européen pour la récherche Nucléaire), DESY (Deutches
Elektronen-Syncrotron), LEP (Large Electron-Positron) collider, BNL (Brookhaven Na-
tional Laboratories) and Tevatron.

Figure i.2: Tracks drawn by particles in a detector called bubble chamber. On the r.h.s.
is a close-up of the central region, where a particle and antiparticle spiral in opposite
directions.

which all particles can be classified according to their mass, spin and quantum
charges.

The first distinction one makes is between particles and anti-particles. Each
particle has an anti-particle partner, that is a particle with the same mass and
the same spin, but with opposite charges, for instance the positron e+ is the
antiparticle of the electron e−, though sometimes anti-particle and particle co-
incide, as in the photon γ case. In Fig. i.2 one the r.h.s. you can see the par-
ticles curving to the left, due to their interaction with the magnetic field, and
the anti-particles curving to the right. One of the yet unsolved mysteries of
physics is why the universe should be filled with particles and have so few
anti-particles. For our existence it is quite fortunate, because if particles and
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Figure i.3: All known interactions up to this day. For each force one can find the gauge
boson, that is the carrier of the force, and the phenomena they govern.

anti-particles were present in equal quantities, they would annihilate and only
radiation would be left, but it is nonetheless a puzzling question.

Particles with half-integer spin (1/2, 3/2, ...) are called fermions and parti-
cles with integer spin (0, 1, 2, ...) are called bosons. The spin dictates their be-
haviour in the presence of magnetic fields and their statistics, that is whether
they can clump together in one point in space or repel each other instead.

Particles are also classified according to other quantum numbers, internal
quantum numbers, which decide each particle’s interactions, whether they
have strong interactions, weak interactions or electromagnetic interactions
and how strong these interactions are. All particles carrying an electric charge
have electromagnetic interactions. Particles with a weak charge, called fla-
vor, can have weak interactions and finally particles carrying strong charges,
called color charges, can have strong interactions. Particles like π, K, ρ, p, n, ∆

(collectively called hadrons) can have strong, weak or electromagnetic inter-
actions, while leptons e−, νe, µ−, νµ, τ−, ντ only have weak or electromagnetic
interactions (if they are electrically charged). The force carriers, called gauge

i



4 Introduction

Figure i.4: The figure shows the classification of fermionic particles into leptons, quarks
and gauge bosons. Leptons can only have electro-weak interactions, while quarks can
have both strong and electro-weak interactions, since they also carry a strong quantum
number. Each group comes in three generations, so-called flavors,i.e. three replicas of
the same two-particle structure (e−, νe), (µ−, νµ), (τ−, ντ) for the leptons and (u, d),
(s, c) and (b, t) for the quarks. The quanta of the electromagnetic, strong and weak
interactions, the gauge bosons γ, g, Z0, W±, are in the last column.

bosons, can be charged themselves. The gluon g for instance, the carrier of the
strong interactions, has strong charges, so it can exchange strong interactions
with other gluons. Similarly for the Z0, W± gauge bosons, the carriers of the
weak interactions. The photon γ instead is not electrically charged so it cannot
exchange electromagnetic interactions with other photons. Fig. i.3 depicts the
different forces and the corresponding force carriers, i.e. the gauge bosons,
and the phenomena they are responsible for.

The electromagnetic interactions are perhaps the ones we have a better un-
derstanding of, because they also take place at a macroscopic scale. At a quan-
tum level though, they consist in the exchanges of photons γs (the force carries
of the electromagnetic field), and are described by Quantum Electro Dynam-
ics (QED). The weak interactions are less familiar, but they are responsible for,
among others, the β decays, which are crucial for the heating of the sun and
of the other stars. These interactions are considered weak as compared to the
electromagnetic ones, because they only happen a million times slower than
the electromagnetic ones. The strong interactions on the other hand happen
at a much faster rate than the electromagnetic ones, about one million times
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faster. Their range though is much shorter than the electromagnetic interac-
tion, they do not extend much beyond the proton size (10−15 m). So strong
is this interaction however that the residual force outside the proton is what
keeps the nucleons bound together in the nucleus of the atom. The strong in-
teractions though are not just the interactions of nucleons, they are actually
interactions of quarks and gluons, the hadron constituents. These quarks are
never observed as free particles, but only confined to hadrons. The current
description of these strong interactions, called Quantum Chromo Dynamics1

(QCD) cannot explain why it is that these quarks are confined into hadrons,
see Section i.1.2. Note that I have not mentioned the fourth fundamental in-
teraction of nature, gravity. That is because as of today there is still no way of
combining it with the other three forces into one consistent unified quantum
description. Since gravity is very weak at the scales we are talking about, one
may easily neglect its effects.

In Fig. i.4 one can see how leptons and quarks come in three families, each
with different masses. Why it is so, is still not known. The interactions how-
ever (disregarding mass differences) are the same for every generation. There
are many other unsolved questions in the Standard Model and I will return to
(some of) them in section i.1.4.

One particle I have still not mentioned is the Higgs boson H, the particle
that according to the SM is responsible for giving mass to all the other parti-
cles. It has as yet not been observed, though it was originally expected to have
a mass well within the discovery reach of the LEP collider first, then of Teva-
tron collider. It is currently the single most sought after particle at the newly
built Large Hadron Collider (LHC).

The electroweak and strong interactions of all these particles may be en-
coded into the mathematical formalism of a Lagrangian. This Lagrangian con-
tains the kinetic energy, the potential of each particle (including the part due
to the mass) and all the possible particle interactions written in terms of the
field operators associated the particles. For instance a neutral boson particle
is associated with a field φ and a fermion with a field ψ. The form of the La-
grangian is determined by the symmetries of the system, which encode the
interactions of the system. For the Standard Model Lagrangian these symme-
tries are

SU(3)c × SU(2)w × U(1)Y . (i.1)

The first symmetry group SU(3)c, is called the color group (chromo=color), and
reflects the fact that quarks come in three colors, red, blue, green. The sec-
ond symmetry group is the weak interaction group SU(2)w, and the third one
is the hypercharge group U(1)Y. These two groups together describe all the
electromagnetic and weak interactions, brought about by γs and Z0, W±. The

1From the Greek word chromo for color.
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6 Introduction

SU(2)w × U(1)Y symmetry is therefore said to unify electromagnetic and weak
interactions into one electroweak interaction.

The Lagrangian describing all these particle interactions consists of the
QCD Lagrangian, the Electro-Weak one and the Higgs Lagrangian.

L = LQCD + LEW + LHiggs. (i.2)

From this one can extract all physical quantities. The complication is that, as
mentioned above, while QCD is formulated in terms of qs and gs, the physi-
cally observables states are hadrons, so in order to calculate the observables
such as the mass or the scattering amplitude, one must resort to using approx-
imate, effective models in which it is the hadrons that interact instead of the
quarks and the gluons.

Effective theories are a very powerful tool for describing interactions, for
calculating observables and thus for making predictions. Indeed they are such
an important topic that they are the subject matter of the next section. For a
better description see [4, 5].

i.1.2 Effective Field Theories

To understand what I mean by Effective Theory, consider the problem of de-
scribing a physical system. Typically, one would like to isolate the relevant
features of the system and disregard the other details. ”The crucial point is to
make an appropriate choice of variables, able to capture the physics which is
most important for the problem at hand” [6]. An effective field theory is pre-
cisely a theory which is capable of reproducing the key features of the system.

In particle physics, usually one deals with problems involving very differ-
ent energy scales, from 100 MeV (corresponding to the π mass) to tens of TeV
(the New Physics Frontier) to the Planck scale 1019 GeV, and one generally uses
the expression ”Effective Theory” as a synonym for low-energy theory. What
this low-energy limit is depends upon the context. For instance both projects
I have dealt with, the renormalization project and the hidden sector one, deal
with effective field theories, but the energy range, and thus the physics they
describe, are very different. To understand where these two projects lie on
this energy scale, consider an axis going from the electron mass 2 to the Planck
scale depicted in Figure i.5.

In the first case, that is for the renormalization project, a typical example of
effective field theory the we (my supervisor and I) often refer to in the text is
Chiral Perturbation Theory (ChPT), the theory of π, K, η mesons. See [2] for
an introduction.

2In the following we will always use the convention c = 1, for which energy and mass have
the same dimensions.
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SM
︷ ︸︸ ︷

108

mρ ∼ ΛChPT

109

Tevatron LHC

1010 1011 1012 1013Energy [eV]

Planck
Scale
→

ChPT New Physics

Figure i.5: Typical energy scales in Particle Physics. In particular note that ChPT, the
low energy effective theory of QCD, lies below the ρ meson mass scale and below 1
GeV, the scale at which QCD interactions become strong. The Standard model extends
up to the scales thus far explored at the Tevatron accelerator, i.e. up to 1.2 TeV. New
Physics as an extension of the Standard Model is expected somewhere above this scale.
If it occurs at a scale below 14 TeV it might be detected by the Large Hadron Collider
(LHC).

ChPT is an effective description of these light states of QCD, in the low
energy regime p2 ≪ M2

ρ ∼ (700)2 MeV2. The reasons why it is preferable to
use ChPT rather than QCD to describe their properties (symmetries, masses,
decay constants) are twofold.

First, as mentioned above, QCD is formulated in terms of quarks (q) and
gluons (g), the meson constituents, and not in terms of the physically observ-
able π, K, η mesons themselves. As of today, the exact link between the QCD
quarks and gluons, and the mesons is not fully understood. QCD does not ex-
plain why one does not observe quarks as free particles at low energies. The
are many hints3 indicating that if quarks are separated in space, the strong
force between them grows stronger, binding quarks together. However, the
mathematical formulation for hadronization, the mechanism confining quarks
and gluons into the hadrons, has yet to be written.

Second, in particle physics one cannot usually calculate a physical observ-
able outright, but must rely on a systematic approximation procedure. The
result is called a perturbation series of the observable, because the underlying
assumption is that the system is well described by the first term and that each
new correction is just a small perturbation to the result. In QCD this procedure
leads to expressing the observables O as power expansions of the quark-gluon
coupling αs.

O = O0 + αsO1 + α2
s O2 + α3

s O3 + · · · (i.3)

Each new refinement of the calculation, i.e. each new term in the series above,
is expected to be a small correction to the previous estimate. This strategy

3For example coming from lattice QCD calculations.
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8 Introduction

gives extraordinary results4 when applied to QCD in the high energy regime
p2 ≫ 1 GeV2, where αs < 1. However, in the low energy regime p2 ≪1 GeV2,
which is the region of interest if we want to describe mesons, there is no hi-
erarchy between the size of the terms. This makes it impossible to decide be-
forehand when to truncate the perturbative series, i.e. to determine whether
or not the first n terms of the perturbative series are sufficient to describe the
observable with the desired degree of precision. The reason is that the QCD
coupling αs grows as the momentum transferred5 becomes smaller and in this
energy regime it is larger than 1. It is preferable then to use an approximate
theory which uses hadrons as fundamental particles and which allows for a
systematic perturbation theory approach. That this can be done is proven by
a theorem [6–8] which can loosely be stated as

Theorem 1 For a given set of asymptotic states, perturbation theory with the most
general Lagrangian containing all the terms allowed by the assumed symmetries will
yield the most general S-matrix elements consistent with analyticity, perturbative
unitarity cluster decomposition and the assumed symmetries.

This means that regardless of the underlying theory, once one identifies
which fundamental states and which symmetries are relevant at the energy
scale at hand, the effective Lagrangian built with these fundamental fields
and symmetries will encode the same physics of the underlying theory.

If one can also identify a small parameter in the effective theory, such as
the ratio r = p/Λ between the scale of the process and the cut-off scale for the
theory, one can then perform a meaningful perturbative expansion in powers
of r.

i.1.3 Building an effective field theory

In the following I will introduce those principles of effective field theory build-
ing that I deem necessary for the understanding of the mechanics of renormal-
ization.

Once one has identified the fundamental fields of the theory, the two in-
gredients one needs to construct a workable effective theory are

• an ordering criterion for the various terms in the perturbative expansion,

• an understanding of the symmetries of the system, so one can write
the most general Lagrangian compatible with the symmetries. The La-
grangian and the matrix elements (which yield the physical observables)

4Examples are scaling violation in Deep Inelastic Scattering experiments confirmed by SLAC,
the running of the QCD coupling constant confirmed by the three-jet distributions observed by
PETRA, the jet cross sections at colliders, the event shape observables at LEP, the heavy-quark
production at colliders.

5If a particle changes its momentum by emitting a gauge boson, the momentum of the gauge
boson is called transferred momentum.
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built upon these symmetries encode all the physics of the system. Note
that the symmetries and renormalization procedure are intimately con-
nected, I will discuss this issue in section i.2.

To build an effective Lagrangian for a process happening at a scale p ≪ Λ one
can use an expansion in powers of p/Λ, where Λ is the cut-off scale of the
model6. One may then organize the Lagrangian in terms of series of growing
powers of momenta, i.e. of derivatives.

L = L2 +L4 + · · · + L2n (i.4)

where the subscript indicates the number of derivatives. Once the Lagrangian
has been ordered this way, one may use Weinberg’s [7] power counting to
determine which Feynman diagrams, that is which terms in the perturbative
expansion of an observable, are to be taken into account. Feynman diagrams
are pictorial representations of the terms, which make the physical meaning
of the mathematical expression more apparent. For instance consider the dia-
gram on the left hand side of Fig. i.6. Time flows from left to right. An arrow
going from left to right represents a fermion, while one going from right to left
an anti-fermion. The wiggly line represents a gauge boson (in this cases a W

or a Z) propagating from one place to the other of space time. To each of these
elements is associated a function, so that the diagram has a one to one cor-
respondence with the mathematical expression of the probability amplitude
of that process taking place. Weinberg’s power counting states the first and
most important diagrams one should consider come from the lowest order
Lagrangian L2, and are to be tree level diagrams, that is without loops. The
contribution coming from L2 loop diagrams are suppressed compared with
the tree level ones, but are roughly of the same size (of the same order) as the
first order Lagrangian L4

Ltree =

0th order
︷ ︸︸ ︷

Ltree
2 +

1st order
︷ ︸︸ ︷

L1loop
2 +Ltree

4 + · · · (i.5)

Generalizing, each loop adds one suppression factor p2/Λ2, so that an n-loop
diagram is suppressed like a term in the L2n Lagrangian.

The second issue, that is the determination of which symmetries appear
or disappear when one takes the low energy limit p/Λ → 0 of a theory, de-
pends on the terms in the Lagrangian and on how these scale with p/Λ. Some
operators present in the high-energy underlying theory may disappear in the
low-energy limit. For instance nowadays we know that in electroweak interac-
tions fermions interact by exchanging W, Z bosons, as shown by the Feynman

6In some cases several cut-off scales Λi may be involved, then the understanding of the hier-
archy between the various terms of the perturbative expansion in powers of the different p/Λi

may be more complicated. I will not discuss this case here.
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diagram on the l.h.s. of Fig. i.6. In Fermi’s time though, in the 30’s, accel-
erators did not have enough energy to resolve the W, Z particles propagating
from x to y, and the weak interactions f f̄ → f f̄ appeared as the local four-
fermion interaction on the r.h.s. of Fig. i.6. In this effective theory the f f Z

coupling disappeared, so the similarities between a Z exchange and a photon
exchange (essentially the same as that in Fig. i.6 but with a photon in the place
of the Z, W), were lost and weak and electromagnetic interactions appeared
to be different. The symmetry linking the weak and electromagnetic into one
electroweak interaction is lost in the low-energy effective theory.

To determine which interaction terms remain relevant in the limit p/Λ → 0,
one must look at each term in the Lagrangian and consider the dimension of
each of the operators. The Lagrangian is given by

L = ∑
i

ciOi, (i.6)

where the Oi are the different operators Oi and the ci the operator coefficients.
These operators are functions of the φ, ψ fields associated to the particles, such
as the kinetic energy operator ∂µφ∂µφ or the φ2 operator in the mass term m2φ2.
Depending upon the energy dimension of each operator, they can be relevant
(di < 4), marginal (di = 4) or irrelevant (di > 4). The effects of irrelevant opera-
tors are suppressed by powers of p/Λ, so they disappear in the limit p/Λ → 0.
These operators are usually the remnants of the underlying higher energy the-
ory, as in the case of the effective four-fermion coupling in Fermi’s theory of
weak interactions. Typical examples of relevant operators are instead given by

f ′

x

f̄

W, Z

f

y

f̄ ′

→

f ′

f̄

f

f̄ ′

Figure i.6: Electroweak interactions between fermions. Fermions f and f̄ produce a
Z, W bosons which propagates and then decays into another f f̄ . At lower energy reso-
lutions this interaction appears as Fermi’s effective local four-fermion interaction. The

corresponding operator in the effective Lagrangian ψ̄ f ψ f ′ ψ̄
f ′ψ f has energy dimension

4 and is thus irrelevant.

mass terms −m2φ2 and mψ̄ψ. These operators are dominant in the low-energy
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limit. Finally kinetic terms ∂µφ†∂µφ are typical examples of marginal operators
and are in first approximation equally important at all momentum scales7.

When one takes the low energy limit of a theory, irrelevant terms disappear
and the symmetries of the system are given by the remaining terms.

I will not discuss these issues further here. I will come back to rele-
vant/irrelevant operators and discuss their connection with renormalization in
section i.2.

i.1.4 The Standard Model as an effective theory

Returning to the issue of the effective field theories, theorem 1 above also im-
plies that the argument may be reversed: one can use the symmetries and
phenomenology8 of the effective low energy theory to understand what the
underlying higher energy theory should be. This bottom-up approach is used
by New Physics models builders, to constrain Standard Model extensions.

As of today, the SM, the theory that describes the strong and electroweak
interactions of all the known particles, quarks, leptons and gauge bosons,
has shown only one unequivocal discrepancy with data, the lack of neutrino
masses. In Figure i.5 one may see the impressive energy range of applicability
of the SM, which extends over 12 orders of magnitude and describes phenom-
ena that are as different as jet9 distributions at colliders, neutron decays or
photon exchanges. It is however a fact that it is just an effective theory, since it does
not include gravity.

There are other experimental results hinting at physics beyond the Stan-
dard one, as suggested in section i.1.1: nothing in the SM can explain the
matter-antimatter asymmetry or the presence of dark matter (DM), which
alone accounts for 23% of the matter in the universe, as depicted in Fig. i.7
and described in [9].

There are also very strong indications for New physics coming from the-
oretical arguments, such as the “naturalness argument”. This argument is
connected to the mass of Higgs boson, the only fundamental scalar particle

7The symmetries of the theory are in first approximation, that is at a tree level, those given
by the Lagrangian in which one neglects all irrelevant operators. Quantum loop corrections can
however greatly complicate the picture. First of all, loop corrections can break the classical sym-
metries thus affecting the renormalization procedure. Second, they can give rise to anomalous
dimensions which tilt the behaviour of marginal operators. Finally, loops involving irrelevant
operators are in principle not suppressed, since p/Λ is integrated over all energy scales.

8The collection of all the Particle physics phenomenology is the part of theoretical particle
physics that deals with the application of theory to high energy particle physics experiments.
Within the Standard Model, phenomenology is the calculating of detailed predictions for exper-
iments, usually at high precision. Phenomenology may in some sense be regarded as forming a
bridge between the highly mathematical world of theoretical quantum field theories and experi-
mental particle physics.

9Highly boosted particle sprays.
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Figure i.7: Pie chart of the relative abundances of dark energy (73%), dark matter (23%)
and matter (4%) in the universe.

h h

W

h h

t

t

Figure i.8: Some one-loop diagrams contributing to the quadratic divergence of the
mass of the Higgs boson.

present in the SM10. Since it is a scalar, the perturbative expansion of its phys-
ical mass squared has a characteristic Λ2

SM dependence on the cut-off scale of
the theory:

m2
phys = m2

0 + αΛ2
SM (i.7)

where m2
0 represents the classical, tree level contribution and αΛ2

SM contains
all the quantum corrections arising from one-loop diagrams11. Some of these
diagrams are in Fig. i.8. The naturalness argument can loosely be stated as
”if the Standard Model were correct up to the Planck scale (the scale at which it must
be abandoned in flavor of a theory including quantum gravity effects) the SM cut-off
scale in Eq. i.7 would be ΛSM ≃ O(1019) GeV; in order to give the Higgs boson the
expected mass of O(100GeV), one should have a very unnatural cancellation between

10Disregarding bound states of the fundamental fields, such as the π of ChPT.
11The quantum corrections add up to

6√
2

GF

π2

(

m2
t −

m2
W

2
− m2

Z

4
− m2

H

4

)

Λ2
SM (i.8)

where GF is the Fermi constant, mt, mZ, mW , mH are the masses of the top quark, and of the
Z, W, H bosons respectively.
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h h

W′

h h

T

t

Figure i.9: Examples of new diagrams causing the partial cancellation of the quadratic
divergence due to the introduction of new particles, in this case in Little Higgs models.
T and W ′ are the new particles whose loops cancel the greater part of the quantum
corrections in Fig. i.8.

the two terms on the r.h.s. of Eq. (i.7). For this cut-off ΛPlanck the two completely un-
correlated numbers should differ (in absolute value) only by one part in 1032”. In SM
extensions one assumes that this cancellation is not accidental, but rather the
result of some new symmetry which is only manifest at energies E & ΛSM ∼1
TeV (the energy frontier explored by the Tevatron accelerator). Beyond the
cut-off scale the SM must be extended to include the new symmetries and
new particles. Typically, the new symmetries ensure that the quantum correc-
tions induced by the new particles naturally cancel12 the large SM quantum
corrections in Eq. i.7. For example in Little Higgs SM extensions, the large
contributions coming from the diagrams in Fig. i.8 are canceled by the new
W ′ and T particle loops described in Fig. i.9. Another very popular SM exten-
sion is SuperSymmetry (SUSY). See ref. [10] for an introduction. In SUSY each
fermion has a boson superpartner and each boson has a fermion superpart-
ner with the same charges. The large quantum contribution in Eq. i.7 is then
cancelled by the superpartner.

The new particles are usually given masses above the TeV scale, because
the larger the mass, the lower the impact on the dynamics of the lower energy
ones13. This way one can avoid large modifications of the SM phenomenol-
ogy14 [11]. Note however that not all new particles necessarily have to be this

12Or very nearly cancel.
13This is due to the decoupling theorem.
14Typical SM physical observables affected by the presence of new articles are scattering am-

plitudes, production cross sections, unitarity triangle relations, S, T, U parameters. The scattering
amplitude, the probability amplitude that two particles α and β collide and the same two α and
β emerge, can be modified in many ways by new physics, by modifying the couplings, or by
introducing new quantum corrections similar to the ones described for the Higgs mass. The pro-
duction cross-section (proportional to the probability to produce the particle) can be affected the
same way. The unitarity triangle relations are relations due to the fact that there are exactly three
generations in the SM, these would be dramatically affected by the introduction of a fourth gen-
eration. The S, T, U parameters encode the quantum corrections to the way a Z boson propagates
and are very sensitive to new particle quantum loops.
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heavy. In section i.3 I will for instance describe new physics scenarios in which
the new sector is light.

i.2 Renormalization in effective field theories

In the previous section i.1 I often touched upon the subject of quantum cor-
rections and the precise determination of the value of an observable, such as
the mass of the Higgs. For instance, in Eq. i.7 I pointed out how the quantum
correction grew as Λ2

SM. If the SM theory were correct up to infinitely high
ΛSM scales, the quantum correction would grow very rapidly to be infinite,
making the whole idea of a quantum correction as a small perturbation of the
result somewhat problematic.

One solution, suggested by Eq. i.7, is to assume that the physical mass on
the l.h.s. of the equation is the measured one, and that the sum of tree level
result and of the quantum loop corrections on the r.h.s. is just the expression
of the mass in terms of parameters. Since it is the sum that must be finite,
we can assume the tree-level term to be infinite too so it can cancel the loop
quantum divergence.

We need to find a systematic way to handle the infinite quantum correc-
tions to extract meaningful results though, and this procedure is called renor-
malization.

i.2.1 The concept of renormalization

The problem arises, as I said, when one considers the perturbative expan-
sion of a physical observable in terms of the couplings in the Lagrangian.
Very often the quantum fluctuations, i.e. the quantum loops, are ultra violet15

(UV) and/or infra-red16 (IR) divergent. The physical observables expressed in
terms of the Lagrangian parameters thus turn out to be infinite.

The key point to realize though, is that what is infinite is just the relation-
ship between the physical observable and the parameters in the Lagrangian,
as in Eq. i.7 between mphys and m0. The physical relations between physical
observables, between mass mphys and charge ephys, will still be finite.

Consider two observables A and B, each expressed in terms of the La-
grangian parameters a and b. The relationship between A and a, b may be
infinite, as may be the relation between B and a, b, however the relationship
between the two physical A and B is finite and that is what is physically mean-
ingful and measurable. Renormalization consist in writing the observable in terms
of other physical observables rather than in terms of Lagrangian parameters.

15I.e. in the high energy region p → ∞, or more physically p much larger than the typical scale
of the process at hand.

16I.e. at scales much smaller than the typical scale of the process.
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Figure i.10: First quantum corrections to the mass of a fermion induced by a/Λ2(ψ̄ψ)2

terms in the Lagrangian. The loop on the r.h.s. leads to a divergent contribution.

If the theory contains two parameters a and b, consider two observables
and calculate their expression in terms of the parameters, A = A(a, b) and
B = (a, b), up to the desired precision. These relationships can be inverted,
a = a(A, B) and b = b(A, B). Any other quantity can now be expressed in terms
of a = a(A, B) and b = b(A, B), so in terms of the physical A and B.

The renormalization procedure can be carried out in a systematic way.
Thus, assuming a sufficient number of physical observables is measured to
fix the parameters, one can make predictions on the size of new physical ob-
servables.

A theory which only contains relevant and marginal operators is called
a renormalizable theory, because one only needs a finite number of physical
observables to fix all the parameters and make predictions to any degree of
precision in perturbation theory, whatever the energy. Ideally, given the algo-
rithm generating all the terms in the perturbative expansion, one could resum
them and predict the size of any physical observable to infinite precision17.

A theory with irrelevant operators is instead non-renormalizable, in the
sense that at each order in the perturbative expansion one needs to fix new
parameters, which requires the measurement of new observables. If the scope
were to predict the size of a physical observable F with an infinite degree of
precision at any energy scale, then a non-renormalizable theory would be use-
less. Usually however, we are content with calculating the size of F up to a
certain degree of accuracy ǫ. In this case the main features of the system can
sometimes be described more efficiently by the first few terms of the p/Λ ex-
pansion of a non-renormalizable effective theory, especially in the case of a
large difference in scales between p and Λ.

i.2.2 Mechanics of renormalization

Consider for example the one-loop quantum corrections to the mass of a
fermion depicted in Fig. i.10. On the l.h.s. a fermion propagates from x to

17Experimental errors on the measurements aside.
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y with a given kinetic energy and a given physical mass m, represented by the
red blob in the picture. The physical mass can be extracted from this propaga-
tion. On the r.h.s. is the expression of the propagation in terms of Lagrangian
parameters, calculated with one quantum-loop correction precision. The first
term represents the classical mass term m0ψψ̄, while the second one the quan-
tum correction induced by the irrelevant18 interaction a/Λ2(ψ̄ψ)2. The loop
correction affects the way the fermion propagates and thus the determination
of the physical mass. The size of this correction is given by a/Λ2 times the
integral

m0

∫
d4k

(2π)4

1

k2 − m2
0

, (i.9)

where m0 is the fermion mass parameter appearing in the Lagrangian. This in-
tegral is quadratically divergent as one sends k momentum cut-off Λ → ∞. The
physical mass though can be finite if the contribution from the first diagram
cancels the infinity coming from the second one.

Another example is given by Quantum Electro Dynamics (QED). I will
consider the electric charge e renormalization, or rather the renormalization
of α = e2/4π and show how another observable, the scattering amplitude19

Te+e−→e+e− , can be calculated with one-loop precision and yield sensible finite
results once it is expressed in terms of the renormalized α.

The physical scattering amplitude Te+e−→e+e− is given at one loop order by
the sum of the diagrams in Fig. i.11, plus a few more that we shall neglect for
the sake of the argument. The first diagram describes the e+e− entering on
the l.h.s. and coupling to a photon with Lagrangian coupling e0. The photon
propagates and then produces a new e+e− pair. The diagram contains two e0

parameters, so it is proportional to α. The second diagram describes the same
interaction, but this time with a quantum loop correction to the propagator20

of the photon. This correction is called a vacuum polarization correction, and
indicated with Πµν.

The integral associated to the loop diverges like
∫

d4k(1/k2). One way to
handle this divergence is to make the integral finite, by integrating only up
to a momentum cut-off Λ. This procedure is called regularization. Applying a
cut-off is not the only way to make the integral finite. The integral can be reg-
ularized by dimensional regularization21, that is performing the calculation in

18This operator has energy dimension six.
19This amplitude squared and summed over phase al possible final particle momenta (and spin)

gives the probability that the process e+e− → e+e− takes place.
20The function associated to it’s propagation.
21The physical predictions are independent of the regularization or renormalization scheme

chosen. Dimensional regularization, together with mass-independent renormalization schemes
such as minimal subtraction (MS) or M̄S, ensures that the regularization does not introduce an
artificial breaking of the symmetries of the system. This way, the limit m ≪ Λ loop corrections
are suppressed, while with the cut-off regularization in order to obtain the same results one must
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Figure i.11: The e+e− → e+e− scattering amplitude calculation up to the first quantum
corrections, in diagrammatic form. Only one quantum correction diagram is shown

D = 4 + 2ǫ dimensions. This makes the integral convergent. After all observ-
ables are expressed in terms of other physical observables one can get rid of
the regularization by sending ǫ → 0 (Λ → ∞).

The vacuum polarization for a photon propagating with momentum q then
becomes

Πµν(q) = (−q2gµν + qµqν)Π(q2) (i.10)

where

Π(q2) = − 4

3

α

4π
µ2ǫ

{
1

ǫ̂
+ log

(−q2

µ2

)

− 5

3
+ O(ǫ)

}

(i.11)

and 1
ǫ̂ = 1

ǫ + γE − log(4π) and µ is an arbitrary mass scale. This expression
shows two characteristic features of quantum corrections: first, the divergence
is given by a simple pole for ǫ → 0, second the dependence on the scale q2 is
logarithmic. The first implies that one could cancel the divergences by adding
to the Lagrangian operators with ∼ 1

ǫ̂ coefficients22, i.e counterterms. The pro-
cedure is not unique, that is, one may decide to not only cancel the divergent
part of the quantum contributions but also finite but large ones, which make
the convergence of the perturbative expansion slow. Since the splitting of the
Lagrangian into an infinite part and a counterterm part is completely arbitrary
and non-physical, the result is renormalization procedure independent.

Once Π(q2) has been split into a diverging and a finite piece we

Π(q2) = Πdiv
ǫ (µ2) + Π(q2/µ2), (i.12)

calculate the physically observable scattering amplitude Te+e−→e+e− drawn in
Fig. i.11, up to precision one-loop. Its expression in terms of Lagrangian pa-
rameters is given by

Te+e−→e+e−(q2) = −Jµ Jµ
4παbare

q2
{1 − Π(q2)}, (i.13)

sum over an infinite number of contributions at each order 1/Λ. For this reason one prefers to
use the dimensional regularization.

22For higher orders one will need ∼ 1/ǫn counterterms.
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where Jµ is the electromagnetic current. This can however be re-interpreted in
terms of a renormalized α. The factor αbare{1 − Π(q2) + · · · } in Eq. i.13 can be
split off into a renormalized coupling αR(µ2) and a finite scattering renormal-
ization factor

αbare

{

1 − Πdiv
ǫ (µ2)− Π(q2/µ2)

}

= αR(µ2)
{

1 − ΠR(q2/µ2)
}

(i.14)

where

αR(µ2) = αbare

{

1 +
αbare

3π
µ2ǫ

[
1

ǫ
+ const + · · ·

]}

(i.15)

and where the constant depends upon the scheme. Once the α is re-defined
this way, the scattering amplitude

Te+e−→e+e−(q2) = −Jµ Jµ
4παR(µ)

q2
{1 − Π(q2/µ2)}, (i.16)

is manifestly finite.

Complications for effective field theories

In the case of a generic effective field theory the situation is complicated by
the fact that going to higher orders23 in the perturbative expansion in powers
of p2/Λ2, we can have new operators in the Lagrangian and new coupling
constants. For instance in ChPT [2, 12], the lowest order (lowest precision)
Lagrangian describing the interactions of the pion fields (all collected into the
field U) is given by

L2 =
F2

4
Tr[DµU†DµU] +

F2

4
2B0Tr[M†U + U†M], (i.17)

with just two operators and two coupling constants24, F and B0. Already the
first order Lagrangian L4 [13] contains ten new operators (not considering
the last two operators connected to the external fields) and ten new coupling
constants L1, ..., L10:

L4 = L1Tr[DµU†DµU] + L2Tr[DµU†DνU]Tr[DµU†DνU]

+ L3Tr[DµU†DµUDνU†DνU] + L4Tr[DµU†DνU]Tr[M†U + U†M]

+ L5Tr[DµU†DµU(M†U + U†M)] + L6Tr[M†U + U†M]2

+ L7Tr[M†U + U†M]2 + L8Tr[M†UM†U + U†MU†M]

− iL9Tr[F
µν
R DµUDνU† + F

µν
L DµUDνU†] + L10Tr[U†F

µν
R UFL,µν]

+ H1Tr[F
µν
R FR,µν + F

µν
L FL,µν + H2Tr[M†M]. (i.18)

23Higher precision.
24In first approximation F corresponds to the pion decay constant and B0 gives the size of the

chiral symmetry breaking.
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For details about the meaning of this Lagrangian see [2, 13].
When we calculate an observable, the new Lagrangians, with their new

coupling constants enter the expression according to Weinberg’s power count-
ing. For instance at one-loop order, we should consider the tree level diagrams
coming from the lowest order Lagrangian L2 (leading order), then the one-
loop diagrams coming from the lowest order Lagrangian and the tree level
diagrams coming from the first order Lagrangian

Ltree
2 + Lloop

2 + Ltree
4 . (i.19)

The L2 loop diagrams will be divergent and will have to be renormalized by
the same-order counterterms, i.e. by the couplings in the L4 L1, ..., L10.

The situation becomes very rapidly rather involved as one goes to higher
orders: when calculating an observable up to second order in the perturbative
expansion, corresponding to a two-loop expansion, the power counting states
that one should take

• tree level diagrams from the lowest order Lagrangian, L2,

• one-loop diagrams from the L2 and tree level diagram from the L4,

• two-loop diagrams from the L2, one-loop diagrams from the L4 and tree
level diagrams from the L6.

With so many contributions coming from the various operators in the different
Lagrangians it is not trivial to understand how quickly does the perturbative
expansion converge. Some indications can come from the series of the leading
logarithms,

O0 + (O1
1L + O2

2L2 + O3
3 L3 + · · · ), (i.20)

where Ln stands for (log)n. As discussed above, these logarithms arise when
one calculates higher order corrections to an observable and describe the scale
dependence of the higher order correction. The leading logarithm at order n

in the perturbative expansion is (log)n.
The reason why one concentrates on the leading logarithmic series is that

the coefficients of the series are constrained by renormalization group equa-
tions (RGE) to be a function of the lowest order Lagrangian parameters only
[7,14], that is, they do not depend upon the higher order Lagrangian coupling
constants. The leading logarithmic series are the focus of the first two papers
in this thesis.

i
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i.3 Hidden Valley: a new light sector

Rom: The kemocite! If we vent plasma from the warp core into the cargo hold,
we may be able to start a cascade reaction in the kemocite. Then we can modulate
the reaction to create an inversion wave in the warp field and force the ship back
into normal space. If I time it just right, I should be able to get us close enough to
Earth to make an emergency landing.
Quark: Rom! You’re a genius!
Rom:: Think so?
Quark: How should I know? I have no idea what you’re talking about.

”Star Trek: Deep Space Nine” (1995)

In Section i.1 I discussed some of the unsolved issues with the Standard
Model and suggested that it may need to be extended. No one knows what
this extension should be. The slide in Fig. i.12 is taken from a recent conference
talk25 and shows a small part of the Standard Model extensions concerning the
Higgs boson.

As pointed out in the same section though, new physics models are
severely constrained by SM phenomenology, masses in particular. For exam-
ple for new charged leptons the PDG26 gives a lower bound mL± < 100.8 GeV.
For the leptoquarks predicted by quark-lepton unification theories it gives a
lower bound of mLQ < 136 GeV for the scalar leptoquarks and of mLQ > 200

GeV for the vector ones [15]. The bound on top partners, such as the ones de-
picted in Fig. i.9, are even more stringent, it is usually assumed that they have
masses around 1-5 TeV [16].

These constraints can be evaded though if the effective coupling of the new
particles to the Standard Model ones is suppressed for some reason, for in-
stance because of an energy barrier or because Standard Model and new par-
ticles only communicate via a very large mass particle, via a very small gauge
boson coupling or via quantum loop suppressed interactions. This is what
happens the Hidden Valley models [17]. In these models the SM sector and a
new secluded sector are both light, in the sense that they both contain O(1GeV)

mass particles. Ordinarily, that is for energies well below the SM cut-off scale
p ≪ ΛSM ∼ TeV, the two sectors hardly have any interactions. However, as SM
colliders gain access to higher energies, they may be able reach the threshold
for producing new massive ”communicator” particles, particles which can in-
teract with both SM and hidden sector. Figure i.13 shows a cartoon of hidden
valley models. The two valleys representing the Standard Model sector and
the new secluded sector are separated by an energy barrier, represented by the

25Courtesy of C. Grojean.
26Particle Data Group [11].
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Figure i.12: A slide presented at a recent talk. Some of Standard Model extensions
proposed to solve the Higgs mass problem.

crest. An accelerator like LEP (Large Electron-Proton collider) would not have
had enough energy to go over the barrier, but LHC, with its 14 TeV, could have
enough energy to do so. The barrier in the picture could for instance represent
the communicator’s heavy mass. A typical example of communicator is the
Z′ in the electron- positron annihilation process e+e− → Z′ → qvq̄v, in which
SM particles annihilate to produce the Z′, which then decays into new light
particles called valley-quarks. This is the communicator used in the first hid-
den valley scenario that was studied [17]. Another example of communicator
is given by new Higgs-like scalars.

Similar hidden valley models are compatible with many Beyond Stan-
dard Model (BSM) theories, unparticle scenarios [18], Super Symmetric mod-
els [19], just to mention some. The reason why so different SM extensions
can all display Hidden Valley features is that the Hidden Valley, being a light
sector, is itself the low energy limit of the underlying higher energy theory.
The dynamics at these low energies does not depend upon the details of the
dynamics at high energies.

In the original paper by Strassler and Zurek [17], the valley quarks are
subject to a strong force similar to QCD, which ensures the confinement of the
qvs into v-hadrons, with masses around the confinement scale Λv

27. Heavier v-
hadrons can decay down to the lowest lying states at the bottom of the valley.
Some of these low energy states may be stable v-pions (making for good DM
candidates28), while others may decay/tunnel back into the visible SM sector

27Just as in the QCD case, in this case Λv indicates a lower boundary on the theory, below which
perturbation theory is no longer valid.

