
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Scheduling Garbage Collection in Embedded Systems

Henriksson, Roger

1998

Link to publication

Citation for published version (APA):
Henriksson, R. (1998). Scheduling Garbage Collection in Embedded Systems. [Doctoral Thesis (monograph),
Department of Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/875967b6-fe80-433a-a2bd-82bf1b147848

Scheduling
Garbage Collection

in Embedded Systems

Roger Henriksson

CODEN: LUTEDX/(TECS-1008)/1-164/(1998)

Lund, July 1998

ii
Department of Computer Science
Lund Institute of Technology
Lund University
Box 118
SE-221 00 Lund, Sweden

E-mail: Roger.Henriksson@dna.lth.se
WWW: http://www.dna.lth.se/~roger

Cover art by Ann-Marie Henriksson

© 1998 Roger Henriksson

Abstract

The complexity of systems for automatic control and other safety-critical applica-
tions grows rapidly. Computer software represents an increasing part of the
complexity. As larger systems are developed, we need to find scalable techniques to
manage the complexity in order to guarantee high product quality. Memory man-
agement is a key quality factor for these systems. Automatic memory
management, or garbage collection, is a technique that significantly reduces the
complex problem of correct memory management. The risk of software errors
decreases and development time is reduced.

Garbage collection techniques suitable for interactive and soft real-time sys-
tems exist, but few approaches are suitable for systems with hard real-time
requirements, such as control systems (embedded systems). One part of the prob-
lem is solved by incremental garbage collection algorithms, which have been
presented before. We focus on the scheduling problem which forms the second part
of the problem, i.e. how the work of a garbage collector should be scheduled in order
to disturb the application program as little as possible. It is studied how a priori
scheduling analysis of systems with automatic memory management can be made.
The field of garbage collection research is thus joined with the field of scheduling
analysis in order to produce a practical synthesis of the two fields.

A scheduling strategy is presented that employs the properties of control sys-
tems to ensure that no garbage collection work is performed during the execution
of critical processes. The hard real-time part of the system is thus never disturbed
by garbage collection work. Existing incremental garbage collection algorithms are
adapted to the presented strategy. Necessary modifications of the algorithms and
the real-time kernel are discussed. A standard scheduling analysis technique, rate
monotonic analysis, is extended in order to make a priori analysis of the schedula-
bility of the garbage collector possible.

The scheduling algorithm has been implemented in an industrially relevant
real-time environment in order to show that the strategy is feasible in practice. The
experimental evaluation shows that predictable behaviour and sub-millisecond
worst-case delays can be achieved on standard hardware even by a non-optimized
prototype garbage collector.

iv

Acknowledgements

The research presented in this thesis was carried out within the Programming
Environments Group at the Department of Computer Science, Lund University.
I would like to thank my supervisor Boris Magnusson, the leader of the group, both
for introducing me to the problem of scheduling garbage collection and for his sup-
port throughout my thesis work. Klas Nilsson, also a member of the group,
deserves special thanks for his generous support and for sharing his knowledge of
the automatic control domain with me. Thanks to Mats Bengtsson, a former mem-
ber of the group, for introducing me to the secrets of real-time garbage collection.

The experimental work described in the thesis would not have been feasible
without a fruitful cooperation with the staff at the Department of Automatic Con-
trol, Lund Institute of Technology. They provided both the physical means for the
experiments and expertise in control systems. Special thanks go to Anders Blom-
dell for invaluable technical support, Anders Robertsson for the many hours he
spent getting the inverted-pendulum experiment to run, and Johan Eker for his
assistance regarding the Pålsjö system. Anders Ive, a member of the Programming
Environment Group at the Department of Computer Science, also deserves thanks
in this context for helping me to evaluate the performance of my prototype garbage
collector. Thanks to the Department of Information Technology, Lund Institute of
Technology, for generously making a logic analyser available to us during a long
experimental phase.

Thanks to former and present members of the Programming Environments
Group. It has been a pleasure to work with you all. Thank you Görel Hedin, Göran
Fries, Ulf Asklund, Torsten Olsson, Elizabeth Bjarnason, Anders Dellien, Daniel
Einarsson, Patrik Persson, and Mathias Haage. Thanks to Anne-Marie Westerberg
for helping me to overcome all the academic red tape.

Finally, I would like to thank Ann-Marie Henriksson for the cover art.
This work has been financially supported by NUTEK, the Swedish National

Board for Industrial and Technical Development.

vi

Contents

Chapter 1 Introduction 1
1.1 Memory management...2
1.2 Real-time garbage collection ..4
1.3 The thesis..5
1.4 Thesis outline..5

Chapter 2 Real-Time Systems 7
2.1 Real-time systems ..7

2.1.1 Real-time requirements ...8
2.1.2 Predictability ..10
2.1.3 Control systems ..11

2.2 Process scheduling..13
2.2.1 Static cyclic scheduling ..13
2.2.2 Fixed priority dynamic scheduling............................14
2.2.3 Earliest deadline first scheduling18

2.3 Process scheduling in existing real-time kernels................19
2.4 Summary...20

Chapter 3 Automatic Memory Management 21
3.1 Introduction ..21
3.2 Memory fragmentation ..22
3.3 Basic garbage collection algorithms23

3.3.1 Reference counting ...23
3.3.2 Mark-Sweep..25
3.3.3 Copying algorithms ..28

3.4 Conservative algorithms ..32
3.5 Generation-based algorithms...33
3.6 Efficiency...34
3.7 Incremental algorithms..35

viii
3.8 Scheduling properties...36
3.8.1 Stop-the-world ..36
3.8.2 Interactive systems ..37
3.8.3 Hard real-time computing ...38

3.9 Memory hierarchies in real-time systems...........................39
3.10 Problem statement ...41
3.11 Summary...42

Chapter 4 Scheduling Garbage Collection 43
4.1 Introduction ..43
4.2 Semi-concurrent scheduling...44
4.3 Basic garbage collection algorithm......................................46

4.3.1 Tri-colour marking ...46
4.3.2 Algorithm overview ..47
4.3.3 The collector..48
4.3.4 The mutator..50

4.4 Scheduling the garbage collection work51
4.4.1 Object initialization..51
4.4.2 Lazy evacuation..53
4.4.3 The high-priority garbage collection process56
4.4.4 Distribution of GC work...57
4.4.5 Synchronization..60

4.5 Overhead...62
4.5.1 High-priority processes, service time62
4.5.2 Low-priority processes, service time63
4.5.3 Summary of worst-case mutator overhead64
4.5.4 High-priority processes, latency64
4.5.5 Cleaning up after the high-priority processes65
4.5.6 Additional work for the programmer65

4.6 Degradation during system overload65
4.7 Measuring garbage collection work68

4.7.1 Work metrics ..68
4.7.2 The evacuation pointer metric...................................69
4.7.3 Improving the evacuation pointer metric70
4.7.4 A fine-grained metric ...71
4.7.5 Hardware support ..72
4.7.6 Impact of imperfect metrics72
4.7.7 Conclusions...72

ix
4.8 Scheduling analysis..73
4.8.1 Schedulability of the high-priority processes............73
4.8.2 Schedulability of the garbage collector76
4.8.3 Memory reserved for high-priority process usage78
4.8.4 Scheduling analysis example.....................................79
4.8.5 The effect of blocking..82
4.8.6 Priority inheritance protocols82

4.9 Scheduling mark-sweep garbage collection85
4.9.1 The algorithm ...85
4.9.2 Atomic operations...89
4.9.3 Interruptible garbage collection89
4.9.4 Work scheduling...92

4.10 Generation-based garbage collection...................................93
4.11 Summary...94

Chapter 5 A Garbage Collection Prototype 97
5.1 Environment ...97

5.1.1 System architecture ...97
5.1.2 Real-time kernel ...98

5.2 The garbage collector..99
5.2.1 The algorithm ...99
5.2.2 The garbage collector coroutine.................................99
5.2.3 Memory organization ...101
5.2.4 Root pointer data structures....................................102
5.2.5 Real-time kernel modifications................................103
5.2.6 Estimating garbage collection work105

5.3 Application program interface ...106
5.3.1 Initialization ...106
5.3.2 Declaring objects ..106
5.3.3 Pointer access ...108
5.3.4 Pointer assignment ..109
5.3.5 Allocation ..109
5.3.6 Root pointers...109
5.3.7 Garbage collecting C++ objects................................112

5.4 Discussion ...114
5.5 Summary...115

Chapter 6 Experimental Results 117
6.1 Introduction ..117
6.2 Experimental setup ..118
6.3 Overview of experimental applications120

x

6.4 Measurements of garbage collection costs122
6.4.1 Pointer assignment ..123
6.4.2 Memory allocation ..124
6.4.3 Allocation cost of manual memory management....128
6.4.4 Latency for high-priority processes129
6.4.5 Execution time for the garbage collector process ...130

6.5 Using the garbage collector in control applications..........131
6.5.1 Inverted pendulum control131
6.5.2 Polynomial regulator..132

6.6 Summary...133

Chapter 7 Related Work 135
7.1 Incremental copying algorithms ..135

7.1.1 Baker’s algorithm...135
7.1.2 Brook’s algorithm ...136
7.1.3 The Appel-Ellis-Li collector137
7.1.4 Real-time replication garbage collection.................137

7.2 Non-moving garbage collection..137
7.2.1 The Treadmill ...138
7.2.2 Yuasa’s algorithm...138

7.3 Hardware-supported garbage collection............................139
7.4 Concurrent garbage collection ...141
7.5 Special treatment of high-priority processes142
7.6 Summary...143

Chapter 8 Future Work 145
8.1 Implementation ..145
8.2 Analysis...148

Chapter 9 Conclusions 151
9.1 Contributions ..151
9.2 Consequences..153

Bibliography 155

Index 161

Chapter 1

Introduction

Computers are frequently used as integral parts of technical equipment, such as
robots, medical apparatus, and aeroplanes. Such computer systems are often called
embedded systems, since they can be viewed as being a part of, or embedded into,
the piece of equipment in question. As the price and physical size of computer hard-
ware have decreased, it has become increasingly attractive to use this new
technology to implement more and more complex functionality.

A very important factor in the design and implementation of an embedded sys-
tem is safety. The system must often be able to perform its task for very long
periods without faults: days, months, or even years. The consequence of a break-
down may in some cases be directly fatal, e.g. a respirator that stops working or an
aeroplane crashing. Even if most embedded systems are not as vital as in these
examples, a break-down often leads to high costs. For example, an interruption of
the production might mean lost sales for a company. Most ordinary computer appli-
cations do not have any demands on safety that come close to those of embedded
systems, even though it is vital that the output is correct. If a word processor
breaks down from time to time, it is irritating and some work might be lost, but
that is all. Safety requirements are thus especially high for embedded systems,
because of the severe consequences of a failure.

The systems discussed in this thesis are real-time systems, i.e. systems for
which not only the values of the output of the system determine success or fault,
but also the time at which the output is produced matters. Practically all embedded
systems belong to this category. Real-time systems are characterized by having to
perform a set of tasks as responses to external stimuli. Each task has a deadline,
before which the task must be completed. Correctness of a real-time system
depends on its ability to meet its deadlines.

As the capacity of computer systems has grown so has the desire to incorporate
more and more functionality into software. This is done both to make the hardware
less complex and thus cheaper, and to increase the overall functionality of the sys-

2 Chapter 1 Introduction
tem. In turn, the complexity of the software grows and so do the resulting
problems. Complex software is expensive to develop and maintain, and is also
error-prone. One way of organizing large and complex software systems, object ori-
entation, has been successfully used in many areas. Object orientation provides a
powerful way of mapping concepts from the application domain to the application
program in a well-structured manner [KM93]. The execution of the program is
viewed as a simulation of the behaviour of a part of the physical world. The idea is
that programs structured in an object-oriented manner are easier to understand
and to maintain than software written using traditional techniques. Code reuse is
also encouraged by powerful abstraction mechanisms. It could be expected that the
construction of embedded systems would also benefit from using object oriented
techniques. One major problem in doing so is that the powerful mechanisms of
object orientation rely to a high degree on a dynamic execution environment and
in particular on dynamic memory management. This traditionally conflicts with
the demands on predictable execution times. The main motivation behind this the-
sis is to solve this problem.

1.1 Memory management

One very important issue affecting the safety of a real-time computer system is
how memory is managed. In many of the current systems, static memory manage-
ment is used. All the memory the real-time system needs is allocated at start-up.
This means that all data structures must be allotted enough memory to satisfy the
worst-case needs of the application. In some systems, e.g. real-time systems imple-
mented using Pascal/D80 [ERS85], static memory management even includes
reserving memory for individual procedure activation records, restricting how pro-
cedures may be called. For example, recursive procedure calls are not allowed in
such a system. The advantage of such an approach is that the system will be highly
predictable, an important property of a real-time system. The disadvantage is that
it must be possible to calculate the maximum size of each data structure in
advance. Enough physical memory must be available to simultaneously hold all
data structures at their maximum size. Static memory management is obviously
not very flexible and imposes undesired restrictions on the programmer. Much
thought has to be devoted to designing the application. The programmer will often
have to write extra code in order to circumvent the restrictions.

Dynamic memory management means that memory is allocated from a central
memory pool as it is needed by the application. When an area of memory, an object,
is not needed any longer, it is returned to the pool, making it available for other
purposes. The application can more easily adapt itself to a changing environment
and programmers are less restricted. Available memory is also used more effective-
ly. Object-oriented languages rely to a large degree on dynamic memory allocation.
Introducing object orientation in the development of real-time systems thus makes
dynamic memory management highly important.

1.1 Memory management 3
Manual memory management

Dynamic memory management is often implemented by letting the application
manage the memory on its own, perhaps with some rudimentary support from the
runtime system. Memory is explicitly deallocated by the application when it is not
needed any longer. This is usually called manual memory management.

Manual memory management is, however, very error-prone. Two kinds of pro-
gramming errors are very common when manual memory management is used,
namely dangling pointers and memory leaks. Deallocating an object too early
means that pointers remain to the object somewhere in the application that will
later be dereferenced in the belief that the object is still present (a live object). Such
dangling pointers typically cause the program to crash. Knowing when to release
an object is a global problem; an object must not be deallocated until it can be guar-
anteed that the object will never be accessed again. Safe deallocation requires that
we must know that no other part of the application has a pointer to the object, that
will later be dereferenced. On the other hand, neglecting to deallocate objects when
they are not needed any more means that the memory used by the objects will nev-
er be reused. Memory seems to “leak away” from the application, hence the name
memory leak. Sooner or later, the application will run out of memory and crash.
Since real-time systems tend to run for very long periods, running out of memory
is inevitable in the presence of a memory leak, even if the leak is small. Memory
management errors of these kinds are often very hard to find.

Manual memory management requires significant amounts of code just to man-
age the free store. This code must often be written from scratch whenever a new
application is developed, which increases the complexity of the software and also
the risk of programming errors being introduced. The globality of the deallocation
problem means that the consequences of a small modification of a system can be
difficult to foresee since it might require changes to arbitrary parts of the system.

Systems that do not compact the heap (the part of the memory used for holding
dynamically allocated objects) as objects are allocated and deallocated often suffer
from the problem of memory fragmentation. Systems for manual memory manage-
ment typically belong to this class of systems. Fragmentation means that there are
unused areas of memory between live objects, but the areas cannot be reused for
new objects since they are not large enough. Fragmentation makes the amount of
memory needed for the heap significantly larger and yields a higher cost for
allocating new objects.

Altogether, manual memory management can in general not be considered suit-
able for real-time systems for safety reasons.

Automatic memory management

Many of the memory management problems (such as dangling pointers, memory
leaks, fragmentation, and a large volume of memory management related code) are

4 Chapter 1 Introduction
avoided if automatic memory management is introduced. In this approach, the
responsibility for identification and deallocation of dead objects, i.e. objects not
used any longer, is delegated to the execution environment. The part of the runtime
or operating system performing the task of finding and recycling the memory occu-
pied by all “garbage” objects is called the garbage collector, and the process itself is
called garbage collection, or GC for short. Most of the error-prone code which man-
ages memory can be eliminated from the application, making it less complex and
considerably safer. Automatic memory management thus appears to be very suit-
able for real-time systems. The difficulty with using garbage collection in real-time
systems has so far been to guarantee short enough response times.

Static memory management leads to unnecessary software complexity and
increased risks of errors. Manual, dynamic, memory management introduces soft-
ware errors since the task of deciding when to deallocate objects is too complex. The
conclusion is that in order to achieve safe embedded systems, automatic memory
management must be used and the associated problems to guarantee short enough
response times eliminated.

1.2 Real-time garbage collection

Garbage collection algorithms have been developed for a wide range of application
types, but the techniques have, unfortunately, so far suffered from problems with
complying with very strict real-time demands. They are in most cases targeted for
batch or interactive systems and do not guarantee short enough response times.

Memory management inevitably involves some overhead. The overhead can
consist of additional space requirements, additional time requirements, or more
often a combination of the two. The time overhead is sometimes measured as the
percentage of CPU time needed for memory management. For real-time systems
this measure alone is not an adequate measure of the overhead. For such systems
to meet their timing requirements, it is important that the garbage collector does
not delay the application for extended periods. Operations that could cause the gar-
bage collector to be invoked, thus interrupting the execution of the application
program, must have a short and bounded time overhead.

When discussing overhead it is important to distinguish between the average-
case overhead and the worst-case overhead. For most applications it is the average-
case behaviour that is of interest, since that is what will typically be encountered.
In real-time systems, we must guarantee that the timing requirements will be met
in every possible situation. Therefore, it is the worst-case behaviour that must be
studied. The correlation between good average-case performance and good worst-
case performance for a memory management system can be very weak. In fact,
improving the worst-case performance often means that the average-case perform-
ance is degraded, and vice versa.

It is important to remember that memory management overhead is not only
present in systems with garbage collectors. Both time and space overhead are asso-

1.3 The thesis 5
ciated with manual dynamic memory management as well as with static memory
management. In such systems, the responsibility of memory management is trans-
ferred to the application itself, and the costs are very difficult to estimate. Since the
amount of time and space overhead is easier to analyse and measure for systems
using automatic memory management, it is tempting to draw the erroneous con-
clusion that garbage collection is always much more expensive than other memory
management strategies. Both time and space overhead exist for other memory
management strategies as well. Furthermore, the problem of memory fragmenta-
tion is also often ignored, which can represent a significant space overhead in the
worst case [Rob71].

1.3 The thesis

The goal of the research presented in this thesis is to find methods for making auto-
matic memory management feasible in embedded systems with very strict real-
time demands, especially systems for automatic control.

The method used is to study existing approaches to automatic memory manage-
ment for real-time systems and to try to adapt them to comply with the restrictions
of hard real-time applications. The main interest is focused on how the work of the
garbage collector should be scheduled in order to disturb the control program as
little as possible. Little research has previously been devoted to this field.

Our approach is to develop a strategy for scheduling the GC work of traditional
garbage collection algorithms such that it does not interfere with the part of the
real-time system that has to meet tight deadlines. Different parts of the system
have to meet varying demands on real-time performance. This property can be
used to schedule the garbage collection work in the time slots where it will cause
minimal disturbance. Using some knowledge of when and how the most time-crit-
ical parts of the system execute, the strategy can guarantee that garbage collection
will never disturb these parts.

Parts of the work have previously been published in [Hen94], [MH95], [Hen96],
and [Hen97].

1.4 Thesis outline

The remaining chapters are organized into three major parts: An overview of real-
time systems and memory management techniques is given in the background
chapters. A new approach to real-time garbage collection is presented in the sched-
uling real-time garbage collection chapters. The approach is evaluated and related
work is presented in the conclusions chapters.

6 Chapter 1 Introduction
Background

• Chapter 2: Real-Time Systems
Real-time systems are described with emphasis on embedded systems. Differ-
ent execution models based on concurrent processes, and their associated
scheduling strategies, are explained.

• Chapter 3: Automatic Memory Management
Manual memory management is compared with automatic memory manage-
ment. An overview of algorithms for garbage collection is given. The algorithms
are classified according to their ability to meet real-time demands. It is
explained why previously suggested scheduling strategies are unsuitable for
systems with hard real-time requirements.

Scheduling real-time garbage collection

• Chapter 4: Scheduling Garbage Collection
This chapter forms the core of the thesis. An approach to scheduling the work
of a real-time garbage collector is presented. It is shown how the proposed
scheduling strategy and garbage collection algorithm comply with hard real-
time demands and how its worst-case performance can be analysed. Various
implementation issues are discussed.

• Chapter 5: A Garbage Collection Prototype
An implementation in C of the proposed garbage collector strategy is presented.

• Chapter 6: Experimental Results
The prototype implementation described in Chapter 5 is evaluated. The cost of
memory management is measured on running systems.

Conclusions

• Chapter 7: Related Work
Some previous approaches to introducing garbage collection in real-time sys-
tems in general and hard real-time systems in special are surveyed. It is
discussed how they relate to the work described in this thesis.

• Chapter 8: Future Work
This chapter outlines possible areas of future research.

• Chapter 9: Conclusions
The contributions of the work are summarized and discussed, and conclusions
are drawn.

Chapter 2

Real-Time Systems

A presentation of real-time systems is necessary in order to put the work described
in this thesis into the right context. This chapter provides descriptions of concepts
in real-time computing which are used in the following chapters. Special emphasis
is put on hard real-time systems. For a more in-depth survey of hard real-time sys-
tems, refer to [But97].

Real-time software is in most cases implemented by a number of cooperating
processes. In this thesis we use the word process to denote a separate thread of exe-
cution running concurrently with other threads on the same processor [Dij68]. All
processes share the same address space and a context switch (assigning the proc-
essor to another process) is a relatively cheap operation. Processes, using our
terminology, are also known as threads, tasks, or light-weight processes. Observe
the difference between our notion of processes and that of operating system proc-
esses which typically run in separate address spaces and have a large overhead for
context switches.

2.1 Real-time systems

The task of a program is to transform a sequence of input, or stimuli, to a set of
output data. For most software, correctness means that correct output is produced
given a set of input. The time needed for the transformation has no influence on
the correctness. A program needing a long time to produce the correct output will
probably be considered inefficient, but it will, nevertheless, be correct.

In some situations, the time at which the output is produced is important for the
correctness of the system. The software must meet different deadlines for various
tasks. Systems that have this property are called real-time systems and the
requirements concerning how long time the system may use, and how precise in
time it must be, are called real-time requirements or real-time demands.

8 Chapter 2 Real-Time Systems
2.1.1 Real-time requirements

The importance of timely operation can be used to classify software. The rest of
Section 2.1.1 describes such a classification system.

Batch systems

Many computer applications do not really have any real-time requirements at all.
An example of such an application is a compiler. The input to programs of this kind
is prepared and available before running the program. Output is calculated based
on the input, after which the program terminates. Systems designed to support
such applications are often called batch systems, since data is processed in batches.
The correctness of the output is not affected by the time it takes to produce it. How-
ever, a certain amount of efficiency is of course desirable for the program to be
useful in practice.

Interactive systems

Modern computer programs often interact with the user during the processing of
data. The user submits a command to the program, which performs the desired
action and presents the result. Then, a new command can be submitted. We say
such systems are interactive. One example of such a system is a word processor. For
the interaction to work, the time needed to perform a command must be reasonably
short. Otherwise, the user will perceive the system as being sluggish and, if the
delay is unexpected, perhaps misinterpret the state of operation. If, for example, a
word processor every now and then would need several seconds to update the
screen as a response to the user pressing a key, the user might get the impression
that the word processor has missed the key press and repeat it. The result will
obviously not be what was intended.

Interactive systems often have some degree of real-time demands, even if they
are relatively relaxed. Response times of up to around half a second are often con-
sidered acceptable. Delays shorter than 0.1 seconds can in most cases not be
noticed at all by a human user. An exception is systems performing on-screen ani-
mations, where shorter response times are required in order to achieve smooth
movement. Failing to meet a deadline occasionally is, however, not very critical. In
the word processor example, the user might delete the extra characters inserted by
mistake. A missed deadline in the animation example causes a sudden jerk, which
can often be tolerated if it is of rare occurrence.

2.1 Real-time systems 9
Soft real-time systems

When the computer controls some kind of external equipment the real-time
requirements tighten. Embedded computer systems often belong to this category.
The response times required are typically shorter than for interactive systems,
often somewhere in the range of 10 to 100 ms. To maintain control over the exter-
nal equipment and to make it perform its task efficiently, it is important that the
system is able to meet its deadlines. In soft real-time systems however, occasional
failures to do so can be tolerated.

An example of a soft real-time system is a telephone exchange. In order to serv-
ice the customers efficiently it must respond quickly to actions taken by the caller.
When the caller lifts the receiver the exchange should immediately generate a dial
tone and be ready to accept a telephone number. If the exchange fails to do so the
caller might get the impression that the service is not available at the moment.
Even though the system failed to service the individual caller, the integrity of the
system as a whole was not affected.

The borderline between interactive systems and soft real-time systems is often
difficult to draw. An system performing animations could, for example, very well be
considered to be a soft real-time system due to its tight deadlines.

Hard real-time systems

Some real-time systems have processes that must meet very strict real-time
demands. Failing to meet these very tight deadlines can lead to system failure.
Many systems for automatic control belong to this category. Such systems are for
example used for controlling the movements of a robot arm, steering aircrafts, and
controlling the operation of machines in an industrial plant.

The current theory behind the algorithms used for automatic control assumes
that the state of the external process being controlled is sampled at regular inter-
vals, and that new control signals derived from the sample can be produced in a
very short time or with a predictable delay [ÅW84]. The sampling frequencies also
tend to be quite high, in the range of 100-1000 Hz, making efficiency even more
important. The response times that must be guaranteed are thus very short, a frac-
tion of the sampling period, i.e. well below 1 ms. Failing to meet deadlines may
cause the control algorithms to be unstable.

It should be noted that many control systems will tolerate occasional missed
deadlines without failure. The result will often only be suboptimal performance.
Still, many safety-critical systems exist where hard real-time guarantees are
required.

Actual real-time systems often have a mix of soft and hard real-time demands.
A hard real-time system for automatic control will typically contain low-priority
processes with soft deadlines as well as high-priority processes with hard
deadlines. Low-priority processes can for example be used for user interaction.

10 Chapter 2 Real-Time Systems
2.1.2 Predictability

An important property of real-time systems, especially hard real-time systems, is
predictability. When we say that a system is predictable, we mean that upper (and
sometimes also lower) bounds on the worst-case response times of the system exist
and that it is possible to compute them. There are no delays of arbitrary length in
a predictable system. In order to guarantee a maximum response time, each prim-
itive operation performed by the system must be predictable. Predictability is the
property that makes it possible to guarantee that no deadlines are violated.

Average-case versus worst-case performance

When evaluating the performance of a system, we study the time required to per-
form different tasks. One can either concentrate on how the system performs in the
average case or in the worst case. If the average-case performance is to be studied,
the mean execution time is determined, either by measurements or by a theoretical
analysis of the code. The worst-case performance, on the other hand, is found by a
similar analysis of the longest possible required execution time.

For batch and interactive systems we are usually only concerned with the aver-
age-case behaviour in order to obtain acceptable performance. The system might
once in a while fail to meet a deadline, but this is of minor importance.

For real-time systems, especially those with hard real-time requirements, it
must be possible to guarantee that the systems never fail to meet a deadline, at
least not a hard one. Good average-case performance is desirable, but the ability to
meet the deadlines in a worst-case situation is imperative.

Verifying schedulability

There are basically two approaches for the developer of a safety-critical real-time
system to verify that a system will meet its deadlines. One method is to actually
run the software and measure the performance of the system. There are two major
drawbacks to this approach. First, it is very difficult to ensure that the measure-
ments capture the worst-case execution situation. Therefore, the measurements
will in most cases be inconclusive. Second, it is often not possible to test the soft-
ware in the actual application environment since failures to meet the deadlines
will have too severe consequences. One cannot trust the software to run without
having verified it, but one can not verify it without running it.

The second approach to verifying the schedulability of a real-time system is to
do a theoretical analysis of the software processes before actually running the sys-
tem. This is called a priori schedulability analysis. Using knowledge about the
processes of the system, it is possible to analyse the timing when the processes are
executed. The worst-case execution situations are studied and the developer

2.1 Real-time systems 11
checks that all critical processes will meet their deadlines. The drawback of this
method is that it requires intimate knowledge about both the hardware and the
software. Execution pattern, deadline, and worst-case execution time (WCET for
short) must be known for each process. Furthermore, possible blocking caused by
communication between processes and access to shared resources must be taken
into account.

A conservative estimate of the WCET is acceptable from a schedulability anal-
ysis point of view. As long as the estimated value is not smaller than the real one,
the scheduling analysis can still be trusted. If the analysis claims that a system is
schedulable, it will also be schedulable in practice. However, if we use very conserv-
ative estimations, the analysis will classify many actually schedulable systems as
unschedulable. Therefore, we want the estimated WCETs to match the real
WCETs as well as possible.

Deriving close, but still conservative, estimates of WCETs is a non-trivial prob-
lem. One way of doing this is to study the code generated by the compiler for each
process. The maximum execution time for each individual instruction is added
together. Branches and loops complicate the analysis and some extra information
is typically required from the programmer, e.g. the maximum number of possible
iterations for each loop. The effects of pipelines and caches further complicate the
analysis. The estimates can be calculated manually or produced by running the
code through a simulator, e.g. [ATT88]. Another way to estimate the WCET of a
process is to actually run the code of the process on the target hardware with a
variety of input and measure the execution time. The maximum encountered exe-
cution time is then said to be the WCET. There are of course no guarantees at all
that the worst possible case really did occur while the measurements were per-
formed. To compensate for this to some degree, one usually adds some extra time
to the measured worst case, perhaps 10%. Even though this approach does not pro-
duce any result that can be absolutely trusted, it is probably one of the most used
method in practice.

2.1.3 Control systems

Control software is normally organized as a number of periodically executing proc-
esses. Each period, these processes sample the inputs, calculate new control
signals and output. Because the established control theory of today demands that
the samples are taken periodically, and because the time between sampling and
outputting new control signals should be short in order to obtain optimal perform-
ance, these processes are assigned high priorities. High-priority processes are
usually small and run only a short period of time each time they are activated. The
sampling frequency required by the control algorithm varies, but for hard real-
time systems, e.g. motion control, it is often in the range of 100-1000 Hz.

Figure 2.1 shows one invocation of a typical high-priority control process. When
it is time to take a new sample and update the control signals (at the ideal sample

12 Chapter 2 Real-Time Systems
time), the real-time kernel releases the control process. This means that the proc-
ess is made ready, but it is not necessarily allowed to execute immediately. The
time it takes from releasing the process until it is invoked, i.e. actually starts exe-
cuting, is called the latency of the process. Typical control systems require latencies
in the range of 1 ms or less. One of the first things the process does is to sample the
state of the controlled environment. The time from the ideal sampling time until
the sampling is actually performed is called the sample delay. The control delay is
the time required to analyse the sample, calculate new control signals, and making
them available to the actuators. Control theory requires that the control delay is
kept short, in many cases below 1 ms, in order to guarantee stability and good per-
formance of the control system. It is also desirable from a control theory point of
view that the control response time is kept short. This should not be confused with
the response time of the process, which is defined as the time from the process is
released until it has finished executing. The latter definition is used when discuss-
ing the schedulability of the process.

Figure 2.1 Execution and timing nomenclature for a high-priority
sampling control process.

time

control signal

input signal

control process

(1) (2) (3) (4) (5)

1. The control process is released (the ideal sampling time).

2. The control process is invoked.

3. Actual sampling time.

4. New control signals are output.

5. The control process has finished its work.

sample delay

latency control delay

execution time

control response time

response time

2.2 Process scheduling 13
Apart from a relative small number of really critical high-priority processes,
embedded control systems contain a number of processes with low priority, which
usually represent the major part of the system (at least in terms of code size).
These processes typically do things like computing reference values, presenting
the state of the controlled process to an operator and accepting operator com-
mands, communicating with other computers, etc. The low-priority processes must
also satisfy some real-time requirements, but the demands are closer to those of
interactive or soft real-time systems than to those of hard real-time systems. The
consequences of a missed deadline are also much less severe than for the high-pri-
ority processes.

To summarize, an embedded control system is often implemented using a
number of concurrently executing processes. The critical tasks of the system are
isolated to a small number of high priority processes with very tight real-time
demands. It is of vital importance that these processes are able to run on time and
without interruption. At the same time, the system contains a number of low-pri-
ority processes with relaxed real-time demands. The requirements of these
processes are similar to those found in interactive or soft real-time systems.

2.2 Process scheduling

In order to design a working memory management strategy, it is important to be
familiar with the environment in which it will be working. As mentioned earlier,
embedded systems are typically implemented as a set of concurrently executing
software processes. Since the number of software processes is typically much larger
than the number of available processors, the processor time must be shared by the
different software processes. Many embedded systems consist of only one proces-
sor. A special piece of system software, called the process scheduler, is responsible
for scheduling the work of the processes. The process scheduler can employ various
strategies for dividing the available processor time among the software processes.
In the rest of this section we will present some of the most common scheduling
strategies in short together with their properties.

2.2.1 Static cyclic scheduling

One of the oldest scheduling strategies is static cyclic scheduling. It assumes that
all tasks are implemented by periodically executing processes. The processor time
is divided into time slots and a static scheduling table is constructed when the sys-
tem is designed. Each entry in the scheduling table corresponds to a time slot and
determines which software process should be invoked at the start of that slot. If the
process does not utilize the entire time slot, the system will be idle for the rest of
the slot, wasting processor time. On the other hand, the process must make sure
to finish before the time slot ends. The scheduler traverses the table, starting the

14 Chapter 2 Real-Time Systems
processes one by one. When the last entry in the table has been processed, the exe-
cution restarts at the beginning of the table. In some cases, the otherwise wasted
part of each time slot is used to execute background tasks. This yields a more
effective use of the available CPU time.

The strategy has the advantages that it is very predictable and easy to analyse.
It is sufficient to make sure that each process occurs often enough in the table to
meet its deadline and that the WCET of each process will fit within the associated
time slot. It might be necessary to split a process with a long WCET into several
shorter ones in order to make it fit within the time slots. Building the scheduling
table can be somewhat problematic, since the problem is generally NP-hard. A very
commonly used, but time-consuming, approach is to build the table by hand. Mod-
ifying the software of the system can be quite costly. If a new process has to be
added, or the WCET of a process changes, a new scheduling table must be con-
structed from scratch.

Since the scheduler repeatedly traverses the scheduling table we are limited to
using periodically executing processes. Sporadic events must be handled by polling
for the events. If a very short response time is required for such an events, the time
slots must be very short and a lot of time slots must be allocated for handling the
event. This can be very wasteful.

The length of the scheduling table is determined by the periods of the processes
that is to be scheduled. The scheduling pattern of a system of processes executing
with fixed periods will repeat itself at fixed intervals. In order to avoid anomalies
in the execution periods when the scheduler moves from the last entry in the sched-
uling table to the first one, the length of the table must correspond to the repetition
interval of the processes. The shortest repetition length of a set of processes is the
least common multiple of their execution periods, which can be large if special care
is not taken when assigning periods to the processes. To avoid excessive table
length one often manipulates the periods, i.e. makes them shorter, so that they are
multiples of each other. However, this also means that more processor time is
required.

2.2.2 Fixed priority dynamic scheduling

By dynamic scheduling we mean that the process scheduler dynamically decides
which process to assign processor time to as the system is running. A static sched-
uling table does not exist. Processes are invoked only if they have work to perform,
that is when they are ready. Sporadic events might cause a process to become
ready, which eliminates the need for polling for such events. Processes can be peri-
odic or sporadic and process periods do not have to be harmonized. Dynamic
scheduling thus provides a more flexible environment for the software developer
than static cyclic scheduling.

The criteria the scheduler uses to decide which process to run varies. A popular
method is to assign unique priorities to the different processes. It is assumed, from

2.2 Process scheduling 15
reasons of a priori analysis, that the priorities remain fixed during runtime. At any
point in time, the processor is assigned to the process with highest priority among
the set of ready processes. If a process with higher priority than the currently exe-
cuting one becomes ready, the scheduler suspends, or preempts, the currently
executing process and assigns the processor to the process with higher priority.
This scheduling strategy is often referred to as fixed priority scheduling with
preemption.

Various methods exist for assigning priorities to processes. The simplest ones
are based on heuristics. One might for example order the processes according to
their “importance” and assign priorities accordingly. However, there are no guar-
antees that such methods will produce the best possible configuration of priorities.
It might even be that the resulting system is unable to meet some of its deadlines,
while another assignment of priorities would have produced a schedulable system.
In order to find an optimal solution to the priority assignment problem, we must
first construct a model of the system, which we then can analyse. The models will
by necessity be simplifications of the real world and impose some restrictions on
how we design our software. Models complex enough to handle most practical real-
time applications have, however, been developed.

A property of fixed priority scheduling is that it is not generally possible to
achieve a 100% processor utilization ratio without missing deadlines. On the other
hand, overload is handled in a reasonable way. When the system is overloaded, the
preemptive scheduler still makes sure that enough processor time is given to the
processes with high priority. In most cases, these are also the most critical process-
es. The most important tasks of the system are thus still performed on time. It is
the processes with low priority, which typically only have soft real time demands
anyway, that will miss their deadlines first.

Rate monotonic scheduling

Rate monotonic scheduling, RMS for short, is a variant of fixed priority scheduling
where priorities are set monotonically according to the rate, or period, of the proc-
esses. That is, the process with shortest period should be assigned the highest
priority and so on. The basic model assumes that all processes are periodic and
have a fixed period. It is further assumed that the deadline of every process is equal
to its period. Processes are not allowed to block each other or suspend themselves,
except to wait for the next period to start. For such a system, Liu and Layland have
shown that RMS is optimal [LL73]. If RMS does not produce a schedulable process
set, nor will any other fixed priority scheduling strategy.

Rate monotonic analysis, RMA, provides a framework for analysing the sched-
ulability of a process set scheduled according to RMS. The earliest schedulability
test, that of Liu and Layland, provides a sufficient, but not necessary, condition for
a process set to be schedulable. This means that the analysis might turn out to be
inconclusive. A process set may be schedulable even if it does not pass the schedu-

16 Chapter 2 Real-Time Systems
lability test. Later, Joseph and Pandya presented an exact analysis for
RMS [JP86].

The restrictions imposed on the processes by RMS can be very unpractical in a
real-world situation. For example, practically every real-time system requires that
processes communicate with each other. Communication between processes una-
voidably gives rise to critical sections that may cause blocking to occur. Another
example of an unpractical restriction is to demand that every process is strictly
periodic. Generalizing RMA to handle realistic systems better has therefore been
an active research area. Techniques have been developed to incorporate sporadic
processes, process blocking, deadlines shorter then the process period, scheduling
overhead, release jitter, etc. into the analysis [SRL94].

Deadline monotonic scheduling

In most real-time systems, processes exist which have a deadline shorter than the
period of the process. This is especially true for systems performing automatic con-
trol of technical equipment. As described in Section 2.1.3, such a system samples
the state of the controlled equipment at regular intervals. New control signals are
computed based on the sample and then output to actuators. It is important that
the time from sampling the state to outputting new control signals is short. Other-
wise, stability cannot be guaranteed according to the theory of automatic control
[ÅW84]. Deadlines shorter than the process periods will thus be common in such
systems.

