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Surnrnary.

In this ïeÞort a three-axis stable platforrn system is öscussed. The plat-
forrn systern consists of a stable elernent to which three single-axis gyros

are rnou-nted.. The stable elerz'rent is provided with("o*" kind off susPen-

sion, e, g" a gírnba1 systern, arranged in such a way that it is possible to
rrent. ' The systern is described in section

1. Possible v,/eys of arranging the gyroscopes on the stable elernent are

discr-'.ssed in sectj.cns 2, and.3. The equations of rnotion are derived for
arbít:ary ori-enîaiio:r of the gyros in sections 4 and 5. The equations of
rnoiion are linearized in section 6, rvhere it is assurned that the input
a;<es of the gylos are rnutually orthogonal. In sectio1r7,."u given sorne

physi.cal inte::prctations cf the results, 'so farr obtained. In section I the

conditions for stability are estabtished. It is found that the stability of
the systern is greatly affected by the arrangefir.ent of the gyros. The rnain
result of section B is thai, for a systern with orthogonal input a^:<es,the

gyroscopes shculd be arranged with the output axes in the sarne plane and

with a total angular rnorne:rturn equal to or greater than fi H, where H
is the angular rnoi:ne:iLurn of one gyroscope. The stability conditions for
systerns designed on a single axis basis are also discussed in section 8.

It is found that ihe output axis sensitivity of the gyroscopes gives inter-
action between the three channels. The effect of this interaction is o i;o

extensively treatecL. Systerns with a characteristic equation of a low
dcgree are artalysed'with algebraical rnethods. For systerns with a

>i<

For an analysis of t
work reported in re

;

he dynarnics of a girnbal systern we refer to the
ferences 5 and 6.



z,

]
I

dnaracteristic equatiorgiof a high degreeì the graphical rnethod of Evans
ts

is adopted. In section 9 -are analysed the angular deviation of the stable

elernent, caused by stochastic disturbances" It is assurned that the

disturbances are stationary processes with zeto averages. It is found

that the angular deviation caused by disturbing torques acting on the

gyrofloats has a randorn walk character, with a variance increasing
línearly with tirne, A relationship is given between the variance of the

angular displacernent and the autocorrelation function of the disturbing
torque. A quality figure for the randorn drift of a gyroscope is suggested.

In section 10 the synthesis problern is briefly delt with. A' rnethod is
given for the synthesis of a.n inertial stabilized pl4tforrn systern. In the

t,'..' .,t. , itla¡r¡o¿
appendix_the synthesis method,due to Truxal is a.Ccfl*eà to the synthesis/
of a single axis inertial stabilized platforrn systern.
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l. A short description of the syster-n

The principal function of the st,able platform ig to rrrai¡rtain a physical.

reference systg,rn (for navigatir>n, fire-contro1, or other purpoaee). The

( cornplex'1ot$f/É*rrrponents nec()s sàvy to establísh the reference i*-e*t*ed
the plat&Trn eystleq. Th'¿ {:c}nlponÈnt of the platform systern r¡¡hic}r

mechanízes the referer¡.c e ia calTed the stabLe elecnent . I-fere it is assurned

that the baeic eorflpÒrrÊrlt rf the ¡rlatforrn systern is the singì.e-axis floated
gTro. The features of such a gyro are showrr in flgure 1. !.

\TORQUE GENERATOR STATOR

RQUE GENERATOR RCITOR F I-OAT S I 6NAL
GENERATOR
ROTÛR

STATOR

OUTPUT AXIS

SPIN AXIS

GII'{BAL
BEARIN

CASË GVRO ROTCIR

BALANCE N{J SPI N REFERENCE AXIS

FIGURE 1 1

It consists of a gyrorrtor su¡rported by ball beari"rtgs in a cyli-ndrical

charnber, called the tloat, whích ie eupported in the case by jewel bearings.

The apace between the cyi,inder and t w¡Ih ? íty

ftuid" Gl**4¡i¿.-r-er¡?et-to.{on {fne " 
*'ä;å

fríctton torque in the beari-o.gs. In eorne applications the fluid ia also used

i-n order to introduce darnping between the fl.oat andthe case, The pívot

a¡cj-s of the float j.s the ouqrut axis of tlne gyra, and the angle between the

float a¡rd the case ie the output aígnal of Ëhe gyrÕ. The output eignal ia

rrleasuïed. by a rnicrosyn, the signal generator" :\ gyro ie often provided

with another microÉyn, the torque generator, which rnakee it poesíbl'e to

(..r,



apply a torque to the float for control pur¡roree. The epin axis of the gyro

íB csi:ncident with the a¡li.n vector of the rotor, The axig coincident utith

the apin axíg when no orrtput øigna.l ie obtained frorn the gyro ie called

the apj:r reference a¡ris. The input a^:<ia of the gyro ie orthogonal to the

a¡rln reference axi.e and to the output axis. ln pictorial díagrarns the gyro

ia represented by the following sírn¡rlifi'ed drawing.

SPIN REFERËNCË AXIS

OUTPUT AXIS

INPUT AXIS

Figure 1.2

The deeíred. perforr:aânce of the eirigle aÈ1e gyrø is to give a'n output

eigual for rotatisng arouÃd. the input axie. I'or further detailg of the

al¡gle axle fl.oated gyro, eee reference I'.

Irr order to ¡naíntain the te{erencerthree eingLe arria gyros ere nnounted

to a stable elenrent with r:eutually orthogonal input axes' The gtable

elernent ie su¡rportedfor three degreee of freedorn to the cartie¡ f¡a¡ne,

elernent aud the gí-nrba1 syetern is shor*rn in figure 1.3.
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GIMBAL

STABLE ELEMENT T0RQUEMoToR tNo
RESOLVËR

CARRIER FRAME

FlG, 1. 3

,1,i,

Tbe rotatíone of the stable elernent fu sensed by the gytos" The ouþut
aigaals of the gyros are arnplíÍ.ied., {iltered and dietribu.ted to torque
motorg on the girnbals and. in the gyros. By the ¡rroper choice of the
tranlsÍ.et fr¡nctions frorn the gyros to the torque rnotore it ie possible
for the stable elernent to rnaíntain the desired reference.

ó

GYROs
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2, Deecri of the ar ement of the roe and definition of the
coordi:rate sets

The center of rnaes of the stable elernent is O. Introduce a right-
handed crthogonal coordinate syste¡rr. O y tyZy= fixed to the atable ele-
ment. Thís coordínate set wiLl- be referredto ae the y-aet. A gyro ie
nanned aÍtet its input axis, e,g, a gyro with the Tr.-axis ae input a:<ia

is called a rn-gyro. The lnput axee of the three gyros are pa;allel to

the axea of the y-eet,

To each of the three gyvos we aËeociate a coordi¡.ate aet

9t*)*r(*)*r(*)*r(*) , referred to as tr," *(*)-set. The point o(*) i-"

the center of the rn-gyrr. The xr- and i<..-a;r,.es coincide with the input
and ouþut attee, reepectively. The xr-axie coixcides wíth the apin.

referense axie. Compare tígute 1.2.

fhe position of Èherrn-gyro ie given by the point O 
(ttt) and the orienta-

tion of the rn-gy"Jj¿"fir,.*d by the tranef,orrnation of the y-eet oa the

x- set.

;(rn) = p{*) t z. t

Ae the in¡rut axis of the rsr-gyro ie parallel to the yrrr-axís the trans-
forrnation rnatrix ia cornpletely epecilied by ,n angle 0 

(*J.

},^
J

BT')

X

ï
þ)

"(d^3

2
(1)

3

*!)
d')

3
x

v2



The tra¡rsforrnation rnatrices ca¡r be written

z.z

8.

3

Introduce the Kronecker delta
defined by

x.
I

The tra¡rsformatiott 2. I can be written

ijk

if i= j

if i/:

if indices ijk occur in cyclic order
if rr rr rr tr acyclic tr

if two indices are equal

00

"o" o(r) "i' e(1)

-"ir. e(r) "o, e(l)

0

"o" e(2)

-"i' e(z)

0

"in e(3)

"o, e(3)

P (r)
L

0

0

P(z) =

I

0

0

t

0

0

0

,m e(2)

"o" e(2)

0

"o" e(3)

- "ir, e(3)

(P )

The following conventions are introduced in order to simplify the algebraic
rnanipulations.

(t) Latin indices used as subscripts will take all values frorn 1to 3

r¡nless the contrary is specified.

(Z) tf a Latin index is repeated in a term, it is understood that a
eummation with respect to that index over the ra^nge L,2,3 is implied.

E..
1J

a¡rd the permutation eyrnbol e

I
I

5..
1J

ijk

I

0

I
-t

0

(
Pij

rn) (tr.)
vj 2.3



with the inverse tra¡rsforrnation

9.

2.4

2.5

2.7

where

a¡rd the inverse tra¡rsforrnation

r¡ = p¡i(*) *.(*)

".(*) = ,..(*) *.(^)lIJJ

*.(-) = "..(*) ,.(*)lJTJ

nrr(*) = 6irrr, nr*(*)

nJ,?*t = cos t("')

nJ,?*, = sin .(m)

nJ,?*l = -,i' e(*)

PJ,?*z = .o" e(*)

thereby defining

nri*r=nr*(-) *= r,2,3

Introd.uce the coordinate systurr, ,(-) attached. to the float of the m-gyro.
l4lhen the float is in its neutral positioû, i. e. no output signal, tf^. r-(*) -
axis coincides rvith the *..(*)-axis. The transforrnation of trru *(m)-"ty"tu*
on the o(*)-system is a lotation around.the xr-a^:cis. The angle of rotation
* 

(tn) is the output signal of the rn-gyro. The transformation of trr. *(*)-
eet on tt" o(*)-set is

;(*) = ¡(-);(*) 2.6

6ri

2.8



where

(-) (*)trl = coS9

"rr(*) = -sin q(m)

(rn) _:_ _(*)
"31''= slnq

. (m) ("')
"33' '= cos(P

"-(-)=, 
(ttt)-6'zi 'íz

Cornbining equations (2. 3) and (2.6) we get

rn) m)

íz

r0.

2,9

z, lo

2. tL

z. lz

(

i
(z

o..
LJ

vjqij

where

o

cos

0

sin 9(1)

-sin g (2) .o" o(2)

"i'. e(2)

cos I (z) 
"o, ,(z)

sin g (3) si' e(3)

.o" e(3)

-cos I (3) 
"ir. e(3)

m) (-)
P"j

"o" , 
(2)

0

sin * 
(z)

-sin ç 
(3) 

"o" e(3)

"i.. e(3)

sin q (2) si' e 
(2)

"o, e(2)

-coÉr g 
(z) 

"tr, ,(z)

l3lcos Q' '

0

sin * 
(3)

m)( (
T.

16

Further cornbini:rg equations (2.4) and (2.?) we get

v. = o..'L 'r'(*) '-(*)

The tra¡rsforrn¿tion matrices O(m) = ¡1(-) 
"(m) 

are

* 
(t) sin s 

(t) .r, r (t) -sin s 
(t) 

"o" n(t)

"o. e(l) "i. e(l)

-cos q(t) "r. r(t) cos q(t) 
"o" ,(t)

( 1)

o(z) =

)(o 3

cos I (3) co" e(3)

2.13



3. Classification and analvsis of the arra¡r gernent of the qvros.

The total angular rnornenturn of the gyros is

It was shown in paragrapln? that the arrangerrlent of the gyros is cornpletely

specified by three *rrr." 0 
(1), 

0 
(z), 

"n¿ 
g (3). The arrangernents ca¡r there

fore be classified accordj¡rg to the properties of the triplet 0(1), O(Z), g(3) '

11,

3. 1

3

H

rn= I

where H is the ang:u]ar rnornenturn of one gylo rotor. The quantity

z

I 1r(*)

" = lI ì'(*)
3

3.2

rn= 1

is called. the spin of the platforrn. \ü'e get frorn eguation (2.2)

s = (sin 0(') -.o" 0(3) )z + (sin e(2) -.o" e(1) )z * ("l,, e(¡) - cos eQ))z

3.3

The spin greateLy infl.uences the perforrnance of the platforrn systern'

Another quantity of significafice is the outPut a-:<is orientation nurnber I'

which is defined as the triple scalar product

f

, = [*r, 
t), ;r(2), îr{rl] 3.4

The output axis orientation nurnber can be interpreted geornetrically.as

the volurne of the parallelepiped with the output a;ces r.¡nit vectors '*tr(t)

çzQ) arrð, çzþ) as concurrent sides. Also notice that the output a:<is

orientation nurnber carr be expressed as

1=detIL

where IL is the rnatrix defined by equation (6' )'
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Equation (2, Z) gives

! = "ir 0(1) "i' e(z) .j.r, e(3) + "o" e(t) "o. ,(z) "or a(r) 3.5

The significa¡rce of s and I will be shown in paragraph 8. IrV'e get frorn
equations (3. 3) a^nd (3. a)

The cases of equality in equation (3. ó) are of special interest, Zero spin

is obtained for

04 s d 6

-rÍ I s1

sin o(1) _ 
"os 

e(3) = Q

":,r, 
e(2) - "o" e(l) = o

"i' e(3) - .ou e(z) = Q

3.6

5, t

3.8

cycl.

cycl. 3.9

These equations have eight solutions

e(1)

3n
T

e(z) e(3)

3n
T

3n
T
fr
4

1T

4

r--

l-
I-E

rt
J¿T
\trT
ø
z

,8,T

3¡_T

3n
T

fi
4

fi
4

3¡
T

1T

4

î
4

1-

|=

The corresponding configurations of the gyros are shown in plate 3. 1.

