LUND UNIVERSITY

Scheduling Garbage Collection in Embedded Systems

Henriksson, Roger

1998

Link to publication

Citation for published version (APA):
Henriksson, R. (1998). Scheduling Garbage Collection in Embedded Systems. [Doctoral Thesis (monograph),
Department of Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/875967b6-fe80-433a-a2bd-82bf1b147848

Scheduling
Garbage Collection
In Embedded Systems

Roger Henriksson

CODEN: LUTEDX/(TECS-1008)/1-164/(1998)

Lund, July 1998

Department of Computer Science
Lund Institute of Technology
Lund University

Box 118

SE-221 00 Lund, Sweden

E-mail: Roger.Henriksson@dna.lth.se
WWW: http://www.dna.lth.se/~roger

Cover art by Ann-Marie Henriksson

© 1998 Roger Henriksson

Abstract

The complexity of systems for automatic control and other safety-critical applica-
tions grows rapidly. Computer software represents an increasing part of the
complexity. As larger systems are developed, we need to find scalable techniques to
manage the complexity in order to guarantee high product quality. Memory man-
agement is a key quality factor for these systems. Automatic memory
management, or garbage collection, is a technique that significantly reduces the
complex problem of correct memory management. The risk of software errors
decreases and development time is reduced.

Garbage collection techniques suitable for interactive and soft real-time sys-
tems exist, but few approaches are suitable for systems with hard real-time
requirements, such as control systems (embedded systems). One part of the prob-
lem is solved by incremental garbage collection algorithms, which have been
presented before. We focus on the scheduling problem which forms the second part
of the problem, i.e. how the work of a garbage collector should be scheduled in order
to disturb the application program as little as possible. It is studied how a priori
scheduling analysis of systems with automatic memory management can be made.
The field of garbage collection research is thus joined with the field of scheduling
analysis in order to produce a practical synthesis of the two fields.

A scheduling strategy is presented that employs the properties of control sys-
tems to ensure that no garbage collection work is performed during the execution
of critical processes. The hard real-time part of the system is thus never disturbed
by garbage collection work. Existing incremental garbage collection algorithms are
adapted to the presented strategy. Necessary modifications of the algorithms and
the real-time kernel are discussed. A standard scheduling analysis technique, rate
monotonic analysis, is extended in order to make a priori analysis of the schedula-
bility of the garbage collector possible.

The scheduling algorithm has been implemented in an industrially relevant
real-time environment in order to show that the strategy is feasible in practice. The
experimental evaluation shows that predictable behaviour and sub-millisecond
worst-case delays can be achieved on standard hardware even by a non-optimized
prototype garbage collector.

Acknowledgements

The research presented in this thesis was carried out within the Programming
Environments Group at the Department of Computer Science, Lund University.
I would like to thank my supervisor Boris Magnusson, the leader of the group, both
for introducing me to the problem of scheduling garbage collection and for his sup-
port throughout my thesis work. Klas Nilsson, also a member of the group,
deserves special thanks for his generous support and for sharing his knowledge of
the automatic control domain with me. Thanks to Mats Bengtsson, a former mem-
ber of the group, for introducing me to the secrets of real-time garbage collection.

The experimental work described in the thesis would not have been feasible
without a fruitful cooperation with the staff at the Department of Automatic Con-
trol, Lund Institute of Technology. They provided both the physical means for the
experiments and expertise in control systems. Special thanks go to Anders Blom-
dell for invaluable technical support, Anders Robertsson for the many hours he
spent getting the inverted-pendulum experiment to run, and Johan Eker for his
assistance regarding the Palsjo system. Anders Ive, a member of the Programming
Environment Group at the Department of Computer Science, also deserves thanks
in this context for helping me to evaluate the performance of my prototype garbage
collector. Thanks to the Department of Information Technology, Lund Institute of
Technology, for generously making a logic analyser available to us during a long
experimental phase.

Thanks to former and present members of the Programming Environments
Group. It has been a pleasure to work with you all. Thank you Goérel Hedin, Géran
Fries, UIf Asklund, Torsten Olsson, Elizabeth Bjarnason, Anders Dellien, Daniel
Einarsson, Patrik Persson, and Mathias Haage. Thanks to Anne-Marie Westerberg
for helping me to overcome all the academic red tape.

Finally, I would like to thank Ann-Marie Henriksson for the cover art.

This work has been financially supported by NUTEK, the Swedish National
Board for Industrial and Technical Development.

Vi

Contents

Chapter 1

Chapter 2

Chapter 3

Introduction 1
1.1 Memory management..........cccooviiiimiiiiiiiiiii e 2
1.2 Real-time garbage collection...........cccccceeiiiiiiiiiiniiiieie, 4
1.3 The theSiS....coiiiii e 5
1.4 TheSiS OULHING. ..o 5
Real-Time Systems 7
2.1 Real-time SYSTEMS ...cooiiiiiiiiiiiiee e 7
2.1.1 Real-time requiremMentscccccccoeiiiiiiiiiieeeiee e 8
2.1.2 Predictability ... 10
2.1.3 Control SYStEMS ... 11
2.2 Process sSCheduling..........occvvieiiiiiiiiiieee e 13
2.2.1 Static cyclic schedulingccceeveeiiiiiiieiiiiie e, 13
2.2.2 Fixed priority dynamic scheduling...........ccccccovuvneen. 14
2.2.3 Earliest deadline first schedulingcccccccovnneeen. 18
2.3 Process scheduling in existing real-time kernels................ 19
2.4 SUMIMAIY ..ottt e e e e e e 20
Automatic Memory Management 21
3.1 INErOdUCTION ...oeeiiii e s 21
3.2 Memory fragmentationcccoccvieeiie e, 22
3.3 Basic garbage collection algorithms ..., 23
3.3.1 Reference COUNTINGuuveeiiiiieaiiiiiiiiiiiiie e e e 23
3.3.2 MaArK-SWEEP ..ccceeiiiiiiitieieeie e 25
3.3.3 Copying algorithmscccceeiiiiiiiiiiiiiiieeeee s 28
3.4 Conservative algorithmscccccoiviiiiiiiii 32
3.5 Generation-based algorithms.............cccccceiviiiiiiniiee e, 33
3.6 EffiCIENCY oo 34
3.7 Incremental algorithms...........cccooieieei e, 35

viii

Chapter 4

3.8 Scheduling properties.......ccccccovvvciiiiieiieeee e 36
3.8.1 Stop-the-worldccccvviiiiiiiiee e 36
3.8.2 Interactive SYStEMSuvviiiiiiiiee e 37
3.8.3 Hard real-time computingcoovecviviiiinreeee e, 38
3.9 Memory hierarchies in real-time systems............cccccceeee.... 39
3.10 Problem statementcoooviiiiiiiiiiiii e 41
311 SUMIMEIY .ot e e e e e e e e e e e e e e eeeeeeeeeeernrnnes 42
Scheduling Garbage Collection 43
4.1 INrOdUCTION ..oceeeeiii e 43
4.2 Semi-concurrent scheduling..........cccccoviiiiiiiiiiiniieeee 44
4.3 Basic garbage collection algorithm.........ccccccceeeeeiiiiiinnnnee, 46
4.3.1 Tri-colour markingcoooccvvviiiiiiieee e 46
4.3.2 Algorithm overviewccccccvvvvveeiiee e 47
4.3.3 The COllector.......ooiiiiiiiiiiiii e 48
4.3.4 The MULALOTcooiiiiiiie e 50
4.4 Scheduling the garbage collection work................cccnvne 51
4.4.1 Object initialization...........cccccccvieeeeeee e, 51
4.4.2 Lazy evacuatioN..........ccoceeccciviiiiieieee e e e 53
4.4.3 The high-priority garbage collection process............ 56
4.4.4 Distribution of GC WOrK.........cccccveeiiiiiiieiiiiiieee e 57
4.4.5 Synchronization..........cccoeccciviiiiieieee e 60
45 OVErNEAd......c.ceeiii e 62
4.5.1 High-priority processes, service time...........cccccceee.... 62
4.5.2 Low-priority processes, service timecccccceeeeeen. 63
4.5.3 Summary of worst-case mutator overhead 64
4.5.4 High-priority processes, latencyocccvvvveveeeeenn. 64
4.5.5 Cleaning up after the high-priority processes.......... 65
4.5.6 Additional work for the programmerc.cccco..... 65
4.6 Degradation during system overloadc...ccccoiiiiiinnnnn. 65
4.7 Measuring garbage collection WOrk...........ccccoocvvveieiiniineenns 68
4.7.1 WOFK METFICS ..vvviieiiiiieeiiieiiiieieeee e 68
4.7.2 The evacuation pointer MetriC...........ccccevevvniieeeennnen. 69
4.7.3 Improving the evacuation pointer metric 70
4.7.4 Afine-grained MetricCcccccoiiiiiieiiniiiiie e 71
4.7.5 Hardware SUPPOITcocccuviiieiiiiiiie et 72
4.7.6 Impact of imperfect Metrics.........ccccovvieveiiiieeeeeen 72

O A A O] o (o] 18 1] (o] o [72

Chapter 5

Chapter 6

4.8 Scheduling analysiS.......ccccccveeeiiiiiiccec e 73
4.8.1 Schedulability of the high-priority processes............ 73
4.8.2 Schedulability of the garbage collector 76
4.8.3 Memory reserved for high-priority process usage....78
4.8.4 Scheduling analysis example..........ccccooecvviiiieennenenn. 79
4.8.5 The effect of blocking........ccccvvveviiieeeiiieeeeee, 82
4.8.6 Priority inheritance protocolS...........ccccccvvvviienneneenn. 82
4.9 Scheduling mark-sweep garbage collection 85
4.9.1 Thealgorithmcoooiiiii e, 85
4.9.2 ATOMIC OPErationS.........ccccuvriiieirieeee e s e ee e e 89
4.9.3 Interruptible garbage collection.............ccccocvveeeeeenn. 89
4.9.4 Work scheduling..........cooocviiiiiiiiii e, 92
4.10 Generation-based garbage collection............cccccvvvvviiinnnnnnnn. 93
411 SUMMAIY cciiiiiiiiiiiiiiititiieae e e e e e e e e e e e e e e e e e e eeeeeeeeseeesbnbnnananns 94
A Garbage Collection Prototype 97
5.1 ENVIFONMENToiiiiiiiiiiiiiiee ettt 97
5.1.1 System architeCturecccocouvvveiiiiiiiieeiieee e 97
5.1.2 Real-time kernel.........cccoociiiiiiiiiiee s 98
5.2 The garbage collector..........ccccooviiiiiiiiiii e 99
5.2.1 The algorithmcccooiiiiii e, 99
5.2.2 The garbage collector coroutine..........ccccccceveeeeerinnnnns 99
5.2.3 Memory organizationccccceeviiieeeeniniieee e, 101
5.2.4 Root pointer data structures.............cccccvvveevvenneeenn. 102
5.2.5 Real-time kernel modifications..............cccccceevreennn. 103
5.2.6 Estimating garbage collection work........................ 105
5.3 Application program interface........cccccccccoovviiiiiiiiinnenneennn, 106
5.3.1 Initializationccccovviviiiiiiii e 106
5.3.2 Declaring objectscccccvvviiiiiiiee e, 106
5.3.3 POINTEr GCCESSuvvviiieiiiiiie et 108
5.3.4 Pointer assignmentcccccceeveeeeei s, 109
5.3.5 AHOCALIONeoiiiiiiiiiiie e 109
5.3.6 ROOt POINTETS...ccccceiiiiiiiiiiieeee e 109
5.3.7 Garbage collecting C++ objects..........ccccvvveeveeeeeennn. 112
5.4 DISCUSSION ..itiiiieeiiitiiee et e ettt e et e et e e e e snbeeeeesanes 114
5.5 SUMMANY ..ot 115
Experimental Results 117
6.1 INTrOAUCTIONeeiiiiiiiiiiicie e 117
6.2 Experimental SEetUpoccveiiiiiiiiiiiiice e 118

6.3 Overview of experimental applications..............ccocceeerns 120

6.4 Measurements of garbage collection costscccccevee.... 122

6.4.1 Pointer assignmentccccccceveeeee s e 123

6.4.2 Memory allocation...........ccccccevvveeeeeiiniiceeeeee e, 124

6.4.3 Allocation cost of manual memory management....128

6.4.4 Latency for high-priority processes..........ccccccvveeen... 129

6.4.5 Execution time for the garbage collector process ...130

6.5 Using the garbage collector in control applications.......... 131

6.5.1 Inverted pendulum controlcccccvivieenneennn. 131

6.5.2 Polynomial regulator.........c.cccccceveeeiiiiiiiciiiieeeeeee, 132

6.6 SUMMAIY ...ciiiiiiiii it e e e e eees 133

Chapter 7 Related Work 135
7.1 Incremental copying algorithms...........ccccooiiiiiiiiiiinnnnnnnn. 135

7.1.1 Baker'salgorithm..........ccccooiiiii, 135

7.1.2 Brook’s algorithmccccviiiiiiiiiiiii e 136

7.1.3 The Appel-Ellis-Li collectorccooiiiiiiiieennnnenn. 137

7.1.4 Real-time replication garbage collection................. 137

7.2 Non-moving garbage collection............cccceeiviiiieiiiniineeenns 137

7.2.1 The Treadmill ..o, 138

7.2.2 Yuasa's algorithm..........ccccooviiiiiiiniii e 138

7.3 Hardware-supported garbage collection..............ccccccoeo..... 139

7.4 Concurrent garbage collectioncccccceeeevviiiiiiiiiieeeneeenn, 141

7.5 Special treatment of high-priority processesccc........ 142

7.6 SUMMAIY .cciiiiiiiiie et e ettt e e et e e e e e aenn e e aeee 143

Chapter 8 Future Work 145
8.1 IMplementation ..ot 145

8.2 ANAIYSIS...oiiiiiiii 148

Chapter 9 Conclusions 151
9.1 ContribUtioNSuvviiiiiiie e 151

9.2 CONSEOUENCES......ceeeeeeeeeeieinennnnnneaaaassesesaeaeaaaaeaeereeeeeennarnrnnes 153
Bibliography 155
Index 161

Chapter 1

Introduction

Computers are frequently used as integral parts of technical equipment, such as
robots, medical apparatus, and aeroplanes. Such computer systems are often called
embedded systems, since they can be viewed as being a part of, or embedded into,
the piece of equipment in question. As the price and physical size of computer hard-
ware have decreased, it has become increasingly attractive to use this new
technology to implement more and more complex functionality.

A very important factor in the design and implementation of an embedded sys-
tem is safety. The system must often be able to perform its task for very long
periods without faults: days, months, or even years. The consequence of a break-
down may in some cases be directly fatal, e.g. a respirator that stops working or an
aeroplane crashing. Even if most embedded systems are not as vital as in these
examples, a break-down often leads to high costs. For example, an interruption of
the production might mean lost sales for a company. Most ordinary computer appli-
cations do not have any demands on safety that come close to those of embedded
systems, even though it is vital that the output is correct. If a word processor
breaks down from time to time, it is irritating and some work might be lost, but
that is all. Safety requirements are thus especially high for embedded systems,
because of the severe consequences of a failure.

The systems discussed in this thesis are real-time systems, i.e. systems for
which not only the values of the output of the system determine success or fault,
but also the time at which the output is produced matters. Practically all embedded
systems belong to this category. Real-time systems are characterized by having to
perform a set of tasks as responses to external stimuli. Each task has a deadline,
before which the task must be completed. Correctness of a real-time system
depends on its ability to meet its deadlines.

As the capacity of computer systems has grown so has the desire to incorporate
more and more functionality into software. This is done both to make the hardware
less complex and thus cheaper, and to increase the overall functionality of the sys-

2 Chapter 1 Introduction

tem. In turn, the complexity of the software grows and so do the resulting
problems. Complex software is expensive to develop and maintain, and is also
error-prone. One way of organizing large and complex software systems, object ori-
entation, has been successfully used in many areas. Object orientation provides a
powerful way of mapping concepts from the application domain to the application
program in a well-structured manner [KM93]. The execution of the program is
viewed as a simulation of the behaviour of a part of the physical world. The idea is
that programs structured in an object-oriented manner are easier to understand
and to maintain than software written using traditional techniques. Code reuse is
also encouraged by powerful abstraction mechanisms. It could be expected that the
construction of embedded systems would also benefit from using object oriented
techniques. One major problem in doing so is that the powerful mechanisms of
object orientation rely to a high degree on a dynamic execution environment and
in particular on dynamic memory management. This traditionally conflicts with
the demands on predictable execution times. The main motivation behind this the-
sis is to solve this problem.