28A requisite of a good DM candidate is that it should be stable and only interact ultraweakly

i
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Figure i.13: Cartoon for Hidden Valley models. One valley corresponds to the SM
particles and is separated from the adjoining valley representing the hidden sector by
a barrier (a crest). At ordinary energies, i.e. below TeV scales, the standard sector and
the hidden one are secluded. There are hardly any interactions between SM particles
and Valley ones. This was the situation observed by LEP for instance. LHC however
might have a large enough center of mass energy to reach the threshold and produce a
communicator particle, that is to go over the crest, and gain access to the hidden valley.
The communicator would then eventually cascade down into the bottom of the hidden
valley producing large number of valley particles, some of which could tunnel back to
the Standard valley.

and affect SM particle distributions.

In papers III and IV we have analyzed these spectra in hopes of

• detecting hidden valley radiation,

• distinguishing different valley sector symmetry structures.

Hidden valleys are an ideal terrain to address the question of detecting
a new source of radiation, because of the large mass disparity between the
communicator and the lowest lying v-states. The large mass difference im-
plies that when a communicator decays into a hidden valley quark, qv has a
large kinetic energy, which can lead to the radiation of numerous hidden sec-
tor gauge bosons. On the other hand, hidden valleys are not necessarily the
ideal models to distinguish different gauge symmetry structures, because, as
remarked above, many different higher energy structures may appear to have

with Standard particles.
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the same low energy phenomenology.

In order to study the effects of the hidden radiation onto the SM particle
distributions, Torbjörn Sjöstrand and I have implemented some new tools in a
Monte Carlo event generator PYTHIA 8 [20].

i.3.1 Monte Carlo event generators for Hidden Valley models

Figure i.14: Events are very chaotic environments, on the left is a picture of an event in
the CMS (Compact Muon Solenoid ) detector in LHC. On the right is a cartoon of the
outcome of a simulation of a pp collision with an event generator.

The reason why we need to use a random event generator to study hidden
valley phenomenology is that the particle colliders where we look for hidden
valley signals are very chaotic environments. The QCD interactions especially
generate large amounts of soft (low energy) particles, see Fig. i.14. In such a
busy environment it is crucial to be able to separate the signal from the back-
ground noise. Event generators are essential tools for the understanding of
both the background and the signal, as shown in Fig. i.15.

They connect matrix elements calculated from the Lagrangian, to the par-
ticle distributions observed in detectors, such as angular distributions of the
particles, momentum distributions. They are particularly useful to connect
the high-energy quarks, which the perturbative calculation is based upon, to
the low-energy hadrons.

i
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Figure i.15: An example of the importance of background subtraction. Distribution of
the two photon invariant mass after the accumulation of a 100 fb−1 of data. The red
histogram corresponds to the Higgs signal (Higgs mass of 130 GeV is assumed) and the
blue histogram represents all the backgrounds. Left and Right plots represent before
and after background subtraction.

Event simulation

PYTHIA is an event29 generator used to simulate events at e+e−, pp and pp̄ col-
liders, like CLIC30, LHC and Tevatron. The scope of the program is to connect
the high energy interactions31 with the lower energy hadronic jet distributions
observed in the detectors.

In these simulations each event can be in first approximation decomposed
into steps, as described in the cartoon in Fig. i.16.

• Two elementary particles are selected from the colliding beams, e+e− in
the case described in Fig. i.16, or two partons (quarks or gluons), in the
pp collision case in Fig. i.17. In this latter case each parton only carries a
fraction x of the overall momentum of the proton it comes from.

• Each particle can emit radiation, called initial state radiation (ISR). Elec-
trons will emit photons, while quarks will emit gluons. In the process
the particle loses energy and momentum. Each radiated photon or gluon
can emit two quarks or two leptons if it has enough kinetic energy. These
can in turn emit new radiation. The whole process rapidly gives rise to
a shower of particles.

29At a collider the term event indicates everything that happens after the collision of two parti-
cles, down to the final distributions observed in the detectors.

30Compact Linear Collider, currently under design at CERN.
31More precisely the matrix elements (ME) one would like to reconstruct.
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Figure i.16: Cartoon of the various stages of the simulation of a collision, collectively
called event: from the production from e+e− colliding, possibly radiating a photon
before they collide, and annihilating into γ⋆/z′, pair producing particles (hard inter-
action), through QCD final state radiation, fragmentation/hadronization, decay and
detection.

• The two particles interact. This part is called hard interaction32.

• Each interaction product can subsequently emit final state radiation (FSR).

• All color-charged particles hadronize and can produce jets.

• Unstable particles decay into lower mass ones.

The key underlying assumption, that allows us to follow this time se-
quence in the Monte Carlo simulation, is that the hard interaction happens
at a scale close to the collider center of mass energy

√
s, while the hadroniza-

tion happens at a scale Λ . 1 GeV, the energy scale at which the QCD cou-
pling αs becomes strong. From ∆E∆t ≥ 1, we then know that there is a high
probability that the hard interaction takes place at time-scale ∼ 1/

√
s, while

the hadronization takes place at a much later time scale ∼ 1/Λ. In between
the hard interaction energy33 scale Q2 and the hadronization scale Λ, one
can use perturbation theory to calculate the probability that a gluon emission
takes place using QCD Feynman diagrams. This probability diverges for soft
and/or collinear emissions. After quantum corrections are taken into account,
the divergences are cancelled, but the probability in still enhanced compared
with harder and/or non-collinear emissions34. This implies that, if particles
are radiated, they most likely will be soft and/or nearly parallel to the emitter.
Each radiated g/γ only causes a small change in the energy and momentum
of the emitter. Neither is the flavor of a particle changed by an emission. Thus

32The expressions hard and soft are synonyms for high and low energy.
33More properly, virtuality scale.
34This remains true for QED photon emissions.
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Figure i.17: The collision of two protons, from which two partons are extracted, each
with momentum fractions x1 and x2. The partons each radiate ISR, then at the scale
Q2

max they have the hard interaction, from which two new particles emerge. The new
particles emit FSR. As the particles reach the scale Λ hadronization starts. New QQ̄
pairs are produced from the vacuum and give rise to qQ̄ mesons and/or qqQ barions.
These boosted sprays of hadrons called jets are finally observed in the detectors.

the structure of the hard interaction products is approximately conserved even
after the emission of the radiation. If the hard interaction was described by a
2 → 2 body interaction, most probably the outgoing particle distributions will
appear pencil-like in the detector, with the two jets nearly back-to-back along
the direction of the original two particles coming out of the hard interaction.
A much smaller fraction of events will have three and four jets. In this way
we can reconstruct the hard interaction starting from the jet distribution.

Of course when the instable particles decay, the decay products can be
boosted in the same direction of the instable particle and be clustered in the
same jet, but they can also decay isotropically (especially if they have low ki-
netic energy) around the direction of the mother particle.

The picture is also much complicated by multiple parton-parton interac-
tions in the same pp collision, initial and final state radiation interacting, color-
charged particles interacting with the beam remnants.

Monte Carlo

As described above, the parton shower consists of a particle successively
emitting radiation. The parton repeatedly loses energy and momentum and
evolves from a maximum kinetic energy and momentum, fixed by the hard
interaction, down to lower energy and momentum 35. This iterative process

35For clarity I only discuss the time-like shower (FSR), similar arguments apply for the space-
like shower (ESR).
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of a particle branching into a particle plus radiation is very well suited for
computer implementation. The process is however not deterministic, in the
sense that we do not know if/when a given parton will radiate, we can only
calculate the probability that it will. To introduce this probabilistic component
into the simulation we use a Monte Carlo method. We have the computer se-
lect a random number R between 0 and 1, and then compare the number with
the probability of having an emission at scale Q1 and then evolving from scale
Q2

1 to scale Q2
2 without any emission. This way one can extract the scale of the

next emission with the correct probability distribution.
One key ingredient is the calculation of the emission probability. In general

the probability of a single emission will be proportional to the strong coupling
αs < 1. Two emissions will be suppressed by a factor α2

s , and in general the
probability of having multiple emissions will be small. In the case of soft and
collinear emissions though, the probability is enhanced compared with the
hard and/or large angle emission case. If one sums up many contributions
from this kinematic region the overall probability can turn out to be substan-
tial. The final state parton shower program then takes into account all the
possible emissions of partons from this soft and collinear region. The calcula-
tion is greatly simplified by taking into account only the leading contributions
to the probability surviving in the limit E, θ → 0, where E is the energy of the
radiated particle and θ the angle between the radiator and radiated momenta.

For example, the QCD probability for e+e− → qq̄g calculated with Feynman
diagrams is proportional to

αs

2π

x2
1 + x2

2

(1 − x1)(1 − x2)
, (i.21)

where xi = 2Ei/
√

s are the energy fractions of the outgoing quarks. As one
may see, it is divergent when either of the xi → 0. In the approximate approach
described above, the gluon emission can be interpreted as a two step process,
e+ e− → qq̄ followed by q → qg. If the q takes a fraction z of the energy and g

takes (1 − z), the probability that at the scale Q2 the parton emits a gluon with
energy fraction (1 − z) is given by

dP =
dQ2

Q2
CF

αs

2π

1 + z2

1 − z
dz, (i.22)

where CF is the Casimir factor36 In order to obtain the probability that at the
scale Q2 one has a first emission, this probability should be multiplied by the
probability that there was no prior emission, the so-called Sudakov factor.

Starting from these elements one can implement a cascade evolution. Each
q and q̄ emerging from the hard interaction, is individually evolved down-

36Dependent on the number Nc of quark colors, for QCD Nc = 3.
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wards from some initial Q2
1 to the scale Q2

2 of the next branching, where the
mother parton is replaced by its daughter partons and the process is repeated.

Hidden Valley showers

Figure i.18: Carton of the hidden dynamics. The new valley-quarks shower v-gluons
until the hadronization scale is reached. The hadronization (represented by the shield
in the picture, turns the partons into valley-pions, v-Ks and into v-hadrons in gen-
eral.(Courtesy of M. Strassler)

If instead of standard model partons the hard interaction produces pairs of
valley-quarks, the parton showers ought to be modified, so that the different
types of gauge bosons can be emitted (as depicted in Fig. i.18). The proba-
bility to radiate must be adjusted to take into account the fact that the gauge
boson may be massive and has different Casimir factors37. If the matter sector
in the hidden valley contains both heavy and light v-quarks, the matrix ele-
ments38 for the radiation must also be modified to take into account the mass
difference.

A second modification of the shower algorithm accounts for the fact that in
some models the communicator is charged under both the SM and the valley
gauge group, so it can simultaneously emit SM and new gauge bosons, during
a common shower evolution.

Finally, if the new sector is confining then one must also modify the
hadronization routines, so that the valley quarks hadronize into πv, Kv and
more massive v-hadrons, as depicted in Fig. i.18.

37Which depends upon the number of v-colors.
38Proportional to the probability.
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Hidden Valley particle decays

Many hidden valley models involve a mechanism allowing v-particles to de-
cay back into SM particles. The mechanisms are model dependent, however
one may divide them in three classes. Those in which the hidden radiation
couples directly to the standard one, those in which first v-pions are formed
and then the pions decay back into the standard model sector, those in which
the some v-quarks decay directly into the SM, before the v-hadronization.

All these possibilities require an ad-hoc implementation in the event gener-
ator.

i.3.2 Hidden valley event analysis

With these tools at hand one can generate valley events and study the collider
phenomenology.

One of the greatest advantages of an analysis of simulated events com-
pared with a real analysis of experimental data, is that in the simulation one
can isolate the different effects and determine the cause of a certain behaviour
of the distribution. One can also tune the model parameters so as to give more
relevance to certain features rather than others.

Depending upon the collider and detector resolution, the first distributions
one could study when looking for hidden particles are missing energy and
momentum, angular distribution, event shapes, transverse momentum pT dis-
tributions. Any significant deviation from the expected SM distributions will
be a signal for beyond Standard Model physics. The issue, once one such sig-
nal is found, will be to understand which standard model extension causes the
deviation.

i
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i.4 Introduction to papers

i.4.1 Paper I

In paper I we exploit the Büchler-Colangelo algorithm [14] to calculate the
Leading Logarithmic corrections to the pion mass, in the massive O(N +

1)/O(N) non-linear sigma model. We calculate the corrections up to order five
loops for the generic number of flavors N, and use the results to study how
each higher order correction scales with energy and to estimate the conver-
gence of the perturbative expansion. The results are particularly interesting in
the N = 3 flavor case, which corresponds to 2-flavor Chiral Perturbation The-
ory. We calculate the mass to such a high degree of precision in hopes to find
a pattern in the Leading Logarithm coefficients, in order to resum the series.
We do not recognize the pattern in the generic N coefficients, however, we
manage to solve the problem of resumming the whole series of perturbative
corrections to the mass in the large N case.

i.4.2 Paper II

Paper II is an extension of the analysis performed for paper I. We apply the
same principles to scattering amplitude, decay constant, vacuum expectation
value, scalar and vector form factors. For each of these observables we derive
the finite number of flavor N expressions for the Leading Log coefficients and
the all loop order resummed expressions for the large N limit. We study how
the higher-order corrections scale with energy, and how the series converge
as a function of the physical mass and decay constant, or as a function of the
Lagrangian parameters.

i.4.3 Paper III

Paper III is a first attempt to determine the collider signatures of hidden valley
radiation. We construct a toy model based on a valley SU(N) color group, with
fermions charged under both standard and valley interactions, and we imple-
ment it in PYTHIA 8 to generate valley events. We concentrate our study of
the phenomenology on the impact of the SU(N) hidden radiation on the stan-
dard model particle kinematic distributions. The analysis is a comprehensive
parton-level study of these signatures at e+e−, LHC at 7 TeV and LHC 14 TeV.

i.4.4 Paper IV

Paper IV addresses the issue of distinguishing between different secluded sec-
tor gauge symmetry structures. The tools implemented for our prior study
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are extended to comprehend different setups, so as to make the results of phe-
nomenological analysis as model independent as possible. In particular the
new set-ups comprehend a broken 6U(1) and a confining SU(N). New tools
include hidden sector fragmentation and hadronization and effective decays
of hidden sector particles to Standard Model particles through kinetic mixing.
The analysis we perform is limited to e+e− collider phenomenology, because it
is easier to isolate the features connected to the gauge structures. We illustrate
the the differences between abelian and non abelian distributions through the
study of six different setups. We find that a number of distributions give very
different results. Even if we tune the paramters in such a way as to have
the same number of secluded sector particles decaying back into the standard
model, we find a very sizable difference in the jet angular distributions.

i.4.5 List of contributions

• Paper I: The ideas in this paper came from my supervisor. In order to
actually perform the calculation we also had to rely heavily on the pre-
viously developed FORM programs. I reproduced independently all the
results. The paper was written together by my supervisor and myself.

• Paper II: This is a follow up to the previous paper. Again, my supervisor
and I performed the calculations separately and compared the results.
The paper was written together by my supervisor and myself.

• Paper III: The idea for the paper was developed by myself and Peter
Skands. The model implementation was done by Törbjorn Sjöstrand,
while the analysis was performed together. I also contributed with some
insight on theoretical tools for the analysis. The paper was written to-
gether by Törbjorn Sjöstrand and myself.

• Paper IV: This paper expands some of the ideas that had emerged dur-
ing the previous study. In this case I had a more active part in the cal-
culations required by the PYTHIA 8 implementation, some of the new
tools however still required Torbjörn Sjöstrand’s expertise. I had a large
part in the decision making about the models to be studied and in their
analysis. The paper was a joint effort. I had constant feedback from both
Torbjörn Sjöstrand and Johan Rathsman on the calculations, analysis, the
theoretical issues associated with the models and writing.

i.4.6 Copyright information
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• Fig.i.4 © Wikimedia Commons. License: CC 3.0 Unported. Author:
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• Fig. i.1 © 2000 Particle Data Group

• Paper I: reprinted with kind permission from Elsevier, Leading Loga-
rithms in the Massive O(N) Nonlinear Sigma Model, Nuclear Physics B
827 (2010) 237-255, Johan Bijnens and Lisa Carloni

• Paper II: reprinted with kind permission from Elsevier, The Massive
O(N) Non-linear Sigma Model at High Orders, Nuclear Physics B 843
(2011) 55-83, Johan Bijnens and Lisa Carloni

• Paper III: reprinted with kind permission from Springer Sci-
ence+business Media: Journal of high Energy Physics, Visible Effects
of Invisible Hidden Valley Radiation,1009 (2010) 105, Lisa Carloni,
Torbjörn Sjöstrand
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We review Büchler and Colangelo’s result that leading divergences at any
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I.1 Introduction

In a renormalizable theory the use of Renormalization Group Equations (RGE)
is common practice. RGEs have not yet received the same attention in non
renormalizable effective theories. This is partially due to the fact that one
does not normally have the problem of evolving coupling constants through a
large energy range, and partially to the fact that RGEs in non renormalizable
theories get more complicated as one goes to higher orders. Loop corrections
however can be significant [1–3] and need to be dealt with.

Consider for example the scattering length a0
0 in ππ S-wave, I = 0 scatter-

ing in ChPT. Close to threshold, this amplitude may be expressed in terms of
the expansion parameter (Mπ/4πFπ)2 ∼ 0.01. Despite the smallness of the ex-
pansion parameter, the one loop contributions cause a 28% corrections to the
tree level prediction [4]. The reason for this is that beyond tree level the ex-
pressions for observables contain non-analytic functions [5] such as M2 log M2

which may be large if M2 is small, even near threshold. It is only natural then
to wonder about the size of higher order n contributions like (M2 log M2)n, the
so called leading logarithms, and about the size of their coefficients.

In a renormalizable theory these coefficients are fully determined by a one-
loop calculation. This is a consequence of the RGEs The difference between
a renormalizable and a non-renormalizable theory is that in the first case the
counterterms needed at any given order have the same form, while in the lat-
ter case new ones are needed at every order. Nevertheless, one can still make
predictions on the leading logarithms. This fact was first pointed out by Wein-
berg [1] in the context of Chiral Perturbation Theory (ChPT). He showed that
at two loops the coefficient of leading logarithm (M2 log M2)2 can be deter-
mined simply by performing a one-loop calculation.

This method has since been used in ChPT [1–3] to two loop order in ππ

scattering [6] and in general [7]. It is no longer much used in the purely
mesonic sector, since most processes are actually fully known at two-loop or-
der as reviewed in e.g. [8].

In the last few years though, Weinberg’s argument has received new atten-
tion [9–13], especially since Büchler and Colangelo were able to generalize the
result to all orders [9]. They showed explicitly that one can obtain the (coef-
ficient of the) leading logarithm at any order by simply performing one-loop
calculations and that this coefficient is just a function of the lowest order cou-
pling constants. The relevant part of their paper [9] and their algorithm to find
the coefficients is described in Sect. I.2.

In Section I.2.3 we provide an alternative proof of their results which does
not rely explicitely on β-functions but follows directly from the fact that all
non-local divergences must cancel. This version of the proof has the benefit
that it shows immediately that one only needs to calculate the divergent part
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without worrying about classifying higher order Lagrangians and that there
is a direct link between divergences and leading logarithms.

We then apply this method to the case of a massive O(N) non-linear sigma
model and calculate the corrections to the meson mass up to five loops.
Sect. I.5 contains a detailed explanation of our calculation. Similar calcula-
tions have been performed by [12, 13] who showed how to obtain the leading
logarithms in the massless case by deriving a recursion relation for all possi-
ble vertices with up to four mesons. Since in the massless limit the tadpoles
vanish, this allows obtain the leading logarithms in a straightforward fashion.

The authors of [10] instead calculated the two-point function up to five
loops in ChPT in the chiral limit using dispersive methods1. Once the first
five leading logarithms where known, the next step was finding an algorithm
that would allow them to calculate the n-th order one and eventually to resum
the series. In paper [11] they considered a linear sigma model and compared
the correlator leading logarithms they found with those from ChPT, both in
the chiral limit. They showed that it is not possible to simply use RGEs in
the linear sigma model to resum the chiral logarithm series. The two scales
present in the linear sigma model both generate logarithms that cannot be
disentangled.

We are however able to calculate the the five-loop meson mass in the mas-
sive non-linear case. What allows us to obtain these results is the observation
that while one needs a complete Lagrangian to any order, this does not have
to be minimal (see Sect. I.2.2), nor does one need its explicit form in terms of
chirally invariant operators. This, combined with the power of FORM [14],
allows us to calculate the relevant parts to five-loop order for the meson mass.

A calculation of this magnitude needs as many checks as possible to en-
sure that no mistakes are made. We use two main checks. We perform the
calculations in different parametrizations of the O(N) nonlinear sigma model.
Since different parametrizations distribute contributions very differently over
the the various Feynman diagrams, the agreement provides a rather stringent
check. Another check is that the leading term in N agrees with the result of
the large N expansion of the model.

To the best of our knowledge, this is the first time a study of the massive
O(N) is performed in this limit, whereas there is a vast literature on large N in
the massless case, especially for the linear sigma model, see [15] and papers
citing it.

We solve the mass in the O(N) model in a fashion similar to that often used
in the Nambu-Jona-Lasinio model, see [16] and references therein. We first
proof that only “cactus” diagrams contribute and that they can all be recur-
sively generated by an equation for the exact propagator, a generalization of

1In the same paper the authors also calculate the dispersive part of the three-loop pion form
factor.

I
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the usual gap equation. Finally, we are able to find a compact implicit expres-
sion for the all-loop physical mass. A thorough explanation of the study can
be found in Section I.4.

This paper is organized as follows. In Sect. I.2 we discuss the results of [9]
(Sect. I.2.1) and use their proof to show that one does not need a minimal
nor a fully symmetrically formulated Lagrangian at higher orders (Sect. I.2.2).
Sect. I.2.3 provides an alternative proof of the results of [9]. Sect. I.3 defines
the O(N) nonlinear sigma model and the different parametrizations that we
use. Section I.4 discusses the large N case to all orders. The calculation of
the leading divergences for the mass to five-loop order in the general case is
described in Sect. I.5, there we also give the result of the calculation. Sect. I.6
summarizes our main results. The way we perform the integrals is described
in App. I.7.

I.2 Renormalization group arguments

I.2.1 The equations for the divergences

This subsection recapitulates the parts of [9] we will use. We use dimensional
regularization with d = 4−w. The Lagrangians can be ordered in an expansion
in h̄. We denote the lowest order Lagrangian with L0.

Lbare = ∑
n≥0

h̄nLbare
n ,

Lbare
n =

1

µnw

(

Ln + Ldiv
n

)

. (I.1)

The divergent part contains the inverse powers of w needed for the subtraction
of the loop divergences at order n 2.

We now expand each term into a set of Nn operators O(n)
i :

Ln =
Nn

∑
i=1

c
(n)
i O(n)

i ,

Ldiv
n =

Nn

∑
i=1





n

∑
k=1

A(n)
ki

wk



O(n)
i . (I.2)

One key difference between a renormalizable Lagrangian and these is that

here the minimal basis of operators O(n)
i grows with n. In the remainder, we

will assume that all one particle irreducible diagrams (1PI) are made finite

2When comparing with ChPT one should remember that our order h̄n corresponds to the order
p2n+2 in ChPT.
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separately. This simplifies the calculations and arguments. That this can al-
ways be done is discussed in [9]. We have already used here, in the expression

of Ldiv
n , the fact that all divergences are local. The c

(n)
i are usually referred to

as Low-Energy-Constants (LECs).
The bare Lagrangian is µ independent. This leads to the equations

0 = µ
d

dµ
Lbare

n

=
1

µnw

Nn

∑
i=1

Oi



−nwc
(n)
i + µ

d

dµ
c
(n)
i +

n

∑
k=1

(

−nw + µ
d

dµ

) A(n)
ki

wk



 . (I.3)

These must be fulfilled separately for each n, i and inverse power of w. We
define the β functions via

µ
d

dµ
c
(n)
i = β

(n)
i + nwc

(n)
i . (I.4)

The RGEs of (I.3) thus become

β
(n)
i +

n

∑
k=1

(

−nw + µ
d

dµ

) A(n)
ki

wk
= 0 . (I.5)

The A(n)
ki do not depend explicitely on the µ. They do, however, depend upon

the c
(n)
i , since they must cancel the divergences stemming from the loops of

the lower order Lagrangians. We can thus simplify (I.5) to

β
(n)
i +

n

∑
k=1



−nw + ∑
m,j

(

mwc
(m)
j + β

(m)
j

) ∂

∂c
(m)
j




A(n)

ki

wk
= 0 . (I.6)

The loop contributions must be polynomials in the coupling constants c
(m)
i . It

follows that A(n)
ki /wk must also be a polynomial. This means that we can split

(I.6) further into separate equations. It must be true for each power in w, but

also for each c
(n)
i monomial, since these are independent parameters and can,

in principle, be varied freely. The coefficient of each separate monomial in the

c
(n)
i in (I.6) then must vanish separately. It is this extra information that allows

us to obtain all the leading divergences from one-loop calculations [1, 9].
The powers of h̄ in any diagram come from two places, a factor h̄l comes

from the number of loops l and the remainder from the h̄nc
(n)
i present in the

diagrams when vertices with O(n)
i occur. This shows that each monomial in

the c
(n)
i will also come from a well specified loop level.

I
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Let us write out the various equations for the first few orders. To order h̄,
we only get the equations

β
(1)
i −A(1)

1i = 0 . (I.7)

There is no dependence on any of the higher order LECs. We now introduce a

notation for the LEC dependence. For both β
(n)
i and A(n)

ki we add a subscript l

indicating the loop level it came from and an argument indicating its polyno-

mial dependence on the c
(m)
j . In order to simplify notation in the following we

shall omit the i index, so that now β
(n)
i and A(n)

ki (j) become β
(n)
l (j) and A(n)

lk , but
one should remember throughout the calculation that we are always speaking

about the component βn
i or A(n)

lki . At one loop this only adds a subscript 1

β(1) → β
(1)
1

A(1)
1 → A(1)

11 . (I.8)

At order h̄2 the β
(2)
1 function and A(2)

11 can have a first order dependence on c
(1)
j1

,

we make this explicit

β(2) → β
(2)
2 + c

(1)
j1

β
(2)
1 (j1) ,

A(2)
2 → A(2)

22 ,

A(2)
1 → A(2)

21 + c
(1)
j1

A(2)
11 (j1) . (I.9)

A sum over j1 is implied. The j1 indicates that one should consider the minimal
set of operators available at order 1. Putting (I.9) in (I.6) gives three conditions

on the various coefficients of the monomials in the c
(n)
i :

β
(2)
2 = 2A(2)

21 ,

β
(2)
1 (j1) = A(2)

11 (j1) ,

2A(2)
22 = β

(1)
1 (j1)A(2)

11 (j1) . (I.10)

At order h̄3 the polynomial dependence gets more complicated

β(3) → β
(3)
3 + c

(1)
j1

β
(3)
2 (j1) + c

(2)
j2

β
(3)
1 (j2) + c

(1)
j1

c
(1)
k1

β
(3)
1 (j1k1) ,

A(3)
3 → A(3)

33 ,

A(3)
2 → A(3)

32 + c
(1)
j1

A(3)
21 (j1) ,

A(3)
1 → A(3)

31 + c
(1)
j1

A(3)
21 (j1) + c

(2)
j1

A(3)
11 (2j) + c

(1)
j1

c
(1)
k1

A(3)
11 (j1k1) . (I.11)

Which terms can show up at which level follows from the h̄ counting and the
fact that l loops can at most diverge like 1/wl . Putting (I.11) in (I.6) gives the
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relations from the O(w0) in (I.6)

β
(3)
3 = 3A(3)

31 ,

β
(3)
2 (j1) = 2A(3)

21 (j1) ,

β
(3)
1 (j2) = A(3)

11 (j2) ,

β
(3)
1 (j1k1) = A(3)

11 (j1k1) . (I.12)

The −nw and ∑m,j mwc
(m)
j ∂/∂c

(m)
j terms in (I.6) always combine to give exactly

the loop level back, see [9] for the general proof. This gives the first equation
in (I.17).

The w−1 part gives

3A(3)
2i = β

(1)
1j1

A(3)
21i(j1) + β

(2)
2j2

A(3)
11i(j2) ,

2A(3)
22i (j1) = 2β

(1)
1k1

A(3)
11i(j1k1) + β

(2)
1k2

(j1)A(3)
11i(k2) . (I.13)

Here we have written out the operator O(n)
i subscripts (i,j2, k1, k2). That is to

stress the fact that there is a sum over a different index j1 6= i. We will omit it in

the following. In deriving the second equation we have used that A(3)
11i(j1k1) is

symmetric in j1k1 and relabeled some indices. The final equation comes from
the w−2 part and reads

3A(3)
33 = β

(1)
1j1

A(3)
22 (j1) . (I.14)

The set of equations gives

6A(3)
33 = β

(1)
1j1

[

2β
(1)
1k1

A(3)
11 (j1k1) + β

(2)
1k1

(j1)A(3)
11 (k2)

]

. (I.15)

As one can see, the leading divergence A(3)
33 can be calculated with purely one-

loop calculations.
The argument above can be generalized to all orders, see [9], here we only

quote the results. We introduce the notation

∇l =
∞

∑
m=l

∑
j

β
(m)
j

∂

∂c
(m)
j

(I.16)

The general set of equations thus reads

β
(n)
l = lA(n)

l1 , l = 1, . . . , n ,

lA(n)
lk =

l−k+1

∑
l ′=1

∇l ′A(n)
l−l ′, k−1 , l = k, . . . , n; k = 2, . . . , n . (I.17)
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For the leading divergence A(n)
nn this equation reads

n!A(n)
nn = ∇n−1

1 β
(n)
1 ,

β
(n)
1 = A(n)

11 . (I.18)

which is a generalization of (I.7), (I.10) and (I.15). This is the main result of [9]
we will be using. This is a recursive relation. The order n = 1 counterterm

A(1)
11 O(1) is fixed by the requirement that it should cancel the L0 one loop 1/w

pole. This is now the order n = 1 coupling in the Lagrangian. The order

n = 2 coupling A(2)
22 is fixed by the requirement that it cancels the one loop

1/w2 pole coming form the L1 with the A(1)
11 coupling we fixed in the previous

step. And so on, the n-th order A(n)
nn is fixed by the requirement that it cancels

the 1/wn divergences. These can be calculated by considering all one loop

diagrams generated by the A(n−1)
n−1,n−1O(n−1) ,. . . , A(1)

11 O(1) and L0 vertices that
can contribute to order n.

The renormalized coupling c(1) now contains a log µ. This exactly cancels
the log µ dependence that comes from the L0 loop integral, which has the same
coefficient as the divergence. Analogously, when an observable is calculated
up to order n its expression contains a (log µ)n term whose coefficient is given

by the A(n)
nn . So (I.18) gives a recursive expression for the coefficients of the

leading logarithms.

I.2.2 Nonminimal sets of operators

In Section I.2.1 we shortly went through the arguments of [9] to derive the
leading divergence at any order from only one-loop calculations. In practical

applications of the formulas above one needs a classification of the terms O(n)
i

needed at each order n. Determining the complete and minimal set is in gen-
eral rather complicated, see e.g. [17] for L2 in ChPT. Luckily we do not have
to have a minimal and complete Lagrangian in general.

It is sufficient to have a Lagrangian that is complete for the particular pro-
cess at hand and lower order Lagrangians that are complete enough so that all

needed β
(n)
i (1) can be obtained. The Lagrangian does not need to be minimal

since the arguments in Section I.2.1 relied on the fact that all c
(n)
i can be varied

independently. If we add an irrelevant term, e.g. one that vanishes via partial
integration or other identities, its coefficient can definitely be freely varied and
will not show up in any actual higher order calculations. This also means that
the β function of this irrelevant term can be chosen freely since it will never
appear in any expressions.

If we now have two related terms c
(n)
1 O(n)

1 and c
(n)
2 O(n)

2 , we can always write

them as an irrelevant one c
(n)
irr O

(n)
irr and a relevant one c

(n)
rel O

(n)
rel . Since the irrel-
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evant combination will never appear and its β
(n)
irr function is free, we can just

as well leave both terms c
(n)
1 O(n)

1 c
(n)
2 O(n)

2 in the Lagrangian and leave the β
(n)
rel

spread over the original two terms β
(n)
1 and β

(n)
2 . How it is split between the

two terms depends upon the choice of β
(n)
irr , which is free.

In practice, it is sufficient to calculate the divergences and to express them

in some complete set of operators O(n)
i . As long as the set is complete for the

given application we will obtain the correct result.

When constructing a Lagrangian one normally takes into account all terms
that have the correct symmetry at the required order and then one removes
the so called equation of motion terms, see [17] App. A, for a discussion. In
this case, however, we will use neither constraint. We will keep the equation
of motion terms, since then we can make all 1PI diagrams finite, see the dis-
cussion in [9]. We will also use a standard Feynman diagram calculation to
obtain the infinities and not a more sophisticated method such as e.g. the heat
kernel expansion that was used in [18].

The reason is that this way we can use standard Feynman integral tech-
niques and we do not have to evaluate all the divergent combinations of prop-
agators that can appear, see [18, 19], which is rather difficult at higher orders.
The drawback is that this procedure breaks the symmetries of the Lagrangian
in individual parts of the calculation even though the final result will respect
all symmetry properties when we use dimensional regularization. However,
as we saw in the previous section, we only use the divergent parts of these
terms and these must obey the symmetries since they are recursively deter-
mined by a symmetric lowest order Lagrangian.

The answer for the divergences for a given process will thus be correct
even without explicitly fixing counterterms with Ward identities. The correct
combinations must show up in our procedure.

The conclusion from this section is that we simply calculate all one-loop
diagrams and rewrite them as terms in the Lagrangians, without bothering to
check if we have a minimal Lagrangian.

We also do not need to have a complete Lagrangian, an operator O(n)
i will

only be relevant if it has a nonzero β function. We thus let the calculation itself

produce all terms that have a divergence, give them a coefficient c
(n)
i , and use

those in the equations derived in Section I.2.1.

For the subleading divergence, the same type of argument shows that it is
sufficient to have the lowest and first order Lagrangian in a symmetric form
to get the subleading divergence at all orders and the obvious generalization
to the further divergences.

I
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I.2.3 An alternative proof

A more direct proof of the results of Büchler and Colangelo is also possible.
We have presented their method as well since the arguments in Sect. I.2.2

made use of their formulation of the proof in [9].
We rely here on using only 1PI diagrams and assume they are made fully

finite, as was shown to be possible in [9] . In this section we obtain the same
relations in a more transparent fashion. We first rewrite (I.1) and (I.2) as

Lbare = ∑
n≥0

h̄nµ−nw ∑
i

(
n

∑
k=0

c
(n)
ki w−k

)

O(n)
i . (I.19)

We introduce the notation {c}n
l to indicate all possible combinations

c
(m1)
k1 j1

c
(m2)
k2 j2

. . . c
(mr)
kr jr

with mi ≥ 1, such that ∑i=1,r mi = n and ∑i=1,r ki = l. The

c
(n)
ki with k ≥ 1 have no direct µ dependence. They only depend on µ through

their dependence on lower order parameters. The c
(n)
0i do depend directly on

µ. Note that since we consider only 1PI diagrams we have that {c}n
n = {c

(n)
ni }.

We denote the contribution from all l-loop diagrams at order h̄n as Ln
l and

we expand this as

Ln
l =

l

∑
k=0

Ln
lkw−k . (I.20)

This only includes the divergences coming from the loop integrations, not
those from the coefficients in the Lagrangian.

A main observation [9] is that a given loop level at a given order h̄n always
comes with the same power of µ because of the way the powercounting works.

We can now study the contributions at the different orders in h̄ and 1/w.
For clarity we add here as well which combinations of couplings of order n ≥ 1

the results depend on.
At order h̄0 we have only L0

0. At order h̄1 we have

1

w

(

µ−wL1
00({c}1

1) + L1
11

)

+ µ−wL1
00({c}1

0) + L1
10 . (I.21)

The divergence must cancel so to get the divergent combinations we have that

L1
00({c}1

1) = −L1
11 . (I.22)

This allows to determine the divergences that need to be subtracted from a
one-loop calculation and it shows that by expanding µ−w and taking w → 0

the explicit log µ dependence of any process is

− log µ L1
00({c}1

1) = log µ L1
11 . (I.23)
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At order h̄2 the full contribution is

1

w2

(

µ−2wL2
00({c}2

2) + µ−wL2
11({c}1

1) + L2
22

)

+
1

w

(

µ−2wL2
00({c}2

1) + µ−wL2
11({c}1

0) + µ−wL2
10({c}1

1) + L2
21

)

+
(

µ−2wL2
00({c}2

0) + µ−wL2
10({c}1

0) + L2
20

)

. (I.24)

All divergences must cancel, also those with powers of log µ. If we only look
at the parts with 1/w2 and log µ/w we obtain two equations

L2
00({c}2

2) + L2
11({c}1

1) + L2
22 = 0 ,

2L2
00({c}2

2) + L2
11({c}1

1) = 0 (I.25)

The difference in the coefficients from the first to the second equation comes
from the expansion of the different powers of µ−w. These equations have the
solution

L2
00({c}2

2) = L2
22 ,

L2
11({c}1

1) = −2L2
22 . (I.26)

The leading logarithm can be obtained by expanding µ−w in (I.24) and using
(I.26):

1

2
log2 µ

(

4L2
00({c}2

2)L2 + L2
11({c}1

1)
)

= log2 µ L2
22 . (I.27)

So here we reproduce the known result and that it can be obtained from a
one-loop calculation. The calculation for the next two orders follows the same
lines. A clear pattern emerges.

At order h̄n, the leading part is given by

1

wn

(

µ−nwLn
00({c}n

n) + µ−(n−1)wLn
11({c}n−1

n−1) + · · · + µ−wLn
n−1 n−1({c}1

1) + Ln
nn

)

.

(I.28)
This part is the one that contributes to the 1/wn, log µ/wn−1, . . . , logn−1 µ/w di-
vergences leading to the set of equations:

n

∑
i=0

i jLn
n−i n−i({c}i

i) = 0 j = 0, .., n − 1. (I.29)

with 00 = 1 and Ln
nn({c}0

0) = Ln
nn. The generalization of the solution then is

Ln
n−i n−i({c}i

i) = (−1)i

(

n

i

)

Ln
nn . (I.30)
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We can prove that this solves the equations (I.29) above by observing that they
can be written as

lim
a→0

(
n

∑
i=0

(

a
d

da

)j

an−jLn
jj({c}n−i

n−i)

)

= 0 . (I.31)

Plugging in (I.30) we see that this becomes

lim
a→1

(

a
d

da

)j

(−a + 1)n Ln
nn = 0 , (I.32)

which is clearly satisfied. Using lima→1

(

a d
da

)n
(−a + 1)n = (−1)nn! one can also

derive that the dependence on logn µ is

logn µ Ln
nn . (I.33)

This completes our alternative proof of the main result of [9].

I.3 The O(N) nonlinear sigma model

The O(N + 1)/O(N) nonlinear sigma model has as Lagrangian

Lnσ =
F2

2
∂µΦT∂µΦ + F2χTΦ . (I.34)

Φ is a real N + 1 vector that transforms as the fundamental representation of
O(N + 1) and satisfies the constraint ΦTΦ = 1. The second term is the one that
breaks the symmetry explicitly by setting

χT =
(

M2 0 . . . 0
)

. (I.35)

The vacuum is given by
〈ΦT〉 = (1 0 . . . 0) , (I.36)

which breaks the O(N + 1) spontaneously to O(N). There is both a spontaneous
symmetry breaking triggered by the vacuum (I.36) and an explicit one given
by F2χTΦ.