It is obviouS that the spin axes are in the saÍre plane. The solution
It* Ì

li ' ä ' i ) e' g' has the folrowing spin axes



( 1)

(3)

3
x

x

,(r) s(z) e(3)

13.

3. t0

3. TL

1=0

I = 0 cycl.

I=0

1 = 0 cycl. 3. 12

T- --:.
lz'

t

\/ z'

I

\/z

( 1,1)0,

î,r(z) (t, o, -1)

(- t, l, o)
J

The angle between the plane through the spin axes and each coordinate ¿uxis

ís arctg J z' = 54,7 30 .

The conditions for rna^:<irnum spin, s = 6 , are

sin e( 1) + "o" 
g(3) - o

"i' o(2) + .o" e(1) = g

"i' e(3) + .o" e(z) - o

The solutíons of this system carr be obtained frorn the solution (3.9) by

changing the signs of all angles. FIence

3¡r
T
If
4
If
4

3r
T
Tf

4
TI

4

3r
T
3r
T

TT

4
1l

4
3n
T

3n
T

The corresponding configurations of the gyros are shown in plate 3.2. ln
this case the output axes are in the sarne plane.

As shov¡n in section I systerns w-ith

J

t

2o-J

1=0

are of special interest.

3. 13
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Equations (3. 3) and (3. 5) give

sin g( 1) .o" e(3) + "i,, e(z) "o" e( 
t) * 

"r.,. 
e(3) .o" o(2) = 0

si. e(1) "i' e(z) "ir. e(3) * "o" e(1) "o" 
g(z) .o" e(3) - 0 3. 14

't .r' : 
'

These equations have;'infinitely rna"ny'solutions. Given aruitrary 0(1) we

ca¡r find four pair" e(2), 0(3), satisfying equation (3. r4). The solutions can

be obtained frorn plates 3. t1 and 3. L?,. There ate 24 solutions which are

rnultipres of \ " . These are cyclic perrnutations of the following basic

s olutions .

e(3)

3n-T

1T

4
3n
T

1T

4
3n
T

3. t5

The corresponding configurations of the gyros are shown in plates 3' 3 and

3.4, Sorne special arrangernents occ

terminology. ,A'n arraJlgelnent is call

Atl arrangernent is called orthogonal
I
zlt '

Equation 3. 3 gíves the follow'ing condition on the spin nurnber of the ortho-

gonal arrangernents

t< s 15 3.16

.( t)

TI

z
fi
z
Ît
1
L

Tf

z
1T

z
1T

z

1Í

z

TI

z

e(z)

1ï

4

0

0

if

fi

0

0

1T

4

Îf

1T

3r
T



15.

There are totally 64 orthogonal arrangenrents. These arrangernents are
obtained by cyclic perrnutation of 24 basic arra;trgercLents. The basic

arrangements can be divided into three groups of eight arrangernents each

with spin 1, 3 and 5, respectively. The basic atta;tr,gen'aents are

t'. .-(q

s=1r1=0

s = 3r l = - 1

g = 31 1= I

.( r) s(z) e(3)

0

0

0

0

0

1l

z
1T

TI

0

fT

z
Í
z
TI

z
T

fi

1l

Ît
z

?(

1Í

L
z
0

Îf
z

g(1)

1T

1T

z
0

fi
z

fi
z
Îf
z
fr

1l

z
fÎ
,l
L

1T

z
fi
z
Îf
2,

3g e )()

3. t7

3. 18

fr

TI

z
1T

TI

z

0

Tf

z
1l

1T

z

0

fT

z
'Í

Í
z

0

TI

z
0

T
z

eQ)o( 1) o(3)

3. tg
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s=5rL=0 .(r) e(z) e(3)

fl
z
It
z
1T

z
TT

1T

z
1Í

1T

1T

0

î
ft
z,
fi
z
ïr
z
TI

z
fi

1l

2

0

0

0

0

0

fi
z
fr
z
Tf

z
3. ZO

Nlotice that the solution with spin 5 ca¡r be obtained frorn the solution with

spin 1 by changing the signs of all angles'

Thc configurations represented. by equations (3. 1?), (3. 18), (3. t9) a¡d

(3.20) are shown in plates 3.5 - 3. 10.



4. The equation of rnotion of one gyro.

Vfe will now derive the equation of motíon of one of the gyroscoPes.

The angular velocity oL the stable elernent is

The float of the rn-gyro has the angular velocity ; (*)

, (tn) 
= úJ 

(-) â (-)
SS

f)- rt
}L ^.v

t7,

Lt

4.2

4.3

(rr,)

Ss

where

rn (''')n + $(m) t(

,2. Z{x. + x.'1 J

)(Ð
s = 9st t sZ

The angular velocity of. the gyroscopic elernent with respect to the fl.oat

is c.l^ . Let the cornponents of the inertia rnatrix of the float with respect
O/\

to the ,\^)-set be JAn, where J is the rnornent of inertia of the gyro-

scopic elernent with respect to the spin axis , and the quantitie" Akl
defined by

)d- k = r , i/ ilk/i
J Art

I
I

",

) 1'x, drn kll

The float is supposed to have its center of rnass on the output a:cis.

Let the angular rnornenturn of the float of the rn-gyro with respect to its
center be H(-).

¡(r.') = JA .,, (''') â (-) * ,, à-(^)rssroJ

Differentiating with respect to tirne

44

ô (*) +e
þ

, (*), .(*) .... *cu ,.(r.ul(01 l ,k
"(tt) 

= J ks s Js s

rn)
t i3k

4.5
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H

The equations (4.3) and (4. 5) give

r 
[oo, ô(*) *,?.3k6(*)'o*Ak" njf)rår* q!-).i3kftt,o *

,u 
.ô 
(') 

6 
(-) r oir qf'') ..ro^, d 

(*)*o
;" o"F)'r*e.
(.tt)

* Ak" á"t")f2, + A¡" e"t
(*) (-) .

T

( ï'n

ç
(na)*ojr',

(*),-
t t'

+

qi Qijk t

(-) (-) .tq
Ð̂ t qi íj2

LL ,kl 4.6r

The cornponent of 
" 

(*) along the output axis is

hz
7.
,(*) *o ," n"!*)r't, - nr!'')t, ,o * olrq('-) ,rjr?

r. lrl
6(r'J

In rn) ,.T

4.7+A..
JS

jl
tt

The torque acting on the fl,oat of the rn-gyro has a cornponent 'ltt^$^)?

along the output axis. This cornponent is cornposed by viscous torque,

torque frorn the torque generator, unbalance torque, etc. Supposing it
is possible to control the torque generator of each gyro by signals frorn
all gyros we get

,øtr(^) -- - rA ,rlor-r (D) q(1) *o-,,rr(D)a(2) +drn3(D)*(t)]-.r",(*)

4.8

The Õi, (D):s are differential operators. It is assurned that they are

t"u.onji fi:nctions of D = å . Further ¡*(*) is the component onthe
output axis of the disturbing torque acting on the fToat of the rn-gyro.

Newton's second Law of Motion gives

Hz z
rrt = L,2,3 4.9

Introduce the following rnatrix-notations

rn)( rnJt4 )

( 1)

q

q

a

ç

(?)

(3)
4. to
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çL

lì

(L

L

z

3

d13 (D)

dn(D')

19.

4. 11

4. L¿

4. L3

4. L4

4. t5

4. 16

s(D) =

,''( t)

(z\rn'

m(3)

Dz + o-r, (D)

õ-z t (D)

o-,, (D)

arr(D)

oz * dzz(D)

%z@) + rr, (D)

rn

2D

9o1

Qol

9o1

o
^01

(¿)

(3)

9o.2

9aZ
(z)

(3)

9o3

9o3

( 1)

(2)

(3)

( 1)( 1)

a (0 )o

mo(e ) = Azz ,\ @.
I

nc-Z {o3

0

(¿

1

(I1

l'[{,r,rzl =

0
(t)n.

1

)rì

(^)

u(D,ç) @

0 o
^o,1

0

E D-

1
0

(3)r¿
0 o'or 1

o
Azz L z

The equation (4.9) can be written

4. L7



s(D)0 = U(D,dfi+ L

Azz (ot, T--1 - nrrTl',r) nõ'+

*(FrE3--lli*)lt- +

dQz
T

2,0.

4. L9

4. ZO

4. ZL

rrt 1. tB

This equation is called.the signal equation of the gyros' The rnatrix S(D)

represents the dynarnic properties of the gyros and the feedback frorn the

signal generators to the torque generators of the gyros. The rnatrix

U(D,ç) shows how the components of the angular velocity oÍ. the stable

elernent is transferred to the output signals of the gyros. The second and

third terrns depend. on crosscoupling between the output signals of the

gyïos a¡rd. the angular -¿elocity of the stable elernent, these terrns are of

the secondorderin q(*) andÍ2r, sinc"To is linearinf:lr. Thelast

terrn in the signal equation depends >n disturbing torque acting on the

float of the gyro.

If the z-axes are principal axes of the float i' e'

A
11

a

-ñ

I

Azz

A¡¡

A.".
1J

equation (4. 1B) can be sirnplified to

aoz

u3

LFJ

a^-ã rn
s(D) Þ = u'(o,õ)IZ+ + . a ( 0,rz) - 

.*z Azz

where
(¡)

u'(D, ç) = + o Qzo -
L

nf,t) nrlth, a¡
nf,) nrSt)n, nj

and

E (0, fi) = !, rr.O- =-li; t,Õ=
n,|t) tJ,t'"t t,

4. ZZ
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5. The equation of rnotion of the stable elernent.

Let J cn be the inertia rnatrix of the stable elernent with respect to the

y-set' rn JC* are included three rn'ass points' each equal to the rnass

of one float and situated. in the center of the float. The elernents c* are

defined by

Írur'+v'z'¡a'n

il = JCrrQaï, * f ¡ (rn)

k=1 íl j/kli

JC
(

-lt
J

Yt' Yt tu k/r

The integration is carried out over the stable elernent andthe three Ûlass-

points. The angular rnornenturn of the platforrn is

kl

3

Differentiating with respect to trrne

rn= 1

rn

¡ (-')

5. I

5.?H = J(crkJ-¿k + cjkf?iflr'i¡r) Î1 + L
TÏÌ= 1

.T
H-tLo

Frorn equation (4. 6) we get

o, nJ-) , (m) * 5r, eur(*) 6 
(m)oo * Ao" *"!'-)

* qJ-) nJ*) .i3kÕr 'o * l.' nJ*' . rro 6 
(''') ,¡ 

(

r oirnrf*) nJ*) .rjuQ ) + A¡, ni'-) nrÍ-) , ?tufttó 
(-) *,(

"9'

* Ak" à"!"') ",ld*, 
* oj" nj'-) nrl-) n,Í') . ti#arr!] îl

5.3

Introduce the inertia rnatrix JBU, (q) "f the stable elernent including the

floats with all rnoving parts fixed in their actual posítions.



The elernents Btol are defined bY

)drn k=l

22.

íljlklr
J

z ?("t vl+

JBkl (Ð =

Yk Yttu

+

klL

The integration is carried out over the stable elernent a¡rd the fl'oats' fixed

in their actual Positions. We get

3
f ("') (*)
)- 

Ast qs'k' 
%1

rn= 1

Notice that the elernents Bij(9) d.epend on the output signals of the gyros'

However, if the inertia eltipsoids of the gyros are s)¡Ïnmetric with

respect to the output axes the elernents Urj tt consta¡rts'

Equations (5. 3) and (5.4) give

þ{ = J(Brr(q)ár. * ujo (tl)flrftr'i¡r )?1 +

3

+ r I I oor nJ'-) * 
(*) * n,Í-) * (m) 

'o *
rn= I

6(m) *(m) +

ctt

n*Í*) .i¡rftt,o * o' ni-) '

Ir,

Btt 0( 5'.4

5.5

* qÍ*) zjk

r orrqg') qÁ").i5r.Qr r('n) * oi" ni*') qÁ"')'z'.Q, ô(*) *

* \" åj-) nJ*) *,

Thetorqueactingontheplatforrniscornposedbycornponentsfrornthe
torque rnotors J f and d'isturbing torques J M ' Supposing T to b'

controlled by signals frorn alt gyros , we get

3

ri= Ir.1o¡ .p(j) 5'6

j=1
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It is assurned that the differential operators

of D=# Furtherwedenote

23.

