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Abstract

Programming real-time effects for contemporary GPUs requires writing shader
programs to run on the GPU as well as code for the render state setup logic performed
by the CPU. While the GPU parts are well supported by high level programming
languages, the effect frameworks commonly used for the CPU parts are lacking both
in functionality and expressive power, which makes them difficult to work with.

In this paper we present an effect framework implemented as an embedded lan-
guage in Python. We show that this high-level language for effect descriptions provide
increased expressivity, without sacrificing declarativity of other frameworks. We show
how some additional functional features, image-processing and off-screen render tar-
gets, cooperate with the effect language giving a rich environment for experimenting
with both functional and expressive features of effect programming.

1 Introduction

Special effects in cinematic graphics have long relied on procedural techniques and in the
last few years the evolution of graphics processors have made these techniques available
for use in real-time graphics as well. Programming real-time effects is today significantly
harder than programming cinematic effects. The reason is partly that the real-time con-
straints makes the problem harder simply because limits on the execution time implies
restrictions on the algorithms that can be used. Another reason is that the tools and tech-
niques available are not yet as mature and this makes the development process harder than
it has to be.

In the world of cinematic graphics programming visual effects is known as shader pro-

gramming. The term shader programming is also used in the context of real-time effects,

but here it is commonly used to refer only to the part of the effect which is executed as

a program on the GPU. We therefore use the term ¢ffect programming for the process of

creating the complete real-time effect, including the shaders for the GPU but also code to

be run on the CPU.

Real-time shaders can today be programmed in a number of high-level languages. NVIDIA’s
Cg [Mark et al., 2003], Microsoft’s HLSL [Gray, 2003] and the OpenGL Shading lan-

guage, GLSL, [ogl, 2002] are all based on the Renderman Shading Language, the estab-

lished standard for programming cinematic effects. They have come a long way towards



being a flexible and efficient development tool for the GPU parts of an effect. Program-
ming the CPU part of the effects, however, has still very limited support. Loading shaders
to the GPU, binding their run-time parameters, setting pipeline states and controlling
the execution of multiple passes are commonly done in application specific code and not
integrated with the rest of the definition of the effect.

The current approach to effect programming is the use of ¢ffect frameworks. An effect
framework handles pipeline state manipulation including downloading shader programs
and textures, doing parameter passing from the application to the shader program, and for
orchestrating multiple passes of an effect. It provides some facility for loading effects and
shader programs, typically based on a text file format in which shader programs, pipeline
states and pass specifications are listed.

The effect framework idea was first used in the Quake 3 engine [amd Brian Hook, 1999]
to allow user scripting shaders, or what we would call effects, to control visual appear-
ance of in-game characters and objects. The Q3 framework predates widely available
programmable shader hardware and therefore lack many of the features of current effect
frameworks. The two effect frameworks which are the most widely used are DirectX FX
and CgFX which are extensions of the shader programming languages HLSL and Cg,
respectively. Both these frameworks provide the ability to specify real-time effects using
multiple shader programs and passes using a special file format syntax.

Although current effect frameworks improve the encapsulation of the GPU part and the
CPU part of an effect, they still suffer at least two major drawbacks. The most critical one
is that they lack some important features such as render to texture and image processing
which are necessary for writing many of the effects used in modern graphics applications.
Second, the syntax of current frameworks is rather restricted, e.g. there is no support for
expressing abstraction or repetition, which many times can make the writing of effects
tedious and error prone. Limited facilities for sharing common parts of effects result in
redundancy and code duplication.

In this paper we present PyFX, an effect framework based on the Python [Python langage, ]
programming language. We show how an effect framework can be embedded in a very
high level general purpose language enable easy development of new extension, in par-
ticular off-screen rendering and image processing. Furthermore embedding allows lan-
guage constructs currently not supported by DXFX or CgFX, such as function definitions,
classes, conditionals, and loops, to be used in the construction of effects. This enables de-
sign techniques established for other kinds of software to be applied to effect programming
as well.

This paper is organized as follows. In Section 2 we present some related work. Section 3
gives an overview of current effect frameworks. In Section 4 we present PyFX followed by
some examples (Section 5) which emphasize the advantages of PyFX. Finally we conclude
with a discussion (Section 6).