1.1 Memory management

One very important issue affecting the safety of a real-time computer system is
how memory is managed. In many of the current systems, static memory manage-
ment is used. All the memory the real-time system needs is allocated at start-up.
This means that all data structures must be allotted enough memory to satisfy the
worst-case needs of the application. In some systems, e.g. real-time systems imple-
mented using Pascal/D80 [ERS85], static memory management even includes
reserving memory for individual procedure activation records, restricting how pro-
cedures may be called. For example, recursive procedure calls are not allowed in
such a system. The advantage of such an approach is that the system will be highly
predictable, an important property of a real-time system. The disadvantage is that
it must be possible to calculate the maximum size of each data structure in
advance. Enough physical memory must be available to simultaneously hold all
data structures at their maximum size. Static memory management is obviously
not very flexible and imposes undesired restrictions on the programmer. Much
thought has to be devoted to designing the application. The programmer will often
have to write extra code in order to circumvent the restrictions.

Dynamic memory management means that memory is allocated from a central
memory pool as it is needed by the application. When an area of memory, an object,
is not needed any longer, it is returned to the pool, making it available for other
purposes. The application can more easily adapt itself to a changing environment
and programmers are less restricted. Available memory is also used more effective-
ly. Object-oriented languages rely to a large degree on dynamic memory allocation.
Introducing object orientation in the development of real-time systems thus makes
dynamic memory management highly important.

1.1 Memory management

Manual memory management

Dynamic memory management is often implemented by letting the application
manage the memory on its own, perhaps with some rudimentary support from the
runtime system. Memory is explicitly deallocated by the application when it is not
needed any longer. This is usually called manual memory management.

Manual memory management is, however, very error-prone. Two Kinds of pro-
gramming errors are very common when manual memory management is used,
namely dangling pointers and memory leaks. Deallocating an object too early
means that pointers remain to the object somewhere in the application that will
later be dereferenced in the belief that the object is still present (a live object). Such
dangling pointers typically cause the program to crash. Knowing when to release
an object is a global problem; an object must not be deallocated until it can be guar-
anteed that the object will never be accessed again. Safe deallocation requires that
we must know that no other part of the application has a pointer to the object, that
will later be dereferenced. On the other hand, neglecting to deallocate objects when
they are not needed any more means that the memory used by the objects will nev-
er be reused. Memory seems to “leak away” from the application, hence the name
memory leak. Sooner or later, the application will run out of memory and crash.
Since real-time systems tend to run for very long periods, running out of memory
is inevitable in the presence of a memory leak, even if the leak is small. Memory
management errors of these kinds are often very hard to find.

Manual memory management requires significant amounts of code just to man-
age the free store. This code must often be written from scratch whenever a new
application is developed, which increases the complexity of the software and also
the risk of programming errors being introduced. The globality of the deallocation
problem means that the consequences of a small modification of a system can be
difficult to foresee since it might require changes to arbitrary parts of the system.

Systems that do not compact the heap (the part of the memory used for holding
dynamically allocated objects) as objects are allocated and deallocated often suffer
from the problem of memory fragmentation. Systems for manual memory manage-
ment typically belong to this class of systems. Fragmentation means that there are
unused areas of memory between live objects, but the areas cannot be reused for
new objects since they are not large enough. Fragmentation makes the amount of
memory needed for the heap significantly larger and yields a higher cost for
allocating new objects.

Altogether, manual memory management can in general not be considered suit-
able for real-time systems for safety reasons.

Automatic memory management

Many of the memory management problems (such as dangling pointers, memory
leaks, fragmentation, and a large volume of memory management related code) are

4 Chapter 1 Introduction

avoided if automatic memory management is introduced. In this approach, the
responsibility for identification and deallocation of dead objects, i.e. objects not
used any longer, is delegated to the execution environment. The part of the runtime
or operating system performing the task of finding and recycling the memory occu-
pied by all “garbage” objects is called the garbage collector, and the process itself is
called garbage collection, or GC for short. Most of the error-prone code which man-
ages memory can be eliminated from the application, making it less complex and
considerably safer. Automatic memory management thus appears to be very suit-
able for real-time systems. The difficulty with using garbage collection in real-time
systems has so far been to guarantee short enough response times.

Static memory management leads to unnecessary software complexity and
increased risks of errors. Manual, dynamic, memory management introduces soft-
ware errors since the task of deciding when to deallocate objects is too complex. The
conclusion is that in order to achieve safe embedded systems, automatic memory
management must be used and the associated problems to guarantee short enough
response times eliminated.

1.2 Real-time garbage collection

Garbage collection algorithms have been developed for a wide range of application
types, but the techniques have, unfortunately, so far suffered from problems with
complying with very strict real-time demands. They are in most cases targeted for
batch or interactive systems and do not guarantee short enough response times.

Memory management inevitably involves some overhead. The overhead can
consist of additional space requirements, additional time requirements, or more
often a combination of the two. The time overhead is sometimes measured as the
percentage of CPU time needed for memory management. For real-time systems
this measure alone is not an adequate measure of the overhead. For such systems
to meet their timing requirements, it is important that the garbage collector does
not delay the application for extended periods. Operations that could cause the gar-
bage collector to be invoked, thus interrupting the execution of the application
program, must have a short and bounded time overhead.

When discussing overhead it is important to distinguish between the average-
case overhead and the worst-case overhead. For most applications it is the average-
case behaviour that is of interest, since that is what will typically be encountered.
In real-time systems, we must guarantee that the timing requirements will be met
in every possible situation. Therefore, it is the worst-case behaviour that must be
studied. The correlation between good average-case performance and good worst-
case performance for a memory management system can be very weak. In fact,
improving the worst-case performance often means that the average-case perform-
ance is degraded, and vice versa.

It is important to remember that memory management overhead is not only
present in systems with garbage collectors. Both time and space overhead are asso-

1.3 The thesis

ciated with manual dynamic memory management as well as with static memory
management. In such systems, the responsibility of memory management is trans-
ferred to the application itself, and the costs are very difficult to estimate. Since the
amount of time and space overhead is easier to analyse and measure for systems
using automatic memory management, it is tempting to draw the erroneous con-
clusion that garbage collection is always much more expensive than other memory
management strategies. Both time and space overhead exist for other memory
management strategies as well. Furthermore, the problem of memory fragmenta-
tion is also often ignored, which can represent a significant space overhead in the
worst case [Rob71].

1.3 The thesis

The goal of the research presented in this thesis is to find methods for making auto-
matic memory management feasible in embedded systems with very strict real-
time demands, especially systems for automatic control.

The method used is to study existing approaches to automatic memory manage-
ment for real-time systems and to try to adapt them to comply with the restrictions
of hard real-time applications. The main interest is focused on how the work of the
garbage collector should be scheduled in order to disturb the control program as
little as possible. Little research has previously been devoted to this field.

Our approach is to develop a strategy for scheduling the GC work of traditional
garbage collection algorithms such that it does not interfere with the part of the
real-time system that has to meet tight deadlines. Different parts of the system
have to meet varying demands on real-time performance. This property can be
used to schedule the garbage collection work in the time slots where it will cause
minimal disturbance. Using some knowledge of when and how the most time-crit-
ical parts of the system execute, the strategy can guarantee that garbage collection
will never disturb these parts.

Parts of the work have previously been published in [Hen94], [MH95], [Hen96],
and [Hen97].

1.4 Thesis outline

The remaining chapters are organized into three major parts: An overview of real-
time systems and memory management techniques is given in the background
chapters. A new approach to real-time garbage collection is presented in the sched-
uling real-time garbage collection chapters. The approach is evaluated and related
work is presented in the conclusions chapters.

6 Chapter 1 Introduction

Background

= Chapter 2: Real-Time Systems
Real-time systems are described with emphasis on embedded systems. Differ-
ent execution models based on concurrent processes, and their associated
scheduling strategies, are explained.

« Chapter 3: Automatic Memory Management
Manual memory management is compared with automatic memory manage-
ment. An overview of algorithms for garbage collection is given. The algorithms
are classified according to their ability to meet real-time demands. It is
explained why previously suggested scheduling strategies are unsuitable for
systems with hard real-time requirements.

Scheduling real-time garbage collection

= Chapter 4: Scheduling Garbage Collection
This chapter forms the core of the thesis. An approach to scheduling the work
of a real-time garbage collector is presented. It is shown how the proposed
scheduling strategy and garbage collection algorithm comply with hard real-
time demands and how its worst-case performance can be analysed. Various
implementation issues are discussed.

= Chapter 5: A Garbage Collection Prototype
An implementation in C of the proposed garbage collector strategy is presented.

= Chapter 6: Experimental Results
The prototype implementation described in Chapter 5 is evaluated. The cost of
memory management is measured on running systems.

Conclusions

= Chapter 7: Related Work
Some previous approaches to introducing garbage collection in real-time sys-
tems in general and hard real-time systems in special are surveyed. It is
discussed how they relate to the work described in this thesis.

= Chapter 8: Future Work
This chapter outlines possible areas of future research.

= Chapter 9: Conclusions
The contributions of the work are summarized and discussed, and conclusions
are drawn.

Chapter 2

Real-Time Systems

A presentation of real-time systems is necessary in order to put the work described
in this thesis into the right context. This chapter provides descriptions of concepts
in real-time computing which are used in the following chapters. Special emphasis
is put on hard real-time systems. For a more in-depth survey of hard real-time sys-
tems, refer to [But97].

Real-time software is in most cases implemented by a number of cooperating
processes. In this thesis we use the word process to denote a separate thread of exe-
cution running concurrently with other threads on the same processor [Dij68]. All
processes share the same address space and a context switch (assigning the proc-
essor to another process) is a relatively cheap operation. Processes, using our
terminology, are also known as threads, tasks, or light-weight processes. Observe
the difference between our notion of processes and that of operating system proc-
esses which typically run in separate address spaces and have a large overhead for
context switches.

2.1 Real-time systems

The task of a program is to transform a sequence of input, or stimuli, to a set of
output data. For most software, correctness means that correct output is produced
given a set of input. The time needed for the transformation has no influence on
the correctness. A program needing a long time to produce the correct output will
probably be considered inefficient, but it will, nevertheless, be correct.

In some situations, the time at which the output is produced is important for the
correctness of the system. The software must meet different deadlines for various
tasks. Systems that have this property are called real-time systems and the
requirements concerning how long time the system may use, and how precise in
time it must be, are called real-time requirements or real-time demands.

8 Chapter 2 Real-Time Systems

2.1.1 Real-time requirements

The importance of timely operation can be used to classify software. The rest of
Section 2.1.1 describes such a classification system.

Batch systems

Many computer applications do not really have any real-time requirements at all.
An example of such an application is a compiler. The input to programs of this kind
is prepared and available before running the program. Output is calculated based
on the input, after which the program terminates. Systems designed to support
such applications are often called batch systems, since data is processed in batches.
The correctness of the output is not affected by the time it takes to produce it. How-
ever, a certain amount of efficiency is of course desirable for the program to be
useful in practice.

Interactive systems

Modern computer programs often interact with the user during the processing of
data. The user submits a command to the program, which performs the desired
action and presents the result. Then, a new command can be submitted. We say
such systems are interactive. One example of such a system is a word processor. For
the interaction to work, the time needed to perform a command must be reasonably
short. Otherwise, the user will perceive the system as being sluggish and, if the
delay is unexpected, perhaps misinterpret the state of operation. If, for example, a
word processor every now and then would need several seconds to update the
screen as a response to the user pressing a key, the user might get the impression
that the word processor has missed the key press and repeat it. The result will
obviously not be what was intended.

Interactive systems often have some degree of real-time demands, even if they
are relatively relaxed. Response times of up to around half a second are often con-
sidered acceptable. Delays shorter than 0.1 seconds can in most cases not be
noticed at all by a human user. An exception is systems performing on-screen ani-
mations, where shorter response times are required in order to achieve smooth
movement. Failing to meet a deadline occasionally is, however, not very critical. In
the word processor example, the user might delete the extra characters inserted by
mistake. A missed deadline in the animation example causes a sudden jerk, which
can often be tolerated if it is of rare occurrence.

2.1 Real-time systems

Soft real-time systems

When the computer controls some kind of external equipment the real-time
requirements tighten. Embedded computer systems often belong to this category.
The response times required are typically shorter than for interactive systems,
often somewhere in the range of 10 to 100 ms. To maintain control over the exter-
nal equipment and to make it perform its task efficiently, it is important that the
system is able to meet its deadlines. In soft real-time systems however, occasional
failures to do so can be tolerated.

An example of a soft real-time system is a telephone exchange. In order to serv-
ice the customers efficiently it must respond quickly to actions taken by the caller.
When the caller lifts the receiver the exchange should immediately generate a dial
tone and be ready to accept a telephone number. If the exchange fails to do so the
caller might get the impression that the service is not available at the moment.
Even though the system failed to service the individual caller, the integrity of the
system as a whole was not affected.

The borderline between interactive systems and soft real-time systems is often
difficult to draw. An system performing animations could, for example, very well be
considered to be a soft real-time system due to its tight deadlines.

Hard real-time systems

Some real-time systems have processes that must meet very strict real-time
demands. Failing to meet these very tight deadlines can lead to system failure.
Many systems for automatic control belong to this category. Such systems are for
example used for controlling the movements of a robot arm, steering aircrafts, and
controlling the operation of machines in an industrial plant.

The current theory behind the algorithms used for automatic control assumes
that the state of the external process being controlled is sampled at regular inter-
vals, and that new control signals derived from the sample can be produced in a
very short time or with a predictable delay [AW84]. The sampling frequencies also
tend to be quite high, in the range of 100-1000 Hz, making efficiency even more
important. The response times that must be guaranteed are thus very short, a frac-
tion of the sampling period, i.e. well below 1 ms. Failing to meet deadlines may
cause the control algorithms to be unstable.

It should be noted that many control systems will tolerate occasional missed
deadlines without failure. The result will often only be suboptimal performance.
Still, many safety-critical systems exist where hard real-time guarantees are
required.

Actual real-time systems often have a mix of soft and hard real-time demands.
A hard real-time system for automatic control will typically contain low-priority
processes with soft deadlines as well as high-priority processes with hard
deadlines. Low-priority processes can for example be used for user interaction.

10 Chapter 2 Real-Time Systems

2.1.2 Predictability

An important property of real-time systems, especially hard real-time systems, is
predictability. When we say that a system is predictable, we mean that upper (and
sometimes also lower) bounds on the worst-case response times of the system exist
and that it is possible to compute them. There are no delays of arbitrary length in
a predictable system. In order to guarantee a maximum response time, each prim-
itive operation performed by the system must be predictable. Predictability is the
property that makes it possible to guarantee that no deadlines are violated.

Average-case versus worst-case performance

When evaluating the performance of a system, we study the time required to per-
form different tasks. One can either concentrate on how the system performs in the
average case or in the worst case. If the average-case performance is to be studied,
the mean execution time is determined, either by measurements or by a theoretical
analysis of the code. The worst-case performance, on the other hand, is found by a
similar analysis of the longest possible required execution time.

For batch and interactive systems we are usually only concerned with the aver-
age-case behaviour in order to obtain acceptable performance. The system might
once in a while fail to meet a deadline, but this is of minor importance.

For real-time systems, especially those with hard real-time requirements, it
must be possible to guarantee that the systems never fail to meet a deadline, at
least not a hard one. Good average-case performance is desirable, but the ability to
meet the deadlines in a worst-case situation is imperative.

Verifying schedulability

There are basically two approaches for the developer of a safety-critical real-time
system to verify that a system will meet its deadlines. One method is to actually
run the software and measure the performance of the system. There are two major
drawbacks to this approach. First, it is very difficult to ensure that the measure-
ments capture the worst-case execution situation. Therefore, the measurements
will in most cases be inconclusive. Second, it is often not possible to test the soft-
ware in the actual application environment since failures to meet the deadlines
will have too severe consequences. One cannot trust the software to run without
having verified it, but one can not verify it without running it.

