LUND UNIVERSITY

Tracking and Reconstruction of Vehicles for Accurate Position Estimation

Kallén, Hanna; Ard6, Hakan; Enqvist, Olof

Published in:
Applications in Computer Vision (WACV), 2011 Workshop on

DOI:
10.1109/WACV.2011.5711491

2011

Link to publication

Citation for published version (APA):

Kallén, H., Ardd, H., & Enquvist, O. (2011). Tracking and Reconstruction of Vehicles for Accurate Position
Estimation. In Applications in Computer Vision (WACV), 2011 Workshop on (pp. 110-117). IEEE - Institute of
Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/WACV.2011.5711491

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1109/WACV.2011.5711491
https://portal.research.lu.se/en/publications/9c73fc8c-927e-45a0-a110-01c2b4edfe1a
https://doi.org/10.1109/WACV.2011.5711491

Tracking and Reconstruction of Vehicles for Accurate Position Estimation

Hanna Killén

Haikan Ardo

Olof Enqvist

Centre for Mathematical Sciences, Lund University, Sweden

www.maths.lth.se/vision

Abstract

To improve traffic safety it is important to evaluate the
safety of roads and intersections. Today this requires a
large amount of manual labor so an automated system us-
ing cameras would be very beneficial. We focus on the ge-
ometric part of the problem, that is, how to get accurate
three-dimensional data from images of a road or an inter-
section. This is essential in order to correctly identify differ-
ent events and incidents, for example to estimate when two
cars gets dangerously close to each other.

The proposed method uses a standard tracker to find cor-
responding points between frames. Then a RANSAC-type
algorithm detects points that are likely to belong to the same
vehicle. To fully exploit the fact that vehicles rotate and
translate only in the ground plane, the structure from motion
is estimated using an optimization approach based on the
Loo-norm. The same approach also allows for easy setup
of the system by estimating the camera orientation relative
to the ground plane. Promising results for real-world data
are presented.

1. Introduction

To reduce the number of road traffic injuries it is im-
portant to know how safe certain roads and intersections
are. There are different ways to evaluate this. The clas-
sic method is to count the number of accidents that occurs.
Since accidents are rare it can take years to get a good as-
sessment of safety this way. A faster approach is to predict
the numbers of accidents that will happen by manually ob-
serving certain events, conflicts, during a much shorter time
period [5]. This is done by letting trained personnel study
video of the intersection. Naturally, this is very expensive
and time-consuming and an automated method would be
very beneficial.

In [8] a method for automated surveillance was pro-
posed. To calculate the position of a vehicle, the 2D im-
age of that vehicle was projected onto the road plane. If the
camera can be placed right above the intersection, this will
work fairly well. In most cases though, this is not possi-

ble. The projection of the vehicle gets stretched out and the
estimated position incorrect. A better way to estimate the
position would be to make a three-dimensional representa-
tion of the object and use this to calculate the position of the
vehicle. This is the approach considered in this paper.

There is much work in the vision literature regarding
traffic scenes. In [9] a system for tracking pedestrians
and cars was presented which is based on object detectors.
A system for making 3D shape reconstruction for traffic
surveillance with multiple cameras is presented in [10]. To
do this predefined 3D models of cars are used. In [2] vehi-
cles was tracked by tracking feature points on it. After the
features exit the tracking region, they are grouped into dis-
crete vehicles using a motion constraint. In [13] a system
for automatic calibration of a camera from traffic scenes
was proposed. If the height of the camera is known, both
intrinsic and extrinsic parameters can be found. A method
to rectify images is given in [1]. By tracking the motion of
two vehicles moving in constant speed an estimation of the
ground plane can be done.

The approach described in this paper differs from most
methods in at least one important aspect. Inspired by recent
research in optimal methods for computer vision, the repro-
jection errors are minimized with respect to the L.,-norm
rather than the more common Lo-norm. This makes it pos-
sible to find the global optimum and it also makes it easier
to impose extra constraints, such as the fact that vehicles are
only moving in the ground plane.

1.1. Overview

We start with captured video from the intersection. For
the reconstruction we need to find corresponding points be-
tween different frames. This is achieved in the following
way. Every few frames we pick an image to use as a starting
image. In this image a corner detector is used to find strong
corner points. These points are then tracked a few frames
using a KLT tracker [12], to get corresponding image points
in a later frame.