This Lagrangian corresponds to the lowest order Lagrangian of two-
(quark-)flavour Chiral Perturbation Theory for N = 3 [2,20] and has been used
to describe alternative Higgs sectors in several beyond the Standard Model
scenarios.

As mentioned in the introduction, we make use of different parametriza-
tions to check the validity of our results. We write Φ in terms of a real N-
component 3 vector φ, which transforms linearly under the unbroken part

3We refer to these as a flavour components.
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of the symmetry group, O(N). We use here four different ways to do this
parametrization

Φ1 =










√

1 − φTφ
F2

φ1

F
...

φN

F










=

( √

1 − φTφ
F2

φ
F

)

, (I.37)

Φ2 =
1

√

1 +
φTφ
F2

(

1
φ
F

)

, (I.38)

Φ3 =






1 − 1
2

φTφ
F2

√

1 − 1
4

φTφ
F2

φ
F




 , (I.39)

Φ4 =






cos
√

φTφ
F2

sin
√

φTφ
F2

φ√
φTφ




 . (I.40)

Φ1 is the parametrization used in [2], Φ2 the one originally introduced by
Weinberg [20]. Φ3 is such that the explicit symmetry breaking term in (I.34)
only gives a mass term to the φ field but no vertices. Φ4 is the parametriza-
tion one ends up with if using the general prescription of [21]. These are all
examples of the parametrization that keeps the O(N) symmetry manifest:

Φ =






√

1 − φTφ
F2 f 2

(
φTφ
F2

)

f
(

φTφ
F2

)
φ
F




 . (I.41)

Here f (x) is any function with f (0) = 1.
One thing is worth mentioning. In this work we always calculate with the

usual Feynman diagram techniques. In our calculation we split the N-vector
field into an external (φE) and a loop (ξ) field, φ → φE + ξ. The divergence
structure we obtain is expressed in terms of φE and we then set φE → φ and
use that as input for the next step. Splitting φ in this way, the symmetry is
no longer manifest in each term. Since we are renormalizing these terms, it
would be nice if they were obviously symmetric. We could have used the
background field method, used e.g. in [2, 18], and split into a classical and a
quantum field with well defined symmetry properties and then calculated the
divergent part up to a given number of external legs. This way we would have
been assured that our divergent Lagrangian can be rewritten into terms fully
obeying the symmetry. Once that is done, we could then use the symmetric
quantum field again for the next step. The problem is that the rewriting into

I
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symmetric terms is not easy to implement. We have shown in Sec. I.2.2 that
our method gives the correct answer too.

One additional way to check that our results are correct is to compare with
the known results. For N = 3 our O(N) corresponds to SU(2) × SU(2)/SU(2),
and loop corrections to the pion mass up to two loops are fully known in this
model [22, 23]. The leading terms at two-loop order were first obtained in [6].
They read

M2
phys = M2

(

1 − 1

2
LM +

17

8
L2

M + · · ·
)

,

LM =
M2

16π2F2
log

µ2

M2
. (I.42)

where in numerical applications one usually chooses M = M.

I.4 The large N approximation

The linear sigma model has been treated very much in the large N approxima-
tions. The literature can be traced back to [15] but the literature on the nonlin-
ear sigma model is smaller. In addition, it is mainly restricted to the massless
case while here we are interested in the massive case. [24] did include masses
but only to first order. There are some subtleties involved in large N in ef-
fective theories because of the presence of the higher order Lagrangians, see
e.g. [25]. We however keep our discussion on the level of the loop diagrams
with the lowest order Lagrangian and stick to Ln

nn in the notation of Sect. I.2.3
We choose here the Lagrangian to be extensive in N. This means we have

to choose F2 ∝ N. Looking at the Lagrangians in Sect. I.3 we easily see that
vertices with 2n legs have a factor F2−2n and are thus suppressed by N1−n.
Extra factors of N come from closed loops in the flavour index. It is sufficient
to look at one-particle-irreducible (1PI) diagrams, the flavour indices for lines
not inside a loop are determined by the external flavour indices.

We thus look at the one-particle-irreducible diagrams only and use meth-
ods similar to those used in [1] for proving the powercounting. A given dia-
gram has NL loops, N2n vertices with 2n legs, NI (internal) propagators and NE

external legs. These are related via

NL = NI − ∑
n

N2n + 1 ,

2NI + NE = ∑
n

2nN2n . (I.43)

We thus get

NL = ∑
n

(n − 1)N2n −
1

2
NE + 1 . (I.44)
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Figure I.1: A typical diagram that contributes at leading order in N. Note that vertices
can have many different loops attached since the Lagrangians contain vertices with
any number of fields. The flavour-loops coincide with the loops in momentum.

The tree level one-particle-irreducible diagram has one vertex with 2n = NE

and thus comes with a factor of N1−NE/2. A generic one-particle-irreducible
loop diagram has thus a suppression factor

N−∑n(n−1)N2n = N−NL−NE/2+1 , (I.45)

from the vertices. Extra factors of N come from the closed flavour loops where
each closed flavour loop give a factor of N. (I.45) shows that for a diagram to
be leading in N, there must be as many closed flavour loops as there are loops.
Since the φ fields only carry one flavour index, this means that each loop must
coincide with the flavour loop and there can be no lines shared between two
loops. All diagrams that contribute to a given process at leading order in N

are thus diagrams that only contain products of one-loop diagrams, these we
call cactus diagrams after the looks of the “prickly pear” cactus. A typical
example is shown in Fig. I.1.

How can we now resum all of these diagrams? The easiest way is to notice
that they can be generated recursively. First we note that the inverse of the full
propagator is given by the inverse of the lowest order propagator and the sum
of all the one-particle-irreducible diagrams with two external legs. This leads
to the equation graphically depicted in Fig. I.2. The difference with the usual
gap equation in NJL-type theories as discussed in e.g. [16] is that we have an
infinite number of terms here. This actually turns out to be manageable.

Let us look at the Lagrangians of Sect. I.3. They all contain at most two
derivatives. The loops in Fig. I.2 are all tadpoles and thus produce no extra
dependence on the external momentum p. All the dependence on p must come

I
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( )−1 = ( )−1
+ + + + · · ·

Figure I.2: The graphical representation of the equation that generates all the cactus
diagrams for the propagator. A thick line indicates the full propagator, a thin line the
inverse one.

from the derivatives present in the vertices. The full inverse propagator is thus
of the form ZP p2 − BP, where neither ZP nor BP depend on the momentum p.
This is true for all parametrizations.

We now use the first parametrization. The vertices with derivatives are
generated by

1

2F2

1

1 − φaφa

F2

φb∂µφbφc∂µφc , (I.46)

where we have written φTφ = φaφa to bring out the sum over flavour indices
explicitly. Each loop must allow for a sum over the flavour indices to be lead-
ing in N. The derivatives must either both act on the external fields or both
on the same loop to give a nonzero result4. When they act inside a loop, the
fields ∂µφb∂µφc must be contracted to form the loop. This requires b = c and
the flavour in this loop is thus determined by the outer fields and cannot be
separately summed over. Consequently, the diagram gives no leading N con-
tribution.

If the derivatives hit the external legs, the indices in at least one loop are
fixed by the external ones and again cannot be summed over. It follows that
the contribution is not leading order in N.

In either case the loop diagrams generated by the kinetic term give no lead-
ing N correction, so ZP = 1.

Thus we only need to look at the vertices coming from the mass term

Lmass = F2M2
√

1 − φaφa/F2 ≡ F2M2 f (x) ≡ F2M2 ∑
i

aix
i , (I.47)

with x = φaφa/F2. Again, consider the a loop diagram. The external legs need
to come from the same flavour index otherwise it will not be leading in 1/N.

4This will not be true for more complicated processes but can be dealt with in that case as
well [26].
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For each term in (I.47) there are i ways to choose which x corresponds to the
external legs

M2φa
extφ

a
ext ∑

i≥2

aiix
i−1 = M2φa

extφ
a
ext

(
d f

dx
(x) − a1

)

. (I.48)

The sum in (I.48) starts from i = 2 since the i = 0, 1 terms are a constant and
the tree level mass term respectively. Eq (I.47) then reads

− 1

2
M2φa

extφ
a
ext




1

√

1 − φcφc

F2

− 1



 . (I.49)

The leading contribution comes from contracting the fields with the same
flavour index. There is only one way to do this for each term. Each contraction
corresponds to a tadpole in Fig. I.2. The full result can be written as

p2 − BP = p2 − M2 − M2




1

√

1 + N
F2 A(BP)

− 1



 , (I.50)

where iA(BP) =
∫

dd p 1/(p2 − BP) is the relevant one-loop tadpole integral. The
all-loop result at leading order in N is thus the solution of

M2 = M2
phys

√

1 +
N

F2
A(M2

phys) . (I.51)

Here BP coincides with the physical mass squared, M2
phys, since ZP = 1.

The same result can be derived in the other parametrizations. If we take
the third one, where the only vertices come from the term with derivatives, the
same type of argument as above with derivatives and flavour indices shows
that the only relevant vertex is

− 1

8F2
φaφa∂µφb∂µφb . (I.52)

So here the gap equation reduces to the first nontrivial term on the right-hand-
side only. The structure of the inverse propagator is still ZP p2 − BP and the gap
equation leads to two equations with M2

phys = BP/ZP

ZP = 1 +
N

4F2ZP
A(M2

phys), ,

ZP M2
phys = M2 − N

4F2ZP
M2

phys A(M2
phys) . (I.53)
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Here we have expressed the integral containing an extra q2 using (I.64) in
terms of the one without. Solving leads to the solutions

ZP =
1

2

(

1 +
M2

M2
phys

)

,

M4 = M4
phys

(

1 +
N

F2
A(M2

phys)

)

, (I.54)

which agrees with the previous result (I.51).
The leading logarithm can be expressed by replacing A(M2

phys) by

A(M2
phys) =

M2
phys

16π2
log

µ2

M2
phys

. (I.55)

In terms of

y =
NM2

16π2F2
log

µ2

M2
(I.56)

we can invert the result (I.51):

M2
phys

M2
= 1 − 1

2
y +

5

8
y2 − y3 +

231

128
y4 − 7

2
y5 +

7293

1024
y6 − 15y7 +

1062347

32768
y8 + · · · .

(I.57)
Note that (I.51) actually converges faster. Expanding the square root in

z =
NM2

phys

16π2F2
log

µ2

M2
phys

(I.58)

we have

M2

M2
phys

= 1 +
1

2
z − 1

8
z2 +

1

16
z3 − 5

128
z4 +

7

256
z5 − 21

1024
z6 +

33

2048
z7 − 429

32768
z8 + · · · ,

(I.59)
which has much smaller coefficients than (I.57).

I.5 The calculation

We determine the mass by finding the zero of the inverse propagator. We
therefore must calculate all the one-loop diagrams that are needed to obtain
the divergence of the inverse propagator to the order desired. At order h̄ there
is only one diagram, at h̄2 there are 2 and at order h̄3 there are 4. These are
shown in Fig. I.3. We have not shown them but at order h̄4 there are 7 and at
h̄5 there are 13 diagrams to be calculated.
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0
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1 0

1
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1

1
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Figure I.3: The diagrams needed up to order 3 for the inverse propagator. Vertices of

order h̄i are indicated with i . (a) The diagram needed at order h̄. (b) The 2 diagrams

needed at order h̄2. (c) The 4 diagrams needed at order h̄3.

0
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(a)
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1

1

0

0

0

1

(b)

Figure I.4: The diagrams needed for the divergence of the 4-meson vector. (a) The 2

diagrams to order h̄. (b) the 4 diagrams to order h̄2

To order h̄ it is sufficient to know the lowest-order Lagrangian, but at order
h̄2 we need to know the (divergent part of the) vertices coming from the La-
grangian of order h̄ with two and four external legs. The diagram of Fig. I.3(a)
gives the divergence of the vertex with two legs but we also need to calculate
the divergence of the vertex with four legs. This requires the diagrams shown
in Fig. I.4(a).

To order h̄3, we need still more vertices, we need the divergence of the
two-leg vertex to order h̄2, these diagrams we already have but we also need

I
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0 0

0

0

0 0

Figure I.5: The 3 diagrams needed for the divergence of the 6-meson vector to order h̄.

the four-leg vertex to order h̄2 which can be calculated from the diagrams in
Fig. I.4(b). Inspection of the vertices there shows we already have all we need
but for the 6-leg vertex at order h̄. To obtain that we also need to evaluate all
diagrams shown in Fig. I.5. By now, the pattern should be clear, to get the
mass at order h̄n we need the 2 and four-meson vertex at order h̄n−1, the 2,
4 and 6-meson vertex at order h̄n−2 and so on. Similarly one can see that to
get the mass at order h̄n, we need to calculate one-loop diagrams with up to n

vertices. The extension to order h̄5 shows that we we need to calculate 18, 26,
33, 26 and 13 at orders h̄1, . . . , h̄5 respectively.

We have organized this calculation by first expanding the lowest-order La-
grangian to the order needed, up to vertices with 12 mesons for this work.
With these vertices we then calculate all 1PI diagrams with up to 10 exter-
nal legs. The divergent part of all needed integrals can be calculated relatively
easily using the technique described in App. I.7. At this stage, the dependence
on external momenta is also put back as derivatives on the external legs and
everything assembled to give the divergent part at order h̄ for all the vertices
with up to 10 legs using (I.22). So we have assembled everything we need
to calculate the one-loop divergences to order h̄2. The 26 diagrams are eval-
uated and we obtain the divergences at order h̄2 using (I.26). The process is
then repeated up to order h̄5. All of the above steps have been programmed in
FORM. The CPU time needed increases rapidly with the order n one wishes
to reach. The Lagrangians at higher orders tend to contain very many terms
and constructing the diagrams with many external legs at higher orders is also
extremely time consuming. The CPU time used on a typical PC for the mass-
divergence to order h̄n was approximately 0.1 seconds for h̄, 0.3 seconds for h̄2

11 seconds for h̄3, 700 seconds for h̄4 and 30000 seconds for h̄5. These running
times were achieved after several optimizations in the choice of routing the
external momenta through the Feynman diagrams.

We have performed the calculation for each of the four parametrizations
shown in Sect. I.3. Since each parametrization distributes contributions rather
differently over the different Feynman diagrams, this provides a strong check
on the consistency of the final result.
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i ai for N = 3 ai for general N

1 −1/2 1 − 1/2 N

2 17/8 7/4 − 7/4 N + 5/8 N2

3 −103/24 37/12 − 113/24 N + 15/4 N2 − N3

4 24367/1152 839/144 − 1601/144 N + 695/48 N2 − 135/16 N3 + 231/128 N4

5 −8821/144 33661/2400 − 1151407/43200 N + 197587/4320 N2

−12709/300 N3 + 6271/320 N4 − 7/2 N5

Table I.1: The coefficients ai of the leading logarithm Li
M up to i = 5 for the physical

meson mass.

i bi for N = 3 bi for general N

1 1/2 −1 + 1/2 N

2 −13/8 1/4 − 1/4 N − 1/8 N2

3 −19/48 2/3 − 11/12 N + 1/16 N3

4 −5773/1152 −8/9 + 107/144 N − 1/6 N2 − 1/16 N3 − 5/128 N4

5 −3343/768 −18383/7200 + 130807/43200 N − 2771/2160 N2 − 527/1600 N3

+23/640 N4 + 7/256 N5

Table I.2: The coefficients bi of the leading logarithm Li
Mphys

up to i = 5 for the lowest

order meson mass in terms of the physical mass.

We can from these divergences then obtain the leading logarithm. This
leads to the result for the physical mass

M2
phys = M2

(

1 + a1LM + a2L2
M + a3L3

M + a4L4
M + a5L5

M + · · ·
)

, (I.60)

where LM is defined in (I.42). The coefficients a1, . . . , a5 are give in Tab. I.1 for
N = 3 and general N. The result for N = 3 agrees with the known results for
a1 and a2 given in (I.42) and the leading term in N at each order agrees with
the expansion of the all-order result in the large N expansion (I.57). Note that
the large N approximation is definitely not a good approximation to the N = 3

coefficients.
The result (I.60) can be inverted and we find again a better converging

expansion.

M2 = M2
phys

(

1 + b1LMphys
+ b2L2

Mphys
+ b3L3

Mphys
+ b4L4

Mphys
+ b5L5

Mphys
+ · · ·

)

.

(I.61)
The coefficients b1, . . . , b5 are give in Tab. I.2 for N = 3 and general N. Just as

I



58 Leading Logarithms in the Massive O(N) Nonlinear Sigma Model

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

M
2 ph

ys
 /M

2

M2 [GeV2]

0

1

2

3

4

5

(a)

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  0.05  0.1  0.15  0.2  0.25  0.3

M
2 /M

2 ph
ys

M2
phys [GeV2]

0

1

2

3

4

5

(b)

Figure I.6: The expansions of the leading logarithms order by order for F = 0.090 GeV,
µ = 1 GeV and N = 3. (a) M2

phys in terms of M2 Eq. (I.60) (b) M2 in terms of M2
phys

Eq. (I.61).

the coefficients in (I.59) are much smaller than in (I.57) we see that the bi are
much smaller than the ai.

In order to get a feeling of the size of these corrections and of the conver-
gence of the series for the very relevant case N = 3 we have plotted them in
Fig. I.6. On the left side we see the result (I.60) and on the right side the result
(I.61) for a value of F = 0.090 GeV amd µ = 1 GeV. Both clearly converge in the
region shown and the inverse one clearly converges faster.

I.6 Conclusions and discussion

In this paper we have obtained three main results.

First we provided an alternative proof for the results of [9] for the leading
divergence at any loop order. Our proof relies of course on the same physical
principles as the one in [9] but is simpler algebraically.

Our second result is the large N expansion of the massive nonlinear O(N)

sigma model, we did not use the analog of the methods in [15] for the massless
case but obtained a recursive equation to sum all the relevant cactus diagrams.
This method is clearly extendable to other processes than the mass we consid-
ered here. The formula obtained for the mass in the large N limit (I.51) is
remarkably simple. Its relevance for the real case N = 3 is not clear, since the
large N result gives a rather poor approximation to the ai coefficients when
N = 3, as shown in Tab. I.1.
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The third result is the actual calculation for general N of the leading loga-
rithm for the meson mass to five-loop order. This result agrees with the known
two-loop result for N = 3 and with the derived result for the leading term in
N.

It is clear that the methods developed in this paper can be applied to other
processes as well, both the large N method and the leading logarithms to
higher loop orders for general N. Work is in progress for the decay constant,
ππ-scattering and the formfactors [26].
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I.7 Integrals

We can get rather high powers of momenta in our the integrals. Let us first
look at integrals without external momenta. These are of the form

Imn =
1

i

∫
ddq

(2π)d

qµ1 . . . qµm

(q2 − M2)
n . (I.62)

This vanishes for m odd, and for even m we can use5

qµ1 . . . qµm → 1

2m/2
(

n
2 + 1

)
!

(

q2
)m/2

Gµ1...µm ,

Gµ1...µm = gµ1µ2 . . . gµm−1µm + gµ1µ3 . . . . (I.63)

Where gµν is the metric tensor. The right hand side of the last term consists of
all possible ways to put the Lorentz indices on the metric tensor gµiµj

and is
symmetric under all interchanges of the indices. After that we use recursively

q2

q2 − M2
= 1 +

M2

q2 − M2
(I.64)

5The formula is only valid for d = 4 which is sufficient for our purpose. We derived it using
recursive methods but it is probably well known in the higher loop integral community.
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to obtain terms either without propagators or without powers of q2. Of the
resulting integrals only two have a divergent part

1

i

∫
ddq

(2π)d

1

(q2 − M2)
=

1

16π2

M2

ǫ
+ finite ,

1

i

∫
ddq

(2π)d

1

(q2 − M2)
2

=
1

16π2

1

ǫ
+ finite , (I.65)

with d = 4 − 2ǫ.
We need to do know the divergent parts of one-loop integrals with up to 5

propagators for this calculation. This we do by combining propagators using
Feynman parameters and then shifting the momentum variable to obtain in-
tegrals of the type (I.62). The Feynman parameter integrals needed are always
simple polynomial ones.

The above procedure can be programmed in FORM to work recursively.
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II

The Massive O(N) Non-linear Sigma

Model at High Orders

Johan Bijnens and Lisa Carloni

Department of Astronomy and Theoretical Physics, Lund University
Sölvegatan 14A, SE–223 62 Lund, Sweden

We extend our earlier work on the massive O(N) nonlinear sigma model to
other observables. We derive expressions at leading order in the large N

expansion at all orders in the loop expansion for the decay constant, vacuum
expectation value, meson-meson scattering and the scalar and vector form

factors. This is done using cactus diagram resummation using a generalized
gap equation and other recursion relations. For general N we derive the

expressions for the n-th loop order leading logarithms
(

M2/F2 log(µ2/M2)
)n

,
up to five-loops for the decay constant and vacuum expectation value (VEV)
and up to four-loops for meson-meson scattering, the scalar and vector form
factors. We also quote our earlier result for the mass. The large N results do

not give a good approximation for the case N = 3. We use our results to study
the convergence of the perturbative series and compare with elastic unitarity.
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Reprinted with permission.

II



64 The Massive O(N) Non-linear Sigma Model at High Orders

II.1 Introduction

In a renormalizable field theory, given enough time and computer power, one
may calculate an observable up to any order n in the perturbative expansion,
study the convergence of the series and make a precision comparison with
experimental results. In the absence of complete higher order calculations, a
first estimate of the convergence of the perturbative series may come from the
so-called leading logarithms (LL). These are terms of the form αn logn µ2, with
µ the renormalization scale, which appear in the n-th order corrections of any
observable’s expression upon renormalization. The coefficients of these LL
may be calculated using renormalization group methods.

In a non-renormalizable field theory the situation is more convoluted, since
new terms appear in the Lagrangian at each order in the expansion. However,
as Li and Pagels pointed out [1] to one-loop, the n-loop-order contributions
will still contain a cn logn(µ2/M2) term. Consider for example the expansion of
the pion mass in the quark masses in Chiral Perturbation Theory [2]:

M2
π = M2

[

1 +
M2

(4πF)2

(

− 1

2
log

M2

µ2
+ ℓ

r
3(µ)

)

+ · · ·
]

(II.1)

where ℓr
3 is a renormalized second order Lagrangian coupling and M and F

are the lowest order Lagrangian parameters. Depending upon the µ2/M2 ra-
tio, where the parameter M2 is the lowest-order mass and µ is the renormal-
ization scale, the term with the logarithm can be the largest part of the correc-
tion. In general the LL, now depending on a typical scale M of the process
one looks at, may turn out to be a substantial fraction of the n-th-order correc-
tion. For many observables indeed the LL are the main contribution due to the
enhancement of log(µ2/M2) compared to the other contributions at the same
order. This is true in particular for the ππ S-wave scattering length a0

0 [2, 3] in
Chiral Perturbation Theory (ChPT).

Many corrections of this type at one-loop have been calculated long ago,
see the review [4] and references therein, mostly in the framework of Current
Algebra, and in ChPT [2, 5, 6].

Weinberg pointed out in 1979 [5] that, because of renormalization group
equations (RGE), the two-loop LL coefficient appearing in ππ scattering am-
plitude could be calculated using simple one-loop diagrams. This method was
later used in [7] for two loop LL corrections to scattering lengths and slopes in
ππ scattering and in [8] for the general three-flavour meson sector. Nowadays
the extension to the full two-loop expressions for mesons is known for most
observables [9].

Weinberg’s renormalization argument was extended by Büchler and
Colangelo [10] to all orders and to a generic non-renormalizable theory. They
showed that the leading logarithms at any loop-order can be calculated us-
ing one-loop diagrams. They also showed that the coefficient of the leading
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logarithm only depends upon the constants appearing in the lowest-order La-
grangian. In principle this coefficient at n-loop-order could have depended on
all of the coupling constants in the Lagrangians Lm with m < n.

However, the problem remains that as n grows, the number of terms and
counterterms in the Lagrangian grows very rapidly, and the renormalization
group equations (RGE) become more involved. This renders the calculation
of LL beyond the first few orders a Herculean task1.

The alternative to performing these long calculations is to extract the LL
series from a renormalizable theory in hopes that it will reproduce the LLs
of the non-renormalizable theory. The authors of [12] applied this approach
to the renormalizable linear sigma model and were able to resum the entire
LL series by exploiting recursion relations. They however found recursive
relations were not possible in the non-renormalizable non-linear sigma case
[12].

In the massless case, a solution to managing the terms in the Lagrangian
was found since the number of meson legs on the vertices one needs to con-
sider remains limited [13]. This was used for meson-meson scattering [13] and
the scalar and vector form factor [14] in the massless O(N) model. This method
works to arbitrarily high order and agrees with the known large N [15] results
to all orders [13,14]. In the massless case, one may also use kinematic methods
to extract the nonanalytic dependence on kinematic quantities. These have for
instance been used to derive the form factors [16] up to five loop-order and to
arbitrarily high order for both the form factors and the meson-meson scat-
tering amplitude [17]. These methods essentially solve the leading logarithm
problem in the massless case for the most useful observables.

In the massive case (which includes ChPT), however, tadpole diagrams no
longer vanish and one needs to consider terms with an increasing numbers of
meson legs. E.g. for the meson mass one needs to calculate one-loop diagrams
with 2n meson legs in order to get the n-loop-order LL. In our earlier work [18]
we showed that one does not need to explicitly construct the higher order
Lagrangians in a symmetric form, nor does one need a minimal Lagrangian
at each order. The LL series only requires order by order a complete enough
Lagrangian to describe the observable at hand [18]. This means that one may
let the algorithm itself generate all the necessary terms in the higher order
Lagrangians.

We applied this method to obtain the leading logarithm to five-loop-order
for the meson mass in the nonlinear O(N)-model. One set of results of this
paper is to extend the calculation to the decay constant and vacuum expec-
tation value also to five-loop-order. A similar amount of work allows to ob-
tain the leading logarithms for meson-meson scattering and the scalar and
vector form factors to four-loops and we present results for this as well. For

1See for example the two-loop leading logarithm in the non leptonic sector [11].
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N = 3 the massive non linear O(N) model is equivalent to two-flavour mesonic
ChPT Lagrangian at lowest order in the sense that O(4)/O(3) is isomorphic to
SU(2)L × SU(2)R/SU(2)V . We have thus obtained the leading logarithms also
for this physically interesting case to rather high loop-order.

In [18] we also extended the large N limit to the massive case and applied
it for the meson mass. In this paper we extend those methods to many more
observables and we find for all the cases considered simple expressions in
terms of the physical quantities. However, as already observed in the massless
case [13, 14] and for the mass [18], we again find that the large N result does
not give a good approximation to the coefficient of the leading logarithm for
general N and in particular not for N = 3.

We briefly summarize the methods for calculating leading logarithms of
[10,18] in Sect. II.2 and introduce the massive O(N) nonlinear sigma model in-
cluding external fields in Sect. II.3. Here we also define all the physical quan-
tities we calculate. The next section discusses the large N-limit. We briefly
recall the results of [18] and extend the method to the other observables. The
leading logarithms for general N are discussed in Sect. II.5. There we also
discuss the convergence of the various observables and compare some ways
of expanding. The main results and conclusions are summarized in the last
section.

One note about the cross-checks on our results. All calculations were
performed using four different parametrizations for the fields. This means
that for every parametrization the form of the Lagrangian and the couplings
are different. These four different Lagrangians were fed into the same form
FORM code [19]. The fact that the output for all observables came out the
same regardless of the parametrization is a very good sanity check.

II.2 Counter terms and Leading Logarithms

In this section we present the results of [10] and [18]. We show how to cal-
culate the LL coefficients and their connection to the counter terms used to
renormalize the observable.

In order to calculate the matrix elements for the observables, consider the
generating functional

W[j] = eiZ[j]/h̄ =
∫

Dφie
iS[φ,j]/h̄. (II.2)

where j is the classical source which allows one to extract all of the Green
functions. The action S may be expanded around the classical action, S =

∑
∞
n=0 h̄nS(n). In practice one expands the Lagrangian into a sum of growing h̄
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order (bare) Lagrangians

L =
∞

∑
n=0

h̄nL(n). (II.3)

The crucial difference between renormalizable and non-renormalizable theo-
ries is the number of terms appearing in each L(n) = ∑

Nn

i c
(n)
i O

(n)
i . In the former

case the terms in all L(n) are of the same form as in L(0). In the later case, new
terms appear at each order n. When calculating matrix elements beyond tree
level, the loop corrections lead to divergences, which must be re-absorbed into
a redefinition of the coupling constants. While for a renormalizable theory it
suffices to reabsorb them into lowest order Lagrangian since they are all of
the same form, in a non-renormalizable theory a divergence is absorbed by
the higher order coupling constants. E.g. the divergence that appeared in the
calculation of (II.1) was absorbed into ℓ3. Alternatively, one may say that the
renormalization consists in adding to the Lagrangian order by order opera-

tors O(n)
i with diverging coefficients to cancel divergences, i.e. counterterms

c
(n)
ik O(n)

i /ǫk.

L(n) =
1

µǫn

[

L(n),ren + L(n),div
]

=
1

µǫn



c
(n)
i0 (µ)O(n)

i +
n

∑
k=1

c
(n)
ik O(n)

i

ǫk



 . (II.4)

where we have assumed one works in dimensional regularization2, in which
divergences appear as poles 1/ǫk, ǫ = 4 − d. We have shown in [18] that set

operators O(n)
i need not be minimal or even complete for our purposes.

Consider an observable and the one particle irreducible (1PI) diagrams that
may contribute at order n. That one only needs to consider 1PI diagrams was
proven in [10]. Let Ln

ℓ
be the n-th order contribution from ℓ loops. Ln

ℓ
consists

of a finite part and (possibly) several different poles

Ln
ℓ

= Ln
ℓ0 +

l

∑
k=1

Ln
ℓk

ǫk
. (II.5)

In Ln
ℓk/ǫk we include only those divergences coming from the loop integration

and not those coming from the diverging c
(m)
ik Oi vertices in the loops. Each

loop may contain different c
(m)
ik Oi vertices. We indicate with {c}n

ℓ
the product

c
(m1)
i1k1

c
(m2)
i2k2

· · · c
(mr)
irkr

giving an n-th order, ℓ-loop contribution.
The recursive equations follow from the requirement that the divergences

must cancel. The contribution at order h̄ may be written as

1

ǫ

[
1

µǫ
L1

00

(

{c}1
1

)

+ L1
11

]

+
1

µǫ
L1

00

(

{c}1
0

)

+ L1
10. (II.6)

2The pre-factor 1
µǫn ensures that all Lagrangians have the same dimension d.
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where L1
11 = L1

11

(
{c}0

0

)
. Expanding µ−ǫ = 1 − ǫ log µ + · · · , one finds that to

cancel the 1/ǫ we need
L1

00

(

{c}1
1

)

= −L1
11 . (II.7)

This determines all the needed c
(1)
i1 in terms of the lowest order parameters.

From (II.6) we also get the explicit dependence on µ

−L1
00

(

{c}1
1

)

log µ = L1
11 log µ (II.8)

where the equality follows from (II.7). To summarize, the counterterm c
(1)
11

is adjusted so that it cancels the divergence coming from the loop, L1
11, this

in turn determines the µ dependence and hence the coefficient of the LL. At
second order the cancellation of the 1/ǫ2 and log(µ)/ǫ pieces allow to obtain

the leading divergence c
(2)
i2 from the one-loop part L2

11({c}1
1) and expanding

µǫ one finds that the coefficient of the LL log2(µ), is L2
22. See [18] for a more

detailed discussion.
These results may be generalized. At order n one may write

1

ǫn

[

1

µnǫ Ln
00 ({c}n

n) +
1

µ(n−1)ǫ
Ln

11

(

{c}n−1
n−1

)

+ · · · + 1

µǫ Ln
n−1,n−1

(

{c}1
1

)

+ Ln
nn

]

.

(II.9)
Requiring that the coefficients of 1/ǫn, log µ/ǫn−1, log2 µ/ǫn−2, . . . cancel leads to
a set of n equations, the solution of which is given by [18]

Ln
n−i,n−i

(

{c}i
i

)

= (−1)i

(

n

i

)

Ln
nn. (II.10)

In particular,

Ln
11

(

{c}n−1
n−1

)

= (−1)n−1nLn
nn (II.11)

and
Ln

11

(

{c}n−1
n−1

)

= (−n)Ln
00 (II.12)

The coefficient of the leading logarithm is given by

Ln
nn (log µ)n . (II.13)

Eq. (II.11) is solved recursively. First one calculates the one loop counterterm.
With this one, using (II.11), one may calculate L2

22, the coefficient of the second

order LL. This again fixes the c
(2)
i2 counterterm, which can be inserted back into

Eq. (II.11), and so on. One only needs to insure that all the c
(n−1)
i,n−1 for all the

O(n−1)
i appearing in the calculation are determined.
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II.3 Massive nonlinear O(N + 1)/O(N) sigma

model

The O(N + 1)/O(N) nonlinear sigma model, including external sources3, is de-
scribed by the Lagrangian

Lnσ =
F2

2
DµΦTDµΦ + F2χTΦ , (II.14)

where Φ is a real N + 1 vector, ΦT =
(
Φ0 Φ1 . . . ΦN

)
, which transforms as the

fundamental representation of O(N + 1) and satisfies the constraint ΦTΦ = 1.
The covariant derivative is given by

DµΦ0 = ∂µΦ0 + aa
µΦa ,

DµΦa = ∂µΦa + vabΦb − aa
µΦ0 . (II.15)

The vector sources satisfy vab
µ = −vba

µ and correspond to the unbroken group
generators while the axial aa

µ sources correspond to the broken ones. Indices

of the type a, b, . . . run over 1, . . . , N in the remainder. The mass term χTΦ con-
tains the scalar, s0, and pseudo-scalar, pa external fields as well as the explicit
symmetry breaking term M2.

χT =
(

(2Bs0 + M2) p1 . . . pN
)

. (II.16)

The term proportional to M2 breaks the O(N + 1) symmetry explicitly to the
O(N), whereas the vacuum condensate

〈ΦT〉 = (1 0 . . . 0) , (II.17)

breaks it spontaneously to the same O(N).
This particular model corresponds to lowest order two-flavour ChPT for

N = 3 [2,20]. It is also used as a model for a strongly interacting Higgs sectors
in several beyond Standard models, see e.g. [21, 22].

3If one wishes to study a given current Jµ one adds an extra classical source field vµ to the
generating functional which couples to that current. Thus the generating functional becomes

W[j, vµ] =
∫

Dφei
∫

(L−jφ−vµJµ
)/h̄.

The matrix elements involving Jµ can be obtained by functional derivation with respect to vµ

Jµ(x) =
δ log W

δvµ(x)

∣
∣
∣
∣
vµ=0

.
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The terminology for the external sources or fields is taken from two-flavour
ChPT. The vector currents for N = 3 are given by vab = εcabvc with εcba the Levi-
Civita tensor. The electromagnetic current at lowest order is associated to v3.
The external scalar source s0 is instead associated to the QCD current −uu − dd

as in [2].
We write Φ in terms of a real N-component4 vector φ, which transforms

linearly under the unbroken part of the symmetry group, O(N). In the calcu-
lations, for simplicity, we will refer to one particular parametrization, called
Φ1 below. We have, however, made use of four different parametrizations in
order to check the validity of our results. These are

Φ1 =

( √

1 − φTφ
F2

φ
F

)

Φ2 = 1√

1+ φT φ

F2

(

1
φ
F

)

Φ3 =






1 − 1
2

φTφ
F2

√

1 − 1
4

φTφ
F2

φ
F




 Φ4 =






cos

√
φTφ
F2

sin
√

φTφ
F2

φ√
φTφ




 .

Φ1 is the parametrization used in [2], Φ2 a simple variation, Φ3 is such that
the explicit symmetry breaking term in (II.14) only gives a mass term to the φ

field but no vertices. Φ4 is the parametrization one ends up with if using the
general prescription of [23].

The physical mass of the meson (squared), M2
phys, we already calculated

in [18]. The meson decay constant, Fphys, is defined by the matrix element of

the axial current jb
a,µ

〈0|jb
a,µ|φc(p)〉 = iFphyspµδbc . (II.18)

The lowest order is Fphys = F.
The vacuum expectation value (VEV) is defined by

Vphys = 〈−j0s0〉 N=3
= 〈uu + dd〉 . (II.19)

In the second equation we have written out its meaning in terms of quarks. Its
lowest order value is Vphys ≡ V0 = −2BF2.

The scalar form factor is defined as the matrix element of the scalar current
between two mesons

〈φa(p f )| − j0s0 |φa(pi)〉 = FS[(p f − pi)
2] . (II.20)

The value at zero momentum transfer can be derived from the meson mass
via the Feynman-Hellmann theorem as

FS(0) = 2B
∂M2

phys

∂M2
. (II.21)

4We refer to these as a flavour components.
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The vector form factor is defined similarly as

〈φa(p f )|jcd
V,µ − jdc

V,µ|φb(pi)〉 =
(

δacδdb − δadδbc
)

i(p f + pi)
µFV

[

(p f − pi)
2
]

, (II.22)

where we have exploited the antisymmetry of vab
µ . The vector currents jc

V

for the N = 3 are given by jab = jc
Vεcab with εcab the Levi-Civita tensor. The

electromagnetic current in this case to the lowest order is given by j3V,µ =

(ūγµu − d̄γµd)/2. The singlet part does not appear to lowest order. The value
of the vector form factor at (p f − pi)

2 = 0 is always 1 because of the conserved
O(N) symmetry.

In addition to the form factors we also define the radii and curvatures with
t = (p f − pi)

2 and expanding around t = 0:

FS(t) = FS(0)

(

1 +
1

6
〈r2〉St + cSt2 + · · ·

)

.

FV(t) = 1 +
1

6
〈r2〉V t + cV t2 + · · · . (II.23)

The final process we discuss is meson-meson scattering. The general am-
plitude is

〈φa(pa)φb(pb)|φc(pc)φd(pd)〉 = δabδcd A(s, t, u) + δacδbd A(t, u, s)

+δadδbc A(u, s, t) , (II.24)

with
s = (pa + pb)

2, t = (pa − pc)
2 u = (pa − pd)

2 , (II.25)

satisfying s + t + u = 4M2
phys. A(s, t, u) is symmetric in t and u. The proof of

(II.24) for N = 3 is done using crossing and isospin symmetry [5], but may be
generalized to the O(N) symmetry case. There are three channels, the singlet,
antisymmetric and symmetric combination, named I = 0, 1 and 2 (after isospin
conservation). The amplitude in these three channels is given by

T0(s, t) = NA(s, t, u) + A(t, u, s) + A(u, s, t)

T1(s, t) = A(t, u, s) − A(u, s, t)

T2(s, t) = A(t, u, s) + A(u, s, t) . (II.26)

These amplitudes are projected onto the partial waves

T I
ℓ

=
1

64π

∫ 1

−1
d(cos θ)Pℓ(cos θ)T I(s, t) , (II.27)

with θ the scattering angle and Pℓ the Legendre polynomials. Near threshold
the partial waves can be expanded in terms of scattering lengths aI

ℓ
and slopes

bI
ℓ
.

ℜ
[

T I
ℓ

]

= q2ℓ
(

aI
ℓ
+ bI

ℓ
q2 + · · ·

)

, (II.28)
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where q2 ≡ 1
4

(

s − 4M2
phys

)

. The scattering lengths and slopes are normally

given in units of powers of Mphys.

For all the quantities defined here, the N = 3 results with a complete O(p6)

Lagrangian are known up to two loops, thus including the leading logarithms.
This is an additional check on our calculation.