2 Related work

Shader programming was started in 1984 when Cook introduced shade trees [Cook, 1984].
This represented a move away from the fixed function nature of previous systems to an in-
terpreted model giving much greater flexibility for writing visual effects. In 1990 this gave
rise to the RenderMan [Hanrahan and Lawson, 1990] shading language which became
an industry standard for writing off-line shaders. Several propositions on how the power



and flexibility of off-line shader programming systems can be transferred to the world of
real-time graphics have since been put forward.

One direction is taken by Olano and Lastra [Olano and Lastra, 1998], who describe a
RenderMan-like real-time shading language for the PixelFlow system [Molnar et al., 1992].
This system consists of a SIMD array of general purpose processors for which shader pro-
grams are compiled via C++ and executed. While this system is well-suited for writing
real-time shaders it bears little resemblance to the architecture of current GPUs.

Peercy et al. [Peercy et al., 2000], present a system for compiling RenderMan programs
to multipass rendering on using an OpenGL 1.2 implementation extended with imaging
support, high-precision data types (16 bit floating point), and dependent texturing. The
key realization is that the graphics pipeline can be used as a SIMD processor where differ-
ent OpenGL states correspond to different SIMD instructions operating in parallel on a
set of fragments. A restricted version, called ISL, of the RenderMan language, which can
run on top of any OpenGL 1.2 implementation, is also presented.

The realization of Proudfoot e al. [Proudfoot et al., 2001] that shading computations
are carried out at different frequencies lead to a language which maps well to present day
GPUs. The computational frequencies isolated where constant, per-group, per-vertex, and
per-fragment. The compiler can use frequency information of a computation in order to
map it to a particular stage of programmable pipeline.

Today a number of shader languages have found widespread use in the industry. These are
HLSL [Gray, 2003] by Microsoft and Cg [Mark et al., 2003] by NVIDIA which are both
very similar. The OpenGL Shading Language [ogl, 2002] achieved ARB approval in 2003
and is included in the OpenGL 2.0 specifications [Segal and Akeley, 2004]. All these lan-
guages are based around explicit separation of per-vertex and per-fragment computations
(cf. Proudfoot ez al.) and follow the uniform and varying data classification introduced in
RenderMan.

On the consumer side, games such as Quake3 by ID Software makes heavy use of multdi-
pass multi-texture algorithms. The Q3 shader [amd Brian Hook, 1999] format (here
called an effécr format) provides a specialized language for controlling blending state, tex-
ture generation, fogging and texture application mode of multiple textures. The engine can
then use, if available, multiple texture units to reduce the number of texture application
passes needed. The format marks a first step in effect programming but it does not provide
enough control be useful in a more general context. In particular, since Quake3 shaders
predates consumer-level programmable graphics hardware, it does not support vertex or
pixel shader programs.

Following in the footsteps of Quake3’s shader format Microsoft introduced, coincident
with the first generation of programmable hardware, the DirectX Effects [DirectX Effects, |
(abbreviated here as DXFX). DXFX provide a large superset of the interface introduced
by Q3 shaders allowing for vertex and pixel shader programs, stencil-, alpha-, and depth
buffer operations, multiple passes, efc. to be used in the description of a visual effect.
CgFX [CgFX 1.2 Overview, | was introduced together with the Cg language and provide
an implementation of DXFX for a larger variety of platforms.

A related approach was taken by Lalonde and Schenk [Lalonde and Schenk, 2002] with
the EAGL framework. This framework provides a portable method of describing the asso-
ciation of render methods (shader programs and render state setup annotated data binding
semantics) and art assets, typically triangle meshes, allowing for efficient rendering on
a number of platforms (PC/XBOX, Playstation 2, and GameCube). An off-line com-
piler takes combinations of render methods and art assets and generates platform specific



representations which can be efficiently rendered by the runtime system. Contrary to cur-
rent effect frameworks, EAGL does not provide support for writing cross-platform render
methods, every render method used must be reimplemented for every platform used.

The Sh shading language [McCool et al., 2002] demonstrates that a shading language can
be implemented as embedded language in C++. This embedding gives the shader devel-
oper access to high-level language features, such as classes, templates, functions, and user-
defined types, to be used in the construction of shader programs. Sh also provide support
for run-time construction and composition of shader programs [McCool et al., 2004].
However, although it is implemented in C++ it lacks facilities for abstracting and express-
ing the CPU parts of effects.

The Vertigo shading language [Elliott, 2004] approaches shader programming from a
novel angle. It is implemented as an embedded language in Haskell [Jones, 2003] and
uses pure functions, ze. functions without state or side-effects, to model the stream-like
nature of the GPU. This results in a clean high-level model for programming shaders for
generative geometry.