If we change the process model used in RMS to include deadlines shorter than
the periods of the processes, we find that RMS is no longer optimal. Instead, the
optimal choice turns out to be to assign priorities monotonically with the deadlines
of the processes. This strategy is called deadline monotonic scheduling [ABRW91].
The process with the shortest deadline should be assigned the highest priority and
so on. Deadline monotonic scheduling can be viewed as a generalization of rate
monotonic scheduling. If all deadlines are set to the respective period, the schedul-
ing strategies will be identical.

Priority inheritance protocols

Priority inversion is a phenomenon where a higher priority process is blocked for
an arbitrary long time by a lower priority process. Such a situation occurs when a
low-priority process holds a resource that the higher-priority process is requesting.
The duration of the blocking by the low-priority process is usually short, but if a
third, medium priority, process is released, it will preempt the lower priority proc-
ess and prevent it from releasing the resource. This can lead to arbitrary delays for
the higher-priority process. Priority inversion is illustrated in Figure 2.2.

2.2 Process scheduling 17
To avoid blocking caused by priority inversion, priority inheritance protocols
are employed. All of these protocols involve temporarily raising the priority of a
process that has allocated a resource. The probably most widely used priority
inheritance protocol is the basic inheritance protocol. Other protocols are the pri-
ority ceiling protocol and the immediate inheritance protocol. The rest of this
section will briefly present these protocols.

The basic inheritance protocol [SRL90] states that whenever a process blocks
because a resource it attempts to lock is already locked by a process with a lower
priority, the process currently possessing the lock will inherit the priority of the
blocked process. The priority of a process is thus raised if, and only if, it is blocking
a higher priority process. When the resource is released, the priority will be set to
what it was before the priority was raised. Processes with intermediate priority
levels will thus not be able to prevent a lower priority process from exiting a critical

Figure 2.2 Priority inversion. It is illustrated how a process can be blocked by a
lower priority process for an arbitrary long time even though the proc-
esses does not share any common resources.

τhp

τmp

τlp

(2) (3) (4) (5) (6)

1. The low-priority process, τlp, locks a resource.

2. The high-priority process, τhp, is invoked, preempting τlp.

3. The high-priority process attempts to lock the already locked resource.
It blocks since the resource is already locked by τlp.

4. A medium-priority process, τmp, becomes ready to run and preempts τlp. The
high-priority process will be blocked for the entire execution of τmp, even
though τhp and τmp does not share any common resources.

5. The medium-priority process is suspended and the execution of τlp is resumed.

6. The resource is finally released. The high-priority process immediately pre-
empts τlp and locks the resource.

(1)

process executing process executing, resource locked

Time

18 Chapter 2 Real-Time Systems
section, and the maximum blocking time of the higher priority process will be
bounded. The protocol is easy to implement and does not require an a priori anal-
ysis of the process set and its utilization of semaphores. It does not impose any
restriction on how resources are allocated or released.

The priority ceiling protocol [SRL90] imposes a more restricted resource locking
policy than the basic inheritance protocol does. A process must not hold a resource
between executions and resource locking/unlocking must be properly nested. That
is, resources must be released in the opposite order to how they were locked. An a
priori analysis of which processes use which resources must be made. For each
resource, a priority ceiling is computed. This is the priority of the highest-priority
process that access the resource. Whenever a process attempts to lock a resource,
it is checked whether the priority of the process is strictly higher than the ceilings
of all previously locked resources in the system. If it is, the process is allowed to
lock the resource. If not, the process is blocked. The process causing the lock inher-
its the priority of the blocked process.

The priority ceiling protocol can be expensive to implement, but has some
appealing advantages: First, a process can only be delayed once by a lower priority
process. The length of the delay corresponds to the longest critical section in the
lower priority processes. Second, it guarantees that no deadlocks can occur. It does
so by allowing resource locking only if it can be guaranteed that locking the
resource might not cause a future deadlock. The consequence of the scheme is that
processes are, on average, blocked more often than if the basic inheritance protocol
is used. Blocking often occurs even though two processes do not attempt to lock a
resource simultaneously. The amount of blocking in the average case is thus worse.

The immediate inheritance protocol has the same requirements as the priority
ceiling protocol, i.e. no resources held between invocations, properly nested lock-
ing/unlocking, and an a priori analysis of the process set. However, it is much
easier to implement while retaining the attractive worst-case performance of the
priority ceiling protocol. It guarantees that no deadlock occur as well. Again, we
must assign a priority ceiling to each resource. At run-time, when a process
attempts to lock a resource we immediately set the priority of the process to the
maximum of the current priority of the process and the ceiling of the resource. The
immediate inheritance protocol is described by Lampson and Redell [LR80].

2.2.3 Earliest deadline first scheduling

All the scheduling strategies we have studied so far require that we take some
a priori scheduling decisions. With static cyclic scheduling we had to construct an
explicit scheduling table and with fixed priority scheduling we had to assign prior-
ities to the individual processes. If we add a new process to the system, or if we
change it in some other way, we have to redo this work. A more dynamic approach
is represented by earliest deadline first scheduling (EDF). Here, all the scheduling
decisions are delayed until runtime. However, when designing software for safety-

2.3 Process scheduling in existing real-time kernels 19
critical systems, we still want to make an a priori analysis of the process set to
determine whether all deadlines will be met or not. Schedulability analysis is thus
still required before running the system, which lessen the advantage of the strat-
egy over fixed-priority schemes.

EDF states that the processor should be assigned the process that is closest to
its deadline. If an external event causes a process to become ready, the system
checks whether the deadline of the newly released process is shorter than the dead-
line of the currently executing one. If so, the currently executing process is
preempted. EDF is more flexible than fixed-priority schemes since it is possible to
dynamically add new processes to the system without doing a global recalculation
of priorities. The scheduler automatically does its best to meet all deadlines.

The optimality of EDF has been proven for a system with arbitrary process
invocation and deadline times, and arbitrary and unknown (to the scheduler)
WCETs for each process [Der74]. An interesting property of earliest deadline first
scheduling is that it is possible to achieve a 100% processor utilization ratio with-
out violating any deadlines, which is typically not the case when fixed priority
scheduling is used. However, overload is handled very poorly by earliest deadline
first scheduling. Experience has shown that performance degrades rapidly in the
case of overload. A domino effect usually results as the scheduler continuously
gives priority to processes that are close to missing their deadlines.

2.3 Process scheduling in existing real-time kernels

In order to see what scheduling strategies are used in practice, this section briefly
surveys some typical real-time kernels and study what type of process scheduling
strategy they use.

Hawk: Hawk [HH89] is a small real-time kernel designed specifically for the
SANDAC multiprocessor computer for embedded systems. It has been used in sys-
tems for airborne guidance and control as well as for land-based navigation
systems. A priority-based dispatcher schedules the processes on each microproces-
sor. Fixed-priority scheduling is thus assumed, but it is possible for the system to
change the priority of a process dynamically. It is also possible to install a special
scheduler process in order to implement other scheduling strategies.

QNX: QNX [Hil92] is a commercial real-time operating system built around a
small microkernel supporting the basic concurrency functionality. Higher level
operating system functionality is implemented by a set of cooperating processes
surrounding the microkernel. The process scheduling model is based on preemp-
tive fixed-priority scheduling. The kernel implements the basic inheritance
protocol in order to avoid problems with priority inversion.

VxWorks: VxWorks [WRS95] is a commercial real-time operating system. It is
clearly the most common operating system within the field of robotics. It was also
used on Nasa’s recent Pathfinder mission to Mars. The process model is based on
fixed-priority scheduling with priority inheritance.

20 Chapter 2 Real-Time Systems
Spring: The Spring kernel [SR89] is a research real-time kernel, developed at
the University of Massachusetts, which supports distributed real-time systems.
The system attempts to dynamically ensure the schedulability of the system,
allowing new processes to be added to the system on the fly if they prove to be
schedulable. A new process is assigned to one of the processors and inserted into
its system task table, which is an explicit representation of the process schedule.

Ada: The Ada programming language [I+83] was originally developed to meet
the requirements on a new universal and standardized programming language
issued by the United States Department of Defence. The first ANSI/ISO standard,
Ada 83, appeared in 1983. The language was intended to provide a portable lan-
guage for embedded systems and contains support for concurrent computing. The
scheduling model prescribed by the standard was preemptive fixed-priority sched-
uling. In 1995, a new standard arrived, Ada 95, which provides more flexibility in
the choice of scheduling strategy. However, most implementations of Ada 95 use
preemptive fixed-priority scheduling.

The JAS 39 fighter: The swedish JAS 39 fighter aircraft is a highly computer-
ized modern fighter aircraft developed by SAAB Military Aircraft. The system
computer of the fighter runs a proprietary real-time kernel [Fol93]. The process
model consists of a fixed number of periodic processes with harmonic periods. In
addition, a low-priority background process exists. The kernel uses fixed-priority
scheduling with preemption. Rate monotonic scheduling is used to assign priorities
to the periodic processes. The background process has the lowest priority.

2.4 Summary

A real-time system is a system in which not only the output of the system deter-
mines success or failure. The time at which the output is produced also matters.
The system must have a response time to external stimuli that is shorter than a
given limit. The system is said to have deadlines. The real-time requirements vary
between different types of applications. A hard real-time system contains process-
es which must always meet their deadlines. Embedded systems, systems where the
computer is a part of a larger piece of equipment, are mostly hard real-time sys-
tems. They typically contain parts with soft real-time demands as well. Embedded
systems often perform automatic control of external physical processes and are
often safety-critical. It is vital that such systems are predictable and that we can
perform a priori analysis in order to guarantee schedulability.

Various execution models have been developed for implementation of real-time
systems. The first systems used static scheduling techniques, but more dynamic
scheduling approaches are used more and more. The most commonly used execu-
tion model in real-world real-time systems is fixed-priority scheduling with
preemption. It is therefore reasonable to develop a real-time memory management
strategy with primarily this model in mind. It is, however, important that it can be
generalized to other models as well.

Chapter 3

Automatic Memory Management

This chapter surveys and comments on different approaches to automatic memory
management. The real-time properties of existing approaches are reviewed and
the aim of the work presented in the thesis is described.

3.1 Introduction

In the early days of software development, there was only static memory manage-
ment. Static memory management means that every entity in the program is
statically bound at compile time to a certain memory location. Fortran [ANSI78] is
an example of an early programming language that used static memory manage-
ment. This is a very simple scheme, but it has some obvious disadvantages. First,
the size of all data structures must be known in advance. Second, it is not possible
to build data structures dynamically depending on input. Third, if we drive static
memory management to its point, recursive procedure calls cannot be allowed
since the procedure activation records are statically allocated. The latter restric-
tion can be lifted if we introduce a stack for activation records. This approach was
introduced in Algol [BMN+60].

The need for more dynamic software soon required a more flexible way of hand-
ling memory. A heap on which objects could be allocated dynamically was
introduced and with that dynamic memory management. The size of data struc-
tures could now be allowed to be determined during run time, and data structures
could be built as the program executed. Manual dynamic memory management
was used, which means that the application program is responsible for keeping
track of which parts of the heap contain live objects and which parts can be reused
for new purposes. Examples of languages supporting manual dynamic memory
management are C (malloc/free) [KR78] and Pascal (new/dispose) [JW85]. The run-
time libraries typically include some support to help the program managing the

22 Chapter 3 Automatic Memory Management
heap. It includes operations to manage a free-list containing all free memory seg-
ments on the heap. Operations are available to allocate a new object on the heap
(malloc/new) and to return the memory occupied by a no longer needed object to
the free-list (free/dispose). Even so, the program will contain complicated code for
controlling when to release objects in memory. Programming errors causing dan-
gling pointers or memory leaks are common.

A way of alleviating the application programmer of the burden of manual mem-
ory management, while still retaining the advantages of dynamic memory
management, is to hand over the responsibility for determining which memory
must be preserved and which can be reused to the runtime system. This approach
is called automatic memory management or garbage collection, GC for short. Exam-
ples of early uses of garbage collection are Lisp [McC60] and Simula [SIS87]. The
rest of this chapter discusses issues related to automatic memory management in
general, and automatic memory management for real-time systems in particular.
An overview of different techniques is given.

3.2 Memory fragmentation

Fragmentation occurs when objects of different sizes are allocated on the same
heap and later deallocated. This leaves holes of free memory interspersed with live
objects. A subsequent memory allocation request might not be able to reuse the
memory previously deallocated since the holes might be too small to hold the new
object.

Robson showed [Rob71] that the total amount of heap store needed to guarantee
that an allocation request can always be met will be large if variable block sizes are
allowed. Even in the simple case that only blocks consisting of one or two words
exist, fifty percent more store is needed compared to the maximum amount of
words live at the same time. As the maximum block size grows the worst-case stor-
age needs increase. According to Robson, if the maximum block size is 64 word a
heap might be required that is seven times larger than the maximum amount of
simultaneously live memory. The impact of variable block sizes on the storage
needs is also discussed in [Knu73].

One way of decreasing the problem of memory fragmentation is to use fixed
block sizes. There are at least two problems with this approach, namely internal
fragmentation and the need to split large objects. Internal fragmentation arises
when small objects do not use the entire memory block they have been assigned.
This naturally increases the amount of heap space needed. Large objects, on the
other hand, which do not fit into a single block must be split up into several smaller
segments. Both time and size overhead will result from the extra management of
the segments. If only one type of object (with a fixed size) is allocated on the heap,
both of the above disadvantages are eliminated. However, few software systems
have this property.

3.3 Basic garbage collection algorithms 23
The memory fragmentation problem can be solved by compacting the heap.
Compaction means that the live objects on the heap are regularly moved and put
next to each other, resulting in a single, continuous, area of free memory. Moving
the objects and updating all pointers involve some overhead. Memory management
algorithms that do not employ compaction are usually said to be non-moving.

3.3 Basic garbage collection algorithms

We distinguish between three basic approaches to garbage collection: reference
counting, mark-sweep, and copying algorithms. Here, we give a brief presentation
of these. For a more exhaustive presentation refer to [JL96], [Wil92], or [Coh81].

The task of the ideal garbage collector is to identify and reclaim the memory
occupied by objects that will not be referenced by the application program. Since it
is impossible for the collector to know which objects that will actually be referenced
later, it employs a somewhat more conservative approach approximating the ideal
one; identify and reclaim memory occupied by objects that cannot be referenced
again, i.e. objects that are no longer reachable from the program. The criteria used
to decide whether an object is live or not is thus whether it is reachable or not.

In this chapter, and in the rest of this thesis, we will use the terminology intro-
duced in [Wad76]. The application program and the garbage collector are viewed
as two independent processes sharing a common memory. The first process, the
application program, is called the mutator since it modifies (mutates) the object
graph. The second process, the garbage collector, which is responsible for recover-
ing memory discarded by the mutator, is called the collector.

3.3.1 Reference counting

The principle behind reference counting is to store a counter in every object indi-
cating the number of references to the object [Col60].1 The counters of the affected
objects must be updated every time the mutator modifies the object graph. When
creating a new reference to an object the counter must be incremented, and when
removing a reference the counter must be decremented. When the value of the
counter becomes zero, i.e. no references to the object exist, the memory occupied by
the object can be reclaimed. Reclaimed objects are typically inserted into a free-list
in the same manner as for manual memory managers. The heap is thus not
compacted.

1.The counter might be physically present in the object or implicit. The original pa-
per on reference counting [Col60] suggests that objects only referenced once, which
is the majority of the objects in many systems, omit the counter in order to save
memory space. On the other hand, this necessitates additional checks in connection
with each pointer assignment.

24 Chapter 3 Automatic Memory Management
The following pseudo code describes how a simple reference counting algorithm
might be implemented. The function NEW is called to allocate a new object and
SET_POINTER is used to change the value of a pointer. The procedure
DECREASE_COUNT is only used internally and is thus not part of the interface
to the reference counter. It is assumed that every object contains an attribute
called Count, which keeps track of the number of existing references to the object.

FUNCTION NEW(Size);
VAR Ptr;
Search free-list for a suitable memory location. Let Ptr point

to the new object.
Update free-list.
Ptr.Count := 0;
RETURN Ptr;

END

PROCEDURE SET_POINTER(Ptr,Value);
DECREASE_COUNT(Ptr);
Ptr := Value;
IF Value<>NULL THEN

Ptr.Count := Ptr.Count+1;
END

END

PROCEDURE DECREASE_COUNT(Ptr);
Ptr.Count := Ptr.Count-1;
IF Ptr.Count=0 THEN

FOREACHpointer P in object referenced by Ptr DO
DECREASE_COUNT(P);

END
Insert ptr into free-list.

END
END

A nice feature of reference counting is that the GC work is performed in an incre-
mental fashion as the object graph is modified. Long pauses are not very common
but can occur once in a while since reclaiming an object may cause other reference
counts to become zero and so on. An example of such a situation is when the last
pointer to a large tree structure is deleted. All the nodes of the tree will then be
unreachable from the mutator and the garbage collector will traverse the entire
tree, reclaiming the objects one by one.

A major drawback of reference counting is that circular linked structures of gar-
bage objects cannot be detected. There is always a reference to each object in such
a structure, which means that they will not be deallocated. It has been observed
that circular object structures is a common phenomenon [BS93]. Reference count-
ing alone is thus not sufficient in long-lived programs. It can be used in
combination with some other garbage collection approach capable of recognizing
circular structures of garbage, or rely on cooperation from the programmer (e.g.
[Bob80]) which is a very unsafe approach. Hybrid algorithms are often used, com-

3.3 Basic garbage collection algorithms 25
bining reference counting with mark-sweep traversal. Examples of such
algorithms can be found in [Chr84] and [Lin92].

The overhead of managing the counters can be quite high, which limits the use
of the method. Every pointer assignment causes counters to be incremented and
decremented. A test must also be performed to check for a counter reaching zero,
in which case the object must be deallocated. It has, however, been shown that the
total cost of counter management can in many cases be reduced significantly by
avoiding reference counting operations in special cases [DB76,Bad93], for example
when it can be deduced that only one reference exists to an object. Since reference
counting algorithms typically do not employ memory compaction, they suffer from
problems with fragmentation.

3.3.2 Mark-Sweep

The first mark-sweep algorithm was published in [McC60]. Mark-sweep algo-
rithms make use of two phases; the marking phase and the sweeping phase. The
purpose of the marking phase is to locate and mark all objects that are reachable
from the mutator. The second phase, the sweeping phase, traverses the heap exam-
ining each object and reclaims the memory occupied by unmarked objects. The
sweeping phase may include compaction of the heap, in which case the algorithm
is sometimes called mark-compact. We will concentrate on compacting algorithms
in this thesis and will generally refer to compacting algorithms when we talk about
mark-sweep algorithms, unless stated otherwise.

The mark phase begins with examining the set of root pointers, i.e. the set of
pointers located outside the heap, through which all accesses to heap objects are
made. Included in the root set are global pointer variables and pointers located on
the stack. The objects reached through the root pointers are marked. The contents
of the objects marked in this way are then examined, or scanned. Objects refer-
enced by pointers within the already marked objects are added to the set of marked
objects, if not already marked, and their contents are in turn examined. Some kind
of stack is typically used to keep track of objects that have been marked but not yet
scanned. In this way the entire graph of reachable objects will be traversed and all
live objects will be marked. Algorithms that traverse the object graph in this way
to find all reachable objects are also called tracing algorithms.

The sweep phase reclaims the memory used by the unmarked objects. This is
done somewhat differently depending on whether compaction is desired or not.
Compaction might be sacrificed in order to achieve lower overhead for memory
management, but fragmentation might then cause problems. For non-compacting
algorithms, a single traversion of the heap is sufficient, inserting all unmarked
objects into a free-list as they are found. Compacting algorithms are more compli-
cated. Several passes might be required. First, the collector must decide on the new
locations of the live objects. Then, all pointers must be updated to point to the new
locations. The objects must finally be moved to their new locations. The LISP 2 gar-

26 Chapter 3 Automatic Memory Management
bage collector [Knu73] uses three passes over the heap to perform these tasks,
performing one task in each pass. A mark-sweep LISP 2 garbage collector thus
needs to traverse the heap four times to perform a complete GC cycle (one mark
and three sweep passes). An improvement to the LISP 2 algorithm was presented
in [Tho76]. The mark phase of the algorithm presented there temporarily modifies
the object graph in such a way that a linked list is created for each object, contain-
ing the locations of all pointers referencing the object. As a result, calculating new
locations for the objects and modifying the pointers to the object can be done in a
single pass, eliminating one of the sweep passes. Garbage collectors based on this
algorithm thus only need to traverse the heap three times in total.

Since the mark-sweep algorithms must process dead objects on the heap as well
as live ones during the sweep phase, the time required for one garbage collection
will be proportional to the size of the heap.

A case study of a mark-sweep algorithm

In order to gain a better understanding of mark-sweep algorithms, we will study
one such algorithm in more detail. The algorithm we have chosen is the LISP 2
compacting mark-sweep algorithm.

Each object on the heap contains a header with room for information needed by
the collector during the GC phase. This includes space for a mark bit and the
address the object will be moved to during compaction. We consider Marked and
NewAddress to be attributes of every heap allocated object and they contain the
required information.

New objects are allocated at the lowest available free address in the heap. Allo-
cation proceeds in this manner until the heap is completely exhausted. At this
point, the mutator is suspended and the collector initiates a full GC cycle. The allo-
cation operation can thus be described by the following piece of pseudo code:

VAR AllocationPointer; (* Address of next free memory cell *)

FUNCTION NEW(Size);
VAR NewObject;
IF AllocationPointer+Size > top of the heap THEN

MARK_SWEEP();
END
NewObject := AllocationPointer;
AllocationPointer := AllocationPointer+Size;
RETURN NewObject;

END

The GC work, represented by the procedure MARK_SWEEP, is performed in four
passes. First, a mark pass is performed, setting the mark bit of every object reach-
able from the root pointer set. This is done recursively starting from the root
pointers. Then, three linear sweep passes over the heap are performed. For each

3.3 Basic garbage collection algorithms 27
marked (live) object, the first sweep pass calculates the address that the objects is
to be moved to during the final compaction pass. The address is stored in the object
header. The second sweep pass again traverses the marked objects. Now, the point-
ers within the objects are updated to reflect the values they will have after the heap
is compacted. This is done by dereferencing each pointer, fetching the address in
the destination object calculated during the first sweep pass, and finally storing
this address in the pointer field that is to be updated. The third pass performs the
actual compaction, sliding the marked objects down towards low memory address-
es, creating a contiguous sequence of live objects. The mark and sweep process is
described by the pseudo code below.

PROCEDURE MARK_SWEEP();
MARK();
SWEEP_CALCULATE_ADDRESSES();
SWEEP_UPDATE_POINTERS();
SWEEP_MOVE_OBJECT();
AllocationPointer := first free memory cell ;

END

PROCEDURE MARK();
FOREACHpointer P in root set DO

MARK_OBJECT(P);
END

END

PROCEDURE MARK_OBJECT(Ptr);
IF NOT Ptr.Marked THEN

Ptr.Marked := TRUE;
FOREACHpointer Son in the object referenced by Ptr DO

MARK_OBJECT(Son);
END

END
END

PROCEDURE SWEEP_CALCULATE_ADDRESSES();
VAR Ptr,NextFree;
Ptr := start of the heap ;
NextFree := Ptr;
WHILE Ptr<AllocationPointer DO

IF Ptr.Marked THEN
Ptr.NewAddress := NextFree;
NextFree := NextFree+OBJECTSIZE(Ptr);

END
Ptr := Ptr+OBJECTSIZE(Ptr);

END
END;

PROCEDURE SWEEP_UPDATE_POINTERS();
VAR Ptr;
Ptr := start of the heap ;
WHILE Ptr<AllocationPointer DO

IF Ptr.Marked THEN
FOREACHpointer P in the object referenced by Ptr DO

P := P.NewAddress;

28 Chapter 3 Automatic Memory Management
END
END
Ptr := Ptr+OBJECTSIZE(Ptr);

END
END

PROCEDURE SWEEP_MOVE_OBJECTS();
VAR Ptr;
Ptr := start of the heap ;
WHILE Ptr<AllocationPointer DO

IF Ptr.Marked THEN
Move object referenced by Ptr to Ptr.NewAddress.
Ptr.NewAddress.Marked := FALSE;

END
Ptr := Ptr+OBJECTSIZE(Ptr);

END
END

3.3.3 Copying algorithms

Copying algorithms traverse the object graph starting from the root pointers in a
manner similar to the mark-sweep algorithms. Thus, they belong to the family of
tracing algorithms. However, instead of just marking an object as live when found,
it is immediately copied to a new segment of storage. When the entire object graph
has been traversed, all live objects have been copied from, or evacuated from, the
old heap. The old heap now only consists of dead objects and can thus be reclaimed.
Copying algorithms are by their nature compacting.

The first algorithm of this type was published in [Min63]. Secondary storage
was used to hold the evacuated objects. When all live objects had been evacuated
to secondary storage, they were copied back to a contiguous area in the heap. Later
variants of copying algorithms use the semispace strategy [FY69]. This divides the
available memory into two equally sized spaces, used one at a time. When the first
semispace is filled up, a GC cycle is performed, evacuating the live objects to the
second semispace. This second semispace is now used for allocation of new objects
until it in turn is filled up. At this point, the garbage collector moves live objects
back to the first semispace and so on. Early copying algorithms used recursion to
traverse the object graph, but modern variants use the strategy presented by
Cheney [Che70], which uses a scan pointer that iteratively traverses the evacuated
objects.

The time overhead of copying algorithms is proportional to the amount of live
objects, making them attractive compared to mark-sweep algorithms when the
ratio between live and dead objects is low. On the other hand, the storage overhead
is larger since space is required for two semispaces.

3.3 Basic garbage collection algorithms 29
Case study of a copying algorithm

In order to illustrate how copying algorithms work, we will study a semispace algo-
rithm using Cheney’s method for traversal of the object graph. An incremental
copying algorithm will play an important role later in the thesis, but the one we
will present here is a non-incremental variation.

The heap is divided into two semispaces, called tospace and fromspace. New
objects are allocated in tospace, as illustrated by Figure 3.1. The pointer B keeps
track of where objects are allocated. When there is no space left in tospace to hold
new objects, the garbage collector is invoked. The garbage collector starts by swap-
ping the meaning of fromspace and tospace. The old fromspace will now became the
tospace and vice versa. This is called performing a flip. The new fromspace will con-
tain a mix of live and dead objects and the new tospace will be empty. The task of
the garbage collector is now to find out which objects in fromspace are still reach-
able from the mutator, and place them consecutively in tospace. Then, the memory
used by fromspace can be reclaimed.

Let us follow a simple example to illustrate how the algorithm works. After hav-
ing changed the meaning of tospace and fromspace, we assume we have the
situation showed in Figure 3.2a, with a total of four live objects. The mutator ref-
erences the objects on the heap through a set of root pointers, external to the heap
but pointing to objects within it. The algorithm assumes that the root pointers are
known to the garbage collector. In our example we have two root pointers, root1 and
root2.

First, the garbage collector evacuates the objects referenced by the root pointers.
This is also known as scanning the root pointers. When evacuating an object, the
garbage collector copies the object to the position in tospace pointed to by B, the
allocation pointer. It also stores a pointer to the new copy within the original object
for later use, this pointer is called a forwarding pointer. Finally, the pointer that
triggered the evacuation, in this particular case one of the root pointers, is updated
to point to the new copy. If the object referenced by the scanned pointer has already
been copied to tospace, the collector merely updates the scanned pointer using the
pointer previously stored in the old version of the object. After the root pointers

Figure 3.1 The heap structure of a copying garbage collector algorithm during
the allocation phase, i.e. while the application program is executing.

TospaceFromspace

empty

B

allocated
objects

30 Chapter 3 Automatic Memory Management
Figure 3.2 A garbage collector cycle for a stop-the-world copying algorithm. Live objects are
evacuated to tospace, after which the memory in fromspace can be reclaimed.
Allocation can then proceed in tospace until it is again filled up.Then, the mean
ings of tospace and fromspace are changed and the cycle starts all over again.

TospaceFromspace

Root1 Root2

S,B

a)

Root1 Root2

S

b)

B

Root1 Root2

S

c)

B

Root1 Root2

d)

S,B

Root1 Root2e)

B

1 2 3 4

1 2 3 4

1 23 4

1243

1243

3.3 Basic garbage collection algorithms 31
have been scanned, the heap is in the state shown in Figure 3.2b. The fromspace
versions of evacuated objects are now only used to hold a pointer to the correspond-
ing copy in tospace. Any remaining pointers to the old object will be updated later
during the GC process.

After having scanned the root pointers, the garbage collector moves on to scan-
ning the evacuated objects in tospace. The scan pointer, S, is used to do this.
Starting with the object at the lower end of tospace, the pointers within the objects
are scanned one by one as the scan pointer iterates through the objects upwards in
tospace. As before, if a pointer to an unevacuated object is found, the referenced
object is copied into tospace. The pointer itself is in any case updated to reference
the tospace copy. Figure 3.2c illustrates the situation when the pointers of the first
evacuated object (referenced by Root1) have been scanned. The scan caused anoth-
er live object to be identified and evacuated. Note that there is still a pointer
referencing the fromspace version of the object. This pointer will, however, be
updated when the scan pointer, S, reaches the object containing the pointer. When
scanning the pointer, the collector will discover that the referenced object is
already evacuated and will update the pointer using the pointer stored in the from-
space version of the referenced object.

Scanning proceeds until there are no more objects to scan, i.e. until S=B. When
this happens, the entire graph of reachable objects has been traversed and no live
objects remain in fromspace. This is shown in Figure 3.2d. All the memory in from-
space can then be reclaimed (Figure 3.2e) for use during a subsequent invocation
of the garbage collector.

A GC cycle is now finished and the next one can begin; the control is handed
back to the mutator which resumes its execution. The mutator continues to allo-
cate new objects in tospace. Sooner or later, memory is filled up and the garbage
collector is again invoked.

The algorithm can be summarized by the pseudo code below. We assume that
heap-allocated objects contain a flag Evacuated that indicates whether an object
has been evacuated to tospace or not.

VAR B,S;

FUNCTION NEW(Size);
VAR Ptr;
IF B+Size>top of tospace THEN

COPYING_GC();
END
Ptr := B;
B := B+Size;
RETURN Ptr;

END

PROCEDURE FLIP();
Change tospace to fromspace and vice versa.
B := start of tospace;

END

32 Chapter 3 Automatic Memory Management
PROCEDURE EVACUATE_AND_UPDATE(Ptr);
IF Ptr points into fromspace THEN

IF NOT Ptr.Evacuated THEN
Copy object referenced by Ptr to address given by B.
Ptr.Evacuated := TRUE;
Ptr.ForwardingPointer := B;
B := B+OBJECTSIZE(Ptr);

END
Ptr := Ptr.ForwardingPointer; (* Update the pointer *)

END
END

PROCEDURE SCAN_OBJECT();
FOREACHpointer P in object referenced by S DO

EVACUATE_AND_UPDATE(P);
END
S := S+OBJECTSIZE(S);

END

PROCEDURE COPYING_GC();
FLIP();
FOREACHpointer P in root set DO (* Evacuate root pointers *)

EVACUATE_AND_UPDATE(P);
END
(* Scan evacuated objects *)
S := start of tospace ;
WHILE S<B DO

SCAN_OBJECT();
END

END

3.4 Conservative algorithms

A garbage collector must be able to identify root pointers and pointers within live
objects in order to traverse the object graph. Failure to find all pointers may cause
live objects to be erroneously considered unreachable and their associated memory
will be reclaimed. In most systems, the collector relies on runtime type information
provided by the compiler to identify the pointers. In some systems, however, such
information is not available to the collector. An example of such an environment is
a C or C++ program.

When runtime type information is lacking, some other method must be used to
identify pointers. Conservative algorithms, of which the one published in [BW88]
was one of the first, scan objects, stacks, and global variables with the assumption
that every word of memory might contain a pointer. The collector determines
whether the potential pointer references a previously allocated object, in which
case the object is marked as being live. This strategy means that arbitrary data can
be mistaken for pointers, resulting in areas of memory not being reclaimed. Since
the collector can never be absolutely sure that a bit-pattern really is a pointer, rath-
er than some other type of data, pointers cannot be updated. Compaction is
therefore difficult to achieve in such an environment. One technique to achieve

3.5 Generation-based algorithms 33
compaction is to always do pointer dereferencing indirectly through a table of fixed-
location forwarding pointers, but this of course assumes a cooperating compiler, or
at least that the programmer adheres to strict coding conventions. A compromise
is represented by Bartlett’s Mostly Copying Garbage Collector [Bar88]. This algo-
rithm requires that type information is available for all objects located on the
garbage collected heap. Objects referenced only by pointers located on the collected
heap can safely be moved and pointers to it updated. If potential pointers to the
object are found outside the garbage collected heap, for example on the stack, the
object is not moved.

The difficulty of calculating worst-case costs, both with respect to time and stor-
age, for the conservative GC algorithms makes them unsuitable for real-time
systems and we will therefore not consider them further in this thesis.

3.5 Generation-based algorithms

Research on the lifetime of heap-allocated objects [LH83,Ben90] has shown that
most objects die very shortly after having been created. In contrast, a large portion
of the surviving objects tend to live for very long periods. This has inspired people
to use different strategies to manage young and old objects in order to avoid moving
objects unnecessarily during heap compaction [LH83,Ung84]. The idea is to divide
the available storage into two or more smaller areas, or generations, which are gar-
bage collected separately. The age of an object controls which generation it is
located in. Objects start their lives in the young generation. After having survived
the initial period of high mortality they are moved, or promoted, to an older gener-
ation. The process of promoting long-lived objects to older generations is
sometimes also called tenuring. In this way, garbage collection can to a large degree
be isolated to the young generation, which contains a relatively small number of
live objects. Moving the bulk of the live objects, the old ones, is thus avoided. A
table is maintained for each generation consisting of references to objects in older
generations that contain pointers into the current generation. Using this informa-
tion, a complete traversal of older generations can be avoided each time a GC cycle
is performed in a young generation. The old generation (or generations) must also
be garbage collected occasionally, but since the allocation (promotion) rate in this
part of the heap is quite low this is only necessary with long intervals.

In order to get maximum performance out of a generation-based algorithm, care
must be devoted to tuning the parameters of the collector. Factors that must be con-
sidered are the number of generations, the generation sizes, and the tenuring
policy [UJ88], i.e. when to promote an object to an older generation.

The advantage of generation-based algorithms is a decreased average-case
overhead. Most work is isolated to a small young generation which require little
time to garbage collect. Most GC-induced delays will therefore be comparably
short, in the range of 0.1 seconds or less, and will not be noticed by a human user.
The worst-case delays, on the other hand, are typically longer than for single-gen-

34 Chapter 3 Automatic Memory Management
eration schemes. Once in a while, tenuring objects will cause a garbage collection
in the older generation to follow a collection in the younger generation. It has been
proposed that the old generation in turn should be divided into smaller areas that
are garbage collected separately. Every once in a while, as objects are tenured, one
of the parts of the old generation is scavenged for garbage. In this way, complete
traversals of the entire heap are avoided. An algorithm using this approach is the
train algorithm [HEM92], which has been implemented in the Beta runtime sys-
tem [SG95, MMN93].

3.6 Efficiency

The efficiency of a GC scheme can be formulated in several ways depending on the
requirements of the application. The amount of storage needed by the garbage col-
lector can be one factor affecting the effiency, as can the time needed. Often a
combination of time and space requirements is considered when referring to the
efficiency. Since timing is very important in real-time systems, the time overhead
for garbage collection is the dominating factor when determining the efficiency for
such systems.

Time overhead can be measured in two ways. One way is to look at the total
amount of time used for garbage collection. This definition of efficiency is especially
appropriate for batch systems where the duration of an individual GC-induced
pause is of no interest. The only concern is that the program should (successfully)
terminate as quickly as possible. In real-time systems, the total overhead of the
scheme is still of interest, but is not a sufficient measure of the efficiency of the gar-
bage collector. Instead, the ability of the collector to comply with the real-time
demands of the application must be taken into consideration. This means that the
worst-case duration of an individual GC-induced pause is of interest, as is how
evenly distributed the pauses are over time.

Algorithms that perform an entire GC cycle in one chunk are often denoted stop-
the-world algorithms. Stop-the-world algorithms have, in most cases, the lowest
total overhead combining low demands on storage with a low GC/mutator time
ratio. However, the real-time performance is bad since the individual pauses are
unacceptably long.

Comparing mark-sweep algorithms with copying algorithms, one finds that
mark-sweep algorithms in general require considerably less memory than copying
algorithms. This is due to the fact that the copying algorithms use two equally-
sized semispaces, of which only one is actively used at any time. The time overhead
for each of the two strategies is somewhat more difficult to determine. If the
amount of live objects is large compared to the amount of dead ones, the mark-
sweep algorithms are the most efficient. In contrast, if the amount of live objects is
small the copying algorithms are more efficient. The time overhead of the mark-
sweep algorithms is proportional to the heap size, while the overhead of the copy-
ing algorithms is proportional to the amount of live objects.

3.7 Incremental algorithms 35
Generation-based algorithms generally improve the total efficiency by perform-
ing garbage collection in only a small part of the heap. Some additional overhead
is, however, introduced because of the need to administrate pointers between gen-
erations and tenuring information. Since the mortality is high among the objects
in the young generation, and thus the number of live objects low, a copying algo-
rithm is suitable for managing these objects. The bulk of objects, those in the old
generation, have much lower mortality and can very well be managed by a mark-
sweep collector. From a real-time point of view, generation-based algorithms are
not acceptable if they introduce long pauses.

3.7 Incremental algorithms

In order to guarantee that a real-time program will meet its deadlines, the system
must be predictable. This implies that the garbage collector must have the proper-
ty that the worst-case delays must be small, bounded, and occur at predictable
times. Interactive systems do not have such strict requirements; it is enough that
the delays are short enough not to be noticed most of the time.

Incremental algorithms which only perform a very small amount of work dur-
ing each invocation, such as those presented by Baker [Bak78] and Wadler
[Wad76], are often used to achieve automatic memory management for soft real-
time systems. The worst-case delay caused by an individual invocation of the col-
lector is typically in the range of 1-10 ms. The algorithms are based on one of the
tracing algorithms, dividing the work of a full GC cycle into many small bounded
increments, which are executed interleaved with the execution of the mutator.
GC work is in most cases triggered by memory allocation and pointer operations.

An incremental real-time version of a mark-sweep algorithm was published by
Wadler in [Wad76], but the best known incremental algorithms are based on the
copying algorithms. Baker has presented an often used algorithm of this type
[Bak78].

A complication caused by the mutator running interleaved with the collector is
that it is more difficult to ensure that the collector correctly identifies all reachable
objects. The traversal of the object graph performed by the collector is divided into
many increments. Therefore, at any time during the execution of the mutator, the
set of live objects can be divided into objects not yet found by the collector, objects
identified as live but not yet scanned, and objects that have been both identified as
live and scanned. The contents of the latter objects will not again be examined by
the collector. If the mutator in this situation attempts to store a pointer to an object
not yet found by the collector in an already scanned object, the collector might fail
to identify the referenced object as being reachable. Baker’s algorithm employs a
read barrier augmenting each operation reading the value of a pointer with a check
to ensure that the object referenced by the pointer is marked as live. An improve-
ment of Baker’s algorithm which uses a write barrier instead of a read barrier
(writes are less common than reads) was published by Brooks [Bro84]. Bengtsson

36 Chapter 3 Automatic Memory Management
[Ben90] has generalized Brooks’ algorithm to handle multiple generations, giving
the collector the advantages of the generation-based algorithms while still preserv-
ing reasonable real-time properties.