The results can be expressed in terms of the lowest order parameters, ex-
panding in powers of

L =
M2

16π2F2
log

µ2

M2
, (II.29)

or in terms of the physical mass and physical decay constant using

Lphys =
M2

phys

16π2F2
phys

log
µ2

M2
phys

. (II.30)

In both cases we chose the mass scale in the logarithm to be the corresponding
mass. In [18] we also used an expansion in

LMphys
=

M2
phys

16π2F2
log

µ2

M2
phys

. (II.31)

We use this hybrid form in this paper only for one figure.

II.4 Large N limit

When we consider the limit of large N we have to decide how the constants
in the Lagrangian (II.14) depend on N. The first term can be made linear (ex-
tensive) in N by assuming F2 ∝ N since ΦTΦ = 1. The second term is then also
linear in N if we set M2 and B to be independent of N.

In the linear O(N) model it is well known [15, 21] that the leading contri-
bution in N comes from diagrams that contain only non-overlapping loops
and in which each factor 1/N coming from a new interaction is canceled by
the factor N introduced by summing over the N internal mesons in each bub-
ble. In [18] we showed how this is also true in general for the non linear case
which has vertices with any number of meson fields. The proof in [18] re-
mains valid when vertices with external fields are included. The vertices with
more mesons legs are suppressed by powers of 1/F as was the case for the
purely mesonic vertices. The suppression factor compared to the lowest order
of 1/F2L with L the number of loops remains thus valid as well.

In Fig. II.1 we show such a typical diagram contributing to the meson self
energy. All of these diagrams can be resummed by exploiting recursive meth-
ods.



II.4 Large N limit 73

Figure II.1: A typical diagram which contributes at leading order in N. Note that
vertices can have many different loops attached since the Lagrangians contain vertices
with any number of fields. The flavour-loops coincide with momentum loops, i.e. the
visible bubbles.

( )−1 = ( )−1 + + + + + · · ·

Figure II.2: The graphical representation of the equation that generates all the cactus
diagrams for the propagator. A thick line indicates the full propagator, a thin line the
lowest order one.

Consider for instance the inverse of the full propagator, it is given by the
inverse of the lowest order propagator and the sum of all the 1PI diagrams
with two external legs. By starting out with the lowest order propagator on
the right hand side (rhs) and then reinserting the solution recursively we gen-
erate all cactus diagrams. In [18] we used this method to show that the full
propagator in parametrization 1 in the large N limit is

i∆full(q2) =
i

q2 − M2
phys

. (II.32)

Note that, as shown in [18] and below, in this parametrization in this limit
there is no wavefunction renormalization. Let us note once more that in the
following we derive the results in the first parametrization but the others can
also be used and give the same results.

This method is similar to the gap equation used in e.g. NJL models [24]

II
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= + + + + + · · ·

Figure II.3: The graphical representation of the equation that generates all the one-
particle-irreducible cactus diagrams for the decay constant. A thick line indicates the
full propagator. The photon line indicates the insertion of the axial current aa

µ.

but we have here an infinite number of terms on the right hand side. Similar
resummations may be used for the other observables as shown below.

For completeness we quote the result for the physical mass [18], it is the
solution of

M2 = M2
phys

√

1 +
N

F2
A(M2

phys) , (II.33)

with

A(M2) =
M2

16π2
log

µ2

M2
. (II.34)

Note that in non renormalizable field theories the large N limit also de-
pends upon how L(n) depend on N. The result (II.33) and those derived below

assume that the finite part of any higher order coefficient vanishes, c
(n>0)
i0 = 0,

see [25] for a discussion. The formulas still give the leading logarithms even
for non zero higher order coefficients as long as the Lagrangian remains at
most linear in N.

II.4.1 Decay constant

From the Lagrangian (II.14) we can extract the vertices involving the axial cur-
rent j

µ
a . These are given by F2(∂µΦ0aa

µΦa − ∂µΦaaa
µΦ0). In the first representation

Φ1, this leads to the couplings

aa
µF



φa∂µ

√

1 − φTφ

F2
− ∂µφa

√

1 − φTφ

F2



 . (II.35)

All 1PI cactus diagrams contributing to the matrix element in (II.18) can be
generated by the diagrams with full propagators shown in Fig. II.3. Each of
the tadpole loops in Fig. II.3 must contribute a factor of N, to be leading in N,
thus it must be generated by the contraction of a φTφ = φbφb pair, with a sum
over the flavour index b. All other contractions only give subleading powers
in N.
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The first term in (II.35) then gives only terms with at least one loop integral
that vanishes since it is odd in momentum.

We are thus left with the term

−F∂µφaAµ

√

1 − φTφ

F2
≃ −F∂µφaAµ

[

1 − φbφb

2F2
+ ...

]

. (II.36)

When the φb are contracted, they give i2 times the loop integral A(M2
phys) =

(1/i)
∫ dd p

(2π)d /(p2 − M2
phys). Note that the mass in this expression is the physical

mass and that the propagators in Fig. II.3 in the loops are the full propagators.
We now show that the wave function renormalization vanishes in para-

metrization 1. The part of the Lagrangian that can produce momentum de-
pendence in the full propagator is given by

Lkin =
F2

2
∂µΦT∂µΦ =

F2

2
∂µ

√

1 − φTφ

F2
∂µ

√

1 − φTφ

F2
+

1

2
∂µφT∂µφ. (II.37)

The corrections to the canonical kinetic term come from the first term, which
can be rewritten as

Lcorr
kin =

1

2F2

(φa∂µφa)(φb∂µφb)

1 − φTφ
F2

=
1

2F2
(φa∂µφa)(φb∂µφb)(1 +

φcφc

F2
+ · · · ) . (II.38)

In order to have a non-zero loop diagram the derivatives must either both act
on internal legs or both on external legs. Either way, since the contracted legs
must have the same flavour, a ≡ b, so there can be no sum over the flavour
index and thus no leading in N correction. This means that in the large N

approximation one has Z = 1 in this parametrization (this will not be true in
general).

Putting the terms together, we find the physical decay constant to be re-
lated to the low energy constants F and M2 by the simple relation

Fphys = F

√

1 +
N

F2
A(M2

phys). (II.39)

To get the LL series one should expand the square root, replace A(M2
phys) by

A =
M2

phys

16π2 log µ2/M2
phys and express the M2

phys in terms of L = M2

16π2 F2 log
µ2

M2 .

To express this result in terms of the physical Fphys and M2
phys instead, we

can square (II.39) to obtain

1 +
N

F2
A(M2

phys) =
1

1 − N

F2
phys

A(M2
phys)

, (II.40)
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= + + + + + · · ·

Figure II.4: The equation for the vacuum expectation value Vphys. The open thin lined

dots indicate an insertion of −s0. A thick line indicates the full propagator.

which allows us to rewrite (II.33) and (II.39) as

M2
phys = M2

√

1 − N

F2
phys

A(M2
phys) ,

Fphys =
F

√

1 − N
F2

phys

A(M2
phys)

. (II.41)

II.4.2 Vacuum Expectation Value

In a similar fashion one can calculate the leading N vacuum expectation value
series. Consider the second term in (II.14)

F2χTΦ. (II.42)

where χT = 2B0(s0 0 · · · 0). In the first representation this becomes

2BF2

√

1 − φTφ

F2
= 2BF2

(

1 − 1

2

φcφc

F2
+ · · ·

)

. (II.43)

In this case there is no need for wave function renormalization. In Fig. II.4
we show how the vacuum condensate is given by the sum of all the tadpole
diagrams obtained by contracting the φcφc fields in all possible ways. As ex-
plained for the decay constant, the leading in N contribution comes from the
contractions of the same flavour index, i.e. φcφc. Each loop again implies the
integral A(M2

phys). This leads to the following expressions for the vacuum ex-

pectation value in terms of the low energy constants F, M2 and in terms of the
physical Fphys and M2

phys

Vphys = V0

√

1 +
N

F2
A(M2

phys) , (II.44)

or

Vphys =
V0

√

1 − N
F2

phys

A(M2
phys)

. (II.45)
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φa φc

φb φd

=
φa φc

φb φd

+
φa φc

φb φd

+
φa φd

φb φc

+
φa φd

φb φc

+ · · ·

Figure II.5: The effective vertex for meson-meson scattering. The thick lines corre-
spond to the full propagator produced by the graphs in Fig. II.2. The large dots are
vertices from the Lagrangian (II.14).

II.4.3 ππ-scattering amplitude

The meson-meson scattering amplitude defined in (II.24) in the leading N ap-
proximation is somewhat more involved. There is ample literature on the
subject, see for example [15, 26] and more recently [13, 17], which deal with
linear or nonlinear massless O(N + 1)/O(N) sigma models. In the massive
case there is the additional complication that tadpoles do not vanish. As for
the previous observables, in order to be leading in N, each momentum loop
must correspond to a sum over the N flavours. We deal with all the generated
cactus diagrams in three steps.

First, we consider all insertions on a meson line that do not carry away
momentum and/or flavour. They can be dealt with simply by using the full
propagator obtained earlier.

Next we deal with effective four-meson couplings, described by the left
hand side (lhs) of the Eq. in Fig. II.5. These can be produced by resumming all
the generalized tadpoles shown on the rhs in Fig. II.5, just as we did for M2

phys,

Fphys and for Vphys, see Figs. II.2, II.3 and II.4 respectively.
In the massive non-linear sigma model case, the effective four-φ couplings

come from both the kinetic and the mass part of the Lagrangian. In the first
representation these may be written as

L(n≥4)φ =
F2

2
∂µ

√

1 − φTφ

F2
∂µ

√

1 − φTφ

F2
+ F2M2

√

1 − φTφ

F2
− F2M2 +

M2

2
φTφ.

(II.46)
Note that we have removed the kinetic terms that give the lowest order prop-
agator. The first term may be expanded into

L(n≥4)φ
kin =

1

2F2

∂µφaφa∂µφbφb

1 − φTφ

F2

=
1

2F2

(

∂µφaφa∂µφbφb
)

∑
n

(
φTφ

F2

)n

. (II.47)

The loops appearing on the rhs of the equation in Fig II.5 may be treated in
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the leading N limit as before. The derivatives cannot both appear in the loops
at leading order in N for the same reasons valid for wave function renormal-
ization.

The L(n≥4)φ
kin thus leads to an effective vertex

1

2F2

∂µφaφa∂µφbφb

1 + y
(II.48)

where y = N
F2 A(M2

phys). The loop integral A(M2
phys) is again produced by the

φTφ = φcφc contractions.

L(n≥4)φ
mass may be expanded with

√

1 − φφ
F2 = ∑

∞
n=0

(

1/2

n

)
(

− φTφ
F2

)n
. As be-

fore, the loops must each come from one φTφ pair, but now we have to take
into account the number of ways in which the φTφ pairs can be attached to
the four external legs. For a term (φTφ)n there are n(n − 1)/2 ways to select
four outer fields and to contract the remaining n − 2 pairs. If each contrac-
tion leads to a factor −A(M2

phys), then for each flavour the (φTφ)n term will

contribute (φTφ)2/2 n(n − 1)[−A(M2
phys)/F2]n. The L(n≥4)φ

mass will then contribute

(φTφ)2/2 ∑
∞
n=0

(

1/2

n

)

n(n− 1)[−NA(M2
phys)/F2]n, which is the second deriva-

tive of
√

1 − NA(M2
phys)/F2 with respect to NA(M2

phys)/F2.

The effective four meson vertex coming from the mass term is thus

− M2

8F2

(φTφ)2

(1 + y)(3/2)
. (II.49)

Using (II.33) and (II.39) one may write the total effective vertex which has the
same form as the lowest order vertex but with physical quantities

1

2F2
phys

φa∂µφa φb∂µφb −
M2

phys

8F2
phys

φaφaφbφb . (II.50)

This effective vertex corresponds to the first diagram in Fig. II.6 and leads to
an amplitude (pa + pb) · (pc + pd)− M2

phys. Each of these vertices is the building

block for the remaining diagrams in Fig. II.6.

We now concentrate on the A(s, t, u)δabδcd part of the amplitude defined
in (II.24). The corrections to (pa + pb) · (pc + pd) − M2

phys are generated by the

fish-like diagrams given in Fig. II.6. This sum is very similar to the sum over
bubbles used in the NJL model [24]. The structure of the vertex is such that
for leading N it does not depend on the loop integral. Each flavour loop in
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φa φc

φb φd

+
φa φc

φb φd

+
φa φc

φb φd

+ · · ·

Figure II.6: The remaining diagrams for A(s, t, u). The vertex is the one obtained from
the effective vertex (II.50) with δabδcd.

Fig. II.6 thus adds a factor

N(s − M2
phys)

2F2
phys

B
(

M2
phys, M2

phys, s
)

(II.51)

with s = (pa + pb)
2 and B the standard two-propagator loop integral

B(m2
, m2, p2) =

1

i

∫
ddq

(2π)d

1

(q2 − m2)((q − p)2 − m2)
. (II.52)

The factor 1/2 is from the symmetry factor in the loop. The sum of diagrams
forms a geometric series which becomes

A(s, t, u) =
s − M2

phys

F2
phys

1

1 − N
2

s−M2
phys

F2
phys

B
(

M2
phys, M2

phys, s
) . (II.53)

This expression is in agreement5 with both the results in (II.63) and what was
found by [13] in the M2 → 0 limit.

An alternative way to resum the diagrams in Fig. II.6 is with a recursion
relation, as depicted in Fig. II.7. Let’s denote A(s, t, u) by a thick double line
and a wave function renormalized leg by a thick single line (remember that
in the large N limit Z = 1). The lhs of the equation is then is result we sought
after. On the rhs we have the renormalized effective 4φ vertex plus the A(s, t, u)

multiplied the renormalized fish diagram.

As for the mass case, solving the equation by first writing the lowest order
expression on the rhs, and reinserting the solution into the equation and so on
generates the whole set of diagrams in Fig. II.6.

5Compared with [26] we found an extra factor 1/2 in front of the B(M2
phys, M2

phys, s) function

coming from the symmetry factor of the loop. Note that they only worked to first order in the
mass.

II



80 The Massive O(N) Non-linear Sigma Model at High Orders

φa φc

φb φd

=
φa φc

φb φd

+
φa φc

φb φd

Figure II.7: The recursive equation which generates all the meson-meson scattering
diagrams. The vertex is the effective vertex of (II.50). The double line is the full results
for A(s, t, u). The single thick line is the full meson propagator.

φb

φa

s0δab
+

φa

φb

s0δab
+

φa

s0δab

φb

+ · · ·

Figure II.8: The fish diagrams for the scalar form factor.

II.4.4 Vector and Scalar form factors

The vector and scalar form factors FV and FS in the large N limit are calculated
in much the same manner. One constructs effective vertices and then sums the
diagrams.

The result for the vector form factor is particularly simple. The vector form
factor couplings come from Lkin, in particular from F2(ΦTvµ∂µΦ − ∂µΦTvµΦ).
The effective vertex for the first parametrization vab

µ [φa∂µφ] is the same as the

lowest order vertex and because of the antisymmetry in flavour indices of vab
µ

there are also no diagrams similar to those of Fig. II.8. The full leading order
in N result is thus

FV(t) = 1 . (II.54)

The scalar current comes from Lkin, which was discussed earlier for the VEV.
The sum of all the tadpole diagrams leads to the effective vertex

−Bs0 φaφa

√
1 + y

. (II.55)

In the scalar case however, one must also consider fish-like diagrams, see
Fig. II.8. The arguments used for resumming these diagrams used for φφ-
scattering still apply.

The full result for the scalar form factor is thus

FS(t) =
FS(0)

1 − N
2

t−M2
phys

F2
phys

B
(

M2
phys, M2

phys, t
) , (II.56)
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with

FS(0) = −
Vphys

F2
phys

. (II.57)

Here we have used the earlier results to write the expression in its simplest
form.

II.5 Leading Logarithmic series for O(N +
1)/O(N)

In this section we describe the calculation of the leading logarithms and quote
results for various physical quantities. For a given observable Ophys we can
write the leading logarithm expansion in many equivalent ways. The two we
will use are of the form

Ophys = O0

(

1 + a1L + a2L2 + · · ·
)

, (II.58)

with L defined in (II.29). We will also expand alternatively in the physical
quantities

Ophys = O0

(

1 + c1Lphys + c2L2
phys + · · ·

)

, (II.59)

with Lphys defined in (II.30). In both cases we have chosen the mass scale in
the logarithm to be the corresponding mass.

In [18] we described how to systematically take into account all the neces-
sary diagrams for the renormalization of the φ mass up to five loops. At each
order new diagrams are necessary. To renormalize the mass at one loop for in-
stance, one must consider the L0 4φ vertex and contract two of the legs. As the
loop order grows, so does the number of outer legs one must consider and the
number of possible one loop diagrams contributing. We give the related dis-
cussion here for the decay constant. The actual calculations were performed
by using FORM [19] extensively.

II.5.1 Mass

The coefficients ai of the logs Li for the mass were calculated in [18] and are
here reproduced for completeness in Tab. II.1. The coefficients in terms of fully
physical quantities can be derived by using the results for the decay constant
given below. They are given in Tab. II.2. The leading logarithm for the masses
for N = 3 at two-loop was first calculated in [7] and later to full two-loop order
in [27, 28]. Our results agree with those.

In [18] we noticed that the expansion of M2/M2
phys in LMphys

converged faster

than the expansion of M2
phys/M2 in terms of L. This was true for both the
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i ai for N = 3 ai for general N

1 −1/2 1 − 1/2 N

2 17/8 7/4 − 7/4 N + 5/8 N2

3 −103/24 37/12 − 113/24 N + 15/4 N2 − N3

4 24367/1152 839/144 − 1601/144 N + 695/48 N2 − 135/16 N3

+231/128 N4

5 −8821/144 33661/2400 − 1151407/43200 N + 197587/4320 N2

−12709/300 N3 + 6271/320 N4 − 7/2 N5

Table II.1: The coefficients ai of the leading logarithm Li up to i = 5 for the physical
meson mass [18].

i ci for N = 3 ci for general N

1 −1/2 1 − 1/2 N

2 7/8 −1/4 + 3/4 N − 1/8 N2

3 211/48 −5/12 + 7/24 N + 5/8 N2 − 1/16 N3

4 21547/1152 347/144 − 587/144 N + 47/24 N2 + 25/48 N3

−5/128 N4

5 179341/2304 −6073/1800 + 32351/2400 N − 59933/4320 N2

+224279/43200 N3 + 761/1920 N4 − 7/256 N5

Table II.2: The coefficients ci of the leading logarithm Li
phys up to i = 5 for the physical

meson mass.

large N result and the general N case. From the large N result in (II.41) we
would have naively expected to see a similar improvement in the expansion of
M2

phys/M2 in terms of Lphys. Looking at the coefficients of Tab. II.2 one can see

this is not the case. For completeness we also looked at the series of M2/M2
phys

in terms of Lphys. The coefficients are of similar size as those in Tab. II.2.

We can now use these results to check the expansions and how fast they
converge. In [18] the x-axis in Figs. 6(a) and (b) was unfortunately mislabeled.
It should have been M [GeV] instead of M2 [GeV2]. We have therefore in-
cluded a similar figure again. We chose F = 0.090 GeV and µ = 0.77 GeV for
the plots presented here in Fig. II.9. The expansion can also be done in the
physical quantities and these we show as a function of M2

phys with Fphys fixed

at 0.093 GeV in Fig. II.10. Both cases have a similar convergence which is fairly
slow for masses above about 300 MeV.
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Figure II.9: The expansions of the leading logarithms order by order for F = 0.090 GeV,
µ = 0.77 GeV and N = 3. (a) M2

phys/M2, expansion in L. (b) M2/M2
phys, expansion in

LMphys
.
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Figure II.10: The expansions of the leading logarithms order by order for Fphys =

0.093 GeV, µ = 0.77 GeV and N = 3. (a) M2
phys/M2, expansion in Lphys. (b) M2/M2

phys,

expansion in Lphys.

II.5.2 Decay constant

The decay constant Fphys is defined in (II.18). We thus need to evaluate a
matrix-element with one external axial field and one incoming meson. The di-
agrams needed for the wave function renormalization were already evaluated

II
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Figure II.11: The diagrams needed up to order 3 for the one particle irreducible dia-
grams with an external meson and an axial current. The wiggly line indicates the axial

vector. Vertices of order h̄i are indicated with i . (a) The diagram needed at order h̄.

(b) The 2 diagrams needed at order h̄2. (c) The 4 diagrams needed at order h̄3.
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Figure II.12: The diagrams needed for the divergence of the 3-meson 1-axial-vector

vertex. (a) The 2 diagrams to order h̄. (b) the 5 diagrams to order h̄2

in the calculation for the mass [18] since we evaluated the inverse propagator
there. What remains is thus the evaluation of all relevant 1PI diagrams with
an external aa

µ. At order h̄ there is only one diagram, at h̄2 there are 2 and at

order h̄3 there are 4. These are shown in Fig. II.11. We have not shown them
but at order h̄4 there are 7 and at h̄5 there are 13 diagrams to be calculated.

To order h̄ it is sufficient to know the lowest-order Lagrangian, but at or-
der h̄2 we need to know the (divergent part of the) vertices coming from the
Lagrangian of order h̄ with one and three external meson legs and one aa

µ. The
diagram of Fig. II.11(a) gives the divergence of the vertex with one meson and
one axial vector leg but we also need to calculate the divergence of the vertex
with three meson legs and one axial vector. This requires the diagrams shown
in Fig. II.12(a).

To order h̄3, we need still more vertices, we need the divergence of the
one meson one axial vector leg vertex to order h̄2. These diagrams we have
already calculated, but we also need the four-leg vertex to order h̄2 which can
be calculated from the diagrams in Fig. II.12(b). Inspection of the vertices there
shows we already have all we need but for the five meson one axial vector leg
vertex at order h̄. To obtain that we also need to evaluate all diagrams shown
in Fig. II.13. By now, the pattern should be clear, to get the mass at order h̄n

in [18] we needed the 2 and four-meson vertex at order h̄n−1, the 2, 4 and 6-
meson vertex at order h̄n−2 and so on. Here we need for the decay constant
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0 0

0

0

0 0

Figure II.13: The 3 diagrams needed for the divergence of the 6-meson vector to order
h̄.

to order h̄n in addition the one meson one axial vector and three-meson–one-
axial-vector vertex at order h̄n−1, the 1, 3 and 5-meson plus one axial vector
vertex at order h̄n−2 and so on. Similarly one can see that to get the decay
constant at order h̄n, we need to calculate one-loop diagrams with up to n

vertices. The extension to order h̄5 shows that we we need to calculate the 18,
26, 33, 26 and 13 diagrams at orders h̄1, . . . , h̄5 respectively for the mass/wave
function renormalization and an additional 27, 45, 51, 33 and 13 diagrams at
orders h̄1, . . . , h̄5 for the 1PI diagrams with an axial-vector.

We have organized this calculation by first expanding the lowest-order La-
grangian to the order needed, up to vertices with 12 mesons or 11 mesons and
one axial vertex. With these vertices we then calculate all 1PI diagrams with
up to 10 external legs. The divergent part of all needed integrals can be calcu-
lated relatively easily using the technique described in App. I.7 of [18]. At this
stage, the dependence on external momenta is also put back as derivatives on
the external legs and everything assembled to give the divergent part at order
h̄ for all the vertices with up to 10 meson legs or nine mesons plus one axial-
vector using (II.12). So we have assembled everything we need to calculate the
one-loop divergences to order h̄2. The 26+45 diagrams are evaluated and we
obtain the divergences at order h̄2 using (II.12). The process is then repeated
up to order h̄5. All of the above steps have been programmed in FORM. The
CPU time needed increases rapidly with the order n one wishes to reach. The
Lagrangians at higher orders tend to contain very many terms and construct-
ing the diagrams with many external legs at higher orders is also extremely
time consuming. The CPU time used on a typical PC for the mass-divergence
to order h̄n was approximately 0.1 seconds for h̄, 0.3 seconds for h̄2, 11 seconds
for h̄3, 700 seconds for h̄4 and 30000 seconds for h̄5 plus a similar amount for
the extra diagrams needed for the decay constant.

We now give the leading logarithms for the decay constant as a function of
F and M2 and of the physical Fphys and M2

phys

Fphys = F
(

1 + a1L + a2L2 + · · ·
)

,
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i ai for N = 3 ai for general N

1 1 −1/2 + 1/2 N

2 −5/4 −1/2 + 7/8 N − 3/8 N2

3 83/24 −7/24 + 21/16 N − 73/48 N2 + 1/2 N3

4 −3013/288 47/576 + 1345/864 N − 14077/3456 N2

+625/192 N3 − 105/128 N4

5 2060147/51840 −23087/64800 + 459413/172800 N

−189875/20736 N2 + 546941/43200 N3

−1169/160 N4 + 3/2 N5

Table II.3: The coefficients ai of the leading logarithm Li for the decay constant Fphys

in the case N = 3 and in the generic N case.

i ci for N = 3 ci for general N

1 1 −1/2 + 1/2 N

2 5/4 1/2 − 7/8 N + 3/8 N2

3 13/12 −1/24 + 13/16 N − 13/12 N2 + 5/16 N3

4 −577/288 −913/576 + 2155/864 N − 361/3456 N2 − 69/64 N3

+35/128 N4

5 −14137/810 535901/129600 − 2279287/172800 N + 273721/20736 N2

−11559/3200 N3 − 997/1280 N4 + 63/256 N5

Table II.4: The coefficients ci of the leading logarithm Li
phys for the decay constant

Fphys in the case N = 3 and in the generic N case.

Fphys = F
(

1 + c1Lphys + c2L2
phys + · · ·

)

. (II.60)

The first five ai coefficients are listed in table II.3 for the generic N and for
the interesting case N = 3. The equivalent results for the first five ci are in
table II.4. Note that once the expression of Fphys as a function of F is known

one may express the remaining observables as a function of the physical M2
phys

and Fphys. This has already been used to calculate the ci coefficients in tables
II.2 and II.4 from the corresponding ai.

We have plotted in Fig. II.14 the expansion in terms of the unrenormalized
quantities and in terms of the physical quantities. In both cases we get a good
convergence but it is excellent for the expansion in physical quantities.
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Figure II.14: The expansions of the leading logarithms order by order for µ = 0.77 GeV
and N = 3. (a) Fphys/F in terms of M2, expansion in L with F = 0.090 GeV. (b) Fphys/F

in terms of M2
phys, expansion in Lphys with Fphys = 0.093 MeV fixed.

n an for N = 3 an for general N

1 3/2 +1/2 N

2 −9/8 +3/4 N − 3/8 N2

3 9/2 +3/2 N − 3/2 N2 + 1/2 N3

4 −1285/128 +145/48 N − 55/12 N2 + 105/32 N3 − 105/128 N4

5 46 +3007/480 N − 1471/120 N2 + 557/40 N3

−1191/160 N4 + 3/2 N5

Table II.5: The coefficients ai of the leading logarithm Li for the VEV Vphys in the
case N = 3 and in the generic N case. Note that the coefficients in front of the first
subleading N power are often large.

II.5.3 Vacuum expectation value

The expression for the leading logarithms of the vacuum expectation value
Vphys follows from the definition (II.19). The diagrams needed and the princi-
ple of the calculation can be derived in the same way as we did for the decay
constant in Sect. II.5.2. The first five coefficients ai defined by

Vphys = −2BF2
(

1 + a1L + a2L2 + · · ·
)

, , (II.61)

are given in table II.5 for generic N and for the interesting case N = 3. The ci for
the leading logarithms in terms of physical quantities are given in table II.6.

II
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n cn for N = 3 cn for general N

1 3/2 1/2 N

2 21/8 −1/4 N + 3/8 N2

3 75/16 1/4 N − 1/2 N2 + 5/16 N3

4 1023/128 3/16 N + 5/24 N2 − 59/96 N3 + 35/128 N4

5 2669/256 −4153/2880 N + 12299/4320 N2 − 142/135 N3

−167/320 N4 + 63/256 N5

Table II.6: The coefficients ci of the leading logarithm Li
phys for the VEV Vphys in the

case N = 3 and in the generic N case.
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Figure II.15: The expansions of the leading logarithms order by order for µ = 0.77 GeV
and N = 3. (a) Vphys/V0 in terms of M2, expansion in L with F = 0.090 GeV. (b)

Vphys/V0 in terms of M2
phys, expansion in Lphys with Fphys = 0.093 MeV fixed.

We have plotted in Fig. II.15 the expansion in terms of the unrenormalized
quantities and in terms of the physical quantities. In both cases we get a good
convergence but it is excellent for the expansion in physical quantities.

II.5.4 φφ-scattering amplitude

Elastic ππ-scattering is a the ideal interaction to test the convergence of the
ChPT expansion since it only involves the SU(2)L × SU(2)R/SU(2)V Goldstone
bosons. It is also the simplest purely strong interaction process. This inter-
action has indeed been studied precisely for these reasons first by [29] at tree
level and then by [2, 3] at one-loop level. One would expect the series to con-
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verge rather rapidly, instead the authors of [3] found that some one-loop cor-
rections were rather large. Specifically, as mentioned in the introduction, for
the a0

0 scattering length. On the other hand, the one-loop LL correction to a1
1

arises only through Fπ renormalization [7], which means that the chiral logs
are not the main part of the one-loop correction. The issue of the convergence
of the perturbative ChPT expansion for φφ scattering is delicate.

We have above obtained the all-order leading in large N result. From the
calculations for the mass we have already obtained all the needed divergences
to get the LL to four-loop order for meson scattering. The result can be written
as expected in the form of (II.24). This is the first result where the choice of
scale in the logarithm is not unique. We only quote here the expansion in
terms of physical quantities and define

s̃ =
s

M2
phys

∆ =
t − u

M2
phys

LM =
M2

phys

16π2F2
phys

log
µ2

M2
. (II.62)

with a generic scale M. For scattering lengths an obvious choice is M = Mphys

but in the massless case the choice is M2 = s. Our result for general N is

F2
phys

M2
phys

A(s, t, u) = s̃ − 1 + LM
[

(1/6 ∆2 − s̃2 + 1/2 N s̃2) + (11/3 s̃ − N s̃)

+(−8/3 + 1/2 N)
]

+ L2
M
[

(5/96 s̃ ∆2 + 181/288 s̃3 + 5/96 N s̃ ∆2

−163/288 N s̃3 + 1/4 N2 s̃3) + (−5/12 ∆2 − 91/36 s̃2 + 5/12 N ∆2

+29/18 N s̃2 − 3/4 N2 s̃2) + (25/18 s̃ + 23/18 N s̃ + 3/4 N2 s̃) + (4/3

−29/12 N − 1/4 N2)
]

+ L3
M
[

(361/17280 ∆4 − 317/12960 s̃2 ∆2

−21319/51840 s̃4 − 203/17280 N ∆4 + 229/6480 N s̃2 ∆2

+28081/51840 N s̃4 + 1/160 N2 ∆4 + 11/1440 N2 s̃2 ∆2 − 33/80 N2 s̃4

+1/8 N3 s̃4) + (−1901/25920 s̃ ∆2 + 51869/25920 s̃3 + 3073/25920 N s̃ ∆2

−49573/25920 N s̃3 + 41/288 N2 s̃ ∆2 + 8467/4320 N2 s̃3 − 1/2 N3 s̃3)

+(1283/6480 ∆2 − 907/720 s̃2 − 2503/2160 N ∆2 − 7193/6480 N s̃2

+43/60 N2 ∆2 − 3257/1080 N2 s̃2 + 3/4 N3 s̃2) + (−1189/1620 s̃

+2111/810 N s̃ + 607/108 N2 s̃ − 1/2 N3 s̃) + (17/810 + 457/180 N

−22/5 N2 + 1/8 N3)
]

+ L4
M
[

(1451/1244160 s̃ ∆4 + 6457/103680 s̃3 ∆2

II
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+61781/248832 s̃5 + 143893/12441600 N s̃ ∆4 − 77957/2073600 N s̃3 ∆2

−5387831/12441600 N s̃5 − 9089/1382400 N2 s̃ ∆4 + 5531/230400 N2 s̃3 ∆2

+5592583/12441600 N2 s̃5 + 1/256 N3 s̃ ∆4 − 1/3840 N3 s̃3 ∆2

−5267/21600 N3 s̃5 + 1/16 N4 s̃5) + (−6493/77760 ∆4

+9023/103680 s̃2 ∆2 − 684899/518400 s̃4 + 43523/345600 N ∆4

−203777/1036800 N s̃2 ∆2 + 20749/12150 N s̃4 − 19091/345600 N2 ∆4

+146869/1036800 N2 s̃2 ∆2 − 1840297/777600 N2 s̃4 + 7/320 N3 ∆4

+143/5760 N3 s̃2 ∆2 + 110897/86400 N3 s̃4 − 5/16 N4 s̃4)

+(−680609/1555200 s̃ ∆2 + 23719/103680 s̃3 − 331117/1555200 N s̃ ∆2

+2894959/1555200 N s̃3 + 16621/86400 N2 s̃ ∆2 + 2812631/777600 N2 s̃3

+77/288 N3 s̃ ∆2 − 153377/86400 N3 s̃3 + 5/8 N4 s̃3) + (39629/15552 ∆2

+88013/129600 s̃2 − 186451/129600 N ∆2 − 272671/77760 N s̃2

−9227/5400 N2 ∆2 − 48067/6075 N2 s̃2 + 131/120 N3 ∆2

+2017/3600 N3 s̃2 − 5/8 N4 s̃2) + (667007/48600 s̃

−1109347/129600 N s̃ + 369719/43200 N2 s̃ + 2467/432 N3 s̃

+5/16 N4 s̃) + (−12349/864 + 102659/10800 N + 36097/10800 N2

−2887/480 N3 − 1/16 N4)
]

. (II.63)

As for all other quantities we see large subleading in N corrections.
From the result (II.63) we can obtain the different amplitudes T I defined

in (II.26) and project on the partial waves using (II.27). The scattering lengths
and slopes as defined in (II.28) can then obtained as well and we get the LL
Li

phys in terms of the physical M2
phys and Fphys. We have LL contributions for all

aI
ℓ

up to ℓ = 5 and to the slopes up to ℓ = 4. These we have all calculated for
general N. We give the expansion in

dI
ℓ,phys = dI

ℓ,tree(1 + c1L1
phys + c2L2

phys + · · · ) (II.64)

for the S-wave scattering lengths and slopes and only quote the phenomeno-
logically relevant case of N = 3. As mentioned above a clear choice for the
arbitrary scale in the logarithm is here the physical mass. The lowest order
result and the expansion coefficients are given in table II.7. The one- and two-
loop results agree with the earlier published ones [3, 7, 28]6

We have plotted in Fig. II.16 the expansion in terms of the physical quanti-
ties of a0

0 and a2
0. There is an excellent convergence for mass up to 0.2 GeV but

above 0.3 GeV it becomes rather slow for a0
0. For a2

0 it is somewhat better but
also rather slow at the higher masses.

6The two-loop coefficients agree with those of [7] except for b2
0 . We have checked that using

the full result from [28] and (3.13) in [7] reproduces our result.
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dI
ℓ

a0
0 a2

0 b0
0 b2

0

dI
ℓ,tree

7M2
phys

32πF2
phys

−2M2
phys

32πF2
phys

8M2
phys

32πF2
phys

−4M2
phys

32πF2
phys

c1 9/2 −3/2 26/3 −10/3

c2 857/42 −31/6 1871/36 −169/36

c3 153211/1512 −7103/216 2822/9 −352/9

c4 41581/84 −7802/45 744463/43 −1309703/6480

Table II.7: The coefficients ci of the leading logarithm series dI
ℓ,phys = dI

ℓ,tree(1 +

c1L1
phys + c2L2

phys + · · · ) for the Aππ→ππ for the scattering lengths, dI
ℓ

= a0
0, a2

0, and

for the slopes dI
ℓ
= b0

0, b2
0 in the case N = 3. All in units of Mphys.
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Figure II.16: The expansions of the leading logarithms order by order for µ = 0.77 GeV
and N = 3. (a) a0

0/a0
0tree (b) a2

0/a2
0tree in terms of M2

phys, expansion in Lphys with Fphys =

0.093 MeV fixed.

In Fig. II.17 we plotted the expansion in terms of the physical quantities of
the slopes b0

0 and b2
0. There is an excellent convergence for mass up to 0.25 GeV

but above the convergence slower for b0
0. b2

0 converges better but also rather
slow at the high mass end.

In the massless case we can obtain the coefficients at higher orders also
with different methods [13, 17] and our result agrees with those. We can also
use our result in this limit to test the often used elastic unitarity arguments.

II
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Figure II.17: The expansions of the leading logarithms order by order for µ = 0.77 GeV
and N = 3. (a) b0

0/b0
0tree (b) b2

0/b2
0tree in terms of M2

phys, expansion in Lphys with Fphys =

0.093 MeV fixed.

The partial waves T I
ℓ

satisfy under the assumption of elastic unitarity

ℑ
[

T I
ℓ

]

=

√
s

2q

∣
∣
∣T I

ℓ

∣
∣
∣

2
. (II.65)

In the massless case the scale of the logarithm should be related to s and we
know that this should come in the combination l(µ2/s) = ln |µ2/s|+ iπθ(s). The
leading logarithm part can be written as

T I
ℓ

= ∑
n=0,∞

eI
nsn+1l(µ2/s)n . (II.66)

In the chiral limit the interaction must vanish at s = 0. Inserting (II.66) in (II.65)
and keeping only the leading logarithm part allows to determine all the higher
coefficients in terms of the lowest order one.

eI
n = π

(

eI
0

π

)n+1

. (II.67)

Note that in the massless case there is really no regime where elastic unitarity
(II.65) is valid. We are simply testing here how much of the leading logarithm
in this case follows from the so-called righthand two-body cut. The result
(II.67) can be written explicitly

T I
ℓ

=
eI

0s

1 − e I
0s
π l(µ2/s)

. (II.68)
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T0
0 T1

1 T2
0

eI
ℓ

1
16πF2

phys

1
32πF2

phys

−1
32πF2

phys

exact elastic exact elastic exact elastic
f1 25/18 1 0 1/2 −10/9 −1/2

f2 25/18 1 5/4 1/4 35/36 1/4

f3 18637/9720 1 −901/3240 1/8 −50077/48600 −1/8

f4 540707/291600 1 207871/170100 1/16 134077/145800 1/16

Table II.8: The coefficients eI
ℓ

and fi defined in (II.69) for the exact LL in the chiral limit

and those derived using the assumption of elastic unitarity for the case N = 3 and T0
0 ,

T1
1 and T2

0 .

In table II.8 we compare for N = 3 the exact coefficients derived from (II.63)
with those from (II.68) for the expansion

T I
ℓ
(s) = eI

0s



1 + f1
s

16π2F2
phys

l(µ2/s) + f2

(

s

16π2F2
phys

l(µ2/s)

)2

+ · · ·



 . (II.69)

It is clear from the table that the assumption of elastic unitarity does not give
a good approximation to the LL in the chiral limit.