3 Current effect frameworks

Current effects frameworks such as DXFX and CgFX provide a number of features which
simplify programming real-time visual effects. DXFX and CgFX extend HLSL and Cg,
respectively, with the ability to

e declare effect variables which can be either user-editable, or tweakable, for data such
as textures or colors, or engine internal, so called non-rweakables, for engine specific
data such as transformation matrices.

o declare different implementations of an effect suitable for different platforms. Each
of these so called technigues list a number of passes with each pass containing the
render pipeline states to set before requesting the application to submit geometry to
the render pipeline.

Both frameworks rely on effect specifications which are stored in text files and loaded at
run-time. The effect file lists the variables, shader programs, techniques and passes mak-
ing out the effect. Effect variables can optionally be annotated with application specific
data such as the valid range of a parameter or the default filename of a texture to facilitate
integration with, for instance, GUI development tools. Variables may also have an asso-
ciated semantic, consisting of a string identifier, which can be used by the application to
provide data independent of variable name, providing an abstraction when passing data to

the effect.

Effects, being implemented in terms of external text files, can be changed without re-
quiring recompiling the application. Using a standard set of annotations and semantics,
introduced in DirectX 9, the format provides an application independent mapping of ap-
plication data to effect data.

However, the file format is closed and the frameworks can not easily be extended with
new functionality. Syntactic-wise the effect format allow the use of C-style preprocessor
for writing simple syntactical extensions. Together with the possibility to group states
in so called state blocks this provides a basic form of abstraction. On the downside,
the preprocessor based approach lack the most basic abstraction and data-hiding func-
tionality making it difficult to use effectively. Furthermore functionality such as loop-



ing and conditionals are also missing, requiring generative effects and effects containing
hardware-specific implementations to rely on effect-specific application level code. For a
more in-depth review of the problems associated with current effect frameworks we refer

to [Lejdfors and Ohlsson, 2004].

4 PyFX

In this section we present our effect framework, PyFX, which is implemented as an embed-
ded language in Python. Its main purpose is to be a tool for investigating which features
and characteristics that are useful and desirable for effect programming. The fact that
PyFX is embedded in a fully fledged programming language immediately makes it easier
to write effects since it allows the use of all the language features from the host language.
Using function definitions, loops, conditionals and modules to express and share common
parts, the description of an effect becomes shorter and more clear.

The features in PyFX include those found in the DXFX and CgFX frameworks and in
addition it provides:

o Render-to-texture — The framework can render to off-screen area which can be used
as a texture in later stages of the effect or by another effect entirely.

o Image processing support — GPU based image processing operations can be applied
to any texture or off-screen area.

o Support for shader interfaces — PyFX enables easy use of Cg’s interfaces allowing run-
time construction and composition of shader programs.

PyFX is built on top of OpenGL. It is designed to be independent of shader language and
it currently supports Cg and GLSL. The implementation and application level interface
of PyFX is described in more detail in [Lejdfors and Ohlsson, 2004].

4.1 Overview

The basic building block in an effect in PyFX is a "processing step" which is a generaliza-
tion of the notion of a pass in other effect frameworks. Each step may or may not require
the application to send geometry to the GPU. Currently there are two types of processing
steps:

o RenderGeometry — these are the usual pass of other effect frameworks. Sets up the
appropriate states and then instructs the application to transmit geometry.

o ProcessImage — used to perform 2D image processing between two images (which
may reside in either textures, off-screen areas or the current screen buffer). It sup-
ports floating point target and source images/buffers allowing HDR image process-
ing.

In addition to these functional features, the framework also provide, through language
embedding, a complete programming language in which effects can be expressed. This
has several benefits for effect programmers since it enables the use of common software
design methodologies, such as abstraction and sharing in the construction of an effect.



This allows the effect writer to express an effect in a clear, to-the-point manner making
development and debugging easier.

Every aspect of the framework is implemented as a class allowing easy extension and spe-
cialization. Together with using embedding in a high-level language, this enables engine
and framework writers to experiment with new features with minimal impact on the rest
of the framework.

5 Examples

As an example of the features common to PyFX, DXFX, and CgFX we will present an
effect for doing bump-mapping using a normal map [Blinn, 1978]. While PyFX supports
both Cg and GLSL only Cg will be used for example code.