(D) are rational fi:¡rctions

5.7

5.8

T
1J

{
T(D) = T (D)

Newtons second law of rnotion gives

1 i Ì

Brr",r(O).år- + Bjk(O )e

+ rlna(D) I (ttt) * nrJ

nojra (*)
t

lrn)qkl

* Ak" ä"1") nJ*)rr,l

'-) nÁ'') .i3kot 'o * oj, nÁ") 'z¡r. é 
(") 

tö 
(*) 

+

ijkftr * 
(-) * oj" n"!'-) qÁ"') 'zikft, é(*) *

Mt

, [oo, 
qÁ"') 6 

(*)* n,F' ó 
(*)'o *

3

ç
/_
rn=

i¡rnint *



6. The linear app roxirnation of the eguations of rnotion.

Taking only the terrns of eguatior. (4.18) which are linear in g and

we get

s(D) 0 = \r(D)fL I
ã-'^zz

where

v(D) = u(D,O)

Introduce the r¡nit rnatrix It arrd the rnatrices IL a:rd N' defined by

ñt

24.

6.t

6.2

6.3

6.4

6.5

6.6

[,=

N-

0

"ir,. 
e(z)

.o" e(3)

"o" e(l) "i,, e(1)

o co" e(2)

"i' e(3) o

0

cos 0

(Ð

(2)
- "i' e(1) .o" e(1)

o - =tr,. e(2)

_ sin o(3) "o" 
e(3) o

a¡rd. their transpon"t"" 1- arrd Ñ we get frorn equation (4. 18)

rr(D) = ( Azz
o - Azt D) tr - D lL -

Azl
-Ã-
"zz

Dnw

Equation (6. t) gives

q = s-t(o). Ir(D)-rz- s-t(o) '

Taking only the linear terrns of equation (5. B) we get

: + [- (.,') - (*)Br.rr0", *'o L Lori 
-'' Pri

rnEl -

ïït

-p (-)
It . nj'-)] *, *

(^) +T. Oo lrn l À,1+ *p (*)
11 ç

(*) (*)

6.7
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where

Equation (6. ?) then gives

where

K (D) fL -- ¡ur +
1

B--

E"(D) 12= M- <;(D) a

B = B.j(o)

25.

6.8

6.9

6. 10

6. LL

6.13

6. t4

1J

i. e. J B. . is the inertia tensor of the stable elernent including all rnoving

p
1J

arts fixed in their null positions. Further denote

ij
(

t' ì
i
I

E'(D) = D B * ,o (n, - l,)

6. tz

Equation (6. fO) j-s referred. to as the equation of rnotion of the stable

elernent. The terrn J F (D)fZ is the tirne derivative of the angular

rnornenturn of the stable elernent, J M is the disturbing torque and

J(}(D) þ is tt.e control-torq*e, i. e. the torque given by the torque-motors

which are controlled by the gyros. Elirnination of þ(t) between the signal

equation and the equation of rnotion of the stable elernent gives

L
G (D) s- (D) .rt 1')

lL.
A¿z

where

K(D) = F (D) + G(D) s-l (o) \r(D)

The signal equation, the equation of rnotion of the stable elernent a¡rd

equation (6. 13) are linear with constant coefficients. .{ssurning all initial

conditions to be zero and Laplace-ttansf.orrning these equations, we get

1s (p) 0 þ) = rv (p)Jl (P) - T,, * (p) 6. t5
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The iransforrned variables are denoted by writing p for the argurnent' In

the following we always write the argurnents P oï t in order to avoid

arnbiguity.

6.2 For a stable elernent with only one gyro the equations (6. t5), (6. t6) and

(6. fZ) are still valid. if the rnatrices are interpreted in the following l^/ay.

P(p)-r'-(p) = M(p) - c(p) q(P)

r< (p) rr (p) = lur (p) + + c (p) s- I (p) ç (p)nzz

G'(p) = (A.ra cos e( 1) - A3z "in n( 
t), p? +, zt

(on "ir,. o( t) * o cos 0 (1)
)p

z
3Z

B zzP
B zlP
B¡: P

6.ß

6. 17

6,22

6. z3

orrn'*ro*t11 0

0

0

0

0

0* t31

6.2r

?
p +a(p) 0 0

s' (p) = n

BttP

Bzt p - ro .o" o(1)

B:tP - to 
":-r,' 

o(1)

BtZP*oocos0

0

0

0

0

0

to-AzlP -(Azz.o" o(t) - o., "i' e( 1))p -(Azzsin e( t) * or, .o" e(1))

v'(p) = 0

c

0

0

0

0

"ir. e( 
1)B13P * 'o

m'(p)

B zzP

( r)

6. 24
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It ís he te assurned tlnat tine input a:cis of the gyro coincides with the yt-

a":cis of the stable elernent.

If the rnotion of the stable elernent is restricted to rotations around the

}r 1-axis we obtain ,l

r\b) = ErÉrqJ rvt,(r) r # ;h "',(n) 6'25

where

vob) =

Mrlo) + *o

(/-LzPz + s)oP + ,'rrX!_ o¿1P)

m (p)

6. 26

6. 27

6.28

If the output axis coincides with one of the principal axes of the float

we get

.n- (p) =
1

where

(¡)

vob) = ,=;
trl *'oP

p(pz + clt)
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7. The concept of platforrn. Clas sification of platforrn systerns.

In the previous sections we obtained the following equations

s(n) cp(t) = v(D)rt (t) - I
''' (t)

28.

(6. r)

(6. ro)

(6. r3)

These equations were referred to as the signal eguation and the equation

of rnotion of the stable elernent, respectively. Eliminating 0(t) between

these equations we obtain

-An

F(D)n(t) = tvr(t) -c(o) q(t)

+

K(D)r?-(*) = rr,rlt¡ + + G(D) s-l 1o¡ mt
"zz

KP(D) = *n (D) + G (D) s- I (p) v (D)

This equation gives the rnotion of the rrstable elernent when the servoloop

is closedr'. V/e shall now give a physical interpretation of this equation.

For the sake of conveníence the concept platforrn is introduced.

The platforrn ís an object to which is attributed: structurê, attitude, rrr.ass,

center of rnass, center of gravity, angul-ar veLocity and angular rrtomenturn,

dcfined in the following way"

The structure, attitude, rnass, center of rnass, center of gravity and

angular velocity of the platforrn are equal to the corresponding properties

of the stable elernent.

If the angular rnornenturn of the platforrn with respect to a point P is J E- ,p
where J is the rnornent of inertia of the gyrorotor with respect to the spin

axis, then

"n = Kp(D)-rL(t)

where¡f-(t) is the angular rnornenturn of the platforrn and

d
ãt

F
P

(D) = DBp ,o (u - tr )
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Here J B_ is the rnatrix of inertia of the stable elernent (inctuding all
P

rnoving parts fixed in their null positions) with respect to the point P .

The rnatrices G(D), Jf.o, S(D) and .V.(D) are definedin section 6.

Frorn rnechanical point of view the concept ptatforrn is thus equivalent to

'rthe stable elernent with the servoloop closed'r.

In order to quide those of the readers who favour thinking in physical
¿È-**-

concepts we will now give a physical interpretation of the terrns of the

K (D)- rnatrix.

Non-öagonal elernents of K(D) m.ea¡rs crosscoupling.

Aterrn DC of K(D), where G is a constant diagonal rnatrix,
rneans rnornent of inertia of the platforrn.

.A. terrn G of K.(D), rneans a velocity-proportional darnping of
the oscillations of the platforrn with respect to inertial space.

.A. terrn å of IK(D) rneans that the platforrn rvith respect to
angular displacernents is spring-restrained to inertial space.

The platforrn system.s can be classified according to the properties of
the reference they establish.

A platforrn systern arranged in such a way that the platforrn will rnaintain
its dtitude with respect to inertial space is called an inertial platforrn
systern.

In addition to the inertial. platforrn systerns the vertical in'dicating or
Schule r-tuned platforrn systerns are of great irnportance in navigational
and fire - c ontrol equiprnents.

tJÎÅ.
As the dynarnic properties of the platforrn is closely related to the rnatrix
K(D) the platforrn systerrls can also be classified with respect to the

properties of the rnatrix K(D).

1. A platforrn systern is said to be cyclic if the rnatrix K(D)
is cyclic.

Z. A platforrn systern is said to be diagonal if K(D) is
diagonal.

3. ,\ platforrn systern is said to be isotropic if K.(O) is
diagonal with equal elernents.
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:Î':

B. Analysis of the stabili ty of. inertial stabi.lized platforrn systems.

In this section we will analyse the stability of sorne inertial stabilized
platforrn systerns. In part B. 1 the concept of stability'is ãefined, Sorne

gcneral theorerns concerning the stability of platforrn systerns are also
given. In parts B. z, 8.3 and 8.4 are discussed the stability of sorne
special platforrn systerns. The section ends with a short discussion of
sornc questions of interest for the practical applications.

Thc equation of rnotion of the platforrn (equation 6. t7)

ç fr

(p) s-rl-ol l-
K- ' (p) t"t (p) + {Gi (p) w(p.i o'(p)

;i i'., , .1.

The piatforrn is thus disturbed by v(t) and ñ(t) , who are referred to
as distr.u'bing torquelacting on the stable elernent and on the floats of the
gyros, respectively. We adopt the following definitions

Definition B. t 1

1

Aplatforrn systern is said to be stable if a proper torque puls acting on
the stable elernent or on the float of a gyro gives a finite angular dis-
placernent of the stable elernent.

Definition B.IZ

A platforrn systern is said to be strictly stable if a proper torque puls:'
acting on the stable elernerrt gives a displacernent error which tends to
zero ar:rd a ProPer torque puls acting on the float of a gyro gives a finite
angular displacernent of the stable elerrsrt,

By a propeï torque prrl"'we rnean a disturbing torque, with so srnall a

rnagnitude that the servos are not saturated, acting for a short tirne.

iff-e wilt now analyse the stability of sorne inertial stabilized platforrn
systerns. We have

Definition 8. 13

A stable platforrn systern is inertial stabilized or stabilized with respect
to inertial space if a constant torque acting on the stable elernent gives a
finite angular displacernent of the stable element.



The d.efínition B. 13 gives the following conditíon on the K.(p)-matrix of

an ínertial stabilized platforrn systern.

Lcrnrna B. 11

r.or an inertial stabilized platforrn systern the rnatrix K (p) has the

prope rty

re (p) n
I

Pp
G+ o (

p+0

3t.

8. 101

where n > 1 is an i.nteger and G is a diagonal rnatrix with constant non-

vanishing diagonal elernents.

In physical terrns the lernrna B, 11 means that an inertial stabilized plat-

forrn is at least spring-restrained to inertial space with respect to

angular displacernents. Cornpare section 7. Before continuing we introduce

sorne notations,

Definition 8, L4

An equation is said to be stable if it has no roots in the open right half

plane. The equation is said to be strictly stable if it has no roots in the

closed right halfplane, The function f(z) is saidto be (strictly) stable

ífthe equation f(z) = 0 is (strictly) stable.

trMe witl now give two conditions for stability.

Theorern B. 11

A neces sa,ry and sufficient condition that an inertial platforrn systern ehould

bc stable is that the equations

det f
L Ìp re(p) -0

and

are stable.

a"t {n s (p) c- t(n) 
^(n) } = o 8. 102
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Theorern B. lZ

A necessary and. su{ficient condition that an inertial platforrn should be

strictly stable is that the equation

det {p re(p) } = 0

is strictly stable and that the equation

det {p s (p) c- 1(p) 
trþ) } = o

i
1

is stable.

The proof is left for the reader.

The equation (8.101) is referredto as the characteristic eguation ofthe
systern. The roots of the clnaracteristic equation deterrnin.j_.Lh" way the

displacernent error fades o:ut after a torque puls disturbance on the stable

elcrnent. Lf. aLL the roots of the characteristic equation are in the left half
plane the displacernent error is exponentially damped. If the characteristic
cquation has pure irnaginary roots the displacernent error will oscillate
with constant arn¡rlitude. A single root at the origin but no other roots in
the closed right half pJ.ane rneans t}'attil'e dísplacernent error tends to a

constant etc. Beca,tse of lernrna B, 1l the characteristic equation has no

root at the origin. Sirnilar-ly the roots of the equation (8. l0Z) determines
the way the chspl-acerneni erroï after a torque pu1 s on one of the gyro-
floats fades out. Instability of the equation (8. 102) rneans that a torque
pnls acting on one of tlne gyro-floats will give an exponentially increasing
ang;úar displacernent of the stable elernent.

AJthough a systern is strictly stable accordíng to the above defi.nitioó.s the
displacernent error obtained after a torque puls disturbance on the stable
elernent rnay not tend to zeto fast enough. Therefore in an actual applica-
tion there rrray be further restrictions on the characteristic equation of
the systern. Cornpare appendix section ,A. 1.

Although it is possible to clairn that the characteristic equation is strictly
stable we cannot clairn strict stability of the equatíon (8. l0Z). This is
obvious frorn the following lernrna.
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Lcm¡na B.lZ

For an inertial stabilized platforrn system equation (g. l0z) has arways
one single root p = 0.