II.5.5 Form factors FS and FV

The vector and scalar form factors were defined in II.20 and II.22. The proce-
dure to find the LL for this observable follow the same lines of the one for the
decay constant, with the difference that in representation 1 the vertex between
the meson fields and the vector current is simply given by

Lint = (1/2) vab
µ

[
∂µφaφb − φa∂µφb

]
. (II.70)

For the wave function renormalization one may again use the results obtained
for the mass calculation. As in the previous subsection we express here the
results in terms of t̃ = t/M2

phys and LM with a scale M2 some combination of t

and M2
phys. The result for FV to four-loop-order for the LL is:

FV(t) = 1 + LM
[

1/6 t̃
]

+ L2
M
[

t̃ (−11/12 + 5/12 N) + t̃2 (5/36 − 1/24 N)
]

+L3
M
[

t̃ (+1387/648 − 845/324 N + 7/9 N2) + t̃2 (−4007/6480

+3521/6480 N − 29/180 N2) + t̃3 (+721/12960 − 47/1440 N + 1/80 N2)
]

II
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n 〈r2〉V cV 〈r2〉S cS

c1 1 — 6 —
c2 2 1/72 −29/3 43/36
c3 853/108 −71/162 −581/54 −727/324

c4 50513/1296 −25169/7776 −75301/648 4369/810

Table II.9: The coefficients ci of the expansion in Lphys in the expansion of the radii

〈r2〉V,S and the curvature cV,S in the N = 3 case.

+L4
M
[

t̃ (−44249/15552 + 222085/31104 N − 55063/10368 N2

+127/96 N3) + t̃2 (+349403/155520 − 15139/4860 N + 86719/51840 N2

−199/480 N3) + t̃3 (−85141/155520 + 885319/1555200 N

−5303/19200 N2 + 21/320 N3) + t̃4 (+4429/103680 − 57451/1555200 N

+289/14400 N2 − 1/240 N3)
]

. (II.71)

Note that FV(0) = 1 as it should be. We can extract from this the expansion
for the radius and curvature defined in (II.23). These are given in table II.9
in terms of the expansion in Lphys for the physical case N = 3. The general
coefficients can be easily derived from (II.71). The dash indicates that this
cannot appear to a given order for the LL. The result up to two-loop order
agrees with the LL extracted from the full two-loop calculation [30]. We do not
present numerical results for the vector form factor since these are dominated
in the physical case N = 3 by the large higher order coefficient contributions,
see e.g. [2, 30].

For the scalar form factor FS(t) defined in (II.20) we have already done the
calculations we need to four-loop-order during the calculation for the VEV
Vphys to five-loop-order. We write the result in the form

FS(t) = FS(0) fS(t) . (II.72)

The value for FS(0) can be obtained from the calculation or via the Feynman-
Hellman theorem in (II.21). The latter allows for the ai coefficients for FS(0)

expanded in terms of L to be derived easily from table II.1. We have checked
that both methods agree. In table II.10 we quote the coefficients ci of

FS(0) = 2B
(

1 + c1L + c2L2 + · · ·
)

, (II.73)

for the case N = 3 and general N.
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ci for N = 3 ci for general N

c1 −1 2 − N

c2 31/8 5/4 − 1/4 N + 3/8 N2

c3 65/6 −5/3 + 41/12 N + N2 − 1/4 N3

c4 76307/1152 655/144 − 901/144 N + 341/48 N2 + 17/48 N3

+11/128 N4

Table II.10: The coefficients ci of the leading logarithm Li
phys for the scalar form factor

at zero momentum transfer FS(0) in the case N = 3 and in the generic N case.

We can now express fS(t) using the same notation as for FV(t).

fS(t) = 1 + LM
[

t̃ (−1/2 + 1/2 N)
]

+ L2
M
[

t̃ (1/18 + 7/36 N − 1/4 N2)

+t̃2 (11/72 − 29/72 N + 1/4 N2)
]

+ L3
M
[

t̃ (599/648 − 181/324 N

−53/108 N2 + 1/8 N3) + t̃2 (275/1296 − 427/648 N + 301/432 N2

−1/4 N3) + t̃3 (−89/864 + 7/24 N − 271/864 N2 + 1/8 N3)
]

+L4
M
[

t̃ (−10981/3888 + 37373/7776 N − 3733/2592 N2 − 23/48 N3

−1/16 N4) + t̃2 (−22859/28800 + 89951/48600 N − 823067/777600 N2

−4021/21600 N3 + 3/16 N4) + t̃3 (−959/32400 + 82529/259200 N

−1421/2025 N2 + 51877/86400 N3 − 3/16 N4) + t̃4 (76459/1555200

−70997/388800 N + 423961/1555200 N2 − 121/600 N3 + 1/16 N4)
]

.

(II.74)

From (II.74) we can derive the expression for the scalar radius and curvature
defined in (II.23). The expansion coefficients ci in terms of the physical loga-
rithm Lphys are given in table II.9 for the physical case N = 3. The general case
can be easily obtained from (II.74). The coefficients of the LL extracted from
the full two-loop calculation of [30] agree.

In Fig. II.18 we plotted the expansion in terms of the physical quantities of
the radius and curvature. There is an excellent convergence for masses up to
0.3 GeV but above the convergence is slower in both cases.

II.6 Conclusions

In this work we extended our previous work on the massive nonlinear
O(N + 1)/O(N) sigma model to many more observables. We calculated the

II
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Figure II.18: The expansions of the leading logarithms order by order for µ = 0.77 GeV
and N = 3. (a) M2

phys〈r2〉S (b) M4
physcS in terms of M2

phys, expansion in Lphys with

Fphys = 0.093 MeV fixed.

leading logarithmic corrections to the decay constant and the vacuum expec-
tation value to five-loop-order and to the scalar and vector form factors and
meson-meson scattering to four-loop order for generic N. We used these re-
sults to extract scattering lengths and slopes and have presented the physically
most relevant cases for N = 3 of these. Results for all other cases have been
obtained but would have added significantly to the length of the paper.

Our original hope had been to find a pattern behind the coefficients of the
LL and to make an all order conjecture for the leading LL. We succeeded in
deriving such an expression for the leading term in the large N limit but we
found no general expression.

The large N approximation, as we already noted in [18], is a surprisingly
poor approximation of the LL series for all of the observables we considered.
For example, looking at the five-loop results, the first neglected term, the N4

term, often has a large coefficient compared with the N5 term. For this term
to be negligible, i.e. a 10% correction of the leading term, N must be large, in
some cases N > 20. This is understandable if one considers that the sublead-
ing Ni<n terms in the coefficients come from non-cactus diagrams and differ-
ent flavour routings of the cactus diagrams. Though each of these diagrams is
suppressed by 1/N in the large N limit, the number of diagrams and the num-
ber of ways to route the flavour structure seem to produce large coefficients
for the subleading in N terms.

We have also performed some numerical test of the convergence with pa-
rameter values of the range needed for two-flavour ChPT. For masses around
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0.1 GeV the convergence for all quantities studied is excellent. It is reasonable
for most quantities up to about 0.3 GeV as can be seen on the various plots but
becomes unstable around 0.4 GeV for some of the quantities studied.
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Assuming there is a new gauge group in a Hidden Valley, and a new type of
radiation, can we observe it through its effect on the kinematic distributions of
recoiling visible particles? Specifically, what are the collider signatures of ra-
diation in a hidden sector? We address these questions using a generic SU(N)-
like Hidden Valley model that we implement in PYTHIA. We find that in both
the e+e− and the LHC cases the kinematic distributions of the visible particles
can be significantly affected by the valley radiation. Without a proper under-
standing of such effects, inferred masses of “communicators” and of invisible
particles can be substantially off.
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III.1 Introduction

One common feature in New Physics models is the conservation (or near con-
servation) of a new quantum number. Often it is associated with a parity
symmetry, like R-parity in supersymmetric models or T-parity in Little Higgs
ones. Such conserved parity-like symmetries serve two basic model-building
purposes: firstly, they forbid odd-parity tree level corrections to electroweak
precision observables, and secondly, they make the lowest lying odd-parity
state stable, thus providing a possible dark matter candidate. The new charge
may alternatively come from a continuous symmetry, a global symmetry or a
new gauge symmetry, for example, and still fulfill the same purposes.

Regardless of the specific model realization, we can imagine that a new
conserved quantum number is discovered at LHC.

In this article, we wish to take some first steps towards addressing a gen-
eral phenomenological question: if a new apparently conserved charge should be
discovered, is it possible to determine experimentally whether it arises from a discrete,
a global or a gauge symmetry? Specifically, is it possible to determine whether it is
the source of a new field?

In principle, a continuous symmetry has additive quantum number conser-
vation whereas a discrete one has multiplicative conservation. To distinguish
between gauge and global symmetries one could look for Gauge bosons, for
Goldstone bosons and in general at the particle spectrum. The new sector
however may be ”hidden”. That is, the carriers of the new symmetry, for the
two basic reasons mentioned above, could lie entirely within the new sector
and be neutral under (or have very weak) SM interactions. Indeed, a new
unbroken symmetry would have to be invisible or else it would have already
been found. Thus any radiation or other dynamic phenomena associated with
it would be invisible to SM matter.

If the charge did radiate in the new sector, would we be still be able to ob-
serve indirectly the effects of the hidden radiation? How would the kinematic
distributions of the visible particles be affected? Could we extract information
from these kinematic distributions about the dynamics within the hidden sec-
tor? Could one distinguish Abelian from non-Abelian gauge groups, study
the different particle (or unparticle) contents or measure the strength of the
couplings? This could lead to a better understanding of the higher-energy
dynamics, the ultraviolet completion of the theory, the symmetries involved,
and possibly even the mechanism by which they are broken. The ideal ter-
rain to begin to explore these effects is Hidden Valley models [1]. We extend
this name to the class of models satisfying the following criteria. First, there
must be a new light hidden sector (the valley), decoupled from the visible SM
one, that has not yet been discovered because of some barrier. This can be an
energy barrier or of another nature, e.g. symmetry-forbidding tree-level cou-
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plings. Second, the decoupling of the new hidden valley sector from the vis-
ible SM one must happen at relatively low energies, around the TeV scale, in
such a way that the cross sections for Standard visible particles disappearing
into the hidden sector (and vice versa) are small enough to evade the current
experimental limits, and yet large enough to be observable at LHC. These ex-
perimental limits are of course model dependent, as we will discuss in sections
III.2 and III.4.

Typically, the valley particles ”v-particles” are charged under a valley
group Gv and neutral under the SM group GSM, and the SM particles are neu-
tral under Gv. In order to have interactions between the two sectors there has
to be a ”communicator” which couples to both SM and valley particles. A
common choice is to have a coupling via a Z′ or via loops of heavy particles
carrying both GSM and Gv charges.

Examples of Hidden Valleys can be found in many models, such as String
Theory [2], Twin Higgs models [3], folded SUSY [4, 5], and Unparticle models
[6, 7].

Hidden Valley scenarios can naturally provide candidates for Dark Matter
and can easily fit cosmological constraints. Just to give an example, in [1] the
v-interactions ensure that all particles efficiently decay to the lightest mesons.
These mesons are allowed to annihilate to neutral π0

vs, which can then tunnel
back into the SM. So long as the lifetime of the π0

v is τ ≪ 1 sec, the number of
πs left will decay exponentially before big-bang nucleosynthesis.

The reason why these scenarios are ideal to study the effects of radiation
is the large disparity in the masses of the communicators and the v-particles.
Typically, the communicator has a mass around the decoupling scale, say the
TeV scale, while the v-particle mass may be as low as 1–10 GeV. If both the
communicator and the v-particle are charged under a new gauge Gv, they will
radiate gauge bosons, and the larger their mass ratio the larger the amount of
phase space available for the radiation, both in the normal and in the hidden
sector. Thus if any effect at all are to be observable, it would be in this kind of
scenario.

We have devised a Hidden Valley toy model to tackle the issue, and have
implemented it in the PYTHIA 8 Monte Carlo event generator [8]. The imple-
mentation allows for different valley flavour contents, particle masses, gauge
groups and v-gauge couplings. In this way one may accommodate a range of
different Hidden Valley scenarios.

MC event generators offer flexible approaches to model radiation and par-
ton shower evolution in great detail. One new central feature in the PYTHIA 8
implementation is the “competition” mechanism between the hidden and the
SM radiation, which is implemented as an “interleaved” shower, wherein dif-
ferent kinds of emissions, SM and hidden, can alternate if viewed in terms of
a common shower evolution scale. As a consequence, subsequent emissions
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in the visible sector, of gluons or photons, will then tend to have a lower en-
ergy than they would have had, had the hidden radiation not been there. This
is the key mechanism whereby we gain access to the information about the
radiation in the hidden sector.

The intention of this article is not a full-fledged experimental analysis of
how a new sector should be discovered and explored, neither with respect to
potential background processes nor to detector-specific capabilities — since
our implementation is publicly available, we safely leave it to the experimen-
tal community to assess. What we want to ascertain here is if there are ob-
servable signals of hidden valley radiation at all, at the simple parton and hadron
levels.

It is not trivial to decide which visible particle kinematic distributions one
should study to reveal valley radiation effects and to discriminate between
different models. For instance, at an e+e− collider the rise of the communi-
cator pair-production cross section near threshold could allow to determine
its spin, and thereafter the absolute size of the cross section could suggest the
presence of new “colour” factors — recall that the pair-production of particles
in the fundamental representation of a new SU(N) group gives a factor N in
the cross section. Such measurements would not directly probe the hidden
sector, however: they would not reveal whether a new group is gauged, or
what is the coupling strength in it. For a hadron collider, like the LHC, the
uncertainty in the event-by-event subcollision energy

√
ŝ undermines analy-

ses solely based upon the value of cross-section. The best strategy is thus to
complement cross-section with invariant mass measurements and the study of
other boost-invariant quantities (for a recent review see the proceedings [9]).

This is the reason why we choose to study MT2 [10] distributions, which
give relations between communicator and v-particle mass. These observables
are specifically designed to be boost-invariant and to deal with BSM models
in which more than one particle escapes detection, such as in our toy model.
But we also study ”hidden observables”, like the invariant mass distribution
of a hidden particle together with its associated hidden radiation.

The effects of the hidden radiation on these distributions and how much
one may observe depends on the details of the scenario considered, of course,
but also depend heavily upon the collider type considered, on its center of
mass energy, and on its integrated luminosity L. We consider two different
LHC scenarios, one for the early data (the first 18 to 24 months at 7 TeV with
an expected integrated luminosity L = 1 fb−1) and one for later data (

√
s = 14

TeV and integrated luminosity L = 100 fb−1). The conclusions in the two cases
will be quite different. For e+e− collisions we will mainly refer to an ILC at
800 GeV, though we mention CLIC production cross sections at 3 TeV.
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III.2 Hidden Valley scenarios

As mentioned in the introduction a Hidden Valley is a light hidden sector,
consisting of particles which, depending on the model, might have masses as
low as 10 GeV. The detailed spectrum of the v-particles and their dynamics
within the hidden valley depends upon the valley gauge group Gv, the spin
and number of particles present in the theory, and the representation they
belong to.

The effects of the hidden sector on the visible particle spectra will depend
upon the way the hidden sector communicates with the SM, whether it is via
a Higgs, multiple Higgses, a Z′, heavy sterile neutrinos or via loop of heavy
particles charged under both SM and valley gauge interactions.

We would like to give a panoramic view of the different Hidden Valley
scenarios without going into details and to underline those features that may
be simulated with the new tools.

The simplest possibility is a QCD-like scenario, with a strong coupling con-
stant, which may run like the QCD coupling does, with QCD-like hadroniza-
tion generating valley pions, v-ηs, v-Ks, v-nucleons etc. The Standard Model
SU(3)c × SU(2)×U(1) sector could couple ultra-weakly with the hidden SU(N)

sector via a neutral Z′. This scenario was investigated by Strassler and Zurek
with tools analogous to the ones used to simulate QCD [1]. It displays some
rather startling features. For instance, a v-π could have a displaced decay in
the muon spectrometer in the ATLAS detector, resulting in a large number of
charged hadrons traversing the spectrometer, or it could decay in the hadronic
calorimeter producing a jet with no energy deposited in the electromagnetic
calorimeter and no associated tracks in the inner detector. Experimental stud-
ies for these scenarios are currently under way, by the D0, CDF, LHCb, ATLAS
and CMS collaborations.

Typical hidden valley-like signatures appear also in Unparticle models
with mass gaps [7]. These models display a conformal dynamic above the
mass gap, and a hidden valley behaviour when the conformal symmetry is
broken. Regardless of the dynamics above the mass gap, whether it is strongly
coupled or weakly coupled, the signatures are similar to the ones mentioned
in the previous scenario (displaced vertices and missing energy signals). This
is because only the lower energy states, light stable hidden hadrons can decay
back into Standard Model particles. The higher energy states, be they narrow
resonances or a continuum of resonances, decay rapidly to these lower light
stable hadrons. As for the previous scenario, a parton shower is a key tool to
study these models, not so much to determine the phenomenology qualita-
tively, but because it the only element of the hidden dynamics which is sen-
sitive to the higher-energy conformal (or next-to-conformal) dynamics. The
conformal dynamics will be reflected in the parton shower evolution, which
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can be rather different from the regular QCD one, especially in theories with
a strong dynamics above the mass gap.

There are of course many other Hidden-Valley related models, such as
Quirky models [11], just to give an example, in which the parton shower evo-
lution does not play the key role it does in the previous cases. Typically their
phenomenology is better captured in terms of string dynamics and string frag-
mentation.

In this paper we do not address the issue of string fragmentation or
hadronization. Our main focus is on the parton shower, as this best captures
the nature of the hidden radiation.

The model we built to investigate the existence of a this new radiation
exploits but a few features common in many hidden valley scenarios: the
presence of a new unbroken hidden gauge group, of a heavy communica-
tor, charged under both SM and hidden sector gauge group and decaying into
a visible and an invisible light particle, charged only under the new gauge
group. These characteristics fit many Hidden Valley models, we however
make an additional assumption, which is that the production cross sections1

should be large enough for the effects of the hidden radiation to be discern-
able. This model was then implemented in the PYTHIA event generator. No-
tice however, that the shower mechanism we implemented is rather different
from the ones mentioned above, as we will discuss in the next section.

III.3 Monte Carlo Tools in PYTHIA 8

In order to allow detailed studies of a set of scenarios, the models have been
implemented in the PYTHIA event generator, and will be publicly available
from version 8.140 onwards.

III.3.1 Particle content

For simplicity we assume that the HV contains either an Abelian U(1) or a non-
Abelian SU(Nc) gauge group, with spin 1 gauge bosons. The former group
could be unbroken or broken, while the latter always is assumed unbroken.
Casimir constants could be generalized to encompass other gauge groups,
should the need arise, but for now we do not see that need. The gauge bosons
are called γv and gv, respectively.

A particle content has been introduced to mirror the Standard Model
flavour structure. These particles, collectively called Fv, are charged under
both the SM and the HV symmetry groups. Each new particle couples flavour-
diagonally to a corresponding SM state, and has the same SM charge and

1We will discuss the production cross sections in section III.4.
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name partner code name partner code
Dv d 4900001 Ev e 4900011
Uv u 4900002 νEv νe 4900012
Sv s 4900003 MUv µ 4900013
Cv c 4900004 νMUv νµ 4900014
Bv b 4900005 TAUv τ 4900015
Tv t 4900006 νTAUv ντ 4900016
gv 4900021
γv 4900022
qv 4900101

Table III.1: The allowed particle content in the HV scenarios, with their SM partners,
where relevant. The code is an integer identifier, in the spirit of the PDG codes, but is
not part of the current Amsler:2008zzb standard.

colour, but in addition is in the fundamental representation of the HV colour,
see Table III.1. Their masses and widths can be set individually. It would also
be possible to expand the decay tables to allow for flavour mixing.

These particles can decay to the corresponding SM particle, plus an in-
visible, massive HV particle qv, that then also has to be in the fundamental
representation of the HV colour: Fv → f qv. The notation is intended to make
contact with SM equivalents, but obviously it cannot be pushed too far. For
instance, not both Fv and qv can be fermions. We allow the Fv to have either of
spin 0, 1/2 and 1. Currently the choice of qv spin is not important but, for the
record, it is assumed to be spin 1/2 if the Fv is a boson and either of spin 0 and
1 if Fv is a fermion.

III.3.2 Production processes

The HV particles have to be pair-produced. The production processes we have
implemented are the QCD ones, gg → QvQv and qq → QvQv, for the coloured
subset Qv of Fv states, and the electroweak f f → γ∗/Z0 → FvFv for all states.
All of them would contribute at a hadron collider, but for a lepton one only
the latter would be relevant. Each process can be switched on individually,
e.g. if one would like to simulate a scenario with only the first Fv generation.

Note that pair production cross sections contain a factor of Nc, with Nc = 1

for an U(1) group, for the pair production of new particles in the fundamental
representation of the HV gauge group, in addition to the ordinary colour fac-
tor for Qv. Other things equal, this could be used to determine Nc from data,
as already discussed. For the case of a spin 1 Fv it is possible to include an
anomalous magnetic dipole moment, κ 6= 1.

The spin structure of the Fv → f qv decay is currently not specified, so the
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decay is isotropic. Also the Yukawa couplings in decays are not set as such,
but are implicit in the choice of widths for the Fv states.

The kinematics of the decay is strongly influenced by the qv mass. This
mass is almost unconstrained, and can therefore range from close to zero to
close to the Fv masses. We will assume it is not heavier than them, however,
so that we do not have to consider the phenomenology of stable Fv particles.

III.3.3 Parton showers

Both the Fv and the qv can radiate, owing to their charge under the new gauge
group, i.e. Fv → Fvγv and qv → qvγv for a U(1) group, and Fv → Fvgv and
qv → qvgv for a SU(Nc) one. In the latter case also non-Abelian branchings
gv → gvgv are allowed. Currently both γv and gv are assumed massless, but a
broken U(1) with a massive γv is foreseen.

These showers form an integrated part of the standard final-state show-
ering machinery. Specifically, HV radiation is interleaved with SM radiation
in a common sequence of decreasing p⊥. That is, at the stage before the Fv’s
decay, they may radiate g, γ and γv/gv, in any order. For the i’th emission, the
p⊥ evolution starts from the maximum scale given by the previous emission.
The overall starting scale p⊥0 is set by the scale of the hard process. Thus the
probability to pick a given p⊥ takes the form

dP
dp⊥

= (
dPQCD

dp⊥
+

dPQED

dp⊥
+

dPHV

dp⊥

)

×

exp ( −
∫ p⊥i−1

p⊥

(
dPQCD

dp′⊥
+

dPQED

dp′⊥
+

dPHV

dp′⊥

)

dp′⊥

)
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where the exponential corresponds to the Sudakov form factor. Implicitly one
must also sum over all partons that can radiate.

To be more precise, radiation is based on a dipole picture, where it is a pair
of partons that collectively radiates a new parton. The dipole assignment is
worked out in the limit of infinitely many (HV or ordinary) colours, so that
only planar colour flows need be considered. Technically the total radiation
of the dipole is split into two ends, where one end acts as radiator and the
other as recoiler. The recoiler ensures that total energy and momentum is
conserved during the emission, with partons on the mass shell before and
after the emission. In general the dipoles will be different for QCD, QED and
HV.

To take an example, consider qq → QvQv, which proceeds via an intermedi-
ate s-channel gluon. Since this gluon carries no QED or HV charge it follows
that the QvQv pair forms a dipole with respect to these two emission kinds.
The gluon does carry QCD octet charge, however, so QvQv do not form a QCD
dipole. Instead each of them is attached to another parton, either the beam
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remnant that carries the corresponding anticolour or some other parton emit-
ted as part of the initial-state shower. This means that QCD radiation can
change the invariant mass of the QvQv system, while QED and HV radiation
could not. When a γ or γv is emitted the dipole assignments are not modi-
fied, since these bosons do not carry away any charge. A g or gv would, and
so a new dipole would be formed. For QCD the dipole between Qv and one
beam remnant, say, would be split into one between the Qv and the g, and
one further from the g to the remnant. For HV the QvQv dipole would be spit
into two, Qvgv and gvQv. As the shower evolves, the three different kinds of
dipoles will diverge further.

Note that, in the full event-generation machinery, the final-state radiation
considered here is also interleaved in p⊥ with the initial-state showers and
with multiple parton-parton interactions.

There is made a clean separation between radiation in the production stage
of the FvFv pair and in their respective decay. Strictly speaking this would only
be valid when the Fv width is small, but that is the case that interests us here.
In the decay Fv → f qv the QCD and QED charges go with the f and the HV
one with qv. For all three interactions the dipole is formed between the f and
the qv, so that radiation preserves the Fv system mass, but in each case only the
relevant dipole end is allowed to radiate the kind of gauge bosons that go with
its charge. (Strictly speaking dipoles are stretched between the f or qv and the
“hole” left behind by the decaying Fv. The situation is closely analogous to
t → bW+ decays.)

The HV shower only contains two parameters. The main one is the cou-
pling strength αv, i.e. the equivalent of αs. This coupling is taken to be a
constant, i.e. no running is included.

From a practical point of view it is doubtful that such a running could be
pinned down anyway, and from a theory point of view it means we do not
have to specify the full flavour structure of the hidden sector. The second
parameter is the lower cutoff scale for shower evolution, by default chosen
the same as for the QCD shower, p⊥min = 0.4 GeV.

The HV showers are not matched onto higher-order matrix elements for
the emissions of hard γv/gv in the production process, and so contain an el-
ement of uncertainty in that region. For the decay process the matching to
first-order matrix elements has been worked out for all the colour and spin
combinations that occur in the MSSM [12], and is recycled for the HV scenar-
ios, with spin 1 replaced by 0 for non-existing (in MSSM) combinations. This
means that the full phase space is filled with (approximately) the correct rate.
Some further approximations exists, e.g. in the handling of mass effects in the
soft region. The chosen behaviour has been influenced by our experience with
QCD, however, and so should provide a good first estimate. More than that
we do not aim for in this study.

III
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III.4 The model: SM and SU(3)v radiation

To be specific, in the following we explore two similar Hidden Valley exper-
imental scenarios. In the first, the communicator Ev is a spin 1/2 particle
charged under both the SM SU(2) × U(1) and the valley gauge group SU(3)v.
We assume it has the same SM charges an electron would have, so it may
be pair-produced in e+e− collisions, via Z/γ⋆. Under the unbroken SU(3)v,
it transforms like a 3, so it radiates both γs and massless hidden valley glu-
ons gvs. After the parton shower, the Ev eventually decays into a visible SM
electron e and an invisible spin 0 valley “quark” qv. This qv belongs to the
fundamental representation of SU(3)v and is not charged under the SM gauge
group, so it only radiates gvs. See Fig.III.1.

The key feature is interleaved radiation, already introduced above. In the
current context it works as follows. Once the Ev has been produced it may
radiate a SM γ, say. This radiation will subtract energy from the Ev and the
following emission, be it another SM photon or a valley gluon, will have less
phase space to radiate into. In an analogous way, assuming a valley gv is
emitted next, it subtracts energy from Ev and affects the following emissions
which, again, could be either visible or invisible.

Figure III.1: An EvĒv pair is produced via Z/γ⋆. Since Ev is charged under both
SU(2) × U(1) and SU(3)v, it radiates both γs and gvs. It eventually decays into e
and qv. These then each radiate into their respective sector. Notice that qv here refers
to a spin 0 particle.

In the second scenario the communicator between SM sector and Hidden
Valley sector is a quark-like, spin 1/2 object Qv, belonging to the (3, 3) rep-
resentation of the gauge group SU(3)c × SU(3)v. The Qvs are pair produced
(mostly) via strong interactions (gluon-gluon or qq̄ fusion). We choose the
scenario in which only one vector-like Qv is produced, the Dv. This Dv emits
massless valley gluons (since the SU(3)v is assumed to be unbroken) and these
may in turn radiate more gvs. During the shower evolution, both types of glu-
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ILC CLIC LHC LHC

(800 GeV) (3 TeV) (7 TeV) (14 TeV)

MEv
= 300 GeV 398 fb 44 fb MDv

= 300 GeV 1.39 · 104 fb 1.04 · 105 fb

MEv
= 500 GeV - 41 fb MDv

= 500 GeV 654 fb 7.27 · 103 fb

MEv
= 1 TeV - 32 fb MDv

= 1 TeV 3.21 fb 124 fb

Table III.2: The order of magnitude of the total production cross sections, in f b, at ILC
(via Z/γ⋆), LHC (via qq̄ or gg fusion) with

√
s = 7 TeV and 14 TeV, for various values

of the communicator mass. The spin of the communicator is assumed to be 1/2.

ons are radiated until finally each Dv decays into a visible SM d quark and an
invisible spin 0 valley qv. The decays are flavour diagonal, Dv → d + qv.

Figure III.2: Pair production of hidden valley Dvs. Each Dv can radiate gs and gvs, and
eventually decays Dv → qvd. The visible d then can radiate further gs and the invisible
qv further gvs.

The SM quark d transforms as a (3, 1) under SU(3)c × SU(3)v, so it radi-
ates only SM gluons, while the valley qv belongs to the (1, 3) representation of
SU(3)c × SU(3)v, so not having any SM color charge, it radiates only gvs, see
figure III.2.

In both scenarios there are just three parameters left to vary: the size of the
valley coupling constant αv, the masses of the communicator particles MEv

or
MDv

and the mass of the valley scalar Mqv .

Below, in Table III.2, we list the total production cross sections at different
colliders: e+e− with

√
s = 800 GeV or

√
s = 3 TeV, and LHC with

√
s = 7 TeV or√

s = 14 TeV for some typical MEv
, MDv

mass values.
We also show the spin dependence of the EvĒv production cross section at

e+e− colliders for the three cases: Fv spin 0 and qv spin 1/2, Fv spin 1/2 and qv

spin 0 or 1, and Fv spin 1 and qv spin 1/2, Fig. III.3.

The higher the spin, the larger the cross section. Indeed, the curve corre-
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Figure III.3: The spin dependence of the EvĒv production cross section at e+e− colliders
for Ev spin 1/2, 0 and 1. MEv

= 250 GeV, the mass spread ΓEv
= 2 GeV, Mqv = 50 GeV.

The spin 0 curve has been scaled by a factor 30.

sponding to Ev spin 0 has been scaled by a factor 30 to emphasize the similarity
in shape with the spin 1 curve. Note that the processes proceed through the
s-channel exchange of a spin 1 γ∗/Z∗. Thus the production of a spin 1/2 pair
has only a threshold factor β from phase space, where β is the velocity of the
produced pair in the γ∗/Z∗ decay vertex, while the other two have an (ap-
proximate) additional factor β2 from helicity considerations. The results have
again been obtained with a SU(3)v group, and are directly proportional to the
Nc chosen. Since we would not expect gauge groups with Nc above (some
multiple of) 30, the conclusion would be that a threshold scan of the cross sec-
tion could be used to determine both the Ev spin and the number of hidden
colours, as well as the Ev mass, of course. A caveat would be that we have
here only considered the Ev gauge production mechanism, not the possibility
of a significant t−channel Yukawa contribution. The reason for not including
this production channel is that it would imply a large decay width for the Ev,
which would give additional large and model dependent effects to the cross
section around threshold (see below).

The experimental constraints on these two types of setup are similar to the
ones for New Charged Leptons and Leptoquark production2. For the New
Charged Leptons the PDG [13] gives the lower bound mL± > 100.8 GeV. For
scalar and vector Leptoquark states we use the direct limits coming from lep-
toquark pair production and subsequent LQ → νq decay searches [14]. For the
all generation search mLQ > 136 GeV in the scalar case and mLQ > 200 GeV in
the vector case, where one assumes the branching ratio B(νq) = 1. Bounds on

2We do not make use of the limits coming from the D0 or CDF q̃ → j + ET6 searches, because
these depend upon the chosen mSUGRA scenario.
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Figure III.4: Left: the effective invariant mass distribution for the qv at LHC for
αv = 0.1, 0.4, 0.8. MDv

= 300 GeV, nominal qv mass Mqv = 10 GeV and
√

s = 7 TeV.
Right: the effective invariant mass distribution for the qv at LHC for αv = 0.1, 0.4, 0.8.
MDv

= 1 TeV, nominal qv mass Mqv = 10 GeV and
√

s = 14 TeV. Notice how the mean
value of the distribution shifts from the bare mass mqv = 10 GeV towards mmax

qv
= mDv

GeV as the coupling constant grows.

the leptoquark mass for the third generation decaying into νb are more strin-
gent [15], mLQ > 229 GeV.

We view these boundaries as simply indicative of the mass range we
should contemplate and chose masses that are well beyond these boundaries.
Our studies are in any case not critically dependent on them.

We assumed the communicators to be massive, MEv
in the range [250,300]

GeV for the ILC case, MDv
in the range [300, 500] GeV for the LHC 7 TeV run,

and [0.5,1] TeV for the 14 TeV run. The hidden scalar is taken to be light, Mqv

as light as 10 GeV. The αv parameter is allowed to vary over a wide range, and
results shown for interesting values.

Depending on the size of these parameters, the effects of the radiation on
the lepton or quark kinematic distributions can be significant, as we will show
in the next two sections. But whether these effects will be observable strongly
depends on the statistics at hand. We assume an integrated luminosity L = 200

fb−1 for the ILC, 1 fb−1 for the 7 TeV LHC run and 100 fb−1 for the 14 TeV one.

The hidden radiation affects the visible particle kinematics through two
mechanisms. The first one, interleaved radiation from the Ev or Dv, we already
discussed. The second is radiation off the qv after Ev/Dv decay. This causes the
invariant mass for the system made out of qv and the radiated gvs to be larger
than the on-shell qv mass. This invariant mass can be viewed as the off-shell
mass with which the qv is produced at the decay vertex. In Fig. III.4 one may
see the effects of the valley radiation on the off-shell mass, for the Dv → d + qv

case. As the hidden valley coupling αv increases, the qv radiates more and
more into the hidden sector, and the mean value of the distribution shifts from
Mqv towards MDv

. At the same time more and more energy is subtracted from
the visible recoiling particle, in this case the d and its system of emitted gluons.

III
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The effect is more obvious when the mass difference MDv
− Mqv is large,

since more phase space is available for the radiation.

The size of the deviations induced by these two combined mechanisms is
very much dependent on the collider, as we already stressed above. In the
next two sections we will discuss the various cases separately.

III.5 Effects of SU(3)c radiation at e+e− colliders

We begin by studying the e+e− → γ∗/Z → ĒvEv, scenario, which allows for
many simplifications compared to the quark case, and therefore offers a con-
venient warmup. For the ILC with

√
s = 800 GeV and an assumed integrated

luminosity of L = 200 fb−1 per year an MEv
= 300 GeV translates into about

80000 ĒvEv pairs.

III.5.1 Collisions in the center-of-mass frame

To illustrate the principles, as a very first step we will neglect bremsstrahlung
and beamstrahlung. We then only need to consider two types of interactions,
electromagnetic and valley SU(3)v radiation in the final state, with coupling
constants α and αv. No fragmentation or hadronization need to be taken into
account.

Since the center of mass (CM) of the collision is at rest, there is a clean
relationship between the mass of the hidden valley qv, Mqv , and that of the
communicator MEv

. In the absence of radiation (hidden or standard), this can
be inferred from the distribution of the energy of the emitted electrons, in
particular from the upper endpoint of this distribution, describing the electron
maximum energy. This is obtained when the electron is emitted in the same
direction as the Ev is moving in, with the qv in the opposite direction. One
may use this maximization condition to derive the relationship between Mqv

and MEv
.

In the rest frame of the Ev, neglecting the electron mass,

PEv
= (MEv

, 0, 0, 0) ,

Pqv =

(

M2
Ev

+ M2
qv

2MEv

, 0, 0,−
M2

Ev
− M2

qv

2M2
Ev

)

,

Pe = (
M2

Ev
− M2

qv

2MEv

, 0, 0,
M2

Ev
− M2

qv

2MEv

) . (III.2)

Assuming the boost to the CM rest frame is at an angle θ with respect to the e



III.5 Effects of SU(3)c radiation at e+e− colliders 115

direction in the Ev rest frame, the electron energy will be given by

E′
e = γ(Ee + β|pe| cos θ) =

√
s

4

(

1 −
M2

qv

M2
Ev

)

1 +

√

1 −
4M2

Ev

s
cos θ



 , (III.3)

where cos θ = ±1 gives the upper and lower edge of the energy spectrum.
If the decay is assumed isotropic, dP/d cos θ = constant, the electron energy
spectrum is flat between the limits.

So if one can measure the maximum and minimum energy E′
e, one may

solve for MEv
and Mqv . Fig. III.5 shows the energy distribution Ee of the elec-

trons produced with and without hidden radiation. In the latter case the spec-
trum is shifted to lower values, as the hidden sector takes a bigger fraction of
the available energy, by radiation off both the Ev and the qv. The endpoints
remain the same, as there is always a fraction of events where radiation is
negligible. As we have assumed a modest width of 1 GeV for the Ev there
is a tiny tail beyond the expected edge. (We could cope with a wide range
of widths, but have picked values in the GeV range, so that the possibility of
a Breit-Wigner-shaped mass broadening is not overlooked, while still main-
taining a credible simulation in terms of resonance diagrams only.) The key
point to observe, however, is how the upper “shoulder” is softened by the
hidden radiation. Thereby a precision measurement of this region would of-
fer a direct check on the amount of hidden radiation. At the lower end, QED
cascades such as e− → e−γ → e−e+e− contribute to the spectrum, but are eas-
ily eliminated if only the highest-energy lepton is considered, Fig. III.6, or at
least only the highest two. We should clarify that the electron energy studied
in this section includes photons emitted near the electron direction, since we
here include a Durham “jet” algorithm that clusters photons within a 3 GeV
pT sin θ/2 distance of the electron.

Whether and how well one would actually be able to observe these end-
points will be very model and detector dependant. Regardless of the back-
ground or detector sensitivity, we expect that the endpoints of the distribu-
tion will have low statistics, given that they correspond to extreme kinemat-
ical configurations. Most likely, one will need to rely on data points in the
shoulder region to fit the curve and extrapolate the endpoint E′

e,max. These
shoulder data points would be the ones most affected by the radiation, so the
mass MEv

and Mqv inferred from them would be significantly different when
hidden radiation is included. On the one hand, the curve corresponding to
having valley radiation is always softer than the one without, so some mean of
the threshold region will give too low an endpoint. On the other hand, if one
only tries e.g. a linear fit, the shape of the fall-off in the threshold region would
suggest too high an endpoint. A readiness to include a parametric shape for
the endpoint region, that takes into account a tuneable radiation contribution,
will help ensure a better extraction of the relevant mass parameters.

III
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Figure III.5: the energy distribution of
the visible electrons. Looking at the
upper shoulder of the distribution, the
upper (black) and lower (red) curves
give the prediction for Ev → e−qv

when hidden valley radiation is not
or is take into account; in both cases
electromagnetic radiation is included.
Center of mass energy

√
s = 800 GeV,

MEv
= 300 GeV, Mqv = 50 GeV and

αv = 0.05. Number of events per 6 GeV
bins, luminosity L = 200 fb−1. The er-
ror is purely statistical.

Figure III.6: The energy distribution
of the most energetic electron in each
event, under the same conditions.

Notice that the curve corresponding to having valley radiation always lies
below the one without, implying that the value of E′

e,max with the radiation
would always be higher than the one without. This is a reflection of the
two mechanisms we mentioned in the previous section: first, the the valley
gluons gv subtract energy from the Ev, ultimately subtracting it from the es,
and second, when they are emitted by the qv, they change its effective mass,
Meff

qv
> Mqv , as one may see in Fig. III.4, again subtracting energy from the

decay e.
Would it be possible to describe the curves with hidden radiation using a

model without it, but with different mass parameters MEv
and Mqv? Fig. III.7

shows the effects of changing the invisible particle mass Mqv in model with
and without radiation. The ”fingerprint” of the v-radiation is clear: a soften-
ing in the shoulder of the distribution which leaves the endpoints fixed. A
simple change in the mass parameters of the model without hidden radia-
tion (in this case Mqv) changes the endpoints and leaves the sharp drop of the
shoulder unchanged.

