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We show that a quantum Szilard engine containing many bosons with attractive interactions enhances
the conversion between information and work. Using an ab initio approach to the full quantum-mechanical
many-body problem, we find that the average work output increases significantly for a larger number of
bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum
effects conspire to enhance the conversion between information and work. The predicted effects occur over
a broad range of interaction strengths and temperatures.
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The Szilard engine is an old thought experiment [1] that
has become a paradigm for describing information-to-work
conversion in thermodynamic systems. Originally, it con-
sists of a single, classical particle confined in a hard-walled
one-dimensional container of length L that can be divided
by a moveable wall (i.e., a piston), and is coupled to a
single heat bath. Using the information about the particle’s
location on either side of the piston, the engine transforms
heat isothermally into work. The apparent contradiction to
the second law of thermodynamics is resolved by account-
ing for the work cost associated with the information
processing itself [2—8]: The erasure of one bit of informa-
tion costs at least the entropy of kg In2. Only recently this
was verified experimentally [9-12] for a single, classical
particle. But yet, we know very little about how the
fundamental relations [9,13—17] between work, heat, and
information are altered by quantum effects and correlations
[18-20] in interacting many-body systems.

In this Letter, we thus consider a number of N interacting
quantum particles as the working medium. The Szilard
cycle goes through the steps sketched in Fig. 1(a), carried
out quasistatically and in thermodynamic equilibrium with
a single surrounding heat bath at temperature 7 (i) insertion
of a wall at position 1", (i) measurement of the particle
number n on the left side of the wall, (iii) reversible
translation of the wall to its final position ZT™ that may
vary from one cycle to another with different n, and
(iv) removal of the barrier at ;™. In step (iii), the
information about n allows extraction of work through
the moving piston. In the classical limit, the insertion and
removal of the wall can be achieved at no cost of work. In
the quantum regime, however, this is no longer the case
[21-24], since these processes shift the energy levels.

It is known that the average amount of work that in total
can be extracted in a cycle crucially depends on the
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underlying quantum statistics. Without interactions, two
bosons yield a higher work output than two fermions or
classical particles [25]. Different facets of the quantum
Szilard engine have been studied, including optimization of
the cycle [26,27] or the effect of spin [28] and parity [29],
but all for noninteracting particles. Interactions have so far
only been discussed for two attractive bosons [30], where
an increased work output was attributed to a classical effect.

An intriguing and yet unanswered question is, how the
information-to-work conversion is affected by interactions.
Classically, the performance of a Szilard engine with
many noninteracting particles falls below that of the
one- and two-particle engine—but, does this hold also
for an interacting quantum gas?

Here, we demonstrate that attractive interactions indeed
boost the information-to-work conversion in a bosonic
Szilard engine. To that end we use a full quantum many-
body treatment of spin-0 bosons with attractive interactions
between the particles. We apply the two-body pseudopo-
tential of contact type, g&(x; — x,), as commonly used for
ultracold atomic gases [31]. The strength of the interaction
g is given in units of gy = #%/(Lm), where the energy unit
is set by the single-particle ground state energy e; =
h%n%/(2mL?) of the one-dimensional box considered here,
and m is the mass of a single particle. A solution to the full
quantum many-body problem can be obtained with very
high numerical accuracy by exact numerical diagonaliza-
tion (see Supplemental Material [32], which includes
Ref. [33]). We find that a few-body system with attractive
bosons generates an overshoot of work compared with
W, = kgT In2. The maximum occurs at a finite temper-
ature, illustrating the interplay between thermodynamic
fluctuations and the many-particle excitation spectrum.
Because the numerical cost of exact diagonalization
becomes too large for N > 4, we also used an approximate,

© 2018 American Physical Society
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Szilard engine harboring many interacting bosons in one dimension. (a) Illustration of one possible single Szilard cycle. (b) For

N = 4 bosons the optimal work output W (in units of the classical single-particle work W = kpT In 2, with its magnitude illustrated by
the color bar to the right) is found for attractive interactions g (upper panel) at a finite temperature and around a symmetric insertion
position of the barrier. The optimal work output exceeds the case of noninteracting (middle panel) and repulsive bosons (lowest panel).
(c) Work output for N = 3 as a function of temperature for different strengths of the attractive interaction. For large 7, all curves
converge into the classical limit. (d) The maximal work output W/W, increases dramatically with the particle number for bosons with
attractive interactions with g = —0.01¢, (red) compared with the case for noninteracting bosons (orange) and classical particles (blue).
In each case, the temperature is chosen to maximize the relative work output. Optimal insertion and removal positions of the wall are

used to maximize W/W.

perturbative approach (see Supplemental Material [32]).
Our results indicate that the output of the information-to-
work conversion increases with N.