The proof is obvious frorn the equation (6. 14) and, the definition of an
inertial stabilized platforrn systern. The lernrna irnplies that the displace-
rnent error obtained after a proper torque puls disturbance on the float of
a gyTo tends to a constant. Sorne other consequences of the lemrna are
discussed in sectíon 9.

w'e will now discuss some consequences of the theorem g. 11. we have the
following sufficient condition for stability.

Corollary 8. ll

A¡r. inertial stabilized platnorrn system is (strictly) stable if
(i) The arrangement of the gyros is chosen in such a way that

" à g and I = O.

(ii) The characteristic equation of the systern, aet {r K (p)} = o
is (strictly) stable.

(tii) rhe function der i*tol - r.þ)Ì
half-pl ane.

Proof

Equation (6. L4) gives

s(p) c-l(p) = v(p) (rc(p) - p(p))-1

According to (iii) the function det (re(p) - p(p))-1 r,"* no zeros i¡r rhe right
half plane. Further is

CrJ 3 <^,o (s - 3)
3detv(p) = (=|) +

has no poles in the right

z
P -lp¿a

i' c' the fi¡nction d'et v(p) has no ze,.os in the right harf prane.
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Hcnce the function

aet{e s(p) c-t(n) 
^b)"¡l = det{preþ)l 'det v(p) . det [^lnl - pþ)l -1

is stable, The systern is then stable according to theorern B. 11. If
aet{e rcþ)} ís strictly stable the systern is strictly stable according to

theorern 8. 12.

An inertial stabilizedplatf.orrn system where the arrangernent of the gyros

is of the definite stable type is thus certaínly stable if the characteristic
equation of the system is stable and the elernents of the rc (p) matrix have

no poles in the right half plane.

lf the condition (i) is dropped the function det V(p) is unstable. The

systern then rnust be heavily restricted in order to assure stability. This
j.s illustrated by the following lernrna.

Lernma 8. 13

For a stable platforrn systern the functions det V(p) and ¿et freþ) - pþù

have the s a:rr.e zetos in the right half plane.

The proof ís left for the reader.

This lernrna rnearrs that if the function

c^ro (s - 3) 
zC\) 3 3det v(p) = ( Za p - Ip

isnotstable i-.e. l / O or 1- 0 and s {3 thernatrices re(p) and F(p)
rnust be chosen in avel.-y special -way tf a torque puls acting on one of the

gyïo floats should not give an exponentially increasing angular displace-

rnent of the stable elernent.

\¡Ve wiII now further analyse the stability conditions for sorne special

inertial platforrn systems. Suppose that

B,., = b5.. B. 103rJ 1J

LZL=AZ3=Oi AZZ=a 8. 104

U

a ) +
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'i¡ (n) = ' (e) l' B. 105

di¡ (e) = a(P) 5ij E. 106

The assurnptions (S. tO3) - (8. 106) are equivalent to the following physical
conditions.

1. The inertia ellipsoid of the stable elernent is a sphere.

Z. The inertia el!.ipsoids of the gyro floats are syn-rrnetric
with respect to the output axes.

3. The torque gerlerator of each gyïo is only controlled. by
signals frorn the gyro itself. The feedback character-
istics are the sarrl.e for all gyros.

4. The m-component of the torque acting on the stable
elernent is only controlled by the rn-gyro. The sarne
feedback characteristic is used in all channels.

using the assurnptions (4. to:) - (8. 106) we get frorn the equations (4. 13),
(6. tt), (6. rz) and (6.6)

t
[n'* 'or] os )p 8. 107

8. 108

B. 109

8.110

r"(p) - bp I[ * <,.ro (u - ñ)

n-

(ù

Equation (6. t+) gives

v(p) = * rr-prL

r(p) + coo p
It+z

P + d(p)

3

oÞD+-
<L

'o d (P)

F_
$

L

(¡) I
.lo

p ('(p) + <^lo p)

nr Í-n- aP

re(p) =

P
')

+ d(p) p ? + d(p)

P
z + r(p)

IL-

B. 111



Introducing

we get

û)

vr(n) = p +ai :- e,\ lì l.)
I

1

j
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B. ttz

8.113

re(p) - b
{' T

z
'o d (P)

aP

L

,(n) - r iL+ Í-T_
(p) n-

l-"

(ù
o

(^)
o

3ap ILIL ]?b(p + o'(p) ) u(p + o'(p) )

The fact that K is not a diagonal rnatrix rrì.eans that we have interaction
between the three channels. The interaction is referred to a cïosscoupling.
Putting (8. 107) and (8. 110) ínto equation (6. 8) we get

(,
1ç(p) =

1 (+ II - p n")J2(p) +
z

..t (p)z a(p + o'(p) )P +o(p)

A gyro thus senses the coñtponent of the angular velocity on the output
axis as well as the cornponent on the input axis. This phenornena is
referred to as the output axis sensitivity of a gyro.

In equation (8. 113) the second terrn is due to the output axis sensitivity
of the gyros. The third and fourth terrns are due to secondary reactíon
torques of the gyros, i. e. the cornponents of the reaction torque on the
output and spin reference axes. The last terrn is due to a cornbination of
output a;<is sensitivity and gyro reaction torques.

These cross coupling phenornenas strongly affects the dynarnic properties
of the systern. If a platforrn systern is designed on a single axís basis and

the cross coupling effects are neglectedrthe dynarnic properties of the
cornplete systern can differ widely frorn those predicted by neglecting the
crosscouPling effects. In sorrre cases the cornplete systern can even be

r¡nstable.
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8.2 Make the assumption that the rnornent of inertia of the stable element is

rnuch greater than that of the gyro rotor, i. e.

b>>1 8.201

Equation (8. 113) then gives

rc(p) = b{v,(e)rr- ü [v,b) -r] r] 8. Z0Z

8.2O3

B.204

where the function Y1(e) i" given by the equation (8. ttZ).

Equation (8.¿02') I:neans that the secondary reaction torques of the gyros

are neglected. The cross-coupling is thus entirely caused by the output

axis sensitivity of the gyros. Cornpare the discussion at the end of

section 8. l.

Equations (8. 1O?), (8.201) and (8.Z0Zl gives

rc(p)-r.(p) =# [v,b) -'] vþ)
o

hence

p s(p) <;-1(p) K(p) =

t)D

au [v,b) - n

Suppose that the fi¡nction Vr(n) has no poles inthe úgh,t half plane. The

stability of the function det n

aet[e sþ) c-1(p) rcþ)].

rc (p)

to analys e the stability of the characteristic equation.

aet [n rcþ)] = o

Cornpare theorern 8. 11,

The characteristic equation of the system ca¡r be reduced to

pv,(e) -'r* [v,b) -r] = Q i= 1,?,3

where the t.:s are the roots of the equation
I

t3+ t-l = 0 8. 20s
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s is the spin nurnber and I is the output axis orientation nurnber introduced

in paragraph 3.

The roots of the equation (8.205) for integral values of the pararneters

s and L are given in table B.ZL.

Table 8. Z1

g I 0 +t

0
- 1.477

+o.73Sti0.361
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0. ?38 t i o. ¡órt t.¿¿5
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0

tio.zoz
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-o.418ti0.739
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0.233 ! t 0.96t

0
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- 0.233 I i O. ger
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- 0.554

0.277 ti r.¡rs

0

t i r.zzs

0.554

- o.¿77 t i r. Ers
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VIe have the following condition on the stability of the characteristic equa-

tion of the systern discusseC.

Lernrna 8. Z 1

l\ sufficient condition that the characteristic equation (8.2O+) shoutd be

strictly stable f.or any Vr(n) with no zeros in the closed right half plane

is

8. Z06
1

Proof

If the condition (8. 206) is satisfied we obtain

0 i = Ir?r3

The characteristic equation is then

p vt(n) = Q

The function Y1b) trru no zeros in the right half plane. As the systern

is inertial stat:ilized we have

s=3

0

t.
I

lirn
p -+0

PYr(Ð/o

which irnplies that the characteristic equation is strictly stable.

The systern discussed is thus certainly strictly stable for any Yr(n) *ittt
no poles or zeros in the closed right half plane, if the arrangernent of the

gyros is of the definite stable configuration. Cornpare section 3 and

plate
¡
ì,l Sorne questions now arises.* Is it possible to obtain a stable systern if the

arrangenLent of the gyros is not of the definite stable configuration'l
Although a systern with s = 3 and I = 0 is strictly stable, is it sufficiently
d.arnped, to be of practical use ?

Before answering these questions we will further discuss the properties
of the actual Vr(n)-functions.
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Frorn physical point of view the fr:nction JUVr(e) is the transfer function

frorn the cornponent cf stable elernent angular velocity on one input axis

to the component of the clisturbing torque on the sarne axis. According to

Iernrna B. 11 the Vr(e)-functions rnust also have a pole at the origin of the

order n ) 1. In order to assure stability of the equation (8. 102) we rnust

also require that the Vr(n)-functions have no poles or zeros in the oPen

right half plane. If tî;" îtÍ,9t obtained after a torque puls disturbance on

the stable elernent stiðut¿'bè sufficiently darnped, we rnust require that

the zeros of Yr(n) have a sufficient distance frorn the irnaginary axis.

This question is discussed in the appendix-

Equations (A Z3), (A 309) and (A 407) gíve the following possible tra¡rsfer

fi-rnctions

z ?

vr(n) =
P + zL 9p + Ê

p

vr(e) =
(pz +zL Þp+ pz)(p+pr)

p(p+pz)

rff'e will now discuss the groperties of the systern obtained if the first of

these functions is chosen. The characteristic equation is then

(pz * zL Þp + Pz)(p + pr)(p + Pz')
vr(r) =

Y þt n' * pP]z 7
P + zL Fp + Þ t.

1
0

The t.:s satisfy equatíon (8.205) and y is the cross coupling coefficient

dcfined by

1 Itzr3 8. 208

8. ?09ap
I o)

o

Nurnerical values of the cross coupling coefficient can be obtained frorn

table B"ZZ a:;ld, figure B.ZI. Notice that the cross coupling coefficient

increases with the bandwidth of the servo systern.
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Table 8. Z¿

aGyro

MIT 1

HIG 6

4
0 Integrating gyro unit

GG LZ Ç.2

z.o

1.5

(¡)
o

0.0034

0. 00 12

Y

I

Figure B. Zr

Coupling coefficient y as fturction of Þ and Z' (¡)
o

Cornbining two of the equations (8.208) obtained with cornplex conjugated

t.-values we obtain an equation of the fourth degree with real coefficients.
1

Applying the theorem of }f:urwítz on this we obtaín the following condition

for stability

0.5

100 200 300 400 500

In case of equality i¡r the first of the equatíons (8.210) the characteristic
equation has two pure irnaginary roots

o ['.a ""t- 
1]

4Lz - +L y(t +zçz¡n. {t. I * r' (r + es')(*. {rr}l' - y3 zL[t. lz n. f, ] ¿o

?t, -yRe{rrJao i=t,2,3 8.zto

0.004

0.00

0.002

0.005

0.00
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8.213
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8. ?,11

The stability condition (8.210) is obviously satisfied for all y-values if

í = IrZr3 8. ZLZ

Equatíon (8. 205) then gives the following condition on the nurnbers s and I

p-L.p -.:.1
zL y r.r. {t }

"Jl' o - zL v n. ito\¡) - zt'v3(r",it"il'

"Ì

nu{t.}<o
L lJ -

(

)

L

I=0

s/5

If this condition is not satisfied the systern is at least stable for sufficiently

srnall values of the cross coupling coefficient y.

Ifeither L I O andarbitraty sror I = 0 and s ( 3 equation(8.208)has
at least one root in the right half plane. Let to be the root in the first
quadrant or on the real æcis. The condition of stability (8.210) gives

(¿ç-yRe tt [t"] r oRe

zL - yRe{r"}no 8. ZL4

B. Zt5

8.216

Equations (4. Z L4) are satisfied if

YRe rr(ç, oo )tÍ)
t

where

f(6,oo) = rnin (zç,zo)

artd z is the smallest positive root of the equation.
o

zLU + oo) ,3 - (t+8ç')r'+ 4L(r+zL'), - 4L? = o
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Systerns with 1 > 0 and arbitrary s, or I - 0 and s < 3 have

kn -0

hence

o

Equation (B.ZL6) then reduces to

/\ graph of the functíon f (9,0) j.s given in figure 8.22.

f (g ,0 )

L

1t 't
lo

f (6,0) = rnin (ZL,+)

G -0

43.

B. Zr7

1 ?,
L

Figure 8.22

Surnrnarizing tlne stability conditions for a systern with

? 2
v,(e) =

P +zL Þp + Ê
P

I. Systerns \Mith I > 0 are stable if
we get

vR"fJo Jat(É,oo)
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III. Systerns with I = 0 and s 13 are stable if

v n.{to } < t(g,o)

Systerns \Ã/íth 1 = 0 and s > 3 are stable for
all values of y

Systems v/ith I ) 0 are stable if

YRe
I
tt T

é f (ç, o)

Lf the cross-c coefficient v is sufficiently srnall the system

ilr.