Making copying and mark-sweep algorithms incremental increases the real-
time performance of the algorithms, but at the same time introduces new sources
of overhead. One such source is the additional work that has to be performed by
read and write barriers. Another source of overhead is floating objects. It might
happen during a GC cycle that an object that has been marked as live by the col-
lector becomes unreachable due to the actions of the mutator. The collector will
retain the object and the memory occupied by the object will not be reclaimed dur-
ing the on-going cycle. The memory will be reclaimed during the next cycle, but
floating objects will cause both some storage and time overhead. Bengtsson’s thesis
[Ben90] contains a thorough analysis of the efficiency of different incremental GC
algorithms.

Special properties of the system or programming languages can in some situa-
tions be used to achieve performance sufficient for soft real-time systems. An
example of this is early versions of the Erlang programming language [ADVW92].
Here, each process was assigned a separate heap. The heap size was in most cases
just a few hundred bytes. Due to language properties, there could be no pointers
between objects allocated on different heaps; processes communicated by passing
copies of data objects to each other. The heaps were garbage collected individually
using a stop-the-world policy, but since the heaps were very small so were the indi-
vidual delays. The technique is, however, not generally applicable to other types of
systems: The strategy does not scale up when larger heaps are required. In addi-
tion, the overhead for keeping track of references from one heap to another
increases quickly as the number of heaps is increased.

3.8 Scheduling properties

Systems that have to comply with real-time demands also put demands on the
memory management strategy. The chosen strategy must be efficient enough not
to prevent the software from meeting its deadlines. Several levels of real-time
demands exist. Some applications may have very relaxed demands while others
may have very strict demands. Different memory management solutions might be
appropriate depending on the level of real-time demands. This section discusses
which memory management strategies are available to meet various timing
requirements.

3.8.1 Stop-the-world

The only time-related requirement for a batch system is that the time for the
processing should be as short as possible. This implies that a GC strategy that min-

3.8 Scheduling properties 37
imizes the total amount of time spent on garbage collection should be chosen.
There are, however, no restrictions on the size of the individual pauses induced by
the garbage collector.

Traditional GC algorithms of the stop-the-world type are very suitable for batch
systems. Collectors of this type are inactive until the heap is exhausted, i.e. until
a memory allocation request from the mutator cannot be satisfied. When this hap-
pens, the application program is temporarily halted and a complete GC cycle is
performed, reclaiming all dead objects, hence the name stop-the-world.

The individual delays incurred by garbage collection are typically in the range
of a few seconds up to several minutes depending on the system. Practically all of
the early approaches to garbage collection were based on stop-the-world algo-
rithms, with good reason, since most programs ran in batch mode. Examples of
stop-the-world algorithms are [McC60,Tho76,FY69].

3.8.2 Interactive systems

Long GC-induced pauses should not occur in an interactive system, at least not too
often, although occasional long pauses might be tolerated. The trick to reduce the
duration of the individual pauses induced by the garbage collector is to somehow
partition the GC work into smaller chunks. The work can then be spread out over
a longer time-span instead of being concentrated to one point in time. One way of
partitioning the work is to garbage collect only a limited part of the heap at the
time. This is the approach taken by the generation-based algorithms
[LH83,Ung84] (described in Section 3.5). In most cases the garbage collection will
be isolated to a relatively small part of the heap, namely the young generation,
causing pauses no longer than some tenths of a second. Sometimes it will, however,
be necessary to garbage collect also the old generation, which will cause consider-
ably longer pauses.

An improvement of the generation-based algorithms, the train algorithm
[HEM92], addresses the problem of garbage collecting the old generation in a non-
disruptive way. Here, the old generation is divided into a number of segments, each
garbage collected separately. This scheme reduces the pauses caused by garbage
collection in the old generation to acceptable levels [SG95].

Shorter delays can be achieved by dividing the GC work into many small incre-
ments. One such incremental strategy is reference counting (Section 3.7), another
is the generation-based algorithm presented in [LH83]. Here, small chunks of work
are performed in connection with each pointer assignment. Mark-sweep and copy-
ing algorithms can also be made incremental, running as coroutines in parallel
(actually interleaved) with the mutator, as we will see in the next section. It has
also been proposed to let the garbage collector run as a completely parallel process
[Wad76,DLM+78,BDS91].

38 Chapter 3 Automatic Memory Management
3.8.3 Hard real-time computing

Hard real-time systems have very strict demands on response times. The maxi-
mum allowed response times are often 1 ms or less. The consequences of missing
even a single deadline are often severe, causing the system as a whole to fail. It
must be possible to predict the worst-case behaviour of the software in order to
ensure beforehand that all deadlines will be met. Hard real-time systems are thus
very sensitive to how GC work is scheduled.

Sequential garbage collection

The traditional approach for hard real-time systems is based on fine-grained incre-
mental algorithms. The garbage collector is invoked each time an allocation
request is made and performs an increment of GC work. Other pointer-related
operations, such as pointer access or assignment may also trigger GC work. It is
easy to guarantee that the garbage collector keeps up with the allocation requests
since the mutator is suspended until sufficient GC work has been performed.

The incremental real-time algorithms, as described up to now, guarantee small
(down to around one millisecond on typical hardware of today) worst-case bounds
on the cost of memory management-related operations. However, this is not suffi-
cient for many hard real-time systems, as has been pointed out in for instance
[Wit92] and [WJ93]. The problem is that servicing a task will often involve per-
forming a whole series of memory management operations. The cumulative worst-
case overhead for garbage collection during the execution of the task may therefore
grow quickly, making it impossible to guarantee that the deadline is always met.
It is not enough that the duration of a single GC induced delay is small and bound-
ed, but the cumulative overhead for the critical task must also be small. This is
difficult to guarantee when traditional incremental algorithms are used. Cluster-
ing of relatively long GC-induced delays is an unwanted property of most
incremental algorithms, which stresses the problem.

One solution to the problem of rapidly growing cumulative worst-case delays is
to try to make the overhead for individual memory management operations prac-
tically negligible. One step towards achieving this can be to not compact the heap,
thus using non-moving incremental algorithms. In return, the problem of memory
fragmentation will have to be addressed in some other way. This approach has been
widely used, among others by Baker [Bak92], Wilson [Wj93], and Yuasa [Yua90].
The remaining overhead can still be too high for use in systems with very strict
demands on response times, however.

3.9 Memory hierarchies in real-time systems 39
Concurrent garbage collection

GC-induced delays can be made negligible if garbage collection is performed by an
execution thread completely separate from the mutator thread. The process
responsible for garbage collection is normally given a lower priority than the appli-
cation processes which are given precedence. Application processes will
consequently not be significantly delayed by garbage collection.

The problem with concurrent garbage collection is to guarantee enough
progress of the GC work. If the GC process is not assigned a sufficient amount of
CPU time, it will not be able to reclaim memory at the same rate as the mutator
requests it. The mutator will block until the garbage collector has freed enough
memory to satisfy the request, which can result in a violation of a deadline. A glo-
bal schedulability analysis of the entire system must be performed in order to show
that critical processes are never delayed by garbage collection.

Concurrent garbage collection has been proposed by various people, e.g.
Steele [Ste75], Dijsktra et al. [DJM+78], and Appel et al. [AEL88]. The problem of
scheduling analysis is not given much attention, however. Instead, the work con-
centrates on algorithmic and synchronization-related issues.

An interesting variant of concurrent garbage collection is presented by Nilsen
[NS94]. Here, an incremental copying (and thus compacting) algorithm of the Bak-
er type is utilized. Special hardware is used, which performs the GC work on a
separate processor. However, as long as standard mass-produced microprocessors
do not include such support, this technique will probably be of limited use.

3.9 Memory hierarchies in real-time systems

The memory system of modern computers is typically implemented as a hierarchy.
At the top of the hierarchy we find CPU registers and on-chip memory caches. Fur-
ther down we in turn find secondary caches and the main memory (DRAM chips).
At the bottom we can find mass storage units in the form of disk drives which are
used to implement virtual memory. This architecture is motivated by the necessity
of making a compromise between hardware cost and performance.

High-performance components such as fast on-chip memory are expensive in
comparison to disks or the slower memory chips used for the main memory banks.
The bulk of data and code is stored in slow memory, but the system attempts to
store frequently used pieces of data and code in faster parts of the memory system
in order to minimize the cost of memory access. The result is that the cost of a mem-
ory access will vary depending on where in the memory hierarchy the requested
piece of information is stored. The difference in cost can be very large, especially if
secondary storage (disk drives) is used for demand paging. An access to main mem-
ory can easily cost 10 times as much as an access to the processors on-chip cache.
The cost will be even higher if data has to be read from disk, perhaps 1000 times
more expensive than a cache access. In order to achieve maximum performance, we

40 Chapter 3 Automatic Memory Management
want to organize our programs such that as many memory accesses as possible can
be serviced by fast memory components. Note that this only minimizes the average
cost of a memory access. The worst-case cost of an access still depends on the slow-
est part of the memory hierarchy (main memory or secondary storage).

The choice of GC algorithm affects the memory access pattern directly by the
accesses performed by the garbage collector. It also affects the access pattern indi-
rectly by controlling where in memory new objects are allocated and (in the
presence of compaction) by moving objects around in memory. Poorly constructed
GC algorithms can interact badly with caches and virtual memory [Lar77,
WLM92, Zor89].

Hard real-time systems

A page fault is generated whenever a memory access cannot be serviced because
the requested data has been swapped out to secondary storage. The operating sys-
tem responds to the page fault by reading in the memory page containing the
requested data from disk which may take up to 100 ms, during which time the
application program is suspended. Such long delays are unacceptable in practically
all embedded systems, which excludes the use of virtual memory. Another reason
for not using virtual memory is the desire to avoid using failure-prone mechanical
hardware such as disk drives, especially in mobile applications.

Much of the speed of modern microprocessors come from their aggressive use of
on-chip caches. However, their use in hard real-time systems can be a mixed
blessing [But97]. If the application requires a very high degree of predictability,
caching can be a direct disadvantage since some nondeterminism is introduced.
Most memory accesses will be cheap, but every now and then a cache miss will
require additional time. The worst-case cost for a memory access can very well be
higher when a cache is used compared with accessing the main memory directly.
This is because the hardware must first check the cache and then access the main
memory. Overhead may also be associated with additional house-keeping in order
to keep main memory and the cache consistent in connection with memory writes.

GC algorithms which interacts well with caches is desirable for hard real-time
systems. However, it is the worst-case behaviour which is of dominating interest.
Existing cache-conscious GC algorithms attempt to minimize the total cost of cache
misses, i.e. to improve the average case behaviour. Since it is not obvious that the
worst-case behaviour will improve, the rest of this thesis will not concentrate on
these issues.

3.10 Problem statement 41
3.10 Problem statement

Memory management for hard real-time systems, be it manual or automatic, must
take several issues into consideration in order to be feasible:

• Robustness. The memory management strategy should aid in producing safe
and robust programs. The programmer should be alleviated from writing com-
plex code for managing the memory manually resulting in hard-to-find
programming errors.

• Efficiency. Processor time is a limited resource, especially in embedded control
systems where the CPU usage tends to be high. The memory manager must
consequently use the available processor time efficiently and intrude as little as
possible on the execution of the application program.

• Predictability. Hard real-time systems require predictable behaviour, making it
possible to perform an a priori analysis of the worst-case performance. The
memory manager must therefore provide strict upper bounds on the associated
overhead.

• Schedulability. The high demands on reliability and robustness of embedded
software often call for a priori schedulability analysis. It must be ensured that
memory management does not violate the schedulability requirements.

Automatic memory management is desirable in hard real-time software systems.
Introduction of garbage collection reduces the complexity of program code and vir-
tually eliminates hard-to-debug programming errors such as dangling pointers
and memory leaks. This results in more robust systems.

Much work has been devoted to finding new efficient algorithms for garbage col-
lection and improving old ones. Even more efficient algorithm can surely be
developed, but we do not feel efficiency is the major obstacle for hard real-time gar-
bage collection. Instead, the problem is to achieve enough predictability and to find
efficient techniques to make sure that a system will meet all its hard deadlines.

Our goal is thus to find techniques that make automatic memory management,
i.e. garbage collection, feasible for hard real-time systems. We primarily concern
ourselves with embedded systems for automatic control. We aim at tailoring exist-
ing GC algorithms to fit the specific requirements of such systems. Architectural
properties of control software can be used to schedule the GC work such that it does
not interfere with the control algorithms of the application. Existing techniques for
schedulability analysis are adapted to make it possible to perform a priori schedu-
lability analysis.

42 Chapter 3 Automatic Memory Management
3.11 Summary

A brief overview of the field of automatic memory management was presented.
Automatic memory management is characterized by leaving the problem of detect-
ing memory that can be reused for new purposes to the runtime system, or more
exactly, to a garbage collector. The chapter compares automatic memory manage-
ment with the more primitive manual memory management which places all
responsibility for keeping track of what memory to reuse on the application pro-
grammer. The conclusion is that automatic memory management leads to less
complex programs with less programming errors, which is of vital importance in
embedded systems.

The three basic classes of algorithms for garbage collection were described: ref-
erence counting, mark-sweep traversal, and copying algorithms. The latter two
types of algorithms were found to be suitable for use in embedded systems in their
incremental variants. Incremental garbage collection implies dividing the work of
the garbage collector into many small chunks and distributing them evenly over
time.

Techniques such as conservative garbage collection, i.e. garbage collection for
systems with no or incomplete runtime type information, and generation-based
garbage collection were surveyed. Conservative garbage collection was deemed
inappropriate for safety-critical embedded systems due to its unpredictable mem-
ory usage. Generation-based algorithms promise low average-case overhead, but
their worst-case performance is typically worse than that of other algorithms.

Garbage collection has traditionally been difficult to introduce in systems with
hard real-time requirements, because of the difficulty to achieve low overhead and
enough predictability. A key issue related to the solution of the problem is to devel-
op techniques for how the GC work is scheduled. Two scheduling variants for
incremental garbage collection were described; sequential garbage collection and
concurrent garbage collection. Both variants have their advantages, but also dis-
advantages that make them less suitable for use in hard real-time systems. There
is thus a need for an improved scheduling strategy.

We conclude that an incremental traversal GC algorithm is a suitable choice for
use in hard real-time systems. It must, however, be combined with a new schedul-
ing technique in order to meet the demands on predictability and low overhead in
critical situations. Furthermore, techniques for a priori scheduling analysis of the
collector must exist in order to make it possible to guarantee that a a safety-critical
application will always meet its deadlines.

Chapter 4

Scheduling Garbage Collection

In this chapter we describe how to schedule GC work in such a way that high-pri-
ority processes are not disturbed. It is shown how an incremental GC algorithm
can be modified for our scheduling strategy. We further discuss how to perform
scheduling analysis for a system including garbage collection.

4.1 Introduction

Hard real-time systems used for automatic control purposes must satisfy two
important timing demands. It must be guaranteed that critical processes can be
invoked with a very small latency. Furthermore, critical control processes must fin-
ish their execution as soon as possible after invocation in order to minimize the
control delay. This implies that the memory management scheme should therefore
cause minimal disturbance of such processes.

Good incremental GC techniques exist for soft real-time systems. These tech-
niques are, however, not directly applicable to hard real-time systems. In soft real-
time algorithms, garbage collection is usually triggered by memory management
operations and pointer manipulation. Operations that trigger garbage collection,
and thus cause GC-induced pauses, are pointer reads, pointer writes, and memory
allocation. The worst-case overhead for each operation might seem to be small
enough for real-time requirements applications, but the worst-case overhead of
successive operations quickly add up to too long delays, as has been noted in
[Wit92] and [WJ93]. A property of many soft real-time algorithms is that long
pauses induced by garbage collection are clustered together, making the actual
case very close to the worst case. These rapidly accumulating costs for garbage col-
lection make it very difficult to meet tight deadlines.

The high worst-case overhead for pointer manipulation and memory allocation
must somehow be eliminated in order to perform garbage collection in hard real-

44 Chapter 4 Scheduling Garbage Collection
time systems without significant disturbance. One way to do this is to reduce the
amount of work that has to be performed by the garbage collector. Less total work
means that less work has to be performed at each invocation of the collector. This
in turn means significantly shorter individual delays. The worst-case overhead will
therefore not add up as quickly as before. The method used to reduce the required
work is often to give up an important property of many GC algorithms, namely
memory compaction. The problem of memory fragmentation must then be
addressed separately. This approach has been used in many collectors, e.g.
[Bak92], [WJ93], and [Yua90].

As we have seen, a garbage collector for hard real-time systems must provide
good worst-case performance and guarantee negligible disturbance of high-priori-
ty, critical, processes. The scheduling demands of the low-priority processes, on the
other hand, are more relaxed and the average-case performance becomes more
interesting for these processes. This chapter will concentrate on analysing the
worst-case performance, but techniques to achieve good average-case behaviour
will also be discussed.

4.2 Semi-concurrent scheduling

The requirement that the work of a hard real-time garbage collector should be
scheduled in such a way that it does not disturb critical processes implies that gar-
bage collection should be completely avoided when such processes execute. The
absence of GC-induced delays during the execution of critical processes makes it
unnecessary to give up memory compaction.

Control systems constitute a large part of the hard real-time systems of today.
As we have seen earlier, such systems are built around a few high-priority period-
ically executing processes with hard real-time demands and a set of low-priority
processes with soft real-time demands. The constraints on the design of a garbage
collector for such a system are:

• The worst-case cost of individual pointer and memory management operations
must be kept very small for the high-priority processes in order to avoid large
accumulated worst-case overhead for each invocation.

• The high-priority processes must not be prohibited from starting on time, i.e. a
short latency is required. It is thus not feasible to lock the system for extended
periods while performing garbage collection.

• The garbage collector should provide good overall efficiency in order to be useful
even in heavily loaded systems.

The idea explored in this thesis is to suspend the garbage collector when the high-
priority processes are executing. The GC work neglected during the execution of
the high-priority processes must then be performed in the pauses between the acti-

4.2 Semi-concurrent scheduling 45
vations of the high-priority processes. The remaining time will be split between
executing low-priority processes and performing garbage collection motivated by
the actions of low-priority processes. We suggest that the low-priority processes use
the standard scheduling techniques of soft real-time GC algorithms, i.e. pointer
operations and allocation requests trigger garbage collection. Figure 4.1 illustrates
how the available CPU time would be used in the presence of one periodically exe-
cuting high-priority process and one low-priority process.

The strategy can be described by having three levels of priority:

1. High-priority processes.

2. Garbage collection required by the operations of the high-priority processes.

3. Low-priority processes and garbage collection their associated garbage col-
lection work.

In order to avoid starvation among the low-priority processes, the garbage collector
suspends its work as soon as it can guarantee that the high-priority processes will
not run out of memory. A further natural development would be to assign any idle
processor time to garbage collection, adding a fourth level of priority. While this
does improve the average-case performance of the strategy it does not, in the gen-
eral case, affect the worst-case performance. We will therefore not discuss this
optimization in detail.

Garbage collection and process scheduling are in most existing literature seen
as separate issues, but in order to implement the described scheduling principle it
is necessary to integrate them. The cooperation of the scheduler is needed to trig-
ger garbage collection when the high-priority processes are suspended.

Figure 4.1 Dividing the CPU time between processes. The system consists of one
periodic high-priority process (HP) and one low-priority process (LP).
Whenever a high-priority process is suspended, the garbage collector
(GC) is run. GC work is also interleaved with the low-priority process.

Time

Priority

HP HP

GC GC

LP/GC LP/GC LP/GC

46 Chapter 4 Scheduling Garbage Collection
The effect of the proposed scheme is that it will appear to the high-priority proc-
esses as if the system was equipped with an ideal memory manager with virtually
no overhead. They are never interrupted by garbage collection, nor will garbage
collection keep them from being activated at the expected time, provided that
enough CPU time remains to run the garbage collector. To the low-priority process-
es on the other hand, it will appear as if the system had an incremental real-time
garbage collector interrupting the application program for short, bounded, periods.
GC work will thus be performed concurrently with the high-priority processes and
sequentially to the low-priority processes. We therefore call the proposed GC
scheduling strategy semi-concurrent garbage collection. In the remaining part of
this chapter we will investigate how a garbage collector using semi-concurrent
scheduling can be implemented and how its behaviour can be analysed.

4.3 Basic garbage collection algorithm

The GC algorithm we will use to illustrate how the collection work should be sched-
uled is a variant of Brook’s algorithm [Bro84], as presented by Bengtsson [Ben90].
Brook’s algorithm is in turn a variant of Baker’s algorithm [Bak78]. It is an incre-
mental copying algorithm suitable for soft real-time systems, but, as we will see,
proper scheduling will also make it usable in hard real-time systems. In this sec-
tion we will study the original formulation of the algorithm.

4.3.1 Tri-colour marking

We start by introducing the notion of tri-colour marking. Originally proposed by
Dijkstra et al. [DLM+78], this abstraction is useful when discussing incremental
tracing GC algorithms. Heap objects can be in one of three different states as seen
by the garbage collector. These states are denoted black, grey, and white. Hence the
name tri-colour marking.

• Black objects have been identified, and marked, by the garbage collector as
being reachable. In addition, the contents of each black object have been
scanned for pointers to other reachable objects. The garbage collector has fin-
ished examining the black objects and will not visit them again during the
present GC cycle.

• Grey objects have been identified as reachable, but they have not yet been
scanned for pointers to other live objects. A grey object is turned into a black
objects when it has been scanned.

• White objects have not yet been found by the garbage collector. They may or
may not be reachable from the application program. White objects are turned
into grey ones as the garbage collector comes across them.

4.3 Basic garbage collection algorithm 47
A GC cycle begins with all objects being white. As the garbage collector makes
progress, objects are coloured grey and later black. At the end of a GC cycle, all live
objects have been coloured black. The unreachable objects were never visited by
the garbage collector and are consequently white. The memory occupied by white
objects can now be reclaimed.

4.3.2 Algorithm overview

The heap is divided into two equally sized areas denoted tospace and fromspace, as
illustrated by Figure 4.2. New objects are allocated at the top of tospace, at the
position denoted by T. Allocation proceeds in this way until tospace is filled up.
Then, a flip is performed, changing the meaning of tospace and fromspace. The old
tospace now becomes fromspace and vice versa. Fromspace will contain a mix of
live and dead objects. The live objects must be moved, evacuated, from fromspace
into tospace in order to enable a future flip. The evacuated objects are placed at the
bottom of tospace, at the location denoted B. The evacuation procedure is per-
formed incrementally as new objects are allocated at the top of tospace. When no
free memory remains in tospace, another flip is performed, effectively reclaiming
the memory occupied by dead objects. Another GC cycle is now initiated, evacuat-
ing the live objects from the new fromspace. Enough evacuation work must be
performed in connection with each allocation request to guarantee that all live
objects in fromspace have been evacuated before tospace is filled up. Otherwise, the
system will find itself in a “catch 22” situation: A flip cannot yet be performed since
some objects remain to be evacuated from fromspace, but a flip must be performed
in order to free the memory necessary to evacuate the objects.

Since garbage collection is performed in short increments interleaved with the
execution of the application program, each increment must leave the heap in a con-
sistent state. When an object is moved, all the pointers referencing the object must
be updated to point to the new copy. Since finding all these pointers and updating
them all at the time of evacuation can be very expensive, an indirection scheme is
used in order to allow the application program to access an evacuated object
through both updated and not yet updated pointers. The header of each object con-
tains a forwarding pointer pointing to the newest version of the object. When an
object is evacuated, the forwarding pointer in the old, fromspace, copy of the object

Figure 4.2 The heap structure of Brook’s algorithm.

TospaceFromspace

allocated
objects

evacuated
objects

Old objects

B TS

48 Chapter 4 Scheduling Garbage Collection
is set to point to the new, tospace, copy. The forwarding pointer of the tospace copy
is set to point to itself. All pointer dereferencing is done via the forwarding pointer
of the objects pointed to. Dereferencing updated and not yet updated pointers will
in this way yield the same result, namely the tospace copy of the object, as illus-
trated in Figure 4.3. All pointers are updated eventually.

4.3.3 The collector

The garbage collector and the application program, the mutator, are viewed as
coroutines. The collector consists of an endless loop performing one GC cycle in
each iteration of the loop. A cycle consists of two phases. First, the pointer graph is
traversed and all objects found are evacuated. Then, the collector waits until
tospace is filled up, after which a flip is performed.

The pointer traversal starts by examining the root pointers. The objects refer-
enced by root pointers are evacuated into tospace. Evacuating an object turns it
grey according to the tri-colour marking terminology. Not yet evacuated objects, i.e.
objects located in fromspace, are considered to be white. The evacuated objects, the
grey objects, are scanned next. The pointers within these objects are traced and the
referenced objects are evacuated. The grey objects are turned into black objects as
their contents are examined. When no grey objects remain, all live objects have
been copied to tospace. The recursive scanning of evacuated objects is implemented
using a scan pointer, denoted S in Figure 4.2, sweeping across the evacuated
objects starting at the bottom of tospace. The objects referenced by the scan pointer
are searched for pointers. When a pointer to a white object is found, the object is
copied to tospace and the examined pointer is updated to point to the new location.
The scan pointer effectively marks the boundary between black and grey objects.

The collector is described by the pseudo code fragment below. Control is trans-
ferred to the application program, and the collector is suspended, whenever

TospaceFromspace

Figure 4.3 The indirection scheme of Brooks algorithm. Dereferencing the updated
A pointer or the not yet updated B pointer yields the same result, the
tospace copy of the object, after following the forwarding pointer.

forwarding pointer forwarding pointer

A

B

new copyold copy

4.3 Basic garbage collection algorithm 49
enough GC work has been performed and the heap is in a consistent state. Note
that the pseudo code below does not explicitly implement these semantics. Execu-
tion of the collector coroutine is resumed in connection with allocation requests
made by the application program.

VAR B; (* Reallocation pointer for evacuated objects *)
S; (* Scan pointer *)

(* Coroutine body *)
LOOP

WHILE tospace is not full DO
suspend collector;

END
Flip semispaces ;
B := Address of lower end of tospace ;
ScanRootPointers;
S := B; (* Address of first evacuated object *)
WHILE S<B DO

ScanObject(S);
S := Address of next evacuated object ;

END
END

PROCEDURE ScanRootPointers;
FOREACHroot pointer DO

IF root pointer points into fromspace THEN
IF object referenced by root pointer is unevacuated THEN

EvacuateObject(root pointer);
END
Update root pointer to point to the tospace copy ;

END
IF enough work performed THEN

suspend collector;
END

END
END

PROCEDURE ScanObject(Object);
FOREACHpointer in Object DO

IF pointer points into fromspace THEN
IF object referenced by pointer is unevacuated THEN

EvacuateObject(pointer);
END
Update pointer to point to the tospace copy ;

END
IF enough work performed THEN

suspend collector;
END

END
END

50 Chapter 4 Scheduling Garbage Collection
PROCEDURE EvacuateObject(Object);
Copy Object to the location pointed to by B;
B := B + size of Object;
Set forwarding pointer in fromspace copy to point to the

tospace copy ;
Set forwarding pointer in tospace copy to point to

the tospace copy itself;
END

4.3.4 The mutator

Pointers to evacuated objects, black or grey, can point either directly to the tospace
copy of the object or to the old, fromspace, copy. All dereferences of a pointer are
therefore made via the forwarding pointer in the objects. This constitutes a very
simple read barrier.

Since the mutator executes interleaved with the collector, it must make sure it
does not introduce pointers to fromspace objects into black objects, since these will
not again be visited by the collector. If this was allowed, the collector could fail to
identify fromspace objects as being alive. For example, assume that a single pointer
exists to a white object somewhere in memory. If the mutator writes a copy of the
pointer into a black object and then erases the original pointer, the white object
would never be reached by the collector and consequently erroneously considered
to be garbage. The mutator must therefore enforce the following invariant:

Invariant: Black objects do not contain direct pointers to white objects.

A write barrier is used to guarantee that the invariant always holds. Assignments
to pointers are monitored by the write barrier and attempts to violate the consist-
ency of the GC scheme are caught. If the new pointer value references a white
object the object is immediately evacuated, turning it into a grey object. Assign-
ments to root pointers are monitored in the same way as assignments to pointers
located on the heap. The write barrier can be described by the following piece of
pseudo code:

PROCEDURE PointerAssignment(Pointer,NewValue);
IF NewValue points into fromspace THEN

IF object referenced by NewValue is unevacuated THEN
EvacuateObject(NewValue);

END
Update NewValue to point to the tospace copy ;

END
Pointer := NewValue;

END

Allocation requests trigger an increment of GC work by transferring control to the
collector coroutine. In the original formulation of the algorithm, the amount of
GC work performed is proportional to the amount of requested memory. The work

4.4 Scheduling the garbage collection work 51
is performed in immediate conjunction with the allocation request. Before the new
object is returned to the requester, the contents of the object are initialized in order
to ensure that all pointer fields have consistent values.

FUNCTION Allocate(ObjectSize);
Calculate required GC work ;
Resume collector coroutine ;
T := T - ObjectSize;
Initialize the contents of the new object;
RETURN T;

END

4.4 Scheduling the garbage collection work

This section deals with how the work of the incremental copying GC algorithm
described in Section 4.3 is scheduled and how the collector is synchronized with the
mutator. The necessary modifications of the original GC algorithm are described.

4.4.1 Object initialization

The pointer fields of a newly allocated object must have well-defined initial values,
because the garbage collector might otherwise misinterpret random bit-patterns
as valid pointers when scanning the object. We achieve this by initializing all of the
memory cells of new objects to zero. This strategy is simpler to implement than
only initializing the pointer fields and has also the advantage that all non-pointer
fields are given well-defined initial values as well, which reduces the risk for
programming errors.

An obvious strategy for initializing the contents of new objects is to perform the
initialization in connection with allocation. When a new object is allocated, it is
also initialized before it is passed on to the mutator. The cost of initialization would
thus burden the mutator, which is not desirable for the high-priority processes of
a control application. Our goal is to minimize the cost of memory management for
high-priority processes. As shown in Chapter 6, the cost of memory initialization
can easily stand for the majority of the total cost for a memory allocation request.

Our solution to the object initialization problem is to move the responsibility for
initializing memory allocated by high-priority processes to the garbage collector.
The garbage collector must always ensure that enough free memory is initialized
and available for allocation to meet the requirements of the high-priority process-
es. Low-priority processes, on the other hand, trigger initialization work in
connection with allocation requests. The initialization strategy is analogous to the
strategy we use for scheduling the rest of the memory management work.

The proposed memory initialization strategy is illustrated in Figure 4.4. The
amount of memory that the garbage collector must keep initialized in order to meet
the allocation needs of the high-priority is denoted MHP and is derived from the

52 Chapter 4 Scheduling Garbage Collection
worst-case allocation needs of the high-priority processes. We describe how to
determine the value of MHP in Section 4.8.3. New objects are allocated at the posi-
tion in tospace referenced by the allocation pointer T. The initialization pointer P
refers to the lowest memory cell that has currently been initialized.

Allocation in high-priority processes

The cost for allocation in high-priority processes is bounded and very low since the
contents of the new object do not have to be initialized and no garbage collection
work is performed in connection with the allocation. An allocation involves only
moving the allocation pointer T and writing garbage collection information (e.g.
forwarding pointer and object size) into the object header, as illustrated by the fol-
lowing piece of pseudo code.

FUNCTION HP_Allocate(ObjectSize);
T := T - ObjectSize;
Initialize object header information ;
RETURN T;

END

A separate process, the high-priority garbage collection process (described in
Section 4.4.3), will be invoked whenever a high-priority process terminates and no
other high-priority process is ready to run. This process will perform the initializa-
tion work and garbage collection work motivated by the allocations performed
while the high-priority processes were running.

Figure 4.4 The contents of an area of tospace, between the initialization pointer P and
the allocation pointer T, is kept initialized to zero by the garbage collector.
This implies that an allocation request made by a high-priority process can
always be met without having to spend time on initializing the contents of
the new object. The pre-initialized area must be large enough to hold all
objects allocated by high-priority process before the garbage collector gets
an opportunity to initialize new memory (moving P to the left).

Evacuated
objects Allocated objects

TP

pre-initialized area
MHPTospace

4.4 Scheduling the garbage collection work 53
Allocation in low-priority processes

When a low-priority process allocates memory, an amount of memory equal to the
size of the requested object is initialized before the allocation is performed. This is
done in order to guarantee that enough pre-initialized memory is always available
for allocation in high-priority processes. The pseudo code below describes alloca-
tion in low-priority processes.

FUNCTION LP_Allocate(ObjectSize);
WHILE GC work is required OR (P>B AND P>T-M HP-ObjectSize) DO

WHILE P>B AND P>T-M HP-ObjectSize DO
P := P-1;
MEMORY(P) := 0;

END;
IF GC work is required THEN

Perform an increment of GC work;
END

END
T := T - ObjectSize;
Initialize object header information ;
RETURN T;

END

The end of a GC cycle - performing a flip

The proposed strategy for memory initialization implies that an area of size MHP
in tospace must be initialized before allocation proceeds after a flip. The initializa-
tion of this area cannot be performed in connection with the flip since it would
bring with it a too long atomic delay. Our solution to this problem is to let the gar-
bage collector (incrementally) initialize MHP bytes of memory in fromspace as soon
as it has finished evacuating the live objects from fromspace (at the end of the GC
cycle instead of at the beginning). The required initializing work is thus added to
the total amount of work that has to be performed by the garbage collector during
one GC cycle. When the flip is performed, fromspace becomes tospace and the
required amount of initialized memory will now be located in tospace.

4.4.2 Lazy evacuation

To avoid the large worst-case overhead for high-priority processes, we employ a
lazy evacuation scheme. The idea is to delay the actual evacuation of an object until
such a time when no high-priority process is executing. At the time of the pointer
assignment we only reserve space for the object in tospace, update some house-
keeping information, and set the pointer to refer to the reserved area.

Our lazy-evacuation scheme is similar to the one used by Nilsen in his hard-
ware-assisted garbage collector [NS94]. Lazy evacuation has previously been
proposed by Baker among others [Bak78]. The purpose of the scheme is to elimi-

54 Chapter 4 Scheduling Garbage Collection
nate long unpredictable delays caused by object copying in connection with pointer
assignments. The copying is delayed until normal GC work is motivated, i.e. after
high-priority processes have finished running or low-priority processes request
more memory.

When the write barrier detects that a pointer assignment would introduce a
new pointer into fromspace, it checks whether the referenced object has already
been evacuated. If so, the pointer is merely updated using the forwarding pointer
of the fromspace copy to point to the tospace copy. On the other hand, if the object
has not been evacuated, the write barrier checks whether space has been reserved
in tospace for the object or not. A flag word used by the collector in the head of the
object doubles as a pointer to such a reserved area. If no space has been reserved
yet (Figure 4.5a), an area in tospace is reserved for the object. The forwarding
pointer of the tospace copy is set to point to the original, fromspace, copy of the
object. We thus introduce forwarding pointers pointing into fromspace, something
that does not occur in the original formulation of the algorithm. Dereferencing a
pointer to the tospace copy will now, after following the forwarding pointer, access
the fromspace copy. The flag word of the fromspace copy is finally set to point to the
reserved area. The final result will be as shown in Figure 4.5b.

If memory has previously been reserved for the object in tospace, the pointer
being assigned to is set to point to the tospace area using the reserved-area pointer
in the object.

The actual copying of the object will be performed as a part of the GC work moti-
vated by allocation requests. After copying the object, the forwarding pointers of
both copies of the object are set to point to the tospace copy, which will now be the
valid one. This is illustrated in Figure 4.5c.

The write barrier can be described by the following piece of pseudo-code:

PROCEDURE PointerAssignment(Pointer,NewValue);
IF NewValue is pointing into fromspace THEN

IF object referenced by NewValue is unevacuated THEN
IF NewValue object is not scheduled for evacuation THEN

Allocate Space for the object in tospace ;
Set the forwarding pointer in the tospace area to

point to the fromspace copy;
Store pointer to the tospace area in fromspace object ;
Set NewValue to point to tospace area ;

ELSE
Set NewValue to point to the tospace area using

previously stored pointer ;
END

ELSE
Update NewValue to point to the tospace copy using

forwarding pointer ;
END

END
Pointer := NewValue;

END

4.4 Scheduling the garbage collection work 55
Fromspace

Figure 4.5 The lazy evacuation scheme. It is shown what happens when the write
barrier of a high-priority process catches a pointer assignment that could
introduce a pointer into fromspace in the scanned part of tospace.

C

Tospace B Ay x

a)

Before a high-priority process attempts to perform the assignment
B.y := A.x

The write barrier catches the assignment since the C object is not previously evac-
uated or scheduled for evacuation.

Fromspace C

Tospace B Ay x

b)

After having reserved a new area, Cres, for the C object in tospace. A temporary
pointer (dotted) to the reserved area makes it possible to avoid reserving multiple
areas for the same object. The contents of Cres have not yet been initialized, but
the forwarding pointer scheme guarantees that it will not be accessed.

Cres

Fromspace Cold

Tospace B Ay x

c)

When the high-priority process is suspended, the garbage collector finishes the
evacuation of the C object copying it to the reserved area Cres and setting the for-
warding pointers to point to the new location. A.x will be updated to point to the
new copy later when the A object is scanned by the garbage collector.

C

56 Chapter 4 Scheduling Garbage Collection
Eventually, the garbage collector starts performing GC work. Whenever invoked,
either by the high-priority GC process or by a low-priority process allocating mem-
ory, the garbage collector checks whether any objects exist that have been
scheduled for evacuation by the lazy evacuation scheme. If so, the evacuation of
these objects is commenced.

A pointer into tospace, denoted Bunevacuated, is used to keep track of the begin-
ning of the area in tospace reserved for evacuation of fromspace objects. The write
barrier increments B (Figure 4.2) each time another object is scheduled for evacu-
ation. When the garbage collector is invoked, we have the situation in Figure 4.6.
The collector starts to traverse the area between Bunevacuated and B, copying the
objects pointed to by forwarding pointers in the reserved area into tospace. As
objects are evacuated, Bunevacuated is updated to reflect the new situation. The
transition from Figure 4.5b to Figure 4.5c illustrates this step.

We have chosen to use the same approach for both high-priority and low-prior-
ity processes for reasons of simplicity. The low worst-case cost for a pointer
assignment achieved by the lazy-evacuation scheme is really only necessary for the
high-priority processes. However, using the same approach for all types of process-
es reduces the amount of machine instructions that have to be inlined at every
pointer assignment site. A priority test is eliminated and only one code version
must be generated.

4.4.3 The high-priority garbage collection process

As have been noted earlier, no GC work is performed while high-priority processes
execute. The work is instead delayed until no high-priority processes are eligible
for execution. A special process, the high-priority garbage collection process, is
responsible for performing the GC work that was omitted when the high-priority
processes were executing. The process is also responsible for initializing free mem-
ory to zero, such that high-priority processes can allocate memory without having
to initialize it at the time of allocation. The process has a priority that is lower than

Figure 4.6 Tospace at a point when space has been reserved for
evacuation of a number of objects, but at which the
objects have not yet been evacuated.