The second approach to verifying the schedulability of a real-time system is to
do a theoretical analysis of the software processes before actually running the sys-
tem. This is called a priori schedulability analysis. Using knowledge about the
processes of the system, it is possible to analyse the timing when the processes are
executed. The worst-case execution situations are studied and the developer

2.1 Real-time systems

checks that all critical processes will meet their deadlines. The drawback of this
method is that it requires intimate knowledge about both the hardware and the
software. Execution pattern, deadline, and worst-case execution time (WCET for
short) must be known for each process. Furthermore, possible blocking caused by
communication between processes and access to shared resources must be taken
into account.

A conservative estimate of the WCET is acceptable from a schedulability anal-
ysis point of view. As long as the estimated value is not smaller than the real one,
the scheduling analysis can still be trusted. If the analysis claims that a system is
schedulable, it will also be schedulable in practice. However, if we use very conserv-
ative estimations, the analysis will classify many actually schedulable systems as
unschedulable. Therefore, we want the estimated WCETs to match the real
WCETs as well as possible.

Deriving close, but still conservative, estimates of WCETSs is a non-trivial prob-
lem. One way of doing this is to study the code generated by the compiler for each
process. The maximum execution time for each individual instruction is added
together. Branches and loops complicate the analysis and some extra information
is typically required from the programmer, e.g. the maximum number of possible
iterations for each loop. The effects of pipelines and caches further complicate the
analysis. The estimates can be calculated manually or produced by running the
code through a simulator, e.g. [ATT88]. Another way to estimate the WCET of a
process is to actually run the code of the process on the target hardware with a
variety of input and measure the execution time. The maximum encountered exe-
cution time is then said to be the WCET. There are of course no guarantees at all
that the worst possible case really did occur while the measurements were per-
formed. To compensate for this to some degree, one usually adds some extra time
to the measured worst case, perhaps 10%. Even though this approach does not pro-
duce any result that can be absolutely trusted, it is probably one of the most used
method in practice.

2.1.3 Control systems

Control software is normally organized as a number of periodically executing proc-
esses. Each period, these processes sample the inputs, calculate new control
signals and output. Because the established control theory of today demands that
the samples are taken periodically, and because the time between sampling and
outputting new control signals should be short in order to obtain optimal perform-
ance, these processes are assigned high priorities. High-priority processes are
usually small and run only a short period of time each time they are activated. The
sampling frequency required by the control algorithm varies, but for hard real-
time systems, e.g. motion control, it is often in the range of 100-1000 Hz.

Figure 2.1 shows one invocation of a typical high-priority control process. When
it is time to take a new sample and update the control signals (at the ideal sample

12 Chapter 2 Real-Time Systems

sample delay

latency control delay |
|
execution time
I ' . |
control response time i
|

response time

control process

input signal

| ' control signal

; T |
(@) JORNE) "4 '(5) time
The control process is released (the ideal sampling time).

The control process is invoked.

Actual sampling time.
New control signals are output.

a > wbnh e

The control process has finished its work.

Figure 2.1 Execution and timing nomenclature for a high-priority
sampling control process.

time), the real-time kernel releases the control process. This means that the proc-
ess is made ready, but it is not necessarily allowed to execute immediately. The
time it takes from releasing the process until it is invoked, i.e. actually starts exe-
cuting, is called the latency of the process. Typical control systems require latencies
in the range of 1 ms or less. One of the first things the process does is to sample the
state of the controlled environment. The time from the ideal sampling time until
the sampling is actually performed is called the sample delay. The control delay is
the time required to analyse the sample, calculate new control signals, and making
them available to the actuators. Control theory requires that the control delay is
kept short, in many cases below 1 ms, in order to guarantee stability and good per-
formance of the control system. It is also desirable from a control theory point of
view that the control response time is kept short. This should not be confused with
the response time of the process, which is defined as the time from the process is
released until it has finished executing. The latter definition is used when discuss-
ing the schedulability of the process.

2.2 Process scheduling

Apart from a relative small number of really critical high-priority processes,
embedded control systems contain a number of processes with low priority, which
usually represent the major part of the system (at least in terms of code size).
These processes typically do things like computing reference values, presenting
the state of the controlled process to an operator and accepting operator com-
mands, communicating with other computers, etc. The low-priority processes must
also satisfy some real-time requirements, but the demands are closer to those of
interactive or soft real-time systems than to those of hard real-time systems. The
consequences of a missed deadline are also much less severe than for the high-pri-
ority processes.

To summarize, an embedded control system is often implemented using a
number of concurrently executing processes. The critical tasks of the system are
isolated to a small number of high priority processes with very tight real-time
demands. It is of vital importance that these processes are able to run on time and
without interruption. At the same time, the system contains a number of low-pri-
ority processes with relaxed real-time demands. The requirements of these
processes are similar to those found in interactive or soft real-time systems.

2.2 Process scheduling

In order to design a working memory management strategy, it is important to be
familiar with the environment in which it will be working. As mentioned earlier,
embedded systems are typically implemented as a set of concurrently executing
software processes. Since the number of software processes is typically much larger
than the number of available processors, the processor time must be shared by the
different software processes. Many embedded systems consist of only one proces-
sor. A special piece of system software, called the process scheduler, is responsible
for scheduling the work of the processes. The process scheduler can employ various
strategies for dividing the available processor time among the software processes.
In the rest of this section we will present some of the most common scheduling
strategies in short together with their properties.

2.2.1 Static cyclic scheduling

One of the oldest scheduling strategies is static cyclic scheduling. It assumes that
all tasks are implemented by periodically executing processes. The processor time
is divided into time slots and a static scheduling table is constructed when the sys-
tem is designed. Each entry in the scheduling table corresponds to a time slot and
determines which software process should be invoked at the start of that slot. If the
process does not utilize the entire time slot, the system will be idle for the rest of
the slot, wasting processor time. On the other hand, the process must make sure
to finish before the time slot ends. The scheduler traverses the table, starting the

13

14 Chapter 2 Real-Time Systems

processes one by one. When the last entry in the table has been processed, the exe-
cution restarts at the beginning of the table. In some cases, the otherwise wasted
part of each time slot is used to execute background tasks. This yields a more
effective use of the available CPU time.

The strategy has the advantages that it is very predictable and easy to analyse.
It is sufficient to make sure that each process occurs often enough in the table to
meet its deadline and that the WCET of each process will fit within the associated
time slot. It might be necessary to split a process with a long WCET into several
shorter ones in order to make it fit within the time slots. Building the scheduling
table can be somewhat problematic, since the problem is generally NP-hard. A very
commonly used, but time-consuming, approach is to build the table by hand. Mod-
ifying the software of the system can be quite costly. If a new process has to be
added, or the WCET of a process changes, a new scheduling table must be con-
structed from scratch.

Since the scheduler repeatedly traverses the scheduling table we are limited to
using periodically executing processes. Sporadic events must be handled by polling
for the events. If a very short response time is required for such an events, the time
slots must be very short and a lot of time slots must be allocated for handling the
event. This can be very wasteful.

The length of the scheduling table is determined by the periods of the processes
that is to be scheduled. The scheduling pattern of a system of processes executing
with fixed periods will repeat itself at fixed intervals. In order to avoid anomalies
in the execution periods when the scheduler moves from the last entry in the sched-
uling table to the first one, the length of the table must correspond to the repetition
interval of the processes. The shortest repetition length of a set of processes is the
least common multiple of their execution periods, which can be large if special care
is not taken when assigning periods to the processes. To avoid excessive table
length one often manipulates the periods, i.e. makes them shorter, so that they are
multiples of each other. However, this also means that more processor time is
required.

2.2.2 Fixed priority dynamic scheduling

By dynamic scheduling we mean that the process scheduler dynamically decides
which process to assign processor time to as the system is running. A static sched-
uling table does not exist. Processes are invoked only if they have work to perform,
that is when they are ready. Sporadic events might cause a process to become
ready, which eliminates the need for polling for such events. Processes can be peri-
odic or sporadic and process periods do not have to be harmonized. Dynamic
scheduling thus provides a more flexible environment for the software developer
than static cyclic scheduling.

The criteria the scheduler uses to decide which process to run varies. A popular
method is to assign unique priorities to the different processes. It is assumed, from

2.2 Process scheduling

reasons of a priori analysis, that the priorities remain fixed during runtime. At any
point in time, the processor is assigned to the process with highest priority among
the set of ready processes. If a process with higher priority than the currently exe-
cuting one becomes ready, the scheduler suspends, or preempts, the currently
executing process and assigns the processor to the process with higher priority.
This scheduling strategy is often referred to as fixed priority scheduling with
preemption.

Various methods exist for assigning priorities to processes. The simplest ones
are based on heuristics. One might for example order the processes according to
their “importance” and assign priorities accordingly. However, there are no guar-
antees that such methods will produce the best possible configuration of priorities.
It might even be that the resulting system is unable to meet some of its deadlines,
while another assignment of priorities would have produced a schedulable system.
In order to find an optimal solution to the priority assignment problem, we must
first construct a model of the system, which we then can analyse. The models will
by necessity be simplifications of the real world and impose some restrictions on
how we design our software. Models complex enough to handle most practical real-
time applications have, however, been developed.

A property of fixed priority scheduling is that it is not generally possible to
achieve a 100% processor utilization ratio without missing deadlines. On the other
hand, overload is handled in a reasonable way. When the system is overloaded, the
preemptive scheduler still makes sure that enough processor time is given to the
processes with high priority. In most cases, these are also the most critical process-
es. The most important tasks of the system are thus still performed on time. It is
the processes with low priority, which typically only have soft real time demands
anyway, that will miss their deadlines first.

Rate monotonic scheduling

Rate monotonic scheduling, RMS for short, is a variant of fixed priority scheduling
where priorities are set monotonically according to the rate, or period, of the proc-
esses. That is, the process with shortest period should be assigned the highest
priority and so on. The basic model assumes that all processes are periodic and
have a fixed period. It is further assumed that the deadline of every process is equal
to its period. Processes are not allowed to block each other or suspend themselves,
except to wait for the next period to start. For such a system, Liu and Layland have
shown that RMS is optimal [LL73]. If RMS does not produce a schedulable process
set, nor will any other fixed priority scheduling strategy.

Rate monotonic analysis, RMA, provides a framework for analysing the sched-
ulability of a process set scheduled according to RMS. The earliest schedulability
test, that of Liu and Layland, provides a sufficient, but not necessary, condition for
a process set to be schedulable. This means that the analysis might turn out to be
inconclusive. A process set may be schedulable even if it does not pass the schedu-

16 Chapter 2 Real-Time Systems

lability test. Later, Joseph and Pandya presented an exact analysis for
RMS [JP86].

The restrictions imposed on the processes by RMS can be very unpractical in a
real-world situation. For example, practically every real-time system requires that
processes communicate with each other. Communication between processes una-
voidably gives rise to critical sections that may cause blocking to occur. Another
example of an unpractical restriction is to demand that every process is strictly
periodic. Generalizing RMA to handle realistic systems better has therefore been
an active research area. Techniques have been developed to incorporate sporadic
processes, process blocking, deadlines shorter then the process period, scheduling
overhead, release jitter, etc. into the analysis [SRL94].

Deadline monotonic scheduling

In most real-time systems, processes exist which have a deadline shorter than the
period of the process. This is especially true for systems performing automatic con-
trol of technical equipment. As described in Section 2.1.3, such a system samples
the state of the controlled equipment at regular intervals. New control signals are
computed based on the sample and then output to actuators. It is important that
the time from sampling the state to outputting new control signals is short. Other-
wise, stability cannot be guaranteed according to the theory of automatic control
[Aw84]. Deadlines shorter than the process periods will thus be common in such
systems.

If we change the process model used in RMS to include deadlines shorter than
the periods of the processes, we find that RMS is no longer optimal. Instead, the
optimal choice turns out to be to assign priorities monotonically with the deadlines
of the processes. This strategy is called deadline monotonic scheduling [ABRW91].
The process with the shortest deadline should be assigned the highest priority and
so on. Deadline monotonic scheduling can be viewed as a generalization of rate
monotonic scheduling. If all deadlines are set to the respective period, the schedul-
ing strategies will be identical.

Priority inheritance protocols

Priority inversion is a phenomenon where a higher priority process is blocked for
an arbitrary long time by a lower priority process. Such a situation occurs when a
low-priority process holds a resource that the higher-priority process is requesting.
The duration of the blocking by the low-priority process is usually short, but if a
third, medium priority, process is released, it will preempt the lower priority proc-
ess and prevent it from releasing the resource. This can lead to arbitrary delays for
the higher-priority process. Priority inversion is illustrated in Figure 2.2.

2.2 Process scheduling

Thp 1 T >

Tmp ; — — >
1 1 1 1 1 1 Tlme
v ———1 [] -
@ @3 @ ®). (6
I:l process executing I:l process executing, resource locked

1. The low-priority process, 1y,, locks a resource.

2. The high-priority process, Ty, is invoked, preempting T,

3. The high-priority process attempts to lock the already locked resource.

It blocks since the resource is already locked by Ty,

4. A medium-priority process, T, becomes ready to run and preempts 1),. The
high-priority process will be blocked for the entire execution of 1, even
though 1, and 1y, does not share any common resources.

5. The medium-priority process is suspended and the execution of 1, is resumed.

6. The resource is finally released. The high-priority process immediately pre-
empts 1, and locks the resource.

Figure 2.2 Priority inversion. It is illustrated how a process can be blocked by a
lower priority process for an arbitrary long time even though the proc-
esses does not share any common resources.

To avoid blocking caused by priority inversion, priority inheritance protocols
are employed. All of these protocols involve temporarily raising the priority of a
process that has allocated a resource. The probably most widely used priority
inheritance protocol is the basic inheritance protocol. Other protocols are the pri-
ority ceiling protocol and the immediate inheritance protocol. The rest of this
section will briefly present these protocols.

The basic inheritance protocol [SRL90] states that whenever a process blocks
because a resource it attempts to lock is already locked by a process with a lower
priority, the process currently possessing the lock will inherit the priority of the
blocked process. The priority of a process is thus raised if, and only if, it is blocking
a higher priority process. When the resource is released, the priority will be set to
what it was before the priority was raised. Processes with intermediate priority
levels will thus not be able to prevent a lower priority process from exiting a critical

17

18 Chapter 2 Real-Time Systems

section, and the maximum blocking time of the higher priority process will be
bounded. The protocol is easy to implement and does not require an a priori anal-
ysis of the process set and its utilization of semaphores. It does not impose any
restriction on how resources are allocated or released.

The priority ceiling protocol [SRL90] imposes a more restricted resource locking
policy than the basic inheritance protocol does. A process must not hold a resource
between executions and resource locking/unlocking must be properly nested. That
is, resources must be released in the opposite order to how they were locked. An a
priori analysis of which processes use which resources must be made. For each
resource, a priority ceiling is computed. This is the priority of the highest-priority
process that access the resource. Whenever a process attempts to lock a resource,
it is checked whether the priority of the process is strictly higher than the ceilings
of all previously locked resources in the system. If it is, the process is allowed to
lock the resource. If not, the process is blocked. The process causing the lock inher-
its the priority of the blocked process.

The priority ceiling protocol can be expensive to implement, but has some
appealing advantages: First, a process can only be delayed once by a lower priority
process. The length of the delay corresponds to the longest critical section in the
lower priority processes. Second, it guarantees that no deadlocks can occur. It does
so by allowing resource locking only if it can be guaranteed that locking the
resource might not cause a future deadlock. The consequence of the scheme is that
processes are, on average, blocked more often than if the basic inheritance protocol
is used. Blocking often occurs even though two processes do not attempt to lock a
resource simultaneously. The amount of blocking in the average case is thus worse.

The immediate inheritance protocol has the same requirements as the priority
ceiling protocol, i.e. no resources held between invocations, properly nested lock-
ing/unlocking, and an a priori analysis of the process set. However, it is much
easier to implement while retaining the attractive worst-case performance of the
priority ceiling protocol. It guarantees that no deadlock occur as well. Again, we
must assign a priority ceiling to each resource. At run-time, when a process
attempts to lock a resource we immediately set the priority of the process to the
maximum of the current priority of the process and the ceiling of the resource. The
immediate inheritance protocol is described by Lampson and Redell [LR80].

2.2.3 Earliest deadline first scheduling

All the scheduling strategies we have studied so far require that we take some
a priori scheduling decisions. With static cyclic scheduling we had to construct an
explicit scheduling table and with fixed priority scheduling we had to assign prior-
ities to the individual processes. If we add a new process to the system, or if we
change it in some other way, we have to redo this work. A more dynamic approach
is represented by earliest deadline first scheduling (EDF). Here, all the scheduling
decisions are delayed until runtime. However, when designing software for safety-

2.3 Process scheduling in existing real-time kernels

critical systems, we still want to make an a priori analysis of the process set to
determine whether all deadlines will be met or not. Schedulability analysis is thus
still required before running the system, which lessen the advantage of the strat-
egy over fixed-priority schemes.