The total average work output of a single cycle with
processes (i)—(iv) is given by [25]

W=kt paiemyn (2O )

2 memin(igem)

which is valid also in the classical case [34]. Here, p,(¢)
denotes the probability of n particles found to the left of the
wall located at position Z, and N — n particles to the right, if
the combined system is in thermal equilibrium. The ith
N-particle eigenstate ¥, ; with energy E,, ; can be classified
by the particle number n in the left subsystem where
0 <x < ¢ We then find that p,(¢£) = ,e EnilOVksT/7
with Z = SN S, e EnilOVksT

Measuring the particle number on one side after insertion
of the wall, one gains the Shannon entropy I =
= >N o pu(£™)Inp,(£™) which measures the amount
of acquired information. Going back to the original state in
the cycle, the average increase of entropy AS = kI allows
extracting the average amount of work W < kzT1, which
can be positive. Here, the equality only holds if all
P, (£5™) = 1. In this case the removal of the barrier (iv) is
areversible process for each observed particle number. This

reversibility had been associated with the conversion of the
full information gain into work [35], as explicitly assumed
in Ref. [8]. Now, p,(£5™) = 1 for £f™ =0 and £3™ = L,
as in this case all particles are on one side of the wall. Thus,
for N =1 a full conversion of information gain to work is
always possible. However, for N > 2, this does not hold
any longer; e.g., there are no removal positions ™™
satisfying p;(£F™) =1 due to the finite probability of
fluctuations in particle number. Similar to the noninteract-
ing case [27], we choose the optimal Z;7™, maximizing
pn(£5%™). We note that the extracted work for N > 2 at
finite temperature is lower than the theoretical bound to the
information gain kgT1.

The full many-body solution [Figs. 1(b) and 1(c)] as well
as the perturbation approach clearly demonstrates that the
quantum Szilard engine with attractive bosons generates a
high relative work output, peaked at nonzero temperature.
This advantage is not limited to the few-body regime, but
even persists for large particle numbers [Fig. 1(d)]. The
average work of the N =4 engine has the maximum at
W/W; = 1.12 [top panel in Fig. 1(b)], which surpasses
the results for noninteracting (middle panel with
W/W, <1.08) as well as for repulsive bosons (lowest
panel). For attractive interactions, the maximum work
output always occurs if the wall is inserted in the middle
of the container when the engine operates in the deep
quantum regime (albeit for higher temperatures, there is a
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pitchfork bifurcation [36] to an asymmetric insertion
position, see Supplemental Material [32]). For T — 0,
the work output vanishes if Z" # L/2 [Fig. 1(b)]. In this
limit all noninteracting bosons occupy the lowest single-
particle quantum level. After insertion of the wall, the
energetically lowest-lying level is in the larger subsystem.
For £ # L/2 we thus know beforehand the location of the
particles: measuring their number does not provide new
information, i.e., / = 0. Consequently, no work can be
extracted in the cycle. Attractive interactions enhance this
feature. However, this does not hold for repulsive inter-
actions, g > 0 [Fig. 1(b)]. In this case, the particles spread
out on different sides of the wall in the ground state. Here,
degeneracies between different many-particle states occur
at particular values of ™, which allow an information
gain in the measurement. This explains the N distinct peaks
as a function of #™ for low temperature and repulsive
interactions [26,30].

The boosted information-to-work conversion of the
many-body Szilard engine containing attractive bosons
occurs for a wide range of interaction strengths [Fig. 1(c)].
Increasing |g| not only shifts the peaks in W/W to higher
temperatures, but also alters their maximum value, reflect-
ing the complexity of the spectrum of many-body excita-
tions in the limit of stronger correlations.

The optimal relative work output [Fig. 1(d)] is higher for
weakly attractive than for noninteracting bosons, as well as
for the classical limit. For noninteracting bosons, we
analytically show that the work output saturates at W/W ~
1.0974 in the limit of large N (see Supplemental Material
[32]). Already in the limit of infinitesimally weak attractive
interactions, a perturbative approach indicates saturation at
WIW, =~ 1.6 for large N significantly exceeding the non-
interacting value. For stronger interactions, however (as for
example in the case with g = 0.01g, shown in Fig. 1), the
large-N behavior could not be resolved, as the perturbative
approach requires interaction strengths much smaller than
the order of 1/N. Other types of (weak) attractive inter-
actions give rise to a similar effect, as long as the
corresponding interaction energy is much smaller than
the level spacing.