Space reserved for objects to be evacuated.

TBBunevacuated

4.4 Scheduling the garbage collection work 57
any of the high-priority processes but higher than any of the low-priority processes.
It can be described by the following piece of pseudo code:

PROCESS HighPriorityGarbageCollection();
BEGIN

LOOP
Suspend this process.
WHILE GC work is required OR (P>B AND P>T-M HP) DO

WHILE P>B AND P>T-M HP DO
P := P-1;
MEMORY(P) := 0;

END;
IF GC work is required THEN

IF B unevacuated <B THEN (* i.e. evacuation pending? *)
Evacuate an object.
Bunevacuated := B unevacuated +size of evacuated object ;

ELSE
Resume GC coroutine. (* See Section 4.3.3.*)

END
END

END
END

END

In order to activate the high-priority GC process after the execution of high-prior-
ity processes, some support from the process scheduler is required. Whenever a
high-priority process is suspended and no other high-priority process is in a run-
nable state, the scheduler checks whether any GC work is pending. If so, the high-
priority GC process is invoked. When the high-priority GC process is done, low-pri-
ority processes are allowed to execute.

4.4.4 Distribution of GC work

Up to now we have only studied how and when GC work is triggered. Virtually
nothing has been said about how much work to perform in each increment This sec-
tion expands on this issue.

To decide whether the garbage collector should work or suspend itself, we a pri-
ori calculate a minimum GC ratio. The idea is that if the amount of performed
GC work is always above this ratio, it is guaranteed that fromspace is completely
evacuated before tospace fills up. We denote by Wmax the amount of GC work nec-
essary in the worst case to evacuate all live objects from fromspace and to initialize
MHP bytes of memory (see Section 4.4.1), thus finishing a GC cycle. The minimum
amount of memory available in tospace for allocation of new objects immediately
after a flip is denoted Fmin, as illustrated by Figure 4.7.

58 Chapter 4 Scheduling Garbage Collection
The minimum GC ratio, or GCRmin, is defined as:

We furthermore define the current GC ratio, denoted GCR, as the ratio between
performed GC work, W, and the amount of new, allocated, objects in tospace, A:

Allocation will cause A to increase, while GC work will increase W. During the GC
cycle (until all live objects have been evacuated from fromspace) the garbage col-
lector performs enough work to make sure that the current GC ratio is higher than,
or equal to, the minimum GC ratio. That is:

In this way we guarantee that fromspace will be empty before tospace is filled, even
in the worst-case scenario. This strategy is essentially the same as in [Bak78] and
used in numerous garbage collectors.

Allocation of memory by low-priority processes is checked to guarantee that the
present GC ratio does not drop too low, i.e. below GCRmin. If it threatens to do so,
the garbage collector is given priority. The actual allocation of the new object is not
performed until sufficient GC work has been performed. The upper bound on the
GC work performed in connection with an allocation will be proportional to the size
of the allocated object.

If a high-priority process is activated shortly before a semi-space flip is due, the
remaining memory in tospace could potentially be too small to hold both the objects
allocated by the high-priority process and the last objects to evacuate from from-
space. We therefore reserve an amount of memory in tospace, derived from the
allocation needs of the high-priority processes, denoted MHP. MHP must be large
enough to hold all new objects allocated by the high-priority processes while the

Figure 4.7 The structure of tospace. A minimal area, MHP, is kept
available for the high-priority process at all times.

Evacuated
objects Allocated objects

Emax

MHP

Fmin

Stospace

AE

GCRmin

Wmax

Fmin
-------------= (4.1)

GCR
W
A
-----= (4.2)

GCR GCRmin≥ (4.3)

4.4 Scheduling the garbage collection work 59
garbage collector finishes the current GC cycle. We will study how to calculate MHP
in a later section. Denoting the size of tospace Stospace, and the maximum amount
of simultaneously live memory Emax, the minimum amount of memory available
for allocation of new objects, Fmin, is thus calculated as:

In this way, we will have a buffer area for use by the high-priority processes if nec-
essary. We can furthermore guarantee that the evacuation of fromspace will be
finished before tospace is filled up so a semi-space flip can be performed. The high-
priority processes allocate memory in tospace before the corresponding amount of
GC work has actually been performed. The total amount of allocated objects cannot
be more than Fmin+MHP immediately before a flip. The buffer thus guarantees that
the amount of new objects, A, will always be smaller than Stospace-Emax, i.e., there
will always be enough memory in tospace to complete the evacuation of fromspace.
The cost of this scheme is that the GC rate will be somewhat higher than it would
have been if all GC work was performed in connection with allocation operations,
see Figure 4.8.

Summarizing Equations (4.1) to (4.4), we get the following expression for how
much GC work that must have been performed as a function of the amount of allo-
cated memory:

Since we are using worst-case estimates to calculate how much work to perform,
the evacuation will normally be finished well before tospace fills up. We therefore
delay the flip until the amount of available free memory drops too low. After exe-
cution of the high-priority process, a flip is performed if the remaining free memory
is too small to guarantee that the high-priority processes can continue to execute
without running out of free memory, i.e. smaller than MHP:

If servicing a memory allocation request made by a low-priority process would
cause the remaining free memory to be smaller than MHP, a flip is triggered before
servicing the request.

Fmin Stospace Emax– MHP–= (4.4)

W
Wmax

Stospace Emax– MHP–
-- A⋅≥ (4.5)

Stospace E– A– MHP< (4.6)

60 Chapter 4 Scheduling Garbage Collection
4.4.5 Synchronization

Garbage collection is performed in parallel with the execution of the application
processes. In order to obtain proper interaction, the work of the garbage collector
must be synchronized with the application processes.

Atomic operations

The systems we study in this thesis are based on a preemptive process scheduler.
This implies that the execution of a process may be interrupted at any time, and
control is then transferred to another process. It is possible that the interrupted

Performed
GC work

Allocated
memory

Fmin Fmin+MHP

GC work always performed before allocating an object
(traditional scheduling principle).

Allocation permitted without immediately performing the
corresponding GC work (high-priority processes).

Max GC work

Figure 4.8 Required performed GC work as a function of the amount of newly allocat-
ed objects in tospace. As high-priority processes may cause the current
amount of performed work to be temporarily below the required amount,
we must compensate for this by performing GC work in a slightly higher
rate in order to avoid deadlock.

4.4 Scheduling the garbage collection work 61
process was in progress of dereferencing a pointer, or fetching or storing a value
from a heap object. If the actions taken by other processes cause the garbage col-
lector to move the object while the previously preempted process is still suspended,
resuming the execution will cause it to access a now invalid location in the heap.
We must therefore protect pointer operations and heap accesses from being inter-
rupted. Since operations of this kind can be kept very short we suggest that
preemption is prevented by disabling the hardware interrupts during these
operations.

Interruptible garbage collection

One of the demands on the design of the garbage collector is that it should not pre-
vent a high-priority process from being activated on time. When time comes to
activate such a process, garbage collection might be in progress. The cause of this
could be that a low-priority process has made an allocation request or the high-pri-
ority GC process might be cleaning up after previous allocation requests by high-
priority processes. In order to avoid long latencies caused by waiting for the gar-
bage collector to finish, we want such GC work to be interruptible. Garbage
collection should not significantly contribute to the total latency of a high-priority
process. The maximum delay should be in the order of 50 µs or less for demanding
control applications.

The granularity by which the garbage collector can be interrupted can be adapt-
ed to the requirements of the application. For many applications, it is sufficient
that the collector is allowed to continue executing until the next time the heap is
in a consistent state. The most time-consuming operation which causes the heap
to be temporarily inconsistent is copying an object from fromspace to tospace. The
worst-case latency of a high-priority process would in that case be proportional to
the size of the largest object on the heap. If shorter latencies are required, we abort
on-going copying. The copying of the object is restarted from the beginning of the
object the next time the collector is invoked, since a high-priority process might
have modified the contents of the already copied part of the fromspace object. The
total worst-case overhead for the garbage collector will then be slightly higher
since a double evacuation might be required in connection with each activation of
a high-priority process. The worst-case latency will, however, be shorter and it will
be independent of the maximum object size.

An alternative approach would be to limit the size of a single object and to
implement large objects as several smaller objects. This would, however, slightly
increase the time to access large objects due to an extra indirection step. Baker
[Bak78] proposed that a read barrier should catch accesses to partially copied
objects and access either the old or new version of the object depending on how
much of the object had been copied. This requires considerable extra overhead for
pointer accesses if implemented in software [NS94]. A third alternative is to access
the old object, but maintain a mutation log for all writes to the already copied part

62 Chapter 4 Scheduling Garbage Collection
of the object, as is suggested Nettles and O’Toole [NO93] among others. The muta-
tion log is used by the collector to ensure that all writes to the old version of the
object is replicated to the new version before the new version is made the current
version. The strategy adds to the overhead of the write barrier and also introduces
an element of unpredictability since it is difficult to provide an upper bound on the
time it takes to go through the mutation log. New writes can be logged by the muta-
tor as the collector works it way through the log.

We always access the old version of an object until it has been completely copied
and deal with the threat of inconsistency by restarting the object copying. This
yields little mutator overhead for reads and writes. Progress is guaranteed with
the help of schedulability analysis. We know that object copying can be aborted at
most once every time a high-priority process is invoked, which means that the
overhead for restarted copying is bounded. The worst-case overhead is proportion-
al to the maximum object size. Very large objects, e.g. large bitmaps, can in
combination with a high CPU load yield a too high overhead, making it impossible
to guarantee schedulability. In such a case, it will be necessary to use an alternate
strategy, perhaps splitting large objects or storing them on a separate heap without
compaction. Such large objects are, however, rare in embedded systems according
to our experience.

4.5 Overhead

Here, we take a closer look at the costs for memory management when the pro-
posed GC algorithm and scheduling strategy are used.

4.5.1 High-priority processes, service time

The overhead for GC activities for a high-priority process consists of tight and
bounded delays for memory allocation, pointer dereferencing, and pointer
assignment.

Pointer access

A simple read barrier is required by the underlying GC algorithm: Pointer access
is done indirectly through a forwarding pointer in the object. The overhead for this
is 1 machine instruction. In addition, processor interrupts must be disabled during
the pointer dereferencing and object access.

4.5 Overhead 63
Pointer assignment

The worst-case overhead of the write barrier implied by our scheme, for a high-pri-
ority process, is in the order of 20 machine instructions. The write barrier guarding
pointer assignments might require that an object is marked for later evacuation,
but the actual copying is not performed.

Memory allocation

The proposed scheme guarantees that memory allocations by the high-priority
process can be performed without GC or memory initialization work. Allocation
involves moving a heap pointer and initializing object header information. The
overhead consists of about 10 machine instructions.

4.5.2 Low-priority processes, service time

The garbage collector inflicts somewhat different overheads for the soft real-time
part of a control system implemented by low-priority processes than for the high-
priority processes.

Pointer access

Pointer access is always done indirectly via a forwarding pointer in the object. This
incurs an overhead of 1 machine instruction. Disabling/enabling process switching
during accessing costs another 2 instructions.

Pointer assignment

Pointer assignment is performed in the same way for both high-priority and low-
priority processes. Thus, the overhead is the same, in the order of 20 machine
instructions.

Memory allocation

When a low-priority process requests memory, the garbage collector is invoked in
order to ensure that the current GC ratio does not drop too low. In the worst case
an amount of GC work proportional to the size of the new object is performed. The
exact worst-case cost of an allocation operation depends on maximum object size,
total heap size, maximum amount of live objects, and the maximum amount of GC
work that has to be performed during one GC cycle.

64 Chapter 4 Scheduling Garbage Collection
4.5.3 Summary of worst-case mutator overhead

The overhead for primitive pointer operations, described in Section 4.5.1 and 4.5.2,
directly affects the response times of the processes of the application program (the
mutator). As we have noted, high-priority processes are treated differently than
low-priority processes, which yields different overhead depending on the priority.
Table 4.1 summarizes and compares the overhead for high and low-priority
processes.

4.5.4 High-priority processes, latency

The worst-case latency consists of two parts: the time needed by the garbage col-
lector to finish an on-going piece of atomic GC work, and the time needed by the
process scheduler to perform the context switch. The time necessary to complete
an atomic operation is short and bounded. The time needed by the process sched-
uler to perform the context switch often stands for the major part of the latency.1

High-priority process Low-priority process

Pointer access indirect via forwarding
pointer, one extra machine
instructiona

a.Access to pointers and object contents must be performed as atomic oper-
ations, adding overhead for disabling/enabling interrupts.

indirect via forwarding
pointer, one extra machine
instructiona

Pointer assignment write barrier,
≈20 machine instructions

write barrier,
≈20 machine instructions

Allocation allocate object,
≈ 10 machine instructions

perform GC work, allocate
object and zero contents,
time proportional to the
size of the object

Table 4.1 Summary of overhead for primitive pointer and memory management
operations.

1.A context switch takes about 64 µs in the real-time kernel used to test our gar-
bage collector (25 MHz Motorola 68040 microprocessor), whereas the longest atom-
ic operation encountered in our prototype garbage collector is 38 µs. See also
Chapter 6.

4.6 Degradation during system overload 65
4.5.5 Cleaning up after the high-priority processes

An issue to consider is how much time will be needed for GC work in between the
activations of the high-priority processes. The amount of work needed depends on
how much memory was allocated by the high-priority processes. Since high-priori-
ty processes in a control system are written to be fast and small they will in most
cases allocate little or no memory. The amount of work that has to be performed
will thus be small in most cases.

A semispace flip may also have to be performed between executions of the high-
priority processes. The flip itself adds very little to the overhead since it does not
involve more than changing the meaning of fromspace and tospace. Most incre-
mental copying GC algorithms prescribe that the flip should be immediately
followed by scanning the entire root pointer set and evacuating all the objects ref-
erenced by root pointers. The flip and the subsequent scanning of the root pointer
set is to be performed as one atomic operation. Such an approach is not feasible in
hard real-time systems, since it would give rise to a too long atomic operation. We
therefore scan the root pointer set incrementally, making the flip very cheap. The
flip can be implemented by some 10 machine instructions.

4.5.6 Additional work for the programmer

The proposed garbage collector requires some information about the application
program in general, and the high-priority processes in particular, in order to sched-
ule the GC work in such a way that it does not interrupt the high-priority
processes. The programmer must estimate how much memory must be reserved for
the high-priority processes, MHP. In order to do this accurately, knowledge about
the process set is required. The periods and worst-case execution times for each
high-priority process along with its worst-case allocation need during one invoca-
tion must be known. Section 4.8 describes how to calculate MHP and how to verify
that a given process set is schedulable.

The programmer must also specify the maximum amount of memory occupied
by live objects, which is used to calculate the minimum GC ratio.

4.6 Degradation during system overload

The scheduling principle proposed in this thesis assumes that enough CPU time
remains for garbage collection after executing the high-priority processes to keep
up with the allocation need of these processes. In Section 4.8 we discuss how to
analyse a given process set and determine whether the garbage collector will get
enough execution time. In practice, however, this does not give us a 100% guaran-
tee that the garbage collector will keep up. Several factors can cause the result of
the analysis to be erroneous. For example, the worst-case estimations of execution

66 Chapter 4 Scheduling Garbage Collection
times and allocation needs required as input to the analysis might be too optimis-
tic, or the process model used in the analysis might not be completely adequate for
the computer system in question. Therefore, despite a correct theory, our system
must be able to handle overload situations in a reasonable way. It should provide
graceful degradation in the presence of overload, i.e. the system should continue to
function reasonable even when overloaded, even if all deadlines cannot be met. The
least important parts of the system should be disturbed first. Parts with higher and
higher priority should be disturbed as the overload increases.

If we do not introduce a mechanism for detecting overload and dealing with it,
we quickly get into trouble when overload occurs. Suppose that all available CPU
time is assigned to executing high-priority processes, leaving no time for garbage
collection or initialization of memory. New objects would then continuously be allo-
cated in tospace, eventually filling it up completely, with no memory left for
allocating new objects. To alleviate the problem we would have to complete the
evacuation of fromspace and perform a flip. This is not possible, however, since no
free store would be available in tospace to hold the evacuated objects. A deadlock
would result. In addition, allocating non-initialized memory causes several types
of problems. Immediate problems occur if the application program relies on the
fields of a newly allocated object having well-defined initial values. Other problems
might arise when the collector is eventually resumed. Random bit-patterns might
be mistaken for valid pointers or newly allocated objects might be overwritten in
an effort to initialize more memory.

The above scenario could be avoided if the memory manager checked the initial-
ization and evacuation status in connection with every allocation operation
invoked by a high-priority process. Initialization work must be triggered immedi-
ately if the amount of pre-initialized memory is smaller than the requested
memory block. GC work might also be required in connection with the allocation.

As was shown in Section 4.4.4, there is no risk of a deadlock as long as the
amount of newly allocated memory in tospace, A, is less than Fmin. If an allocation
request would cause A to get larger then Fmin, we could start the garbage collector,
finishing the current GC cycle by evacuating the remaining live objects in from-
space. However, this would not provide a very graceful degradation. In the worst-
case, a GC cycle would just have been commenced when the overload started. We
could thus be forced to perform a complete GC cycle in order to avoid deadlock,
causing a delay with a duration of perhaps several seconds. Even though this is
preferable to a complete deadlock, it is not acceptable in a control environment.

Graceful degradation can be achieved by detecting overload early. Then, small
amounts of GC work can be performed in an sequential fashion to keep the garbage
collector from getting behind more than allowed. As was described in Section 4.4.4,
the goal of the garbage collector is to make sure that the current GC ratio is equal
to, or higher than, the minimum GC ratio. That is, the collection state should be
described by a point somewhere on, or to the left of, the continuous line in
Figure 4.9. Allocation requests made by high-priority processes are allowed to tem-

4.6 Degradation during system overload 67
porarily move the current collection state to the right side of the continuous line.
If overload is not present, the collection state will never be more than MHP units
away from the line, i.e. it will stay to the left of the dashed line in the figure. Thus,
if an allocation request would cause the collector state to end up somewhere to the
right of the dashed line, the garbage collector is started to remedy the situation.
More formally, the garbage collector should ensure that the following invariant is
satisfied:

Performed
GC work

Allocated
memory

Fmin Fmin+MHP

Hard limit for GC work. Allocation requests that would produce
a GC work state to the right of the line immediately invoke the
garbage collector to remedy the situation.

Soft limit for GC work. Allocation requests made by high-
priority processes are allowed to proceed even if they cause the
garbage collector to get behind with its work.

Max GC work

Figure 4.9 Handling overload. As overload causes the garbage collector to get behind
with its work more than acceptable, allocation requests made by high-pri-
ority processes start to behave like allocation requests made by low-
priority processes, performing an increasing amount of GC work with
increasing overload.

MHP

MHP

W

W A MHP–() GCRmin⋅≥ (4.7)

68 Chapter 4 Scheduling Garbage Collection
The modified allocation operation is described by the following pseudo code:

FUNCTION HP_Allocate(ObjectSize);
WHILE GC work is motivated due to overload DO

Perform an increment of GC work ;
END;
WHILE P>T-ObjectSize DO

P := P-1;
MEMORY(P) := 0;

END;
T := T - ObjectSize;
Initialize object header information ;
RETURN T;

END

In the presence of overload, high-priority processes will start to behave like low-
priority processes in the sense that initialization and GC work are interleaved with
the execution of the processes. The higher the overload, the more work is per-
formed in this way. In extreme cases of overload, all initialization and GC work will
be performed interleaved with the execution of the high-priority processes. If the
overload continues to increase, the processes with lowest priority among the high-
priority processes will be suspended first. The highest-priority processes, together
with the initialization and GC work necessary to support their allocation need, will
continue to execute.

4.7 Measuring garbage collection work

When defining rules for scheduling GC work we have used the term work without
defining it more precisely. This section discusses various possible metrics for the
work of an incremental copying garbage collector such as the one described in
Section 4.3.

4.7.1 Work metrics

The ideal work metric would be to use the amount of real time actually used for
performing garbage collection. It is ultimately the time spent on garbage collection
we want to distribute as evenly as possible. However, this is not a very practical
metric in reality since we typically do not have any means to measure time with
high enough precision (microsecond resolution). Furthermore, it is also non-trivial
to accurately estimate the worst-case amount of time required for a GC cycle. We
thus require a more practical metric for the GC work. Some kind of approximation
strategy have to be used.

A good metric has to correspond well with the ideal metric based on real time.
A good metric should also be simple and easy to compute from the data available
to the garbage collector. Using the metric, i.e. computing the amount of performed

4.7 Measuring garbage collection work 69
work, should be cheap. Unfortunately, these requirements are contradictory. Con-
sequently, we have to construct a metric that constitutes a reasonable compromise
between the different demands.

4.7.2 The evacuation pointer metric

For a copying algorithm, a very simple metric can be obtained by using the amount
of evacuated memory as a measure of performed GC work. The amount of evacu-
ated memory is given by the position of the evacuation pointer, B in Figure 4.10,
relative to the start of tospace. Let us denote the relative position ∆B. The maxi-
mum amount of work that may be required is equal to the maximum amount of
memory that might be evacuated from fromspace, Emax. This is equal to the max-
imum amount of simultaneously live memory. We summarize:

This is a metric used in many systems and research papers. It is very simple and
easy to calculate, but it does have a serious disadvantage. The problem is that the
correlation between the metric and actual time spent on garbage collection is bad.
Each allocation request will cause the garbage collector to perform an amount of
work proportional to the amount of requested memory. This means that an amount
of memory will be evacuated proportional to the size of the requested memory
block. The actual time it takes to evacuate a certain amount of memory varies
greatly. In the worst case, the garbage collector will have to scan the contents of a
large number of objects in order to find an unevacuated object to copy.

Imagine the situation in Figure 4.11, in which all live objects have been evacu-
ated except for one. The only remaining pointer to the unevacuated object is located
in the most recently evacuated object. The garbage collector will have to scan all
the evacuated objects in tospace before the pointer to the unevacuated object is
found and the object can be evacuated. Since the metric only uses the evacuation
pointer to determine the amount of performed work, the garbage collector will not
detect any change in the amount of performed work until the unevacuated object

Tospace

allocated
objects

evacuated
objects

B TS

Figure 4.10 Structure of tospace of a typical copying GC algorithm.

W ∆B=

Wmax Emax= (4.8)

70 Chapter 4 Scheduling Garbage Collection
is found and copied. Emax bytes must be scanned in the worst case, which may take
a significant time.

If we schedule the GC work in connection with allocation requests, i.e. sequen-
tially, any allocation request could result in a long delay as described above. This
is clearly unacceptable in hard real-time systems. If we use semi-concurrent sched-
uling of the GC work as proposed in this thesis, on the other hand, the problem is
reduced. Since no GC work is performed when high-priority processes execute, and
since GC work is interruptible, only the low-priority processes will be delayed. The
critical high-priority processes can continue to execute without delays. An excep-
tion to this is if we use the method described in Section 4.6 to achieve graceful
degradation in case of system overload. Then, a bad metric might erroneously
cause the garbage collector to believe that the system is overloaded. GC work
would then be performed interleaved with the execution of the high-priority proc-
esses causing potentially long pauses.

4.7.3 Improving the evacuation pointer metric

The evacuation pointer metric takes only the actual evacuation of objects into
account in its approximation of the ideal metric. However, the garbage collector
spends time on other activities as well. Scanning objects for pointers into from-
space takes time, as does scanning root pointers. Memory initialization required at
the end of the GC cycle (described in Section 4.4.1) is not modelled either. The met-
ric can be improved by taking these activities into account as well. This is the
metric we chose for the prototype garbage collector implementation described in
Chapter 5.

In our modified model of the garbage collector, a GC cycle consists of four activ-
ities: scanning roots and evacuated objects, evacuation, and memory initialization.
Denote the number of scanned root pointers roots and the maximum amount of
simultaneously existing roots rootsmax. The latter parameter must be provided by
the programmer or compiler. The difference between the value of the scan pointer,
S, and the initial value of S is denoted ∆S. Finally, let ∆P denote the amount of ini-
tialized memory in fromspace. The maximum amount of memory that has to be

Tospace

allocated
objects

evacuated
objects

B TS

Fromspace

Figure 4.11 Worst-case situation for the evacuation pointer metric. Virtually all previ-
ously evacuated objects must be scanned before an unevacuated object is
found and the metric indicates an increased amount of performed work.

4.7 Measuring garbage collection work 71
initialized is equal to MHP. The current amount of work, and the maximum amount
of work that may be required during a GC cycle can now be calculated:

The maximum amount of memory to scan is equal to the maximum amount of
memory to evacuate, which is in turn denoted Emax. This is the reason Emax occurs
twice in (4.9). The actual time it takes to scan a root pointer is not the same it takes
to evacuate a byte of memory. The cost of scanning an amount of memory is not the
same as evacuating the same amount of memory or initializing a byte of memory
either. The three factors α, β, and γ in (4.9) are used to compensate for this. They
are supposed to be chosen in such a way that the metric deviates as little as possi-
ble from the ideal metric. This metric thus requires an amount of tuning to perform
well (see also Section 5.2.6). It is conceivable that this tuning can be done automat-
ically after a short test run when the system is started.

It is important to remember that the model is still only a simplification of the
real case. For example, we assume that the time required to scan an object is pro-
portional to the size of the object, which is not entirely true. In reality, the time
depends on the number of pointers within the object, not its size. The metric will
thus still deviate from the ideal one, but the worst-case deviation will be consider-
ably smaller than for the evacuation pointer metric.

4.7.4 A fine-grained metric

Bengtsson presents a theoretically very sound strategy in his thesis [Ben90]. He
suggests calculating the cost of every type of primitive operation performed by the
garbage collector, such as moving one memory cell, traverse a pointer, performing
a flip, etc. The costs are given in GC units. When the application is written and the,
from the garbage collection point of view, worst-case state of the applications data
structures is known, it is possible to calculate the worst-case amount of GC units
needed for a GC cycle. This is done by adding up the costs of all the individual steps
that must be performed. Progress is calculated by the collector incrementing a
work counter each time it performs a primitive operation.

Bengtsson’s approach gives very well-defined worst-case delays but suffers from
three practical problems. Firstly, it can be tricky to achieve good estimates of the
costs for each primitive operation. Secondly, calculating a good estimate of the
worst-case amount of total work needed calls for quite detailed knowledge of the
design and behaviour of the application. Thirdly, and probably most important, the
housekeeping necessary to update the work counter can be very expensive.

W α roots⋅ β ∆S⋅ ∆B γ ∆P⋅+ + +=

Wmax α rootsmax⋅ β Emax⋅ Emax γ MHP⋅+ + += (4.9)

72 Chapter 4 Scheduling Garbage Collection
4.7.5 Hardware support

An interesting approach to achieving a good metric would be to equip the computer
system with a high-resolution clock. This would require additional hardware, but
a simple counter incremented by a high-frequency clock would suffice. Here, the
currently performed work, W, is equal to the cumulative time spent on garbage col-
lection, whereas Wmax is the maximum amount of time required for garbage
collection during one GC cycle. Implementing a garbage collector based on this
metric would probably require some extra support from the process scheduler in
order to measure the execution time of the garbage collector correctly, since the
scheduler is the only component that knows whether the garbage collector exe-
cutes or is suspended.

Adding a hardware clock might be easy in open system architectures, such as
VME-based systems. In many embedded systems it might be more difficult, how-
ever. It might be important to keep the hardware at a minimum, maybe for cost
reasons or to minimize power consumption. Consequently, we do not believe an
extra hardware clock is a generally acceptable solution.

4.7.6 Impact of imperfect metrics

The metric used to describe performed GC work will always deviate somewhat
from the ideal metric. This will have a direct impact on the worst-case response
time of a process if the work of the garbage collector is scheduled in connection with
allocations, as it is in Baker’s original incremental garbage collector [Bak78] and
many other collectors. If we schedule the work according to our semi-concurrent
strategy, on the other hand, the response time for a high-priority process will not
be affected, since no GC work is performed when such processes execute. The
worst-case response time of the GC process, see Section 4.8.2, will, however, be
affected, which must be taken into account when doing schedulability analysis.
The response times of low-priority processes will also be affected. Even so, a gar-
bage collector using semi-concurrent scheduling will be less sensitive to imperfect
metrics, since important control processes are not delayed.

4.7.7 Conclusions

Metrics for GC work can be defined in several ways, each with different advantages
and disadvantages. Which one to choose depends on the requirements of the appli-
cation with respect to worst-case delays and overall performance. Using the semi-
concurrent scheduling strategy described in this thesis makes it possible to use a
simpler method to calculate GC work without violating the real-time demands of
the application.

4.8 Scheduling analysis 73
4.8 Scheduling analysis

Predictability is an important factor when designing safety-critical systems. It is
important to be able to derive the worst-case costs of individual operations. It is
also important to be able to analyse the system as a whole and make sure that all
hard deadlines are always met. Finding timing errors by testing the system in a
real environment is sometimes not an option since a failure could be very costly
and cause serious damage. In this section we describe how to perform a priori
analysis.

In the analysis we assume that the application is constructed as a set of period-
ically executing high-priority processes which must be guaranteed to meet their
deadlines in every situation. In addition, a number of low-priority processes exist
which have soft real-time requirements, i.e occasionally missing a deadline can be
accepted. We further assume that a fixed-priority scheduling strategy is used, such
as rate monotonic scheduling or deadline monotonic scheduling. It should be add-
ed, however, that priority inheritance protocols do work with the analysis. We will
also examine how non-periodic processes can be incorporated in the analysis.

The goal of the analysis presented in this section is to make it possible for a
developer to determine that the high-priority processes of an application will
always meet their deadlines and that there will always be enough time for the gar-
bage collector to make sure that the high-priority processes do not run out of
memory. The analysis is a two-step process. First, we use traditional scheduling
analysis, more specifically rate monotonic analysis, to determine whether the high-
priority processes are schedulable in every situation. After that has been proven,
the analysis goes on by testing whether the remaining CPU time is enough for the
garbage collector to keep up with the allocation requests of the high-priority proc-
esses. The notation introduced in the presentation of the scheduling analysis is
summarized in Table 4.2.

4.8.1 Schedulability of the high-priority processes

The first step in verifying that a set of high-priority processes including its corre-
sponding GC work is schedulable consists of determining the schedulability of the
high-priority processes alone. This can be done in various ways, depending on the
scheduling strategy employed.

One way of testing the schedulability of a set of processes scheduled according
to the rate monotonic principle, is to study the processor utilization, denoted U.
Assume a system consisting of N high-priority processes τ1..τN, with periods T1..TN

74 Chapter 4 Scheduling Garbage Collection
and worst-case execution times C1..CN respectively. Then the processor utilization
is defined by:

Liu and Layland derived a utilization bound that can be used to test the schedula-
bility of the processes [LL73]. Their test states that if the processor utilization is

τi process number i

Ti period for process τi

Ci worst-case execution time for one invocation of process τi

Di deadline for process τi relative to the scheduled invocation time

Ri worst-case response time for process τi

Ai worst-case memory allocation need during one invocation of process τi

Gi worst-case time required for garbage collection after one invocation of
process τi including the time required for memory initialization

di worst-case time process τi can be blocked by low-priority processes

ci worst-case time required for garbage collection during one invocation
of process τi due to the actions of low-priority processes blocking τi.

Bi worst-case blocking time for process τi including direct blocking and
push-through blocking

N number of high-priority processes in the system

U processor utilization

RGC worst-case response time for the GC process

CGC required execution time for the GC process

MHP amount of memory that has to be reserved in tospace in order to guar-
antee that it always will be possible to meet a memory allocation
request from a high-priority process

Table 4.2 Scheduling analysis notation.

U
Ci

Ti

i 1=

N

∑= (4.10)

4.8 Scheduling analysis 75
less than, or equal to, the utilization bound, the system is schedulable. Their con-
dition for schedulability is formulated mathematically as:

This is a sufficient but not necessary condition, however. That is, a system might
be schedulable even if the processor utilization is higher than Liu and Layland’s
utilization bound. When the condition is not met, some other method has to be used
to check schedulability. Another problem with the schedulability test of Liu and
Layland is that it assumes a very strict process model. All processes must be peri-
odical with deadlines equal to their periods. Blocking is not allowed, which is very
unpractical since it makes communication and synchronization between processes
very difficult.

Joseph and Pandya presented in 1986 a method for exact analysis of process
schedulability that can be applied to all fixed-priority scheduling strategies [JP86].
The basic idea is to calculate the worst-case response time for each process, Ri,and
compare it with the deadline for the process, Di. If Ri is smaller than or equal to Di
for each process, the process set is schedulable. If we for a moment assume that no
blocking occurs, the worst-case response time of a process is equal to the worst-case
execution time of the process, Ci, plus the time the process has to wait for higher-
priority processes to execute. The time a process might have to wait for each higher
priority process is equal to the worst-case execution time for the higher priority
process multiplied by the number of times the process with higher priority can be
invoked during the response time of the process we are analysing. This can formal-
ly be written as:1

Ri cannot be directly calculated from (4.12) since Ri is found on both sides of the
equality. However, as shown in [JP86], it can be calculated iteratively:

1.We use to denote the ceiling function, i.e. the smallest integer that is equal to,
or larger than, the function argument.

U N 2

1
N

1–

⋅≤ (4.11)

Ri Ci
Ri

T j
----- Cj⋅

j 1=

i 1–

∑+= (4.12)

Ri
0

0=

Ri
n 1+

Ci
Ri

n

T j
------ Cj⋅

j 1=

i 1–

∑+=

(4.13)

76 Chapter 4 Scheduling Garbage Collection
When (4.13) converges, we have found the worst-case response time.
Much work has been devoted to generalizing the analysis of Liu and Layland to

handle more complex process models. An example is the generalized rate monoto-
nic analysis [SRL94]. One important extension is the ability to handle blocking.
Processes may be blocked in two ways. A process can be blocked directly by a lower-
priority process that holds a resource that the process requests. It can also be
blocked indirectly if a priority inheritance protocol is used. In the latter case, a
process is first preempted by a higher-priority process which is then in turn direct-
ly blocked by a lower-priority process sharing a resource with the high-priority
process. The low-priority process inherits a higher priority and effectively blocks
both the processes with higher priority. This is called push-through blocking. If we
can calculate the worst-case blocking time for each process, Bi, we can modify
(4.12), which yields:

The blocking time, Bi, depends on which priority inheritance protocol is used, since
this affects the worst-case push-through blocking.

4.8.2 Schedulability of the garbage collector

Assuming that the high-priority processes of a system have been determined to be
schedulable, let us now verify that the GC work motivated by the actions of the
high-priority processes is schedulable as well.

Consider the worst-case scheduling situation, in which all high-priority proc-
esses are released simultaneously. As shown in [LL73], if we can schedule this
situation we can also schedule all other situations. Each process, τi, executes for a
duration equal to its worst-case execution need, Ci, and performs memory manage-
ment related actions that requires a worst-case GC/memory initialization work of
Gi to be performed. The worst-case response time of the garbage collector, RGC, can
now be defined as the time from the high-priority processes were released until no
more GC work is left to be performed. RGC can be calculated in a similar way to
how the response times were calculated for the high-priority processes in
Section 4.8.1:

Equation (4.15) contains CGC, which in our case depends on the actions of the high-
priority processes. In other words, it is not fixed as the execution times for the high-
priority processes were in Section 4.8.1. For each invocation of a high-priority proc-

Ri Ci Bi
Ri

T j
----- Cj⋅

j 1=

i 1–

∑+ += (4.14)

RGC CGC
RGC

Ti
---------- Ci⋅

i 1=

N

∑+= (4.15)

4.8 Scheduling analysis 77
ess τi during RGC, the required GC work amounts to Gi. The total GC work during
RGC will therefore be:

Applying (4.16) to (4.15) yields:

We find that RGC is found on both the left side and the right side of the equality.
The smallest non-zero value of RGC that satisfies (4.17) can be found using the
recursive formula:

It should be noted that we cannot use 0 (zero) as the first approximation of RGC, as
we did in Section 4.8.1 when calculating the worst-case response time of a process.
This is because 0 is a trivial solution to (4.17), whereas the solution we want is the
first positive, non-zero solution. Clearly, RGC cannot be smaller than the sum of the
worst-case execution times for the high-priority processes since all processes are
released simultaneously in the worst case and the garbage collector has lower pri-
ority than these processes. The garbage collector will thus not be assigned
processor time until each high-priority process has run at least once. If the worst-
case execution times of the processes are small compared with their periods and
the processes do not perform any action that motivates GC work, the response time
of the garbage collector will be equal to the sum of the worst-case execution times
of the processes. Any value higher than 0 and equal to or lower than the sum of the
worst-case execution times of the processes can be chosen as the initial value in the
iteration. It is however convenient to choose as large a value as possible, that is
still easy to calculate, in order to avoid unnecessary iterations.

If the GC work is schedulable, (4.18) will converge. If the GC work is not sched-
ulable, (4.18) will not converge since no solution exists. It is easy to detect that
(4.18) has converged. This happens when two consecutive values of RGC are found
to be equal. The value of RGC that the formula converges towards is the worst-case
response time of the garbage collector. But how do we detect that the formula does

CGC
RGC

Ti
---------- Gi⋅

i 1=

N

∑= (4.16)

RGC
RGC

Ti
---------- Ci Gi+()⋅

i 1=

N

∑= (4.17)

RGC
0

Ci
i 1=

N

∑=

RGC
n 1+ RGC

n

Ti
---------- Ci Gi+()⋅

i 1=

N

∑=

(4.18)

78 Chapter 4 Scheduling Garbage Collection
not converge? The answer to this is that we can calculate a largest possible value
for RGC. If one of the steps in the iterative process of calculating RGC yields a value
larger than the maximum possible response time, we can deduce that the iteration
will not converge.

Theorem. The maximum possible response time for the garbage collector is the
least common multiple of the periods of the high-priority processes, denoted
lcm(T1..TN).

If we, for example, have a system with two high-priority processes with periods
of 10 and 14 milliseconds respectively, the response time of the garbage collector
must be less than or equal to lcm(10,14) = 70 milliseconds.

Proof. Assume that all the high-priority processes are released simultaneously
at time t. This is the worst-case scheduling situation, as shown in [LL73]. The proc-
esses will execute with different periods forming a scheduling pattern. Sooner or
later they will all again be scheduled to run simultaneously, after which the sched-
uling pattern will repeat itself. This happens at time t+lcm(T1..TN). Thus, if there
was not enough time in the time slot t..t+lcm(T1..TN) to complete the GC work in
progress, there will in the worst case not be enough time in the next time slot
either, and so on. The amount of needed garbage collection will continue to accu-
mulate. The response time of the garbage collector must therefore be less than, or
equal to, lcm(T1..TN).

4.8.3 Memory reserved for high-priority process usage

The copying GC algorithm we have used to illustrate our scheduling strategy may
experience a deadlock if the evacuation of live objects from fromspace does not keep
up with the allocation of new objects. When low-priority processes allocate memory,
they make sure that enough GC work has been performed before they actually allo-
cate the new object, which guarantees that the low-priority processes do not cause
any deadlock. High-priority processes, on the other hand, allocate memory before
the corresponding GC work is performed. This is a potentially dangerous situation
if the high-priority processes are invoked shortly before a semi-space flip is due,
since there might not be enough memory left in tospace to hold both the new
objects and the live objects that have not yet been evacuated from fromspace. The
solution to this problem is to schedule the GC work, and the semi-space flip, in such
a way that enough memory remains in tospace for evacuation of live object even if
high-priority processes are invoked immediately before the flip. This can be viewed
as reserving an amount of memory for allocation by high-priority processes.