IV.

o

discussed is thus stable, i¡rdependen t of the orientation of the gyros. The

uppe r lirnít of v for a stable systern is siven bv the equation (8. z 15).

lÃ/hen the cross-coupling coefficient y is increased over the critical value

gíven by equation (8. 215) the characteristic equation of the syetems I. hae

two complex roots in the right half plane while the characteristic equation

of the systerns II. a¡rd IV. has one real root in the right half plane. These

cases are referred to as oscillating and pure exponential instabilities,
respectively.

Example,

Give the stability conditions for systerns with the following arr¿r¡rgements

of the gyros

B.

Ç.

D

The s, I and. t- nurnbers are obtained frorn equatione (3.3), (3.5) and
o

tabLe (8. 31). We get

[o' o' i]
[", 

rr, " ]

[0, o' t]
+lrr n Ilz'z' "J

A.
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A.s=1, 1=0,t I

1

o

!*Þ 3 f=-L,t 1
1

zB

c

D

o

o
s=3, ! = 1, t

I = 0, t =0o

According to (8. Z 17) the systems A and C ate stable if

y { f.(E ,o)

The systern B is stable if

y 12 ' f(g'3)

where

s = 5,

f (ç , ¡) = rnin lrt , ""f
and z_ the srnallest positive root of the equation

o

Bg 13 - (t + 8Ë') r' + 4L (t + zL\" - nL

Figure 8.23 shows a graph of the function ?,f.(L,3).

?, f.(L ,3)

2
=Q

I

L
zI

Figure 8.2.3
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Although a systern is stable if equation (8.210) is satisfied it rnay be too

oscillative for practical use. To judge this we have to solve the character-
istic equation. This is rnost conveniently carried out with the graphical
rnethod of Evans (ref. Z). This rnethod gives directly the root locus of

the characteristic equation with respect to the coupling coefficient.

Plates 8.ZL - 8.24 shows the root loci for the characteristic equations

of the systerns treated in the exarnple.

In a¡r actual application we have to consider f r(n)-fwrctions considerably
rrlore complipat",*:1"rr the one just dealt with. The analysis can t4gsglt

be carriea otilin a straight forward way follo*irg the scherne of the
/i

sirnple exarnplä. The algebraic conditions have a rrnídable
\ appearance in case of a cornplicated Vr(n)-functi 'å.e*s 

w'ise to
use the graphical rnethods to solve the characteristic equation.

Consider e. g. a systern with

li

.' i,.\

ii

t. {L -

i'

s=3 l=-t

and

vr(r) =
(pz * 1.41 pp + pz)(p + o. os p)

p (p + 1.46 P)

The characteristic equation of the systern is of the 9th degree.

According to equation (8.204) it can be reduced to

(pz * t.4L pp + pz)(p + 0.05 p) +t. r.1 # "þ 
+ 0.oa6z) = e i = 1,r2r3

o

where the t.:s are the roots of the equation (8.205).
1

Introducing s = 3 and 1 = - I in equation (8.204) we get

,1

,z

t3

=-1

= 0.5+i0.865

= 0.5-i0.865
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Introducing the cross coupling coefficient y

47.

8.301

8.302

8.303

aBY=,
o

we get

(pz * t.4t pp + p1(p + o.05 p) + 1.1 ti y pp(p + o.0467) = a

The root locus of this equation with respect to the cross coupling coeffi-
cient y is shown in ptate 8.25.

8.3 The assurnption (8.201), b )) I rneans that the mornents of inertia of the
stable elernent are rnuch greater tha¡r those of the gyro rotor. Systems
where the rnornents of inertia of the platforrn are rnuch greater tha¡r those
of the gyto rotor behave in a sirnilar way. In order to show this we will
analyse a special case. Suppose that the systern is arranged according to
the equations (8. 103) - (8. 106). Assurne further that

cr(p) = op*tt,

this implies that the floats of the gyros are 'tspring-restrai¡redrr to
their neutral positions, or trrate-coupled".

Equation (8. 301) gives

(¡)

oÞD+
r (p) + <^ro pû)

= b' +z
P + o(p)

where

b'= b*
z

a)
o

æ,

(¡)
Introduce

,tIp+ #, "(p)y 'lFì = 

-

IA' P'+GP+.+{
+ 8. 304



Equation (4. t t 1) gives

Further is

rc(p) -r.(p) =b'

+

Supposing

we get

where

re(p) - b'1.r,'(n)"- ü [",'tn )

(¡)
o.P IL+ IL-b

6' l D

48.

8.305
3

IL aP

ap
o)

o

2b' (p + ap +){)

[",'ol - å, {
3

+ op +#)zb'(P +op +J{)

b'-\ ) 1

(¡)

.t
,'(n) -f,e lu-

zp
{t"

(¡)
o

IL+

aP n- r]n--
?b'(p

rc(p) = rc(p) - P(p) = b' Y1"t n-9n B. 308
(^) ]

8.306

8.307

8.309

o

Yr"(P) =

Jtp + # '(p)
p2+op+¿4

Equation (8. 307) irnplies that the secondary reaction torques of the gyïos
are neglected. The cross corlpling is thus caused by the output a;cis sensi-
tivity of the gyros. Cornpare section 8.2.

According to the equations (8. 30S) and (8. 309) the rnornent of inertia of the
platforrn is

2,

8. 310

Thc rnornents of inertia of the platforrn are thus greater tha¡r those of the
stable elernent.

(¡)

Jb'= Jb+J o

tt
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'We have the following condition for the stability of the systern described

by equation (8.30S).

Theorern B. 31

The necess_ary and sufficient condition for the systern to be stable respect-
í,.ç:

ively strici istable for a.rry Y (' (V) with no poles or zeros in the open right

half plan.-ätt¿ no zeros on the imaginary axis are

B. 311
3

0

s
(

1

t 1

arrd

3

0
I
I

s
8.3t2

1

Proof

V/e prove the first part of the theorern.

Equation (8. 308) gives

detpre(p) = bpYr"(p)

This equation is stable if the condition (8.311) is satisfied. The system

is thus stable according to lemrna 8. 15.

Further is

aet fp s(p) <;-1(p) re(p)] = n det \r(p)

according to the equations (6. t+) and (8. 3OB). If. I / 0 or I = 0 a¡rd s ( 3

the function det V(p) has at least one zero in the right half plane and the

systern is thus r.rnstable according to lernrna 8. 12 which Proves the first
part of the theorern. The second part is proved similarly.

For the special systern discussed it is thus necessary to hawe a definite

stable arrangeÍrent of the gyros if the systern should be strictly stable.

Cornpare the system analysed in section 8.2. .{s was already pointed out

in section 8. I it is very difficult to obtain a stable systern if the condition

(8.311) i-s not satisfied. If the gyros are not a.rrarLged according to

(ü) det v(p)



equation (8.31t) the function det V(p) has at least one zero in the right
half plane. According to lemrna B. 15 we rnust then require that the func-

tion d.et {^tnl - p(p)J has the sarne zeros in the right half pla^ne.

8.4 In sectionS.? we showedthat the cross-coupling due to the output axis

sensitivity of the gyros carr cause rrndesired effects, such as instabitity.
This cross-coupling can of cause be elirninated by the proper choice of

thc rnatrix S.

If

s = f (p) v(p)

50.

8.401

8.402

equation (6.8) gives

thus

Ã
-\La

I TI tr-(p)" ìr (p) n't

This rneans that the rn-cornponent of the angular velocity only affects the

rn-gyro. The output axis sensitivity is thus elirninated.

Suppose

r(p) = * (pz * d(p) )
o

Equations (8.401) and (8. I 10) gives

s(p) = (pz+ o(p)) tr - # p (pz+ d(p)) u

o-r r(n) = err(vl = crr(n) = c(p)

trr(ù = # p(pz + d(p)).o" e(1)

o

o
2a p(p + a(p) ) sin 0

( 1)o'rr(e) = (¡)

crr(e) = - finbzra(p) )"irre(2)
o

o

o

o

t.(v) = # p(pz + d(p))"o" e(2)

crr(n) = - # p þz * o'(p) )"o" o(3)

olrrb) = - ù 
p(pz + d(p)) "i', e(3)



Make the assurnptions (8. t03) - (8. 105) and suppose S to be chosen
according to equation (8.401) then

rc(p) = o{"1b) u + vr(n) n - y3(p) t}

r(p)+<aop

51.

8.403

8.404

8.405

where

(¡)

^2Ð-J-z- 'oz
a

7
p + o'(p)

(¡)

vr(e) = +

'o ó(P)
Y.(p) 8.406- b(p"+o'(p) ) L Èfu:-- {\''':' :r

If disturbing torques on the floats of the gyros sJrc¡¡trd-aet give errors
increasing e)<Ponentiatty with tirne,it is necessary that the equation (8. l0Z)/ ..
is stable. Equation (8. 402) gives'

aet{c- t(n) * b)i= å tn' + o(p) ) aetlc-t(o) tþ)l
o

Hence a necessary condition for stability of the systerns is that the equation
3

r(¡J \

det \r (p) =( * ) +
3p -1p -0

is stable. There are a few exceptions from this case, narnely when the
positive zeros of \r(p) aïe cancelled by poles of G- t(n) , This occurs
only when

I
i

'(p) - o

I=0
Compare lernrna 8. 15.

Excluding this case, the systerns with s Þ 3 and I = 0 are the only plat-
forrn systerns where the output axis sensitivity of the gyros can be success-
fully elirninated by the proper choice of s (p) . nrguing in a sirnilar way
ule corrre to the sarne conclusion i{ the output axis sensitivity is elirninated
by the proper choice of If (p) .



Equation (S.403) gives

where

,z + vrz) +I
1t

det K(p) = Yt3 +t çvr3 - trt) * l#

**tYzYs+ 3 yl yzyz

derK(p) = "rt* it"ry3+3ytyzyz

Y Y

5?..

8. 407

8.410

8.408

suppose that the arra¡rgernent of the gyros is definite stable, i.e" s = 3
andl=0,then

8.409

The definite stable ari'angernent of the gyros is no longer sufficient for
stability of the systern. It is therefore necessary to analyse the character-
istic equation of the systern.

Exanrple

Suppose that the arrangernent of the gyros is one of the definite stable
arrangeñtents of table 3. 15 then

f=0

The characteristic equation of the systern is thus

f = sin z r(t) 1va "1r, 
e(3) - y" cos e(z) ) +

* sin ? oQ') (y, s:.n e(1) - yrcos e(3)) +

* sin z oQ) (v. sin €(z) - y, cos e(1))

vr(e) [vrÞ)z + r Yr(n) vrb)J = o

Suppose that Y1b) iu chosen according to equation (A 23) i. e.

vr(e) - Pz * zL PP r P?

and further that

o-(p) = o P
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Equations (8. a05) and (8.40ó) gives

vr(n) = f,

Y"(p) - 
-e--' b(p + 

")

(¡)

0Jo

Introducing the cross coupling coefficientf

(¡)

ts'-
J- 6-p

o

Equation (8.410) gives

P-ñ -0 8,41t

The stability of this equation is rnost conveniently anatysed by the graphical

rnethod of Eva¡rs.

Introduce the following nunerical values

p- |

L = 0.702

o = 0.707

Equation (8.411) gives

o

z

(
pz+t41 p+I

P )
=Q

Plate 8.41 shows the root-locus of thie equation with respect to the cross

coupling coe{ficient f .

8.5 The condition

I
t

s=3
1=0

plays an irnporta¡rt rôle in the previous discussions of stability. The above
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condition was a consequence of the necessity for the equation det W(p)
to be stable. .\s the condition depends on the orientation of rnecha¡rical

a:<es it is irnpossible to satisfy the condition exactly. The reader rnight
therefore expect that the systerns whose stability dependSpn the above

,-{,
condition in practice are unstable. This is not necessarily *l*Í*r. In an

actual application we have to consider the fact that the condition ca¡rnot
be exactly satísfied, but we rnust also notice that the input axes of the

gyros are not rnutually orthogonal. Vúe have in general

(2. 1) but in the general casc the elernents of the P
by the equation (2,2)

We have

-matrix are not given

{*toli*r=*n,Í-)-DpzÍ ) e.sr

Cornpare equation (4.7), The rnatrix n,(ttt) is defined by the tra¡rsforrnation
(-)

det V.(D) =

det V (D) =

{ r tol } ,, {* to) J z¡ {.* tol }ro .,¡o

hence

where

0)
o
a

jo2*v,D3
/+

8.52

V [î,ttl, +1(2)' *1( 3

(

l
)"1

I
I

)

3

3

3

I

T^Yz = -l*,

v¡ = *[îr(t),

( r) 'ì1(2)' x - [t,, 
r) , çr(z'), ì1(3) ] [tr, 

r), î1(2), ìr(t)]

* 
i_*r,t), 

;,(2), îr,',] * [tr, 
t) , ;r(z) ,î,(')]

1

L

*zY4 = - [",

;z(2) (x

( 1) (z)*z

The scalar triple products above can be interpreted geornetrically as the
volurne of the parallelepiped which has the vectors for concurrent sides.
The quantity Vt is thus the volurne of the parallelepiped forrned by the

(
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input axes etc. The stability of the function det V(p) gives

vt) o

vz) o

v:)o
YzYs; Vn Þ 0

which replaces the condition s = 3, I = 0 in case of non-orthogonal input

axes,

In an actual application we have to consider variations in the angular

velocities of the gyros as well.