Let us now return to the temperature dependence of
W/W,, and study the onset of the peak at an intermediate
temperature. For g < 0, the work output equals kz7 In2
at low temperatures, independently of N. Because of the
dominance of the attractive interaction, all N particles will be
found on one side of the barrier. When the barrier is inserted
in the middle, we have py(L/2) = py(L/2) = 1/2, while all
other p,(L/2) vanish. At the same time, the removal position
g™ =0 and Y™ =L provide po(£5™) =1 and
pn(5™) =1, so that Eq. (1) provides the work output
W =kgTIn2 for the entire cycle [Fig. 1(c)]. This case, with
two possible measurement outcomes and a full sweep of the
piston, resembles the single-particle case. One might won-
der, whether the increased particle number should not imply

a higher pressure on the piston and thus, more work. This,
however, is not the case, as the attraction between the
particles reduces the pressure. Also, when inserting
the barrier, the difference in work due to the interactions
has to be taken into account. With increasing temperature
(.e., kgT ~ =3g(N — 1)/L ~ —=0.6(N — 1)E,g/gy, for weak
interactions) other measurement outcomes than that of all
particles being on either side, i.e., n = 0 or n = N, become
probable. Since py(L/2) and py(L/2) now decrease with
temperature, we see a deviation from the performance of the
single-particle engine.

To get a better understanding of the enhanced work
output for attractive bosons at finite temperatures, we
consider the simplest possible case with only two particles.
For a central insertion of the barrier, we find po(L/2) =
p>(L/2). For the same symmetry reasons, p;(¢) has a
maximum at this barrier position. No work can thus be
extracted in cycles where the two particles are measured on
different sides of the central barrier, since p; (£ = L/2)/
p1(£5™) > 1 in Eq. (1). Therefore, the only contributions
to the work output result from cycles where both particles
are on the same side of the barrier. Together with
po(£5™ =0) = pr(¢5™ = L) = 1, we obtain

W = —2kzTpo(L/2) In po(L12). (2)

The maximum work output here is not obtained for the
maximum Shannon entropy at po(L/2) = 1/3, setting the
upper bound for the information-to-work conversion, but
instead at py(L/2) = 1/e with the value W = (2/e)kgT~
1.061k5TIn2, see Fig. 2. This implies a finite value
p1(L/2) = 1-2/e. Even if no work can be extracted with
one particle on either side of the barrier, a nonzero
probability p;(L/2) of such a measurement outcome can
be preferable, contributing to the information.
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FIG. 2. Work output per cycle for the two-particle Szilard
engine. For a symmetric insertion of the barrier the work output
depends solely on the probability p to find all particles on the
right side. For T — o0, py = 1/4. In the limit of low temperature,
po differs for bosons with different interactions. It moves from
the red to the blue cross with increasing 7. The insets show the
ground state degeneracies for noninteracting (middle), repulsive
(left), and attractive bosons (right).
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Two attractive bosons, initially at 7 — 0 and with
po(L/2) = 1/2, will continuously approach the classical
limit of po(L/2) = 1/4 as T increases. Hence, at a certain
temperature, depending on the interaction strength, p(L/2)
passes through po(L/2) = 1/e producing a maximum in
the relative work, as seen in Fig. 2. One may understand
this as follows: At low temperatures, the two attractive
bosons will always end up on the same side of the barrier,
bound together by their attraction. The cycle then operates
similarly to the single-particle case, which explains why
W =kgTIn2 when po(L/2) =1/2. A less correlated
system (obtained with increasing 7)) provides a larger
expansion work for cycles in which both particles are on
one side of the barrier. On the other hand, cycles with one
particle on each side of the barrier, from which no work can
be extracted, become more common. For 1/e < py(L/2) <
1/2, the enhanced pressure is more important and the
average work output increases with decreasing po(L/2).
For lower values of po(L/2), i.e., po(L/2) < /e, too few
cycles contribute on average to the work production. The
average work output therefore decreases with decreasing
po(L/2) despite the corresponding increase in pressure.
Importantly, we note the absence of a similar maximum in
the noninteracting case, where W/W, is found to decrease
steadily towards the classical limit with increasing 7.