How can the amount of memory that has to be reserved in tospace for high-pri-
ority allocation, MHP, be determined? A worst-case estimation can be obtained by
assuming that all high-priority processes are released immediately before a flip is
to be performed. We furthermore assume that the flip cannot be performed within
RGC time units after the invocation of the high-priority processes. We must then
reserve enough memory in tospace to hold all objects allocated during RGC time

4.8 Scheduling analysis 79
units. This amounts to the sum of the worst-case allocation needs for all the high-
priority process invocations during RGC time units. The allocation need for a proc-
ess can be calculated by multiplying the worst-case allocation need during one
invocation with the number of times the process might be invoked during a time
span of RGC. We get:

MHP is also the amount of memory that the garbage collector must keep initialized
and ready for allocation by high-priority processes. During any time interval of
length RGC, the high-priority processes might allocate MHP bytes of memory. By
including the time required for initialization in Gi, a system which is schedulable
according to the analysis presented in this chapter will have time to initialize MHP
bytes of memory during any interval of length RGC, which will provide enough
initialized memory for the subsequent interval, et cetera.

4.8.4 Scheduling analysis example

To illustrate the scheduling analysis we will study two example sets of high-prior-
ity processes and determine whether they are schedulable or not.

Example 1 - a schedulable set

Consider the set of three high-priority processes whose process attributes are
found in Table 4.3. We assume that rate monotonic scheduling has been used to
assign priorities to the processes, giving τ1 the highest priority and τ3 the lowest.
We also assume that the deadline for a process, Di, is equal to the period of the
process, Ti.

Process Ti (ms) Ci (ms) Ai (bytes) Gi (ms)

τ1 10 3 72 1

τ2 50 9 302 5

τ3 95 21 256 4

Table 4.3 Process parameters of a schedulable set.

MHP
RGC

Ti
---------- Ai⋅

i 1=

N

∑= (4.19)

80 Chapter 4 Scheduling Garbage Collection
Rate monotonic analysis, as described in Section 4.8.1, gives the following worst-
case response times for the three processes:

R1 = 3, R2 = 15, R3 = 45

We observe that R1 ≤ Di for each process (Di = Ti). Thus, the three high-priority
processes are indeed schedulable.

The next step is to ensure that there are enough time to perform the necessary
GC work. Equation (4.18) on page 77 is used to calculate the worst-case response
time of the garbage collector, RGC:

The recursion has converged, which tells us that the system is schedulable. The
worst-case response time of the garbage collector will be 89 milliseconds. The sys-
tem, including garbage collection, is thus schedulable. We observe that the
recursion converged towards a value less than lcm(10,50,95) = 950, which is the
maximum possible response time for the garbage collector.

Having determined RGC we can now also calculate the minimum amount of
memory that has to be reserved in tospace for allocation requests by the high-pri-
ority processes, MHP. Equation (4.19) on page 79 yields:

We conclude that the given system is schedulable and that 1508 bytes should be
reserved in tospace for allocations performed by the high-priority processes in
order to ensure that the GC algorithm never deadlocks. The less time required for
execution of the high-priority processes, the shorter the response time for the gar-
bage collector will be. Shorter response time for the garbage collector in turn

RGC
0

3 9 21+ + 33= =

RGC
1 33

10
------ 3 1+()⋅ 33

50
------ 9 5+()⋅ 33

95
------ 21 4+()⋅+ + 55= =

RGC
2 55

10
------ 3 1+()⋅ 55

50
------ 9 5+()⋅ 55

95
------ 21 4+()⋅+ + 77= =

RGC
3 77

10
------ 3 1+()⋅ 77

50
------ 9 5+()⋅ 77

95
------ 21 4+()⋅+ + 85= =

RGC
4 85

10
------ 3 1+()⋅ 85

50
------ 9 5+()⋅ 85

95
------ 21 4+()⋅+ + 89= =

RGC
5 89

10
------ 3 1+()⋅ 89

50
------ 9 5+()⋅ 89

95
------ 21 4+()⋅+ + 89= =

MHP
89
10
------ 72⋅ 89

50
------ 302⋅ 89

95
------ 256⋅+ + 1508= =

4.8 Scheduling analysis 81
makes the amount of memory, MHP, reserved for allocation by high-priority proc-
esses smaller.

Example 2 - a non-schedulable set

Let us study the set of high-priority processes described by Table 4.4. We assume
once more that rate monotonic scheduling has been used to assign priorities to the
processes and that Di = Ti for each process. Is this set of processes and the corre-
sponding GC work schedulable?

We begin by investigating the schedulability of the processes using rate monotonic
analysis. This yields:

R1 = 3, R2 = 15, R3 = 45

The processes alone are thus schedulable since Ri ≤ Di for each process.
Next, it must be determined whether the GC work is schedulable or not. As dis-

cussed in Section 4.8.2, RGC must be less than or equal to the least common
multiple of the process periods (RGC ≤ lcm(T1..T3)) for the GC work to be schedula-
ble. That is, (4.18) on page 77 must converge on a value less than or equal to
lcm(10,50,75) = 150 for the set of processes to be schedulable. Let us investigate if
this is the case:

Process Ti (ms) Ci (ms) Gi (ms) Ai (bytes)

τ1 10 3 1 72

τ2 50 9 5 302

τ3 75 21 4 256

Table 4.4 Process parameters of a non-schedulable set.

RGC
0

3 9 21+ + 33= =

RGC
1 33

10
------ 3 1+()⋅ 33

50
------ 9 5+()⋅ 33

75
------ 21 4+()⋅+ + 55= =

RGC
2 55

10
------ 3 1+()⋅ 55

50
------ 9 5+()⋅ 55

75
------ 21 4+()⋅+ + 77= =

RGC
3 77

10
------ 3 1+()⋅ 77

50
------ 9 5+()⋅ 77

75
------ 21 4+()⋅+ + 110= =

82 Chapter 4 Scheduling Garbage Collection
We observe that RGC does not converge on a value less than or equal to 150. There-
fore, it is not possible to schedule this set of processes with associated garbage
collection in the worst case.

4.8.5 The effect of blocking

In the analysis above we have assumed that the neither high-priority processes nor
the high-priority GC process are blocked by other processes (excluding blocking
caused by preemption). This is typically not the case in practical applications when
it comes to the high-priority processes. High-priority processes can be blocked
when using resources shared with other processes. We must therefore take block-
ing into consideration in order to correctly determine the schedulability of the
high-priority processes. A detailed analysis will probably also take the costs of con-
text switches and the process invocation jitter effect caused by atomic operations
into account. Generalized rate monotonic analysis [SRL94] provides the means for
the analysis.

The high-priority GC process, on the other hand, is independent from the exe-
cution of other processes. Therefore, blocking does not occur and the analysis of the
schedulability of the GC work above is valid without modification. We might want
to take the cost of context switches into account when calculating the effect of high-
priority processes on the execution of the high-priority GC process, however.

The introduction of priority inheritance protocols changes the situation some-
what. Low-priority processes will now temporarily execute as high-priority
processes, which affects the schedulability analysis of the high-priority GC process.
In the following section, we will study different priority inheritance strategies and
their impact on our analysis.

4.8.6 Priority inheritance protocols

To avoid blocking caused by priority inversion, priority inheritance protocols are
employed. All of these protocols involve temporarily raising the priority of a proc-
ess that has allocated a resource, which may cause a low-priority process to become
a high-priority one until the resource is released. This must be taken into consid-

RGC
4 110

10
--------- 3 1+()⋅ 110

50
--------- 9 5+()⋅ 110

75
--------- 21 4+()⋅+ + 136= =

RGC
5 136

10
--------- 3 1+()⋅ 136

50
--------- 9 5+()⋅ 136

75
--------- 21 4+()⋅+ + 148= =

RGC
6 148

10
--------- 3 1+()⋅ 148

50
--------- 9 5+()⋅ 148

75
--------- 21 4+()⋅+ + 152= =

4.8 Scheduling analysis 83
eration when analysing the schedulability of a system of processes. We will look at
common priority inheritance protocols one by one and discuss what impact their
use has on the scheduling analysis.

The basic inheritance protocol

The basic inheritance protocol states that whenever a process blocks because the
resource it attempts to allocate is already allocated by a process with lower priority,
the process currently holding the resource will inherit the priority of the blocked
process. The priority of a process is thus raised if, and only if, it is blocking a higher
priority process.

Blocking a high-priority process and raising the priority of the process causing
the block to the priority level of the blocked process can be said to be equivalent to
the case that the high-priority process is performing the work within the critical
region of the process with lower priority. We can thus incorporate the basic inher-
itance protocol in our scheduling analysis by modifying (4.17) on page 77 slightly:

We use di to denote the worst-case time a process spends performing work for low-
er-priority processes as described above. For each process, τi, we have to add di to
the worst-case execution time of the process. While performing the work of a low-
priority process, τi might take actions that motivate additional GC work to be per-
formed. The additional worst-case time for GC work is denoted gi, and must also
be taken into account when calculating the response time of the garbage collector.
It is worth to notice that it is only low-priority processes that influence di and gi.
The execution time and GC need of high-priority processes are already taken into
account, even if they do block other high-priority processes.

To analyse a system utilizing the basic inheritance protocol, we must be able to
determine the value of di and gi. Any of the following two observations can be used
to find an upper bound [SRL90]:

• Under the basic inheritance protocol, a process τi can be delayed at most once
by each process with lower priority which share some resource with τi.

• Second, if m resources exist which can cause τi to block, then τi can be blocked
at most m times, once by each resource.

By analysing the worst-case execution times and allocation need of the correspond-
ing critical regions and adding them up, we can compute di and gi.

RGC
RGC

Ti
---------- Ci di Gi gi+ + +()⋅

i 1=

N

∑= (4.20)

84 Chapter 4 Scheduling Garbage Collection
The priority ceiling protocol

In the priority ceiling protocol, resources are assigned a ceiling priority. The ceiling
priority is the priority of the highest-priority process that use the resource. A proc-
ess is only allowed to allocate a resource if the priority of the process is strictly
higher than the ceilings of all resources currently held by other processes. If this is
not the case, the process is blocked. As in the basic inheritance protocol, whenever
a process is blocked, the process that is causing the block, i.e holding a resource
with a ceiling that is equal to or higher than the priority of the blocked process,
inherits the priority of the blocked process.

Since a blocking process gets its priority raised to the priority of the process it
is blocking, the situation is equivalent to the case that the blocked process is per-
forming the execution of the lower-priority process while within the critical region.
This is analogous to the case of using the basic inheritance protocol. We can thus
use the same strategy to incorporate the priority ceiling protocol as we used to
incorporate the basic inheritance protocol. Equation (4.20) is therefore valid also
in this case.

The priority ceiling protocol has somewhat different blocking properties than
the basic inheritance protocol. A process can be delayed at most once during each
invocation by a lower priority process. Therefore, we only have to find the critical
section in the one low-priority process that has the highest worst-case execution
time in order to determine di. We determine gi analogously.

The immediate inheritance protocol

The probably simplest priority inheritance protocol to implement is the immediate
inheritance protocol. Resources are assigned ceiling priorities just like in the pri-
ority ceiling protocol. However, the priority of a process is raised not only when it
is actually blocking another process. Instead, as soon as a process attempts to allo-
cate a resource, the priority of the process is set to the maximum of its current
priority and the ceiling priority of the resource. The priority of the process is reset
to what it was before when the resource is later released.

Since the priority of a process is raised every time it allocates a resource (unless
it already has a priority equal to or higher than the ceiling priority), a low-priority
process sharing a resource with a high-priority process will become a high-priority
process every time it allocates the resource. Our previous approach in which we
regarded the work within the critical region as being performed by the blocked
high-priority process does not work in this case, since there may not exist a blocked
high-priority process. A different mathematical model is therefore required to
make our scheduling analysis work with the immediate inheritance protocol.

The following observation helps us develop a working scheduling analysis for
the immediate inheritance protocol: When a low-priority process allocates a
resource and temporarily becomes a high-priority process, no other low-priority

4.9 Scheduling mark-sweep garbage collection 85
process can possibly become a high-priority process since they, because of their low-
er priority, are not eligible for execution as long as the first process is executing
with a raised priority, i.e as long as the resource is held. In order to determine if a
system of high-priority processes and the corresponding GC work is schedulable,
we study the worst-case scheduling situation, that is what happens when all high-
priority processes are released at the same instant. One additional thing has to be
taken into consideration when the immediate inheritance protocol is used, namely
that one of the low-priority processes might have become a high-priority process by
entering a critical region immediately before the regular high-priority processes
are released. This can be modelled by adding a one-shot high-priority process to the
analysis. The priority of the process must be the highest possible priority a low-pri-
ority process can possibly inherit. The execution time of the process must be the
longest possible execution time a low-priority process might need to leave the crit-
ical region causing the raised priority. The worst-case GC work required by the
process is determined similarly.

The first step in the scheduling analysis, i.e determining whether the high-pri-
ority processes are schedulable (see Section 4.8.1) is unchanged with the exception
of the inclusion of the extra one-shot process (the one-shot property can be mod-
elled by setting the period of the process to infinity). The response time for the
garbage collector process can be calculated as follows, CLP denotes the worst-case
delay caused by the low-priority process and GLP denotes the worst-case amount
of GC work that is required by the low-priority process:

4.9 Scheduling mark-sweep garbage collection

The scheduling principle proposed in this thesis is not restricted to copying algo-
rithms for garbage collection. It can be applied to other types of algorithms as well.
In this section we study how an incremental compacting mark-sweep algorithm
can be adapted to our scheduling scheme.

4.9.1 The algorithm

The mark-sweep algorithm we have chosen was presented by Bengtsson in his
licentiate thesis [Ben90]. His thesis contains a thorough description of the algo-
rithm together with an analysis of its performance.

RGC CLP GLP
RGC

Ti
---------- Ci Gi+()⋅

i 1=

N

∑+ += (4.21)

86 Chapter 4 Scheduling Garbage Collection
Algorithm overview

The heap is divided into three areas called A, B1, and B2 respectively. In addition,
a part of the memory is set aside for an object table containing pointers to the
objects on the heap. All pointer referencing is done indirectly via the object table.
Figure 4.12 illustrates the heap organization.

The algorithm works in odd and even cycles. Every other cycle is odd and every
other cycle even. During odd cycles, new objects are allocated in area B1, whereas
new objects are allocated in B2 during even cycles. As new objects are allocated in
the current allocation area, the algorithm incrementally compacts the contents of
the rest of the heap, i.e. areas A and B2 during odd cycles and A and B1 during even
cycles. All live objects that are identified during the cycle are relocated to the lower
end of area A. The area A must be large enough to hold all objects reachable at the
beginning of a GC cycle, that is, at least as large as the maximum amount of simul-
taneously live memory. The allocation area that is to be used for allocation in the
next cycle will thus be evacuated. When the allocation area, B1 or B2, fills up, new
objects are allocated in A until A fills up as well. Then a new GC cycle commences.
The algorithm is summarized in Figure 4.13

Object table

When an object is moved, all pointers to the object have to be updated. In order to
do this in a short time, a pointer indirection scheme is used as illustrated in
Figure 4.14. An object table contains an entry for each object on the heap. The
entry in turn contains a pointer to the current location of the object. All object
pointers point to an entry in the object table rather than directly to an object. When
an object is moved, we only have to update one pointer, i.e. the entry in the object
table. In order to quickly find the location of the entry when an object is to be
moved, all objects contain a pointer to the corresponding object table entry.

Since every object requires a corresponding entry in the object table, the object
table must have the same number of entries as the maximum number of objects
that may exist in memory at any one time. Furthermore, as the garbage collector
reclaims the memory occupied by an object, it must also reclaim the corresponding
entry in the object table. We suggest that a free-list of unused entries is used. The
cost for allocating a new entry from the list will be small and constant since we can

A B1 B2

Figure 4.12 The heap structure of the incremental, compacting, mark-sweep collector.

object table

4.9 Scheduling mark-sweep garbage collection 87
Collector

Marking phase:

• Mark unmarked objects referenced by roots and push references to them onto
the collector stack.

• While the collector stack is not empty:

Pop an object reference, X, from the collector stack.
Mark all unmarked objects referenced by X and push references to
them onto the collector stack.

Compaction phase:

• Traverse from low to high addresses the areas A and B2 (odd cycles) or
areas A and B1 (even cycles):

If an object is marked
move it to the lowest free address in A and update the object table entry

else
reclaim its object table entry

Figure 4.13 Summary of Bengtsson’s incremental, compacting, mark-sweep collector.

Mutator

Pointer assignment:

• If the collector is in the marking phase and the referenced object is unmarked:

Mark the object and push a reference to it onto the collector stack.

Pointer referencing:
Indirect through an object table.

Allocation:

• Allocate in B1 (odd cycles) or B2 (even cycles).

• When the collector cycle has finished and B1/B2 is full:

Allocate in A as long as there are free memory, then start a new cycle.

88 Chapter 4 Scheduling Garbage Collection
always choose the first entry in the list. Similarly, the cost for inserting a freed
entry into the list is also small and constant.

Collector stack

As the algorithm traverses the object graph during the marking phase, references
to objects that are to be scanned are pushed onto a collector stack. Pointer reversal
techniques [SW67,Tho76] cannot be used since they would temporarily invalidate
the data structures and block the mutator for long periods of time. A trivial imple-
mentation of the collector stack would be to reserve a separate area in memory for
the stack. In the worst case, the stack could contain a pointer to every object on the
heap. Therefore, the size of the stack would have to be proportional to the maxi-
mum number of simultaneously live objects.

An alternative implementation of the collector stack is to reserve a word of
memory in the header of each object. Objects on the collector stack are then linked
together using pointers located in the object headers. The worst-case memory
requirements of this scheme is equal to that of the approach using a separate stack.
However, if we choose to use a separate stack, some GC information is still required
in the objects themselves. The garbage collector must be able to determine whether
an object is unmarked or not. Typically, one bit in the object header is used to store
this information. If we implement the collector stack by pointers in the object head-
ers, the word of memory used to store the pointer can also be used to hold
information about the state of the object as well. An unmarked object could for
example contain a null pointer. Any other bit pattern would indicate that the object
is marked. This approach thus has the potential of reducing the memory require-
ments of the scheme somewhat.

entry

aptr

object table

A

B

Figure 4.14 The pointer-indirection scheme of Bengtsson’s incremental, compacting
mark-sweep algorithm. All pointers point to an entry in an object table.
The entry contains the only pointer to the referenced object. Every object
contains a pointer back to the corresponding object table entry.
In the figure, the pointer B.aptr points to object A via the object table.

4.9 Scheduling mark-sweep garbage collection 89
4.9.2 Atomic operations

Some operations affecting the heap must be ensured to be executed atomically.
Such operations either store temporary pointers in places unknown to the garbage
collector or they temporarily cause the heap itself to be in an inconsistent state. We
suggest that atomicity is achieved by disabling the processor interrupts in the
same way as we proposed for the copying algorithm in Section 4.3.

Pointer dereferencing

The read barrier is implemented in the same way as for the copying algorithm, i.e.
by one level of indirection. First, the current address of the target object is found
by looking it up in the object table. Second, the retrieved address is used to access
the object. If we would not disable the processor interrupts during these two steps,
a context switch could potentially occur just after the mutator had retrieved the
current address from the object table. The garbage collector could then be invoked
and move the object being dereferenced by the mutator. The address fetched from
the object table would no longer be correct.

Write barrier

The write barrier of Bengtsson’s incremental mark-sweep algorithm is quite cheap.
The barrier checks whether the collector is currently in the marking phase. If so,
it checks whether the referenced object is unmarked, in which case it marks it and
puts a reference to it on the collector stack. All of this can be performed by a small
and bounded number of machine instructions. The cost of the write barrier should
be comparable to, or cheaper than, the write barrier of our copying algorithm
employing the lazy-evacuation scheme (Section 4.4.2). A pointer assignment
including the write barrier is considered to be an atomic operation.

4.9.3 Interruptible garbage collection

If very short process latencies are required, relocating an object cannot be treated
as an atomic operation. Large objects take too long time to copy. For the copying
algorithm we solved this problem by using an optimistic approach to object copy-
ing, see Section 4.4.5. An object copying is started hoping that it will complete
without being interrupted by a higher-priority process. If a context switch occurs,
the garbage collector backs out of the on-going copying and retries when resumed
later. This scheme will maintain the consistency of the data on the heap. At most
one object copying has to be abandoned each time a context switch is performed,
which bounds the extra overhead.

90 Chapter 4 Scheduling Garbage Collection
When using the copying algorithm, objects are always copied between separate
memory areas, which guarantees that the source and destination areas never over-
lap. Object copying can therefore be interrupted at any time without violating the
integrity of the old version of the object. If the basic mark-sweep algorithm is used,
the source and destination areas may very well overlap. Overlap might result in
that neither the old (source) nor the new (destination) copy is consistent; the new
copy is not complete yet and the old copy has been partially overwritten by the new
copy, see Figure 4.15.

In order to solve the problem with overlapping source and destination areas, the
algorithm has to be modified in such a way that the source and destination areas
of an object copying never overlap. Overlapping source and destination areas for
object copying can be avoided in the following way, illustrated by Figure 4.16: The
size of the area A is increased with the maximum object size and we alternate
between moving objects towards lower and higher addresses in A. During odd GC
cycles, live objects are slided towards lower addresses just as before, whereas they
are slided towards higher addresses during even cycles. We also have to modify the
allocation strategy slightly: When the current allocation area, B1 or B2, is filled up,
we continue by allocating new objects in A. During odd cycles, new objects are allo-
cated at the lowest possible address in A whereas they are allocated at the highest
possible address during even cycles. We do not allow A to fill up completely before
starting a new GC cycle, but a new cycle is started when an allocation would cause
the amount of remaining free memory in A to become less than the maximum
object size. An amount of unused space will consequently be left in A. When the
next cycle starts, this space will be located at the end of A, towards which we will
move all live objects. Thus, when the garbage collector enters the compaction
(sweep) phase of the following cycle, we can guarantee that the distance between
the source and destination addresses will be at least equal to the maximum objects
size. All moves will therefore be non-overlapping.

The objects in A are traversed linearly in connection with the compaction phase.
The traversion starts at the end of A towards which we will move the objects. Dur-
ing odd cycles we will traverse the objects from low addresses towards higher
addresses whereas we during even cycles will traverse the objects in the opposite
direction. If the header of each object contains the size of the object it is easy to

Figure 4.15 Overlapping source and destination areas during an object copying caus-
ing the object to get into a temporarily inconsistent state. Neither the
source nor the destination area contains a complete object.

copying

source

destination Valid source words

Valid destination words

4.9 Scheduling mark-sweep garbage collection 91
traverse the objects in low-to-high order. To get from one object to the next we only
have to add the size of the object to its address to get the address of the next object.
High-to-low order traversion is not possible using this scheme. From an object we
want to find the address of the following object (at a lower address). To find this
address we need to subtract the size of the following object from the address of the
current object, but we cannot find the size since we do not know the address of the
following object.

Traversing the objects in A from high addresses towards lower addresses is pos-
sible if the information about the size of the objects is separated from the headers
of the objects. During even cycles, as objects are relocated and later when new
objects are allocated in A, we place a word of memory immediately in front of every
object containing the size of the object. In the subsequent odd cycle, this informa-
tion can be used to find the next object. During odd cycles, we instead place the size
word immediately after the objects. In this way we will be able to find the start of
the next object to traverse during the following even cycle, even though we traverse

s1 o1 s2 o2 s3 o3 s4 o4 s5 o5 s6 o6

s1o1 s4 o4 s5 o5 s6o6s6s2o2 s3o3

s1o1 s2o2 s3o3 s4o4 s5o5 s6o6

direction of traversal

a) Before compaction.

sn = size of object n
on = body of object n

Figure 4.16 The layout of area A of our incremental mark-sweep algorithm during an
odd GC cycle. Objects are slided towards low memory. As an object is
moved, the objects size word is relocated to a position immediately after the
object body in order to facilitate the traversal in the opposite direction of the
next, even, cycle.
Even GC cycles are similar, but the objects are slided towards high memory
and the size words are put before the object bodies.
The grey area must always be large enough to guarantee that no copying
will involve overlapping source and destination areas. This makes it always
possible to back out of an on-going copying.

b) During compaction.

c) After compaction.

92 Chapter 4 Scheduling Garbage Collection
the objects in a high-to-low order. The size of the object following the object that is
currently being traversed can be found in the memory word just before the current
object.

The described method of avoiding overlapping source and destination areas has
both memory and time overhead. The memory overhead is equal to the maximum
object size, which in most cases must be considered insignificant. The time over-
head affects the average-case performance, which will be poorer. Alternating
between moving the objects in A towards the lower and upper ends implies that
every object in A will be moved once in every GC cycle. In the original formulation
of the algorithm, old objects will tend to sediment at the lower end of A. Since the
mortality of old objects is generally low [Ben90,Ung84], there is a good chance that
the garbage collector can traverse a number of live objects without having to move
them. They will already be at the right place. It is not until a dead object is encoun-
tered that the collector will have to start move objects. The worst-case behaviour
is the same for both approaches, however. In the worst case, the object located at
the start of A will be dead, in which case every object will have to moved, just as
when we alternate between moving objects upwards and downwards in A.

4.9.4 Work scheduling

The work of the mark-sweep algorithm is scheduled in an analogous way to how it
is scheduled for the copying algorithm we have discussed earlier, see Section 4.4.4.
For low-priority processes, garbage collection is performed in connection with allo-
cation request. An amount of garbage collection proportional to the size of the
requested memory block is performed. No GC work is performed when high-prior-
ity processes request memory. The missing work is instead performed when no
high-priority process is ready to execute.

A minimum GC ratio, GCRmin, is again defined as:

Wmax is the maximum amount of GC work necessary to complete a full GC cycle.
It includes the work necessary for marking as well as the work required for com-
pacting the heap. Fmin is the minimum amount of memory available for allocation
of new objects during one GC cycle. Fmin is calculated as:

SB is the size of each of the allocation areas, B1 and B2. MHP is the amount of mem-
ory that can be allocated by high-priority processes during a time interval equal to
the response time of the GC process.

GCRmin

Wmax

Fmin
-------------= (4.22)

Fmin SB MHP–= (4.23)

4.10 Generation-based garbage collection 93
The garbage collector is scheduled in such a way that the minimum GC ratio is
made to be lower than or equal to the current GC ratio, GCR, i.e. GCR ≥ GCRmin.
GCR is defined:

W is the amount of work performed so far during the on-going GC cycle and A is
the amount of memory allocated during the same period.

When the compaction phase has finished, the garbage collector is suspended
until both the current allocation area, B1 or B2, and the area A is filled up, after
which a new GC cycle begins. The areas is considered to be filled up when it can no
longer be guaranteed that MHP bytes of memory can be allocated without perform-
ing GC work. MHP consecutive bytes of memory must remain free in both allocation
areas in order to do this, assuming the memory manager does not have any infor-
mation on maximum object size. If we denote the amount of free memory in A and
the current allocation area Afree and Bfree respectively, a new GC cycle is com-
menced when both of the following condition holds:

The schedulability of the GC work is analysed in the same way as for the copying
GC algorithm, see Section 4.8. The value of MHP follows from the analysis.

4.10 Generation-based garbage collection

Using a generation-based GC algorithm is a well-known technique to achieve good
average-case performance, as described in Section 3.5. In hard real-time systems,
we in general concentrate on minimizing the worst-case costs for garbage collec-
tion. Techniques, such as generation-based garbage collection, that improve the
average-case performance on the expense of the worst-case costs are less useful.
For generation-based garbage collection, the worst-case costs increase due to the
extra administration required and the potential of GC work in one generation trig-
gering work in another generation (see [Ben90]). Consequently, they have not been
considered appropriate for hard real-time systems.

The low interest in generation-based algorithms may be a result of a somewhat
simplified view of real-time systems. People tend to divide real-time systems into
two distinct classes, hard real-time systems and soft real-time systems. In a hard
real-time system, all processes are assumed to have hard deadlines. The processes
of soft real-time systems may also have deadlines, but it is tolerated that they are
missed occasionally. As we have observed earlier, most embedded control systems

GCR
W
A
-----= (4.24)

Afree MHP<

Bfree MHP<
(4.25)

94 Chapter 4 Scheduling Garbage Collection
contain processes with hard deadlines as well as processes with soft deadlines and
do thus not really fit well into any of the two classes.

Generation-based algorithms will not improve the worst-case performance of a
real-time system and do consequently not improve the situation for the hard real-
time part of the system. They do, on the other hand, promise improved average-
case behaviour, which the soft real-time part of the application will benefit from. It
is important, however, that any additional overhead for the hard real-time process-
es is small enough to not prevent the application from meeting hard deadlines.

Our semi-concurrent scheduling strategy is applicable to most incremental
algorithms. Since our scheduling principle incurs delays of any significant length
only for the soft real-time part of the system, it seems possible to combine incre-
mental generation-based algorithms such as those presented in [LH83, Ben90]
with our strategy. The rationale for not using generation-based algorithms is thus
weakened significantly.

Scheduling the work of an incremental generation-based algorithm according to
our scheduling principle brings with it more or less the same types and amounts of
overhead as described in Section 4.5. An additional piece of overhead for genera-
tion-based algorithms as compared to non-generation-based algorithms is that the
write barrier must monitor assignments that create pointers from one generation
to another. Tables must be updated to keep track of such pointers. This does, how-
ever, not lead to more overhead for a garbage collector scheduled according to our
strategy than for one using traditional scheduling.

The overall performance of a generation-based garbage collector scheduled
according to our principles can be assumed to be more or less comparable with a
traditionally scheduled collector.

4.11 Summary

This chapter presented a GC scheduling strategy that permits the use of garbage
collection even in hard real-time systems, particularly embedded control systems.

The strategy, which we call semi-concurrent garbage collection, is a combina-
tion of concurrent garbage collection with respect to high-priority processes and
incremental sequential garbage collection with respect to low-priority processes.
The effect of the strategy is that only a small fixed amount of administrative work
is performed during execution of critical high-priority processes. This adds fixed
overhead to allocation, pointer assignment, and pointer dereferencing, and contrib-
utes only with a small amount of time to the worst-case execution time of high-
priority processes. The GC work motivated by the allocation activities of the high-
priority processes is performed in between the execution of the high-priority proc-
esses. The GC work motivated by allocations made by low-priority processes is
performed as a part of the allocation operation. This arrangement guarantees that
high-priority processes do not run out of free store due to the actions of low-priority

4.11 Summary 95
processes. All GC work is interruptible and consists of very small atomic opera-
tions, which guarantees that high-priority processes can be invoked without delay.

It was studied how a standard incremental sequential GC algorithm, in our case
a variant of Brook’s algorithm, can be modified to meet the requirements of semi-
concurrent scheduling. It was discussed how alternative algorithms, e.g. incremen-
tal mark-sweep and generation-based algorithms, can be used together with the
proposed strategy. An advantage of using semi-concurrent garbage collection is
that techniques for improving the average-case performance, such as generation-
based garbage collection, can be used with virtually no penalty on the worst-case
behaviour of critical processes.

The scheduling strategy described in this chapter meets the design require-
ments for a garbage collector for embedded systems (described in Section 4.2):

• Small and fixed overhead for primitive memory management operations adds
minimally to the worst-case execution times of high-priority processes.

• Short latencies for high-priority processes are guaranteed.

• The flexibility in algorithm choice promises good overall effiency.

A priori scheduling analysis is necessary in order to convince ourselves that a par-
ticular application program will always meet its deadlines. The chapter showed
how a standard scheduling analysis method, in this case rate monotonic analysis,
can be modified to take garbage collection into account. Joining the fields of GC
research and scheduling analysis research is a novel and important contribution of
this thesis. Semi-concurrent garbage collection has a very nice property when it
comes to scheduling analysis. We only have to analyse the high-priority processes
(which are few in most cases) and the special GC process in order to determine the
schedulability of the safety-critical parts of the application. The low-priority proc-
esses can never cause the garbage collector to get behind regardless of their
memory allocation rate, which would otherwise imply failure to serve the high-pri-
ority processes with fresh memory.

96 Chapter 4 Scheduling Garbage Collection

Chapter 5

A Garbage Collection Prototype

Having developed a new scheduling strategy for garbage collection in real-time
systems, presented in Chapter 4, we now want to verify that the promises on guar-
anteed short response times for high-priority processes can be fulfilled. A prototype
garbage collector is therefore implemented. The requirement on other aspects of
the implementation is only that it should be reasonably efficient. The overall effi-
ciency of the collector has thus not been a major concern and many possibilities for
improvement exist.

The prototype is integrated with an existing real-time kernel used for automatic
control applications. The implementation work is done in cooperation with the
Department of Automatic Control, Lund Institute of Technology. This chapter
describes the implementation of the prototype while the actual measurements
carried out on the prototype are presented in the next chapter.

5.1 Environment

The real-time development environment at the Department of Automatic Control
is a flexible and open system [AB91]. It supports several hardware configurations
and can be used to control complex systems such as industrial robots. The platform
is very suitable for experiments with new implementation techniques for real-time
systems due to its openness. The source code for all of the system software is avail-
able. This makes it easy to perform experiments in the innermost part of the real-
time kernel, which is usually impossible when a commercial system is used.

5.1.1 System architecture

The real-time development environment is based on a host-target architecture. In
the general case, one computer host the development tools while another executes

98 Chapter 5 A Garbage Collection Prototype
the application program. Several hardware architectures are supported. Unix
workstations from Sun Microsystems or IBM PC compatibles can be used as host
machines. For the target machine one can chose between a Sun workstation, an
IBM PC compatible, or a VME board equipped with a microprocessor from the
Motorola 680x0 family. The VME boards are special-purpose control computers
without facilities for secondary storage or direct user interaction.

The hardware configuration supported by the GC prototype is a Sun worksta-
tion as the development machine and a VME board equipped with a 25 MHz 68040
processor as the target machine, see Figure 5.11. Development tools such as text
editors, compilers, and linkers run on the Sun workstation. The workstation is con-
nected to the target VME board via an ethernet connection and a serial RS-232
link. The serial link is used to communicate with a simple ROM-based program
loader and a machine code debugger on the VME board. It also provides support
for serial I/O while an application is running. Applications are loaded into the VME
board computer via the ethernet connection, after which they are given full control
of the hardware. The VME hardware includes a number of different analog and
digital I/O ports used for interfacing with the hardware that is to be controlled.

5.1.2 Real-time kernel

The real-time kernel supports concurrent priority-based preemptive processes.
The system employs a shared-memory model for process communication. Support
is included for the most popular synchronization mechanisms, such as semaphores,

1.The picture of the robot in Figure 5.1 is taken from the ASEA/ABB Irb-6 robot ma-
nual and digitized by Rolf Braun.

development host VME target
computer

ASEA

controlled
equipment

LAN

control signals

sensor input

Figure 5.1 Overview of the hardware architecture. Workstations are used to develop
applications; compiling, and linking. The linked application is loaded into a
dedicated control computer via the network.

RS-232

5.2 The garbage collector 99
monitors, and message passing. Monitors implement the basic inheritance protocol
for priority inheritance in order to avoid problems caused by priority inversion.

The kernel is written in Modula-2, which a Modula-to-C translator converts
into C code. The generated C code is then compiled into object code by gcc, the GNU
C compiler. The compiled kernel can be used together with application programs
written in Modula-2, C, or C++. The real-time kernel object file is linked with the
application program into a complete executable program. The resulting program
can then be loaded over the network into the target control computer and executed.

5.2 The garbage collector

A garbage collector for Motorola 68040-based VME boards was developed. The gar-
bage collector was added to the existing system with minimal modification of the
runtime system and real-time kernel. The compiler, for C or C++, does not offer any
special support for garbage collection. Therefore, the programmer is responsible
for making sure that pointers and objects on the garbage collected heap are manip-
ulated in the way prescribed by the GC algorithm. This leads to some overhead,
both regarding code and performance. Furthermore, the required source code is
tedious to write. However, the approach is only intended for experiments. Using
the collector on a larger scale would require a more cooperating environment with
a programming language designed for use with garbage collection, such as Java or
Simula.

5.2.1 The algorithm

The prototype garbage collector is an implementation of the copying algorithm
described in Section 4.3. The lazy-evacuation scheme of Section 4.4.2 is implement-
ed in order to minimize the worst-case response times for high-priority processes.
The object initialization strategy of Section 4.4.1 is not yet implemented, however.
The contents of new objects are initialized to zero in connection with allocation.
Object copying can be aborted in order to guarantee small and bounded worst-case
latency of high-priority processes, as described in Section 4.4.5. The collector is
mainly written in C, but with a few critical pieces coded in assembly language.

5.2.2 The garbage collector coroutine

Coroutines can be viewed as strongly synchronized light-weight processes, where
execution is explicitly transferred from one coroutine to another [Mar80]. The exe-
cution is transferred to the point where it was suspended last when a coroutine is
resumed. Switching from one coroutine to another is typically a cheap operation

100 Chapter 5 A Garbage Collection Prototype
compared to switching between two concurrent processes. The cost is usually com-
parable to that of a procedure call.

GC algorithms can often be elegantly described in the form of coroutines. A full
GC cycle for a copying algorithm involves several separate activities performed in
sequence; waiting for memory to fill up, performing a flip, scanning root pointers,
and scanning evacuated objects. Using coroutines, this work can be implemented
by one sequential piece of code. Work can be suspended at arbitrary (but program-
mer-defined) points in the sequence in order to implement incrementality. When
the coroutine is resumed, it continues at the point where it was suspended last.
Using coroutines, the GC algorithm can be nicely implemented separately from the
scheduling policy.

The mutator and the collector of incremental GC algorithms are often viewed
as two separate coroutines. This approach is applicable to our system as well, albe-
it with a slight modification. In our case, the “mutator” coroutine is composed of all
the application program processes plus the special GC process responsible for
cleaning up after the high-priority processes (Section 4.4.3). It is important to note
that the notion of coroutines is orthogonal to the notion of real-time processes in
this case (Figure 5.2). The processes call the same GC coroutine when they have
detected that GC work is required. This can be done either by the high-priority GC
process when a high-priority process is suspended or in connection with allocation
requests made by low-priority processes. The GC coroutine is called repeatedly
until enough GC work has been performed. Each time the coroutine is invoked, it
performs one increment of GC work.

Some languages support coroutines, such as Simula [SIS87] and Beta
[MMN93], but unfortunately, C does not. A C function was therefore used to emu-

Figure 5.2 The application program processes together with the high-priority GC
process together comprise one coroutine. Another coroutine, the GC
coroutine is responsible for performing GC work. The notion of real-time
processes is orthogonal to the notion of coroutines. Each real-time
process executes parts of both coroutines.

process 1

process 2

GC process

“mutator” coroutine

GC coroutine
invokes

5.2 The garbage collector 101
late a coroutine. Calling the function corresponds to resuming the coroutine. The
first thing performed by the C function is to determine the position where the
coroutine was suspended last and jump to that location. A global state variable is
used to record where the coroutine was suspended last. The function acts like a
finite state machine implemented by a large case-statement. The coroutine relin-
quish control by returning from the function after having recorded in the global
state variable where execution is to be resumed next time the function is called.
Locally used variables were declared static in order to preserve their values
between invocations.