{
I
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The angular deviation of the stable elernent caused by disturbances.

There are rn-any reasons why the stable elernent should deviate frorn its
desired orientation. In ord-er to obtain a cornplete picture of the deviation

we have to consider the d.etails of the rnotion of the carrying vehicle, the

ternperature distributions, the elastic deforrnations, the girnbal errors,
the fricti.on torques, etc. Because of the enorrnou.s nurnber of quantities

which are necessary for a cornplete description of the state of the systern

we group all quantities together and treat the problern of the der¡iation of

the platfo"- *ijl, statistical rnethods.
';f'or the sake of convenience, the disturbances are divided into two grouPs

tn(t) and M(t) referred to as disturbing torques on the gyrofl.oats a¡rd on

the stable elernent, respectively.

Introduce a coordinate set OÊl å rE., fi*ed to inertial space and initially
coincident with the y-set. The transforrnation of the l-set on the y-set is

v a(t) € 9. 11

where

a(0) = [ 9. rz

The orientation of the stable elernent is thus cornpletely deterrnined by the

tra¡rsforrnation rnatrix G (t) . According to Eulers theorern of a rigid body,

an orthogonal transforrnation can be interpreted as a rotation around the

eigenvector of the transforrnation rnatrix. The angle of rotation /(t) is

used. to specify the angular deviation of the stable elernent. The angle / (t)
is related to the rnatrix C (t) by the relation

Ø (t) = arc cos
2.

1 Tr G(t) - ti l 9. t¡

leawing arnbiguity to the sign of Ø (t) . Tr C is the trace of the rnatrix G .

trMe obtain the following equation for A (t)

t

o

c (t) tr+ f;_ (r') c (t') dt' 9. 14
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where

(:'l) f.
1 ijkjk

a¡r.d --i- (t) tfre angular velocity of the stable elernent

ç, -It
o

îi
1

¡ìj^L

Introduce the rnatrix sequence

c (t) = II+rrt' -fì-(t') Grr._ r(t') dt'

This sequence converges to a Iirnit G which is the solution of the equation

(g. t+) when all the elernents of the -ñ- -rnatrix are bounded in a cornpact

t-set including (0, t) . As

JÕ- + f1 = o

the solution G is an orthogonal rnatrix.

Further is

t
¡

I
tJ
o

Tr({c - Çz) . ú
4t - 1)(

ta

where

a sup
0<t<T i¡ (t)Ift-r.J

In the first roxirnation wc ne ect the ri ht-ha¡rd side of the above

equation , then

ø2 (t) = er(t) ' ".(t)

>F' In actual applicatiorls ø is of the order of rnagnitude of rnilliradians.
The approxirnation is rnade throughout this chapter.
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9. 16e. (t) =
1

J:Li (t') dt'

Equations (6. 17) and (9. 15) give

9. t7

By this equation it is possible to calculate the error if the disturbances

fut (r) ana rn (t) are known.

For a:l inertial stabilized platforrn systern the function

det{p s(p) c-1(p) Kþ)}

has a sirnple zero at the origin. Cornpare Lernrna 8. 13. This irnplies that

a constant disturbing torqu" *o acting on a gyrofloat will give the stable

elernent a constant angular velocity

rn
o

i.oa(¡
^j , 1,,,¡ì._, o

r ' i!;,
it!,I

Thi-s'ihenornena is referred to as drift of the platforrn systern. A disturb-

ing torque cart e. g. be obtained if the center of gravity and center of

buoyance of the gyrofloat do not coincide with the output a¡cis of the gyro.

The constant drift, whichis of the order of rnagnitude of O.OLofhfor a

good gyro, ca.:r to sorrìe extent be elirninated by proPer design and careful

coñtpensation of the gyro. In the following we assurne that the consta:ct

d.rift is elirninated, i. e. the disturbing rnornents acting on the gyrofloats

have zeto ensernble averages, hence

t
I

I

J
o

ã(p) = I re- t (n) t(p) +
T

ap
rc- 1 (p) c (p) s- I (p) * (p)

Í^L

t'_
E{ rtt

t
-0(t) ]

It is also assurned that

r- 1EtM(t)Ì= o
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Equation (9. tZ) then gives

tiã(t)i= o

Because of the cornplicated nature of the disturba¡rces tt(t) ana ú(t)
.we cannot expect to have a detaj.led knowledge of thern.'we thus have to

find refuge in a statistical description of the disturba¡rces.

The problern is to deterrnine sorne rneasure of the angular dewiation / (t)

when the statistical character of the disturbing torques is knor¡'rr'

To characteríze the angular deviation of the stable elernent we choose the

variance of the angular deviation, i. e'

tE Ø (t)
2 t

J

The problern stated. is cornplicated by the initial condition

ã(t) = Q fot t = 0

and the fact that the functioa

det dp s (p) c- t (n) *þ)Ì

is not strictly stable. This irnplies that the function ã(t) ;.s not a stationary

process even :.f fñ(t) and rrrr(t) are stationary processes, which m'ealls

that the W'iener theory of stationary Processes cannot be used' Before

continuing we state two theorerns.

g.?, Consider a linear systern with n input signal" *r(t) and rn output signals

Yi(t) related bY

iþ) = v(p) î(p) e.zr

where i(t) ana y(t) are the colurnn vectors forrned Uy xr(t) and y-(t) ,

respectively. Suppose that t{*(t)} = 0



The correlation rnatrix m-( l,t, r) of a vectot i 1t¡ |s defined by

(R(_f_,,,'))ij = n{r,{t -i¡t¡ir*il} e.zz

.'i."-r-.. , -...-..t.- ::..,

The Fourier-Laplace transforrn of R-(f,t,r) is d.enote I'by Er(l,P,t.l).

If the function llt¡ ;.. sufficientiy *ellþehaved the inversion forrnulas,i

?"?
F(T,p,.u) = + !.-nta, f *,T,t,r¡"-i'd' g.z3

JJ
o -æ

R,(f, t, r) = #
pt dt F(f,p,.,)" t" dt 9.24i'

I

T

e

æ
l-
I

J
æ
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9. Z5

hold.

For a stationary randorn process E(t) we have

R"(þ, t, r) = R(ã,t) indePendent of t

hcnce

F F(g,r)

Suppose that equations O.Zl) anct (9.?4) are valid for the functions I(t)
and y (t) .

Theorern 9. ZI

If E ix(t)J = 0 the correlation functions of the input and output signals

are related by

F(t,p,.d) = Y( | - t') F(*,p,r) ç(t + i"¡

!
p

(ã,p,, )

For a systern with one input signal and. one output signal equation (9.25)

reduces to

F(y,p,') - Y( I - t') Y (2*ir,.,) F(x,p,<,r)
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If the input signal is a stationary randorn process we have

F(x,p,co)= f, ø**{")

where fl (.Ð) is the power spectrurn of the signat. For systerns with one' xx'
input signal and one output signal we have

Theorern 9. ZZ

If the tra¡rsfer fr,rnction Y(p) has a pole of the order n at the origin with

lirn
P--+0

pt Y(p) = t n>1

and no other poles with non-negative real part then

L

æ
l*
I

J
oo

lirn
tlæ

R(y,t,r) =
(zn- r)( (n- r) f )z

R lr) drxxt '

R(y,t,r) = Y(ir,r) Ø**(r) v(-iro) e dor

where A----(-) is the autocorrelation function of the output signal, i. e. thex.:<'
Fourier-transforrn of the power spectrurn Ø**(r).

Corollari.¡4rn
J

If the transfer fr¡nction Y (p) is strictly stable and Y (0) - I , we get

oøt
lOJTlirn

t'---'oo

f
I

I

þt
The tirne required to reach the asyrnptotic values is of the order of
rnagnitude of the step.function-response-tirne of the transfer function y(p).

For the proof of these theorerns we refer to reference 3.

9.3 The theorerns of section 9.2 forrn suitable tools for solving the problern
stated in section 9. 1. Introduce the colurnn vector T define by

M lt)
t (t) = ( 

,-,' (r) ) 9.31
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a¡rd the 3 x 6 rnatrix Z (p) defined by

Equation (9. tl) gives

ã(p) = z(p)t(p)

Equation (9. t6) and (9.22) gíves

"{ø(t)z} = rr m"(ã,t,0)

Using theorern p. Z1 r,ve get

1 _t 
S_1ae K '(P) c(P)z(p)=(åre-l(p) , (p) ) 9. 32

9. 33

9.34

co

Tr IR.(ã,t, o) = # dp Tr F(ã,p,<,r) dc.r

I

I
I

T

pt r
.,l

e

-O

where

hence

F(ã,p,.,) = u(2 - ir)F(1,p,.,) ZG+ ior)

E{@þ)zj= # uPt dp f t' VrZ- i,)F'(1,p,.,) áG+i.,,)]a",l"

J
-l-'

@

-oo

The problern stated in section 9. 1 can thus be solved if the correlation
fr:nction of the input signal js known.

The asyrnptotic properties of E iø tt¡Z ) *ifi now be analysed. We start
with a¡r exarnple.

Exarnple

Suppose that the platforrn servos are perfect rneaning that

,p(t) = Q all t
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Equation (6. 1) gives

hence

r¿ot = * \v' (p) - (p)
I

-t. J -fe(P) = * \r ^þ) *(p) 9.35

The only way to obtain a systern whose erïors d.o not increase exponentially
with tirne is by choosing an arrangernent of the gyros which gives

detv(p)/ 0 for Re{n}=o

:.. c. it is neces sary to use a definite stabre arïangement of the gyros.
Cornpare section 3.

For srnaLl p we get the folJ.owing asymptotic expansion of V(p)

v(p) =
o r + o(p)

P-+0

suppose further that the disturbing rnornent rn(t) is a stationary ra¡rdom
Process with zero average whose autocorrelation function exists, i. e.

R" ( ;ñ, t, r) - R. ( ñ, ,) independent of t

Applying theorern 9.22 on tire dornponents of the equation (r.:s¡ we get

oo

r" {m- ('n, r) } ar
-,o

(¡)

-oo

a

Ei. ft)zj t
(Ð

rn this special case the variance of the navigation error thus increases
línearily with time. This d.epend.s on the fact that the diagonal elernents
of the matrix

-Tv (p)

have a pole at the origin. Physically the property depends on the fact that
a gyro responds to a disturbing torque along the output axis in the sa11'e

1
P
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v/ay as to ¿¡n angular velocity along the input axis. In order to obtain a

systcrn where the variance of the indication error does not increase w'ith

t'1 tirne the gy ro ûrust be substituted by a cornponent which does not Ìrave

this property.

Thc result obtained. in the example is valid r¡nder rnore general conditions'

If the disturbing torques tr(t) ana tr,t(t) are independent functions, the

input function correlation rnatrix caIl be partitioned in the following way

F(M,p,cd)

h
ìl
l.

^ìì
îr.)"\'

(

0

F(1,p,<,l) =

Introduce

then

Equation (9. gg) gives

where

0 E' ( ttt, p, úJ )

% (p

9.36

9.37

9. 38zr(v) = # rc-1(p) <;(p) s-1(p)

å re-l(p)

z (p) = (2, (r) , z

I

(p) )2

and

ã(p) = ã, (n) + ã, b)

ã, b) = zr(ù' vt(p)

t
ã, (n)

We can now state a theorern.

= zr(ù - (p)
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Theorern 9.31

lf the disturbing rnornents tut(t) and rn(t) are independent stationary

randorn processes and

e I rraqt¡ 
}.

-0 E M <c
L

í
t

E r.r (t) -0¡

I

{r
J

. .21(t) t

" t-(t)z J <cz

then

" lø $)z .!
t

-z(¡)
o

æ
f
t

I

I

æ

Tr R"(rn,r) dr * O(1)
t--) æ

for all platforrn systerns which are stabilized with respect to inertial
space.

Proof.

The disturbing rnornents rrr(t) and M(t) are independent henc" ãr(t) and

-"r(t) are also independent, i. e.