Let us now proceed to the more complicated case of
N > 2 attractive bosons. Also here we observe a pro-
nounced maximum in W/W, (see Fig. 1c), going from the
attractive to the noninteracting regime by increasing 7.
Similar to the two-particle engine, the combined contribu-
tion to the average work output from cycles in which all
particles are on the same side of the barrier inserted at
£ = LJ/2 is given by Eq. (2). For all interaction strengths
g < 0, the peak height is consequently at least equivalent to
the maximum work of the attractive two-particle case W, ~
1.061k5T In(2) obtained with py(L/2) = 1/e. This is due to
the fact that po(L/2) necessarily decreases from 1/2 at
T — 0 to the classical result 1/2V at large temperatures,
going through the value of 1/e. In general, also cycles with
n=12,...,N—1 (except if n = N/2) on the left side of
the barrier contribute to the average work output, which
therefore can be even higher than in the two-particle case.
For example, for N = 4, the maximum of p(#) and that of
p3(€) occurs for £ # L/2, as shown by the probabilities for
different measurement outcomes in Fig. 3. In this case, 7™
can be chosen such that p,(£™)/p,(£™) < 1 for £ =
L/2 and work may be extracted in agreement with Eq. (1).
With insertion of the barrier at the midpoint the relative
work W/W, is maximized for po(L/2) = p4(L/2) ~ 0.3, a
number that is close to the optimal value 1/e for the
corresponding two-particle engine. However, there are
smaller contributions, here for n = 1 and n = 3, that one
needs to take into account in order to optimize the engine.
With increased N, the contribution from cycles in which
1 <n<N-1 becomes of greater importance in the

0.4 T 7
1 === n=4 ' === n=8
Bosons 'Il ——- 3 Bosons ! === n=7
= n=2 = ! === n=6
03f V=4 — n=1 N=8 | === n=5
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Z
3 02
<
Qo
[
o
0.1
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FIG. 3. Probability distributions. Work can be extracted in all
cycles with insertion of the wall at the midpoint, except for the
case with an equal number of particles on either side. Shown are
the probability distributions assigned to the different measure-
ment outcomes at the temperature of the maximal relative work
output for N =4 (kzT/E, ~0.243, left panel) and N = 8§
(kgT/E, =~ 0.0500, right panel) bosons with weak attraction,
g=—0.01gp.

optimization of the information-to-work conversion. The
probability po(£™™/L) at the maximum of W/W, is here
seen to shift slightly and move further away from the
two-particle value of 1/e as N increases from N =4 to
N =8 (Fig. 3.)

Finally, let us consider repulsive contact interactions
between the bosons [Fig. 1(b)]. In the low-temperature
limit, the relative work output is very similar to that of
noninteracting spin-polarized fermions discussed in
Refs. [26,30]. This resemblance becomes even more
pronounced with increasing interaction strength. This is
no coincidence, but intriguingly caused by the transition
into the Tonks-Girardeau regime [37], where bosons with
strong, repulsive interactions that have an impenetrable
core act like spin-polarized noninteracting fermions.

We conclude that the interacting quantum many-body
Szilard cycle may serve as a new prototype to study the
fundamental, and hitherto largely unexplored, relations
between correlations, information, and thermal fluctuations
in a wide range of quantum many-body systems. A possible
experimental realization could be with cold atoms, as
already suggested in Refs. [8,25], where stronger correla-
tions [31] and the few-body regime [38] can be realized.
Another example are polariton condensates [39]. Note that
in a realistic setup, there are many sources for noise that
may deteriorate the information-to-work conversion, such
as inaccurate configuration measurements, impurities, tun-
neling due to a finite-height barrier and, inevitably, thermal
noise due to the coupling to the heat bath. Measurement
errors and imperfect feedback control are discussed e.g., in
the review [40], and very recently for a realistic single-
electron setup in Ref. [41]. We here restrict our analysis to
idealized quasistatic processes. It would be of much interest
to consider a finite speed in the motion of the piston
(similar to what has been investigated recently for quantum
Otto engines [42,43]). A great future challenge will be to
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quantify irreversibility in real processes on the basis of a
fully ab initio quantum description, which may allow us to
study dissipative aspects in the kinetics of the conversion
between information and work [19]. A particularly exciting
perspective has very recently been opened up by Ref. [20],
discussing the emergence of thermal fluctuations from
quantum fluctuations for isolated many-body systems.
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