EDF states that the processor should be assigned the process that is closest to
its deadline. If an external event causes a process to become ready, the system
checks whether the deadline of the newly released process is shorter than the dead-
line of the currently executing one. If so, the currently executing process is
preempted. EDF is more flexible than fixed-priority schemes since it is possible to
dynamically add new processes to the system without doing a global recalculation
of priorities. The scheduler automatically does its best to meet all deadlines.

The optimality of EDF has been proven for a system with arbitrary process
invocation and deadline times, and arbitrary and unknown (to the scheduler)
WCETs for each process [Der74]. An interesting property of earliest deadline first
scheduling is that it is possible to achieve a 100% processor utilization ratio with-
out violating any deadlines, which is typically not the case when fixed priority
scheduling is used. However, overload is handled very poorly by earliest deadline
first scheduling. Experience has shown that performance degrades rapidly in the
case of overload. A domino effect usually results as the scheduler continuously
gives priority to processes that are close to missing their deadlines.

2.3 Process scheduling in existing real-time kernels

In order to see what scheduling strategies are used in practice, this section briefly
surveys some typical real-time kernels and study what type of process scheduling
strategy they use.

Hawk: Hawk [HH89] is a small real-time kernel designed specifically for the
SANDAC multiprocessor computer for embedded systems. It has been used in sys-
tems for airborne guidance and control as well as for land-based navigation
systems. A priority-based dispatcher schedules the processes on each microproces-
sor. Fixed-priority scheduling is thus assumed, but it is possible for the system to
change the priority of a process dynamically. It is also possible to install a special
scheduler process in order to implement other scheduling strategies.

QNX: QNX [Hil92] is a commercial real-time operating system built around a
small microkernel supporting the basic concurrency functionality. Higher level
operating system functionality is implemented by a set of cooperating processes
surrounding the microkernel. The process scheduling model is based on preemp-
tive fixed-priority scheduling. The kernel implements the basic inheritance
protocol in order to avoid problems with priority inversion.

VxWorks: VxWorks [WRS95] is a commercial real-time operating system. It is
clearly the most common operating system within the field of robotics. It was also
used on Nasa’s recent Pathfinder mission to Mars. The process model is based on
fixed-priority scheduling with priority inheritance.

19

20 Chapter 2 Real-Time Systems

Spring: The Spring kernel [SR89] is a research real-time kernel, developed at
the University of Massachusetts, which supports distributed real-time systems.
The system attempts to dynamically ensure the schedulability of the system,
allowing new processes to be added to the system on the fly if they prove to be
schedulable. A new process is assigned to one of the processors and inserted into
its system task table, which is an explicit representation of the process schedule.

Ada: The Ada programming language [1+83] was originally developed to meet
the requirements on a new universal and standardized programming language
issued by the United States Department of Defence. The first ANSI/ISO standard,
Ada 83, appeared in 1983. The language was intended to provide a portable lan-
guage for embedded systems and contains support for concurrent computing. The
scheduling model prescribed by the standard was preemptive fixed-priority sched-
uling. In 1995, a new standard arrived, Ada 95, which provides more flexibility in
the choice of scheduling strategy. However, most implementations of Ada 95 use
preemptive fixed-priority scheduling.

The JAS 39 fighter: The swedish JAS 39 fighter aircraft is a highly computer-
ized modern fighter aircraft developed by SAAB Military Aircraft. The system
computer of the fighter runs a proprietary real-time kernel [Fol93]. The process
model consists of a fixed number of periodic processes with harmonic periods. In
addition, a low-priority background process exists. The kernel uses fixed-priority
scheduling with preemption. Rate monotonic scheduling is used to assign priorities
to the periodic processes. The background process has the lowest priority.

2.4 Summary

A real-time system is a system in which not only the output of the system deter-
mines success or failure. The time at which the output is produced also matters.
The system must have a response time to external stimuli that is shorter than a
given limit. The system is said to have deadlines. The real-time requirements vary
between different types of applications. A hard real-time system contains process-
es which must always meet their deadlines. Embedded systems, systems where the
computer is a part of a larger piece of equipment, are mostly hard real-time sys-
tems. They typically contain parts with soft real-time demands as well. Embedded
systems often perform automatic control of external physical processes and are
often safety-critical. It is vital that such systems are predictable and that we can
perform a priori analysis in order to guarantee schedulability.

Various execution models have been developed for implementation of real-time
systems. The first systems used static scheduling techniques, but more dynamic
scheduling approaches are used more and more. The most commonly used execu-
tion model in real-world real-time systems is fixed-priority scheduling with
preemption. It is therefore reasonable to develop a real-time memory management
strategy with primarily this model in mind. It is, however, important that it can be
generalized to other models as well.

Chapter 3

Automatic Memory Management

This chapter surveys and comments on different approaches to automatic memory
management. The real-time properties of existing approaches are reviewed and
the aim of the work presented in the thesis is described.

3.1 Introduction

In the early days of software development, there was only static memory manage-
ment. Static memory management means that every entity in the program is
statically bound at compile time to a certain memory location. Fortran [ANSI78] is
an example of an early programming language that used static memory manage-
ment. This is a very simple scheme, but it has some obvious disadvantages. First,
the size of all data structures must be known in advance. Second, it is not possible
to build data structures dynamically depending on input. Third, if we drive static
memory management to its point, recursive procedure calls cannot be allowed
since the procedure activation records are statically allocated. The latter restric-
tion can be lifted if we introduce a stack for activation records. This approach was
introduced in Algol [BMN+60].

The need for more dynamic software soon required a more flexible way of hand-
ling memory. A heap on which objects could be allocated dynamically was
introduced and with that dynamic memory management. The size of data struc-
tures could now be allowed to be determined during run time, and data structures
could be built as the program executed. Manual dynamic memory management
was used, which means that the application program is responsible for keeping
track of which parts of the heap contain live objects and which parts can be reused
for new purposes. Examples of languages supporting manual dynamic memory
management are C (malloc/free) [KR78] and Pascal (new/dispose) [JW85]. The run-
time libraries typically include some support to help the program managing the

22 Chapter 3 Automatic Memory Management

heap. It includes operations to manage a free-list containing all free memory seg-
ments on the heap. Operations are available to allocate a new object on the heap
(malloc/new) and to return the memory occupied by a no longer needed object to
the free-list (free/dispose). Even so, the program will contain complicated code for
controlling when to release objects in memory. Programming errors causing dan-
gling pointers or memory leaks are common.

A way of alleviating the application programmer of the burden of manual mem-
ory management, while still retaining the advantages of dynamic memory
management, is to hand over the responsibility for determining which memory
must be preserved and which can be reused to the runtime system. This approach
is called automatic memory management or garbage collection, GC for short. Exam-
ples of early uses of garbage collection are Lisp [McC60] and Simula [SIS87]. The
rest of this chapter discusses issues related to automatic memory management in
general, and automatic memory management for real-time systems in particular.
An overview of different techniques is given.

3.2 Memory fragmentation

Fragmentation occurs when objects of different sizes are allocated on the same
heap and later deallocated. This leaves holes of free memory interspersed with live
objects. A subsequent memory allocation request might not be able to reuse the
memory previously deallocated since the holes might be too small to hold the new
object.

Robson showed [Rob71] that the total amount of heap store needed to guarantee
that an allocation request can always be met will be large if variable block sizes are
allowed. Even in the simple case that only blocks consisting of one or two words
exist, fifty percent more store is needed compared to the maximum amount of
words live at the same time. As the maximum block size grows the worst-case stor-
age needs increase. According to Robson, if the maximum block size is 64 word a
heap might be required that is seven times larger than the maximum amount of
simultaneously live memory. The impact of variable block sizes on the storage
needs is also discussed in [Knu73].

One way of decreasing the problem of memory fragmentation is to use fixed
block sizes. There are at least two problems with this approach, namely internal
fragmentation and the need to split large objects. Internal fragmentation arises
when small objects do not use the entire memory block they have been assigned.
This naturally increases the amount of heap space needed. Large objects, on the
other hand, which do not fit into a single block must be split up into several smaller
segments. Both time and size overhead will result from the extra management of
the segments. If only one type of object (with a fixed size) is allocated on the heap,
both of the above disadvantages are eliminated. However, few software systems
have this property.

3.3 Basic garbage collection algorithms

The memory fragmentation problem can be solved by compacting the heap.
Compaction means that the live objects on the heap are regularly moved and put
next to each other, resulting in a single, continuous, area of free memory. Moving
the objects and updating all pointers involve some overhead. Memory management
algorithms that do not employ compaction are usually said to be non-moving.

3.3 Basic garbage collection algorithms

We distinguish between three basic approaches to garbage collection: reference
counting, mark-sweep, and copying algorithms. Here, we give a brief presentation
of these. For a more exhaustive presentation refer to [JL96], [Wil92], or [Coh81].

The task of the ideal garbage collector is to identify and reclaim the memory
occupied by objects that will not be referenced by the application program. Since it
is impossible for the collector to know which objects that will actually be referenced
later, it employs a somewhat more conservative approach approximating the ideal
one; identify and reclaim memory occupied by objects that cannot be referenced
again, i.e. objects that are no longer reachable from the program. The criteria used
to decide whether an object is live or not is thus whether it is reachable or not.

In this chapter, and in the rest of this thesis, we will use the terminology intro-
duced in [Wad76]. The application program and the garbage collector are viewed
as two independent processes sharing a common memory. The first process, the
application program, is called the mutator since it modifies (mutates) the object
graph. The second process, the garbage collector, which is responsible for recover-
ing memory discarded by the mutator, is called the collector.

3.3.1 Reference counting

The principle behind reference counting is to store a counter in every object indi-
cating the number of references to the object [Col60].2 The counters of the affected
objects must be updated every time the mutator modifies the object graph. When
creating a new reference to an object the counter must be incremented, and when
removing a reference the counter must be decremented. When the value of the
counter becomes zero, i.e. no references to the object exist, the memory occupied by
the object can be reclaimed. Reclaimed objects are typically inserted into a free-list
in the same manner as for manual memory managers. The heap is thus not
compacted.

1.The counter might be physically present in the object or implicit. The original pa-
per on reference counting [Col60] suggests that objects only referenced once, which
is the majority of the objects in many systems, omit the counter in order to save
memory space. On the other hand, this necessitates additional checks in connection
with each pointer assignment.

23

24 Chapter 3 Automatic Memory Management

The following pseudo code describes how a simple reference counting algorithm
might be implemented. The function NEW is called to allocate a new object and
SET POINTER is used to change the value of a pointer. The procedure
DECREASE_COUNT is only used internally and is thus not part of the interface
to the reference counter. It is assumed that every object contains an attribute
called Count, which keeps track of the number of existing references to the object.

FUNCTION NEW(Size);
VAR Ptr;
Search free-list for a suitable memory location. Let Ptr point
to the new object.
Update free-list.

Ptr.Count := 0;
RETURN Ptr;
END

PROCEDURE SET_POINTER(Ptr,Value);
DECREASE_COUNT(Ptr);
Ptr := Value;
IF Value<>NULL THEN
Ptr.Count := Ptr.Count+1;
END
END

PROCEDURE DECREASE_COUNT(Ptr);
Ptr.Count := Ptr.Count-1,
IF Ptr.Count=0 THEN
FOREACHpointer P in object referenced by Ptr DO
DECREASE_COUNT(P);
END
Insert ptr into free-list.

END

A nice feature of reference counting is that the GC work is performed in an incre-
mental fashion as the object graph is modified. Long pauses are not very common
but can occur once in a while since reclaiming an object may cause other reference
counts to become zero and so on. An example of such a situation is when the last
pointer to a large tree structure is deleted. All the nodes of the tree will then be
unreachable from the mutator and the garbage collector will traverse the entire
tree, reclaiming the objects one by one.

A major drawback of reference counting is that circular linked structures of gar-
bage objects cannot be detected. There is always a reference to each object in such
a structure, which means that they will not be deallocated. It has been observed
that circular object structures is a common phenomenon [BS93]. Reference count-
ing alone is thus not sufficient in long-lived programs. It can be used in
combination with some other garbage collection approach capable of recognizing
circular structures of garbage, or rely on cooperation from the programmer (e.g.
[Bob80]) which is a very unsafe approach. Hybrid algorithms are often used, com-

3.3 Basic garbage collection algorithms

bining reference counting with mark-sweep traversal. Examples of such
algorithms can be found in [Chr84] and [Lin92].

The overhead of managing the counters can be quite high, which limits the use
of the method. Every pointer assignment causes counters to be incremented and
decremented. A test must also be performed to check for a counter reaching zero,
in which case the object must be deallocated. It has, however, been shown that the
total cost of counter management can in many cases be reduced significantly by
avoiding reference counting operations in special cases [DB76,Bad93], for example
when it can be deduced that only one reference exists to an object. Since reference
counting algorithms typically do not employ memory compaction, they suffer from
problems with fragmentation.

3.3.2 Mark-Sweep

The first mark-sweep algorithm was published in [McC60]. Mark-sweep algo-
rithms make use of two phases; the marking phase and the sweeping phase. The
purpose of the marking phase is to locate and mark all objects that are reachable
from the mutator. The second phase, the sweeping phase, traverses the heap exam-
ining each object and reclaims the memory occupied by unmarked objects. The
sweeping phase may include compaction of the heap, in which case the algorithm
is sometimes called mark-compact. We will concentrate on compacting algorithms
in this thesis and will generally refer to compacting algorithms when we talk about
mark-sweep algorithms, unless stated otherwise.

The mark phase begins with examining the set of root pointers, i.e. the set of
pointers located outside the heap, through which all accesses to heap objects are
made. Included in the root set are global pointer variables and pointers located on
the stack. The objects reached through the root pointers are marked. The contents
of the objects marked in this way are then examined, or scanned. Objects refer-
enced by pointers within the already marked objects are added to the set of marked
objects, if not already marked, and their contents are in turn examined. Some kind
of stack is typically used to keep track of objects that have been marked but not yet
scanned. In this way the entire graph of reachable objects will be traversed and all
live objects will be marked. Algorithms that traverse the object graph in this way
to find all reachable objects are also called tracing algorithms.

The sweep phase reclaims the memory used by the unmarked objects. This is
done somewhat differently depending on whether compaction is desired or not.
Compaction might be sacrificed in order to achieve lower overhead for memory
management, but fragmentation might then cause problems. For non-compacting
algorithms, a single traversion of the heap is sufficient, inserting all unmarked
objects into a free-list as they are found. Compacting algorithms are more compli-
cated. Several passes might be required. First, the collector must decide on the new
locations of the live objects. Then, all pointers must be updated to point to the new
locations. The objects must finally be moved to their new locations. The LISP 2 gar-

25

26 Chapter 3 Automatic Memory Management

bage collector [Knu73] uses three passes over the heap to perform these tasks,
performing one task in each pass. A mark-sweep LISP 2 garbage collector thus
needs to traverse the heap four times to perform a complete GC cycle (one mark
and three sweep passes). An improvement to the LISP 2 algorithm was presented
in [Tho76]. The mark phase of the algorithm presented there temporarily modifies
the object graph in such a way that a linked list is created for each object, contain-
ing the locations of all pointers referencing the object. As a result, calculating new
locations for the objects and modifying the pointers to the object can be done in a
single pass, eliminating one of the sweep passes. Garbage collectors based on this
algorithm thus only need to traverse the heap three times in total.

Since the mark-sweep algorithms must process dead objects on the heap as well
as live ones during the sweep phase, the time required for one garbage collection
will be proportional to the size of the heap.

A case study of a mark-sweep algorithm

In order to gain a better understanding of mark-sweep algorithms, we will study
one such algorithm in more detail. The algorithm we have chosen is the LISP 2
compacting mark-sweep algorithm.

Each object on the heap contains a header with room for information needed by
the collector during the GC phase. This includes space for a mark bit and the
address the object will be moved to during compaction. We consider Marked and
NewAddress to be attributes of every heap allocated object and they contain the
required information.