To reduce the amount of outliers in the 3D reconstruc-
tion, we need to detect which points belong to the same
vehicle. For this purpose we perform a motion segmenta-

tion algorithm that will be described in detail in Section 3.1.
This algorithm finds all vechicles that are visible in the start-
ing frame. The vehicles are then tracked both forwards and
backwards in time until the vehicles leaves the camera field
of view or until the tracking fails.

This procedure yields long tracks of corresponding im-
age points likely to belong to the same vehicle. From these
tracks we use a few views to perform our 3D reconstruction,
which is described thoroughly in Section 3.2. The scale is
fixed by assuming that some reconstructed points lie in the
ground plane. Having a 3D model we use this to estimate
the pose of the vehicle in all views, see Section 3.3. This
gives us accurate information on the movement of the vehi-
cle throughout the sequence. Section 4 described how the
same framework can be used to estimate the camera rota-
tion with respect to the ground plane. The idea is to do this
once when the system is set up.

System Overview

1. Track points between frames.

2. Cluster points from the same vehicle.

3. Reconstruct the vehicle using a few views.
4. Compute the vehicle pose in all views.

2. Preliminaries

We assume that the ground is planar and that the vehicles
are rigid bodies that only moves in that plane. We choose
coordinate system, such that the z-axis is perpendicular to
the ground. We also assume that the camera has known in-
ternal parameters. In reality we have one stationary camera
and moving vehicles, but from the vehicles point of view it
look like the camera is moving. Choosing this point of view
we can assume stationary vehicles and multiple cameras.

2.1. Structure from Motion with Known Rotations

If the rotation between the different cameras are known
we can solve the structure from motion problem with mul-
tiple cameras optimally with respect to the L.,-norm, us-
ing second-order cone programming [6]. This gives us the
translation of the cameras and the position of the 3D points.
An advantage of this approach is that several views are used
to estimate the 3D points, unlike the standard approach that
gets initial estimates from only two views.

Due to noise there is no exact solution to the reconstruc-
tion problem. Thus we allow the reprojected points to de-
viate somewhat from the measured image points. To get
linear constraints, we allow the reprojected point within a
small square around the measured image point. This dif-
fers from the approach in [0]. The simplification allows us
to solve the optimization using linear programming rather
than second-order cone programming.

z,
e
\

T
PERET
' P=0%,,)
!1

Figure 1. Linear constraints in the image plane and in space. The
left figure shows the lines that define the box in which the repro-
jected point must lie inside. The right figure shows constraints in
space from two cameras, the 3D point must lie inside both cones.

The square has side length 2¢, where € is the tolerated
error, and is defined by four lines in the image plane, see
Figure 1. These lines are the intersections between the im-
age plane and planes going through both the camera center
and the image plane. The planes through the camera center
form a generalized cone in which the 3D point has to be. A
bigger value on € results in a wider cone. For every cam-
era, we get another cone constraint on the position of the
3D point. The constraints from two views can be seen to
the right in Figure 1.

If we express the 3D point in cartesian coordinates we
can write the camera equation on the form

a=KR(X -1, €]

where A is the depth of the point, the image point in ho-
mogeneous coordinates, K the camera calibration matrix,
R the rotation of the camera, X the 3D point in cartesian
coordinates and t is the camera center. For calibrated cam-
eras we can exclude the calibration matrix and get

Az =R(X—t).)

From each one of the lines to the left in Figure 1 we get
constraints on the form, "z < 0, where [is the equation
of the line and « is the image point in homogeneous coordi-
nates. Using the camera equation in (2) we can rewrite the
constraints to

lTiR(X —t) <0. 3)

The depths has to be positive if the point is visible in the
camera, therefore we can eliminate the depth from the equa-
tion. If we set a = 17 R we get

a(X —t)<0, 4)

defining a plane through the camera center and the image
plane as shown on the right in Figure 1.

For every 3D point there are four inequalities per camera,
one for each plane. We collect all these inequalities into a
matrix

Au <0, (5)

where A holds the coefficients and uw holds the unknowns,
consisting of the 3D points and the camera centers. Check-
ing if there exists a solution that fulfills all constraints for
a fixed error tolerance € is a linear programming feasibility
problem. To find the minimal € we can use bisection.