"iøi'l'i = E{ãr(t)'} *tlar(r)2}

The asyrnptotic properties of the first terrn will first be considered. As

r,vas shown in section B, the equation

!
det p rc(p) - 0

has no roots with Re {ni =0, hence the elernents of the rnatri* z'r(e)
are strictly stable. Applying the corollariurn of theorern 9.2 on the three

cornponents of the equation

ã, (n) - z', (n) ' tut (p)

we get 
æ

lirn E
t-àoo {. r&)z

f-

j
-æ

T' iz,(i,) F(M,,u) z1 (-i'I] *
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The rnatríx 21 b) i" strictly stable, hence all elernents are bor¡¡rded on

the irnaginary axis this irnplies that the right hand side of the above

equation is bounded by

c."{,,Z$)z'J

Equations (6. 14) and (9.38) gives

n zr(e) = : (u - re-t(n) *þ) ) v-l(p)

According to section 11 we have for all platforrn systerns which are
stabilized with respect to inertial space.

lim rc(p) = p-o G
P-+0

where G is a consta.rrt diagonal rnatrix. Hence

oã1

o(1)

lirn
P-+0

p zr(e) = å It
o

The ctiagonal elernents of Zr(ù thus have a sirnple pole at the origin.
Applying theorern 9.?¿ on the cornponents of the equation

ã, b) = zr(Ð * (p)

we obtain

Hence

t {ér(t)z } =

æ

-æ

æ

t
J

-æ

û)

t

t
2

o

(,
o

fllrI t'i*(*,'¡]a'+ o(t)
J tJæ

"{øþ)2} -

which proves the theorern.

tr {m, ( ø, ')} dr *
t-àæ
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If the disturbing torques acting on the gyrofloats are uncorrelated and

have the sarne stocastic properties we obtai.n

R-lñ.r) = R (r). I
' rlllTl. '

where R (r) is the autocorrelation function of the disturbing rnornentsrnrn' '
acting on a gyrofloat.

Theorern i.3t gives

-
R ("r) dr +rTtrn' '

(Ð
o

" {ø(t)z }

æ
I
I

i
I

")æ

3t o(r)
t-) oo

Notice that the disturbing rnornents are norlrted by the angular rrì.orrrenturn

of the gyroscopic elernent.

Theorem 9.31shows that the standard deviation of the navigation error
will increase as the squ are root of the tirne coordinate. Notice that we

assurned that

e i;qt¡ ] 0

i. e. the disturbing torques on the
È

rofloats have zeto avetaþ,es, which

rnearrs that the rrnbalance of the floats is carefi¡lly cornpensated.

Theorern g.3t thus represents the ultimate navigation accuracy obtained

with systerns based on gyros, whose unbalarice torgue is perfectly

coffrpens ated.

The a¡gular deviation of the platforrn is then entirely caused by the ran-

dorn variations of the unbalance torques of the gyros.

In order to specify the ra¡rdorn drift of the gyros the quality figure Q is

suggested.

o-- I R lr) dr
rTr rÍì. ' '

- -t/2rad sec '(,
o

@
t

J
@

,!
Notice that Q depends on the environrnental conditions.
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Notice that the m is the norrned disturbing torque. Introducing the torques

thernselves rn' we get instead

Q=

Introducing this quality figure, the standard deviation of the angular

deviation of the platforrn is,

n{ø¿t'l} = D{Ørr)} = e,Et'

For a single axis systenl \Ã/e obtain in a sirnilar way

o{øttli = Qiri

I
E

æri n .,ft\d¡
J rnrn

-m

t"
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10. Techniques for the synthesis of inerti al pl atforrn svsterns.

10.1 The design proceCure will always start frorn sorne kind of specificationç.

Depending on the specifications,the design will take different lines. The

synthesis can e. g. start frorn scratch or start with a given stable elernent

with girnbals and gyros. In the first case the designer cari choose both the

arïangerr).ent of the gyros, the weight of the different parts, etc. while

in the second- case the designeï can only choose the transfer functions

between the different parts of the systern' The following scherne is

suggested for the synthesis procedure.

1. Choose a rnatrix rc(p) which satisfies

the sPecifications.

Z. Design a systern which has ihe re(p)-

rnatrix obtained above.

Check if it is possible to change the

re(p)-rnatrix in order to sirnplì-fy the

instrurnentation without ove r riding

the specifications.

L0.z The first part of the synth."1?, 
i;.,th" r.,1,?,7sical 

problern on servornecanrsms'

Although no cornplete solution is_ yet'obtaínedrthe problern is solved for
'/

ccrtain classes.of specj.fications in ordinary textbooks on autornatic control .
I

Let it suffic" bf'-"ttioni.eg a few things about this special problern. With

the specifications ordinarily giwen,the problern usually has no unique solu-

tion. The choice }retween the dj.fferent solutions is governed by instrumenta-

tional considerations. cornpare part L0.4. It is often favourable, however,

to use a diagonal systern or a systern with srnall cross-couplings' These

systerns can be synthesized essentially on a single a^:<is basis which meaJls

a considerable sirnplification of the arralytical work. Cornpare appendix'

Accord.ing to the physical interpretations given in section 7 the rc(p)-

rnatrix deterrnines the ProPerties of the platforrn. The first part of the

synthesis of inertial platforrn systerns thus consists of choosing " K(p)-

rnatrix which gives a sufficiently tight coupling between the stabÌe elernent

and inertial space, and a reasonable arnount of darnping. cornpare section

? and. the definition (8. 13).

3
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Exarnple

Consider an isotropic platforrn systern, i' e

re(p) = k(p) tr TO, ZI

As there ,j_*o cross-couplings. in the systern the synthesis ca¡r be carried

out following the scherne givenin appendix' Suppose e'g' that we obtain

t (p) b b(p + zL P + r0. zz)

7
p
p

P

Interprcting the different terrns of the re(p)-rnatrix according to section 7'

vøc get

Jbtr the terrn coïresponding to rnornent of inertia of

the platforrn. The inertia rnatrix of the platforrn

is Jbtr

2JLpbtr

Ê

the terrn corresponding to carnping of the platforrn

with respect to inertial sPace. The darnping

coefficient is Z J L Po [*tt " ""d- 
1-ì 

'

thestabilizingterrnwhichirnpliesthatthestable
elernent is 'rspring-restrained" to inertial space'

The spring-.o"ffi".i"rrt i" J oPZ [*'- "ta- 
1l 

'

Jb tr

For the second part of the synthesis we start with equation (6' 14) i' e'

re (p) g'. (p) + c(p) s- 1(p) v(p)

P

10.3

10. 31

The rnatrix K.(p) i" given by the first step of the synthesis procedure' The

cquation above then gives 9 equations for d.eterrnining the 18 Jecdback

ooerators d. and r.., the orientation angles of the gyïos e\r'r, e(Z) and'

e(3) , a'.d trrtJ ta .ornf;onents of the inertia tensors Aij "td Brj ' Besid'es

wc have to consid.er the stability conditions of section B. ât",,y",'l:
problern is highly indeterrnined and. we can irnpose several other conditions'

Sorne exarnples are given below.
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Exarnple 1

Suppose that the gyros, their orientation, the stable element and all d.:s
are specified.

Equations (6. tZ) and (6. ta) give

r(p) = c(p) - (Ar zpz +.,,op) o - orrpz i + Azzpz Ñ

and

G (p) = K (p) - p (p) rn- 1(p) s (p)

r'\ssurne further that the output axis sensitivity of the gyros is elirninated.
(fms usually requires a definite stable arrangeûì.ent of the gyros. Cornpare
section 8.4), i. e.

q)

v (p) s (p) =
o

2a(p + c(p) )

hence

(¡)

1
tr

c(p) =
o

[*tol - ptp)]
z

"(P + a(p) )

Â systern with the desired properties is thus obtaj.ned if the transfer func-
tions frorn the gyros to the torquers tij .t. chosen in the following way

r(p) =-*-
. (p' + o(p) )

[* Ol - r O)] - (Ar zpz +,o p) n - l-rrez I +

+ AzzP lN

Example 2

Suppose that the gyros, their orientation, the inertia of the stable element
a¡rd all r-.:s are given. trquations (ó. L?) and (6. t4) give

1J

s(p) = rr(p) [*fol - u.tp)]

z

-1 c (p)

where

c(p) = r" (p) + (Ar ¿pz + c^,o p) Í. + r-zzpz T- - Azzpz Ñ
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h,

Suppose e. g. that

r (p) 0

This corresponds to a systern without-gi¡rrbal torquers which rneans that

thc gyros are used in,the'^'double purpose of sensing device and torque

actuators. 'Ihe desired properties of the systern are obtained by feeding

thc output signals of the gyros to the torquers of the gyros through suitable
networks whose characteristics are given by the matrix S(p).

tO.4 The analytical problerns of the last part of the synthesis are essentially
to estirnate the erroïs obtained when the K.(p)-rnatrix deviates frorn the

ideal character. Because of rnan's lirnited analyticat ability it seerns

wise to use analogue cornputer methods.
!'1.. \ i.

{t

l
It is impossible to giwe any r
sirnplify the instrurnentation.
intuition. Floweve

1'necessa to a¡ra1

ules;',how to change the s
" , ..:/

The designer thus have

ystern in order to
-to rely upon his

r, there is one thing we would like to point out. It is
yse the order of rnagnitude of the output signals of the

gyros This i" l:::_"_1":y-a," one of the assurnptions rnade in the

beginníng of section 6 was that the output signals were srnall quantities.
Lf this is not true the analysis is not valid.

V/e will end this chapter with a discussion of the synthesis of diagonal

platforrn systerns.

10.5 Suppose we want to synthes:-ze a diagonal platforrn systern. Before starting
the analysis we will give a physical interpretation of the non-diagonal
elernents of K (p) .

L. B,,lo i/i
1J

This rneans that the inertia ellipsoid of the stable

elernent is not syrnrnetric with respect to the

Y¡- axe s '

z. \- lT-
This rneans that the spin nurnber s of the platforrn
is not zero,
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3 o* ot i - orrn' Ñ
Secondary reaction torques.
(When the gyros give signals they give rise to
reaction torques on the stable elernent. )

-14. Non-diagonal elernents of S (p) v (p) rneans

that the gyros are sensitive to angular veloci-
ties along aJ<es orthogonal to the input a:<is,

e. g. output axis sensitivity.

Non-diagonal elernents of 1f irnplies that the

cornponerrt of the torque produced by the torque
rnotors on the y,,'-axis is not only controlled
by the rn-gyro.

In order to obtain a diagonal platforrn systern we can let non-diagonal
elernents ca-ncel each other, or try to rnake all non-diagonal elernents
zero.

Thc effect of the non-diagonal elernents can be elirninated in the following
way.

I: Making a stabl-e elernent whose principal- axes

coincide with the y¡-axes.

¿: Choosing a zero-spin arrangernent of the gyros.

3: Making the gyrofloats syrnrnetric with respect
to the output arcis give" Ã32 = 0. Increasing
the rnornents of inertia of the platforrn decreases
the influence of the secondary reaction torques.
The high rnornents of inertia of the platforrn can

be obtained by rnaking a large heaq¡ stable ele-
rnent.

4: The output axis sensitivity of the gyros can be

elirninated by the proper choice of the matrix
S(p). Cornpare section 8.4.

Choose Tf diagonal Ï

5

5:
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The conditions L' - 5' a.re r¡nfortunately inconsistent. Condition 2' implies
a zcro-spin systern, according to section 8. 4. the output axis sensitivity
carrnot be elirninated in a zeto-spin systern without overriding the stability
condition. Further condition 4' requires a systern with s = 3 and I = 0,
which contradicts conditíon 2'. If the secondary reaction torgues are

elirninated by the proper choice of the internal feedback we firust also have

a systern with s = J and 1 - 0.

Exarnple

Consider a systern according to equations (8. 103), (8. 104), (8. 105) and

(8.401) whose gyros have a definite stable arrangernent. .\ssurne further
that

a(P) = o'P +t&

and that

z
û)

1.Ob'=b*æ,)irl

then

re(p) = o {tr'(n)II+Yz'þ) u -Y3'tn) ñJ

where

vr'(n) =

(¡)

)tp + å. '(p) ^zÞp
T

p+e
+z

P * op * ¿{
z

P *op*y'e
OJ

vr'(v) = #
<^ro (op +l{)

b' (pZ + ap +Jt)

2. (¡)

]6'= b* g
a)1

and

vr' (e) =
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Hence by rnakingl4,suffrciently srnall the effect of the secondary reaction

torques are becorning neglígible and the cornplete systern is isotropic.
<-

The saàe effect can be obtaíned by the proper choice of r(p) . The details

are left j"lln" reader.
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A. rnethod for the

A.. 1

-r-¿(p)

where

76.

s.¿nthesis of a s le axis inertial stabilized platform

systern.

Vy'hen designing sel'volTrechanisrns for platforrn systerns we have to con-

sider the followj-ng facts.

1. The inCication eïror caused by disturbing torques acting on

the gyrofloats and on the stable elernent'

2. The ability oÍ. the stable elernent to follow coûrmanding signals.

The disturbíng tcrques depend on the rnotion of the vehicle, the vibration

level, the elastic propertíes of the stable elernent, errois in the girnbal

systern etc. In o:der to carry out a successful design it is therefore

necessary to have inforrnation about the rnotion of the vehicle, the vibra-
tion ie-¡el , the disturbing torques and the cornrnanding signals. The

synthesis cf ihe servorrrechanisrns then consists of choosing the transfer
functions frorn the gyro to the torque generator oÍ the gyro and to that of

the stable elernent.

In order to obtain the rnain features of the required transfer functions we

will rna.ke a sirnplified approach to the design problern. This approach

d-oes not require detaíled inforr-nation about the disturbances and the

comrnanding signals. Instead we sacrifice a close-fit between the specifi-

cations ancl the perforrnance of the systern. The validity of the sirnplified

approach can l¡e tested by evaluaiing the error for sorne characteristic
disturba.nces. We are also supported by the experirnenltal Íact that systerns

designe.C in this \,vay behave satisfactorì-ly.