The bump mapping effect uses a vertex program to translate the surface normal to tangent
space. The fragment program then manipulates the normal using a normal map and a
scaling parameter. The resulting normal is then used for shading computations. The
initial part of the fragment shader program is shown below:
float4 fs(float2 texcoord : TEXCOORDO,
//normal in tangential frame
float3 normalT : TEXCOORDI,
.., // parameters needed for lighting

uniform sampler2D NormalMap
uniform float Scale) : COLOR

float3 dN = tex2D(NormalMap texcoord) ;
normalT += Scale* (dN*2-1)

normalT = normalize(normalT) ;

// compute and return color ...

Listing 1.1: Bumpmapping in Cg

In contrast to DXFX and CgFX where shader code is mixed with parameter declarations,
PyFX uses wrapper functions and classes to indicate which parts of the effect are shader
programs and which are parameters etc. The wrapper for a Cg shader program is called cg
and is used as follows.

bumpmap = Cg(""" code as in Listing 1.1 """)

The triple-quotes """ are used by Python for mult-line string literals. Next we list the
parameters of the effect together with their default values.

Scale = 0.2
NormalMap = Texture("default_ normalmap.png")

Now we are ready to define the technique of this effect. In PyFX it consists of a single
render step which uses bumpmap vertex and fragment programs.
technique = [RenderGeometry(

VertexShader = bumpmap.vs(),
FragmentShader = bumpmap.fs()) ]

This effect does not use any of the special features of PyFX and we could just as well have
written it in CgFX or DXFX. The result of doing so would have been more code since we
have to explicitly declare every parameter, including non-tweakables, used by the shader
programs. In PyFX common variables, such as transformation matrices ezc., are passed im-

plicitly to the shader program. This is described in detail in [Lejdfors and Ohlsson, 2004].



5.1 Generative effects

Because of the language embedding in Python we can use, for instance, repetitive elements
and function abstractions, when writing our effects. Consider an effect for rendering
furry objects. Such an effect can be achieved by rendering the object surrounded by a
number of shells where the transparency of each shell increases with the distance to the
object. This gives the impression of fur with decreasing thickness with increasing distance
from the object [Lengyel et al., 2001]. Assuming we have a FurShellshader program
for rendering a single fur shell shel1 of the object, we can describe a step for rendering
fur-shells by the following constructor function:
def RenderFurShell(s):
shell = s/FurThickness
return RenderGeometry(
AlphaBlendEnable = True,
SrcBlend = SRCALPHA,
DestBlend = ONE,

VertexShader = vs(Shell=shell),
FragmentShader = fs(Shell=shell))

Drawing the complete furry object using Numberofshells shells amounts to rendering
the solid object followed by rendering each fur shell, which is done using the following
code:

technique = [RenderGeometry()] + \

[RenderFurShell(i)
for i in range(1,NumberOfShells) ]

The use of abstraction and high-level constructs allow us to describe the fur effect suc-
cinctly. Key parameters such as the number of shells used or fur thickness can easily be
changed without modifying other parts of the effect.

The same fur effect expressed in CgFX or DXFX would be much longer and more difficult
to read since those formats lack a notion of repetition. With each shell render step written
explicitly it is, for example, more difficult to change the number of shells used.

5.2 Image processing

A simple widely-used example of image processing is the glow effect [James and O’Rorke, 2004]
used to simulate the nimbus due to atmospheric scattering which appear around brightly
lit surfaces. It works by rendering an object to the screen, rendering the glowing parts
of the object to an off-screen buffer, blurring the off-screen buffer and then additively
blending the result to the screen. To express this in PyFX we start by introducing some
helper functions for rendering the glow regions, blurring a buffer and additively blend
some buffer onto some buffer.
def RenderGlowRegions(target) :
return RenderGeometry(

Target=target,

VertexShader=glowMask.vs(),

FragmentShader=glowMask.fs())

def GaussianBlur(source) :

def AdditiveBlend(source, target):
return ProcessImage(Source=source,



Target=target,
SrcBlend = SRCALPHA,
DestBlend = ONE)

The technique which performs blurring can now be written simply as

technique = [RenderGeometry(),
RenderGlowRegions(blurBuffer),
GaussianBlur (blurBuffer),
AdditiveBlend(blurBuffer, Screen) ]

The result is a readable specification of what the effect does and how it does it.

Writing this effect in DXFX or CgFX is currently not possible without using application-
specific workarounds.