A weakness of this approach is that it is sensitive to out-
liers. One way to get around this is to use auxiliary vari-
ables, as described in [11]. To each row of (5) we add a
variable s; > 0, yielding

a{w < s;. (6)

There is one s; for each measured image point. For ex-
ample, if we have five views with ten image points in each
view we get 50 auxiliary variables. Ideally we would like
as many s;’s as possible to be zero, but since this is a very
hard optimization problem we try to minimize the sum in-
stead. This turns the convex feasibility problem in (5) into
a convex optimization problem,

Au < Ps, @)
where P is a matrix picking the relevant s;.

2.2. Minimal Solver

This section presents a method to calculate the rotation
and translation between two frames. The method is mini-
mal in the sense that it requires a minimal number of cor-
respondences. Assuming planar motion and known camera
rotation with respect of the ground, we need two pairs of
corresponding points.

For all cameras we have same rotation, R, with respect
to the ground and we can rewrite the camera equation (1)

A\ =KRoR, (X —t), (8)

where R, is the rotation around the z-axis.
Using normalized image points © = ROTK “lx we get

Mu=R,(X—t). 9)

For the first camera we set both the rotation around the z-
axis and the translation to zero, getting the simpler relations,

)\kuk :Xk7 for k = 1,2 (10)

where u; and uq are the two image points.
For the second camera we let y; and v, denote the depths
and use vy and v for the image points. We get

iR v, = (X —t), fork=1,2. (11)

Since we are dealing with planar motion the translation is
zero in the z-direction, so t = (5,1, O)T. The rotation,
R, is given by a single rotation angle, 6.

If we know all four depths, A\;, A2, 71 and 72, we can
calculate the 3D points from (10) and the rotation and trans-
lation from (11). Hence, one way to solve the problem is to
determine the depths. First note that the depth v can be ex-
pressed in A\ using the z-component of equations (10) and
(11). We get

Uk~
Xkz = MUgz = Y10k and v, = "

Ak (12)
kz

To calculate the ratio between A\; and Ay we use the
geometry of the scene. The scene seen from above is
showed in Figure 2. For each camera we get one trian-
gle with corners in the camera center and the two 3D points.

Figure 2. The scene seened from above

The two triangles share the side = and the length of this
side can be calcluated from either of the triangles using the
law of cosine. That gives us the equation

A2 g |2 4 A2 Jug|® — 2X\1 A0 [ug | [ug| cosar =
=i [oaf* + 93 [v2l” = 2072 [01] w2 cos B, (13)

where « is the angle between the two vectors w; and wus,
being the image points from the first camera. In the same
way [is the angle between vectors v, and v of the second
camera.

By setting Ay to 1 we fixate the scale. Then we have
three unknown depths and three equations. Inserting (12)
into (13) yields an equation of second degree that gives us
up to two real solutions for the depths.

For each of these solutions we calculate the rotation and
translation. This is done by solving the linear equation sys-
tem below. From (11) we have four unused equations,

Y1 (ale + bvly) - Xlx — 1y
ga! (—b’le + avly) = le - ty
Y2 (av2z + bv2y) = XQ:E - tw
Yo (—bvgy + avey) = Xay — ty,

(14)

where a = cosf and b = sin 6.

3. Tracking and Reconstruction

To do the reconstruction we have to find corresponding
image points in the different frames in the video. To get that

we find interest points in one frame and track those points
to the following frames. Then we cluster the points so that
points in one cluster belongs to the same vehicle. When we
have corresponding image points for a vehicle we use a few
frames to do a 3D reconstruction. The reconstruction is then
used to calculate the pose for all frames.

3.1. Tracking

To detect vehicles in the video, we start by finding inter-
est points in one frame somewhere in the sequence. Then
we track these points a number of frames using a KLT-
tracker [12]. To separate points on stationary objects from
points on moving objects we remove all points that has not
moved between the first and the last frame. For the rest of
the points we perform a motion segmentation algorithm to
find out which points belongs to the same vehicle. For all
the vehicles found in the scene the feature points are tracked
until the vehicle leaves the scene. When all vehicles in the
scene are found we choose another frame later in the se-
quence. This is repeated until we come to the end of the
video.