The C function implementing the GC coroutine does not contain any logic for
deciding when to suspend garbage collection. It only performs one small increment
of GC work and returns. The logic is instead located at the call-sites of the function.
This means that the GC coroutine will be called repeatedly until enough GC work
has been performed. Each increment of GC work will thus require one procedure
call to be performed. In addition, dispatch code must be executed by the function
in order to resume the GC coroutine at the right place. This overhead will be quite
significant since the GC work performed at each invocation is very small. We have
traded performance for ease of coding. The GC coroutine and its invocation mech-
anism are obvious targets for future optimization.

5.2.3 Memory organization

The original memory organization of the real-time kernel and development lan-
guage is used with minimal modification. Apart from sharing statically allocated
global data, all processes share a common heap managed by the kernel, also known
as the standard C heap or the system heap. Manual memory management (using
malloc/free) is used to handle the objects on this heap. Each process is assigned a
separate stack, which is used to hold the activation records for the process in ques-
tion. When a context switch is required, the kernel stores the current value of the
stack pointer into the process record of the process to be suspended. Then, the new
value of the stack pointer is loaded from the process record of the process to be acti-
vated. It is thus possible to change the active stack without copying the contents of
the stacks involved. A process stack is allocated dynamically on the manually man-
aged heap each time a new process is created.

A part of the system heap is allocated by the garbage collector at start-up. This
memory area is used for the garbage collected heap on which all the garbage col-
lected objects are stored. The application program is free to chose whether a new
object should be allocated on the garbage collected part of the heap or on the man-
ually managed heap provided by the original kernel. Figure 5.3 illustrates the
memory organization.

102 Chapter 5 A Garbage Collection Prototype
5.2.4 Root pointer data structures

A root pointer is defined as a pointer located somewhere outside the garbage col-
lected heap and containing a pointer to an object on the garbage collected heap. The
pointer can be located in the static data area, on one of the process stacks, or in an
object allocated directly on the standard C heap. The garbage collector uses two dif-
ferent data structures to keep track of root pointers depending on the location of
the root pointer. A set of stacks is used to keep track of global statically allocated
roots and roots located on the processor stacks. A linked list is used to track roots
allocated on the standard C heap.

As mentioned previously, each process has a separate stack segment used for
allocating activation records representing function calls. Roots are introduced on
the stack if a function that contains local pointers is called or if any of the param-
eters to the function is a pointer. The roots are created in a stack-like fashion,
which makes it possible to use a stack to keep track of the roots. The address of
each new root pointer is pushed onto a stack when created. The addresses are
popped from the stack when the corresponding roots are removed. Each process
stack has a unique corresponding root pointer stack. The process stack grows from
high addresses towards lower addresses. The corresponding root pointer stack is

Statically allocated global data

Manually managed heap

garbage
collected

heap
process stacks (kernel-allocated)

application-allocated data

Figure 5.3 Memory organization. The garbage collected heap is allocated at start-up
on the standard system heap. The application program can chose to allocate
objects on the garbage collected heap or on the manually managed system
heap. Process stacks are dynamically allocated on the system heap when
new processes are created.

5.2 The garbage collector 103
located in the opposite end of the stack segment reserved for the process, growing
towards higher addresses. The root pointer stacks are in turn linked together in a
double-linked list, see Figure 5.4. The garbage collector traverses the root pointers
by going through the root stacks in the list one by one. The contents of each stack
is traversed linearly. Each location on the process stack indicated by the addresses
on the root pointer stack is scanned.

A different technique is required to keep track of root pointers located on the
standard C heap. For this, a double-linked list is used, which makes it possible to
deregister root pointers in random order. Since we did not want to introduce addi-
tional dynamically allocated notice objects, it is required that two words of memory
is reserved for use by the garbage collector directly following each root pointer. The
two words of memory is used to store pointers to the next and previous root pointer
in the list (refer also to page 111).

5.2.5 Real-time kernel modifications

We were able to integrate the garbage collector with the existing real-time kernel
with very little modifications of the kernel. The kernel was modified on only three
points. First, the garbage collector must be informed when a new process is created

root pointer
stack

root pointer
stack

Figure 5.4 Data structure used to keep track of root pointers located on the process
stacks and in global memory. Example with three live processes.

process stack
segment #1

process stack
segment #2

garbage
collector

root pointer
stack

process stack
segment #3

104 Chapter 5 A Garbage Collection Prototype
in order to create a root pointer stack. Second, the GC process responsible for clean-
ing up after high-priority processes must be activated whenever a high-priority
process is suspended and no other high-priority process is ready to execute. Third,
the idle process of the kernel was modified to enable background garbage
collection.

Root pointer stacks

As noted above, a root pointer stack is associated with each application process.
The root pointer stack must be initialized and linked into a list of such stacks when
a process is created. It was therefore necessary to modify the process instantiation
routine of the kernel.

The high-priority garbage collection process

As described above, the GC work motivated by the actions of the high-priority proc-
esses is performed by a separate process calling the GC coroutine. This process is
to be activated when the high-priority processes have allocated memory and GC
work is required. One way to accomplish that would be to use to one of the available
synchronization primitives supported by the kernel. It was, however, considered
unnecessary expensive to signal the GC process using these primitives every time
an allocation was made by a high-priority process. Our goal was to minimize the
response time of the high-priority processes. Thus, that approach was abandoned.
Instead, the process scheduler was modified so that it is aware of the existence of
the GC process. When a high-priority process is suspended, the kernel makes the
GC process ready to run if not already so, i.e. it moves the process to the “ready”-
queue of the scheduler. The scheduler will then assign the processor to the GC proc-
ess as soon as no high-priority process is eligible for execution.

The advantage of the chosen strategy over explicit signalling is that it does not
add execution time to the high-priority processes. On the other hand, the GC proc-
ess may be triggered unnecessarily if none of the high-priority processes requested
an allocation, but that will not add to the response times of the high-priority proc-
esses. It can, however, be avoided if the allocation operation sets a dirty bit, which
can then be checked by the scheduler. The GC process would then be activated only
if the dirty bit is set. Setting a dirty bit in connection with allocations would not
significantly add to the response time of a high-priority process. This optimization
is, however, not yet implemented.

Garbage collection and idle time

A natural optimization of the garbage collector is to use idle processor time to per-
form GC work, which means that the garbage collector will be allowed to work

5.2 The garbage collector 105
ahead of its schedule. When an allocation request later arrives, the required GC
work might already have been performed, resulting in better average-case per-
formance primarily for low-priority processes. The idle process of the kernel was
modified to call the garbage collector coroutine repetitively until no GC work
remains to be done. This feature was, however, not enabled during the evaluation
of the garbage collector since we wanted to provoke as bad situations as possible.

5.2.6 Estimating garbage collection work

The amount of GC work that has been performed can be measured in several ways,
as discussed in Section 4.7. The current implementation uses a combination of
three parameters to estimate the GC work: the number of scanned root pointers,
rootsscan, the accumulated size of the scanned heap objects, objectsscan, and the
accumulated size of the evacuated objects, objectsevac.

The current amount of performed GC work is then calculated using the formula:

The two coefficients α and β are used to compensate for the fact that scanning a
root pointer or a heap object takes a different amount of time to perform than evac-
uating an object. Correctly chosen, α and β make W reasonably proportional to the
actual time spent on GC work. Empirical studies have given that 7 and 0.5 seems
to be reasonable values for α and β respectively for our implementation and
hardware.

Denote the corresponding upper bounds on the variables used above
max(rootsscan), max (objectsscan), and max(objectsevac) respectively. The maximum
number of roots is explicitly provided by the programmer. The latter two bounds
are equal to the maximum amount of simultaneously live memory, which is also
programmer-specified. Then, the maximum amount of required GC work is calcu-
lated similarly to the amount of currently performed work:

The values of W and Wmax derived from (5.1) and (5.2) can now be applied to the
relation in (4.5) on page 59 in order to determine how much GC work must be
performed.

W α rootsscan⋅ β objectsscan⋅ objectsevac+ += (5.1)

Wmax α max rootsscan()⋅ β max objectsscan()⋅ max objectsevac()+ += (5.2)

106 Chapter 5 A Garbage Collection Prototype
5.3 Application program interface

The application program interface, or API, to the memory management module
consists of a C interface with some extensions for C++ constructs. Lacking a coop-
erating compiler, the programmer must follow a number of coding conventions to
guarantee the consistency of the heap at all times. Here, we briefly describe the
API of the memory manager and the conventions the application programmer has
to adhere to.

5.3.1 Initialization

Before any object can be allocated on the garbage collected heap, the memory man-
ager must be initialized. This is done by calling the routine gc_init once at start-up:

gc_init(int space_size,int live_size,int max_roots,int hp_alloc,
int hp_prio_limit,int gc_during_idle);

The space_size and live_size arguments specify the size of the GC heap and the
maximum amount of simultaneously live memory respectively. The maximum
number of root pointers is given in max_roots, information that is used by the gar-
bage collector to schedule its work. hp_alloc specifies the amount of memory that
is to be reserved for use by high-priority processes, MHP, see Section 4.8.3. Process-
es with a priority higher than the priority given in hp_prio_limit are considered to
be high-priority processes. The high-priority GC process is assigned the priority in
hp_prio_limit. Low-priority application processes must have a lower priority. The
last argument, gc_during_idle, is a flag determining whether the garbage collector
should be invoked when the systems idle process is running. This is an option that
improves the average-case behaviour of the collector, since it allows the collector to
do work before it is actually required by the scheduling rules. It does not improve
the worst-case behaviour, however. Garbage collection during idle processor time
should normally be enabled, but we included the option to disable it for experimen-
tal reasons. We ran the collector with this feature disabled in all the experiments
described in the next chapter in order to stress the collector as much as possible.

5.3.2 Declaring objects

All objects (C structs) located on the GC heap must contain a header with a fixed
layout. The header must contain four word-sized fields. The following example
illustrates what a garbage collected C data structure looks like.

5.3 Application program interface 107
typedef struct example_object {
/* Header fields */
struct example_object *fp; /* Forwarding pointer */
int object_size;
int *gc_info; /* Pointer to object */

/* layout description */
void *gc_flags; /* GC status and lazy */

/* evacuation pointer */
/* Application-specific fields */
...

} example_object;

The fp field stands for “forwarding pointer”. All access to heap objects must be done
via this pointer. The total size of the object, including the header fields, can be
found in object_size. The gc_info field is a pointer to information about where point-
ers are located in the object. We describe this further below. The last field, gc_flags,
is used by the garbage collector during a GC cycle to determine whether the object
is evacuated, marked for lazy evacuation, or yet unmarked. If the object is marked
for lazy evacuation, gc_flags contains a pointer to the memory area in tospace
reserved for the object.

Object layout information

When the garbage collector scans an object for pointers to other objects, it must be
able to correctly identify the pointer locations within the object. To facilitate this,
the gc_info field in the object header contains a pointer to a data structure with
information about the layout of the object. All objects with the same pointer layout
can share the same layout information. The layout information is parsed by the
garbage collector as the object is scanned.

The layout information consists of a sequence of 32-bit integer pairs terminated
by a single integer having the value -1. Each integer pair consists of an offset and
a count. The offset indicates how many 32-bit words an imagined scan pointer, ini-
tially positioned at the start of the object, should be advanced in order to be
positioned at to the next application program defined pointer field. The count
states how many consecutive pointer fields follows, and how much the scan pointer
is to be advanced before the next integer pair is parsed. Figure 5.5 presents an
example object declaration and the corresponding layout information.

A count of -2 indicates that a variable number of pointer fields follows. The actu-
al number of pointers is found within the object at the position indicated by the
scan pointer. The pointer fields follow immediately thereafter. This makes it possi-
ble to use the same layout information for objects with a varying number of pointer
fields, such as arrays.

The layout information about an object must currently be constructed manually
by the programmer. In a cooperating environment, in which the compiler is aware

108 Chapter 5 A Garbage Collection Prototype
of the garbage collector and its requirements, this information would be generated
automatically.

5.3.3 Pointer access

Any transaction that temporarily creates pointers into the GC heap that the gar-
bage collector is not aware of must be protected. Otherwise, the garbage collector
might move the referenced object without updating the temporary pointer. One
such transaction is pointer access, which might put temporary pointers in proces-
sor registers. Protection is achieved by disabling the processor interrupts during
the access, thereby preventing the garbage collector to get control. Two C macros
exist for disabling and enabling interrupts, gc_lock and gc_unlock respectively.

Pointer dereferencing must always be performed via the indirection pointer fp
in the object header, as mentioned in Section 5.3.2. This implements the read bar-
rier of the GC algorithm. The code for accessing a field aField in an object reference
by a pointer aPtr might thus look like:

gc_lock;
a = aPtr->fp->aField;
gc_unlock;

Implementation note: The gc_lock and gc_unlock macros expand into inline
assembler code. In the current implementation, gc_lock generates two machine
instructions and gc_unlock one machine instruction.

struct example_object {
/* Header fields */
struct example_object *fp;
int object_size;
int *gc_info;
void *gc_flags;
/* Application-specific fields */
example_gc_object *pointer1;
int an_integer;
example_gc_object *pointer2;
example_gc_object *pointer3;

}

Figure 5.5 An example object declaration and the corresponding object layout infor-
mation. The first integer pair (4,1) indicates that four words should be
skipped in order to find the first pointer and that only one pointer follows.
The next integer pair (1,2) indicates that two pointers follows after one
non-pointer word.

Object layout information

(4,1),
(1,2),
-1

5.3 Application program interface 109
5.3.4 Pointer assignment

Pointer assignments must be guarded by the write barrier of the copying GC algo-
rithm. A macro named gc_set is used to implement pointer assignments. All
assignments to pointers must be performed using this macro. The macro has the
syntax:

gc_set(lvalue , pointer expression);

The pointer resulting from the evaluation of pointer expression is assigned to the
pointer given as lvalue.

Implementation note: The gc_set macro implements the lazy-evacuation scheme
described in Section 4.4.2. In the worst case, 21 machine instructions must be exe-
cuted in the current implementation including code for disabling/enabling
interrupts. The code generated for evaluating the arguments is not included.

5.3.5 Allocation

New objects are created using a call to gc_new:

gc_new(int *gc_info,int size,void *target);

A pointer to the layout information for the new object is passed in gc_info. The size
of the requested object is given in size. When the new object has been created, a
pointer to it is stored in the pointer location denoted by target.

5.3.6 Root pointers

Root pointers must be registered in the data structures of the garbage collector
before they are used (refer to Section 5.2.4). In our C implementation, root pointers
come in three variants: Roots located on stacks (local variables and function
parameters), roots in static global memory (global variables), and roots dynamical-
ly allocated on the standard C heap.

Local pointer variables

Roots are allocated on the process stacks as function calls creates activation
records on the stacks. If a procedure contains a declaration of a local pointer vari-
able, it will be instantiated on the stack as a part of the activation record. The
programmer is responsible for informing the garbage collector about these new
root pointers before using them for the first time. This is done by using the

110 Chapter 5 A Garbage Collection Prototype
gc_pushroot macro. The macro must be called once for each local pointer variable
and takes the local variable as argument. The addresses of the local variables are
then pushed onto a root pointer stack. A separate root pointer stack is associated
with each process. Another feature of the macro is that the pointer is initialized to
null.

Before returning from the function, the programmer must remove the tempo-
rary root pointers from the root pointer stack. This is done by using the gc_poproots
macro, which removes the number of roots from the stack given as argument. A
code of a sample procedure containing declarations of local pointer variables might
look like:

void example_routine(void) {
example_object *local_root1,*local_root2;

gc_pushroot(local_root1);
gc_pushroot(local_root2);
...
gc_poproots(2);

}

Global pointer variables

Root pointers located in static global memory are live from the start of the applica-
tion and until it is terminated. The same technique is used to inform the garbage
collector about global roots as locally declared roots. The main process is responsi-
ble for calling gc_pushroot for each global root. This is done after having initialized
the garbage collector with a gc_init call. References to global roots will thus be
available on the root pointer stack of the main process throughout the execution of
the application.

Passing pointers as parameters

When a pointer to an object on the GC heap is passed as a parameter to a function,
the parameter forms a new root pointer on the process stack. As such, it must be
registered in the garbage collector. The problem facing the application programmer
is that this can not be easily done before calling the function. The parameter loca-
tions are only directly accessible within the function itself. In order to avoid a
context-switch while the parameters are evaluated and the function is called,
potentially causing the garbage collector to move the involved objects, the inter-
rupts must be disabled until the parameters can be registered. Complex
expressions involving functions calls should be avoided as arguments to functions
in order to avoid long blocking times. The parameters are registered one by one by
the function itself, after which the interrupts can be reenabled. A sample function
taking a pointer as a parameter could look like:

5.3 Application program interface 111
void sample_function(Object *ptr) {
gc_pushparam(ptr);
gc_unlock;
...
gc_poproots(1);

}

The code calling the function might look like:

gc_lock;
sample_function(pointer expression);

The gc_pushparam macro is similar to gc_pushroot, described earlier, but it does
not clear the contents of the root pointer.

Returning a pointer as the result of a function cause similar problems as pointer
parameters do, and the solution is similar. The processor interrupts are disabled
before the function is terminated and reenabled when the return value have been
safely stowed away in a pointer variable known to the garbage collector.

Dynamically allocated roots

As described in Section 5.2.4, root pointers located on the standard C heap must be
handled differently than other types of root pointers. Dynamically allocated root
pointers must be declared as a C struct with the following layout:

struct type_name {
object_type *ptr;
struct type_name *prev;
struct type_name *next;

};

When dereferencing the pointer, the ptr field should be used. The other fields are
used by the garbage collector to keep track of the root pointer. The application must
register the root before using it for the first time. This is done by calling
gc_add_heaproot. The root is deregistered by calling gc_remove_heaproot.

In the following example, a root pointer is declared, dynamically allocated,
used, and finally deallocated:

struct PtrType {
Object *ptr;
struct PtrType *prev;
struct PtrType *next;

};

struct PtrType *aPtr;
...
aPtr = malloc(sizeof(PtrType));
gc_add_heaproot(*aPtr);
...
gc_set(aPtr->ptr,...);

112 Chapter 5 A Garbage Collection Prototype
...
gc_remove_heaproot(*aPtr);
free(aPtr);

Implementation note: The garbage collector implementation maintains a dou-
ble-linked list of all dynamically allocated root pointers. The prev and next fields of
the C struct are used for forward and backwards links. The overhead for the
scheme is quite high. Three words of memory are required for every root pointer
instead of only one. Furthermore, the application must call routines to insert or
remove root pointers from the linked list each time a root pointer is allocated or
deallocated. This approach was chosen because it did not require any modifications
of the existing compiler or runtime system and is only intended for experimental
use. The problem disappears when the garbage collector is tightly integrated with
the programming language and runtime system.

5.3.7 Garbage collecting C++ objects

Even though the garbage collector was written in C and have a C API, it can still
be used to garbage collect C++ objects. Some restrictions do, however, apply.

Multiple inheritance

The garbage collector assumes that every pointer to an object on the GC heap
points to the beginning of the object header. This precludes the use of multiple
inheritance in C++, since the implementation of multiple-inheritance creates
pointers that points to different parts of the object depending on the static qualifi-
cation of the pointer [Kro85, Str94].

Declaration and instantiation

All garbage collected C++ objects must contain a four-word header just as C structs
must (Section 5.3.2). The contents of the header must be the same as for C structs.
If the class contains virtual member functions, the C++ compiler will insert a point-
er to a virtual function table at the start of the object [Str94]. This is not what we
want since the fields of the GC header would end up at the wrong offsets within the
objects. A solution to this problem is to declare an abstract class only containing
the GC header fields and use it as a super class to a class containing the virtual
member functions. This results in an object layout in which the GC header fields
precede the pointer to the virtual function table.

Classes are instantiated using the gc_new function. The constructor, if it exists,
of the class is consequently not called. If an initialization function is required, it

5.3 Application program interface 113
must be called manually. Similarly, when the garbage collector reclaims the mem-
ory occupied by the object, the destructor, if present, is not called either.

The ‘this’ pointer

When a C++ member function is called, an implicit parameter is passed to the func-
tion. The parameter is called the ‘this’ pointer and refers to the object receiving the
message implemented by the method. If the receiver of the message is an object on
the GC heap, the ‘this’ pointer must be registered by the garbage collector, just as
any other pointer parameter. A special macro, gc_pushthisroot, is used to do this.
It is used similar to gc_pushparam but it takes no argument; it is implicit.

Implementation note: The location, i.e. the memory address, of the ‘this’ pointer
cannot be directly accessed from C++ code. Therefore, the gc_pushthisroot macro
had to be written in assembly language. It makes an implementation-dependent
assumption about where the ‘this’ pointer is located with respect to the activation
record of the currently executing function.

Member access within member functions

As pointed out in Section 5.3.3, all pointer dereferencing must be performed via the
forwarding pointer of the target object and with the processor interrupts disabled.
This naturally applies to C++ objects as well. When a member variable is accessed
from outside the object, it is very obvious that an pointer is dereferenced. However,
in C++, a member access from within a member function does not require an explic-
it pointer dereferencing. The ‘this’ pointer is implicitly dereferenced in connection
with the member access. In our implementation, every access to a member entity
must be done via the forwarding pointer and with interrupts disabled, even from
within member functions. This is illustrated in the following example:

class sample_class {
public:

sample_class *fp;
int object_size;
int *gc_info;
void *gc_flags;
int a;

int get_a();
};

int sample_class::get_a() {
int tmp;

gc_pushthisroot; // Register the “this” pointer as a root
gc_unlock; // Permit preemption here

114 Chapter 5 A Garbage Collection Prototype
gc_lock;
tmp = fp->a; // Fetch the value of a via the forwarding pointer
gc_unlock; // Permit preemption here

gc_poproots(1); // Deregister the “this” pointer
return tmp;

}

5.4 Discussion

The existing prototype garbage collector is only very loosely coupled with the rest
of the development environment. The motivation for this was to minimize the
implementation work necessary to perform the measurements, but it has some
serious drawbacks. The loose coupling to the compiler often leads to suboptimal
code being generated. Very little optimization has been made in order to gain speed
or to minimize the space requirements. The programmer must follow a detailed set
of coding restrictions in order to manipulate the garbage collected objects in a safe
way. Together, this results in a system that is not suitable for use in production-
quality applications. However, it is good enough to be used to verify that the sched-
uling strategy presented in this thesis is indeed practically useful.

A language system, compiler and runtime system, with built-in support for gar-
bage collection is necessary for applications to really benefit from garbage
collection. C and C++ are not safe and are not suitable languages for such applica-
tions. A safe language such as Java, Simula, Beta, or Eiffel would be an adequate
choice. For these languages, the compiler can ensure that every restriction on how
pointers are used are met and can automatically generate the necessary code. The
tedious and error-prone programmer overhead for coding according to the restric-
tions would be eliminated. The system we used for experiments was, however,
already implemented in C/C++ and in this situation the chosen approach was
judged to be workable.

One of the key motivations for using garbage collection in hard real-time sys-
tems is to increase robustness. The increase in robustness is achieved by relieving
the programmer of the responsibility of manually managing the memory. The prob-
lems of dangling pointers, memory leaks, and memory fragmentation are
eliminated.

Another advantage of a more tightly integrated system than the current imple-
mentation is that more efficient code can be generated by the compiler. An example
of how a cooperative compiler could yield better code is object access. Currently,
context switches must be prevented while a pointer is dereferenced and a field
within an object is accessed (Section 5.3.3). The implementation requires the pro-
grammer to call the gc_lock macro, disabling interrupts, before executing a
statement that dereferences a pointer. The gc_unlock macro is used to reenable the
interrupts afterwards. The following code illustrates how a pointer access must be
protected:

5.5 Summary 115
gc_lock;
a = sqrt(b)/sin(ptr->fp->c+d);
gc_unlock;

Apart from making the explicit gc_lock/gc_unlock calls unnecessary, a compiler
that is integrated with the garbage collector could improve the code generated for
the assignment above in several ways. We observe that the interrupts are disabled
during the execution of the entire assignment statement. This is not really neces-
sary. It is only the part of the statement that dereferences a pointer that has to be
protected, i.e. ptr->fp->c. A compiler that automatically inserts code to disable/
reenable interrupts would realize this and generate code accordingly. Another
alternative would be to reserve one or two processor registers for storing the inter-
mediate pointers needed dereferencing the pointer. A garbage collector that is
aware of this would then consider those registers to be roots and scan them as any
other root pointer. It would not be necessary to disable the interrupts at all if such
an approach was used. Other coding conventions, e.g. pointer assignment, could be
optimized in similar ways.

5.5 Summary

A prototype implementation of a garbage collector scheduled according to the prin-
ciples described in this thesis was made. The purpose was to investigate whether
our techniques are useful in actual control applications. An existing real-time ker-
nel was modified, adding a real-time garbage collector. The garbage collector was
coded in C with some critical loops in assembler. Even so, the aim of the implemen-
tation was not to achieve maximum performance, but simply to demonstrate the
feasibility of our ideas.

The algorithm used is a variant of Brook’s incremental copying algorithm,
although other algorithms can be used instead. This algorithm was chosen for its
simplicity, not for efficiency reasons.

The garbage collector implementation is library-based, which means that it is
only loosely coupled with the language and compiler used to develop application
programs. The programmer is therefore required to follow a detailed set of coding
conventions in order to guarantee correct behaviour by the garbage collector. An
overview of the programming interface and the associated coding conventions was
given.

116 Chapter 5 A Garbage Collection Prototype

Chapter 6

Experimental Results

In this chapter we report on the experiments and performance measurements car-
ried out with the garbage collector prototype described in the previous chapter.

6.1 Introduction

The purpose of the experiments described in this chapter is to verify that a garbage
collector can be implemented according to the ideas presented earlier in this thesis
and that such an implementation meets the requirements of hard real-time sys-
tems. Important properties that we want to study include:

• The cost of primitive memory management operations, such as pointer assign-
ment and memory allocation.

• The worst-case latency for invoking a high-priority process.

• The amount of processor time required for garbage collection.

We are interested in determining the worst-case costs for various operations.
Unfortunately, this is something that cannot be directly measured. It does not mat-
ter how long we monitor the execution of an executing control application, we can
still not be absolutely convinced that the worst case has occurred. The best we can
hope to achieve by measuring the performance of an executing program is to get an
approximation of the worst-case costs with a reasonable amount of reliability.
When we in this chapter refer to the worst-case cost of something, we are actually
meaning the worst observed cost. This is an important distinction to make and it
should be kept in mind when reading the chapter.

118 Chapter 6 Experimental Results
6.2 Experimental setup

The target computer used in the experiments is a VME-based control computer
equipped with a 25 MHz Motorola 68040 microprocessor. The VME computer has
access to a number of digital and analog I/O ports which are used to interface with
the external equipment that is to be controlled. An example of such external equip-
ment is an Irb-2000 industrial robot from ABB, Asea Brown Boveri. Such a robot
is used in one of the experiments described in this chapter. A more detailed descrip-
tion of the hardware can be found in [Nil96].

In order to measure shorter time intervals (from microseconds down to nanosec-
onds) than any software-based technique can measure, a set of sixteen digital
outputs was used. The real-time kernel and the experimental garbage collector
were augmented with code producing signals on the digital outputs during inter-
esting events. For example, the cost of pointer assignments could be measured by
preceding every pointer assignment with a machine instruction producing a high
signal on one of the outputs. The signal was lowered by another machine instruc-
tion following the pointer assignment.

New functionality that allows the execution of application processes to be traced
was permanently added to the real-time kernel [Ive98]. Furthermore, clock inter-
rupts, process scheduling work, and GC work can be monitored. Digital output
signals are used to indicate which process is currently executing. Each application
process we want to monitor is assigned a unique output which goes high as long as
the corresponding process is executing.

A 16-channel logic analyser was used to study the generated output patterns.
The logic analyser continuously samples the state of each of its sixteen input chan-
nels and stores the samples in memory. The result of the sampling is shown on the
display of the logic analyser, see Figure 6.1, when a trigger condition is met. The
display shows how the different signals varied during a specifiable time interval
before and after the trigger condition was met. The duration of interesting events
visible on the display can be measured with a high degree of accuracy. The trigger
condition can be varied in a flexible way. A simple condition is a channel going high,
but complex combinations of signals can also be specified as well as an external
trigger signal.

Measuring the worst-case and average-case duration for a signal is somewhat
tricky without extra equipment. The logic analyser has two modes that could be
useful when measuring worst-case durations, but it lacks functionality for meas-
uring average-case durations. The first method for measuring worst-case times
involves configuring the logic analyser to trigger only when signals longer than a
minimum duration are encountered. The other method involves preventing the
analyser to clear the display each time it is triggered, overlaying all encountered
signals. The time from the trigger point to the end of the longest invocation can
then be measured. This assumes that every invocation starts at the same position

6.2 Experimental setup 119
on the display, which is difficult to achieve in practice when the interval between
two invocations is short.

To circumvent the limitations of the logic analyser, a second VME-based control
computer was used for determining the worst-case and average-case duration of
various events. The output signal we wanted to study was not only connected to the
logic analyser, but also to a digital input on the second control computer, see Figure
6.2. A tightly coded program written in assembler sampled the input signal and
recorded information about the longest encountered signal and the average length
of the signal. Whenever an input pulse was encountered that had a longer duration
than any previously observed pulse, a short output pulse was generated on a dig-
ital output that was connected to the logic analyser, which was in turn triggered.
The length of the longest observed signal could then be measured using the logic
analyser.

A drawback with using an auxiliary computer to detect the worst case is the
lower precision in the measurement compared to if the logic analyser could be used
directly. The program sampling the input signal at the auxiliary computer has a

Figure 6.1 Logic analyser displaying a snapshot of running processes. The exe-
cution of the prototype real-time garbage collector is shown on the
second line from the bottom.

120 Chapter 6 Experimental Results
sampling period of about 1.3 µs. Therefore, the potential error in every measure-
ment is ±1.3 µs.

When the program at the auxiliary computer terminates, it reports the worst-
case and average-case signal duration expressed in samples. The worst-case dura-
tion can be measured on the logic analyser, but the average-case duration must be
calculated. It is calculated by multiplying the number of samples with the sample
period. The sample period can in turn be calculated by dividing the measured
worst-case duration with the number of samples reported by the auxiliary compu-
ter for the worst case.

The processor utilization is also determined using the auxiliary computer.
Whenever the idle process on the application computer is running, one of the dig-
ital outputs is set high. The signal is continuously monitored by a program
executing at the auxiliary computer. The amount of idle time can be determined
from the relation between the number of times a high signal was detected and the
total number of samples.

6.3 Overview of experimental applications

Five applications were used to test the performance of the garbage collector proto-
type. Three of them were very small simple applications with the only purpose to
test the garbage collector and to see how its performance varies when different
parameters are changed. The two remaining programs were existing control appli-
cations that were partially converted to using automatic memory management.

SingleHP

The simplest of the test programs will be denoted SingleHP. SingleHP is used to
study how the costs of individual memory management operations are affected

signal to study

trace signals trigger signal

Figure 6.2 Measuring worst-case and average-case duration of events. A logic analyser
and an auxiliary control computer are combined in order to produce the
desired information.

Application
processor

Auxiliary
computer

Logic analyser

6.3 Overview of experimental applications 121
when different parameters are varied, for example how the cost for allocation
requests relate to the object size. It consists of a single high-priority process,
invoked at a rate of 200 Hz. The user can specify the size of the garbage collected
heap, the maximum amount of simultaneously live memory, and the maximum and
minimum object size can be specified when the program is started. An object with
a size randomly chosen within the user-specified range is allocated each time the
high-priority process is invoked. The allocated objects are inserted into a data
structure. The process keeps track of the total amount of currently allocated mem-
ory and if it threatens to exceed the maximum amount of simultaneously live
memory, objects are removed from the data structure before the new object are allo-
cated. The actual amount of live memory will thus always be very close to the
maximum specified amount.

Single LP

This application is identical to SingleHP, except for all processes having a low pri-
ority from a garbage collection point of view. The SingleLP application was used to
study memory allocation costs for low-priority processes.

GCTest

The GCTest program is a program that tests that the system can handle several
high-priority processes that allocates and manipulates garbage collected objects.
In addition to the high-priority processes, several low-priority processes allocate
memory as well. Both high-priority and low-priority processes allocate message
objects and send them to a server process. The server process responds to the mes-
sages by allocating new objects and inserting them into a global data structure.
Objects are removed from the global data structure by a special process that is
invoked periodically and which ensures that the amount of currently live memory
does not get too high.

Pålsjö - Polynomial

Pålsjö is a system for rapid development of experimental embedded control system
prototypes [Eke97]. It is designed to allow on-line configuration and reconfigura-
tion of running control systems. The functionality of periodic control threads is
described by block diagrams. Each block has a number of input and output signals.
The output signals of a block are connected to the input signals of other blocks. The
blocks contain states and new output signals are calculated periodically as the
internal states change based on the new values of the input signals and the previ-
ous states of the blocks. A special language, the Pålsjö Command Language (PCL),
is used to connect the blocks to each other during runtime. The blocks themselves

122 Chapter 6 Experimental Results
are usually implemented in PAL, Pålsjö Algorithmic Language, but can also be
implemented in traditional programming languages such as C, C++, or Modula-2.
Blocks implemented in PAL are translated to C++ by a special compiler.

The Pålsjö system, and one of the standard PAL libraries were partially con-
verted to use automatic memory management. Then, an existing control
application that used the converted library was used to test the performance of the
garbage collector prototype. The library chosen for conversion implements repre-
sentation of polynomials and mathematical operations on these. The modified
library represents polynomials using dynamically allocated objects managed by
the garbage collector. The control application implements an adaptive servo motor
regulator. The control law is described by polynomials which are modified in real
time. The application relies heavily on polynomial calculations, both to adaptively
update the control law and for the process control itself. The application is
described in more detail in [Eke97].

Pålsjö - Robot

This program is used to show that it is possible to perform a hard real-time control
task in a system with garbage collection. An existing control application based on
Pålsjö was modified slightly to rely on automatic memory management for some of
its data structures.

An industrial robot, an IRB-2000 from Asea Brown Boveri, was used to control
an inverted pendulum, see Figure 6.3. The task of the robot is to pick up the pen-
dulum housing from a table, swing the rod of the pendulum to an upright position,
and then balance it in that position. Failure to meet the tight deadlines results in
jerky control behaviour or even causes the robot to loose control of the pendulum
altogether. It is therefore critical that the garbage collector does not disturb the
control processes of the application. The inverted pendulum experiment is
described further in [Eke97].

Two high-priority processes are responsible for continuously measuring the cur-
rent angle of the very unstable pendulum and to calculate new control signals for
the joints of the robot. The processes execute periodically with a frequency of
100 Hz and 40 Hz respectively. The processes also generate plot data each time
they execute. The plot data is stored in dynamically allocated objects. Low-priority
processes handle operator communication and are also responsible for transmit-
ting the plot data generated by the high-priority control processes to a separate
computer hosting a graphical operator user interface.

6.4 Measurements of garbage collection costs

Here we study what impact the prototype memory manager has on the execution
of the application program. As already mentioned, the costs of individual memory

6.4 Measurements of garbage collection costs 123
management operations add to the response times of the application processes and
should therefore be kept small, especially for high-priority processes. Another kind
of interference is an increased process latency due to locking.

6.4.1 Pointer assignment

The write-barrier used in the prototype relies on lazy evacuation of objects (see
Section 4.4.2). This makes the number of machine instructions that have to be exe-
cuted in the worst case small and bounded. More than 21 instructions must never
be executed for a normal assignment. The exact number of required instructions
varies somewhat depending on the complexity of the source and target expressions,
but the worst-case GC overhead is constant.

The cost of performing a pointer assignment was measured for each of the five
test applications and the results are summarized in Table 6.1. Object size, heap
size, and the amount of simultaneously live memory were varied when running the

Figure 6.3 IRB-2000 industrial robot balancing an inverted pendulum. The rod
of the pendulum (to the far right) can turn freely around the shaft of
a potentiometer mounted in the square housing held by the robot.

124 Chapter 6 Experimental Results
first test application, SingleHP, but the cost remained unchanged. The cost for
pointer assignment is the same for both high-priority and low-priority processes
since the write barrier is identical.

6.4.2 Memory allocation

The cost of memory allocation differs depending on the priority of the process
requesting memory. No GC work is performed in connection with allocation in
high-priority processes, whereas allocation requests made by low-priority
processes trigger immediate GC work.

Memory allocation in high-priority processes

The SingleHP program was used to study the cost of allocating an object in a high-
priority process. The allocation operation was augmented with measurement code
as described in Section 6.2. Three parameters were varied, one at the time. The
parameters were heap size, the ratio of live memory, and the object size.

The heap size were varied in four steps from 10000 bytes up to 500000 bytes,
i.e. the semispace size varied from 5000 to 250000 bytes. The amount of simulta-
neously live memory was in each case 20% of the total heap size. A mix of objects
ranging from 20 bytes to 400 bytes in size was allocated. The worst-case costs of
allocating an object varied between 46 µs and 47 µs. The difference is smaller than
the 1.3 µs uncertainty in the measurements. The results thus indicate that the
allocation cost is independent of the heap size, which is to be expected.

The ratio of live memory was varied from 5% to 30% with a fixed heap size of
100000 bytes. Again, a range of objects with sizes between 20 bytes and 400 bytes
were allocated. All measurements showed that the worst-case cost of allocating an
object was 46 µs. The cost is thus independent of the ratio of live memory as well,
just as we would expect.

Last, the size of the objects being allocated was varied. We used a heap size of
100000 bytes and a ratio of live objects of 20%. All objects were of equal size, but
the size was varied for each test run. We varied the object size from 50 bytes to
5000 bytes. The results are presented in Table 6.2, and Figure 6.4.

According to theory, the amount of work required to allocate an object (in the
current implementation) consists of a fixed number of instructions to reserve an

SingleHP SingleLP GCTest Pålsjö-Polynomial Pålsjö-Robot

8 µs (3 µs) 8 µs (3 µs) 9 µs (3 µs) 7 µs (3 µs) 7 µs (3 µs)

Table 6.1 The cost of pointer assignments for the five test application programs. The
worst-case cost is shown with the average case cost within parenthesis.

6.4 Measurements of garbage collection costs 125
area of memory and to initialize the contents of the object header plus a varying
number of instructions to initialize the contents of the new object. No instructions
are executed to perform GC work. The measurements confirm the theory and show
that the cost of memory allocation is linear to the size of the requested object.
Extrapolation gives that the cost function intercepts the y-axis at approximately
26 µs, which consequently is the time required to reserve an area of memory and
initialize the object header. This is thus the time an allocation request would
require if the collector initializes the contents of the new objects as a part of its nor-
mal GC work, as was described in Section 4.4.1.