New objects are allocated at the lowest available free address in the heap. Allo-
cation proceeds in this manner until the heap is completely exhausted. At this
point, the mutator is suspended and the collector initiates a full GC cycle. The allo-
cation operation can thus be described by the following piece of pseudo code:

VAR AllocationPointer; (* Address of next free memory cell *)

FUNCTION NEW(Size);
VAR NewObject;
IF AllocationPointer+Size > top of the heap THEN
MARK_SWEEP();
END
NewObject := AllocationPointer;
AllocationPointer := AllocationPointer+Size;
RETURN NewObiject;
END

The GC work, represented by the procedure MARK_SWEERP, is performed in four
passes. First, a mark pass is performed, setting the mark bit of every object reach-
able from the root pointer set. This is done recursively starting from the root
pointers. Then, three linear sweep passes over the heap are performed. For each

3.3 Basic garbage collection algorithms

marked (live) object, the first sweep pass calculates the address that the objects is
to be moved to during the final compaction pass. The address is stored in the object
header. The second sweep pass again traverses the marked objects. Now, the point-
ers within the objects are updated to reflect the values they will have after the heap
is compacted. This is done by dereferencing each pointer, fetching the address in
the destination object calculated during the first sweep pass, and finally storing
this address in the pointer field that is to be updated. The third pass performs the
actual compaction, sliding the marked objects down towards low memory address-
es, creating a contiguous sequence of live objects. The mark and sweep process is
described by the pseudo code below.

PROCEDURE MARK_SWEEP();
MARK();
SWEEP_CALCULATE_ADDRESSES();
SWEEP_UPDATE_POINTERS();
SWEEP_MOVE_OBJECT();
AllocationPointer := first free memory cell ;
END

PROCEDURE MARK();
FOREACHpointer P in root set DO
MARK_OBJECT(P);
END
END

PROCEDURE MARK_OBJECT(Ptr);
IF NOT Ptr.Marked THEN
Ptr.Marked := TRUE;
FOREACHpointer Son in the object referenced by Ptr DO
MARK_OBJECT(Son);
END
END
END

PROCEDURE SWEEP_CALCULATE_ADDRESSES();
VAR Ptr,NextFree;
Ptr := start of the heap ;
NextFree := Ptr;
WHILE Ptr<AllocationPointer DO
IF Ptr.Marked THEN
Ptr.NewAddress := NextFree;
NextFree := NextFree+OBJECTSIZE(Ptr);
END
Ptr := Ptr+OBJECTSIZE(Ptr);
END
END;

PROCEDURE SWEEP_UPDATE_POINTERS();
VAR Ptr;
Ptr := start of the heap ;
WHILE Ptr<AllocationPointer DO
IF Ptr.Marked THEN
FOREACHpointer P in the object referenced by Ptr DO
P := P.NewAddress;

27

28 Chapter 3 Automatic Memory Management

END
END
Ptr := Ptr+OBJECTSIZE(Ptr);
END
END

PROCEDURE SWEEP_MOVE_OBJECTS();
VAR Ptr;
Ptr := start of the heap ;
WHILE Ptr<AllocationPointer DO
IF Ptr.Marked THEN
Move object referenced by Ptr to Ptr.NewAddress.
Ptr.NewAddress.Marked := FALSE;
END
Ptr := Ptr+OBJECTSIZE(Ptr);
END
END

3.3.3 Copying algorithms

Copying algorithms traverse the object graph starting from the root pointers in a
manner similar to the mark-sweep algorithms. Thus, they belong to the family of
tracing algorithms. However, instead of just marking an object as live when found,
it is immediately copied to a new segment of storage. When the entire object graph
has been traversed, all live objects have been copied from, or evacuated from, the
old heap. The old heap now only consists of dead objects and can thus be reclaimed.
Copying algorithms are by their nature compacting.

The first algorithm of this type was published in [Min63]. Secondary storage
was used to hold the evacuated objects. When all live objects had been evacuated
to secondary storage, they were copied back to a contiguous area in the heap. Later
variants of copying algorithms use the semispace strategy [FY69]. This divides the
available memory into two equally sized spaces, used one at a time. When the first
semispace is filled up, a GC cycle is performed, evacuating the live objects to the
second semispace. This second semispace is now used for allocation of new objects
until it in turn is filled up. At this point, the garbage collector moves live objects
back to the first semispace and so on. Early copying algorithms used recursion to
traverse the object graph, but modern variants use the strategy presented by
Cheney [Che70], which uses a scan pointer that iteratively traverses the evacuated
objects.

The time overhead of copying algorithms is proportional to the amount of live
objects, making them attractive compared to mark-sweep algorithms when the
ratio between live and dead objects is low. On the other hand, the storage overhead
is larger since space is required for two semispaces.

3.3 Basic garbage collection algorithms

Case study of a copying algorithm

In order to illustrate how copying algorithms work, we will study a semispace algo-
rithm using Cheney's method for traversal of the object graph. An incremental
copying algorithm will play an important role later in the thesis, but the one we
will present here is a non-incremental variation.

The heap is divided into two semispaces, called tospace and fromspace. New
objects are allocated in tospace, as illustrated by Figure 3.1. The pointer B keeps
track of where objects are allocated. When there is no space left in tospace to hold
new objects, the garbage collector is invoked. The garbage collector starts by swap-
ping the meaning of fromspace and tospace. The old fromspace will now became the
tospace and vice versa. This is called performing a flip. The new fromspace will con-
tain a mix of live and dead objects and the new tospace will be empty. The task of
the garbage collector is now to find out which objects in fromspace are still reach-
able from the mutator, and place them consecutively in tospace. Then, the memory
used by fromspace can be reclaimed.

Let us follow a simple example to illustrate how the algorithm works. After hav-
ing changed the meaning of tospace and fromspace, we assume we have the
situation showed in Figure 3.2a, with a total of four live objects. The mutator ref-
erences the objects on the heap through a set of root pointers, external to the heap
but pointing to objects within it. The algorithm assumes that the root pointers are
known to the garbage collector. In our example we have two root pointers, rootl and
root2.

First, the garbage collector evacuates the objects referenced by the root pointers.
This is also known as scanning the root pointers. When evacuating an object, the
garbage collector copies the object to the position in tospace pointed to by B, the
allocation pointer. It also stores a pointer to the new copy within the original object
for later use, this pointer is called a forwarding pointer. Finally, the pointer that
triggered the evacuation, in this particular case one of the root pointers, is updated
to point to the new copy. If the object referenced by the scanned pointer has already
been copied to tospace, the collector merely updates the scanned pointer using the
pointer previously stored in the old version of the object. After the root pointers

Fromspace Tospace
allocated
empty objects >
B

Figure 3.1 The heap structure of a copying garbage collector algorithm during
the allocation phase, i.e. while the application program is executing.

29

30 Chapter 3 Automatic Memory Management

Fromspace Tospace
Rootl Root2
a)
1 2 3 4
|
T tt A
S,B
Rootl Root2
b)
|
1 2 ' ' 34
T T* Ai A
S B

Rootl Root2

y %
3

IR
S B

Rootl Root2
I

P
3

211

e) Rootl Root2

—>
—»

d)

—

S,B

34121
|
LJTTB

Figure 3.2 A garbage collector cycle for a stop-the-world copying algorithm. Live objects are
evacuated to tospace, after which the memory in fromspace can be reclaimed.
Allocation can then proceed in tospace until it is again filled up.Then, the mean
ings of tospace and fromspace are changed and the cycle starts all over again.

3.3 Basic garbage collection algorithms

have been scanned, the heap is in the state shown in Figure 3.2b. The fromspace
versions of evacuated objects are now only used to hold a pointer to the correspond-
ing copy in tospace. Any remaining pointers to the old object will be updated later
during the GC process.

After having scanned the root pointers, the garbage collector moves on to scan-
ning the evacuated objects in tospace. The scan pointer, S, is used to do this.
Starting with the object at the lower end of tospace, the pointers within the objects
are scanned one by one as the scan pointer iterates through the objects upwards in
tospace. As before, if a pointer to an unevacuated object is found, the referenced
object is copied into tospace. The pointer itself is in any case updated to reference
the tospace copy. Figure 3.2c illustrates the situation when the pointers of the first
evacuated object (referenced by Rootl) have been scanned. The scan caused anoth-
er live object to be identified and evacuated. Note that there is still a pointer
referencing the fromspace version of the object. This pointer will, however, be
updated when the scan pointer, S, reaches the object containing the pointer. When
scanning the pointer, the collector will discover that the referenced object is
already evacuated and will update the pointer using the pointer stored in the from-
space version of the referenced object.

Scanning proceeds until there are no more objects to scan, i.e. until S=B. When
this happens, the entire graph of reachable objects has been traversed and no live
objects remain in fromspace. This is shown in Figure 3.2d. All the memory in from-
space can then be reclaimed (Figure 3.2e) for use during a subsequent invocation
of the garbage collector.

A GC cycle is now finished and the next one can begin; the control is handed
back to the mutator which resumes its execution. The mutator continues to allo-
cate new objects in tospace. Sooner or later, memory is filled up and the garbage
collector is again invoked.

The algorithm can be summarized by the pseudo code below. We assume that
heap-allocated objects contain a flag Evacuated that indicates whether an object
has been evacuated to tospace or not.

VAR B,S;

FUNCTION NEW(Size);
VAR Ptr;
IF B+Size>top of tospace THEN
COPYING_GC();
END
Ptr .= B;
B := B+Size;
RETURN Ptr;
END

PROCEDURE FLIP();
Change tospace to fromspace and vice versa.
B := start of tospace;

END

31

32 Chapter 3 Automatic Memory Management

PROCEDURE EVACUATE_AND_UPDATE(PTtr);
IF Ptr points into fromspace THEN
IF NOT Ptr.Evacuated THEN
Copy object referenced by Ptr to address given by B.
Ptr.Evacuated := TRUE;
Ptr.ForwardingPointer := B;
B := B+OBJECTSIZE(Ptr);
END
Ptr := Ptr.ForwardingPointer; (* Update the pointer *)
END
END

PROCEDURE SCAN_OBJECT();
FOREACHpointer P in object referenced by S DO
EVACUATE_AND_UPDATE(P);
END
S := S+OBJECTSIZE(S);
END

PROCEDURE COPYING_GC();
FLIP();
FOREACHpointer P in root set DO (* Evacuate root pointers *)
EVACUATE_AND_UPDATE(P);
END
(* Scan evacuated objects *)
S:= start of tospace ;
WHILE S<B DO
SCAN_OBJECT();
END
END

3.4 Conservative algorithms

A garbage collector must be able to identify root pointers and pointers within live
objects in order to traverse the object graph. Failure to find all pointers may cause
live objects to be erroneously considered unreachable and their associated memory
will be reclaimed. In most systems, the collector relies on runtime type information
provided by the compiler to identify the pointers. In some systems, however, such
information is not available to the collector. An example of such an environment is
a C or C++ program.

When runtime type information is lacking, some other method must be used to
identify pointers. Conservative algorithms, of which the one published in [BW88]
was one of the first, scan objects, stacks, and global variables with the assumption
that every word of memory might contain a pointer. The collector determines
whether the potential pointer references a previously allocated object, in which
case the object is marked as being live. This strategy means that arbitrary data can
be mistaken for pointers, resulting in areas of memory not being reclaimed. Since
the collector can never be absolutely sure that a bit-pattern really is a pointer, rath-
er than some other type of data, pointers cannot be updated. Compaction is
therefore difficult to achieve in such an environment. One technique to achieve

3.5 Generation-based algorithms

compaction is to always do pointer dereferencing indirectly through a table of fixed-
location forwarding pointers, but this of course assumes a cooperating compiler, or
at least that the programmer adheres to strict coding conventions. A compromise
is represented by Bartlett's Mostly Copying Garbage Collector [Bar88]. This algo-
rithm requires that type information is available for all objects located on the
garbage collected heap. Objects referenced only by pointers located on the collected
heap can safely be moved and pointers to it updated. If potential pointers to the
object are found outside the garbage collected heap, for example on the stack, the
object is not moved.

The difficulty of calculating worst-case costs, both with respect to time and stor-
age, for the conservative GC algorithms makes them unsuitable for real-time
systems and we will therefore not consider them further in this thesis.

3.5 Generation-based algorithms

Research on the lifetime of heap-allocated objects [LH83,Ben90] has shown that
most objects die very shortly after having been created. In contrast, a large portion
of the surviving objects tend to live for very long periods. This has inspired people
to use different strategies to manage young and old objects in order to avoid moving
objects unnecessarily during heap compaction [LH83,Ung84]. The idea is to divide
the available storage into two or more smaller areas, or generations, which are gar-
bage collected separately. The age of an object controls which generation it is
located in. Objects start their lives in the young generation. After having survived
the initial period of high mortality they are moved, or promoted, to an older gener-
ation. The process of promoting long-lived objects to older generations is
sometimes also called tenuring. In this way, garbage collection can to a large degree
be isolated to the young generation, which contains a relatively small number of
live objects. Moving the bulk of the live objects, the old ones, is thus avoided. A
table is maintained for each generation consisting of references to objects in older
generations that contain pointers into the current generation. Using this informa-
tion, a complete traversal of older generations can be avoided each time a GC cycle
is performed in a young generation. The old generation (or generations) must also
be garbage collected occasionally, but since the allocation (promotion) rate in this
part of the heap is quite low this is only necessary with long intervals.

In order to get maximum performance out of a generation-based algorithm, care
must be devoted to tuning the parameters of the collector. Factors that must be con-
sidered are the number of generations, the generation sizes, and the tenuring
policy [UJ88], i.e. when to promote an object to an older generation.

The advantage of generation-based algorithms is a decreased average-case
overhead. Most work is isolated to a small young generation which require little
time to garbage collect. Most GC-induced delays will therefore be comparably
short, in the range of 0.1 seconds or less, and will not be noticed by a human user.
The worst-case delays, on the other hand, are typically longer than for single-gen-

33

34 Chapter 3 Automatic Memory Management

eration schemes. Once in a while, tenuring objects will cause a garbage collection
in the older generation to follow a collection in the younger generation. It has been
proposed that the old generation in turn should be divided into smaller areas that
are garbage collected separately. Every once in a while, as objects are tenured, one
of the parts of the old generation is scavenged for garbage. In this way, complete
traversals of the entire heap are avoided. An algorithm using this approach is the
train algorithm [HEM92], which has been implemented in the Beta runtime sys-
tem [SG95, MMN93].

3.6 Efficiency

The efficiency of a GC scheme can be formulated in several ways depending on the
requirements of the application. The amount of storage needed by the garbage col-
lector can be one factor affecting the effiency, as can the time needed. Often a
combination of time and space requirements is considered when referring to the
efficiency. Since timing is very important in real-time systems, the time overhead
for garbage collection is the dominating factor when determining the efficiency for
such systems.

Time overhead can be measured in two ways. One way is to look at the total
amount of time used for garbage collection. This definition of efficiency is especially
appropriate for batch systems where the duration of an individual GC-induced
pause is of no interest. The only concern is that the program should (successfully)
terminate as quickly as possible. In real-time systems, the total overhead of the
scheme is still of interest, but is not a sufficient measure of the efficiency of the gar-
bage collector. Instead, the ability of the collector to comply with the real-time
demands of the application must be taken into consideration. This means that the
worst-case duration of an individual GC-induced pause is of interest, as is how
evenly distributed the pauses are over time.

Algorithms that perform an entire GC cycle in one chunk are often denoted stop-
the-world algorithms. Stop-the-world algorithms have, in most cases, the lowest
total overhead combining low demands on storage with a low GC/mutator time
ratio. However, the real-time performance is bad since the individual pauses are
unacceptably long.

Comparing mark-sweep algorithms with copying algorithms, one finds that
mark-sweep algorithms in general require considerably less memory than copying
algorithms. This is due to the fact that the copying algorithms use two equally-
sized semispaces, of which only one is actively used at any time. The time overhead
for each of the two strategies is somewhat more difficult to determine. If the
amount of live objects is large compared to the amount of dead ones, the mark-
sweep algorithms are the most efficient. In contrast, if the amount of live objects is
small the copying algorithms are more efficient. The time overhead of the mark-
sweep algorithms is proportional to the heap size, while the overhead of the copy-
ing algorithms is proportional to the amount of live objects.