Notice how so long as the mass difference MEv
− Mqv > 40 GeV one may

always distinguish between any two curves with and without radiation. This
of course αv dependent.

In Fig. III.8 instead one can see the αv dependence of the energy distribu-



III.5 Effects of SU(3)c radiation at e+e− colliders 117

Figure III.7: We compare the energy distributions of the most energetic electron emitted
in each event, in the case

√
s = 800 GeV. The communicator mass is fixed at MEv

= 200
GeV, while Mqv is allowed to vary between 20 and 190 GeV. The valley gauge coupling
is fixed at αv = 0.1 in order to isolate the mass dependence. Each endpoint corresponds
to two curves, the lower one being the one with and the top one the one without hidden
valley radiation.

Figure III.8: αv dependence of the energy of the visible electrons. The (black) squared-
off curve corresponds to the model with no valley radiation, the uppermost if one looks
at the shoulder. Below it are the curves corresponding to valley coupling constant
αv = 0.05 and αv = 0.1. Number of electrons per 6 GeV bin,

√
s = 800 GeV, MEv

= 300
GeV and Mqv = 50 GeV.

tion for the visible electrons in each event. Notice how even for a coupling
as low as αv = 0.05 the effects of the v-radiation on the shoulder region are
already sizeable.

There are some parameter regions (e.g. when the Ev-to-qv mass splitting is
small) where the shape of the distribution of the hardest leptons is no longer
conclusive in distinguishing between a model with and one without valley
radiation. In this case one may consider other observables which have an
“orthogonal” dependence on the valley parameters. We studied η, linearized
sphericity S and the number of emitted leptons, for example. There is no
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unique strategy in this case, one must perform a case by case study of the
different observables in the different parameter regions to determine which
one displays the largest separation between the model with and the model
without radiation. As a general rule, we found that three observables were
normally sufficient to distinguish the two.

III.5.2 Collisions not in the center-of-mass frame: MT2

We now consider the effect of initial-state radiation (ISR). This causes unob-
servable radiation, mainly along the beamline, but also some transverse kicks.
Beamstrahlung is highly machine-dependent and thus not included, but is
purely longitudinal. The methods we will introduce to handle bremsstrahlung
also automatically handle beamstrahlung with little or no degradation of per-
formance, so from now on we will not address the latter specifically.

For our theoretical studies, in order to avoid the clustering of ISR γ radia-
tion with the leptons coming from the hard interaction, we apply a cut on the
η > 5. The symmetry of the system now being cylindrical, we also changed
the clustering algorithm to the cylindrical fastjet [16].

The major consequence of ISR is that the collision now no longer happens
in the CM rest frame, with the information connected to the pz, the momen-
tum along the beampipe, no longer available. In this case it is convenient to
introduce a new variable called Cambridge MT2, see [10].

The MT2 variable was invented precisely to treat events in which the new
particles are pair-produced and then each decay into one particle that is di-
rectly observable and another particle whose existence may only be inferred
from from missing transverse momenta.

This observable is somewhat inspired by the transverse mass mT used at
hadron colliders to measure the mass of the W boson in the decay W → eν.
The neutrino escapes detection, its only trace in the detector being missing
momentum. In this case one can construct the variable

m2
T = 2(Ee

T 6EN
T − pe

T· 6pN
T ). (III.4)

Here ET is defined as ET =
√

m2 + p2
T, although in this particular case the elec-

tron and neutrino masses can be neglected, of course. The m2
T variable has the

property that
m2

T ≤ m2
W (III.5)

If there is enough statistics to ensure that the kinematic configuration corre-
sponding to the maximum is hit, this gives a measurement of (a lower bound
on) the W mass. Analogously, one may build a variable called MT2, with the
property that its upper bound describes the mass of the communicators, i.e.
the particles that were pair-produced.
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Figure III.9: The MT2 diagram for
the shortest, simplest decay chain
. Two communicator particles are
pair-produced and each decay into
a visible (a or b) and an invisible
(N1 and N2) particle. Upstream
transverse momentum (before the
decay) is also possible, but it must
be known. Longitudinal momen-
tum information is not available.

Figure III.10: An example of the MT2
method applied to the communicator mass
MEv

. Histogram of the MT2 values ob-
tained for a communicator mass MEv

= 200
GeV and Mqv and an invisible particle mass
Mqv = 100 GeV. The small tail in the dis-
tribution is due to the Γ = 1 GeV spread
in the mass distribution (more about his in
the following).

Now consider the process described in Fig. III.9. Two particles Y are pair-
produced, then each of them decays into a visible particle (a or b in the figure)
and one that escapes detection, called N1,2. One cannot use the transverse
momentum in this case since there are two particles escaping detection, both
contributing to the missing transverse momentum 6pT. The observable MT2 is
defined as

MT2 ≡ min
6pT1+ 6pT2= 6pT

[

max
{

m2
T(pTa, 6pT1), m2

T(pTb, 6pT2)
}]

. (III.6)

where 6pT1,T2 are all the possible 2-momenta taken away by the Ns, such that
their sum gives the observed missing momenta, 6pT1+ 6pT2 = 6pT.

MT2 coincides with the mass of the communicator Y, i.e. MT2 has a maxi-
mum, when for both communicator decays the visible and the invisible parti-
cles are produced at the same rapidity and

(
pa

Ea
− p1

E1

)

∝

(
pb

Eb
− p2

E2

)

. (III.7)

For the studies in this article we used a particularly simple version of the
MT2 algorithm [17], the source code of which can be downloaded from
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http://daneel.phyics.uc.davis.edu/ Cheng:2008hk/mt2-1.01a/test.
A more sophisticated algorithm is described in [18]. The simpler method is
based on the use of ”kinematic constraints” [17, 19–21]

p2
1 = p2

2 = µ2
N

(p1 + pa)
2 = (p2 + pb)

2 = µ2
Y

px
1 + px

2 = 6px

p
y
1 + p

y
2 = 6py (III.8)

In the case of two invisible and at least two visible particles as in Fig. III.9
the two methods actually coincide [17].

The inputs of the MT2 method are mN , ma, mb, pa
T, pb

T and 6 pT. Notice
that ma and mb may change quite substantially from event to event, since they
each correspond to the invariant masses of the clustered visible particles (in
this case the lepton and the photons) of each branch. The output of the MT2
method is one single MT2 value per event. Fig. III.10 illustrates a typical use
of the MT2 variable. If one histograms the MT2 values over a large number of
events, the upper edge of this distribution gives a lower limit on the commu-
nicator mass MY.

Whether the event rate in the upper-edge kinematic region defined in
eq. (III.7) is large enough to be able to extract the endpoint MT2max = MY,
for a given luminosity, depends of course on the interactions. Even more than
for the energy variable in the previous section, it is not unlikely that MT2max

might have to be extrapolated from points in the shoulder region.
There are many other methods to determine mass relations between the the

new particles, [21, 22], just to cite some. Some of these are very closely related
to MT2, such as [23]. Some of these require cascade decay chains, or make
assumptions about the new particles involved in the decay chain being on
shell, or require high luminosity. Where this information is actually available,
one should of course make use of it, [24, 25].

The assumptions in this study, though, are that each of the identical decay
chains consists of a single two-body decay and that the integrated luminos-
ity, at least for the LHC at 7 TeV study, might be rather low (1 fb−1). These
effectively preclude the use of many of the above methods.

In Fig. III.11 one may see the effect of the valley radiation on the MT2
distribution for different αv values and communicator mass parameters. The
interesting region is again represented by the ”shoulder” of the distribution.
Notice how the amount of invisible radiation, and thus the effect on MT2max,
increases with MEv

− Mqv , analogously to what happens in the energy distri-
butions. The size of these effects may be compared with the effects coming
from ISR, in Fig. III.12.

The MT2 distribution might present a tail, due to the Breit-Wigner spread
Γ that we allow for, see Fig. III.13. As one may see, all the MT2 data points
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Figure III.11: The effect of valley radiation on the variable MT2 for different αv =
0.05, 0.1, 0.2 values (close-up on the shoulder region) at CLIC. The distributions were
obtained assuming a luminosity L = 1 fb−1,

√
s = 1 TeV and Mqv = 50 GeV. Left: the

effect for a hypothetical MEv
= 200 GeV. Right: the effect of valley radiation on MT2

for a hypothetical MEv
= 300 GeV.

Figure III.12: The effects of initial-state radiation on the MT2 distribution and on the
value of the MEv

mass one infers. Number of events per 4 GeV bin, for an e+e− collider
with

√
s = 1 TeV, L = 1 fb−1, MEv

= 300 GeV, ΓEv
= 2 GeV, Mqv = 50 GeV. All other

effects have been switched off.

which lie above MT2max = MEv
= 300 GeV correspond to Evs which actually

have a larger mass than the nominal MEv
.

As we already stated above, mN , the mass of the invisible particle, is an
input parameter. MT2max only gives one single relation between MY and mN .
Depending upon the decay chain topology and the presence or not of up-
stream transverse momentum (UTM, in the following, may come from ISR or
from previous decays), there are different strategies to determine both masses
simultaneously: the MT2 “kink” method [23], the invariant mass endpoint
[26–29] or the constrained kinematic method [24], the polynomial intersec-
tion method [25], and pT reconstruction [30–32], just to cite some possibilities.
Most methods, however [24, 26–29], [25], require longer decay chains (at least
two two-body decays) or a special topology, such as 4 on-shell intermediate
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Figure III.13: Left: the (right side of the) Breit-Wigner mass distribution of the com-
municator Ev with an M0 = MEv

= 300 GeV and a width ΓEv
= 3 GeV. Right: MT2

distribution for the same points. The upper (red) points correspond to considering
only Evs having masses within the |mEv

− MEv
| < ΓEv

GeV interval. The lower points
(green) describe the MT2 points corresponding to both Evs having a mass greater than
MEv

+ ΓEv
. All other effects have been switched off. Number of events per 1 GeV bin,√

s = 800 GeV, Mqv = 50 GeV, integrated luminosity L = 200 fb−1. The error is purely
statistical.

resonances [24] or 5 or more on-shell intermediate resonances [25].
If each decay chain consists of a single two-body decay, where the visible

one may or may not be a composite of visible particles, as described in Fig.
III.9, one may use the MT2 ”kink method” [23] to fix the value of mN, i.e.
exploit the fact that MT2max as a function of the invisible particle trial mass µN

has a ”kink” for µN = mN. The authors of [33] point out that in order to have
a substantial change in the gradient dMT2max

dµN
|νN=mN , there must be substantial

event-by-event changes, though. This can be triggered by substantial O(MY)

differences in the νN , caused by the visible system being a collection of two or
more particles, or by a large UTM. Otherwise the kinematics is so constrained
that the gradients for µN < mN and µN > mN have to be the same, and no kink
is possible.

If a sizable UTM pT is present, one may use the MT2⊥ method [34]. This
method uses the fact that N(µN), the number of times the MT2(µN , pT) is larger
than MT2(µN , 0), has a minimum for µN = mN . The advantage of using this
method rather that MT2kink is that MT2(µN , 0) may be calculated analytically
and measured using the whole data sample, regardless the pT. This may be
shown by using the fact that MT2(µN , 0) corresponds to MT2max ⊥ (µN),

MT2max
T⊥ = min

6P⊥=p1T⊥+p2T⊥

[

max
{

M2
1T⊥, M2

2T⊥
}]

, (III.9)

the one-dimensional analogue of MT2, where

M2
iT‖ = m2

i + µ2
N + 2(EiT‖EN

iT‖ − piT‖ · pN
iT‖)

M2
iT⊥ = m2

i + µ2
N + 2(EiT⊥EN

iT⊥ − piT⊥ · pN
iT⊥),
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and where ⊥ and ‖ refer to the projections of the pT along the direction of the
UTM.

We will not discuss further the different methods to extract the two new
particle masses, but refer the interested reader to the proceedings from the
TeV 2009 [9] conference and to the review [33]. We however wish to make
a few remarks about the impact that valley radiation might have on these
observables. Consider the MT2⊥ case, for example.

In the presence of valley radiation one needs to consider two sources of de-
viations. Firstly, the tails coming from the interleaved radiation mechanism,
see the MT2 distributions in Fig. III.11. Secondly, as discussed in the previ-
ous section, in the presence of valley radiation, we expect the mean value of
the invisible particle qv invariant mass to shift from its Breit-Wigner central
value 〈Meff

qv
〉 = µN towards the communicator mass MEv

(or MDv
) value. We

will show in subsection III.6.2 that the MT2 distribution one obtains may be
significantly affected, see Fig. III.4 for th LHC case. The MT2max

T⊥ (µN) should
be similarly affected. The number of events having M̃Y(µN , PT) > M̃Y(µN , 0)

would then change accordingly, as would the minimum point µN = MN.
We will return on the issue of the the trial mass and the radiation in sub-

section III.6.2. In the following, unless otherwise specified, the analysis will
always assume µN = mN .

III.6 Effects of SU(3)v radiation at LHC

At LHC the Dv communicators are (mostly) pair-produced by gg or qq̄ fusion
and decay flavour diagonally into a SM d quark and a valley qv. For our study
we assume the Dvs to be spin 1/2 particles, and the qvs to be scalars. As earlier
this choice affects the production cross section, but now both s- and t-channel
exchange are involved, which complicates the pattern. Each Dv radiates both
SM gs and valley gvs. These in turn may radiate further gs and gvs, respec-
tively. Once the Dv has decayed, the q radiates gluons, while the qv radiates
gvs. The amount of hidden radiation emitted depends upon the valley cou-
pling constant αv and on the mass ratio Mqv /MDv

, see Fig. III.4. At the LHC
the communicator mass reach will be larger than for the ILC, so typically there
will be more phase space available for the radiation. Both the valley gluons
radiated by the Dv and those radiated by the qv have an impact on the visible
particle distributions. The lighter the particle, the lower the cut-off scale for
the radiation however, so it will be the qv that radiates the most, as before.

When compared with the CLIC case, the LHC scenario presents several
complications. Firstly one needs to convolute the production cross section
with parton distribution functions. Thus the hard interaction — the produc-
tion of the Dv pair — no longer happens in or close to the center-of-mass rest
frame. In this case it is crucial to consider longitudinally boost invariant ob-
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servables such as MT2. Secondly, both initial- and final-state QCD radiation
are more intense than the QED one is for the ILC case, resulting in a consider-
ably larger upstream transverse momentum and an increased misassignment
of radiation. Thirdly, there is an underlying-event activity that gives rise both
to a generic low-p⊥ background and to occasional further hard partons that
may be confused with the ones related to the valley process. Fourthly, the par-
tons hadronize into more-or-less well-defined hadronic jets, the reconstruction
of which introduces further smearing of the relevant kinematic distributions.
And finally, the set of possible background processes is much more varied and
challenging to suppress. In our study we will take into account the first four
points, but leave the last one to the experimental community, where already
a large number of background-suppression techniques have been developed
for various scenarios.

III.6.1 LHC with 7 TeV

The LHC will initially be running at of
√

s = 7 TeV and it is expected to de-
liver 1 fb−1 of data in 2010–2011. Under these conditions we need to consider
much lower masses MDv

for the communicator than for the ultimate energy
and luminosity case, in order to have large enough production cross sections,
see Table III.2.

Based on the above discussions, we choose to study the MT2 distribution,
and specifically its dependence on the v-radiation and on the αv value. In
Fig. III.14 we have plotted the αv dependence for three different mass values
MDv

= 300, 400 and 500 GeV. The larger the mass difference MDv
− Mqv the more

phase space is available for the radiation. The smaller the Mqv , the lower the
cut-off on the momenta, so the larger the amount of soft radiation. Given the
low statistics, the (purely statistical) error bars on the endpoints are rather
large, and even in the shoulder of the distribution it is hard to distinguish
the curve with an αv = 0.1 from the curve with no radiation for the 300 GeV
mass. In the intermediate case MDv

= 400 GeV, we need to have a rather strong
αv = 0.2 coupling before the two curves can be separated.

In Fig. III.15 we show the MT2 dependence on the invisible qv mass Mqv ,
where the trial mass µqv is assumed to coincide with Mqv . Whether we look
at the curves with a valley radiation (valley coupling αv = 0.1, left plot in Fig.
III.15) or at the curves without hidden radiation (right plot in Fig. III.15), the
data points corresponding to Mqv = 10, 50 GeV are hardly distinguishable. The
independence of the MT2 on the Mqv value appears to be a characteristic which
the radiation leaves unchanged.

One could argue that the fact that MT2 is hardly dependent on the Mqv is
due to the mass ratio MDv

/Mqv being fairly large compared to the difference
between the two Mqv values we considered. Would this argument still hold
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Figure III.14: The dependence of the MT2 distribution on the αv value for MDv
=

300, 400, 500 GeV and Mqv = 10 GeV. The black curve corresponds to having no valley
radiation. The red, green and blue curve correspond to αv = 0.1, 0.2, 0.4 respectively.
For the first 2 years LHC is assumed to run

√
s = 7 TeV and to yield an integrated

luminosity of 1 fb−1. The y axis corresponds to the number of events per 10 GeV mass
bin, for this integrated luminosity of 1 fb−1.

true when the v-radiation is larger?

For larger values of the αv one should consider the fact that the MT2 input
parameter Mqv corresponds to the mass of the qv as seen by the visible particles.
The visible particle momenta, i.e. the momenta of the d and the g radiated by
it, which enter MT2, actually correspond to the invariant mass Meff

qv
rather than

the nominal mass value Mqv .

In Fig. III.4 we show this invariant mass distribution and how this changes
as a function of the coupling constant αv. As αv grows qv emits more and more

III
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Figure III.15: Left: the Mqv dependence of the MT2 when the valley radiation has αv =
0.1. The blue curve corresponds to Mqv = 10 GeV and the red one to Mqv = 50 GeV.
Right: The same Mqv dependence of the MT2 in the case of no valley radiation. MDv

=
400 GeV,

√
s = 7 TeV and L = 1 fb−1.

valley gluons gv. The invariant mass of the qv + gvs system then grows, i.e
the mean effective mass of the qv as seen from the SM q shifts from the bare
Mqv = 10 GeV towards Mmax

qv
= MDv

. The energy which is left for the d quark

then gets smaller as the 〈Meff
qv
〉 → MDv

as shown by

Ed =
M2

Dv
− M2

qv

2MDv

, (III.10)

where for simplicity we have put the md = 0.

Figure III.16: Left: model a) decay Dv → dqv with no v-radiation, Mqv has a fixed
value; right: model b) decay Dv → dqv with v-radiation, the system qv + gvs has an
invariant mass distribution.

Were this distribution a very narrow peak around 〈Ma,eff
qv

〉, there would be

no difference between the two cases in Fig. III.16 so long as 〈Ma,eff
qv

〉 = Mb
qv

,

i.e. between a fixed Mb
qv

value and an invariant mass distribution. One could

speculate that so long as the mean value of the invariant mass 〈Meff
qv
〉 ≪ MDv
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the MT2 would basically remain unaffected.
Imagine though having a v-radiation large enough to shift the 〈Meff

qv
〉 sub-

stantially, Meff
qv

→ MDv
, e.g. α = 0.4. One would naı̈vely think that replacing

the Mqv with 〈Meff
qv
〉 would give a better description of the case with radiation.

However Fig. III.4 shows that for αv > 0.1 the invariant mass distribution
would also have a large spread around this central value. We will show in the
next section that this spread causes further complications. It is precisely the
spread in the distribution which constitutes the difference between case a) and
case b), and it is this spread which is ultimately responsible for the different
behaviour of the MT2 in the two cases.

III.6.2 LHC with 14 TeV

If we now assume that LHC will collect 100 fb−1 of data at center of mass
energy

√
s =14 TeV, then one may consider larger communicator masses,

O(1TeV), and still deal with a sufficient number of events, see Table III.2. If
the qv remains light, the mass ratio MDv

/Mqv can be considerable and conse-
quently the phase space available for radiation can be large. We expect the
effects of the radiation to be significant.

In Fig. III.17 we show the dependence of the MT2 distribution on the hid-
den valley coupling constant αv, assuming we know the mass of the invisible
particle so µqv = Mqv . In this case we are describing the strong coupling regime
αv = 0.1, 0.4, 0.8.

Figure III.17: MT2 distribution function for the communicator masses MDv
= 1 TeV

when there is valley radiation αv = 0.1 (red), 0.4 (green), 0.8 (blue) and when there is
not (black curve).

√
s = 14 TeV, Mqv = 10 GeV. Number of events per 15 GeV bin.

Notice how in this case one can actually separate (at least before any back-
ground or detector simulation is taken into account) the curve with αv = 0.1

and the one without the radiation.
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In the above study the assumption is that events are generated with a bare
mass Mqv and analyzed with the same (or almost the same) trial mass µqv =

Mqv . From the discussion in subsection III.5.2, we could conclude that it is not
very likely that we would know the mass of the qv with high precision when
valley radiation is present.

In a hidden valley scenario the mass of the qv is assumed to be much lighter
than the Dv mass, so we do not expect the MT2 to be very sensitive to qv mass
differences of the order ∆Mqv ≪ MDv

. Indeed, the authors of [23] and [33]
show that the MT2max mass dependence on the trial mass µqv is rather weak so
long as µqv < Mqv , whereas MT2max grows much more rapidly when µqv > Mqv .
The µqv < Mqv case is exactly what one observes in Fig. ??.

Let us however make the conservative assumption that we only know the
order of magnitude of the Mqv . Imagine trying to distinguish between the
two models we described in Fig. III.16, a) the model with no radiation and

b) the model with the radiation, when 〈Mb,eff
qv

〉 = Mb
qv

. To be more concrete,
assume a) has a fixed value mass Ma

qv
= 395 GeV and b) has an invisible particle

mass Mb
qv

= 10 GeV and αv = 0.28. We choose the value αv = 0.28 so that

〈Mb,eff
qv

〉 = Ma
qv

.

In Fig. ??, left side, we see the MT2 distribution for model a) for the case
MDv

= 1 TeV. As one may observe, this is a function of the trial mass µqv , the
best profile being the one with µqv = Ma

qv
. For µqv ≪ Ma

qv
, even for substantial

changes in µqv the MT2max does not change much. This essentially confirms
what was reported by [23, 33].

On the right side of Fig. ?? one may see the same distributions for the
model with radiation. Contrary to what one would expect from the naı̈ve

arguments given in the previous subsection, we see that choosing µqv ∼ 〈Mb,eff
qv

〉
does not give the best description of the system. The MT2 curve overshoots
the MDv

value by a good 10%. As anticipated in the previous subsection, this is
due to the invariant mass distribution spread. Looking at Fig. III.19, one may
see that the invariant mass distribution has a wide spread, so event by event

there could be large variations in the Mb,eff
qv

. If one chooses a µqv ≪ 〈Mb,eff
qv

〉 to
analyze the set of events, for example the µqv = 1 GeV chosen in Figure ??, most

of the events will have a ”real” qv mass, the invariant mass Mb,eff
qv

, larger than

the trial mass µqv . Since MT2max(µqv) < MT2max(Mb,eff
qv

) when µqv < 〈Mb,eff
qv

〉,
these points do not contribute to increase the MT2max value much, and the
distribution will resemble rather closely the one obtains for Mb

qv
= 10 GeV,

apart from the softening in the shoulder. This is precisely what happens in the
µqv = 1, 100 GeV curves in Fig. ??.

When one takes a µqv ∼ 〈Mb,eff
qv

〉 instead, e.g. µqv = 350 GeV (which ac-
cording to the naı̈ve arguments of the last subsection should have been the
best of the three µqv choices), more and more events have a ”real” invisible
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Figure III.18: Left: model a) comparison between different µqv = 1, 100, 350 GeV for
Mqv = 395 GeV. Right: model b) comparison between different µqv for Mqv = 10 GeV,

αv = 0.28, 〈Meff
qv
〉 = 395 GeV. In both models MDv

= 1 TeV,
√

s = 14 TeV and the

luminosity is assumed to be L = 100 fb−1, 20 GeV bins.

particle mass Mb,eff
qv

< µqv . In Fig. III.19 these are the points to the left of
the µqv = 350 GeV line. These events will, if there is enough statistics, give

MT2max(µqv) >MT2max(Mb,eff
qv

), the real MDv
value. This is what happens to the

curve for µqv = 350 GeV.

To prove this point, we separately plot the MT2 distributions for the events

with Mb,eff
qv

< µqv and the ones with Mb,eff
qv

> µqv . As Fig. III.20 shows, for the
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Figure III.19: The invariant mass distri-
bution for the qv and the trial masses
we considered, µqv = 1, 100, 350 GeV.

Figure III.20: MT2 distribution when

both qv invariant masses Mb,eff
qv

< µqv

(upper) and when both are Mb,eff
qv

>

µqv (bottom), when Mb
qv

= 10 GeV,
αv = 0.28 and µqv = 350 GeV.

former set MT2max ≥ MDv
.

Figure III.21: Comparison between model a) Mqv = 395 GeV and b) Mb
qv

= 10 GeV,

αv = 0.28, 〈Mb,eff
qv

〉 = 395 GeV for µqv = 350 GeV. In both models MDv
= 1 TeV,√

s = 14 TeV and the luminosity is assumed to be L = 100 fb−1, 20 GeV bins. Notice
that in this case the curve with the radiation is the lower one.

This said, we may return to the issue of distinguishing between the two
models a) and b). As one may see in Figure III.21, the two curves correspond-
ing to the two models have very different shapes, the one with no radiation
being the sharper one. Notice however that now the curve with radiation lies
above the one without. This is not in contradiction with what we have shown
in the previous sections.

Summarizing, in the not-so-strong coupling regime αv ∼ 0.1, when the in-
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variant mass distribution is strongly peaked in Mqv , one may3 distinguish two
models with the same values for MDv

and Mqv , one with v-radiation and one
without. The curve corresponding to the no hidden radiation model will have
a steeper drop in the shoulder region.

For larger couplings, αv > 0.2, one should note that two MT2 distributions
with the same endpoints may correspond to different MDv

values in the two
cases, depending on whether the majority of the events have an invariant mass
which is greater or smaller than the trial mass. A very conservative approach
to solving this problem could simply be to assume µqv = 0 GeV or in any case
µqv ≪ 〈Meff

qv
〉.

III.7 Conclusions

We have here addressed the issue of detecting and identifying hidden radia-
tion through its influence on SM parton showers, and in general through its
impact on visible particle kinematic distributions. We have done so in the
context of Hidden Valley models, which we find are well suited to display the
effects, but the specific models studied should be viewed only as representa-
tives of a broad range of possible models with new symmetries. Thus, while
we focus on the phenomenology of a fairly generic toy model, we also provide
tools in PYTHIA 8 to simulate the effects of hidden radiation in various other
hidden valley scenarios, e.g. different gauge groups, particle contents, and
gauge and decay couplings. The novel feature in these tools is the interleaved
SM and valley parton shower, i.e. the competition between visible and hidden
radiation.

Our preliminary study of the phenomenology of the toy model at e+e− and
at LHC colliders shows the following.

At an 800 GeV ILC collider we could expect to observe hidden radiation
for valley gauge couplings as small as αv ≥ 0.05, so long as the mass of the
communicator is smaller than 300 GeV and Mqv ≪ MEv

.
For the LHC phenomenology we need to distinguish between the first two

year running with
√

s = 7 TeV and L = 1 fb−1 and later years with full design
energy

√
s = 14 TeV and L = 100 fb−1. Whether one could observe hidden radi-

ation or not depends strongly on the communicator mass, which determines
the amount of statistics. The main signal of the hidden radiation — at least in
our studies — is the softening of the shoulder of the MT2 distribution. In the
lower-energy case, for communicator masses around 500 GeV or higher, the
statistics is so poor that one cannot expect to distinguish even a very strong
coupling αv = 0.4. For two models with and without hidden radiation, with
equal MDv

masses in the [300, 400] GeV range and equal Mqv ≤ 50 GeV, one

3At least before background and detector analysis.
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would need a valley coupling of the order αv ≥ 0.2 or larger to induce large
enough effects on the MT2 distribution to distinguish between the two. In the
higher-energy case, for order TeV communicator masses and Mqv smaller than
100 GeV, the MT2 distributions show sizable changes already for αv = 0.1.

We have also studied how the MT2 distribution depends upon the Mqv ,
the invariant mass Meff

qv
, and the trial mass µv. In the case of a Hidden Valley

scenario, Mqv is always assumed to be Mqv ≪ MDv
. Taking a trial mass µqv ≪

MDv
as an input parameter for the MT2 is thus a natural choice. When the

qv mass is larger though, e.g. Mqv ∼ MDv
, the issue of the trial mass µqv is

no longer so trivial. The Meff
qv

can be a broad distribution when radiation is

present. Especially in the strong interaction case, αv ≥ 0.2, 〈Meff〉 is strongly
shifted towards MDv

. This means that when one chooses a trial mass µqv ∼
〈Meff〉, roughly half of the events will have µqv > Meff, causing the MT2max to
overshoot the real value. In this case the new masses thus have to be extracted
from a combined fit, in which both masses and couplings enter as unknowns.

Further studies of the background and detector simulations should follow,
both for the kind of scenarios we have explored here and for other possi-
ble ones. This preliminary study, however, shows unequivocably that par-
ton showers are a key tool in determining the presence of new hidden gauge
groups and in the exploration of the hidden sector gauge group dynamics.
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New fundamental particles, charged under new gauge groups and only
weakly coupled to the standard sector, could exist at fairly low energy scales.
In this article we study a selection of such models, where the secluded group
either contains a softly broken U(1) or an unbroken SU(N). In the Abelian
case new γv gauge bosons can be radiated off and decay back into visible par-
ticles. In the non-Abelian case there will not only be a cascade in the hidden
sector, but also hadronization into new πv and ρv mesons that can decay back.
This framework is developed to be applicable both for e+e− and pp collisions,
but for these first studies we concentrate on the former process type. For
each Abelian and non-Abelian group we study three different scenarios for
the communication between the standard sector and the secluded one. We il-
lustrate how to distinguish the various characteristics of the models and espe-
cially study to what extent the underlying gauge structure can be determined
experimentally.
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IV.1 Introduction

There are basically two ways in which one can envision new physics beyond
the standard model that can be searched for at future colliders. One possibility
is to have theories with new heavy particles coupling to the standard model
with either the ordinary gauge couplings, as in supersymmetry, or with cou-
plings of a similar magnitude. This implies heavy particle masses, in order
to avoid collider constraints. The other possibility, which we want to explore
in this paper, is that new light particles are ultra-weakly coupled to the stan-
dard model particles, because they are not charged under the standard model
gauge groups. Instead they couple to the ordinary matter through some heavy
state which carries both SM charges and charges of a new unknown gauge
group, also carried by the light states.

There have been several suggestions for theories with this type of secluded
sectors (sometimes also called hidden valleys or dark sectors), proposing non-
conventional new physics with unexpected and unexplored signals could
show up at current colliders such as the Large Hadron Collider (LHC) or a
future linear electron-positron collider.

One example is the so-called hidden valley scenarios by Strassler and col-
laborators [1–7], where the SM gauge group is extended by a new unspecified
gauge group G. In the original paper [1] this group is a 6U(1)′× SU(N). The new
matter sector consists of v−particles (where v stands for “valley”), which are
charged under the new gauge group and neutral under the standard one. The
two sectors communicate via higher dimensional operators, induced either by
heavy particle loops or by a Z′ which can couple to both sectors.

An interesting feature of models with secluded sectors is that they nat-
urally give rise to dark matter candidates. Likewise, some of the recently
proposed dark matter models may present hidden sector features. Specific
dark matter models developed in the last few years such as [8–12] suggest
the existence of a GeV scale mass dark photon or scalar that is introduced
to enhance the dark matter annihilation cross section, in order to fit the data
from PAMELA [13,14] and originally ATIC [15], although the latter data have
later been superseded by more precise measurements from FERMI [16]. Here
we will mainly be interested in models with dark photons originating from a
softly broken 6U(1), which couple to standard model particles through so called
kinetic mixing with the ordinary photon [17] through heavy particle loops in
a similar way to the hidden valley scenarios.

The hidden valley-like theories and the dark matter models mentioned
above share two features: the enlarging of the standard model symmetries
to include a new gauge group G and the presence of new light particle sectors
that are solely charged under this new gauge group. If the new light particles
can decay into standard model particles, their existence could be inferred from
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Figure IV.1: The different mechanisms for production, hadronization and decay that
we consider as explained in the text.

their effect on standard model particle phenomenology. In [18] we studied the
effects of the new gauge group radiation, specifically the kinematic effects of
SU(3)′ radiation from fermions charged under both the SM and the new gauge
group on the kinematic distributions of visible particles. In this paper we ad-
dress the issue of discerning between different gauge structures. Specifically,
we want to outline the differences between signatures arising from a secluded
sector broken 6U(1)′ gauge group with a light γv and those arising from a con-
fining SU(N). In both cases we assume there is a mechanism for the secluded
particles to decay back into the SM.

In order to distinguish which features of a given model are linked to the
gauge group structure and which to the other details of the model, we con-
sider different production processes and different mechanisms for the decay
back into the SM. The various possibilities are summarized in Fig. IV.1. For the
production we consider three mechanisms. In the first case the portal to the
hidden sector is through kinetic mixing between the SM photon and a light
6U(1) gauge boson. In the second case we have production via a Z′. In the
kinetic mixing of γ-γv, the γv is assumed to have a mass around 1-10 GeV and
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the mixing ǫ is assumed to be ǫ ∼ 10−3, while in the Z′ case, the mass of the Z′

would be around 1-6 TeV [1]. The third case is where the production happens
via SM gauge bosons as in [18]. In this case the particles are assumed to have
both SM charges and secluded sector ones. To distinguish them we will call
them Fv in the following, to separate them from particles that are only charged
under the secluded gauge group, which we call qv. We will also assume that
the Fv particles will decay into a standard model particle f and a secluded
sector particle qv, i.e. Fv → f qv.

If the particles of the secluded sector are charged under a non-Abelian
SU(N) or a softly broken Abelian 6U(1) with a light γv, there will also be ad-
ditional radiation of gauge bosons. In the former case, the v-gluons will be
connected to the qvs (produced directly or via the Fvs) and form a confined
system which will then hadronize.

Depending on the nature of the secluded hadrons thus produced, they may
then decay back into standard model particles through kinetic mixing or a
heavy Z′. In both cases this decay can be very slow, so much so as to generate
displaced vertices and other exotic signatures as for example discussed in [2].
In the case of γv radiation instead, the gauge bosons may decay directly back
into the SM through kinetic mixing γv-γ, while the qvs will not be able to decay
back into the SM since they carry the secluded gauge charge.

Thus, in both the non-Abelian and Abelian cases, we can have models
where some of the particles produced will decay back into SM particles and
some of them will be invisible. The questions we want to address is thus
how the production of visible particles depends on the secluded gauge struc-
ture and whether it is possible to tell a non-Abelian and Abelian gauge group
apart also when other features of the models are very similar.

The paper is structured as follows. Section IV.2 gives a short overview of
the general model considerations that underlie our studies, with particular
emphasis on the production mechanisms that are relevant in various scenar-
ios, and some comments on the decay mechanisms that lead to signals in vis-
ible distributions. In section IV.3 we provide a more in-depth overview of the
new physics aspects that we have implemented in PYTHIA 8: the particle con-
tent, the parton showers, notably for the broken U(1) case, the hadronization
in the secluded sector, and the decay back to the visible one. In Section IV.4
we proceed to describe the phenomenology of the various scenarios, in the
context of an e+e− linear collider. While less interesting than a corresponding
LHC phenomenology, it allows us to better highlight the relevant features of
the model as such. In section IV.5 we further study distributions that could
offer a discrimination between an Abelian and a non-Abelian scenario for the
secluded sector. In Section IV.6 we summarize our findings, and give an out-
look. Finally in Appendix IV.6 we provide information how the simulation of
a wide range of scenarios can be set-up.
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IV.2 Overview of hidden sector scenarios

As already mentioned in the introduction there are many different types of
models that can display hidden sectors and the common feature is that they
communicate with the standard model through some heavy states. This com-
munication can occur in many different ways and we will distinguish three
different types in the following: via kinetic mixing, via a heavy Z′, and via
heavy fermions that carry SM charges.

The common feature of the models we consider is that the SM group
SU(3)C × SU(2)L × U(1)Y is augmented by a new gauge group G. For each
scenario we will consider two cases - one Abelian where G contains a softly
broken 6U(1) with a light gauge boson γv and one non-Abelian where G con-
tains an unbroken SU(N) factor mediated by a then massless gv.

The particle content consists of qv particles and/or Fv particles. With qv

particles we indicate fermions or scalars (with spin = 1/2, 0, 1) charged solely
under the new gauge group. With Fv we indicate particles (spin s = 0, 1/2, 1)
which may couple to both secluded sector and standard model sector. Though
in principle one could choose any spin assignment among the ones above, we
have chosen to analyze the case in which Fv and qv are fermions, except in the
case when the qvs are produced from a Fv decay when we assume them to be
scalars. In addition, in all the scenarios we consider both Fv and qv belong to
the fundamental representation of the group G. Finally, the G sector charges
are constrained by anomaly cancellation. For an example see [1].

IV.2.1 Kinetic mixing scenarios

As already alluded to, one way of producing the secluded sector particles
is through kinetic mixing. In the scenarios we wish to investigate, the SM
U(1) (effectively the photon) mixes kinetically with a new GeV mass γv and
produces a pair of secluded sector particles, see Fig. IV.1. This mechanism is
mostly relevant in the case when the secluded sector contains new fermions
which are charged only under the new gauge group G. In addition we will in
this scenario only consider those cases when the SM particles are not charged
under the new U(1). Communication between the SM and secluded sectors
then only comes from kinetic mixing between the standard model U(1) gauge
boson and the new gauge boson, as described by

Lkin = − 1

4
ǫ1

(

F
µν
1

)2
− 1

2
ǫF

µν
1 F2,µν −

1

4
ǫ2

(

F
µν
2

)2
. (IV.1)

In the case of two U(1) gauge symmetries (U(1)1 × U(1)2), the non-vanishing
mixing ǫ arises naturally as one integrates out loops of heavy fermions cou-
pling to both the associated gauge bosons [17] so long as there is a mass split-
ting among them. The relation between the size of the mixing and the mass

IV



142 Discerning Secluded Sector gauge structures

splitting is given by

ǫ =
e1e2

16π2
ln

(

M
(1)
12

M
(2)
12

)

, (IV.2)

where e1 and e2 are the gauge couplings of the fermions in the loop to the two

U(1) gauge bosons, A1 and the new A2 respectively, and M
(1)
12 and M

(2)
12 are their

masses. In general, the U(1)1 and the U(1)2 will not be orthogonal. One may
however chose the U(1)1 generator so that the fermions that are only charged
under U(1)1 do not have any charge shift, while those that couple to U(1)2

do [17].

For the case of non-Abelian groups, G1 × G2 × G3, a mixing can come from
the spontaneous breaking of the group down to H × U(1)1 × U(1)2. Also in
this case the U(1)1 and the U(1)2 will not be orthogonal, as long as the three
couplings associated to the unbroken symmetries are different.