The first measurement, allocation of 50-byte objects, displays an anomaly that
somewhat contradicts the linearity of the cost function. Looking at Figure 6.4, it
seems that the function is non-linear at low object sizes. To explain this, it is nec-

50 bytes 200 bytes 500 bytes 1000 bytes 5000 bytes

32 µs 36 µs 50 µs 76 µs 273 µs

Table 6.2 The worst-case cost of allocating objects of varying sizes for a high-priority proc-
ess when the contents of the new objects are initialized at allocation time. If the
responsibility of object initialization was transferred to the collector, as
described in Section 4.4.1, the allocation time would be approximately 26 µs
independent of object size.

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

worst-case allocation cost

Figure 6.4 Worst-case allocation cost in microseconds as a function of object size (bytes).

126 Chapter 6 Experimental Results
essary to take a closer look at the implementation of the prototype. The anomaly is
in fact a quantification effect caused by the requirement that object initialization
must be interruptible. This is required in order to minimize the latency of high-pri-
ority processes. The initialization of an object is performed by two nested loops and
executes mostly with the interrupts disabled. The inner loop is very tightly coded
and initializes at most 256 bytes of memory each time it is invoked. The outer loop
starts by calculating how much memory the inner loop is to initialize when
invoked, i.e. the minimum of 256 and the amount of remaining memory to be ini-
tialized. Next, the inner loop is invoked. When the inner loop has finished, the
interrupts are enabled and immediately thereafter disabled again. This allows a
context switch to occur if any interrupt is pending. It thereby allows processes with
higher priority to run. Running other processes might cause the garbage collector
to move the object being initialized. Consequently, the pointers, located in proces-
sor registers, used for initializing the new object must be reloaded from safe
locations before starting the next iteration of the outer loop. Altogether, there will
thus be an additional cost after every 256 bytes of initialization. The cost function
will therefore actually have the saw-tooth shaped form shown in Figure 6.5. All the
object sizes used in the measurements happen to be located just before an addition-
al iteration of the outer loop is required, except for the first one (50 bytes). This
explains the irregularity observed in Figure 6.4.

Memory allocation in low-priority processes

Allocation requests made by low-priority processes cause GC work to be performed
before a new block of memory is passed to the application. A large part of the worst-
case cost for an allocation request will now consist of GC work. The SingleLP test

Figure 6.5 Theoretical cost of allocation requests made by a high-priority process. The
cost is slightly saw-tooth shaped due to quantification effects caused by mak-
ing object initialization interruptible.

cost

object size (bytes)

256 512 768 1024

6.4 Measurements of garbage collection costs 127
application was used to measure the allocation costs for objects of various sizes.
The result is presented in Table 6.3.

Each test run used a total heap size of 100000 bytes and the maximum amount of
live memory was 20000 bytes, which constitutes a fairly well-filled heap. We see
that the allocation costs are reasonably small even for low-priority processes,
despite the implementation of the GC algorithm being far from optimal. Sub-mil-
lisecond worst-case allocation times are achieved even for allocation of as large
objects as 1000 bytes.

Response times

The difference between the SingleLP application and SingleHP is the priority of
the process allocating memory. It is interesting to compare the response times of
the process in the two cases. Table 6.4 reports the worst-case execution times for
the SingleLP and SingleHP versions of the process when allocating objects of var-
ious sizes.

When we compare the data for the two programs in Table 6.4 we see that the exe-
cution times for the SingleHP version are significantly shorter. However, if we
calculate the total time for executing the application process and the GC process
we find that the SingleHP application requires somewhat more CPU time than the
SingleLP application. We thus buy shorter response times at the cost of an
increased total CPU time requirement. The increase in total CPU time is explained

50 bytes 200 bytes 500 bytes 1000 bytes

386 µs 447 µs 593 µs 799 µs

Table 6.3 Worst-case allocation times for low-priority processes when allocating objects of
varying size.

50 bytes 200 bytes 500 bytes 1000 bytes

SingleLP 657 µs 722 µs 870 µs 1180 µs

SingleHP 323 µs 339 µs 372 µs 387 µs

Table 6.4 Worst-case execution times for the memory allocating process of the
SingleLP and SingleHP test programs when allocating objects of varying size.
The increase in response time for SingleHP with larger object size is due to
memory initialization in connection with allocation. The response time would
have been constant at around 320 µs if the initialization strategy described in
Section 4.4.1 had been implemented.

128 Chapter 6 Experimental Results
by the extra work involved with deferring the GC work and by the relatively high
costs for managing context switches.

6.4.3 Allocation cost of manual memory management

The standard routines for memory management, malloc and free, of the real-time
kernel were studied in order to get an idea how the costs of automatic memory
management compare with those of manual memory management. The available
implementation of malloc and free use a very simple algorithm. A single linked list
is used to record all free blocks of memory. A first-fit strategy is used to decide
where to allocate a new object. Blocks are joined together with adjacent free blocks
when deallocated.

In our first experiment, we allocated objects with randomly chosen sizes in the
interval 8 to 1000 bytes. When 2000 objects had been allocated, previously allocat-
ed objects were randomly selected and deallocated as new ones were allocated. The
maximum and minimum costs of allocating an object (using malloc) and deallocat-
ing an object (using free) were measured. The results are displayed in Table 6.5.

In the second experiment, we attempted to provoke malloc to display its worst-case
behaviour. A free-list containing a varying number of free blocks was first artificial-
ly created. Then we attempted to allocate an object larger than any of the free
blocks and measured the time required for the malloc call. The number of free
blocks were varied from 50 to 5000. The results are summarized in Table 6.6

malloc free

Max 150 µs 154 µs

Min 28 µs 44 µs

Table 6.5 Upper and lower costs for allocation when using manual memory management
(malloc/free). Objects with sizes varying from 8 to 1000 bytes were allocated in
a random order.

free blocks malloc

50 483 µs

500 4.1 ms

5000 43 ms

Table 6.6 Worst-case allocation cost as a function of the length of the free-list used by the
systems manual memory manager.

6.4 Measurements of garbage collection costs 129
Table 6.6 illustrates that the existing malloc implementation is not very suitable
for hard real-time systems since it is difficult to guarantee reasonably low response
times when malloc is called. The cost of malloc is not predictable. Algorithms with
a much better worst-case performance do exist (e.g. [Bre89]), but their best-case
performance will hardly be better than the one we have experienced (the lower
costs in Table 6.5). In fact, it is reasonable to expect that it will be somewhat higher
due to their more complicated data structures.

The conclusion is that our garbage collector prototype does not cause more
interference to high-priority processes than standard manual memory manage-
ment strategies. In fact, it proves cheaper and more predictable in many cases. As
an additional bonus, it delivers new objects with their contents initialized to pre-
determined values (zeroes), which manual memory management strategies
typically do not. This decreases the risk of hard-to-find bugs related to program-
mers forgetting to initialize the values of the fields of new objects.

6.4.4 Latency for high-priority processes

The increase in latency for the high-priority processes induced by garbage collec-
tion is caused by the locking necessary to guarantee heap consistency in all
situations. The locking is implemented by disabling/enabling processor interrupts.
During the time the processor interrupts are disabled, no clock interrupt can occur
and cause a context switch. Thus, determining the worst-case contribution from
the garbage collector to the process latency is equivalent to determining the long-
est time the interrupts are disabled. All code that temporarily switch off the
interrupts were therefore augmented with code producing a digital output signal
with a duration equal to the time the interrupts were disabled. The signal was
studied according to the method described in Section 6.2 and the results from run-
ning four of the test applications are presented in Table 6.7.

We observe that the worst-case locking time is around 60 µs independent of the
application. This is smaller than the cost of handling a clock interrupt and a sub-
sequent context switch, which on the experimental system is in the order of
60+60 = 120 µs. The total latency, about 180 µs, should thus still be low enough for
most hard real-time control applications. The worst-case locking time depends on
the longest atomic operation in the memory manager. It is currently not known
which piece of code stands for the longest atomic operation. By finding this piece of

SingleHP GCTest Pålsjö-Polynomial Pålsjö-Robot

61 µs (16 µs) 61 µs (7 µs) 56 µs (4 µs) 48 µs (4 µs)

Table 6.7 The worst-case locking times observed when running four of the test programs.
The average-case locking times are presented within parenthesis.

130 Chapter 6 Experimental Results
code and tuning it to yield shorter locking time, the worst-case latency should
decrease accordingly.

Invocation jitter is defined by variation in the time at which execution is handed
over to a process with respect to the ideal invocation time. It is desirable that peri-
odical high-priority control processes execute with very precise intervals. It is not
always necessary that the latency is very small, as long as the variation of the
latency, i.e. the jitter, is small [ÅW84]. Jitter is introduced by variations in the time
necessary to handle a clock interrupt and perform a context switch. Also, a large
source of jitter is processes with higher priority blocking the process. Garbage col-
lection also contributes to the jitter by potentially adding time to the latency. Since
locking caused by the garbage collector occurs at random occasions, all of the lock-
ing contributes to increasing the jitter. It should be noted, however, that most of
the jitter for a process is caused by processes with higher priority and that this
dwarfs the additional jitter caused by garbage collection. The only occasion where
the GC-induced jitter could cause a problem is for a very critical control process
with the highest priority of the system. We can imagine few systems where the cur-
rent worst-case latency could not be tolerated, and in such a case, dynamic manual
memory management would not be an alternative either.

6.4.5 Execution time for the garbage collector process

Garbage collection required by the actions of high-priority processes is deferred
until such a time that no high-priority process is ready to execute. Then, processor
control is turned over to a special GC process which performs the necessary GC
work. Garbage collection motivated by the actions of low-priority processes is per-
formed by the low-priority processes themselves.

The execution time for the GC process was studied in order to get an idea of
what can be expected in control applications. We varied the amount of memory
allocated by the SingleHP application each time its high-priority process was
invoked. The worst-case execution time of the GC process varied from 414 µs to
787 µs when the size of the allocation requests varied from 50 bytes to 1000 bytes.
The average-case execution times varied from 94 µs to 156 µs. It should be noted
that our implementation is not very optimized since we have concentrated on find-
ing techniques to minimize the response times for high-priority processes instead
of implementing the GC algorithm as efficient as possible. Even so, the costs are
comparable to what have been reported for other software-only real-time garbage
collectors, e.g. [EV91].

6.5 Using the garbage collector in control applications 131
6.5 Using the garbage collector in control applications

Two of the test programs used to test our garbage collector prototype were modified
versions of existing control applications. Here we report on the consequences of
using garbage collection in these applications.

6.5.1 Inverted pendulum control

The Pålsjö-Robot test application uses two periodic high-priority processes, τ1 and
τ2, to implement the actual control. The sampling frequencies for the processes are
100 Hz and 40 Hz respectively. The control processes allocate objects containing
plot information, which are then passed on to low-priority processes for presenta-
tion to the user.

Table 6.8 shows the worst-case execution times for the high-priority processes
of the Pålsjö-Robot application. We ran the control processes with high priority as
well as with low priority. In addition, we studied an unmodified version of Pålsjö,
i.e. Pålsjö without automatic memory management. We see that the execution
times are reduced with 0.1 and 0.2 ms respectively when the control processes are
treated as high-priority processes instead of low-priority processes. Only a small
part of the code of the control processes is related to memory management, which
explains the relatively small difference in response time. Even so, the difference is
significant. The worst-case cost of an individual allocation was reduced from 415 to
36 µs when the processes were made to run as high-priority processes. The GC
process invoked when the high-priority control processes are suspended had a
worst-case execution time of 303 µs and required about 1% of the total CPU time.

The high execution times for the unmodified Pålsjö system, under the column titled
no GC in Table 6.8, is interesting. It turns out that this is an effect of the difference
in how the programmer chooses to write his code when automatic memory man-
agement is available. The modified Pålsjö system uses dynamically allocated
objects to store plot data. References to the data objects are passed on to lower pri-
ority processes for presentation to the user. The original version of Pålsjö uses a
more conservative approach to memory management in order to guarantee pre-
dictability and robustness. A number of statically allocated buffers are used to

process high priority low priority no GC

τ1 3.5 ms 3.7 ms 7.2 ms

τ2 5.8 ms 5.9 ms 9.6 ms

Table 6.8 Observed worst-case execution times for the control processes of the Pålsjö-
Robot application.

132 Chapter 6 Experimental Results
store plot data. All the plot data is copied between buffers several times on its way
from the control processes to the user. This explains the high execution times. It
also illustrates how the introduction of automatic memory management often have
a positive, but hard-to-quantify, effect on system performance. Programmers are
free to use a wider range of implementation techniques when automatic memory
management is available.

The CPU usage of the Pålsjö-Robot system is very high, around 97%. It is an
example of a system that is very suitable for our semi-concurrent GC strategy. Pre-
venting low-priority processes from allocating at a higher rate than the garbage
collector can keep up with guarantees that critical processes are not delayed by
garbage collection. Overload affects primarily low-priority processes. Only very
heavy overload can prevent the garbage collector from keeping up with the high-
priority processes.

6.5.2 Polynomial regulator

The Pålsjö-Polynomial application implements an adaptive controller for a servo
motor. The system contains two critical processes, τ1 and τ2, with sampling fre-
quencies 50 Hz and 10 Hz respectively. Process τ1 implements the actual control of
the servo whereas process τ2 continuously monitors the regulators performance
and adaptively updates the control law used by τ1. The processes uses dynamically
allocated objects to represent polynomials and temporary objects are used fre-
quently. In addition, the processes generate plot data which is passed on to lower-
priority processes in dynamically allocated objects. The system is quite CPU inten-
sive with a total CPU usage of about 75%. The two control processes contribute to
the majority of the CPU load.

The execution times for the two processes were studied. We measured the
worst-case execution times when the control processes were executed as high-pri-
ority processes as well as when they ran as low-priority processes, see Table 6.9.
We do not present any data for a variant of Pålsjö-Polynomial using manual mem-
ory management, since we felt that the existing implementations differed to much
to make a comparison meaningful. We expect that the result of such a comparison,
if it was feasible, would yield similar results as it did for the Pålsjö-Robot program.

process high priority low priority

τ1 8.9 ms 9.6 ms

τ2 19.5 ms 22.7 ms

Table 6.9 Observed worst-case execution times for the control processes of the Pålsjö-
Polynomial application.

6.6 Summary 133
We see that the response times of the control processes were reduced significantly
when treated as high-priority processes due to lower allocation costs. The worst-
case cost for an individual allocation request was reduced from 598 to 63 µs by
changing the priority of the processes. The execution time of the GC process, clean-
ing up after τ1 and τ2, never exceeded 2.06 ms. The GC process required about
1.5% of the total amount of available CPU time. A 200 kilobyte heap was used for
all measurements and the maximum amount of simultaneously used memory was
30 kilobyte.

6.6 Summary

The experiments described in this chapter verify that we have achieved the goal of
reducing the worst-case cost for automatic memory management for critical con-
trol processes to such a level that it can be used even in hard real-time applications.
The current garbage collector implementation, based on an incremental copying
algorithm and running on a 25 MHz Motorola 68040 microprocessor, incurs an
overhead consisting of a single machine instruction for pointer dereferencing. The
worst-case cost for a pointer assignment was found to be 9 µs in the applications
used in our experiments. The worst-case cost of memory allocation in high-priority
processes is currently dependent on the size of the requested memory block since
the contents of the new object are initialized at allocation time. Our measurements
indicate, however, that the worst-case allocation cost will be below 30 µs once the
memory initialization strategy described in Section 4.4.1 is implemented.

Our prototype garbage collector has been used in actual control applications
with encouraging result. The response times of high-priority control processes
could be reduced by using semi-concurrent garbage collection while still preserving
predictability. This was especially evident in the inverted pendulum experiment,
in which the reduction was in the order of 0.1 ms. In the inverted pendulum exper-
iment, the system is very close to overload and the lowest-priority processes
frequently miss their (soft) deadlines. Still, the schedulability of the high-priority
processes can be guaranteed. Interleaving garbage collection with mutator execu-
tion, performing the GC work in connection with memory allocation, would here
cause extended response times and fully concurrent garbage collection would not
be able to guarantee high-enough GC rates to meet the allocation needs of the high-
priority processes.

The aim of the implementation work was merely to prove the feasibility of the
proposed GC scheduling strategy, not to achieve best overall performance or user
friendliness. We believe that the goal of the work has been reached, even though
some obvious opportunities for improvement exist:

• The overhead for object initialization should be removed from memory alloca-
tion in high-priority processes, making the worst-case cost for allocation small
and independent of object size.

134 Chapter 6 Experimental Results
• The response times for high-priority processes can be reduced further by using
GC algorithms with cheaper read/write barriers. An example of such an algo-
rithm is incremental compacting mark-sweep, described in Section 4.9. Non-
moving GC algorithms can be an alternative in very demanding applications.

• GC algorithms with lower overall overhead can be used in order to improve the
performance of, primarily, the low-priority part of the system. Here, generation-
based algorithms are of special interest.

• The garbage collector should be integrated with the language system used for
implementing real-time applications. This would relieve the programmer from
having to follow all the detailed coding conventions imposed by the current
library-based garbage collector and ensure robust and safe application
programs.

The above issues should be addressed in the next version of the garbage collector
prototype. We plan to move to a PowerPC-based platform which should improve
performance drastically. It seems that the PowerPC microprocessor will be a pop-
ular choice for use in future embedded systems.

Chapter 7

Related Work

After having described our approach for garbage collection in hard real-time sys-
tems, we are now ready to compare it with previously published techniques. This
chapter surveys some of the most important approaches and relates them to the
work presented in earlier chapters.

7.1 Incremental copying algorithms

Even though incremental compacting mark-sweep algorithms exist, as described
in Section 4.9 and [Ben90], copying algorithms dominate the literature. Several of
these have been labelled real-time algorithms, but they generally provide only soft
real-time performance if implemented without modifications to how their work is
scheduled.

7.1.1 Baker’s algorithm

The best-known incremental copying algorithms is Baker’s algorithm [Bak78],
which is a precursor to the algorithm we use in our garbage collector prototype. It
was denoted a real-time algorithm since it guarantees low upper bounds on the
cost of every pointer operation.

A read barrier is used to ensure that the mutator only sees grey or black objects,
according to the tri-colour marking terminology described in Section 4.3.1. This
prevents the mutator from inserting pointers to white objects into objects already
scanned by the collector. Any pointer access might thus require that an object is
converted from white to grey. Turning an object grey implies copying it from one
semispace to another. The worst-case cost of performing a piece of code containing
several pointer accesses will therefore be very high, since every access might trig-
ger copying.

136 Chapter 7 Related Work
The work of the garbage collector is performed in small increments triggered by
allocation requests. Allocating an object thus means that the mutator is suspended
for a short period of time while GC work is performed. The length of a GC incre-
ment is not very predictable, however. This is partly due to a too simple way of
measuring GC work, see Section 4.7, and partly due to the high cost of performing
a flip. A flip initiates a new GC cycle and, as the algorithm was originally formu-
lated, requires that all root pointers of the system are scanned in a single atomic
operation. This might take a very long time since it will typically imply that a
number of objects must be copied. These deficiencies add to making worst-case
response times very long for high-priority processes.

To summarize, the high worst-case costs for pointer access and object allocation
make Baker’s algorithm unsuitable for hard real-time systems, since it is very dif-
ficult to guarantee that hard deadlines are always met. This could be alleviated by
changing how the GC work is scheduled, for example by using the scheduling strat-
egy proposed in Chapter 4 of this thesis. The read barrier would also need to be
modified. Lazy copying would be required in order to minimize the cost of pointer
accesses. Also, scanning all the root pointers cannot be performed in one single
atomic operation, but must be handled incrementally.

7.1.2 Brook’s algorithm

Brook’s algorithm [Bro84] is a development of Baker’s algorithm using a write bar-
rier instead of a read barrier. This makes the overhead smaller since pointer writes
are much less frequent than pointer reads. Otherwise, it has essentially the same
real-time properties as Baker’s algorithm. It too requires that all root pointers are
scanned atomically in connection with a flip. Bengtsson [Ben90] has shown how
scanning the root pointer set can be made incrementally, solving this problem.

The algorithm we use to illustrate our scheduling principle is based on Brook’s
algorithm with Bengtsson’s modification. Lazy copying is used to minimize the cost
of the write barrier (see Chapter 4).

Another example use of Brook’s algorithm can be found in the Erlang
system [Vir95]. The variant of the algorithm used there is similar in many respects
to how we perform garbage collection for low-priority processes. The root pointer
set is scanned incrementally in order to avoid long delays in connection with semi-
space flips and the metric for performed GC work is almost identical to ours
(Section 5.2.6). A difference between our collector and the Erlang collector is that
we calculate a static GC rate whereas the Erlang collector is self-adjusting in this
aspect. A consequence of this is that the Erlang system cannot a priori guarantee
that hard deadlines are met in every situation. Since the language is primarily
intended for soft real-time applications (telecom), the inability to meet hard dead-
lines is of minor importance.

7.2 Non-moving garbage collection 137
7.1.3 The Appel-Ellis-Li collector

Virtual memory hardware is used to implement a read barrier in the Appel-Ellis-
Li garbage collector [AEL88]. The mutator is only allowed to see black object, i.e.
objects that are both evacuated and scanned. Attempts to access unscanned (grey)
objects in tospace generate a page access trap. The trap causes the collector to scan
all objects located on that page, thus turning them into black objects. The collector
can run concurrently with the mutator, tracing and evacuating live objects. The
advantage of the scheme is the low cost of the read barrier as long as only black
objects are accessed. However, the worst-case cost is very high since every pointer
access might result in a trap. Each trap is costly since all objects on the page must
be scanned, which might cause many objects to be copied from fromspace into
tospace.

7.1.4 Real-time replication garbage collection

An interesting variant of copying collection is replicating garbage collection, sug-
gested by Nettles and O’Toole [NO93]. Most other algorithms maintain a tospace
invariant, i.e. some kind of read barrier (in some cases as simple as using a for-
warding pointer) ensures that the mutator always accesses the tospace versions of
objects. Nettles and O’Toole instead enforce a fromspace invariant, meaning that
the mutator always accesses the fromspace copies. No read barrier is required. A
write barrier is needed to record writes to objects that have been evacuated to
tospace in a mutation log. The collector concurrently evacuates objects and updates
already evacuated objects according to the contents of the mutation log. A flip is
performed when all live objects have been evacuated from fromspace and the muta-
tion log is empty.

The advantage of replicating garbage collection, according to Nettles and
O’Toole, is the low cost for pointer access and pointer write. The collector can easily
run concurrently. The amount of work that has to be performed before a flip
depends to a high degree on the mutation pattern of already evacuated objects,
making it unpredictable. We thus conclude that the algorithm is not directly appli-
cable to hard real-time systems.

7.2 Non-moving garbage collection

One approach to making garbage collection feasible in hard real-time systems is to
give up memory compaction. This has several advantages. The total amount of nec-
essary GC work decreases since objects do not have to be moved. The cost of
operations on pointers, such as pointer dereferencing and pointer assignment, will
typically be smaller. The idea is to make the worst-case costs of these operations
small enough not to cause the application to miss any hard deadlines. It is also eas-

138 Chapter 7 Related Work
ier to synchronize the mutator and the collector since the collector never modifies
pointers visible to the mutator.

The disadvantage of non-moving garbage collection is memory fragmentation.
This in turn means that the worst-case memory requirement may be very large
[Rob71]. In addition, free memory must be registered in some form of free-list,
potentially making memory allocation unpredictable, even though very efficient
schemes for organizing and managing the free-list have been reported [Bre89].

7.2.1 The Treadmill

Baker has proposed an incremental non-moving algorithm, the Treadmill [Bak92],
that works much along the same principles as his copying algorithm. All objects,
dead as well as alive, are linked together in a circular double-linked list. The cir-
cular structure is organized into four segments, denoted white, grey, black, and free
in the order they occur in the list. The collection status of an object, black, grey,
white, or belonging to a free-list, is determined by which segment it is located in.
Pointers are used to keep track of where each segment starts. Individual memory
management operations become very cheap using this optimization. Marking an
object as scanned can be done by moving the scan pointer one step forward in the
list, effectively turning a grey object into a black one. If all objects are equally sized,
allocations can be performed just as easy. Otherwise, a search through a freelist
must be performed. Turning an object grey involves relinking it into the grey sec-
tion, but this is a cheap operation with constant cost.

The algorithm does have some problems of handling different-sized objects,
resulting in memory fragmentation and non-deterministic allocation times. Wilson
and Johnstone [WJ93] have implemented a variant of Baker’s Treadmill which
solves the problem with unpredictable allocation times. They round object sizes up
to the nearest power of two and uses separate treadmills for each size class. The
fragmentation problem is, however, not solved.

7.2.2 Yuasa’s algorithm

The algorithm published by Yuasa [Yua90] is an example of a non-moving mark-
sweep garbage collector. It uses a “snapshot-at-the-beginning” strategy in order to
guarantee that the mutator does not modify the pointer graph behind the back of
the collector in a dangerous way. This means that all objects reachable by the appli-
cation at the beginning of a GC cycle will be considered live and will be retained
until the next cycle. A write barrier is used to enforce the snapshot-at-the-begin-
ning strategy. If a pointer write would overwrite a pointer to an object not yet
identified as live by the garbage collector, i.e. a white object in the tri-colour mark-
ing terminology, the pointer to be overwritten is first pushed onto a GC stack. The
GC stack is used by the collector to store pointers to objects identified as live, but

7.3 Hardware-supported garbage collection 139
not yet traversed, i.e. grey objects. All objects reachable at the start of a GC cycle
will thus be identified as live, either by the collector or by the write barrier of the
mutator. Compare this with the incremental-update strategy employed by Baker’s
algorithm among others. There, a read or write barrier ensures that new pointer
values do not point to white objects, thus preventing disruptive pointer assign-
ments behind the back of the garbage collector.

The worst-case costs of common pointer operations are very low for Yuasa’s
algorithm. No read barrier is necessary and there is consequently no extra over-
head for pointer access. A write barrier is necessary, however, but even here the
cost is very low. The write barrier will push the old value of the target pointer onto
a stack and possibly update a mark bit in the object referenced by the old pointer
value. This is a small and constant worst-case cost. Pointer reads and writes should
therefore not pose any threat to meeting hard real-time deadlines.

Allocation requests can, however, be quite costly. Yuasa uses the same strategy
as Baker [Bak78] and many others to schedule the work of the garbage collector.
An increment of GC work is performed in connection with each allocation opera-
tion, meanwhile suspending the mutator. Enough work is performed to guarantee
that the garbage collector keeps up with the allocation requests of the mutator. It
is true that the worst-case costs for individual memory management operations
are bounded by reasonably small values, but a high-priority process emitting sev-
eral allocation requests might even so be delayed long enough to fail to meet its
deadline in a demanding application.

A way to fix the problem with long delays in connection with allocation requests
would be to change the scheduling strategy. Instead of performing an amount of GC
work in connection with each allocation request, the work of the garbage collector
could be scheduled in the same way as was proposed in Section 4. Allocation
requests by high-priority processes would no longer be associated with high worst-
case costs. The missing GC work would be performed in the pauses in between exe-
cuting high-priority processes. Yuasa’s algorithm, scheduled according to the
principles described in this thesis, thus seems to be a suitable garbage collector for
hard real-time systems, provided that memory fragmentation can be accepted.

7.3 Hardware-supported garbage collection

One way to make the worst-case overhead for pointer operations (such as pointer
access, pointer assignment, and allocation) small enough to be acceptable in hard
real-time systems is to employ specialized hardware. This is the approach used by
Nilsen and Schmidt in their hardware-assisted garbage collector [NS94]. They
have constructed a special memory module that interfaces to the processor via the
conventional system bus. The memory module implements a heap which is garbage
collected using a variant of Baker’s algorithm [Bak78]. It is essentially a two-proc-
essor approach to garbage collection since a separate processor embedded in the
memory module is responsible for performing garbage collection. Historically, spe-

140 Chapter 7 Related Work
cialized computer hardware has seldom proved to be successful. The problems are
that it is difficult to keep up with the rapid processor development and that the
hardware is not sold in enough volumes to be profitable. It is hoped that the gen-
eral design of the memory module will allow it to be used in a wide range of existing
and future architectures, thus making it a viable solution.

We are not aware of any existing performance data for the hardware-assisted
garbage collector derived from an actual implementation. Only data produced by
simulations seem to be published. It is unclear on what hardware performance
equivalent to the results of the simulation could be expected. Nilsen and Schmidt
refer to 50 MHz CPU:s and standard workstations (of the year 1994) in their
papers so it seems reasonable to assume that this is the kind of hardware they have
in mind.

It is claimed that pointer operations and memory allocation take at most 1µs to
perform. It is admitted that a memory allocation request will take a considerably
longer time to perform if the garbage collector has to perform a flip, namely in the
order of 500 µs during which time the mutator is suspended. The long delay is due
to the fact that the CPU cache must be flushed. Even though flips will occur only
with long intervals (typically in the order of once every tenth or twentieth second)
this can seriously affect the ability of a very time-critical process to meet its
deadline.

The normal 1 µs worst-case cost for allocating an object can be questioned. It
appears that this is only true if the garbage collector of the memory module is able
to keep up with the memory allocation rate of the mutator. If the mutator allocates
memory at a very high rate, the memory module will stall the central processor
until it has performed enough GC work to keep up with the allocations. A conceiv-
able scenario is a low-priority process that allocates a series of large objects being
preempted by a time-critical high-priority process. The high-priority process
makes an allocation request which causes the memory module to stall the central
processor. The worst-case duration of such a stall has not been studied as far as we
know. In order to guarantee that such stalls never occur, a detailed scheduling and
memory management analysis of the entire system would be required. The
described scenario is not a problem in our approach since low-priority allocation
will never cause the garbage collector to get behind with its work. Only a limited
analysis of the behaviour of the high-priority processes is required in our case in
order to guarantee that the high-priority processes will never be delayed by gar-
bage collection.

It is interesting to compare the worst-case costs of the hardware-assisted gar-
bage collector with the worst-case costs for high-priority processes when using our
garbage collector prototype. We achieve sub-microsecond worst-case costs for
pointer accesses and a maximum of 10 µs for pointer assignments on a 25 MHz
Motorola 68040 microprocessor. We expect that the latter cost will decrease further
when using GC algorithms that can use a simpler write barrier. Even though our
prototype has lower worst-case allocation costs than the hardware-assisted gar-

7.4 Concurrent garbage collection 141
bage collector, allocations are usually more expensive in our prototype. A large part
of our overhead is due to the fact that we currently initialize the contents of new
objects at allocation time, whereas the hardware-assisted garbage collector does
consider this to be a part of the work of the garbage collector. The memory is thus
already initialized when an allocation request is made. We will use the same tech-
nique in future versions of our prototype garbage collector, which will significantly
reduce the cost for memory allocation in high-priority processes.

7.4 Concurrent garbage collection

Many real-time GC algorithms schedule their work proportional to the amount of
newly allocated memory. An example of such an algorithm is Baker’s algorithm
[Bak78]. Enough work is performed, often in connection with allocations, to guar-
antee that the mutator will not run out of memory. When this is done, garbage
collection is suspended. The GC work will thus disrupt the execution of the muta-
tor. A solution to this is to perform garbage collection in a separate thread. In this
way, the mutator thread is normally not disrupted by garbage collection and oth-
erwise idle time can be spent on garbage collection. The collector thread must be
able to keep up with the allocation requests made by the mutator. Otherwise, the
mutator must be suspended until the collector has caught up.

Steele [Ste75] proposed concurrent garbage collection as a means to remove the
disruptive pauses caused by stop-the-world garbage collection. He showed how to
synchronize the work of a mark-sweep collector with the mutator. The intention
was that the collector and mutator would execute on separate processors, but a
time-slicing approach for single-processor systems was also discussed. The aim
was not to support real-time computing and the work does not provide upper
bounds on the cost of pointer operations and memory allocation. The work could be
considered to be a forerunner to later incremental algorithms.

Dijkstra & al. [DLM+78] is another example of an early proposition for concur-
rent garbage collection. Its properties are similar to those of Steele’s strategy, but
more focus was given to minimizing exclusion and synchronization constraints.

Appel-Ellis-Li [AEL88], see also Section 7.1.3, perform copying garbage collec-
tion in parallel with executing the mutator. They use virtual memory hardware to
implement a read barrier variant. The read barrier ensures that the mutator only
sees tospace pointers. Any access to an unscanned page, i.e. a page that may con-
tain fromspace pointers, causes a page-access trap. The entire page is then
scanned, while the mutator is halted. Every pointer access would cause a page-
access trap in the worst case. The authors reports that the cost for an individual
trap is in the order of 40 ms. Even though the time for a trap can be reduced
[Joh92], the worst-case costs are still too high for use in hard real-time systems.

Boehm, Demers, and Schenkers [BDS91] describe something called “mostly
parallel garbage collection”. Here, the mutator is allowed to execute concurrently
with the collector tracing the set of live objects. The algorithm relies on virtual

142 Chapter 7 Related Work
memory support to set virtual dirty bits when the mutator writes to a page of vir-
tual memory. The objects in the dirty pages are scanned in a stop-the-world way
when the collector has finished its concurrent traversal of the pointer graph. No
real-time demands can be guaranteed to be met.

Nilsen and Schmidt [NS94] rely on concurrent garbage collection. Here, the
GC work is performed by an embedded processor in a specialized hardware mem-
ory module. There is no easy way to guarantee that high-priority processes are
never disrupted for extended periods. The memory module will stall the central
processor if it does not keep up with the current allocation rate. This approach is
described in more detail in Section 7.3.

Summary of concurrent collection

A common property of all the described approaches is that they attempt to perform
all GC work concurrently with the mutator. This leads to difficulties when it comes
to guaranteeing that a real-time application meets all its hard deadlines. It must
be proved that time-critical high-priority processes are never delayed for too long
periods of time by garbage collection. Since the actions of each and every part of
the application program may cause the collector to stall the mutator, a scheduling
and memory management analysis of the complete program must be performed.

In our approach, time-critical high-priority processes are treated separately.
Garbage collection is performed concurrently in respect to high-priority processes,
but is interleaved with the execution of the mutator for low-priority processes.
Low-priority processes are never allowed to allocate memory without performing
the corresponding GC work. Consequently, only allocation requests made by a lim-
ited number of high-priority processes can cause the garbage collector thread to get
behind with its work. We therefore only have to analyse the behaviour of the high-
priority processes in order to guarantee schedulability.

7.5 Special treatment of high-priority processes

An approach similar to the one described in this thesis was presented by Withing-
ton in a short paper [Wit92]. It describes a proposed GC scheme for a new Lisp real-
time kernel developed at Symbolics Inc. The new kernel is a development of the
Genera operating system from the same company.

Genera uses a variant of Baker’s algorithm (described by Moon [Moo84]), but
this was deemed unsuitable for hard real-time systems because of the arbitrary
delays caused by the read barrier. The cumulative delay would be too large to guar-
antee that high-priority processes would always meet their deadlines. The
proposed solution is based on the same basic idea as the work described in this the-
sis; defer the work motivated by garbage collection until the high-priority process
is suspended. Processes with high and low priority are thus handled differently.

7.6 Summary 143
However, only the work required by read and write barriers was proposed to be
deferred. Allocation requests would still cause an amount of GC work proportional
to the size of the requested object to be performed.

Our work differs from Withington’s proposal in several ways. We too propose
that GC work should be deferred until such a time that no high-priority process is
executing, but we defer all GC work, including the work motivated by memory allo-
cations. We use identical read/write barriers for high and low priority processes,
eliminating costs for deciding which variant to use in each case. We also provide
means to perform schedulability analysis in order to show that a system is sched-
ulable, which Withington’s paper does not. It is only noted that the strategy
depends on enough CPU time being available to clean up after the high-priority
processes.

We are not aware of any papers or other kinds of publications expanding on the
proposed garbage collector technique or presenting any experience from using it.

7.6 Summary

Most of the previous work within the field of garbage collection for hard real-time
systems has focused on producing very fine-grained incremental GC algorithms,
with good results. The scheduling issue has not been as thorough studied, however.

Two major approaches to scheduling the GC work have been proposed. The first
approach is to schedule small increments of GC work in connection with memory
management operations performed by the mutator. The mutator and the collector
are strongly synchronized. This has the advantage that it is easy to show that the
collector will keep up with the allocation requests by the mutator, but it also
implies that the mutator will suffer from frequent GC-induced pauses. The accu-
mulative pauses can quickly make it impossible to guarantee that a high-priority
process will always meet a tight deadline. The second approach to GC scheduling
is to perform GC work asynchronously as a separate concurrent process with lower
priority than the mutator processes. By doing so, high-priority processes will no
longer suffer from GC-induced pauses. On the other hand, it is now more difficult
to prove that the collector will always be able to keep up with the mutator. An
extensive scheduling analysis including every mutator process in the system is
required to do so.

Our approach differs from most previous approaches by combining the sequen-
tial and concurrent approaches in order to take advantage of the good properties of
both. GC work is scheduled concurrently with high-priority processes avoiding GC-
induced pauses for these processes, while it is interleaved with the execution of the
low-priority processes. Only a limited scheduling analysis, only incorporating the
high-priority processes, is necessary in order to guarantee that the collector will
keep up with the mutator. We further show how to do the scheduling analysis, an
issue that no other work on garbage collection has addressed.

144 Chapter 7 Related Work

Chapter 8

Future Work

This thesis shows that garbage collection, with compaction, is a viable alternative
for memory management even in systems that have to comply with hard real-time
demands. Our experience shows that the strategy for scheduling the GC work is
important in order to meet hard real-time requirements and we have therefore
developed a suitable strategy.

However, some work and maturity remain before garbage collection is a stand-
ard component of commercial real-time kernels. The work presented in this thesis
can be followed up in at least two main directions. The first direction is to further
improve implementation techniques and make larger case studies. The second
direction involves improving the tools and methods needed to analyse the schedu-
lability of hard real-time applications.

8.1 Implementation

The current garbage collector prototype is implemented in a quite straight-forward
way. The primary purpose of the prototype was only to prove the feasibility of the
scheduling strategy proposed in this thesis. Although useful as it is, future incor-
poration into real-time products requires that substantial work on implementation
issues is carried out.

Memory initialization

The contents of newly allocated objects must be initialized in order to guarantee
that all pointers within the objects contain consistent values. The current imple-
mentation initializes an object by writing zeroes into it as a part of the allocation
operation. This means that it is the mutator that is responsible for object initiali-
zation. A consequence of this is that the cost for allocating an object in a high-

146 Chapter 8 Future Work
priority process will depend on the size of the new object. Object initialization
stands for the major part of the total cost. The alternative strategy for memory ini-
tialization described in Section 4.4.1 should be implemented. This makes the
worst-case allocation cost for high-priority processes small and independent of
object size.

Case studies

The case studies made this far are somewhat limited. The application programs
used in the studies have only been partially converted to using automatic memory
management. Even so, they have provided valuable data. We have been able to
derive the costs for individual memory management operations, such as allocation,
and experienced that automatic memory management can be used in a demanding
control application without violating hard real-time demands.

A key motivation for using automatic memory management in embedded sys-
tems is that it is claimed that programs using automatic memory management are
easier do design, implement, and debug. This in turn leads to safer and more
robust products that are cheaper to implement and easier to maintain. However, it
still remains to demonstrate that these claims are indeed true for embedded sys-
tems. Further case studies are necessary in which automatic memory management
is used more aggressively.