3.7 Incremental algorithms

Generation-based algorithms generally improve the total efficiency by perform-
ing garbage collection in only a small part of the heap. Some additional overhead
is, however, introduced because of the need to administrate pointers between gen-
erations and tenuring information. Since the mortality is high among the objects
in the young generation, and thus the number of live objects low, a copying algo-
rithm is suitable for managing these objects. The bulk of objects, those in the old
generation, have much lower mortality and can very well be managed by a mark-
sweep collector. From a real-time point of view, generation-based algorithms are
not acceptable if they introduce long pauses.

3.7 Incremental algorithms

In order to guarantee that a real-time program will meet its deadlines, the system
must be predictable. This implies that the garbage collector must have the proper-
ty that the worst-case delays must be small, bounded, and occur at predictable
times. Interactive systems do not have such strict requirements; it is enough that
the delays are short enough not to be noticed most of the time.

Incremental algorithms which only perform a very small amount of work dur-
ing each invocation, such as those presented by Baker [Bak78] and Wadler
[Wad76], are often used to achieve automatic memory management for soft real-
time systems. The worst-case delay caused by an individual invocation of the col-
lector is typically in the range of 1-10 ms. The algorithms are based on one of the
tracing algorithms, dividing the work of a full GC cycle into many small bounded
increments, which are executed interleaved with the execution of the mutator.
GC work is in most cases triggered by memory allocation and pointer operations.

An incremental real-time version of a mark-sweep algorithm was published by
Wadler in [Wad76], but the best known incremental algorithms are based on the
copying algorithms. Baker has presented an often used algorithm of this type
[Bak78].

A complication caused by the mutator running interleaved with the collector is
that it is more difficult to ensure that the collector correctly identifies all reachable
objects. The traversal of the object graph performed by the collector is divided into
many increments. Therefore, at any time during the execution of the mutator, the
set of live objects can be divided into objects not yet found by the collector, objects
identified as live but not yet scanned, and objects that have been both identified as
live and scanned. The contents of the latter objects will not again be examined by
the collector. If the mutator in this situation attempts to store a pointer to an object
not yet found by the collector in an already scanned object, the collector might fail
to identify the referenced object as being reachable. Baker's algorithm employs a
read barrier augmenting each operation reading the value of a pointer with a check
to ensure that the object referenced by the pointer is marked as live. An improve-
ment of Baker’s algorithm which uses a write barrier instead of a read barrier
(writes are less common than reads) was published by Brooks [Bro84]. Bengtsson

36 Chapter 3 Automatic Memory Management

[Ben90] has generalized Brooks’ algorithm to handle multiple generations, giving
the collector the advantages of the generation-based algorithms while still preserv-
ing reasonable real-time properties.

Making copying and mark-sweep algorithms incremental increases the real-
time performance of the algorithms, but at the same time introduces new sources
of overhead. One such source is the additional work that has to be performed by
read and write barriers. Another source of overhead is floating objects. It might
happen during a GC cycle that an object that has been marked as live by the col-
lector becomes unreachable due to the actions of the mutator. The collector will
retain the object and the memory occupied by the object will not be reclaimed dur-
ing the on-going cycle. The memory will be reclaimed during the next cycle, but
floating objects will cause both some storage and time overhead. Bengtsson’s thesis
[Ben90] contains a thorough analysis of the efficiency of different incremental GC
algorithms.

Special properties of the system or programming languages can in some situa-
tions be used to achieve performance sufficient for soft real-time systems. An
example of this is early versions of the Erlang programming language [ADVW92].
Here, each process was assigned a separate heap. The heap size was in most cases
just a few hundred bytes. Due to language properties, there could be no pointers
between objects allocated on different heaps; processes communicated by passing
copies of data objects to each other. The heaps were garbage collected individually
using a stop-the-world policy, but since the heaps were very small so were the indi-
vidual delays. The technique is, however, not generally applicable to other types of
systems: The strategy does not scale up when larger heaps are required. In addi-
tion, the overhead for keeping track of references from one heap to another
increases quickly as the number of heaps is increased.

3.8 Scheduling properties

Systems that have to comply with real-time demands also put demands on the
memory management strategy. The chosen strategy must be efficient enough not
to prevent the software from meeting its deadlines. Several levels of real-time
demands exist. Some applications may have very relaxed demands while others
may have very strict demands. Different memory management solutions might be
appropriate depending on the level of real-time demands. This section discusses
which memory management strategies are available to meet various timing
requirements.

3.8.1 Stop-the-world

The only time-related requirement for a batch system is that the time for the
processing should be as short as possible. This implies that a GC strategy that min-

3.8 Scheduling properties 37

imizes the total amount of time spent on garbage collection should be chosen.
There are, however, no restrictions on the size of the individual pauses induced by
the garbage collector.

Traditional GC algorithms of the stop-the-world type are very suitable for batch
systems. Collectors of this type are inactive until the heap is exhausted, i.e. until
a memory allocation request from the mutator cannot be satisfied. When this hap-
pens, the application program is temporarily halted and a complete GC cycle is
performed, reclaiming all dead objects, hence the name stop-the-world.

The individual delays incurred by garbage collection are typically in the range
of a few seconds up to several minutes depending on the system. Practically all of
the early approaches to garbage collection were based on stop-the-world algo-
rithms, with good reason, since most programs ran in batch mode. Examples of
stop-the-world algorithms are [McC60,Tho76,FY69].

3.8.2 Interactive systems

Long GC-induced pauses should not occur in an interactive system, at least not too
often, although occasional long pauses might be tolerated. The trick to reduce the
duration of the individual pauses induced by the garbage collector is to somehow
partition the GC work into smaller chunks. The work can then be spread out over
a longer time-span instead of being concentrated to one point in time. One way of
partitioning the work is to garbage collect only a limited part of the heap at the
time. This is the approach taken by the generation-based algorithms
[LH83,Ung84] (described in Section 3.5). In most cases the garbage collection will
be isolated to a relatively small part of the heap, namely the young generation,
causing pauses no longer than some tenths of a second. Sometimes it will, however,
be necessary to garbage collect also the old generation, which will cause consider-
ably longer pauses.

An improvement of the generation-based algorithms, the train algorithm
[HEM92], addresses the problem of garbage collecting the old generation in a non-
disruptive way. Here, the old generation is divided into a number of segments, each
garbage collected separately. This scheme reduces the pauses caused by garbage
collection in the old generation to acceptable levels [SG95].

Shorter delays can be achieved by dividing the GC work into many small incre-
ments. One such incremental strategy is reference counting (Section 3.7), another
is the generation-based algorithm presented in [LH83]. Here, small chunks of work
are performed in connection with each pointer assignment. Mark-sweep and copy-
ing algorithms can also be made incremental, running as coroutines in parallel
(actually interleaved) with the mutator, as we will see in the next section. It has
also been proposed to let the garbage collector run as a completely parallel process
[Wad76,DLM+78,BDS91].

38 Chapter 3 Automatic Memory Management

3.8.3 Hard real-time computing

Hard real-time systems have very strict demands on response times. The maxi-
mum allowed response times are often 1 ms or less. The consequences of missing
even a single deadline are often severe, causing the system as a whole to fail. It
must be possible to predict the worst-case behaviour of the software in order to
ensure beforehand that all deadlines will be met. Hard real-time systems are thus
very sensitive to how GC work is scheduled.

Sequential garbage collection

The traditional approach for hard real-time systems is based on fine-grained incre-
mental algorithms. The garbage collector is invoked each time an allocation
request is made and performs an increment of GC work. Other pointer-related
operations, such as pointer access or assignment may also trigger GC work. It is
easy to guarantee that the garbage collector keeps up with the allocation requests
since the mutator is suspended until sufficient GC work has been performed.

The incremental real-time algorithms, as described up to now, guarantee small
(down to around one millisecond on typical hardware of today) worst-case bounds
on the cost of memory management-related operations. However, this is not suffi-
cient for many hard real-time systems, as has been pointed out in for instance
[Wit92] and [WJ93]. The problem is that servicing a task will often involve per-
forming a whole series of memory management operations. The cumulative worst-
case overhead for garbage collection during the execution of the task may therefore
grow quickly, making it impossible to guarantee that the deadline is always met.
It is not enough that the duration of a single GC induced delay is small and bound-
ed, but the cumulative overhead for the critical task must also be small. This is
difficult to guarantee when traditional incremental algorithms are used. Cluster-
ing of relatively long GC-induced delays is an unwanted property of most
incremental algorithms, which stresses the problem.

One solution to the problem of rapidly growing cumulative worst-case delays is
to try to make the overhead for individual memory management operations prac-
tically negligible. One step towards achieving this can be to not compact the heap,
thus using non-moving incremental algorithms. In return, the problem of memory
fragmentation will have to be addressed in some other way. This approach has been
widely used, among others by Baker [Bak92], Wilson [Wj93], and Yuasa [Yua90].
The remaining overhead can still be too high for use in systems with very strict
demands on response times, however.

3.9 Memory hierarchies in real-time systems

Concurrent garbage collection

GC-induced delays can be made negligible if garbage collection is performed by an
execution thread completely separate from the mutator thread. The process
responsible for garbage collection is normally given a lower priority than the appli-
cation processes which are given precedence. Application processes will
consequently not be significantly delayed by garbage collection.

The problem with concurrent garbage collection is to guarantee enough
progress of the GC work. If the GC process is not assigned a sufficient amount of
CPU time, it will not be able to reclaim memory at the same rate as the mutator
requests it. The mutator will block until the garbage collector has freed enough
memory to satisfy the request, which can result in a violation of a deadline. A glo-
bal schedulability analysis of the entire system must be performed in order to show
that critical processes are never delayed by garbage collection.

Concurrent garbage collection has been proposed by various people, e.g.
Steele [Ste75], Dijsktra et al. [DIM+78], and Appel et al. [AEL88]. The problem of
scheduling analysis is not given much attention, however. Instead, the work con-
centrates on algorithmic and synchronization-related issues.

An interesting variant of concurrent garbage collection is presented by Nilsen
[NS94]. Here, an incremental copying (and thus compacting) algorithm of the Bak-
er type is utilized. Special hardware is used, which performs the GC work on a
separate processor. However, as long as standard mass-produced microprocessors
do not include such support, this technique will probably be of limited use.

3.9 Memory hierarchies in real-time systems

The memory system of modern computers is typically implemented as a hierarchy.
At the top of the hierarchy we find CPU registers and on-chip memory caches. Fur-
ther down we in turn find secondary caches and the main memory (DRAM chips).
At the bottom we can find mass storage units in the form of disk drives which are
used to implement virtual memory. This architecture is motivated by the necessity
of making a compromise between hardware cost and performance.
High-performance components such as fast on-chip memory are expensive in
comparison to disks or the slower memory chips used for the main memory banks.
The bulk of data and code is stored in slow memory, but the system attempts to
store frequently used pieces of data and code in faster parts of the memory system
in order to minimize the cost of memory access. The result is that the cost of a mem-
ory access will vary depending on where in the memory hierarchy the requested
piece of information is stored. The difference in cost can be very large, especially if
secondary storage (disk drives) is used for demand paging. An access to main mem-
ory can easily cost 10 times as much as an access to the processors on-chip cache.
The cost will be even higher if data has to be read from disk, perhaps 1000 times
more expensive than a cache access. In order to achieve maximum performance, we

39

40 Chapter 3 Automatic Memory Management

want to organize our programs such that as many memory accesses as possible can
be serviced by fast memory components. Note that this only minimizes the average
cost of a memory access. The worst-case cost of an access still depends on the slow-
est part of the memory hierarchy (main memory or secondary storage).

The choice of GC algorithm affects the memory access pattern directly by the
accesses performed by the garbage collector. It also affects the access pattern indi-
rectly by controlling where in memory new objects are allocated and (in the
presence of compaction) by moving objects around in memory. Poorly constructed
GC algorithms can interact badly with caches and virtual memory [Lar77,
WLM92, Zor89].

Hard real-time systems

A page fault is generated whenever a memory access cannot be serviced because
the requested data has been swapped out to secondary storage. The operating sys-
tem responds to the page fault by reading in the memory page containing the
requested data from disk which may take up to 100 ms, during which time the
application program is suspended. Such long delays are unacceptable in practically
all embedded systems, which excludes the use of virtual memory. Another reason
for not using virtual memory is the desire to avoid using failure-prone mechanical
hardware such as disk drives, especially in mobile applications.

Much of the speed of modern microprocessors come from their aggressive use of
on-chip caches. However, their use in hard real-time systems can be a mixed
blessing [But97]. If the application requires a very high degree of predictability,
caching can be a direct disadvantage since some nondeterminism is introduced.
Most memory accesses will be cheap, but every now and then a cache miss will
require additional time. The worst-case cost for a memory access can very well be
higher when a cache is used compared with accessing the main memory directly.
This is because the hardware must first check the cache and then access the main
memory. Overhead may also be associated with additional house-keeping in order
to keep main memory and the cache consistent in connection with memory writes.

GC algorithms which interacts well with caches is desirable for hard real-time
systems. However, it is the worst-case behaviour which is of dominating interest.
Existing cache-conscious GC algorithms attempt to minimize the total cost of cache
misses, i.e. to improve the average case behaviour. Since it is not obvious that the
worst-case behaviour will improve, the rest of this thesis will not concentrate on
these issues.

3.10 Problem statement

3.10 Problem statement

Memory management for hard real-time systems, be it manual or automatic, must
take several issues into consideration in order to be feasible:

= Robustness. The memory management strategy should aid in producing safe
and robust programs. The programmer should be alleviated from writing com-
plex code for managing the memory manually resulting in hard-to-find
programming errors.

= Efficiency. Processor time is a limited resource, especially in embedded control
systems where the CPU usage tends to be high. The memory manager must
consequently use the available processor time efficiently and intrude as little as
possible on the execution of the application program.

= Predictability. Hard real-time systems require predictable behaviour, making it
possible to perform an a priori analysis of the worst-case performance. The
memory manager must therefore provide strict upper bounds on the associated
overhead.

« Schedulability. The high demands on reliability and robustness of embedded
software often call for a priori schedulability analysis. It must be ensured that
memory management does not violate the schedulability requirements.

Automatic memory management is desirable in hard real-time software systems.
Introduction of garbage collection reduces the complexity of program code and vir-
tually eliminates hard-to-debug programming errors such as dangling pointers
and memory leaks. This results in more robust systems.

Much work has been devoted to finding new efficient algorithms for garbage col-
lection and improving old ones. Even more efficient algorithm can surely be
developed, but we do not feel efficiency is the major obstacle for hard real-time gar-
bage collection. Instead, the problem is to achieve enough predictability and to find
efficient techniques to make sure that a system will meet all its hard deadlines.

Our goal is thus to find techniques that make automatic memory management,
i.e. garbage collection, feasible for hard real-time systems. We primarily concern
ourselves with embedded systems for automatic control. We aim at tailoring exist-
ing GC algorithms to fit the specific requirements of such systems. Architectural
properties of control software can be used to schedule the GC work such that it does
not interfere with the control algorithms of the application. Existing techniques for
schedulability analysis are adapted to make it possible to perform a priori schedu-
lability analysis.

42 Chapter 3 Automatic Memory Management

3.11 Summary

A brief overview of the field of automatic memory management was presented.
Automatic memory management is characterized by leaving the problem of detect-
ing memory that can be reused for new purposes to the runtime system, or more
exactly, to a garbage collector. The chapter compares automatic memory manage-
ment with the more primitive manual memory management which places all
responsibility for keeping track of what memory to reuse on the application pro-
grammer. The conclusion is that automatic memory management leads to less
complex programs with less programming errors, which is of vital importance in
embedded systems.

The three basic classes of algorithms for garbage collection were described: ref-
erence counting, mark-sweep traversal, and copying algorithms. The latter two
types of algorithms were found to be suitable for use in embedded systems in their
incremental variants. Incremental garbage collection implies dividing the work of
the garbage collector into many small chunks and distributing them evenly over
time.

Techniques such as conservative garbage collection, i.e. garbage collection for
systems with no or incomplete runtime type information, and generation-based
garbage collection were surveyed. Conservative garbage collection was deemed
inappropriate for safety-critical embedded systems due to its unpredictable mem-
ory usage. Generation-based algorithms promise low average-case overhead, but
their worst-case performance is typically worse than that of other algorithms.

Garbage collection has traditionally been difficult to introduce in systems with
hard real-time requirements, because of the difficulty to achieve low overhead and
enough predictability. A key issue related to the solution of the problem is to devel-
op techniques for how the GC work is scheduled. Two scheduling variants for
incremental garbage collection were described; sequential garbage collection and
concurrent garbage collection. Both variants have their advantages, but also dis-
advantages that make them less suitable for use in hard real-time systems. There
is thus a need for an improved scheduling strategy.

