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Abstract

This thesis deals with single-electron tunneling in transistor-like devices in which

the central electrode is either a metal nanoparticle (possibly ferromagnetic) or a

molecular magnet. The investigated systems split into two different categories,

depending on the size of the central island. The smaller islands, such as ultra-

small magnetic metal nanoparticles and Mn12 molecular magnets, are studied in

the first part of the thesis (Papers I-III). The larger metal islands, both ferromag-

netic and nonmagnetic, are studied in the second part (Papers IV-V). Different size

regimes result in different types of energy spectra (discrete for the small and con-

tinuous for the large islands), and thus in different ways of calculating the electric

current through the system. All the systems are investigated within the regime of

weak coupling to the external leads. In this regime, quantum transport is charac-

terized by the physics of Coulomb blockade and can be described theoretically by

sequential-tunneling rate equations. Papers I-III are purely theoretical, while Pa-

pers IV-V consist both of experimental and theoretical parts, the theoretical ones

belonging explicitly to this thesis.

In Paper I we present a theory of quantum transport through a small ferromag-

netic nanoparticle in which particle-hole excitations are coupled to spin collective

modes. For strong electron-magnon coupling, we find that the tunneling conduc-

tance as a function of bias voltage is characterized by a large and dense set of

resonances. Their magnetic field dependence in the large-field regime is linear,

with slopes of the same sign. Both features are in agreement with tunneling ex-

periments on similar nanoparticles.
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viii Abstract

Papers II and III deal with transport through a Mn12 molecule. The many-

body energy spectrum (composed of spin multiplets) and spin-dependent inter-

level transition matrix elements used in transport calculations are determined by

means of spin density-functional theory (SDFT). This theory provides several

other properties of the molecular magnet, such as the magnetic moment and mag-

netic anisotropy energy of its charged states, anion and cation. In transport cal-

culations, we compare the results obtained by the SDFT with those based on a

phenomenological giant-spin model. The tunneling conductance at finite bias is

characterized by peaks representing transitions between spin multiplets, separated

by an energy on the order of the magnetic anisotropy. We find that the orbital

degrees of freedom, included in SDFT and absent in the spin model, play an im-

portant role in transport and can lead to negative differential conductance.

In Paper IV we investigate spin accumulation in a Ni/Au/Ni single-electron

transistor assembled by atomic force microscopy. Transport measurements in

magnetic field at 1.7 K reveal no clear spin accumulation in the device (that is, no

tunneling-magnetoresistance (TMR) signal is observed), which can be attributed

to fast spin relaxation in the Au disk caused by strong spin-orbit interaction. From

numerical simulations using the rate-equation approach of orthodox Coulomb-

blockade theory, we can put an upper bound of a few nanoseconds on the spin-

relaxation time for electrons in the Au disk.

The focus of Paper V is on magnetic-field dependent transport in nanoscaled

ferromagnetic Co/Ni/Co single-electron transistors. Magnetotransport measure-

ments carried out at 1.8 K reveal TMR traces with negative coercive fields, which

we interpret in terms of a switching mechanism driven by the shape anisotropy

of the central wire-like Ni island. A large TMR of about 18% is observed within

a finite source-drain bias regime. A numerical simulation within the Coulomb-

blockade theory gives a TMR which is on the order of magnitude of the experi-

mental signal. The TMR decreases rapidly with increasing bias. The vanishing of

the TMR with bias is tentatively ascribed to excitations of magnons in the central

island, which cause a fast decrease of the island spin polarization.
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Populärvetenskaplig

sammanfattning

Elektronen har, bortsett från sin massa, två grundläggande fysikaliska egenskaper

som är av största vikt för denna avhandling i synnerhet och världen i allmänhet:

laddning och spinn. Den förra egenskapen har i tiotals decennier använts inom det

framgångsrika området elektronik. Den andra ger nu framför våra ögon upphov

till det nya och fascinerande ormrådet spinntronik, minst lika tekniskt revolutio-

nerande som elektronik var i sin tid. Elektronspinnet har redan tillämpats i skriv-

och läshuvuden i moderna hårddiskar, men det finns mer kvar att hämta. Det

övergripande målet med spinntronik är att få elektronikkomponenter som är ännu

mindre till storlek och som förbrukar mindre energi än de komponenter som är

tillgängliga idag.

Ja, just elektronspinnet är nyckelstorheten inom spinntronik och för denna

avhandling. Men vad är spinn för något? Förenklat sett kan spinnet tänkas som

den egenskap som beskriver elektronens rotation kring sin egen axel. Denna ro-

tation kan ske i två riktningar: med- och moturs, varför man talar om spinnets

två möjliga riktningar: upp och ned. "Upp" och "ned" anges med relation till

det magnetfält vari elektronen befinner sig, alternativt till materialets magnetise-

ring. "Upp" betyder längs fältets (magnetiseringens) riktning, "ned" mot fältets

(magnetiseringens) riktning. Det finns en djupare anledning för att välja spinnets

riktning på detta sätt. Nämligen står spinnet och magnetism i nära samband till

varandra. Det är bara i magnetfält som elektronspinnet "syns" och utan spinnet

xi



xii Populärvetenskaplig sammanfattning

hade man i sin tur inte haft magnetism i materia (den andra nödvändiga ingre-

diensen är här elektrisk laddning). Man kan även säga att en elektron beter sig

som en liten magnet när den rör sig i ett magnetfält eller i ett magnetiserat mate-

rial.