The motion segmentation algorithm works by choosing
two image points from two images, the first and the last im-
age. From these two points the rotation and relative trans-
lation between the frames are calculated using the mini-
mal solver from Section 2.2. The minimal solver requires
that the rotation of the camera with respect to the ground
is known. Depending on the number of real solutions for
the equation of second degree in 13 the solver returns up
to two solutions for the rotation and translation. For these
solutions the rotation and translation are used to create two
camera matrices per solution, one for each view. The cam-
era matrices are calculated by

P, = KR, (I|0) and P, = KRyR. (I| - t), (15)

where K is the camera calibration matrix, R is the cam-
era rotation with respect to the ground, R, is the rotation
around the z-axis between the frames and ¢ is the transla-
tion.

The camera matrices are then used to triangulate all im-
age points to get the positions of the 3D points in space, the
triangulation is done with the method proposed in [4]. The
3D points are then reprojected with both cameras

Ay = P, X, (16)

where &; is the reprojected image points for view ¢ and X
are the 3D points. The reprojection errors, €;; = |&;; —
&2, are measured for all points in both views. Points, j,
that have a small reprojection error in both views, €1; < ¢
and ea; < ¢4, are classified as inliers and are likely to belong
to the same vehicle. The number of inliers is counted for the
different rotations and translations and then two new image

points are chosen. The algorithm is then repeated for all pair
of image points and the number of inliers for all possible
solutions are counted. The solution that gives the highest
number of inliers is chosen.

The points classified as inliers are then tracked with the
KLT-tracker until the vehicle leaves the scene. Points that
fails to be tracked are removed. First we track the points
from one frame to the next and then back again, points that
do not return to the original position are removed. We also
remove points which comes to close to the edge of the im-
age. We stop the tracking when there are no points left. To
get longer tracks we start by following the vehicle forward
in time, from the starting frame to the following frames un-
til the vehicle drives away. Then we go back to the starting
frame and follows the vehicle backwards in time, from the
starting frame to previous frames until the vehicle disap-
pears.

The points classified as inliers in this estimation are re-
moved, and the motion segmentation algorithm is restarted
to search for more vehicles. The motion segmentation algo-
rithm is repeated until there are too few points left.

Since we choose new starting frames at short intervals
we typically get several tracks of the same vehicle. To avoid
reconstructing the same vehicle more than once, we try to
detect this by comparing the position of the image points
in the different tracks. Tracks where the positions for some
image points coincide with image points in other tracks for
corresponding frames are likely to represent the same vehi-
cle.

For a frame in the first track the corresponding frames are
found in the following tracks. The image points are com-
pared between the different tracks, and if any image points
coincide the tracks are merged together.

Tracking

The first frame in the video sequence is chosen as
starting frame

1. Detect interest points.

2. Track the points a number of frames and remove
points that does not move.

3. Find points belonging to the same vehicle by
performing the motion segmentation algorithm.

4. Track the vehicle, until it leaves.

5. Remove points classified as inliers,.

6. Repeat step 3-5 until there are too few points left.

7. Choose a new starting frame, a few frames after the
previous starting frame.

8. Repeat step 1-7 until the end of the video is reached.

3.2. Reconstruction

After the tracking algorithm we have tracks of corre-
sponding image points from that the vehicles enter the cam-
era field of view until the vehicles leave. We will use a few

of these views, typically 10, to make a 3D reconstruction of
the vehicles.

First we have to know the rotation between the frames
we have chosen. Still the vehicles only rotate around the z-
axis and we can use the minimal solver from Section 2.2 to
calculate the rotations for consecutive views. The rotations
are calculated in the same way as in the motion segmenta-
tion. We calculate the rotation for two points at a time, then
all points are triangulated and reprojected. This is done for
all pairs of points and we choose the rotation that gives the
highest number of inliers.

Knowing the rotation we can use the method from Sec-
tion 2.1 to compute the reconstruction. To avoid translation
ambiguity we fixate the position of the first camera. We also
know that the vehicles do not translate in the z-direction.
Then we can fixate the z-coordinate for all cameras, we also
assume that the camera is placed above the vehicles and we
set a upper limit of the z-coordinate for all 3D points. This
limit we set somewhat lower than the height of the cam-
era. Then we solve the optimization problem in (7). For the
points that are inliers the value of the corresponding s; will
be very close to zero while outliers have much higher value
of the corresponding s;. To remove outliers we remove 3D
points where the corresponding s; is higher than some small
threshold for all views.