Equati.on (6. 27) gi-ves' for the single a^:<is platforrn

Y

TT+-â.(p) +
o

ivt (p) +
a

Y

(Ð 1+Y
o * (p)

o o

(, r(p) + coo p
)

p (p' + o'(p) )

(e. r r)

vo (n) o
ã6

(4. 12)
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íL (t)

(¡) angular velocity of gyroscopic elernent

rrrornent of inertia of the gyroscopic elernent with

respect to spin axis

rnornent of inertia of the fLoat of the gyro

rnornent of inertia of the stable elernent

transfer function frorn output signal to torque rnotor

of the gyro

transfer function frorn output signal to the torque

rnotor o{ the stable elernent

disturbing torque acting on the stable elernent

disturbing torque acting on the float of the gyro

output signal of the Syro

angular velocity of the stable elernent

cornrnanding angular velocitY

orientation of the stable elernent

cornrnanding signal

nrtt)
a'(tl +

o

J

aJ

bJ

a(p)

'(p)

MJ

rnJ

_{'L

JL

ç

o

e

0
o

A block-dia;graLír. of the systern d,escribed. by equation (4. 11) is shown in

fì.gure A. 1 .

f'-4 (r )

Yfl 
"t+; bp

^t-(PlI

ii.i''"

,úJ 
ù F)Ct-í'l (¡-;

Fígure A. 1
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Equation (4. t 1) gives

Y

o
e (p) = -.? 

eo(r) +

I

rur(p) rA J+- -(p)
o^ o

1

apz (1 + Yo)

The transfer fr¡nction from torque acting on the stable elernent to stable

elernent orientation is thus

(A. 13)

(A. 14)

(A.. r5)

(A. 16)

e (p)
vt (p)

I
¡p Yt

where

vr(e) =p(1 +vob) )

Define the coefficient of stiffness K

K

S

= lim
P -+0

S

The steady state error when a constant torque is applied is thus

JM
e(+æ) =

o (a. rz)
K

Þ

where JM- ís the rnagnitude of the disturbing torque.
o

Lt is reasonable to assume tlnat a constant torque will result in a finite

angular der¡j.ation of the stable elernent i. e. K" I O. This gives the

following conditions on the error constants of the servo

K

Kv =@

If these conditions are satisfied the coefficient of stiffness is proportional

to the acceleration constant

K = JbK a

oop

Cornpare the 'rspring coefficient" of section 10' 2'

(4. 18)
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The perrnissible steady-state indication error will thus determine the

acc ele ration c onstant.

The ability of the systern to follow comrna¡rding signal is essentiall-y

deterrnined by choosing a suitable bandwidth and darnping ratio of the

systern.

An analysis of the disturbing torques and the cornrnanding signals will
therefore give sorne prelirninary specifications of the following kind.

bandwidth (¡)

darnping ratio of control poles

positional error constant

velocity error constarrt

B

K
P

(,

K

æ

æ

K
S

f¡aKacceleration e rror constant (.{. 1e)

The order of rnagnitude of P, L arrd K" is in an airborne application
100 rad/sec, 0.7 , 1 Nrn/rad. , respectively.

A systern with these specifications can easily be obtained by the synthesis-

procedure given by Truxal. See reference 4, chapter 5,

A.Z The specifications can be satisfied by a pole-zero configuration of the over-
all systern according to figure A. 2 where the position of the zero is
deterrnined by the condition on the velocity constant

É

Figure 4.2
Pole-zero location for over-
all systern transfer function
v(p) .

x
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The over-all systern transfer function is

(A.. 21)

(x. zz)

(A..23)

(A. 24)

(A,. 25)

(^.26)

The constant p is chosen so that the bandwidth condition is satisfied.

Suppose Ç = 0.? then p = *, rU. Cf. ref.. 4, figure 3.5.

The open-loop transfer function is

voh) =,+) z L Fp + Þ2
z

Equation (e. tS) gives

thus

P

o
Y (p) z

P +zLþp +B
P

z
vr(e) = p(1 + Yo(P)= P

n [t,tnl - nl ?L Pp + P
z

Equation (e. t¿) gives

K = Jb p ?
S

The transfer function r (p) is obtained frorn equation (4. 12)

t(p) = -(, Po
ab
G)

o * [" * ob)] i"rp * pi



î, A.3 It is desirable to have sirnple expressions for r(p) as this transfer
fnnction rrrust be reaLízed with some networks.

V/e obtain an expression sirnpler than (A.26) by choosing a pole -zero
configuration of the overall systern according to figure A..3.

l(

-pl

- zl

Figure Á.. 3

Pole- zeto Iocation for overalL system transfer function Y (p)

V/e obtain

p
7

(p + zr)
v (p)

P1

81.

(e. :o r)

X

z (pz r zL pp + pz)(p + pr)1

By proper design of the systern the steady-state behaviour is essentially
dcterrnined by p, and zl *d the transient behaviour by F and ç The
cLarnping ratio of the control poles f is given directly by the specifications
and the constant p is chosen in order to satisfy the bandwidth condition.
If Pl and "L should not aÍfect the transient behaviour too rnuch the
quotient Pt/", should. be near I, say

p1
¿_ L" L7¿- ,T (A.. 30z)
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accord.ing to Truxal. After the choic e of. 
p tf ,, the zero z is deterrnined

1

by the condition on the velocity coefficient.

zL PPr + Pz

¿, \P (P + Pz)

(e. roa)

(A.304)

(e. sos)

(e. so6)

(e. roz)

(A.309)

(e. tro)

The open loop transfer function Yo(e) is

z

vob) = r+þ)
P1 P t zlp

z

Equation (,A.. 1ó) gives

K. = JbP

Frorn equation (,\. 14) we obtain

where

thus

and

1

Pz=P1*zLP

z Pt
p?

-pvr(e)=p11+v"b)]

, [",b) - n] = Pzvo(n) = +'*+

3Zu3 p- + a, p'+ a(p) (p + , r)

(p¿* zLpp+pzXp+pr)
Y (p) =

1

The tra¡rsfer fr:,nction r (p) i" obtained frorn eguation (a. tf)

pþ+Pz) (n. srr)
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where

AJId

^3 - I o
zabp P1

t) z
o

2
(¡) ,L

z
I Pz

uz z
ub þ¿ pt

Suppose that we can choose "3 = 0 consistent with equation(A.302) i. e.

1

P (^)
?

ñ
1 o

z

z

(e. srz)

(a. srs)

(e. sr+)

(a. r rs)

(a. : r0)

1

(¡)

t<__9_-<1. I
ab þo

Equations (a..303), (e.:oS) and (A.3tZ) give

ß { 'oPl = t \ ", Bz

z

\1

p2 J
zL 4L

T

I

IL

z
+ 1 I

J

Equation (a. 111) then reduces to

Lnl ç pz (, t - pz) + o'(p)(p + rr)

z
1

p(p + p
(a. rrz)

z

of^^t/.¡t^
Suppose further that we use an integrating gyro and that its torque^wlote*

.(p) = y
/o )

This rnea¡rs that the rnornent of inertia of the stable elernent should
rnatch the bandwidth of the systern.



is not used. for feedback purposes, i. e.

o(p) - op

then
I,t ç

84.

(A.318)t(p) =
t/7

/o

Pþr-Fo-P¿)*az,
p+pz

A.4 If the disturbing torques have a high level it rnay be necessary to clairn

K=æ (e. +o r)

for proper perforrnance of the platform systern. The specifications (a. tZ)

with this condition added can be rnet with by choosing a pole- zeto cotr-

figuration of the overall systern accortling to figure 4.41.

X

-p? -zz -P r-'

x

Figure A.. 41

Pole- zero corLfiguration of overall systern transfer functíon.



The overall systern function is

zL PPtPz + P

vr(n) =

85.

(Á'.40¿)

(Á..403)

(A.404)

(A.405)

(A.406)

(a. +oz)

(,4..408)

The specifications of the velocity and acceleration constants give

2
2

P tPz

z
p P tPzPt+P P.z

The open-loop transfer function is

a
P

?.

where

P3=Pl*Pr+zçp

Equation (4" 14) gives

^z
ptpz+ zL Ppr+ zL ger+ pz - o. o=to'

'L 'z

"r

0

vo(r) = 1-+$s)
PrP¿ (p + "r)b + "r)

thus

= zz-7¿ 3,P þ +Pa)

?7(p' + zL pp + p')(p + pr)(p + pz)

p PtPz (p + "r)b + "r)
z

p vr(n) - el z p(p+p¡)L z

Equation (4. 13) gives

ab p ? o4 p4 + a3p3 + pz "r"zrø(p)(p + 
" )(e + u¿)

zz
1

t(p) = (¡)
o 2 p¿ (p +p:)

(.{.409)
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where

Choosing

we get

z
û) ,zz

o 1 (a. +ro)

(e.+rr)

(a. +tz)

(A.413)

^4= 1-
¿abp PtPz

z(,
o 'L'zP3

L
z,3 *rZ

¿abÞ PtPz

P1

L
z

pz

,z

nt þtt ,?- pg) +Pz ,t'z* ø(P)(P Iz ¡(p + z2)
lp,

'(p) =
(p + ps)p

I'y'c have still one condition left befor" PtPz rL rz are deterrnined'
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PLAT 3.3

SYSTEMs WITH SPIN T}+REE AND CIUTPI.'T AXES IN TIiE SAME PLANE
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PLATE 3. ¿

SYSTËMS WITH SPIN TIJRËE AND OUTPUT AXËS IN THE SAMË PLANE.
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P¡-ATE 3. 5

ORTI'IO6ÚNAL sYSTEMS WITH SPIN ONE
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PLATE 3. õ
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ORTHOGONAL SYSTEMS WITH SPIN FIVE
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PI.ATE 3.10

ORT H OGONAL SYSTE ¡45 WIT f-t sPIN FIVE

ls=5r l-0 f-r
L2

Ë - 5, | -0tLl
2)

,
71

2
tr.

[-ru
L7 l å,"Jttrlt s=5r l-Û s-5r l-O



ê2,ô3

)3
/ /I \ /\

.|
I B {r

{
"1 ,/I \ \

\

"/
,1

/\\
\\ \ /

/
/

/ \ \
\
\

/\sûo +
/ g

?)
I

?.

\

\
\ /

/
/

/ \ \
/

l
/

/
I

\¡ \/
/

\Ê s

\t /
/

\
01

l
I

l
?\ / lrt /

\\
t

/
/\ ,1 ,/

\
I

\{I ,l
\

\
/

\
\{

g2 \luI /sú
\ t

//
/

\
\

\
\ /\

I
/

\ \ r \/
/

\ I
/\

)3/
r \

{ {[',
\

\

Ptote 3.11

Sol,utions of the equotions;

{:iffili
c05
sin

,d1) * ,¡ng($core(4- o
;;. Ð(11 "ord4 

,ore(3) - o
J3)* .¡ng(4.o
ð2ls¡n s(3) +



æ
%

(D
l\)

b
l-,

.(.¡

l\¡

r/)
c'
g
rl
C,:
UI

c¡

JT

o
.¡t
G
Ê¡f.
Ë¡:t
14

/-+ì
UI UI

J2
Ð^Q^
lo. r¡

LL
E.+
=nq* Ë'

$å e-å F\ttv

28
ä=%
C¡a
ffe.
%L

gå
öq
Lfu
l*löe)

\
\

/

/

\

/

\

t
l

\
\

/
/

/

v'

&
/

\

/

\

/

/

t

I
I

/
iI

It

/ro'ct
o

/
/

\
\

\\

-.@

/I

\\

\
\

,I

I
/I

\
\ \

\

I
l^9

I
T

\
\

\

\

I
I

fft
7

\

\
\

\

,.P

\ I

\
\

f
/

\
\ \

fI

I

t_

I

(D
N'

t
1.

T
/

I

\ \

II

\

/

/

\

\

/
/



PLATE 8.?,"

ROOTLOOUS WITH RËsPËGT TO THE CROS5COUPLING

CÛEFFICENT T FOR THE CHARACTERISTIC EQUATION

oF A sYsTEM wlTH 5'1 r .-0,f ' 0 AND l(P)- É.t 
=+lptl-p
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PI.ATE 8.22
RooTt ocus wtrH RESpEcT To Tr-E cRosscoupLrNo coEFFtcrENT I rm rlc cttARAcTERtsnc

EQUATION OF A SYSTEM WITH S. 3 c' -1 3.0 AND Y,(P)= pï l.¿tp *t
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PLATE 8.23
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PLATE 8.27
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PLATE ,8"25
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PLATE B.¿1

RæTLOCUS WITH RESPECT TO THE GROSSCOUPLING

CoEFFICIENT 3 FoR THE CHARACTERISTIC EQUATIoN

OF A SYSTEM WITH

S.3re=Orf .0, g"-0-?1p

I
l

I

I

I

I

I

j

3

I