We conclude that an incremental traversal GC algorithm is a suitable choice for
use in hard real-time systems. It must, however, be combined with a new schedul-
ing technique in order to meet the demands on predictability and low overhead in
critical situations. Furthermore, techniques for a priori scheduling analysis of the
collector must exist in order to make it possible to guarantee that a a safety-critical
application will always meet its deadlines.

Chapter 4

Scheduling Garbage Collection

In this chapter we describe how to schedule GC work in such a way that high-pri-
ority processes are not disturbed. It is shown how an incremental GC algorithm
can be modified for our scheduling strategy. We further discuss how to perform
scheduling analysis for a system including garbage collection.

4.1 Introduction

Hard real-time systems used for automatic control purposes must satisfy two
important timing demands. It must be guaranteed that critical processes can be
invoked with a very small latency. Furthermore, critical control processes must fin-
ish their execution as soon as possible after invocation in order to minimize the
control delay. This implies that the memory management scheme should therefore
cause minimal disturbance of such processes.

Good incremental GC techniques exist for soft real-time systems. These tech-
niques are, however, not directly applicable to hard real-time systems. In soft real-
time algorithms, garbage collection is usually triggered by memory management
operations and pointer manipulation. Operations that trigger garbage collection,
and thus cause GC-induced pauses, are pointer reads, pointer writes, and memory
allocation. The worst-case overhead for each operation might seem to be small
enough for real-time requirements applications, but the worst-case overhead of
successive operations quickly add up to too long delays, as has been noted in
[Wit92] and [WJ93]. A property of many soft real-time algorithms is that long
pauses induced by garbage collection are clustered together, making the actual
case very close to the worst case. These rapidly accumulating costs for garbage col-
lection make it very difficult to meet tight deadlines.

The high worst-case overhead for pointer manipulation and memory allocation
must somehow be eliminated in order to perform garbage collection in hard real-

44 Chapter 4 Scheduling Garbage Collection

time systems without significant disturbance. One way to do this is to reduce the
amount of work that has to be performed by the garbage collector. Less total work
means that less work has to be performed at each invocation of the collector. This
in turn means significantly shorter individual delays. The worst-case overhead will
therefore not add up as quickly as before. The method used to reduce the required
work is often to give up an important property of many GC algorithms, namely
memory compaction. The problem of memory fragmentation must then be
addressed separately. This approach has been used in many collectors, e.g.
[Bak92], [WJ93], and [Yua90].

As we have seen, a garbage collector for hard real-time systems must provide
good worst-case performance and guarantee negligible disturbance of high-priori-
ty, critical, processes. The scheduling demands of the low-priority processes, on the
other hand, are more relaxed and the average-case performance becomes more
interesting for these processes. This chapter will concentrate on analysing the
worst-case performance, but techniques to achieve good average-case behaviour
will also be discussed.

4.2 Semi-concurrent scheduling

The requirement that the work of a hard real-time garbage collector should be
scheduled in such a way that it does not disturb critical processes implies that gar-
bage collection should be completely avoided when such processes execute. The
absence of GC-induced delays during the execution of critical processes makes it
unnecessary to give up memory compaction.

Control systems constitute a large part of the hard real-time systems of today.
As we have seen earlier, such systems are built around a few high-priority period-
ically executing processes with hard real-time demands and a set of low-priority
processes with soft real-time demands. The constraints on the design of a garbage
collector for such a system are:

= The worst-case cost of individual pointer and memory management operations
must be kept very small for the high-priority processes in order to avoid large
accumulated worst-case overhead for each invocation.

= The high-priority processes must not be prohibited from starting on time, i.e. a
short latency is required. It is thus not feasible to lock the system for extended
periods while performing garbage collection.

= The garbage collector should provide good overall efficiency in order to be useful
even in heavily loaded systems.

The idea explored in this thesis is to suspend the garbage collector when the high-
priority processes are executing. The GC work neglected during the execution of
the high-priority processes must then be performed in the pauses between the acti-

4.2 Semi-concurrent scheduling

vations of the high-priority processes. The remaining time will be split between
executing low-priority processes and performing garbage collection motivated by
the actions of low-priority processes. We suggest that the low-priority processes use
the standard scheduling techniques of soft real-time GC algorithms, i.e. pointer
operations and allocation requests trigger garbage collection. Figure 4.1 illustrates
how the available CPU time would be used in the presence of one periodically exe-
cuting high-priority process and one low-priority process.
The strategy can be described by having three levels of priority:

1. High-priority processes.
2. Garbage collection required by the operations of the high-priority processes.

3. Low-priority processes and garbage collection their associated garbage col-
lection work.

In order to avoid starvation among the low-priority processes, the garbage collector
suspends its work as soon as it can guarantee that the high-priority processes will
not run out of memory. A further natural development would be to assign any idle
processor time to garbage collection, adding a fourth level of priority. While this
does improve the average-case performance of the strategy it does not, in the gen-
eral case, affect the worst-case performance. We will therefore not discuss this
optimization in detail.

Garbage collection and process scheduling are in most existing literature seen
as separate issues, but in order to implement the described scheduling principle it
is necessary to integrate them. The cooperation of the scheduler is needed to trig-
ger garbage collection when the high-priority processes are suspended.

Priority

A

HP HP

LP/GC LP/GC LP/GC

Time

Figure 4.1 Dividing the CPU time between processes. The system consists of one
periodic high-priority process (HP) and one low-priority process (LP).
Whenever a high-priority process is suspended, the garbage collector
(GC) is run. GC work is also interleaved with the low-priority process.

45

46 Chapter 4 Scheduling Garbage Collection

The effect of the proposed scheme is that it will appear to the high-priority proc-
esses as if the system was equipped with an ideal memory manager with virtually
no overhead. They are never interrupted by garbage collection, nor will garbage
collection keep them from being activated at the expected time, provided that
enough CPU time remains to run the garbage collector. To the low-priority process-
es on the other hand, it will appear as if the system had an incremental real-time
garbage collector interrupting the application program for short, bounded, periods.
GC work will thus be performed concurrently with the high-priority processes and
sequentially to the low-priority processes. We therefore call the proposed GC
scheduling strategy semi-concurrent garbage collection. In the remaining part of
this chapter we will investigate how a garbage collector using semi-concurrent
scheduling can be implemented and how its behaviour can be analysed.

4.3 Basic garbage collection algorithm

The GC algorithm we will use to illustrate how the collection work should be sched-
uled is a variant of Brook’s algorithm [Bro84], as presented by Bengtsson [Ben90].
Brook’s algorithm is in turn a variant of Baker’s algorithm [Bak78]. It is an incre-
mental copying algorithm suitable for soft real-time systems, but, as we will see,
proper scheduling will also make it usable in hard real-time systems. In this sec-
tion we will study the original formulation of the algorithm.

4.3.1 Tri-colour marking

We start by introducing the notion of tri-colour marking. Originally proposed by
Dijkstra et al. [DLM+78], this abstraction is useful when discussing incremental
tracing GC algorithms. Heap objects can be in one of three different states as seen
by the garbage collector. These states are denoted black, grey, and white. Hence the
name tri-colour marking.

< Black objects have been identified, and marked, by the garbage collector as
being reachable. In addition, the contents of each black object have been
scanned for pointers to other reachable objects. The garbage collector has fin-
ished examining the black objects and will not visit them again during the
present GC cycle.

< Grey objects have been identified as reachable, but they have not yet been
scanned for pointers to other live objects. A grey object is turned into a black
objects when it has been scanned.

< White objects have not yet been found by the garbage collector. They may or
may not be reachable from the application program. White objects are turned
into grey ones as the garbage collector comes across them.

4.3 Basic garbage collection algorithm

A GC cycle begins with all objects being white. As the garbage collector makes
progress, objects are coloured grey and later black. At the end of a GC cycle, all live
objects have been coloured black. The unreachable objects were never visited by
the garbage collector and are consequently white. The memory occupied by white
objects can now be reclaimed.

4.3.2 Algorithm overview

The heap is divided into two equally sized areas denoted tospace and fromspace, as
illustrated by Figure 4.2. New objects are allocated at the top of tospace, at the
position denoted by T. Allocation proceeds in this way until tospace is filled up.
Then, a flip is performed, changing the meaning of tospace and fromspace. The old
tospace now becomes fromspace and vice versa. Fromspace will contain a mix of
live and dead objects. The live objects must be moved, evacuated, from fromspace
into tospace in order to enable a future flip. The evacuated objects are placed at the
bottom of tospace, at the location denoted B. The evacuation procedure is per-
formed incrementally as new objects are allocated at the top of tospace. When no
free memory remains in tospace, another flip is performed, effectively reclaiming
the memory occupied by dead objects. Another GC cycle is now initiated, evacuat-
ing the live objects from the new fromspace. Enough evacuation work must be
performed in connection with each allocation request to guarantee that all live
objects in fromspace have been evacuated before tospace is filled up. Otherwise, the
system will find itself in a “catch 22" situation: A flip cannot yet be performed since
some objects remain to be evacuated from fromspace, but a flip must be performed
in order to free the memory necessary to evacuate the objects.

Since garbage collection is performed in short increments interleaved with the
execution of the application program, each increment must leave the heap in a con-
sistent state. When an object is moved, all the pointers referencing the object must
be updated to point to the new copy. Since finding all these pointers and updating
them all at the time of evacuation can be very expensive, an indirection scheme is
used in order to allow the application program to access an evacuated object
through both updated and not yet updated pointers. The header of each object con-
tains a forwarding pointer pointing to the newest version of the object. When an
object is evacuated, the forwarding pointer in the old, fromspace, copy of the object

Fromspace Tospace
i evacuated allocated
Old objects objects [4 objects
T y A
S B T

Figure 4.2 The heap structure of Brook’s algorithm.

47

48 Chapter 4 Scheduling Garbage Collection

is set to point to the new, tospace, copy. The forwarding pointer of the tospace copy
is set to point to itself. All pointer dereferencing is done via the forwarding pointer
of the objects pointed to. Dereferencing updated and not yet updated pointers will
in this way yield the same result, namely the tospace copy of the object, as illus-
trated in Figure 4.3. All pointers are updated eventually.

4.3.3 The collector

The garbage collector and the application program, the mutator, are viewed as
coroutines. The collector consists of an endless loop performing one GC cycle in
each iteration of the loop. A cycle consists of two phases. First, the pointer graph is
traversed and all objects found are evacuated. Then, the collector waits until
tospace is filled up, after which a flip is performed.

The pointer traversal starts by examining the root pointers. The objects refer-
enced by root pointers are evacuated into tospace. Evacuating an object turns it
grey according to the tri-colour marking terminology. Not yet evacuated objects, i.e.
objects located in fromspace, are considered to be white. The evacuated objects, the
grey objects, are scanned next. The pointers within these objects are traced and the
referenced objects are evacuated. The grey objects are turned into black objects as
their contents are examined. When no grey objects remain, all live objects have
been copied to tospace. The recursive scanning of evacuated objects is implemented
using a scan pointer, denoted S in Figure 4.2, sweeping across the evacuated
objects starting at the bottom of tospace. The objects referenced by the scan pointer
are searched for pointers. When a pointer to a white object is found, the object is
copied to tospace and the examined pointer is updated to point to the new location.
The scan pointer effectively marks the boundary between black and grey objects.

The collector is described by the pseudo code fragment below. Control is trans-
ferred to the application program, and the collector is suspended, whenever

Fromspace Tospace

—» forwarding pointer > forwarding pointtri|

old copy new copy

A
B

Figure 4.3 The indirection scheme of Brooks algorithm. Dereferencing the updated
A pointer or the not yet updated B pointer yields the same result, the
tospace copy of the object, after following the forwarding pointer.

4.3 Basic garbage collection algorithm 49

enough GC work has been performed and the heap is in a consistent state. Note
that the pseudo code below does not explicitly implement these semantics. Execu-
tion of the collector coroutine is resumed in connection with allocation requests
made by the application program.

VAR B; (* Reallocation pointer for evacuated objects *)
S; (* Scan pointer *)

(* Coroutine body *)

LOOP
WHILE tospace is not full DO
suspend collector;
END
Flip semispaces ;
B := Address of lower end of tospace ;

ScanRootPointers;
S = B; (* Address of first evacuated object *)
WHILE S<B DO
ScanObject(S);
S := Address of next evacuated object ;
END
END

PROCEDURE ScanRootPointers;
FOREACHTroot pointer DO
IF root pointer points into fromspace THEN
IF object referenced by root pointer is unevacuated THEN
EvacuateObject(root pointer);
END
Update root pointer to point to the tospace copy ;
END
IF enough work performed THEN
suspend collector;
END
END
END

PROCEDURE ScanObject(Object);
FOREACHpointer in Object DO
IF pointer points into fromspace THEN
IF object referenced by pointer is unevacuated THEN
EvacuateObject(pointer);
END
Update pointer to point to the tospace copy ;
END
IF enough work performed THEN
suspend collector;
END
END
END

50 Chapter 4 Scheduling Garbage Collection

PROCEDURE EvacuateObject(Object);
Copy Object to the location pointed to by B;
B:=B+ size of Object;
Set forwarding pointer in fromspace copy to point to the
tospace copy ;
Set forwarding pointer in tospace copy to point to
the tospace copy itself;
END

4.3.4 The mutator

Pointers to evacuated objects, black or grey, can point either directly to the tospace
copy of the object or to the old, fromspace, copy. All dereferences of a pointer are
therefore made via the forwarding pointer in the objects. This constitutes a very
simple read barrier.

Since the mutator executes interleaved with the collector, it must make sure it
does not introduce pointers to fromspace objects into black objects, since these will
not again be visited by the collector. If this was allowed, the collector could fail to
identify fromspace objects as being alive. For example, assume that a single pointer
exists to a white object somewhere in memory. If the mutator writes a copy of the
pointer into a black object and then erases the original pointer, the white object
would never be reached by the collector and consequently erroneously considered
to be garbage. The mutator must therefore enforce the following invariant:

Invariant: Black objects do not contain direct pointers to white objects.

A write barrier is used to guarantee that the invariant always holds. Assignments
to pointers are monitored by the write barrier and attempts to violate the consist-
ency of the GC scheme are caught. If the new pointer value references a white
object the object is immediately evacuated, turning it into a grey object. Assign-
ments to root pointers are monitored in the same way as assignments to pointers
located on the heap. The write barrier can be described by the following piece of
pseudo code:

PROCEDURE PointerAssignment(Pointer,NewValue);
IF NewValue points into fromspace THEN
IF object referenced by NewValue is unevacuated THEN
EvacuateObject(NewValue);
END
Update NewValue to point to the tospace copy ;
END
Pointer := NewValue;
END

Allocation requests trigger an increment of GC work by transferring control to the
collector coroutine. In the original formulation of the algorithm, the amount of
GC work performed is proportional to the amount of requested memory. The work

4.4 Scheduling the garbage collection work

is performed in immediate conjunction with the allocation request. Before the new
object is returned to the requester, the contents of the object are initialized in order
to ensure that all pointer fields have consistent values.

FUNCTION Allocate(ObjectSize);
Calculate required GC work ;
Resume collector coroutine ;
T :=T - ObjectSize;
Initialize the contents of the new object;
RETURN T,

END

4.4 Scheduling the garbage collection work

This section deals with how the work of the incremental copying GC algorithm
described in Section 4.3 is scheduled and how the collector is synchronized with the
mutator. The necessary modifications of the original GC algorithm are described.

4.4.1 Object initialization

The pointer fields of a newly allocated object must have well-defined initial values,
because the garbage collector might otherwise misinterpret random bit-patterns
as valid pointers when scanning the object. We achieve this by initializing all of the
memory cells of new objects to zero. This strategy is simpler to implement than
only initializing the pointer fields and has also the advantage that all non-pointer
fields are given well-defined initial values as well, which reduces the risk for
programming errors.

An obvious strategy for initializing the contents of new objects is to perform the
initialization in connection with allocation. When a new object is allocated, it is
also initialized before it is passed on to the mutator. The cost of initialization would
thus burden the mutator, which is not desirable for the high-priority processes of
a control application. Our goal is to minimize the cost of memory management for
high-priority processes. As shown in Chapter 6, the cost of memory initialization
can easily stand for the majority of the total cost for a memory allocation request.