Now we have a reconstruction of the vehicle, but the
scale is still unknown. For surveillance purposes it is impor-
tant that the scale is consistent with respect to the other re-
constructed vehicles. To achieve this we consider the point
in the vehicle model that has the lowest z-coordinate. As-
suming that this point is close to the ground, we choose the
scale such that this point gets z-coordinate equal to zero.

3.3. Pose

When we have both the correspondences between frames
for the vehicle and a 3D reconstruction of it, we can calcu-
late the position of the vehicle by calculating the camera
pose for all views. If the rotation of the camera is known
we can calculate the pose with the method presented in Sec-
tion 2.1, though now we just have one camera and we know
the position of the 3D points. Hence we just have to cal-
culate the position of a camera, significantly reducing the
number of unknown variables.

To find the rotation of the camera we perform a branch
and bound search through rotation space. The branch and
bound algorithm is described in detail in Section 4, where it
is used for a larger search space. In pose estimation, we only
have to perform the rotation search in one dimension since
we already know the rotation of the camera with respect to
the ground and only want to find the rotation around the
Z-axis.

To handle outliers, we use the following scheme. We
choose some of the points on the vehicle at random, typ-

Figure 3. Rotation of the camera, the camera is first rotated around
the z-axis, then around the x’-axis and at last around the z’-axis.

ically half of the points, and calculate the pose using the
chosen points. All 3D points are then projected with the
estimated camera and the number of inliers is counted.
This procedure is repeated a number of times with differ-
ent points and the rotation that gives the highest number of
inliers is chosen. Then the pose is calculated again using all
points that were classified as inliers.

4. System Calibration

In all previous sections we assumed that the camera ro-
tation with respect to the ground was known. To calibrate
the system we need to find this rotation. This is done by
choosing a few views of some vehicle, preferably a big one,
with corresponding image points, without outliers. For this
vehicle a 3D reconstruction is calculated, at the same time
we get the rotations and translations of the cameras.

To find the rotations between the different views we per-
form a branch-and-bound search, similar to that in [3]. The
parameterization of the rotation is shown in Figure 3. The
camera is first rotated around the z-axis, then around the x’-
axis and at last around the z’-axis and the total rotation can
be written as R = R, R, R.,, where R is the total rota-
tion and R/, R, and R, are the rotations around the z’-,
x’- and z-axes respectively.

We choose coordinate system, such that the z-axis is per-
pendicular to the ground plane. This means that vehicles ro-
tate only around the z-axis and thus R/, R,/ are equal for
all views. They specify the orientation of the ground plane
relative to the camera. The rotation around the z-axis for the
first camera can be chosen to be zero. Each of the angles can
be chosen between -7 and 7. Thus our search space can be
identified with the product space [—7, 7]V +1), where N is
the number of cameras.

The branch and bound algorithm is initiated with a list
containing one block, [—7, 7](N*1) as well as an initial er-
ror threshold €. At each iteration, we pick a block from
the list and try to determine if this block can contain any
solution with reprojection errors < €. This is determined
by solving an LP feasibility problem as described in Sec-
tion 2.1 but with error tolerance ¢ + A instead of e. The

Branch-and-bound Algorithm

Iterate until desired precision is reached.
1. Pick the first block from the list.
2. Calculate the constraints and set up the LP problem.
3. Determine if there is a solution to the LP problem.
4. If there is a solution.
- Divide the block into smaller blocks and add
them to the list.
- Try to update the error threshold by performing
the bisection algorithm.
5. Remove the current block from the list.

A is an extra uncertainty that accounts for the size of the
block. Details can be found in [7].

If this test falls out positive, then the block is divided and
the new blocks are added to the list. Otherwise it is simply
deleted. This continues until the remaining set of rotations
is small enough.

4.1. Bisection

In Section 2.1 we showed how to check feasibility for
a fixed error tolerance e. To find the L., optimal solution
we also need a method to update this tolerance. This is
done with a bisection algorithm. For blocks that pass the
feasibility test we try to find a solution having a smaller
reprojection error. We fix the rotations to the middle of the
block and perform a feasibility test with error tolerance e.
If this passes we know that we have found a better solution.
To know how good, we use bisection.