Sharing common code

If we have two different effects which both do blurring, it makes sense to factor out
this common part and describe it only once. We can, for example, define a function
BlurPostProcess, contained in a module Blurring, by
def BlurPostProcess(source, target) :
return [RenderGlowRegions(source),

GaussianBlur(source),
AdditiveBlend(source, target) ]

Now our original glow effect can be implemented as

import Blurring
blurBuffer = ...

technique = [RenderGeometry()] + \
Blurring.BlurPostProcess(blurBuffer, Screen)

The other effect is obtained by the replacing technique by some other step sequence
followed by the blur post-processing operation.

technique = [...] + \
Blurring.BlurPostProcess(blurBuffer, Screen)

Using Python’s modules we can share code between multiple effects simplifying the con-
struction of many effects.

5.3 Supporting shader interfaces

The Sh shader language provides support for combining shader programs at run-time.
Cg provide a similar method through the use of so called interfaces, similar in concept to
interfaces in the Java programming language [Joy et al., 2000].

Prior to the introduction of interfaces the programmer was required to write one shader
program for every combination of material and light-source. This results in a combina-
torial explosion of the number of shader programs needed in an application. Interfaces
provide us with a mechanism for abstracting implementation of a part of a shader pro-
gram from its usage pattern. As an example, we can use the following Cg interface for a
light source.



interface LightI {
void intensityAt(in float3 position,
out float3 lightDirection,
out float3 color);
}i

An implementation of a light source must be able to, given a point, return the color and
direction of the incident light at that point. A program can use the LightI interface as:

void main(in float3 position,
in float3 normal,
out float3 color,
uniform LightI Light)
{
float3 L, C;
light.intensityAt(position, L, C);
color = //compute color

Listing 1.2: Using interfaces in Cg

Using this in PyFX we wrap up the program above in a Cg wrapper as:

fs = Cg(""" code as in Listing 1.2 """);

We can implement a number of different light sources which support the above interface.
For instance a non-attenuated point light source can be implemented as

struct PointLight : LightI {
float3 Position;
float3 Color;

void intensityAt(in float3 position,
out float3 lightDirection,
out float3 color)
{
lightDirection = normalize(position — Position) ;
color = Color;
}
i

Following this general outline we can easily implement spotlights, lights with attenuation,
cube-mapped lights ezc. We put all the light definitions in a Lights module.
pointLight = CgIImpl (""" code as above """);

spotLight = CgIImpl (""" ... """)
cubeMappedLight = CgIImpl (""" ... """)

Interface implementations are wrapped in PyFX cgIImpl-wrappers to indicate that they
are not complete programs, only implementations of interfaces which are not executable
in their own right.

Using the interfaces works just as variables so using the above program with a point light
located at (0, 100, 0) having red color is just

myPointLight = pointLight(Position=(0,100,0),
Color=(1,0,0))

technique = [RenderGeometry(
FragmentShader =
fs(Light = myPointLight), ...)]



Changing the light source amounts to changing a single line in the effect file. The frame-
work also support changing the light source at run-time, allowing flexible shader program
composition to be used as an integral part of an application.

6 Discussion and conclusions

We have presented an effect framework which improves on current frameworks in two re-
spects. By being an embedded language it can freely utilize the features of its host language.
In this respect PyFX is similar to Sh and Vertigo, although these systems have slightly dif-
ferent focus. However, when the language embedding is done a low level language like C
or C++, the power of host language features come at the cost of sacrificing the declarative
style of DirectX FX and CgFX. Due to the high level character of Python, PyFX is able
to provide the best of both worlds. It is both declarative and has a rich set of language
features.

Furthermore, PyFX provides support for render to texture and image processing, features
which are needed to write many common effects but which are not supported by current
frameworks. With access to the source code of an existing framework, these features would
probably be fairly straightforward to implement, and it is even likely that they will appear
in some future version. Our experience is however with a framework which is embedded
in an flexible language such amendments can be added very easily. It is possible to have a
very short turn-around time for adding or modifying a feature, get feedback from using it
and then change it again. Since it is likely that the wish list for effect framework features
will continue to grow for some time still, we believe that this agility makes PyFX a suitable
platform for exploring and evaluating the design space of effect frameworks.

In summary, PyFX framework represents work in progress but it already provide a flex-
ible environment for prototyping and experimenting with effects and effect frameworks
alike. We hope to continue exploring methods for providing good programming environ-
ments for the border land of CPU/GPU interaction. Hopefully we will also be able to
provide a solid ground for extending the framework to handle GPGPU algorithms as well
as providing further functional additions.
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