Our solution to the object initialization problem is to move the responsibility for
initializing memory allocated by high-priority processes to the garbage collector.
The garbage collector must always ensure that enough free memory is initialized
and available for allocation to meet the requirements of the high-priority process-
es. Low-priority processes, on the other hand, trigger initialization work in
connection with allocation requests. The initialization strategy is analogous to the
strategy we use for scheduling the rest of the memory management work.

The proposed memory initialization strategy is illustrated in Figure 4.4. The
amount of memory that the garbage collector must keep initialized in order to meet
the allocation needs of the high-priority is denoted Mpp and is derived from the

52 Chapter 4 Scheduling Garbage Collection

pre-initialized area

Tospace Myp
Evacuated ! .
objects —> : <4 Allocated objects
P T

Figure 4.4 The contents of an area of tospace, between the initialization pointer P and
the allocation pointer T, is kept initialized to zero by the garbage collector.
This implies that an allocation request made by a high-priority process can
always be met without having to spend time on initializing the contents of
the new object. The pre-initialized area must be large enough to hold all
objects allocated by high-priority process before the garbage collector gets
an opportunity to initialize new memory (moving P to the left).

worst-case allocation needs of the high-priority processes. We describe how to
determine the value of Myp in Section 4.8.3. New objects are allocated at the posi-
tion in tospace referenced by the allocation pointer T. The initialization pointer P
refers to the lowest memory cell that has currently been initialized.

Allocation in high-priority processes

The cost for allocation in high-priority processes is bounded and very low since the
contents of the new object do not have to be initialized and no garbage collection
work is performed in connection with the allocation. An allocation involves only
moving the allocation pointer T and writing garbage collection information (e.g.
forwarding pointer and object size) into the object header, as illustrated by the fol-
lowing piece of pseudo code.

FUNCTION HP_Allocate(ObjectSize);
T :=T - ObjectSize;
Initialize object header information ;
RETURN T,

END

A separate process, the high-priority garbage collection process (described in
Section 4.4.3), will be invoked whenever a high-priority process terminates and no
other high-priority process is ready to run. This process will perform the initializa-
tion work and garbage collection work motivated by the allocations performed
while the high-priority processes were running.

4.4 Scheduling the garbage collection work

Allocation in low-priority processes

When a low-priority process allocates memory, an amount of memory equal to the
size of the requested object is initialized before the allocation is performed. This is
done in order to guarantee that enough pre-initialized memory is always available
for allocation in high-priority processes. The pseudo code below describes alloca-
tion in low-priority processes.

FUNCTION LP_Allocate(ObjectSize);
WHILE GC work is required OR (P>B AND P>T-M p-ObjectSize) DO
WHILE P>B AND P>T-M -ObjectSize DO

P :=P-1,
MEMORY(P) := 0;
END;

IF GC work is required THEN
Perform an increment of GC work;

END
END
T :=T - ObjectSize;
Initialize object header information ;
RETURN T;

END

The end of a GC cycle - performing a flip

The proposed strategy for memory initialization implies that an area of size Myp
in tospace must be initialized before allocation proceeds after a flip. The initializa-
tion of this area cannot be performed in connection with the flip since it would
bring with it a too long atomic delay. Our solution to this problem is to let the gar-
bage collector (incrementally) initialize Myp bytes of memory in fromspace as soon
as it has finished evacuating the live objects from fromspace (at the end of the GC
cycle instead of at the beginning). The required initializing work is thus added to
the total amount of work that has to be performed by the garbage collector during
one GC cycle. When the flip is performed, fromspace becomes tospace and the
required amount of initialized memory will now be located in tospace.

4.4.2 Lazy evacuation

To avoid the large worst-case overhead for high-priority processes, we employ a
lazy evacuation scheme. The idea is to delay the actual evacuation of an object until
such a time when no high-priority process is executing. At the time of the pointer
assignment we only reserve space for the object in tospace, update some house-
keeping information, and set the pointer to refer to the reserved area.

Our lazy-evacuation scheme is similar to the one used by Nilsen in his hard-
ware-assisted garbage collector [NS94]. Lazy evacuation has previously been
proposed by Baker among others [Bak78]. The purpose of the scheme is to elimi-

53

54 Chapter 4 Scheduling Garbage Collection

nate long unpredictable delays caused by object copying in connection with pointer
assignments. The copying is delayed until normal GC work is motivated, i.e. after
high-priority processes have finished running or low-priority processes request
more memory.

When the write barrier detects that a pointer assignment would introduce a
new pointer into fromspace, it checks whether the referenced object has already
been evacuated. If so, the pointer is merely updated using the forwarding pointer
of the fromspace copy to point to the tospace copy. On the other hand, if the object
has not been evacuated, the write barrier checks whether space has been reserved
in tospace for the object or not. A flag word used by the collector in the head of the
object doubles as a pointer to such a reserved area. If no space has been reserved
yet (Figure 4.5a), an area in tospace is reserved for the object. The forwarding
pointer of the tospace copy is set to point to the original, fromspace, copy of the
object. We thus introduce forwarding pointers pointing into fromspace, something
that does not occur in the original formulation of the algorithm. Dereferencing a
pointer to the tospace copy will now, after following the forwarding pointer, access
the fromspace copy. The flag word of the fromspace copy is finally set to point to the
reserved area. The final result will be as shown in Figure 4.5b.

If memory has previously been reserved for the object in tospace, the pointer
being assigned to is set to point to the tospace area using the reserved-area pointer
in the object.

The actual copying of the object will be performed as a part of the GC work moti-
vated by allocation requests. After copying the object, the forwarding pointers of
both copies of the object are set to point to the tospace copy, which will now be the
valid one. This is illustrated in Figure 4.5c.

The write barrier can be described by the following piece of pseudo-code:

PROCEDURE PointerAssignment(Pointer,NewValue);
IF NewValue s pointing into fromspace THEN
IF object referenced by NewValue is unevacuated THEN
IF NewValue object is not scheduled for evacuation THEN
Allocate Space for the object in tospace ;
Set the forwarding pointer in the tospace area to
point to the fromspace copy;
Store pointer to the tospace area in fromspace object ;
Set NewValue to point to tospace area ;
ELSE
Set NewValue to point to the tospace area using
previously stored pointer ;
END
ELSE
Update NewValue to point to the tospace copy using
forwarding pointer ;
END
END
Pointer := NewValue;
END

4.4 Scheduling the garbage collection work 55

a)
Fromspace| |C | |
e [y] A 1] |

Before a high-priority process attempts to perform the assignment

By :=Ax
The write barrier catches the assignment since the C object is not previously evac-
uated or scheduled for evacuation.

b)

Fromspace | | C | |
|)
! | Cres | |

Tospace | |B I| |A ||

After having reserved a new area, C"S, for the C object in tospace. A temporary
pointer (dotted) to the reserved area makes it possible to avoid reserving multiple
areas for the same object. The contents of C"™S have not yet been initialized, but
the forwarding pointer scheme guarantees that it will not be accessed.

c)
Fromspace | | cold | |
I
— ¥\
i N O |

/X

When the high-priority process is suspended, the garbage collector finishes the
evacuation of the C object copying it to the reserved area C"S and setting the for-
warding pointers to point to the new location. A.x will be updated to point to the
new copy later when the A object is scanned by the garbage collector.

Figure 4.5 The lazy evacuation scheme. It is shown what happens when the write
barrier of a high-priority process catches a pointer assignment that could
introduce a pointer into fromspace in the scanned part of tospace.

56 Chapter 4 Scheduling Garbage Collection

Eventually, the garbage collector starts performing GC work. Whenever invoked,
either by the high-priority GC process or by a low-priority process allocating mem-
ory, the garbage collector checks whether any objects exist that have been
scheduled for evacuation by the lazy evacuation scheme. If so, the evacuation of
these objects is commenced.

A pointer into tospace, denoted BUnevacuated js sed to keep track of the begin-
ning of the area in tospace reserved for evacuation of fromspace objects. The write
barrier increments B (Figure 4.2) each time another object is scheduled for evacu-
ation. When the garbage collector is invoked, we have the situation in Figure 4.6.
The collector starts to traverse the area between BU"evacuated gng B copying the
objects pointed to by forwarding pointers in the reserved area into tospace. As
objects are evacuated, BU"evacuated js yndated to reflect the new situation. The
transition from Figure 4.5b to Figure 4.5c illustrates this step.

We have chosen to use the same approach for both high-priority and low-prior-
ity processes for reasons of simplicity. The low worst-case cost for a pointer
assignment achieved by the lazy-evacuation scheme is really only necessary for the
high-priority processes. However, using the same approach for all types of process-
es reduces the amount of machine instructions that have to be inlined at every
pointer assignment site. A priority test is eliminated and only one code version
must be generated.

4.4.3 The high-priority garbage collection process

As have been noted earlier, no GC work is performed while high-priority processes
execute. The work is instead delayed until no high-priority processes are eligible
for execution. A special process, the high-priority garbage collection process, is
responsible for performing the GC work that was omitted when the high-priority
processes were executing. The process is also responsible for initializing free mem-
ory to zero, such that high-priority processes can allocate memory without having
to initialize it at the time of allocation. The process has a priority that is lower than

A

Bunevacuated B T

I:' Space reserved for objects to be evacuated.

Figure 4.6 Tospace at a point when space has been reserved for
evacuation of a number of objects, but at which the
objects have not yet been evacuated.

4.4 Scheduling the garbage collection work

any of the high-priority processes but higher than any of the low-priority processes.
It can be described by the following piece of pseudo code:

PROCESS HighPriorityGarbageCollection();
BEGIN
LOOP
Suspend this process.
WHILE GC work is required OR (P>B AND P>T-M jp DO
WHILE P>B AND P>T-M pDO

P :=P-1,
MEMORY(P) :=0;
END;

IF GC work is regéured THEN
IF punevacuaed «g THEN (* i.e. evacuation pending? *)
Evacuate an object.

gunevacuated .- g unevacuated giza of evacuated object ;

ELSE
Resume GC coroutine. (* See Section 4.3.3.%)

END

END
END
END
END

In order to activate the high-priority GC process after the execution of high-prior-
ity processes, some support from the process scheduler is required. Whenever a
high-priority process is suspended and no other high-priority process is in a run-
nable state, the scheduler checks whether any GC work is pending. If so, the high-
priority GC process is invoked. When the high-priority GC process is done, low-pri-
ority processes are allowed to execute.

4.4.4 Distribution of GC work

Up to now we have only studied how and when GC work is triggered. Virtually
nothing has been said about how much work to perform in each increment This sec-
tion expands on this issue.

To decide whether the garbage collector should work or suspend itself, we a pri-
ori calculate a minimum GC ratio. The idea is that if the amount of performed
GC work is always above this ratio, it is guaranteed that fromspace is completely
evacuated before tospace fills up. We denote by W, the amount of GC work nec-
essary in the worst case to evacuate all live objects from fromspace and to initialize
Myp bytes of memory (see Section 4.4.1), thus finishing a GC cycle. The minimum
amount of memory available in tospace for allocation of new objects immediately
after a flip is denoted F,j,, as illustrated by Figure 4.7.

57

58 Chapter 4 Scheduling Garbage Collection

| Stospace |
| 1
El;’jzg?sated S <4 Allocated objects
| o ’
Emax — Fmin | |
—— ! I
E A

Mpp

Figure 4.7 The structure of tospace. A minimal area, Mpp, is kept
available for the high-priority process at all times.

The minimum GC ratio, or GCRyjn, is defined as:

W
GCR,;, = Fmax (4.)
min
We furthermore define the current GC ratio, denoted GCR, as the ratio between
performed GC work, W, and the amount of new, allocated, objects in tospace, A:

W
= — 4.2
GCR A (4.2)

Allocation will cause A to increase, while GC work will increase W. During the GC
cycle (until all live objects have been evacuated from fromspace) the garbage col-
lector performs enough work to make sure that the current GC ratio is higher than,
or equal to, the minimum GC ratio. That is:

GCR= GCR,, (4.3)

In this way we guarantee that fromspace will be empty before tospace is filled, even
in the worst-case scenario. This strategy is essentially the same as in [Bak78] and
used in numerous garbage collectors.

Allocation of memory by low-priority processes is checked to guarantee that the
present GC ratio does not drop too low, i.e. below GCRj,. If it threatens to do so,
the garbage collector is given priority. The actual allocation of the new object is not
performed until sufficient GC work has been performed. The upper bound on the
GC work performed in connection with an allocation will be proportional to the size
of the allocated object.

If a high-priority process is activated shortly before a semi-space flip is due, the
remaining memory in tospace could potentially be too small to hold both the objects
allocated by the high-priority process and the last objects to evacuate from from-
space. We therefore reserve an amount of memory in tospace, derived from the
allocation needs of the high-priority processes, denoted Myp. Myp must be large
enough to hold all new objects allocated by the high-priority processes while the

4.4 Scheduling the garbage collection work

garbage collector finishes the current GC cycle. We will study how to calculate Myp
in a later section. Denoting the size of tospace Sypgpace: @and the maximum amount
of simultaneously live memory E 5y the minimum amount of memory available
for allocation of new objects, F,in, is thus calculated as:

I:min = Stospace_ Emax_MHP (4.4)

In this way, we will have a buffer area for use by the high-priority processes if nec-
essary. We can furthermore guarantee that the evacuation of fromspace will be
finished before tospace is filled up so a semi-space flip can be performed. The high-
priority processes allocate memory in tospace before the corresponding amount of
GC work has actually been performed. The total amount of allocated objects cannot
be more than Fp,j,+Myp immediately before a flip. The buffer thus guarantees that
the amount of new objects, A, will always be smaller than S;yspace-Emay. i-€., there
will always be enough memory in tospace to complete the evacuation of fromspace.
The cost of this scheme is that the GC rate will be somewhat higher than it would
have been if all GC work was performed in connection with allocation operations,
see Figure 4.8.

Summarizing Equations (4.1) to (4.4), we get the following expression for how
much GC work that must have been performed as a function of the amount of allo-
cated memory:

W
W > max A 45)
Stospace_ Emax_ M HP

Since we are using worst-case estimates to calculate how much work to perform,
the evacuation will normally be finished well before tospace fills up. We therefore
delay the flip until the amount of available free memory drops too low. After exe-
cution of the high-priority process, a flip is performed if the remaining free memory
is too small to guarantee that the high-priority processes can continue to execute
without running out of free memory, i.e. smaller than Myp:

Stospace_ E-A<M HP (4.6)
If servicing a memory allocation request made by a low-priority process would
cause the remaining free memory to be smaller than Myp, a flip is triggered before
servicing the request.

59

60 Chapter 4 Scheduling Garbage Collection

Performed
GC work
A
[MaxGCwork LT
IS :
2 :
s :
. ! !
.- l .
e : :
T ! !
- ! :
z/ : :
7 Allocated
=z ' ' memory
I —

I:min I:min"'MHP

————— GC work always performed before allocating an object
(traditional scheduling principle).

Allocation permitted without immediately performing the
corresponding GC work (high-priority processes).

Figure 4.8 Required performed GC work as a function of the amount of newly allocat-
ed objects in tospace. As high-priority processes may cause the current
amount of performed work to be temporarily below the required amount,
we must compensate for this by performing GC work in a slightly higher
rate in order to avoid deadlock.

4.4.5 Synchronization

Garbage collection is performed in parallel with the execution of the application
processes. In order to obtain proper interaction, the work of the garbage collector
must be synchronized with the application processes.

Atomic operations

The systems we study in this thesis are based on a preemptive process scheduler.
This implies that the execution of a process may be interrupted at any time, and
control is then transferred to another process. It is possible that the interrupted

4.4 Scheduling the garbage collection work

process was in progress of dereferencing a pointer, or fetching or storing a value
from a heap object. If the actions taken by other processes cause the garbage col-
lector to move the object while the previously preempted process is still suspended,
resuming the execution will cause it to access a now invalid location in the heap.
We must therefore protect pointer operations and heap accesses from being inter-
rupted. Since operations of this kind can be kept very short we suggest that
preemption is prevented by disabling the hardware interrupts during these
operations.

Interruptible garbage collection

One of the demands on the design of the garbage collector is that it should not pre-
vent a high-priority process from being activated on time. When time comes to
activate such a process, garbage collection might be in progress. The cause of this
could be that a low-priority process has made an allocation request or the high-pri-
ority GC process might be cleaning up after previous allocation requests by high-
priority processes. In order to avoid long latencies caused by waiting for