We start with the interval [0, €]. Let v = €/2 and check
feasibility with error tolerance ~y. If this is feasible we know
that the best reprojection error is somewhere between 0 and
~ and we set the upper bound to . If there is not a solution,
we set the lower bound to v instead. The interval is now
half the length of the original interval. Again we try to find
a solution in the middle of the interval and change either the
upper or the lower bound. This is repeated until the interval
is as short as desired. Finally we update the error threshold.

5. Experiments

The presented methods were evaluated on real-world
data. The captured video has a resolution of 320 x 240
pixels and is around 10 minutes. The following sections
describe the different parts of the evaluation.

5.1. Motion segmentation

To illustrate how the motion segmentation algorithm
works, one frame from the video was selected. In this frame
interest points were detected and tracked for a couple of

frames. Figure 4 a) shows the first and last image with the
image points marked with yellow dots. After removing sta-
tionary points, the points in Figure 4 b) remained. The result
from the motion segmentation is shown in Figure 4 c), the
green dots are points belonging to the first vehicle and the
red dots are points belonging to the second vehicle.

frame 2

Figure 4. Illustration of the motion segmentation algorithm.

5.2. Tracking

To evaluate the tracking algorithm, we manually counted
the number of vehicles in the entire video sequence to get
the ground truth. We also noted in which direction the vehi-
cles are driving. There are 16 ways to pass through the inter-
section. Next we calculated the number of vehicles that the
tracking algorithm found and compared this number with
the ground truth. The results are shown in Table 1. For
some of the directions the tracking algorithm finds most of
the vehicles. For other, the tracking algorithm fails more of-
ten. In the cases where the tracking algorithm works well,
the vehicles drive closer to the camera, which gives fairly
well resolution of the vehicles. Vehicles that drive far away
is harder to track since they are very small. The KLT-tracker
has to be able to to track points on the vehicle for a number
of frames for it to be detected, and when it fails, they will
not be detected.

5.3. Reconstruction and Pose

The reconstructions of the vehicles are made according
to Section 3.2 and the pose for the vehicles in all frames
where the vehicles are visible is calculated as in Section 3.3.
For all frames, the L,,-norm of the reprojection errors is
calculated, that is the largest of the reprojection errors. Ta-

turn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | tot
ground truth | 34 120 0 O 25 17 8 O 32 102 27 1 12 13 15 O | 406
tracking 32 30 2 0 17 17 12 0 21 63 6 0 6 7 0 0 | 213

Table 1. Comparison between the real number of vehicles and the number the tracking algorithm finds. Each column represent one of the

16 different ways to pass through the intersection.

ble 2 shows a summary for 16 vehicles. The reprojection
errors are coordinate-wise and measured in pixels, the res-
olution of the images is 320 x 240 pixels. The number of
points used to do the reconstruction varies between vehicles
and the number of points used to calculate the pose varies
between frames.

Figure 5 shows three frames for which the pose of the
vehicles has been calculated. The dots representing image
points on the different vehicles have different colors.

Figure 5. Three frames from the video. The pose for the three
vehicles has been calculated for the frames where the vehicles are
visible.

The 3D reconstruction of the vehicles and their relative
position is shown in Figure 6. The points numbered with
number 1 represent the frame to the left in Figure 5, the
points numbered 2 represent the middle frame and points
with number 3 represent the frame to the right.

Figure 6. 3D reconstruction and pose for three frames in the video.
Different colors represent different vehicles.

Next, the 3D points were projected onto the ground plane
to estimate the positions of the vehicles in the intersection,
the result can be seen Figure 7. The positions can be com-
pared with the images in Figure 5.

Finally the pose of the vehicles has been calculated for
all frames where they are visible. Figure 8 shows the pro-
jection of the vehicles for all frames.

Figure 7. Projection of the 3D points into the ground plane to show
the position of the vehicles. The positions for three different time
points are shown. Like before different colors represent different
vehicles.

Figure 8. Same as Figure 7 but the positions for all time points
are shown. Points above the crosswalk are removed during the
tracking algorithm.

5.4. Calibration

To estimate the camera rotation with respect to the
ground plane, three images of a bus driving through the in-
tersection were used. Figure 9 shows the images used, while
the result of the reconstruction can be seen in Figure 10.