The kinetic mixing mechanism has been used in model that want to de-
scribe various recent cosmic ray measurements in terms of dark matter mod-
els. The most important signal here is the positron excess observed by
PAMELA [14]. At the same time, any model wanting to explain this excess also
has to explain the absence of an anti-proton excess observed by PAMELA [13]
and finally the measurements of the total electron and positron flux observed
by the Fermi LAT collaboration [16]. The models are set up so that the dark
matter particles will annihilate into a dark photon or scalar which couples to
SM particles through kinetic mixing. The mass of the dark matter particle is
then determined by the scale at which the positron excess is observed, to be of
order 0.1–1 TeV.

In addition, the large positron excess observed also means that there must
be some enhancement mechanism of the dark matter annihilation cross sec-
tion. One way to do this is to invoke Sommerfeld enhancement1 by introduc-
ing a light dark photon or scalar. The mass of the dark photon (or scalar) in
these models is typically in the GeV range, which means that decays into p̄

and π0 are kinematically suppressed relative to the lepton decays and thus
also explain the non-observation of any anti-proton excess by PAMELA [13].

A recent example of models that fits all these data is given by [19], but there
are still large uncertainties due to cosmological assumptions such as the dark
matter distribution and propagation of cosmic particles.

The dark gauge group Gdark is largely unspecified in these types of models
except that it must contain a U(1) factor in order for the kinetic mixing with
the SM photon. This means that there could also be additional Abelian or non-
Abelian factors in Gdark. In the following we will consider the cases when Gdark

contains an additional U(1), which is spontaneously broken giving a massive

1Resummation of t-channel exchanges of a new light particle.
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Z′, or an additional SU(N) factor giving a confining force for the secluded
sector particles.

The phenomenology and constraints on these types of models at low en-
ergy e+e− colliders such as Belle, BaBar, DAΦNE, KLOE and CLEO have been
studied by [20–23].

IV.2.2 Z′ mediated scenarios

The second type of scenarios we want to consider are those that are similar
to the original hidden valley scenario [1] with a massive Z′ coupling to both
SM fermions and secluded sector ones. Thus, the processes we are interested
in are when SM fermions annihilate into the secluded sector Z′ which in turn
gives a pair of secluded particles, as depicted in Fig. IV.1.

In these types of models it is typically assumed that the Z′ acquires a mass
by spontaneous symmetry breaking of a U(1) symmetry by a 〈φ〉 whereas the
origin of the secluded sector 6U(1) is not discussed.

The secluded sector particles that the Z′ would decay to could be either
charged solely under the valley gauge group G or charged under G and (parts
of) the SM SU(3)C × SU(2)L × U(1)Y . In the latter case, the particles would on
the one hand have to be very massive (several hundreds of GeV) due to ex-
perimental constraints and on the other hand they would be more effectively
produced through their SM couplings. Thus we will not consider this possi-
bility more here. In contrast the particles charged solely under the secluded
gauge group could be light with a mass in the 1 − 50 GeV range, thanks to the
reduced coupling through the heavy Z′.

As a consequence of the heavy mass of the Z′, the s-channel pair production
cross section will be peaked at

√
ŝ ∼ mZ′ and be suppressed at an e+e− collider

unless
√

s ∼ MZ′. At a hadron collider the production of the Z′ would be
dominantly on-shell if the overall center of mass energy is large enough and
there is enough support from the parton density functions.

In the original hidden valley model the secluded sector group also contains
a confining SU(N). Thus the produced secluded sector particles would have
to hadronize into hadrons which are neutral under this SU(N). Another pos-
sibility is that there is instead an additional 6U(1) which would instead give
radiation of γvs.

Finally it should be noted that also in this case there is kinetic mixing be-
tween the Z and the Z′, which primarily is important for setting limits on the
mass and couplings of the Z′ from LEP as discussed in [1].
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IV.2.3 SM gauge boson mediated scenarios

The final type of scenario that we consider are ones where the ”communica-
tor” is charged under both the SM and new interactions. This scenario and
its implementation into PYTHIA 8 has been described in [18] so here we only
briefly recapitulate the main features.

In this model the new heavy communicator particle Fv would be pair pro-
duced with SM strength, which means that it would have to be quite heavy
in order to not have been already seen at colliders. Another consequence is
that the communicator would decay into a SM and pure hidden sector parti-
cle, dubbed qv, so that quantum numbers are conserved. In the simple case in
which neither qvs nor v-gauge bosons leak back into the SM, as in the scenario
in [18], this entails a missing energy signal.

Also in this case, the secluded sector group can be either Abelian or non-
Abelian. In both cases we will assume that the produced γvs or hadrons can
decay back to SM particles through kinetic mixing via loops of the Fv particles
or via a Z′.

IV.2.4 Decays back to the SM

First of all we mention again the case of secluded particles which are charged
both under the SM and secluded gauge groups, Fv, which we assume decay
according to Fv → f qv. All other particles produced by either of the mecha-
nisms described above may decay back to SM particles as long as they do not
carry any charge under the secluded gauge group. Essentially these decays
will be through kinetic mixing with SM gauge bosons or through a heavy Z′

as detailed below.
In the Abelian case, with a light secluded sector γv, the qvs will be stable,

but the γvs that are radiated in connection with the primary hard process will
decay back to SM particles, γv → f f̄ . The strength of the kinetic mixing ǫ,
together with the available phase space, determines the decay width Γγv→ f f̄ .

Since the γv is light, it will mainly mix with the standard model photon and
thus the branching ratios for different channels will depend on the electric
charge of the produced SM particles. In essence this means that the decays
will be similar to a off-shell photon, γ∗ with the virtuality given by mγv . We
also note that if the kinetic mixing is small, the life-time could be so large as to
give displaced vertices.

In the non-Abelian case the secluded sector hadrons may also decay back
into the SM via kinetic mixing of the γv with the SM photon or via a heavy Z′.
In this case the phenomenology will depend on the number of light flavours
Nflav in the secluded sector. In the following we will assume that Nflav ≥ 2 and
only consider the case when the fundamental particles are fermions as in [1]
although similar arguments can be made also in the case of scalar constituents.
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Thus, the bound states will be the secluded sector version of mesons, baryons
and possibly also glueballs. For the decays back to SM particles, it is the meson
states that are of primary interest and therefore we concentrate on them here.

With Nflav light flavours, there will be of the order N2
flav mesons with a given

spin out of which approximately Nflav are flavour neutral and can decay back
into the SM via kinetic mixing or a Z′. The SM decay products will depend on
the spin of the secluded meson. For a spin zero meson, helicity suppression
leads to dominance by the heaviest SM particle available whereas for a spin 1
meson it will depend on the couplings to the particle mediating the decay, i.e.
either to the photon in the case of kinetic mixing or to the Z′.

The phenomenology will thus depend on the relative production of spin-
0 and spin-1 mesons and their masses. If the confinement scale Λv in the
secluded sector is large compared to masses of the lightest secluded sector
fermions the situation will be similar to QCD. In other words there will be a
light spin-0 πv with mass much smaller than the spin-1 ρv. Thus all ρv will
decay to pairs of πvs and the SM particles produced will be the heaviest one
available.

If Λv is of the order of the masses of the lightest secluded sector fermions
then the mass splitting between the spin-0 and spin-1 mesons will be small
and thus the spin-1 meson will be metastable and instead decay back into the
SM, again via either kinetic mixing or a Z′, but in this case, there not being any
helicity suppression, the decay will be similar to that of an off-shell photon.
Thus in this case there will also be an abundance of leptons produced along
with hadrons.

If all constituent masses are much larger than the confinement scale, the
lowest lying SU(N) neutral states would be glueballs as discussed in [7]. We
do not discuss their phenomenology here. We will also not consider so called
quirks [24] which are charged both under the SM SU(3)C and a secluded SU(N)

with the confinement scale Λ being much smaller than the Fv masses.
Finally we note that similarly to the Abelian case some of the secluded

sector hadrons could be metastable and decay back into the detectors with
displaced vertices.

IV.3 Physics in the secluded sector

For the studies in this article we have developed a framework to simulate the
physics of a secluded sector. It contains a flexible setup that can be used to
study different production mechanisms, perturbative shower evolution sce-
narios, non-perturbative hadronization sequences and decays back into the
visible sector. Parts of the framework were already in use for our previous
study [18] but significant new capabilities have been added. These are avail-
able starting with PYTHIA 8.150. The physics content will be described in the
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following, while technical details on how to set up a variety of scenarios is out-
lined in Appendix A. The studies presented in this article only give a glimpse
of the possibilities.

IV.3.1 Particles and their properties

The key aspect of a scenario is that of the valley gauge group G, which we
allow to be either U(1) or SU(N). The gauge bosons of these groups are named
γv and gv, respectively. The former can be broken or unbroken, i.e. γv can have
a mass, while the latter is always unbroken so that gv remains massless.

The rest of the particles, i.e. the “matter” content, fall into two main cate-
gories: those charged under both the SM and the v sector, and those that are
pure v-sector particles.

For the doubly charged ones, dubbed Fv, 12 particles are introduced to mir-
ror the Standard Model flavour structure, see Tab. IV.2 in the appendix. Each
Fv particles couples flavour-diagonally to the corresponding SM particle. In
addition to its SM charges, it is also put in the fundamental representation of
G. For U(1) the charge is taken to be unity, while for SU(N) the “charge” is
CF = (N2 − 1)/(2N) while pair production cross sections obtain a factor of N

enhancement. Although the name suggests that the Fv are fermions, they can
be spin 0, 1/2 or 1 particles. If the Fv particles have spin 1 then their production
cross section depends also on the presence or not of an anomalous magnetic
dipole moment.

The valley secluded sector further contains a purely G interacting sector. At
the parton level this consists of qvs, belonging to the fundamental representa-
tion of G. The name is introduced to reflect the similarities with the quark in
QCD. The qv particle is stable and invisible to SM interactions. Its spin, 0 or
1/2, is adapted to the choice of spin made for Fv, in case the scenario allows
for Fv → f qv decay, where f is a SM particle. The spin structure of the Fv → f qv

decay is currently not specified, so the decay is isotropic.

In the G = U(1) scenarios only one qv is assumed to exist. Fv decays,
if allowed kinematically, are flavour diagonal, Fi

v → f iqv, with a common
(Yukawa) coupling strength. Given that both the Fvs and the qvs have a unit
of U(1) charge, they can radiate γv gauge bosons. If U(1) is unbroken the γv is
massless and stable. For a broken symmetry, G = 6U(1), the γv can decay back
to a SM fermion pair through the mechanisms discussed in the previous Sec-
tion IV.2. For kinetic mixing or decay via a Z′, branching ratios by default are
assumed to be proportional to the respective fermion coupling to the photon,
whenever the production channel is allowed by kinematics. The γv decay can
be either prompt or displaced.

If instead G = SU(N), the massless gv gauge bosons are self-interacting,
such that the parton shower will also have to allow for gv → gvgv splittings,
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with no equivalence in the U(1) case. The self-interactions also lead to confine-
ment, like in QCD. In Section IV.3.3 below we will explain how the resulting
picture can be described in terms of “strings” stretched from a qv end via a
number of intermediate gvs to a q̄v end. The string can break, by the produc-
tion of new qvq̄v pairs, to produce a set of v-mesons formed by the qv of one
break and the q̄v from an adjacent one. To first approximation these v-mesons
would be stable, and so the whole v-hadronization process would be invisible.
One would not even have the kind of indirect recoil effects that the v-shower
can give. If kinetic mixing or decay via a Z′ is assumed, it would again be
possible to let the v-mesons decay back to a SM fermion pair.

With only one qv species there would only be one kind of v-mesons, and so
the choice would be between two extremes: either all the energy deposited in
the hidden sector decays back to be visible, or none of it. The more interest-
ing scenarios — e.g. in terms of offering a bigger challenge to sort out what
is going on — are the ones where only part of the v-mesons can decay back.
Therefore a variable number Nflav of separate qv flavours are assumed to exist
(at most 8 in the current implementation). This gives N2

flav different possible
v-meson flavour combinations, out of which only Nflav are flavour-diagonal
and thus able to decay back into the SM sector. It would be possible to assign
individual masses to the qvs and v-mesons, but for now we assume one com-
mon qv “constituent” mass and one common v-meson mass, twice as large as
the former.

By analogy with QCD two separate spin states are assumed, denoted πv

and ρv. For now mass splitting is taken to be small, such that ρv → πvπv is
kinematically forbidden, as is the case in QCD for the s and heavier quarks.
The decay of the flavour-diagonal mesons is different in the two cases: by he-
licity (non)conservation the πv couplings to a pair of SM fermions f provides
an extra factor m2

f , an addition to the squared charge and phase space factors

factors present for the ρv mesons.

In the confining SU(N) case also a v-glueball is introduced. It is only rarely
used, to handle cases where the invariant mass of the invisible-sector frag-
menting system is too large to produce one single on-shell v-meson and too
small to give two of them. Then it is assumed that an excited v-meson state is
produced, that can de-excite by the emission of these invisible and stable gvgv

bound states.

In summary, by default the v-particles with no SM couplings are not visible.
Their presence can only be deduced by the observation of missing (transverse)
momentum in the event as a whole. On top of this we allow two different
mechanisms by which activity can leak back from the hidden sector. The first
is the Fv → f qv decay and showers from the Fv and qv, in the scenario in which
Fv has both SM charges and G charges, as discussed in our previous article [18].
The second is the decay of SM gauge bosons produced through mixing by the

IV
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G group gauge bosons in the kinetic mixing case, either the massive γv for 6U(1)

or the diagonal v-mesons for SU(N).

IV.3.2 Valley parton showers

Parton showers (PS) offer a convenient approximation to higher-order matrix
elements, which by the use of Sudakov form factors contain a resummation
of virtual corrections to match the real emissions [25]. For the current stud-
ies, the PYTHIA p⊥-ordered parton showers [26] are extended to the secluded
sector, and the approach used to take into account massive radiating parti-
cles [27] must, for the 6U(1) scenario, be extended to the case where also the
radiated gauge boson is massive. This section gives a summary of the show-
ering framework, with emphasis on aspects new to this study (relative to [18]).

In the most general case, final-state QCD, QED and valley radiation are
interleaved in one common sequence of decreasing emission p⊥ scales. That is,
emissions of a SM g/γ or a hidden γv/gv can alternate in the evolution of a Fv.
Of course any of the related charges can be zero in a specific process, in which
case the following expressions simplify accordingly. For the i’th emission, the
p⊥ evolution starts from the maximum scale given by the previous emission,
with an overall starting scale p⊥0 set by the scale of the hard process, or of the
decay in which the radiating particle was produced. Thus the probability to
pick a given p⊥ takes the form

dP
dp⊥

=

(
dPQCD

dp⊥
+

dPQED

dp⊥
+

dPsecl

dp⊥
) ×

exp ( −
∫ p⊥i−1

p⊥

(
dPQCD

dp′⊥
+

dPQED

dp′⊥
+

dPsecl

dp′⊥

)

dp′⊥

)

(IV.3)

where the exponential corresponds to the Sudakov form factor. Implicitly one
must also sum over all partons that can radiate.

To be more precise, radiation is based on a dipole picture, where it is a pair
of partons that collectively radiates a new parton. The dipole assignment is
worked out in the limit of infinitely many (hidden or ordinary) colours, so that
only planar colour flows need be considered.

Technically the total radiation of the dipole is split into two ends, where
one end acts as radiator and the other as recoiler. The recoiler ensures that
total energy and momentum is conserved during the emission, with partons
on the mass shell before and after the emission. Each radiation kind defines
its set of dipoles. To take an example, consider qq → FvFv, which proceeds via
an intermediate s-channel gluon. Since this gluon carries no QED or hidden
charge it follows that the FvFv pair forms a dipole with respect to these two
emission kinds. The gluon does carry QCD octet charge, however, so FvFv do
not form a QCD dipole. Instead each of them is attached to another parton,
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either the beam remnant that carries the corresponding anticolour or some
other parton emitted as part of the initial-state shower. This means that QCD
radiation can change the invariant mass of the FvFv system, while QED and
hidden radiation could not. When a γ or γv is emitted the dipole assignments
are not modified, since these bosons do not carry away any charge. A g or gv

would, and so a new dipole would be formed. For QCD the dipole between
Fv and one beam remnant, say, would be split into one between the Fv and the
g, and one further from the g to the remnant. For the secluded sector the FvFv

dipole would be split into two, Fvgv and gvFv. As the shower evolves, the three
different kinds of dipoles will diverge further.

Note that, in the full event-generation machinery, the final-state radiation
considered here is also interleaved in p⊥ with the initial-state showers and
with multiple parton-parton interactions [28].

If the Fv fermion is allowed to decay into a SM and a hidden particle, one
must also consider the hidden radiation from the hidden particle.

There is a clean separation between radiation in the production stage of the
FvFv pair and in their respective decay. Strictly speaking this would only be
valid when the Fv width is small, but that is the case that interests us here.

In the decay Fv → f qv the QCD and QED charges go with the f and the
valley one with qv. For all three interactions the dipole is formed between the
f and the qv, so that radiation preserves the Fv system mass, but in each case
only the relevant dipole end is allowed to radiate the kind of gauge bosons
that goes with its charge. (Strictly speaking dipoles are stretched between the
f or qv and the “hole” left behind by the decaying Fv. The situation is closely
analogous to t → bW+ decays.)

The number of parameters of the hidden shower depends upon the sce-
nario. In the case of the interleaved shower, there are only two, the most
important on being one the coupling strength αv, i.e. the equivalent of αs. This
coupling is taken to be a constant, i.e. no running is included.

From a practical point of view it is doubtful that such a running could be
pinned down anyway, and from a theory point of view it means we do not
have to specify the full flavour structure of the hidden sector. The second
parameter is the lower cutoff scale for shower evolution, by default chosen
the same as for the QCD shower, p⊥min = 0.4 GeV.

Shower kinematics with massive hidden photons

Showers are expected to reproduce the soft and collinear behaviour of
(leading-order) matrix elements (MEs), but there is no guarantee how trust-
worthy they are for hard wide-angle emissions. Therefore various correction
techniques have been developed [25]. The technique we will use here is to gen-
erate trial emissions according to the PS, but then use the weights ratio ME/PS
to accept emissions, i.e. PS times ME/PS equals ME. For this re-weighting
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recipe to work, obviously the ME weight has to be below the PS one, but the
difference should not be too big or else the efficiency will suffer. It should also
be noted that the ME/PS ratio is evaluated without including the Sudakov
form factor of the shower, while the shower evolution itself does build up the
Sudakov. By the veto algorithm it then follows that the ME expression is ex-
ponentiated to provide the kernel of the Sudakov [29], a technique nowadays
used as a key ingredient of the POWHEG approach [30]. The choice of shower
evolution variable lives on in the integration range of the Sudakov, but for the
rest the PS expressions disappear in the final answer.

In the past, this approach has only been developed for the emission of a
massless gluon, however, and we now need to generalize that to an arbitrary
combination of masses. A technical task is to recast the ME and PS expressions
to use the same phase space variables, such that the ratio is well-defined.

We follow the existing approach of mapping the PS variables onto the ME
ones. Below we therefore introduce the ME three-body phase space, subse-
quently how the PS variables populate this phase space, and finally how the
presence of two shower histories can be taken into account.

Consider a dipole of invariant mass m0, consisting of two endpoint partons
1 and 2, with nominal masses m1 and m2. Assume that a shower emission
occurs from the parton-1 dipole end, generating a new particle 3 with mass m3.
This implies that there was an intermediate off-shell state 13 with mass m13.
That is, the kinematics to describe is p0 → p13 + p2 → p1 + p3 + p2. Averaging
over the angular orientation of events, the MEs can be written in terms of the
xi = 2pi p0/m2

0 and the ri = m2
i /m2

0 variables, where the xi reduce to energy
fractions in the dipole rest frame, with normalization x1 + x2 + x3 = 2. This
means there are only two free independent variables, traditionally x1 and x2.

The PS is instead described in terms of the p2
⊥evol and z variables. In the

soft and collinear emission limit these are well defined, but away from these
limits different possibilities could be contemplated. Our choice is such that

m2
13 = m2

1 +
p2
⊥evol

z(1 − z)
, (IV.4)

or
p2
⊥evol = z(1 − z)(m2

13 − m2
1) . (IV.5)

By standard two-body kinematics for p0 → p13 + p2 it follows that

x2 =
m2

0 + m2
2 − m2

13

m2
0

= 1 + r2 − r13 , (IV.6)

and thus x1 + x3 = 2 − x2 = 1 + r13 − r2. If m1 = m3 = 0 one would further
require that z = x1/(x1 + x3). Taken together, this is enough to specify the

three four-vectors p2, p
(0)
1 and p

(0)
3 , up to three angles. These are chosen at
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follows: in the p0 rest frame parton 2 is assumed to keep its direction of motion
when m1 → m13, while 1 and 3 are selected to have an flat distribution in the
azimuthal angle around the 13 direction, which is parallel with the 1 direction
before the emission.

The kinematics for the case with massive partons 1 and 3 can then be con-
structed from the massless four-vectors as

p1 = (1 − k1)p
(0)
1 + k3 p

(0)
3 (IV.7)

p3 = (1 − k3)p
(0)
3 + k1 p

(0)
1 (IV.8)

k1,3 =
m2

13 − λ13 ± (m3
3 − m2

1)

2m2
13

(IV.9)

λ13 =
√

(m2
13 − m2

1 − m2
3)

2 − 4m2
1m2

3 (IV.10)

The physics content is that the directions of partons 1 and 3 in the p13 rest
frame are retained, while their three-momenta are scaled down by a common
factor sufficient to put the two partons on their mass shells. Since m13 is not
changed by the operation it is necessary that m13 > m1 + m3 for the rescaling to
work.

The rescalings imply that

x1

x1 + x3
=

x1

2 − x2
= (1 − k1)z + k3(1 − z) = (1 − k1 − k3)z + k3 , (IV.11)

and thus

z =
1

1 − k1 − k3

(
x1

2 − x2
− k3

)

. (IV.12)

Now we need to find the Jacobian to translate the shower emission rate
from the (p2

⊥evol, z) space to the (x1, x2) one. Note that m2
13 = m2

0(1 − x2) + m2
2 is

independent of x1, and thus so are k1 and k3. Therefore only the “diagonal”
terms ∂p2

⊥evol/∂x2 and ∂z/∂x1 are needed.

The shower emission rate itself is

dp2
⊥evol

p2
⊥evol

2 dz

1 − z
. (IV.13)

Here an overall coupling factor CF αv/2π is omitted for simplicity. Also the
Sudakov form factor is omitted, as already motivated. The z-dependent part
may seem unfamiliar, but is an upper approximation to the more familiar q →
qg splitting kernel (1 + z2)/(1 − z), where the difference between the two is
absorbed into the ME/PS weighting.

IV
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Put together, the shower emission rate translates into

dp2
⊥evol

p2
⊥evol

=
d(m2

13 − m2
1)

m2
13 − m2

1

=
dx2

1 − x2 + r2 − r1
, (IV.14)

2 dz

1 − z
=

2 dx1

(1 − k1 − k3)(2 − x2)

1

1 − 1
1−k1−k3

(
x1

2−x2
− k3

)

=
2 dx1

x3 − k1(x1 + x3)
. (IV.15)

When m3 → 0, and hence k1 → 0, this simplifies to the familiar expression [27]

WPS,1 =
dp2

⊥evol

p2
⊥evol

2 dz

1 − z
=

2 dx1 dx2

(1 − x2 + r2 − r1)x3
. (IV.16)

If only parton 1 can radiate, as in Fv → qv + f → qv + γv + f , we are done.
The fact that the MEs also contain a contribution from γv emission off the Fv

does not change the picture, since that does not introduce any new singulari-
ties, and empirically the PS expression provides a valid upper limit.

For the radiation FvFv → FvFvγv the sum of the two possible shower emis-
sions are needed to match to the full MEs. Alternatively, and more conve-
niently, the ME expression can be split into two parts, each to be compared
with only one shower history. This split is done in proportion to the respective
propagator, i.e. assumed emission off parton i is proportional to 1/(m2

i3 − m2
i ).

The relative probability for parton 1 to radiate thus is

P1 =
m2

23 − m2
2

(m2
13 − m2

1) + (m2
23 − m2

2)
=

1 − x1 + r1 − r2

x3
, (IV.17)

so that the ME weight to be associated with this dipole end is

WME.1 = P1
1

σ0

dσ

dx1 dx2
dx1 dx2 . (IV.18)

Thus we arrive at the ME/PS correction factor

R1 =
WME,1

WPS,1
=

(1 − x1 + r1 − r2)(1 − x2 + r2 − r1)

2

1

σ0

dσ

dx1 dx2

× x3 − k1(x1 + x3)

x3
. (IV.19)

All the explicit dependence on m3 is located in k1 in the last term, but obviously
implicitly the whole kinematics setup is affected by the value of m3.

The matrix elements for the radiation off FvFv are calculated with them as
stable final-state particles. This means that, to preserve gauge invariance, they
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must be assigned the same mass. On the other hand, since they are supposed
to decay, we allow them to have a Breit-Wigner mass distribution. To resolve
this discrepancy, the real kinematics with two different masses is shifted to
a fictitious one where Fv and Fv have the same mass, and it is this fictitious
one that is used in the three-parton matrix-element evaluation. As a guiding
principle, the Fv and Fv three-momenta are kept unchanged in the FvFv rest
frame, and only energy is shuffled so as to equalize the masses. Denoting the
average mass m, the conservation of three-momentum implies that

√

m2
12

4
− m2 =

√

(m2
12 − m2

1 − m2
2)

2 − 4m2
1m2

2

4m2
12

, (IV.20)

which gives

m2 =
m2

1 + m2
2

2
− (m2

1 − m2
2)

2

4m2
12

. (IV.21)

As above, the modified four-vectors p1 and p2 can be written as linear com-
binations of the original ones, with the constraints p2

1 = p2
2 = m2 giving the

solution

p1 = p1 +
m2

2 − m2
1

2m2
12

(p1 + p2) , (IV.22)

p2 = p2 −
m2

2 − m2
1

2m2
12

(p1 + p2) . (IV.23)

This translates into identical relationships for the modified matrix-element
variables x1 and x2 in terms of the original x1 and x2 ones.

Matrix element for radiation in production

The implementation of the 6U(1) has required the calculation of matrix element
corrections |M|2

f f̄→Fv F̄vγv
for the pair production process f f̄ → Fv F̄vγv described

in Fig. ??. This has required the generalization of the matrix element correc-
tions in [27] to the case of a massive photon:

|M|2
f f̄→Fv F̄v

= (1 − 4r1)
3/2 , (IV.24)

|M|2
f f̄→Fv F̄vγv

|M|2
f f̄→Fv F̄v

= (r3 + 2r1)(−1 + 4r1)

(
1

(1 − x1)2
+

1

(1 − x2)2

)

+
−1 + 8r1 − x2

1 − x1
+

−1 + 8r1 − x1

1 − x2

+
2(1 − 6r1 + 8r2

1 + 4r3r1)

(1 − x1)(1 − x2)
+ 2 . (IV.25)
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e+, k1

e−, k2

Fv, p1

F̄v, p2

p3

+

e+, k1

e−, k2

Fv, p1

F̄v, p2

p3

Figure IV.2: The Feynman diagrams for the production.

Here r1 = r2 = m2/m2
0 and r3 = m2

γv
/m2

0. (Expressions for r1 6= r2 have also
been obtained but, by the preceding trick, are not needed.) Coupling con-
stants have been omitted, as discussed before for the shower. Furthermore,
to simplify calculations, the process is taken to proceed via the exchange of
a scalar particle instead of a spin 1 gauge boson. The |M|2

f f̄→Fv F̄vγv
spin infor-

mation, relevant for decay angular distributions, will be lost this way. Effects
are known to be minor for the ME correction ratio [27]. As an illustration, the
above expression reduces to (x2

1 + x2
2)/((1 − x1)(1 − x2)) + 2 for r1 = r2 = r3 = 0,

where the first term is the familiar expression for e+e− → γ∗/Z∗ → qq̄, and the
second finite term comes in addition for a spin 0 exchanged particle.

Matrix element for radiation in decay

Fv

q/ℓ

qv

+

Fv

q/ℓ

qv

Figure IV.3: The Feynman diagrams for the Fv → qv q/ℓ decay.

The matrix elements corresponding to Fv → qv f γv are

|M|2Fv→qv f = (1 − r1 + r2 + 2q2)
√

(1 − r1 − r2)2 − 4r1r2 (IV.26)

|M|2Fv→qv f γv

|M|2Fv→qv f

=
(r3/2 + 2r2

1 + r2r3/2 + q2r3 − 2r1 − r1r3/2 − 2r1r2 − 4r1q2)

(1 + r2 − r1 − x2)2
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+
(−2 + 2r2

2 + 2r2
1 + 2r2r3 − 4q2 + 2q2r3 + 4q2r2 − 4r1r2 − 4r1q2)

(1 + r2 − r1 − x2)(r3 − x3)

+
(−2 − r3/2 − 2r2 − 4q2 + 2r1)

(1 + r2 − r1 − x2)

+
(−2 − r3 − 2r2 − r2r3 − 4q2 − 2q2r3 + 2r1 + r1r3)

(r3 − x3)2

+
(−1 − r3 − r2 − 4q2 + r1 − x2)

(r3 − x3)
+ 1 . (IV.27)

where r1 = m2
qv

/m2
F, r2 = m2

f /m2
F, r3 = m2

γv
/m2

F and q2 = m f /mF =
√

r2. The

calculation has been done for the specific choice of Fv and f being fermions,
and qv a scalar, but again the result should be representative also for other spin
choices.

IV.3.3 Hidden sector hadronization

If the G group is the unbroken SU(N), the gauge boson gv is massless and the
partons are confined. The picture therefore is closely similar to that of QCD,
and we will use exactly the same framework to describe hadronization physics
as in QCD: the Lund string model [31].

For the hidden sector, the model is most easily illustrated for the produc-
tion of a back-to-back qvq̄v pair, with the perturbative emission of additional
gvs neglected for now. In that case, as the partons move apart, the physical
picture is that of a v-colour flux tube being stretched between the qv and the
q̄v. If the tube is assumed to be uniform along its length, this automatically
leads to a confinement picture with a linearly rising potential, V(r) = κr.

In order to obtain a Lorentz covariant and causal description of the energy
flow due to this linear confinement, the most straightforward approach is to
use the dynamics of the massless relativistic string with no transverse degrees
of freedom. The mathematical, one-dimensional string can be thought of as
parameterizing the position of the axis of a cylindrically symmetric flux tube.

Now consider the simple qvq̄v two-parton event further. As the qv and q̄v

move apart from the creation vertex, the potential energy stored in the string
increases, and the string may break by the production of a new q′vq̄′v pair, so
that the system splits into two colour singlet systems qvq̄′v and q′vq̄v. If the
invariant mass of either of these systems is large enough, further breaks may
occur, and so on until only v-mesons remain. A system with n primary v-
mesons thus requires n − 1 breaks qv,iq̄v,i to produce a chain of v-mesons qvq̄v,1,
qv,1q̄v,2, qv,2q̄v,3, . . . , qv,n−1q̄v stretching from the qv end to the q̄v one.

The flavour of each qv,iq̄v,i is supposed to be a random choice among the
Nflav different flavours. Since all are taken to have the same mass, for now, they
are also produced at the same rate. This thus also goes for the N2

flav different

IV
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v-meson flavour combinations. If the qv are fermions then both pseudoscalar
and vector v-mesons can be produced, πv and ρv. Again disregarding possible
effects of a mass splitting, simple spin counting predicts a relative production
rate πv : ρv = 1 : 3.

The possibility of higher excited states is disregarded, as is known to offer
a good approximation for the QCD case. Also v-baryon production is left out,
which is a 10% effect in QCD. For a generic SU(N) group a v-baryon needs to
consist of N v-quarks. This should lead to exceedingly tiny rates for N > 3,
while N = 2 could offer a more robust v-baryon production rate.

The space–time picture of the string motion can be mapped onto a corre-
sponding energy–momentum picture by noting that the constant string ten-
sion implies that the v-quarks lose a constant amount of energy per distance
traveled. The different breaks are space-like separated, but two adjacent
breaks are constrained by the fact that the string piece created by them has
to be on the mass shell for the v-meson being produced. The space-like sepa-
ration implies that the fragmentation process can be traced in any order, e.g.
from one of the endpoints inwards, while the constraint implies that there is
only one kinematical degree of freedom for each new v-meson. Typically it is
chosen to be z, the light-cone momentum fraction that the new v-meson takes
from whatever is left in the system after previously produced v-meson have
been subtracted off.

By symmetry arguments one arrives at the Lund-Bowler shape of the z

probability distribution [32]

f (z) ∝
1

z1+bm2
qv

(1 − z)a exp

(

− bm2
mv

z

)

, (IV.28)

where mmv ≈ 2mqv is the mass of the produced v-meson. The equation contains
two free parameters, a and b. Roughly speaking, these regulate the average
rapidity spacing of the v-mesons, and the size of the fluctuations around this
average. While a is dimensionless, b is not, which means that it becomes nec-
essary to adjust b as mqv is changed. For instance, assume that the qv mass is
related to the strong-interaction scale Λv. Then, if Λv, mqv , mmv and the colli-
sion energy are scaled up by a common factor, we would want to retain the
same rapidity distribution of produced v-mesons. This is achieved by rewrit-
ing bm2

mv
= (bm2

qv
)(m2

mv
/m2

qv
) = b′(m2

mv
/m2

qv
), where now b′ can be assumed

constant.
In additional to fluctuations in the longitudinal fragmentation, it is as-

sumed that each new q′vq̄′v pair produced when the string breaks also carries an
opposite and compensating transverse momentum component. The p⊥ of the
qv,i−1q̄v,i meson is then given by the vector sum of its two constituent p⊥ val-
ues. The pair p⊥ naturally arises in a tunneling production process, which also
leads to a Gaussian p⊥ distribution. The width σ of this Gaussian again should



IV.3 Physics in the secluded sector 157

scale like Λv, so we rewrite as σ = (σ/mqv )mqv = σ′mqv . When the v-mesons are
allowed to acquire a p⊥ it should be noted that the m2

mv
in eq. (IV.28) must be

replaced by m2
⊥mv

= m2
mv

+ p2
⊥.

In lack of further knowledge, it is convenient to assign b′ and σ′ values by
analogy with standard QCD. To be more specific, we have in mind something
like the s quark, with a bare mass of the same order as Λ. For heavy quarks,
like c and b in QCD, tunneling is suppressed, and the framework would have
to be further modified. To assess uncertainties in a scenario, it would make
sense to vary b′ and σ′ values over some range, say a factor of two in either
direction.

So far, the emission of gvs has been neglected. When it is included, more
complicated string topologies can arise. Like in QCD, the complexity is re-
duced by using the planar or large-NC limit [33]. In it a v-gluon is assigned
an incoherent sum of a (v-)colour charge and a different anticolour one. In
a branching qv → qvgv the initial qv colour is taken away by the gv and a
new colour-anticolour pair is stretched between the final qv and gv. Simi-
larly gv → gvgv is associated with the creation of a new colour. That way par-
tons nearby in the shower evolution also come to be colour-connected. This
leads to a picture of a single string, consisting of several separate string pieces,
stretching from one qv end to the gv it shares one colour with, on to the next
colour-related gv, and so on until the q̄v string end is reached. Several separate
string pieces could have formed, had perturbative branchings gv → qvq̄v been
included, but, as in QCD, gv → qvq̄v should be rare both in relation to the more
singular gv → gvgv and in absolute terms.

The motion of a string with several gluon kinks can be quite complicated,
but it is possible to extend the fragmentation framework of a single straight
string also to the more complex topologies [34]. Basically the string will break
up along its length by the production of new q′vq̄′v pairs, with two adjacent
breaks correlated in such a way that the v-meson produced between them is
on the mass shell. Sometimes the two breaks will be on either side of a gv

string corner.

One of the key virtues of the string fragmentation approach is that it is
collinear and infrared safe. That is, the emission of a gluon disturbs the overall
string motion and fragmentation vanishingly little in the small-angle/energy
limit. Therefore the choice of lower cut-off scale for parton showers is not cru-
cial: letting the shower evolve to smaller and smaller scales just adds smaller
and smaller wrinkles on the string, which still maintains the same overall
shape.

The complete v-string fragmentation scenario contains a set of further tech-
nical details that are not described here. The key point, however, is that essen-
tially all of the concepts of normal string fragmentation framework can be
taken over unchanged. The one new aspect is what to do when the invariant
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mass of the hidden-valley system is too large to produce one single on-shell
v-meson and too small to give two of them. As already explained, then the
emission of v-glueballs is used to balance energy-momentum.

IV.3.4 Decays back into the SM sector

Disregarding the trivial direct decay Fv → f qv, the main decay modes back into
the SM are through γv kinetic mixing or Z′ decay. For G = 6U(1) the γv there-
fore can decay to SM particles with the same branching ratios as a photon of
corresponding mass, i.e. ∝ e2

f Nc, with Nc = 1 for leptons. For G = SU(N) only

the flavour-diagonal mesons can decay, either with a γv or a Z′. (The former
would imply that G = SU(N) × U(1), which would require some further ex-
tensions relative to the scenarios studied here.) A ρv meson, with spin 1, could
have the same branching ratios as above, or slightly modified depending on
the Z′ couplings. A πv meson, with spin 0, would acquire an extra helicity fac-
tor m2

f that would favor the heaviest fermions kinematically allowed. Should

the πv be scalar rather than pseudoscalar there would also be a further thresh-
old suppression, in addition to the phase space one.

The decay back into the standard model would be accompanied by nor-
mal QED and QCD radiation, where relevant. Quarks and gluons would fur-
ther hadronize, as described by the normal Lund string model. That model
is not carefully set up to handle different exclusive states if the γv or ρv/πv

mass is very low, of the order 1 or 2 GeV, but should be good enough as a
starting point. For studies that zoom in on one specific mass, more carefully
constructed decay tables could be used instead.

IV.4 Analysis of the different scenarios

The tools described above allow us to simulate several different setups. We
concentrate on the phenomenology of the six scenarios listed in Table IV.1.
Three different production mechanisms are involved: s-channel pair produc-
tion via kinetic mixing with the light γv (KMγv), s-channel pair production me-
diated by a Z′ (MZ′) and s-channel pair production via SM gauge bosons (SM)
and the Fv particles. For each of these production mechanisms an Abelian
setup and a non-Abelian one are considered, labeled by A and NA respec-
tively. Note that the Abelian/non-Abelian group we refer to in the following
analyses correspond to the G gauge group, not to the production mechanisms.
In the Abelian case G = 6U(1), while in the non-Abelian case G = SU(3).