Mark-sweep compacting algorithms

The current prototype garbage collector implements a modified variant of Brook’s
incremental copying algorithm. The decision to use this algorithm was based more
on good previous experience with the algorithm than on a systematic evaluation of
different candidate algorithms. There is nothing that indicates that a copying algo-
rithm is the best choice for hard real-time systems. On the contrary, it could be
argued that a compacting mark-sweep type collector has properties that would
make it more suitable. For example, the memory footprint of a mark-sweep collec-
tor will probably be smaller than that of a copying algorithm. Also, mark-sweep
algorithms promise better performance when the ratio of live memory is high
[Ben90]. These properties are probably desirable in embedded systems where the
available memory is limited and the ratio of live memory is high.

The performance of a compacting mark-sweep algorithm scheduled according to
the principles described in this thesis should be investigated. The impact, if any, of
the algorithm change on the scheduling analysis should be determined. A proto-
type implementation should be made according to the discussion in Section 4.9 and
compared with the existing prototype.

8.1 Implementation 147
Improve average-case performance

Generation-based garbage collection is a well-known technique to achieve good
average-case performance and good overall efficiency. We have observed that a gar-
bage collector that never performs any work while high-priority processes are
running can to a higher degree give priority to achieving good average-case per-
formance than other collectors, without violating hard deadlines. A generation-
based algorithm therefore appears to be suitable for a collector based on our sched-
uling strategy, as described in Section 4.10. Using a generation-based algorithm
will not improve the situation for the high-priority processes, but it will probably
produce better average-case performance for the low-priority processes that do not
have to comply with hard deadlines. This should be verified in practice. An imple-
mentation of such a garbage collector should be made and its performance should
be compared with that of single-generation garbage collectors. This direction of
future work will probably be closely coupled with the investigation of the perform-
ance of mark-sweep GC algorithms, since such algorithms are obvious candidates
for use in the older generations.

Language integration

Currently we use a library-based implementation technique for the garbage collec-
tor. A set of macros and functions is used by the application program to interface
with the garbage collector. A large number of programming conventions must be
followed by the application program in order to guarantee correct memory manage-
ment, see Section 5.3. This conflicts with the very intention of introducing
automatic memory management; namely reducing code complexity and improving
robustness.

For a prototype implementation, whose purpose is to test the scheduling strat-
egy and various implementation techniques, a library-based garbage collector is
appropriate and sufficient. It is not sufficient when it comes to implementing a pro-
duction-quality development environment, however. A development system is
required which ensures correct memory management in a way that is transparent
to the programmer. The compiler should automatically emit code compatible with
the garbage collector and provide object layout information. A safe language, such
as Java, would be required. Clearly, C and C++ are not suitable languages due to
their inherent lack of type safety. Our plans for the future include developing a
real-time Java compiler capable of meeting the hard real-time demands of embed-
ded systems. It will be used both for studying what benefits one get from using Java
and object orientation in control systems and as a platform for future GC research.

Completely avoiding the use of unsafe languages in embedded systems is prob-
ably not possible. Small routines coded in C or assembler will probably always be
required in order to interface with hardware and to achieve extreme performance.
The programmer will probably always be solely responsible for managing the

148 Chapter 8 Future Work
memory in a correct way in such routines, but he will be relieved from this for the
bulk of the application code written in higher-level languages. The language issues
should be investigated further and a full-scale development system should be
developed.

8.2 Analysis

It is important that the worst-case performance of critical embedded systems can
be derived before actually running the system in order to avoid expensive and
potentially fatal failures. The tool for doing this is called a priori scheduling
analysis.

Generalized analysis

The process model used in the scheduling analysis presented in Section 4.8 is
somewhat limited. It assumes that high-priority processes execute periodically,
which is true in most embedded systems. It is implied that the scheduling analysis
can be extended to asynchronous processes as well, but the issue has not been
investigated in detail. It should be demonstrated how the existing theory for rate
monotonic analysis can be used to prove schedulability even in this case. Process
scheduling techniques other than fixed-priority scheduling, such as earliest dead-
line first, could also be studied and it could be investigated how to analyse the
schedulability of garbage collection in such a system.

Determining worst-case execution times

The schedulability analysis presented in this thesis assumes that worst-case exe-
cution times are available for the high-priority processes and for the GC work
motivated by allocations performed by the high-priority processes. A major prob-
lem with this is that worst-case execution times may be hard to determine. This is
a problem that our scheduling analysis shares with practically all other work on
scheduling analysis. Sometimes the target computer system is predictable enough
and the application processes simple enough to make it possible to calculate the
worst-case execution time by analysing the program code, but in most cases we
have to resort to more heuristic methods. One often employed method is to run the
program and monitor the execution time of the various processes and from that
estimating the worst-case execution times. We have to remember, however, that
this method generally produces an optimistic estimate. There will in most practical
cases be a risk that we sometime in the future will encounter a longer execution
time than what we have experienced while monitoring the system.

The introduction of garbage collection complicates the issue somewhat. Not
only do we require the worst-case execution time for each high-priority process, we

8.2 Analysis 149
must also determine how much time the garbage collector will require in the worst
case to clean up after the high-priority processes. Another way to put it is that we
must determine the worst-case GC time as a function of how much memory a high-
priority process allocates. This requires either detailed knowledge of how the gar-
bage collector is implemented or some way of measuring the worst-case GC time (if
we choose a heuristic approach). Again, the problem of determining worst-case exe-
cution times is a general problem for all approaches to schedulability analysis and
must be considered to fall out of scope for this thesis, but the additional complica-
tions associated with introducing garbage collection should be studied further.

Improved estimation of performed GC work

As was described in Section 4.7, we must be able to make a good estimation of how
much GC work has been performed in order to decide how much work to do in
response to each allocation request. We would like to be able to determine the max-
imum time required to perform the GC work of one GC cycle. When the garbage
collector is invoked after high-priority processes have been running it would be
allowed to run for a time proportional to the amount of memory allocated by the
high-priority processes. Since the hardware found in embedded systems seldom
(never) includes a real-time clock with sufficient resolution, i.e. at least microsec-
ond resolution, we have to resort to other methods of estimating performed GC
work. However, we want the estimation to correlate with the time spent on GC
work as well as possible. Our scheduling analysis assumes that we know the time
required for GC work after a high-priority process has executed. The time actually
spent on GC work must therefore be bounded, predictable, and small, even though
we can not use a timer to abort it.

More work should be devoted to the problem of making good estimations of how
much GC work has been performed. The estimation should correlate well to the
time spent on GC work and at the same time not require to much work by itself.
Some kind of compromise must be made between these two demands. It should be
studied how to make such a compromise. Poor correlation between actual time
spent on GC work and estimated work will result in unnecessary long worst-case
estimations of the time required for garbage collection work. It should be analysed
what impact this has on the performance of a garbage collector.

150 Chapter 8 Future Work

Chapter 9

Conclusions

This thesis deals with embedded control systems and the issue of efficient and
robust memory management in such systems. We have concluded that automatic
memory management, i.e. garbage collection, is desirable in embedded systems.
The difficulties associated with introducing garbage collection without violating
any hard timing constraints have traditionally impeded its use in hard real-time
systems. We have presented a strategy for how automatic memory management
can be made feasible in embedded control systems.

9.1 Contributions

A major contribution of this thesis is that it ties together research within the field
of garbage collection algorithms with research in schedulability analysis. We have
pointed out the need for efficient GC algorithms as well as for methods to analyse
systems using garbage collection in order to improve the robustness and scalability
of safety-critical control systems.

To achieve the above, we have presented techniques for scheduling the work of
existing sequential incremental garbage collection algorithms in such a way that
safety-critical processes are not disturbed. We have also shown how a priori sched-
uling analysis can be applied to control systems using automatic memory
management. Furthermore, hands-on experience from implementing a garbage
collector according to the principles described in the thesis has been presented.

Scheduling strategy

We have produced a garbage collection scheduling strategy suitable for embedded
control systems by taking advantage of the inherent properties of such systems.
The safety-critical parts of control systems are usually isolated to a few periodical-

152 Chapter 9 Conclusions
ly executing high-priority processes. We have presented a scheduling strategy that
defers virtually all GC work until such a time when no high-priority process is
ready to execute. The costs for pointer access, pointer assignment, and memory
allocation are small and bounded for high-priority processes. Given knowledge
about the execution pattern of the high-priority processes, it is possible to guaran-
tee that enough free memory is always available to meet the allocation requests of
the critical processes. The GC work required to keep up with the allocation
requests made by the high-priority processes is performed by a concurrently exe-
cuting process. GC work is also performed interleaved with the execution of low-
priority processes. Low-priority processes perform an increment of GC work when
an allocation request is made. This has the effect that large requests for new mem-
ory made by low-priority processes can never affect the systems ability to meet
allocation requests made by high-priority processes. We have shown how to com-
bine the advantages of concurrent GC (for high-priority processes) with the
advantages of sequential GC (for low-priority processes) while avoiding their
respective disadvantages.

Schedulability analysis

Previous work within the field of garbage collection for hard real-time systems has
primarily been focused on producing increasingly more efficient GC algorithms
with shorter worst-case delays. Such work is very important, given the high CPU
loads and tight deadlines found in modern control systems, but it must also be pos-
sible to determine whether a given application will meet all its hard deadlines or
not. That is, techniques for a priori scheduling analysis must be available to the
developers.

We have demonstrated how a standard technique for schedulability analysis,
i.e. rate monotonic analysis, can be applied to control systems with automatic
memory management. Rate monotonic scheduling is a very wide-spread method
for process scheduling in embedded applications, which implies that the presented
results are valid for a wide range of industrial applications.

Performing schedulability analysis in a system with garbage collection requires
some extra information. Not only must the execution patterns, worst-case execu-
tion times, and deadlines for each process be known, the worst-case memory
allocation needs of the processes must be taken into account as well. Without gar-
bage collection, we typically only make sure that every process always finishes
before its deadline, but here we also have to make sure that free memory is always
available at the right time. This requires some additions to standard rate monoto-
nic analysis.

An attractive property of our scheduling strategy is that an analysis of the
schedulability of the high-priority processes does not have to take the actions of
lower priority processes into account, except for blocking caused by access to
shared resources. Allocation requests made by low-priority processes are never

9.2 Consequences 153
allowed to prevent high-priority processes from allocating memory. Thus, low-pri-
ority processes with soft deadlines can be excluded from the analysis. This
simplifies the analysis considerable since we only require detailed information
about a small set of processes, namely the high-priority ones. Blocking by low-pri-
ority processes are handled using priority inheritance schemes, which can easily
be incorporated in the analysis.

Implementation

We have developed a prototype garbage collector in order to experimentally verify
the scheduling techniques proposed in this thesis. An existing real-time kernel was
supplemented with a garbage collector and the performance of the garbage collec-
tor was evaluated.

The results of the experiment show that it is possible to remove practically all
garbage collection overhead from critical high-priority processes. The worst-case
costs of pointer operations and memory allocation are small and predictable. With
the hardware used in the experiments, a pointer assignment takes less than 10 µs
in the worst case. This can be further reduced by exchanging the copying GC algo-
rithm used in the prototype for an algorithm with a cheaper write barrier, e.g. an
incremental mark-sweep algorithm. The cost of allocation consists of a small con-
stant time (less than 30 µs) for allocating an object plus a time proportional to the
size of the requested object to initialize the contents of the new object. The latter
cost component can be eliminated if the garbage collector is made responsible for
memory initialization.

9.2 Consequences

The techniques for performing garbage collection in hard real-time systems have
matured considerably during the last decade. We have contributed to this by show-
ing how to use the properties of the target systems to schedule the work of the
garbage collector such that it does not disturb safety-critical processes. The worst-
case cost of individual memory management operations have been reduced to 10-
20 machine instructions. We have also stressed the importance of scheduling anal-
ysis capable of handling systems with automatic memory management and
provided methods for the analysis. It will probably not be long before automatic
memory management makes its break-through within the field of real-time
computing.

The introduction of automatic memory management in real-time systems has
several benefits:

154 Chapter 9 Conclusions
• Automatic memory management yields safer and more robust software than
manual memory management techniques do. The problems with dangling
pointers and memory leaks are eliminated. Much error-prone code administrat-
ing memory can be removed from the application program.

• Memory fragmentation can be avoided by using compacting GC algorithms.
Without memory fragmentation, it is easier to produce upper bounds on the cost
of memory allocation and on the amount of required memory. The total amount
of memory required in order to guarantee that an allocation request can always
be met will be smaller for a system with compacting garbage collection than for
a system using non-compacting manual memory management or static memory
management in the general case.

• The complexity of embedded systems keeps increasing as more and more func-
tionality is implemented in software and more dynamic behaviour is required.
Garbage collection is a scalable technique for handling the growing problem of
memory management. Static memory management does not scale up as the size
of the software grows, nor does dynamic manual memory management. Using
automatic memory management, it will be possible to develop maintainable
embedded systems quicker and to a lower cost.

• Object orientation is a software development technique becoming evermore
popular and it has recently started to make its way into hard real-time comput-
ing. Dynamic memory management fits well into the dynamic execution model
implied by object orientation. Automatic memory management will be required
to handle the complexity of object orientation in a robust way. The growing
interest for using the object-oriented language Java, which includes garbage
collection, in embedded applications illustrates this need.

Altogether, automatic memory management is a vital technique that will be neces-
sary when we are going to design and implement the real-time systems of
tomorrow.

Bibliography

[AB91] L. Andersson, A. Blomdell. A Real-Time Programming Environment and a
Real-Time Kernel. In Proceedings of the National Swedish Symposium on
Real-Time Systems. 1991.

[ABRW91] N. C. Audsley, A. Burns, M. F. Richardson, A. J. Wellings. Hard Real-Time
Scheduling: The Deadline-Monotonic Approach. In Proceedings of the 8th
IEEE Workshop on Real-Time Operating Systems and Software, Atlanta,
Georgia, 1991.

[ADVW92] J.L. Armstrong, B. O. Däcker, S. R. Virding, M. C. Williams. Implementing
a Functional Language for Highly Parallel Real Time Applications. In Pro-
ceedings of SETSS’92. Florence, Italy, March, 1992.

[AEL88] A. W. Appel, J. R. Ellis, K. Li. Real-Time Concurrent Collection on Stock
Multiprocessors. In Proceedings of the ACM SIGPLAN’88 Conference on
Programming Language Design and Implementation, Atlanta, Georgia,
1988.

[ANSI78] American National Standard Programming Language Fortran, X3.9-1978,
American National Standards Institute (ANSI), 1978.

[ATT88] WE DSP32 and DSP32C Support Software Library – User Manual, AT&T,
1988.

[Bad93] S. B. Baden. Low-Overhead Storage Reclamation in the Smalltalk-80 Vir-
tual Machine. In G. Krasner, editor, Smalltalk-80 – Bits of History, Words
of Advice. Addison-Wesley, Reading, Mass., 1993.

[Bak78] H. G. Baker. List Processing in Real Time on a Serial Computer. Commun-
ications of the ACM, Vol. 21, No. 4, April, 1978.

[Bak92] H. G. Baker. The Treadmill: Real-Time Garbage Collection Without Motion
Sickness. ACM SIGPLAN Notices, Vol. 27, No. 3, March 1992.

[Bar88] J. F. Bartlett. Compacting Garbage Collection with Ambiguous Roots.
Technical Report 88/2, DEC Western Research Laboratory, Palo Alto, Cal-
ifornia, February, 1988.

[BDS91] H-J. Boehm, A. J. Demers, S. Shenker. Mostly Parallel Garbage Collection.
In Proceedings of the ACM SIGPLAN’91 Conference on Programming Lang-
uage Design and Implementation. Toronto, Canada, June, 1991.

[Ben90] M. Bengtsson. Real-Time Garbage Collection. Licentiate thesis, Dept. of
Computer Science, Lund University, 1990.

156
[BMN+60] J. W. Backus, J. McCarthy, P. Naur, A. van Wijngaarden, & al. Report on
the Algorithmic Language ALGOL 60. Regnecentralen, Copenhagen, 1960.

[Bob80] D. G. Bobrow. Managing Re-entrant Structures Using Reference Counts.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3,
July, 1980.

[Bre89] R. P. Brent. Efficient Implementation of the First-Fit Strategy for Dynamic
Storage Allocation. ACM Transactions on Programming Languages and
Systems, Vol. 11, No. 3, July, 1989.

[Bro84] R. A. Brooks. Trading Data Space for Reduced Time And Code Space in
Real-Time Garbage Collection on Stock Hardware. In Proceedings of the
1984 Symposium on Lisp and Functional Programming. Austin, Texas, Au-
gust, 1984.

[BS93] S. Ballard, S. Shirron. The Design and Implementation of VAX/Small-
talk-80. In G. Krasner, editor, Smalltalk-80 – Bits of History, Words of Ad-
vice. Addison-Wesley, Reading, Mass., 1993.

[But97] G. C. Buttazzo. Hard Real-Time Computing Systems – Predictable Sched-
uling Algorithms and Applications. Kluwer Academic Publishers, 1997.

[BW88] H-J. Boehm, M. Weiser. Garbage Collection in an Uncooperative Environ-
ment. Software Practice & Experience, Vol. 18, No. 9, September, 1988.

[Che70] C. J. Cheney. A Nonrecursive List Compacting Algorithm. Communica-
tions of the ACM, Vol. 13, No. 11, November, 1970.

[Chr84] T. W. Christopher. Reference Count Garbage Collection. Software Practice
and Experience, Vol. 14, No. 6, June, 1984.

[Coh81] J. Cohen. Garbage Collection of Linked Data Structures. ACM Computing
Surveys, Vol. 13, No. 3, September, 1981.

[Col60] G. E. Collins. A Method for Overlapping and Erasure of Lists. Communica-
tions of the ACM, Vol. 3, No. 12, December, 1960.

[DB76] L. P. Deutsch, D. G. Bobrov. An Efficient, Incremental, Automatic Garbage
Collector. Communications of the ACM, Vol. 19, No. 9, September, 1976.

[Der74] M. L. Dertouzos. Control Robotics: The Procedural Control of Physical
Processes. Information Processing 74, North-Holland Publishing Company,
1974.

[Dij68] E. W. Dijkstra. Cooperating Sequential Processes. In Programming Lang-
uages. F. Genuys (ed), Academic Press, 1968.

[DLM+78] E. W. Dijsktra, L. Lamport, A. J. Martin, C. S. Scholten, E. F. M. Steffens.
On-the-Fly Garbage Collection: An Exercise in Cooperation. Communica-
tions of the ACM, Vol. 21, No. 11, November, 1978.

[Eke97] J. Eker. A Framework for Dynamically Configurable Embedded Control-
lers. Licentiate thesis, Dept. of Automatic Control, Lund Institute of Tech-
nology, 1997.

[ERS85] PASCAL/D80 Users Instruction. Ericsson Radio System AB, No. 198 17-
LXA 105 01 Ue, February, 1985.

[EV91] S. L. Engelstad, J. E. Vandendorpe. Automatic Storage Management for
Systems With Real Time Constraints, OOPSLA’91 Workshop: Garbage Col-
lection in Object Oriented Systems, 1991.

157
[Fol93] D. E. Folkesson. Principer för realtidsexekvering i svenska militära avi-
oniksystem. SNART’93, National Swedish Symposium on Real-Time Sys-
tems, August, 1993.

[FY69] R. Fenichel, J. Yochelson. A Lisp Garbage Collector for Virtual Memory
Computer Systems. Communications of the ACM, Vol. 12, No. 11, Novem-
ber, 1969.

[HEM92] R. L. Hudson, J. Eliot, B. Moss. Incremental Collection of Mature Objects.
In Proceedings of IWMM’92, Springer-Verlag, LNCS 637, St. Malo, France,
1992.

[Hen94] R. Henriksson. Scheduling Real Time Garbage Collection. In Proceedings
of NWPER’94, Lund, Sweden, 1994.

[Hen96] R. Henriksson. Scheduling Real-Time Garbage Collection. Licentiate the-
sis, Dept. of Computer Science, Lund University, 1996.

[Hen97] R. Henriksson. Predictable Automatic Memory Management for Embedded
Systems, OOPSLA’97 Workshop on Garbage Collection and Memory Man-
agement, Atlanta, Georgia, October, 1997.

[HH89] V. P. Holmes, D. L. Harris. A Designer’s Perspective of the Hawk Multi-
processor Operating System Kernel. ACM Operating System Review,
Vol. 23, No. 3, July, 1989.

[Hil92] D. Hildebrand. An Architectural Overview of QNX. In Proceedings of the
Usenix Workshop on Micro-Kernels & Other Kernel Architecture. Seattle,
Washington, April, 1992.

[I+83] J. D. Ichbiah & al. Reference Manual for the ADA Programming Language.
Castle House Publications Ltd, 1983.

[Ive98] A. Ive. Runtime Performance Evaluation of Embedded Software. To appear
in Proceedings of NWPER’98, Ronneby, Sweden, August, 1998.

[Joh92] R. E. Johnson. Reducing the Latency of a Real-Time Garbage Collector.
ACM Letters on Programming Languages and Systems, Vol. 1, No. 1,
March, 1992.

[JL96] R. Jones, R. Lins. Garbage Collection – Algorithms for Automatic Dynamic
Memory Management, John Wiley & Sons, 1996.

[JP86] M. Joseph, P. Pandya. Finding Response Times in a Real-Time System. The
Computer Journal, Vol. 29, No. 5, 1986.

[JW85] K. Jensen, N. Wirth. Pascal: User Manual and Report. Springer-Verlag,
1985.

[KM93] J. L. Knudsen, O. L. Madsen. Conceptual Framework. In Object-Oriented
Environments - The Mjølner Approach, edited by J.L. Knudsen & al., Pren-
tice-Hall International Ltd, 1993.

[Knu73] D. E. Knuth. The Art of Computer Programming, Vol 1. Addison-Wesley,
Reading, Mass., 1973.

[KR78] B. W. Kernighan, D. M. Ritchie. The C Programming Language. Prentice-
Hall, 1978.

[Kro85] S. Krogdahl. Multiple Inheritance in Simula-like Languages. BIT, Vol. 25,
No. 2, 1985.

[Lar77] R. G. Larson. Minimizing Garbage Collection as a Function of Region Size.
SIAM Journal on Computing, Vol. 6, No. 4, December, 1977.

158
[LH83] H. Lieberman, C. Hewitt. A Real-Time Garbage Collector Based on the
Lifetimes of Objects. Communications of the ACM, Vol. 26, No. 6, June,
1983.

[Lin92] R. D. Lins. Cyclic Reference Counting With Lazy Mark-Scan. Information
Processing Letters, Vol. 44, No. 4, 1992.

[LL73] C. L. Lui, J. W. Layland. Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment. Journal of the ACM, Vol. 20, No. 1, 1973.

[LR80] B. W. Lampson, D. D. Redell. Experience with Processes and Monitors in
Mesa. Communications of the ACM, Vol. 23, No. 2, 1980.

[Mar80] C. D. Marlin. Coroutines. Springer-Verlag, 1980.
[MH95] B. Magnusson, R. Henriksson. Garbage Collection for Control Systems.

In Proceedings of IWMM’95, Springer-Verlag, LNCS 986, Kinross, Scot-
land, September, 1995.

[McC60] J. McCarthy. Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine, Part I. Communications of the ACM, Vol. 3, No. 4,
April, 1960.

[Min63] M. L. Minsky. A Lisp Garbage Collector Algorithm Using Serial Secondary
Storage. Memo 58 (rev.) Project Mac, M.I.T., Cambridge, Mass., December,
1963.

[MMN93] O. Lehrmann Madsen, B. Møller-Pedersen, K. Nygaard. Object-Oriented
Programming in the Beta Language. Addison-Wesley Publishing Company,
Reading, Mass., 1993.

[Moo84] D. A. Moon. Garbage Collection in a Large Lisp System. In Proceedings of
the 1984 Symposium on Lisp and Functional Programming, 1984.

[NO93] S. Nettles, J. O’Toole. Real-Time Replication Garbage Collection. In Pro-
ceedings of SIGPLAN’93 Conference on Programming Langauges Design
and Implementation, ACM Sigplan Notices, Vol. 28, No. 6, June, 1993.

[Nil96] K. Nilsson. Industrial Robot Programming. Ph.D. thesis, Dept. of Automat-
ic Control, Lund Institute of Technology, 1996.

[NS94] K. D. Nilsen, W. J. Schmidt. A High-Performance Hardware Assisted Real-
Time Garbage Collection System. Journal of Programming Languages,
Vol. 2, No. 1, March, 1994.

[Rob71] J. M. Robson. An Estimate of the Store Size Necessary for Dynamic Storage
Allocation. Journal of the ACM, Vol. 18, No. 3, July, 1971.

[SG95] J. Seligmann, S. Grarup. Incremental Mature Garbage Collection Using
the Train Algorithm. In Proceedings of ECOOP’95, Aarhus, Denmark, Au-
gust, 1995.

[SIS87] Data processing - Programming languages - SIMULA. Swedish standard
SS 636114. SIS, Stockholm, Sweden, 1987.

[SR89] J. A. Stankovic, K. Ramamritham. The Spring Kernel: A New Paradigm for
Real-Time Operating Systems. ACM Operating System Review, Vol. 23,
No. 3, July, 1989.

[SRL90] L. Sha, R. Rajkumar, J. P. Lehoczky. Priority Inheritance Protocols: An Ap-
proach to Real-Time Synchronization. IEEE Transactions on Computers.
Vol. 39, No. 9, 1990.

159
[SRL94] L. Sha, R. Rajkumar, J. P. Lehoczky. Generalized Rate-Monotonic Schedul-
ing Theory. Proceedings of the IEEE. Vol. 82, No. 1, 1994.

[Ste75] G. L. Steele Jr. Multiprocessing Compactifying Garbage Collection. Com-
munications of the ACM, Vol. 18, No. 9, September, 1975.

[Str94] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley Publish-
ing Company, 1994.

[SW67] H. Schorr, W. M. Waite. An Efficient Machine-Independent Procedure for
Garbage Collection in Various List Structures, Communications of the
ACM, Vol. 10, No. 8, August, 1967.

[Tho76] L-E. Thorelli. A Fast Compactifying Garbage Collector, BIT, Vol. 16, No. 4,
1976.

[UJ88] D. Ungar, F. Jackson. Tenuring Policies for Generation-Based Storage Rec-
lamation. In Proceedings of OOPSLA’88, ACM SIGPLAN Notices, Vol. 23,
No. 11, November, 1988.

[Ung84] D. Ungar. Generation Scavenging: A Non-disruptive High Performance
Storage Reclamation Algorithm. ACM SIGPLAN Notices, Vol. 19, No. 6,
September, 1976.

[Vir95] R. Virding. A Garbage Collector for the Concurrent Real-Time Language
Erlang. In Proceedings of IWMM’95, Springer-Verlag, LNCS 986, Kinross,
Scotland, Septemeber, 1995.

[Wad76] P. L. Wadler. Analysis of an Algorithm for Real Time Garbage Collection.
Communications of the ACM, Vol. 19, No. 9, September, 1976.

[Wil92] P. R. Wilson. Uniprocessor Garbage Collection Techniques. In Proceedings
of IWMM’92, Springer-Verlag, LNCS 637, St. Malo, France, September
1992.

[Wit92] P. T. Withington. How Real is “Real-Time” GC?, OOPS Messenger, October,
1992. OOPSLA’91 Workshop: Garbage Collection in Object Oriented Sys-
tems.

[WJ93] P. R. Wilson, M. S. Johnstone. Real-Time Non-Copying Garbage Collection.
OOPSLA’93 Workshop on Memory Management and Garbage Collection,
Washington D.C., ftp://ftp.cs.utexas.edu/pub/garbage/GC93/wilson.ps, Oc-
tober, 1993.

[WLM92] P. R. Wilson. Caching Considerations for Generational Garbage Collection.
In Proceedings of the 1992 ACM Conference on Lisp and Functional Pro-
gramming, San Francisco, California, ftp://ftp.cs.utexas.edu/pub/garbage/
cache.ps, June, 1992.

[WRS95] VxWorks Programmers Guide: version 5.3, Wind River Systems, Alameda,
California, 1995.

[Yua90] T. Yuasa. Real-Time Garbage Collection on General-Purpose Machines.
Journal of Systems and Software, Vol. 11, No. 3, March, 1990.

[Zor89] B. G. Zorn. Comparative Performance Evaluation of Garbage Collection Al-
gorithms. Ph.D. thesis, Dept. of Electrical Engineering and Computer Sci-
ence, University of California, Berkeley, California, December, 1989.

[ÅW84] K. J. Åström, B. Wittenmark. Computer Controlled Systems – Theory and
Design. Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

160

Index
A
Ada 20
Algol 21
allocation

high-priority process 52, 124
low-priority process 53, 126

API 106
the Appel-Ellis-Li collector 137
application program interface.

See API
atomic operation 60, 89
automatic control 9

B
Baker’s algorithm 46, 135
Bartlett’s collector 33
basic inheritance protocol 17
batch system 8
Beta 34, 100, 114
black object 46
blocking 15
Brook’s algorithm 46, 136

C
C 21, 32, 99
C++ 32, 99, 112
cache 11, 39
Cheney’s scanning strategy 28
coding convention 106
collector 23
compaction 23, 25, 44
concurrent garbage collection 39, 141

conservative algorithm 32
control delay 12
control response time 12
copying algorithm 23, 28, 29
coroutine 48, 99
correctness 1, 7

D
dangling pointer 3, 22
deadline 1, 7
deadline monotonic scheduling 16
degradation 65
dispose 22

E
earliest deadline first. See EDF
EDF 18
efficiency 34
Eiffel 114
embedded system 1, 9
Erlang 36, 136
evacuation 28
execution time 10

worst-case. See WCET

F
first-fit 128
flip 29, 47
floating object 36
Fortran 21
forwarding pointer 29, 47, 107
fragmentation 3, 22, 44

162
free 22, 128
free-list 22, 23
fromspace 29, 47

G
garbage collection 4, 22

scheduling 5
garbage collector 4
GC ratio 92

current 58
minimum 57

GC work metric 68
GC. See garbage collection
generation 33
generation-based algorithm 33, 93
graceful degradation 66
grey object 46

H
hardware-assisted GC 139
Hawk 19
heap 3, 101
high-priority GC process 52, 56, 104

I
immediate inheritance protocol 18
implementation 117
incrementallity 35
industrial robot 118
interactive system 8, 37
interrupt 61

J
JAS 39 20
Java 99, 114
jitter 16, 130

L
latency 12, 44, 64
lazy evacuation 53
light-weight process 7
Lisp 22
the LISP 2 algorithm 25, 26
logic analyser 118

M
malloc 22, 128
mark-compact 25
mark-sweep 23, 25, 26
memory compaction 3
memory fragmentation.

See fragmentation
memory hierarchy 39
memory leak 3, 22
memory management

automatic 3, 22
dynamic 2, 3, 21
manual 3, 21, 101
static 2, 21

memory pool 2
metric. See GC work metric
Modula-2 99
multiple inheritance 112
mutation log 61
mutator 23

N
new 22

O
object initialization 51
object layout information 107
object orientation 2
operating system process 7
overhead 4, 62
overload 15, 19, 65

P
Pascal 21
Pascal/D80 2
performance

average-case 10
worst-case 10

predictability 2, 10, 73
preemption 15
priority ceiling protocol 18

163
priority inheritance protocol 16
priority inversion 16, 17
process 7

high-priority 9
low-priority 9

process scheduler 13
process stack 101
processor utilization 15, 19
Pålsjö 121

Q
QNX 19

R
rate monotonic analysis. See RMA
rate monotonic scheduling. See RMS
read barrier 35, 50, 89
real-time

demand 7
kernel 19, 98
requirement 7
system 1, 7

hard 9
soft 9

reference counting 23
replicating garbage collection 137
response time 4, 12
RMA 15
RMS 15, 73
root pointer 25, 29, 48, 102

S
sample delay 12
sampling 9, 11
scan pointer 28, 48
scanning 29
schedulability analysis 10
scheduling

dynamic 14
earliest deadline first. See EDF
fixed-priority 14
static 13

scheduling analysis 73
scheduling strategy 38, 43
semi-concurrent GC 46
semi-concurrent scheduling 44
semispace 28
sequential garbage collection 38
service time 63
Simula 22, 99, 100, 114
Spring 20
stop-the-world 36
stop-the-world algorithm 34
synchronization 60

T
task 1, 7
tenuring 33
test application 120
Thorelli’s algorithm 26
thread 7
tospace 29, 47
tracing algorithm 25
the train algorithm 34, 37
the Treadmill 138
tri-colour marking 46

V
VME board 98
VxWorks 19

W
WCET 11
white object 46
write barrier 35, 50, 89

Y
Yuasa’s algorithm 138

164

	Scheduling
	Garbage Collection
	in Embedded Systems
	Abstract
	Acknowledgements
	Contents
	Chapter 1 Introduction
	1.1 Memory management
	Manual memory management
	Automatic memory management

	1.2 Real-time garbage collection
	1.3 The thesis
	1.4 Thesis outline
	Background
	Scheduling real-time garbage collection
	Conclusions

	Chapter 2 Real-Time Systems
	2.1 Real-time systems
	2.1.1 Real-time requirements
	Batch systems
	Interactive systems
	Soft real-time systems
	Hard real-time systems

	2.1.2 Predictability
	Average-case versus worst-case performance
	Verifying schedulability

	2.1.3 Control systems

	2.2 Process scheduling
	2.2.1 Static cyclic scheduling
	2.2.2 Fixed priority dynamic scheduling
	Rate monotonic scheduling
	Deadline monotonic scheduling
	Priority inheritance protocols

	2.2.3 Earliest deadline first scheduling

	2.3 Process scheduling in existing real-time kernels
	2.4 Summary

	Chapter 3 Automatic Memory Management
	3.1 Introduction
	3.2 Memory fragmentation
	3.3 Basic garbage collection algorithms
	3.3.1 Reference counting
	3.3.2 Mark-Sweep
	A case study of a mark-sweep algorithm

	3.3.3 Copying algorithms
	Case study of a copying algorithm

	3.4 Conservative algorithms
	3.5 Generation-based algorithms
	3.6 Efficiency
	3.7 Incremental algorithms
	3.8 Scheduling properties
	3.8.1 Stop-the-world
	3.8.2 Interactive systems
	3.8.3 Hard real-time computing
	Sequential garbage collection
	Concurrent garbage collection

	3.9 Memory hierarchies in real-time systems
	Hard real-time systems

	3.10 Problem statement
	3.11 Summary

	Chapter 4 Scheduling Garbage Collection
	4.1 Introduction
	4.2 Semi-concurrent scheduling
	4.3 Basic garbage collection algorithm
	4.3.1 Tri-colour marking
	4.3.2 Algorithm overview
	4.3.3 The collector
	4.3.4 The mutator

	4.4 Scheduling the garbage collection work
	4.4.1 Object initialization
	Allocation in high-priority processes
	Allocation in low-priority processes
	The end of a GC cycle - performing a flip

	4.4.2 Lazy evacuation
	4.4.3 The high-priority garbage collection process
	4.4.4 Distribution of GC work
	4.4.5 Synchronization
	Atomic operations
	Interruptible garbage collection

	4.5 Overhead
	4.5.1 High-priority processes, service time
	Pointer access
	Pointer assignment
	Memory allocation

	4.5.2 Low-priority processes, service time
	Pointer access
	Pointer assignment
	Memory allocation

	4.5.3 Summary of worst-case mutator overhead
	4.5.4 High-priority processes, latency
	4.5.5 Cleaning up after the high-priority processes
	4.5.6 Additional work for the programmer

	4.6 Degradation during system overload
	4.7 Measuring garbage collection work
	4.7.1 Work metrics
	4.7.2 The evacuation pointer metric
	4.7.3 Improving the evacuation pointer metric
	4.7.4 A fine-grained metric
	4.7.5 Hardware support
	4.7.6 Impact of imperfect metrics
	4.7.7 Conclusions

	4.8 Scheduling analysis
	4.8.1 Schedulability of the high-priority processes
	4.8.2 Schedulability of the garbage collector
	4.8.3 Memory reserved for high-priority process usage
	4.8.4 Scheduling analysis example
	Example 1 - a schedulable set
	Example 2 - a non-schedulable set

	4.8.5 The effect of blocking
	4.8.6 Priority inheritance protocols
	The basic inheritance protocol
	The priority ceiling protocol
	The immediate inheritance protocol

	4.9 Scheduling mark-sweep garbage collection
	4.9.1 The algorithm
	Algorithm overview
	Object table
	Collector stack

	4.9.2 Atomic operations
	Pointer dereferencing
	Write barrier

	4.9.3 Interruptible garbage collection
	4.9.4 Work scheduling

	4.10 Generation-based garbage collection
	4.11 Summary

	Chapter 5 A Garbage Collection Prototype
	5.1 Environment
	5.1.1 System architecture
	5.1.2 Real-time kernel

	5.2 The garbage collector
	5.2.1 The algorithm
	5.2.2 The garbage collector coroutine
	5.2.3 Memory organization
	5.2.4 Root pointer data structures
	5.2.5 Real-time kernel modifications
	Root pointer stacks
	The high-priority garbage collection process
	Garbage collection and idle time

	5.2.6 Estimating garbage collection work

	5.3 Application program interface
	5.3.1 Initialization
	5.3.2 Declaring objects
	Object layout information

	5.3.3 Pointer access
	5.3.4 Pointer assignment
	5.3.5 Allocation
	5.3.6 Root pointers
	Local pointer variables
	Global pointer variables
	Passing pointers as parameters
	Dynamically allocated roots

	5.3.7 Garbage collecting C++ objects
	Multiple inheritance
	Declaration and instantiation
	The ‘this’ pointer
	Member access within member functions

	5.4 Discussion
	5.5 Summary

	Chapter 6 Experimental Results
	6.1 Introduction
	6.2 Experimental setup
	6.3 Overview of experimental applications
	SingleHP
	Single LP
	GCTest
	Pålsjö - Polynomial
	Pålsjö - Robot

	6.4 Measurements of garbage collection costs
	6.4.1 Pointer assignment
	6.4.2 Memory allocation
	Memory allocation in high-priority processes
	Memory allocation in low-priority processes
	Response times

	6.4.3 Allocation cost of manual memory management
	6.4.4 Latency for high-priority processes
	6.4.5 Execution time for the garbage collector process

	6.5 Using the garbage collector in control applications
	6.5.1 Inverted pendulum control
	6.5.2 Polynomial regulator

	6.6 Summary

	Chapter 7 Related Work
	7.1 Incremental copying algorithms
	7.1.1 Baker’s algorithm
	7.1.2 Brook’s algorithm
	7.1.3 The Appel-Ellis-Li collector
	7.1.4 Real-time replication garbage collection

	7.2 Non-moving garbage collection
	7.2.1 The Treadmill
	7.2.2 Yuasa’s algorithm

	7.3 Hardware-supported garbage collection
	7.4 Concurrent garbage collection
	Summary of concurrent collection

	7.5 Special treatment of high-priority processes
	7.6 Summary

	Chapter 8 Future Work
	8.1 Implementation
	Memory initialization
	Case studies
	Mark-sweep compacting algorithms
	Improve average-case performance
	Language integration

	8.2 Analysis
	Generalized analysis
	Determining worst-case execution times
	Improved estimation of performed GC work

	Chapter 9 Conclusions
	9.1 Contributions
	Scheduling strategy
	Schedulability analysis
	Implementation

	9.2 Consequences

	Bibliography
	Index