Now it is possible to create a map of the intersection by
rectifying an image using the estimated ground plane. This
map was used to produce the images in Figures 7 and 8. The
accuracy of this estimation should give us a rough quality
measure.

vehicle no. 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16

worst frame | 4.10 3.28 4.33 3.66
best frame 1.54 103 199 073 128

344 469 256
096 0.21
mean 287 192 282 222 229 186 140

381 363 308 4.69 232 404 385 402 286
1.03 0.83 068 0.67 074 032 043 146 0.19
153 2.08 157 182 164 245 211 3.00 0.82

Table 2. L errors for 16 of the vehicles in the intersection, the table displays the largest, smallest and mean value of the L, norm of the
reprojection errors. The errors are measured in pixels and the resolution of the images is 320 x 240 pixels. The number of points varies

between vehicles and frames.

Figure 9. Three images of a bus driving through the intersection.
The yellow dots mark the image points which were used for the
reconstruction and the yellow lines show the boundaries of two
sides of the bus.

Figure 10. Reconstruction of the bus driving through the intersec-
tion at three time points. The tracked points used for the recon-
struction are marked as well as some lines used for visualization.
The blue bus corresponds to the first time point, the red one to the
second and the green to the third.

By comparing distance in the rectified image and a real
map of the intersection, we can estimate the size of the bus.
The height was estimated to 2.65 m, the width to 2.15 m
and the length to 12.7 m. The bus is 2.8 m high, 2.3 m wide
and 12 m long, giving us an average error of 0.3 m. That is
significantly better than the approach in [8] of simply pro-
jecting a segmented object onto the ground which in this
case would give an error of several meters.

6. Conclusions

We presented some ideas on how to achieve accurate 3D
reconstructions for traffic surveillance. The approach builds
on recent research in optimal methods for computer vision.
This makes it possible to fully exploit restrictions such as
the ground being planar. The approach requires only one
camera, which means that no synchronization between cam-
eras is needed. Moreover, the camera position with respect
to the ground can be estimated automatically as described

in Section 4. Altogether the system is accurate, yet easy to
set up and these are characteristics that should be attractive
to many traffic scientists.

References

[1] B.Bose and E. Grimson. Ground plane rectification by track-
ing moving objects. In IEEE International Workshop on Vi-
sual Surveillance and PETS, 2004. 1

[2] B. Coifman, B. C. Corresponding, P. Mclauchlan, and J. Ma-
lik. A real-time computer vision system for vehicle tracking
and traffic surveillance, 1998. 1

[3] R. Hartley and F. Kahl. Global optimization through rotation
space search. Int. Journal Computer Vision, 2009. 5

[4] R. Hartley and P. Sturm. Triangulation. Computer Vision
and Image Understanding, 68(2):146-157, 1997. 4

[5] C. Hydén. The development of a method for traffic safety
evaluation: The Swedish Traffic Conflicts Technique. PhD
thesis, Department of Traffic Planning and Engineering,
Lund University, 1987. 1

[6] F. Kahl and R. Hartley. Multiple view geometry under the
Loo-norm. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 30(9):1603-1617, 2008. 2

[7]1 H. Kallén. 3d reconstruction for traffic surveillance. Mas-
ter’s thesis, Dept. of Mathematics, Lund University, Sweden,
2009. 6

[8] A. Laureshyn and H. Ard6. Automated video analysis as
a tool for analysing road user behaviour. In ITS World
Congress, London, UK, 2006. 1, 8

[9] B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool. Cou-
pled object detection and tracking from static cameras and
moving vehicles. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(10):1683-1698, Oct. 2008. 1

[10] K. Miiller, A. Smolic, M. Drose, P. Voigt, and T. Wiegand.
3-d reconstruction of a dynamic environment with a fully cal-
ibrated background for traffic scenes. IEEE Trans. Circuits
Syst. Video Techn., 15(4):538-549, 2005. 1

[11] C. Olsson, A. Eriksson, and R. Hartley. Outlier removal us-
ing duality. In CVPR 2010, 2010. 3

[12] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical Report CMU-CS-91-132, Computer Sci-
ence Department, Pittsburgh, PA, April 1991. 1, 4

[13] Z. Zhang, M. Li, K. Huang, and T. Tan. Practical camera
auto-calibration based on object appearance and motion for
traffic scene visual surveillance. Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1-8, June 2008. 1