The phenomenology of the six scenarios is a function of the pair production
cross section, which will in general depend upon the specific model realiza-
tion of each setup. In particular, for the KM scenarios, the cross section will
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production radiation hadronization decay to SM
AMZ′ e+e− → Z′ → qvq̄v qv → qvγv — γv → SM

NAMZ′ e+e− → Z′ → qvq̄v qv → qvgv, gv → gvgv qvq̄v ∼ πv/ρv πv/ρv → SM
KMAγv e+e− → γv → qv q̄v qv → qvγv — γv → SM

KMNAγv e+e− → γv → qv q̄v qv → qvgv, gv → gvgv qvq̄v ∼ πv/ρv πv/ρv → SM
SMA e+e− → γ∗ → Ev Ēv qv → qvγv — γv → SM

SMNA e+e− → γ∗ → Ev Ēv qv → qvgv, gv → gvgv qvq̄v ∼ πv/ρv πv/ρv → SM

Table IV.1: The six scenarios studied.

depend upon the size of the kinetic mixing parameter ǫ, while for the Z′ me-
diate ones on the mass of the Z′ and on its couplings to the SM particles and
to the v-quarks. The analysis is performed on per-event distributions, so as
to factor out this model dependence. Assuming the same number of events
are produced, the phenomenology of the setups will depend upon a differ-
ent number of parameters. For the KMAγv and the AMZ′ one must fix the qv

masses, the γv mass and the 6U(1) coupling constant αv, while for the SMA
production one must also fix the Fv masses. In the corresponding KMNAγv ,
AMZ′ and SMNA one must fix the meson masses, but these will be connected
to the qv masses chosen, and furthermore the gv remains massless. We se-
lect a scenario in which mqv ∼ Λ, so that mπv ∼ mρv . This in turn ensures (as
already described in section IV.2.4) that meson decay into SM lepton is not
supressed. For simplicity, in the following analysis we assume only one mass
for all v-quark flavours, and only one common πv/ρv mass mπv/ρv

= 2mqv . One
additional simplification in the following analysis, is that for the SM cases we
assume the pair production of one single Ev belonging to the standard model
doublet with no consideration for anomaly cancellation issues. In the non-
Abelian case we have assumed simple proportions 1 : 3 for πv : ρv production
from fragmentation, which comes from spin counting when the qv has spin
1/2. The branching ratios of the decays to standard model particles are fixed
by the kinetic mixing mechanism.

We concentrate on the phenomenology of the six setups at an e+e− collider
with center-of-mass (CM) energy of 800 GeV. A similar study for pp colliders
like the LHC is also possible, and obviously more relevant in the near future,
but makes it less transparent to compare and understand the properties of
the models. Bremsstrahlung corrections have been included, and we shall
see that these can give a non-negligible effect, whereas the machine-specific
beamstrahlung has not. All of the figures in this section are based on a Monte
Carlo statistics of 10000 events.

As a consequence of the e+e− collider choice, the events have a spherical
symmetry rather than a cylindrical one, i.e. are described in terms of parti-
cle energy and (θ, φ) variables rather than in terms of ET and (η, φ). The jet
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Figure IV.4: AMZ′ : the number of γv gauge bosons emitted per event. On the left we
highlight the αv dependence, while on the right the mγv dependence. On the left side
mqv = 50 GeV, mγv = 10 GeV and αv = 0.1, 0.4, 0.6, while on the right side mγv =
2, 6, 10, 20 GeV and the coupling is fixed at αv = 0.4.

clustering algorithms are thus determined by the spherical topology and we
primarily use the PYTHIA built-in ClusterJet Jade algorithm [35, 36]. The
Jade algorithm is geared towards clustering objects nearby in mass, and so
for clustering a variable number of fixed-mass γv/πv/ρv systems it is more
relevant than clustering e.g. in transverse momenta or angles.

IV.4.1 Basic distributions

The phenomenology of the six different setups is discussed in detail in ded-
icated subsections. We here would like to discuss the general features of the
secluded sector signals and to introduce the observables we focus on.

One of the benefits of a Monte Carlo simulation is that one may look be-
hind the scene, to study also the distributions of the invisible secluded sector
particles. These can then be compared with the SM particle distributions to
determine which features are governed by the the secluded sector dynamics,
and which come from the decays to the SM. In this spirit, Fig. IV.4 shows the
number of γv gauge bosons emitted per event in the AMZ′ case. On the left
we highlight the αv dependence, on the right the mγv dependence. Not unex-
pectedly, the number of γv increases almost linearly with αv, up to saturation
effects from energy–momentum conservation.

Compare this distribution with the corresponding non-Abelian AMZ′ case
in Fig. IV.5 for the flavour diagonal πv/ρv. Again the number of gv grows with
αv

2, but the number of v-mesons does not primarily reflect this αv dependence.

2Note that, in this case, the emission rate qv → qvgv is proportional to CFαv, with CF = (N2 −
1)/(2N), and gv → gvgv to Nαv.
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Figure IV.5: NAMZ′ : the number of flavour diagonal πv/ρv mesons emitted per event.
On the left we emphasize the αv dependence, while on the right the mπv/ρv

depen-
dence. On the left the meson mass is fixed at mπv/ρv

= 10 GeV and the coupling varies
among αv = 0.1, 0.4, 0.6, while on the right side mπv/ρv

= 2, 6, 10, 20 GeV (which in
turn implies mqv = 1, 3, 5, 10 GeV), the coupling is fixed at αv = 0.4 and the number of
flavours is Nflav = 4.

Instead the number of v-mesons produced by string fragmentation rather re-
flects the masses of the v-quarks (and thereby of the mesons) and the fragmen-
tation parameters, see Fig. IV.5 right plot. Specifically, even with αv set to zero
for the perturbative evolution, there would still be non-perturbative produc-
tion of v-mesons from the single string piece stretched directly from the qv to
the q̄v. With αv nonzero the string is stretched via a number of intermediate
gv gluons that form transverse kinks along the string, and this gives a larger
multiplicity during the hadronization.

Comparing the number of γv in Fig. IV.4 with the corresponding distribu-
tions in the other Abelian setups, KMAγv and SMA, in Fig. IV.12 and Fig. IV.14
respectively, the two KMAγv and AMZ′ setups produce similar distributions,
while the SMA produces much fewer γv. The SMA difference is due to the
more complicated kinematics, where the electrons from the Ev → eqv decays
take away a large fraction of energy and momentum that then cannot be used
for γv emissions.

The average charged multiplicity of an event, Fig. IV.6, will be directly pro-
portional to the number of γv/πv/ρv produced. The trends from above are
thus reproduced, that the non-Abelian multiplicity varies only mildly with
αv, while the variation is more pronounced in the Abelian case. The constant
of proportionality depends on the γv/πv/ρv mass, with more massive states
obviously producing more charged particles per state. This offsets the corre-
sponding reduction in production rate of more massive γv/πv/ρv, other con-
ditions being the same. Similarly the number of jets should be proportional to
the number of γv/πv/ρv emitted, see further Sec. IV.4.2.
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Figure IV.6: AMZ′ , NAMZ′ : αv dependence of the overall number of charged particles
emitted per event in the Abelian (left) and non-Abelian (right) case. For the Abelian
cases mqv = 50 GeV and mγv = 10 GeV, for the non-Abelian cases mqv = 5 GeV,
mπv/ρv

= 10 GeV.

Without an understanding of the γv/πv/ρv mass spectra, the mix of effects
would make an αv determination nontrivial, especially in the non-Abelian
case. Even with a mass fixed, e.g. by a peak in the lepton pair mass spec-
trum, other model parameters will enter the game. One such parameter is the
number Nflav of qv flavours. Since only 1/Nflav of the πv/ρv would decay back
into the SM the visible energy is reduced accordingly. With all qv having the
same mass, the relation 〈Evisible〉/Ecm = 1/Nflav works fine to determine Nflav,
but deviations should be expected for a more sophisticated mass spectrum .
Furthermore the πv : ρv mix, with different branching ratios for the two, needs
to be considered. If the πv fraction is large, the number of heavy leptons and
hadrons produced may increase substantially, see [1].

In Fig. IV.7 we show the energy spectra of the hidden sector γv and ρv/πv.
Note the difference between the NAMZ′ setup and the KMNAγv one. This is
due to the difference in the amount of initial-state radiation in the two cases,
as discussed in Sec. IV.4.3 and shown in Fig. IV.11.

The energy and momenta of the v-sector particles not decaying back into
the SM is the prime source of the missing p⊥ distributions, 3 see Fig. IV.8. In
each of the six setups there is only one source of missing energy. In the Abelian
ones it is the qvs that escape detection, while in the non-Abelian ones it is the
stable non-diagonal v-mesons. For KMAγv the falling Abelian 6 p⊥ spectra are
easily understood from the bremsstrahlung nature of the γv emissions. The
spike at 6 p⊥ = 0 comes from events without any emissions at all, where all
the energy is carried away by the invisible qvs, and would hardly be selected
by a detector trigger. (ISR photons might be used as a trigger in this case,

3with some extra effects from neutrinos e.g. in b, c and τ decays, included in the plots but here
not considered on their own.
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Figure IV.7: MZ′ vs KMγv : the energy spectrum of the γv and diagonal πv/ρv emitted
per event. On top: left side shows the energy distribution for AMZ′ , the right side
shows the corresponding one for NAMZ′ . Bottom: left side shows the energy distribu-
tion for KMAγv , right side shows KMNAγv . For the abelian cases mqv = 50 GeV, for
the non abelian cases mqv = mγv /2. In all four cases αv = 0.4.

but with irreducible backgrounds e.g. from Z0 → νν̄ it is not likely.). In the
KMNA case the momentum of non-diagonal v-mesons does not leak back,
this again allows a falling slope and a spike at 6 p⊥ = 0, for events in which
equal amount of energy in the non-diagonal mesons radiated from either side
of the qvq̄v system. For the SMA and SMNA scenarios, on the other hand, the
starting point is the pT imbalance that comes from the e+ and e− from the Ev

and Ēv decays, which have no reason to balance each other. So even without
γv emission, or diagonal πv/ρv, there will will be a p⊥ imbalance.

In the SMNA case, though the spectrum is shifted towards lower missing
6 p⊥ = 0 because on average a higher number of mesons are radiated, so it is
less likely to have an event with the two leptons back-to-back. There could
also be 6 p⊥ = 0 cases in which all the mesons are flavour diagonal and all the
energy-momenta decays back into the SM, but these events are very rare.

In the Abelian case, the missing p⊥ distribution is directly connected to the
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Figure IV.8: KMAγv , KMNAγv , SMA, SMNA: the 6 p⊥ spectrum in each event. For the
Abelian cases (left) the 6 p⊥ is due to the qv escaping detection. For the non-Abelian
cases (right) it is due to the v-flavoured mesons not decaying into SM particles. In the
Abelian cases mqv = 50 GeV, while in the non-Abelian cases (right) mqv = 1, 3, 5, 10.
For all plots αv = 0.4.

mass parameter values mqv and, in the SMA case, to the mEv
. The value of mqv

in the KM/Z′ mediated cases may be extracted from the kinematic limit given
by the “shoulder” of the distribution. In the SM-mediated case, where two
different fermion mass scales are involved, one can extract a relationship for
the relative size of the two from lepton energy distributions such as the one
in Fig. IV.16, see [18] for details. The distribution that directly pinpoints the
mass of the particle decaying back into the SM, though, is the invariant mass
of the lepton pairs produced, and that of the hadronic jets. We will discuss
these distributions in the sections dedicated to each scenario.

IV.4.2 AMZ′ and NAMZ′

In discussing the phenomenology of the different scenarios we will describe
the v-sector particle distributions first, then the visible particle distributions
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Figure IV.9: AMZ′ and NAMZ′ . The distribution of the invariant mass of the lepton
pairs. Note the peak at 2 GeV, in both cases corresponding to the mass to be recon-
structed mγv = mρv/πv

. On the left, in the Abelian case, mqv = 50 GeV, while on the
right, in the non-Abelian case, mqv = 1 GeV. The coupling is fixed at αv = 0.4.

followed by the jet distributions.

The number of particles of γv photons emitted in the AMZ′ and NAMZ′

scenarios was described in Fig. IV.4 and Fig. IV.5 in the previous section. The
difference between the Abelian and non-Abelian dependence on the αv and
mγv/πv/ρv

parameters has already been highlighted in the same Sec. IV.4.1, as
well as the γv/πv/ρv energy distributions, the charged multiplicity and the 6p⊥
spectrum. The difference between KMAγv and SMA was also discussed.

The difference between the Abelian and non-Abelian 6 p⊥ distribution in
Fig. IV.8 is more subtle. In the Abelian case an event has maximum p⊥ inbal-
ance when one of the qv/q̄v produced emits a collinear γv which takes most
of the qv (q̄v) momentum while the other v-quark has no emission and goes
undetected. The more γv are emitted, the less likely it is that the undetected
q̄v will have maximal energy. This remains true for all the mγv contemplated
(except in the low-p⊥ region). In the non-Abelian case, to have large p⊥ in-
balance the event must produce few energetic mesons back-to-back and have
the mostly flavoured mesons at one end and mostly flavour neutral mesons at
the other end. When the meson mass is lower, there is a higher probability of
the string producing a large number of mesons and the likelihood of having
large 6p⊥ falls rapidly. When the meson masses are higher and fewer πv/ρv are
produced the high 6p⊥ distribution falls off less rapidly.

The γv/πv/ρv mass can be extracted from the lepton pair invariant mass,
where it shows up as a well-defined spike, Fig. IV.9. (The additional spike
near zero mass is mainly related to Dalitz decay π0 → e+e−γ.) Once the mass
is known, the remaining hadrons and photons may be clustered using the Jade
algorithm, with mγv/πv/ρv

as the joining scale. The corresponding number of
jets and invariant mass distribution for the hadronic jets is given in Fig. IV.10.
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Figure IV.10: AMZ′ : the number of jets per event and the distribution of the invariant
mass of the jets. In both plots the qv mass is mqv = 50 GeV. The left side shows the
αv dependence for mγv = 10 GeV, while the right side shows the jet invariant mass
distribution for αv = 0.4 and mγv = 6 GeV. The jet reconstruction algorithm is Jade,
with mcut corresponding to the γv mass. Note the peak at 6 GeV.

The jet invariant mass distribution clearly shows the peaks connected to the
invariant mass of the γv. The background comes from several sources. The
spike at zero mass is mainly related to ISR photons; although we assume no
detection within 50 mrad of the beam directions, some isolated photons do
show up above this angle and form jets on their own. When kinematically
possible, τ decays and c and b decays will also occur. These contain neutrino
products that reduce the visible mass, thus contributing to a continuum below
the mass peak. Finally, misidentifications among partly overlapping systems
leads to tails on both sides of the peak.

An efficient clustering algorithm should maintain the ratio between the
average number of γv particles produced and the number of jets found, as is
confirmed by comparing the plots on left side of Figs. IV.4 and IV.10. In this
particular exercise we have relied on the extraction of the relevant mass scale
from the lepton pair invariant mass distribution. This should be guaranteed
by the presence of leptons in all six scenarios. Specifically, if the only way
to decay back into the SM is via kinetic mixing, the γv → SM branching ra-
tios are fixed by the off-shell γ∗ branching ratios. In the non-Abelian case the
absence of a spin 1 v-meson would reduce the rate of e+e− and µ+µ− pairs
by helicity suppression. However, also in such scenarios, a simple trial-and-
error approach with a range of jet clustering scales would suffice to reveal a
convincing jet mass peak.

More information about the event and the model parameters can be ex-
tracted from the angular distributions in Sec. IV.4.5.
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Figure IV.11: KMNAγv : The total energy radiated in ISR photons. Note the spike
around 400 GeV: a large fraction of the events will have a reduced ŝ due IS photon
emission. The qv mass is fixed by mqv = mπ/ρv

/2.

IV.4.3 KMAγv and KMNAγv

The Z′ mediated and γv mediated setups are effectively very similar, once the
difference in coupling constants is factored out. The phenomenology can ap-
pear rather different, however, because of the initial state radiation from the
electron/positron beams. To view this, recall that the photon bremsstrahlung
spectrum is spiked at small energy fractions, ∝ dzγ/zγ, and that therefore the
electron-inside-electron PDF roughly goes like dze/(1 − ze), with ze = 1− zγ. In
the case of a γ or light γv propagator, behaving like 1/ŝ = 1/(zes), this combines
to give a dze/(ze(1 − ze)) = dzγ/((1 − zγ)zγ) spectrum. The complete descrip-
tion includes the emission of multiple photons off both incoming beams, but
the key features above described are readily visible in Fig. IV.11. Specifically,
the spike at EISR = 400 GeV corresponds to the emission of an energetic pho-
ton on one side only, while the non-negligible tail above that requires hard
emissions on both sides.

Note that while the number of v-particles produced are similar for KMAγv

and AMZ′ in the Abelian case, Fig. IV.4 vs. Fig. IV.12, they are different in
the non-Abelian case, Fig. IV.5 vs. Fig. IV.13. Specifically, the higher average
multiplicity in the non-Abelian case leads to a double spike in the distribution,
a normal one from events with little ISR and an extra low-multiplicity one
from events with much ISR.

IV.4.4 SMA and SMNA

The number of v-particles produced in the standard model mediated scenarios
is shown in Fig. IV.14, and the energy of the γv photons and of the v-mesons
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in Fig. IV.15. The kinetic boundary Emax is different in the two cases, owing
to the choice of mqv = 50 GeV in the Abelian case. This reduces the energy
available for γv emissions. The 6p⊥ distribution was shown in Fig. IV.8 and has
already been discussed.

The most important distribution to pinpoint the masses of the model is the
lepton energy spectrum, Fig. IV.16. In this case leptons may come from both
the kinetic mixing decays of the γv and from the decays of the Ev into eqv. The
energy spectra are very different in the two cases. The leptons coming from
the Ev decays tend be highly energetic, while the rest are less so. A reasonable
first approximation is to associate the highest energy electron and positron
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Figure IV.15: SMA vs SMNA: the energy spectra of the γv and of the diagonal πv/ρv

emitted per event. The left side shows the energy distribution for SMA mEv
= 250,

GeV mqv = 50 GeV, the right side shows the corresponding distribution for SMNA (in
this case mqv = 1, 3, 5, 10 GeV corresponds to half of the πv/ρv mass.).

with the two Ev decays, and the rest with the γv/πv/ρv ones. The curve in
Fig. IV.16 represents the sum of the steeply falling spectrum associated to the
leptons coming from γv decay, and a flat spectrum associated to the leptons
from Ev → eqv decay. The upper and lower shoulders of the former energy
distributions then give a relationship between the Ev and the qv masses [18].

IV.4.5 Angular distributions and event shapes

The distribution of the production cross-section as a function of the angle be-
tween the jets and the beam axis has a characteristic dependence on the spin

IV
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Figure IV.17: AMZ′ and SMA: the distribution of cos θi, where θi is the angle between
the ith jet and the beam axis, for mqv = 30 GeV and for mqv = 50 GeV. A lower cut on
the invariant mass mj > mγv/πv/ρv

/2 was applied in this case. In both cases mγv = 10
GeV and the v-coupling is fixed to αv = 0.4, mqv = 10 GeV.

of the pair-produced particles. This fact may be used to identify the qv spin.

In Fig. IV.17 one may observe the cos θi distribution, where θi is the polar
angle between the ith jet and the beam axis, for mγv = 10 GeV. Only jets with a
reconstructed mass mj > mγv /2 are shown, since lower-mass jets are strongly
contaminated by ISR photons above the θcut = 50 mrad cut. The production
cross-section for e+e− → qvq̄v, with qv a massless spin 1/2 fermion, is propor-
tional to 1 + cos2 θ. In the AMZ′ case one must allow for corrections due to the
θcut, to the qv being massive and to the γv radiation; typically this leads to a
somewhat flatter distribution. In the SMA case the isotropic decays Ev → eqv

flattens whatever original e+e− → EvĒv distribution, unless the eqv decay prod-
ucts are highly boosted. In our case a small ISR contamination is still visible
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Figure IV.18: AM′
Z and NAM′

Z: the distribution of θij, the angle between the γvs in
the Abelian case (left), or the angle between the diagonal mesons in the non-Abelian
case (right). The distributions are shown as functions of the mass mγv = mπv/ρv

. The
coupling constant is αv = 0.4 in both cases. Note that the number of γv and diagonal
πv/ρv is different in the two cases.

close to cos θ = 1, but otherwise the distribution is flat.

The distribution of opening angles in pairs of v-particles, θij, should give
some insight whether the secluded sector G is an Abelian or a confining non-
Abelian group. In an Abelian event the qvq̄v quarks define a dipole emission
axis. To first approximation the v-gammas are emitted independently, i.e. with
a flat distribution in the φ angle around the dipole axis, and uniformly in ra-
pidity along this axis. In the non-Abelian case the emissions occur along a
chain of dipoles, that is reconfigured by each new emission, since the gvs carry
v-colour charge. This implies a different underlying correlation structure, but
it is unclear what happens with this correlation on the way through the v-
hadronization process and the decays back into the standard sector, and how
best to search for it.

In Fig. IV.18 we show the θij distribution of v-particle pairs, for the Abelian
AMZ′ and non-Abelian NAMZ′ cases. Note how the θij 0 and θij π angles are
preferred in non-Abelian case. The comparison is somewhat misleading, how-
ever, in the sense that we compare scenarios with the same mγv = mπv/ρv

and
the same αv, but with different numbers of v-particles per event (see Fig. IV.4)
and different v-particle energy distributions. In Sec. IV.5 we will discuss fur-
ther these distributions under more similar conditions.

In Fig. IV.19 we show the reconstructed jet-jet cos θij distributions corre-
sponding to the v-particle distributions in Fig. IV.18. Note how the relative
difference between the Abelian and non-Abelian scenarios is maintained.

In order to characterize the shape of the events one may also use thrust
and (the linearized version of) sphericity [37–39]. These indicate whether an
event is more pencil-like, T=1 and S = 0, or more spherical, T = 1/2 and S = 1.
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Figure IV.19: AM′
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Z: the distribution of θij, the angle between the jets in the
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. The v-coupling is fixed to αv = 0.4.

Sphericity and thrust are primarily intended for events analyzed in their own
rest frame, while the visible systems we study have a net momentum that is
compensated by the stable secluded-section particles, plus ISR photons going
down the beam pipe and neutrinos. Since we are interested in the properties
of the visible system itself, not in its net motion, the analysis is performed in
the rest frame of this visible system. In addition, for the SMA scenarios, a
further distortion occurs by the kinematics of the Ev → eqv decays, and by the
presence of the resulting e± in the final state. To this end, the highest-energy
electron and positron are excluded from the definition of the visible system.

In Fig. IV.20 we show the thrust distributions in the six scenarios, and in
Fig. IV.21 the sphericity distributions. As one may have predicted, the events
become less pencil-like as the coupling αv grows. In addition the SM mediated
events are less likely to be pencil-like than the KM or Z′ mediated ones.

IV.5 Analysis: comparing 6U(1) and SU(N)

In this section we begin to address the issue of discriminating between
Abelian and non-Abelian scenarios in cases in which smoking-gun discrim-
inating signals are absent. To this end we consider the most challenging
scenario, in which γv and πv, ρv have the same mass, and the same average
number of v-particles leak back into the SM sector, carrying the same aver-
age amount of energy. We also consider the same production mechanism, to
reduce model dependence and to isolate the effects of the hidden sector dy-
namics.

So how could the Abelian and non-Abelian scenarios come to have so sim-
ilar properties? First off, of course, mγv = mπv = mρv needs to be assumed.
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Figure IV.20: The plots show the thrust distribution for the six scenarios as a function of
the αv. These correspond to, from top to bottom, MZ′ , KMγv and SM production. The
plots on the left show the Abelian case while the plot on the right show the non-Abelian
cases. For all Abelian plots, the parameters are set to mqv = 50 GeV and mγv = 10 GeV.
For the SMA case mEv

= 250 GeV is set as well. For the non-Abelian cases, the mass of
the mesons is fixed to mπv/ρv

= mγv

Thereafter the value of Nflav in the non-Abelian model specifies that exactly an
average fraction 1/Nflav of the full energy leaks back into the visible sector. In
the Abelian model, for a given mqv , αv is the only free parameter that could be
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Figure IV.21: The plots show the (linearized) sphericity distribution for the six scenar-
ios as a function of the αv. These correspond to, from top to bottom, KMZ′ , KMγv and
SM production. The plots on the left show the Abelian case while the plot on the right
show the non-Abelian cases. For all Abelian plots, the parameters are set to mqv = 50
GeV and mγv = 10 GeV. For the SMA case mEv

= 250 GeV is set as well. For the
non-Abelian cases, the mass of the mesons is fixed to mγv/πv/ρv

= 10 GeV.

fixed to give that average energy. For this parameter set, the number and en-
ergy spectrum of γvs are predicted entirely by the perturbative cascade. These
distributions now need to be roughly reproduced by the non-Abelian model,
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Figure IV.22: The plots show the comparison between the Abelian and the non-Abelian
setups: the number of γvs (Abelian) or diagonal πvs/ρvs (non-Abelian) (top left), the v-
particle energy distribution (top right), the number of SM charged particles produced,
and the missing p⊥. The scenarios are chosen to yield similar distributions.

which first of all means the same average number of v-particles decaying back
into the SM. While mqv = mπv /2 is fixed in this case, there is freedom in the
choices of αv and non-perturbative fragmentation parameters. Recall that the
number of v-particles will not vanish in the αv → 0 limit for the non-Abelian
model, unlike the Abelian one. Actually it turns out to be slightly difficult
to reduce the non-Abelian multiplicity down to the level set by the Abelian
scenario. With an αv comparable to that of a QCD cascade at a corresponding
energy/mass ratio, the longitudinal fragmentation function needs to be made
harder by decreasing a and increasing b′ relative to the QCD values.

Using such a strategy, a matching pair of scenarios have been constructed,
an AM′

Z model with mqv = 20 GeV, mγv = 10 GeV and αv = 0.3, and a NAM′
Z

with mqv = 5 GeV, mπv/ρv
= 10 GeV, Nflav = 4, αv = 0.15, a = 0.12 and b′ = 2. This

gives fair agreement, as can be seen in Fig. IV.22.

We can now compare the angular distributions in the two cases. In
Fig. IV.23 (left) one may observe how in the non-Abelian case the θij distri-
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Figure IV.23: The plots show the comparison between the Abelian and the non Abelian
setups. On the left is the cos θij between the v-particles which can decay back into the
SM. On the right is the corresponding cos θij between the jets in the detector.

bution of the angle between the visible v-particles is much more peaked near
0 and π than in the Abelian one. The plot on the right shows how this charac-
teristic is maintained in jet distributions.

We have repeated the study for some different model parameters and
found similar results. In the second comparison the AM′

Z model has mqv =

50 GeV, mγv = 10 GeV and αv = 0.43, while NAM′
Z has mqv = 5 GeV,

mπv/rhov
= 10 GeV, Nflav = 4, αv = 0.18, a = 0.2 and b′ = 2.

It is tempting to ascribe the observed differences to different radia-
tion/hadronization patterns in the two scenarios, ultimately deriving from
the different dipole emission topologies already discussed. One attractive pos-
sibility is that the relative lack of peaking at cos θij = ±1 for the Abelian sce-
nario is a consequence of the dead cone effect, i.e. the suppression of emissions
parallel to a massive radiating particle. A back-to-back qvq̄v pair undergoing
non-Abelian hadronization would have no corresponding suppression for v-
hadron formation along this axis. However, considering of the flexibility that
exists in the tuning of non-perturbative hadronization parameters, and the
differences observed in the v-particle energy spectrum, we will not now be as
bold as to exclude the possibility of a closer match. If such a match required
straining the non-perturbative model to behave rather differently from QCD
extrapolations, however, then such tunes would not be particularly credible.

IV.6 Summary and Outlook

In this article we have compared six different scenarios of a generic secluded-
sector character. These are either kinetic mixing with a light γv, or Z′, or new
Fv particles, and in each case either with a broken U(1) or an unbroken SU(N).
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The Fv particles are charged both under the Standard Model groups and the
new secluded-sector groups, and so are guaranteed a significant production
rate, whenever kinematically possible, whereas the rate via γv or Z′ depends
on a number of parameters such as the γ/γv mixing parameters or the Z′ cou-
pling structure and mass. In this article we have completely disregarded such
rate issues and instead studied the properties of the different models on an
event-by-event basis.

In order to do so, we have developed a new flexible framework that im-
plements hadronization in the hidden sector. Similar modeling in the past
have relied on simple rescaling of QCD, whereas here we set up hidden-sector
string fragmentation as a completely separate framework, though sharing the
same underlying space–time structure of the hadronization process. We have
also expanded on our previous work with parton showers in the hidden sec-
tor, possibly interleaved with radiation in the visible sector, by allowing for
the emission of massive γvs, when the U(1) group is broken. In order to obtain
the correct behaviour, both in the soft/collinear limits and for hard emissions,
the shower is matched to first-order matrix elements we have calculated for
the massive γv cases. Much of the framework presented here could be ap-
plied also to other related scenarios, although there are limits. For instance,
implicitly it has been assumed that the qv masses are not too dissimilar from
the confinement scale Λ of the new SU(N) group — hadronization would look
rather different in the limit mqv ≫ Λ.

In the scenarios where Fvs are produced and promptly decay like Fv → f qv,
the presence of the fermions f in the final state is a distinguishing factor, and
the f energy spectrum can be used to extract information on mass scales in the
secluded sector. At first glance, the production mediated by a γv or a Z′ would
seem to be more similar. The different location of the propagator mass peaks
leads to quite significant patterns of initial-state photon radiation, however,
that would be easily observed.

The challenge, thus, is to distinguish an Abelian and a non-Abelian sce-
nario interactions in the secluded sector. In certain cases that would be
straightforward, e.g. if there is only one qv species, so that all energy decays
back into the standard sector in the non-Abelian models. It is possible to fix
parameters in the non-Abelian cases so that only some fraction decays, so that
the level of activity matches Abelian αv one.

Our first investigations here point to differences showing up in event prop-
erties related to the overall structure of the energy and particle flow. More
elaborate tunings possibly might bring the models closer together, but one
would hope that data still would favour “what comes naturally” in either of
the models.

There are also more handles than the ones we have used. We have shown
that not only lepton pairs but also jets are amenable to mass peak identifica-
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tion, which would allow to divide events into several subsystems and analyze
their relative location, e.g. searching for coherence effects. Should lifetimes be
long enough to induce displaced vertices, not only would that be a spectacular
signal, but it would also be a boon to such analysis efforts.

The most obvious next step would be to study these models for conse-
quences at the LHC. The task can be split into three parts: cross sections,
triggers and model-specific event properties. The cross sections are so inti-
mately related to the choice of masses and couplings that it will be impossible
to exclude the possibility of a secluded sector, only to separate excluded and
not-excluded regions of parameter space, in close analogy with SUSY. The ob-
vious trigger would be 6 p⊥, but we have seen that this would not work for
non-Abelian scenarios with one qv flavour. It would then need to be supple-
mented by the presence of (multiple) lepton pairs of some fixed invariant mass
and, if we are lucky, displaced vertices. The final step would be to understand
whether the more busy environment in hadronic events would still allow to
distinguish Abelian and non-Abelian models — the separation between the
three production scenarios we have considered here should still be straight-
forward. Chances are that this will bring us full circle to the cross sections
issue, since more sophisticated analyses will require a decent event rate to
start out from.
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IV.A Scenario selection and setup

We here present some information relevant to get going with secluded-sector
event generation in PYTHIA 8. Basic knowledge of the program is assumed
[40].

The v-particle content is summarized in Tab. IV.2. Needless to say, not
all of them would be relevant for each specific scenario. Internally further
copies of qv may be used, up to code 4900108, but these do not appear in the
event record. Properties of the particles can be set to modify the scenarios,
notably mass (m0); only the gv must remain massless. If Fv → f qv is allowed,
masses must be chosen so that the decay is kinematically possible. The πv

and ρv masses should be set at around twice the qv one. For unstable particles
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name name identity comment
Dv Dv 4900001 partner to the d quark
Uv Uv 4900002 partner to the u quark
Sv Sv 4900003 partner to the s quark
Cv Cv 4900004 partner to the c quark
Bv Bv 4900005 partner to the b quark
Tv Tv 4900006 partner to the t quark
Ev Ev 4900011 partner to the e lepton
νEv

nuEv 4900012 partner to the νe neutrino
Mv MUv 4900013 partner to the µ lepton
νMv

nuMUv 4900014 partner to the νµ neutrino
Tv TAUv 4900015 partner to the τ lepton
νTv

nuTAUv 4900016 partner to the ντ neutrino
gv gv 4900021 the v-gluon in an SU(N) scenario
γv gammav 4900022 the v-photon in a U(1) scenario

Z′, Zv Zv 4900023 massive gauge boson linking SM- and v-sectors
qv qv 4900101 matter particles purely in v-sector

π
diag
v pivDiag 4900111 flavour-diagonal spin 0 v-meson

ρ
diag
v rhovDiag 4900113 flavour-diagonal spin 1 v-meson

π
up
v pivUp 4900211 flavour-nondiagonal spin 0 v-meson

ρ
up
v rhovUp 4900213 flavour-nondiagonal spin 1 v-meson

ggv 4900991 glueball made of v-gluons

Table IV.2: The allowed new particles in valley scenarios. Names are gives as used in
this text and as in PYTHIA 8 event listings. The identity code is an integer identifier, in
the spirit of the PDG codes, but is not part of the current PDG standard [41].

the width (mWidth) and allowed mass range (mMin and mMax) can be set. To
generate displaced vertices the cτ value must be set (tau0). Spin choices are
described later.

Several particles by default are set stable, so it is necessary to switch on

their decay (mayDecay). For γv, π
diag
v and ρ

diag
v no decay channels are on by

default, since that set depends so strongly on the mass scale selected. The
simple way, of switching on everything (onMode = on) works in principle, but
e.g. a 10 GeV γv would then be above the bb̄ threshold but below the BB̄ one,
and so generate a trail of (harmless) error messages. Also the branching ratios
of the decay channels may need to be adjusted, based on the scenario. The Zv

ones are mainly place-fillers, to give one example.

The list of processes is shown in Tab. IV.3. It would be possible to switch
on all of them with HiddenValley:all = on, but normally that would imply
a mix of different scenarios that does not appear plausible. Many processes
should also be viewed in the context of the other choices made.

Finally, the list of relevant model parameters is shown in Tab. IV.4. On top
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code flag process
4901 HiddenValley:gg2DvDvbar gg → DvD̄v

4902 HiddenValley:gg2UvUvbar gg → UvŪv

4903 HiddenValley:gg2SvSvbar gg → SvS̄v

4904 HiddenValley:gg2CvCvbar gg → CvC̄v

4905 HiddenValley:gg2BvBvbar gg → BvB̄v

4906 HiddenValley:gg2TvTvbar gg → TvT̄v

4911 HiddenValley:qqbar2DvDvbar qq̄ → g∗ → DvD̄v

4912 HiddenValley:qqbar2UvUvbar qq̄ → g∗ → UvŪv

4913 HiddenValley:qqbar2SvSvbar qq̄ → g∗ → SvS̄v

4914 HiddenValley:qqbar2CvCvbar qq̄ → g∗ → CvC̄v

4915 HiddenValley:qqbar2BvBvbar qq̄ → g∗ → Bv B̄v

4916 HiddenValley:qqbar2TvTvbar qq̄ → g∗ → TvT̄v

4921 HiddenValley:ffbar2DvDvbar f f̄ → γ∗ → DvD̄v

4922 HiddenValley:ffbar2UvUvbar f f̄ → γ∗ → UvŪv

4923 HiddenValley:ffbar2SvSvbar f f̄ → γ∗ → SvS̄v

4924 HiddenValley:ffbar2CvCvbar f f̄ → γ∗ → CvC̄v

4925 HiddenValley:ffbar2BvBvbar f f̄ → γ∗ → Bv B̄v

4926 HiddenValley:ffbar2TvTvbar f f̄ → γ∗ → Tv T̄v

4931 HiddenValley:ffbar2EvEvbar f f̄ → γ∗ → Ev Ēv

4932 HiddenValley:ffbar2nuEvnuEvbar f f̄ → γ∗ → νEv
ν̄Ev

4933 HiddenValley:ffbar2MUvMUvbar f f̄ → γ∗ → Mv M̄v

4934 HiddenValley:ffbar2nuMUvnuMUvbar f f̄ → γ∗ → νMv
ν̄Mv

4935 HiddenValley:ffbar2TAUvTAUvbar f f̄ → γ∗ → Tv T̄v

4936 HiddenValley:ffbar2nuTAUvnuTAUvbar f f̄ → γ∗ → νTv
ν̄Tv

4941 HiddenValley:ffbar2Zv f f̄ → Z∗
v(→ qvq̄v)

Table IV.3: Allowed processes that can be switched on individually.

is the choice between a U(1) and an SU(N) scenario. The Fv and qv spins must
be selected in a coordinated fashion, to be consistent with Fv → f qv decays.
The choice of Fv spin directly affects the process (differential) cross sections. If
Fv has spin 1 also the choice of an anomalous magnetic moment would have
an influence.

The kinetic mixing switch allows to reuse the γ∗-mediated processes in a
completely different context than originally foreseen, in which the Fv have
no Standard Model coupling but are produced by γ − γv mixing. Actually
this redefines the Fv to be equivalent with what we normally call qv. Thus a
process like f f̄ → γ∗ → EvĒv becomes f f̄ → γ∗ → γ∗

v → qvq̄v. To complete this
transformation you need to set the Ev stable (mayDecay = false), uncharged
(chargeType = 0) and invisible (isVisible = false).

The shower parameters should be self-explanatory. The lower cutoff scale
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parameter def. meaning
Scenario

HiddenValley:Ngauge 3 1 for U(1), N for SU(N)

HiddenValley:spinFv 1 0, 1 or 2 for Fv spin 0, 1/2 and 1
HiddenValley:spinqv 0 qv spin 0 or 1 when sFv

= 1/2

HiddenValley:kappa 1. Fv anomalous magnetic dipole moment
HiddenValley:doKinMix off allow kinetic mixing
HiddenValley:kinMix 1. strength of kinetic mixing, if on

Showers in secluded sector
HiddenValley:FSR off allow final-state radiation
HiddenValley:alphaFSR 0.1 constant coupling strength
HiddenValley:pTminFSR 0.4 lower cutoff of shower evolution

Hadronization in secluded sector
HiddenValley:fragment off allow hadronization
HiddenValley:nFlav 1 Nflav, number of distinct qv species
HiddenValley:probVector 0.75 fraction of spin-1 v-mesons
HiddenValley:aLund 0.3 a parameter in eq. (IV.29)
HiddenValley:bmqv2 0.8 b′ = bm2

qv
parameter in eq. (IV.29)

HiddenValley:rFactqv 1.0 r parameter in eq. (IV.29)
HiddenValley:sigmamqv 0.5 σ′, such that σ = σ′mqv

Table IV.4: The parameters that can be set to select the model to study, with default
values and some expanations.

can be raised in proportion to the characteristic mass scales, but ought to be
no more than mqv /2, say. A lower cutoff means longer execution time without
any significant change of event properties.

The hadronization parameters have also been discussed before, except for
r, which is providing slightly more flexibility to the Lund–Bowler fragmeta-
tion function than in eq. (IV.28)

f (z) ∝
1

z1+rb′
(1 − z)a exp

(

− b′m2
mv

z m2
mq

)

. (IV.29)

where r could be set anywhere between 0 and 1. The dimensionless σ′ parame-
ter is normalized so that the qv of each new pair produced in the hadronization
has a 〈p2

⊥〉 = (σ′mqv)
2.

Behind the scenes, the HiddenValleyFragmentation class can reuse most
of the standard StringFragmentation and MiniStringFragmentation ma-
chineries. Specifically, already for the Standard Model hadronization, the se-
lection of flavour, z and p⊥ is relegated to three “helper” classes. The three
new classes HVStringFlav, HVStringZ and HVStringPT derive from their re-
spective SM equivalent, and cleanly replace these three aspects while keeping
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the rest of the handling of complex string topologies. Specifically, it would
be straightforward to expand towards a richer flavour structure in the se-
cluded sector. Note, however, that it is important to select v-quark “con-
stituent” masses that reasonably match the intended v-meson mass spectrum,
since such relations are assumed in parts of the code. Furthermore, with
new qv defined with separate particle data, one must disable the few lines
in HiddenValleyFragmentation::init(...) that now duplicate the one qv

into several identical copies.
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