Problemet med praktiska användningar för elektonspinnet är att en viss elek-

trons spinn bara bevarar samma riktning över mycket korta avstånd, sedan blir

spinnet av ett antal elektroner slumpmässigt fördelat. Spinnet är alltså oväsentligt

i vanliga elektronikkomponenter, vars dimensioner är relativt stora. Detta problem

överkoms med nanoteknikens uppkomst. Den har gett oss redskap för att tillverka

nanometersmå system i vilka elektronspinnets riktning hålls konstant.

Ett för nanotekniken typiskt och för denna avhandling grundläggande system

är en en-elektron-transistor. Denna liknar en vanlig transistor och består i stort

sett av två makroskopiska elektroder och en "ö" mitt emellan dem; ön är skild från

elektroderna med hjälp av tunna lager av isolerande material. Ett visst antal elek-

troner finns på ön, vars storlek tillhör nanometerskalan. Öns och hela transistorns

små dimensioner innebär att spinnet (oftast) är bevarad när elektroner passerar

genom systemet och att även andra kvantmekaniska fenomen börjar spela in.

Om isolatorlagren mellan elektroderna och ön är tillräckligt tunna kan elek-

troner tunnla genom lagren, tack vare sina vågegenskaper. (Hade elektroner varit

som biljardkulor, hade tunnling varit omöjligt och de hade stannat kvar där de

befinner sig.) Två andra kvantmekaniska fenomen uppstår ur öns lilla storlek. De

elektroner som är instängda i ön kan endast anta vissa, diskreta energinivåer, pre-

cis som elektroner i en atom eller i en molekyl. Ju färre elektroner i ön, desto

större avstånd mellan energinivåerna. Dessutom blir elektrisk växelverkan mellan

elektronerna stor p.g.a. de korta avstånden dem emellan. Detta leder till att det

kommer att kosta energi (en s.k. laddningsenergi) när man vill lägga en elektron

till ön, för de andra elektronerna, som redan befinner sig där, kommer att repellera

denna starkt. Detta fenomen kallas Coulomb-blockad. Coulomb-blockaden leder

till att elektronerna tunnlar genom ön en i sänder.

Antalet elektroner i ön kan vara olika. Innehåller ön många elektroner (som
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t.ex. en metallpartikel), blir Coulomb-blockaden viktigare än de nu relativt små en-

erginivåavstånden. Har den få elektroner (som t.ex. en molekyl eller en s.k. kvant-

prick), blir energiavstånden större än laddningsenergin, och energikvantiseringen

viktigare än Coulomb-blockaden. Därför är det lämpligt att dela upp en-elektron-

transistorer i två kategorier: kvantprickar (där energi är diskret) och metallpartik-

lar (där energi är nästan kontinuerlig). De tre första artiklar som denna avhandling

bygger på studerar just (små) kvantprickar, medan de två sista artiklarna under-

söker (större) metallpartiklar.

I den första artikeln undersöks en liten magnetisk metallpartikel, som har sin

egen magnetisering och vars diskreta elektrontillstånd kopplas till en s.k. magnon.

En magnon kan också kallas spinnvåg och är en sorts samspel av partikelelek-

tronernas spinn. Den liknar ljudvågar i fasta ämnen som i sin tur kan tänkas som

samspel av enskilda atomers vibrationer. Växelverkan mellan elektrontillstånden

och magnonen påverkar transport av elektroner (eller, med andra ord, elektrisk

ström) genom partikeln och gör den mer komplicerad på ett sätt som även har

observerats i experiment.

Artiklarna II och III handlar om elektrontransport i en molekylär magnet Mn12-

acetat. Mn12 är en stor molekyl med ett mycket stort totalt spinn (summan av

alla elektroners spinn i molekylen är alltså stor) som dessutom är mycket sta-

bilt över tiden. Vi har visat bl.a. att addition eller subtraktion av en elektron till

eller från molekylen höjer respektive minskar molekylens spinn. Transport genom

molekylen påverkar alltså dess magnetiska tillstånd, vilket skulle kunna leda till

en tillämpning som minnescell (en s.k. qubit) för framtidens kvantdatorer.

Artiklarna IV och V diskuterar transport genom större metallpartiklar. Dessa

två artiklar består både av experimentella och teoretiska delar; det är de teoretiska

delarna som direkt hör till denna avhandling. Här är de externa elektroderna mag-

netiska, av nickel i artikel IV och av kobolt i artikel V, och deras magnetiseringar

kan ha olika riktningar i relation till varandra. Metallpartikeln kan vara både

omagnetisk, som guldpartikeln i artikel IV, eller magnetisk, som nickelpartikeln i

artikel V.
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I omagnetiska material är antalet elektroner med spinn upp och spinn ned lika

stort. När ett material har en viss magnetisering, som t.ex. järn eller kobolt, har

balansen ändrats och majoriteten av elektronerna har den ena riktningen på sitt

spinn, medan minoriteten har den andra. Om vi nu injicerar ström av elektroner

med, t.ex., spin upp från den ena elektroden till den omagnetiska partikeln i ar-

tikel IV, kan en spinn-obalans i princip byggas i partikeln om spinnen inte förlorar

sin ursprungliga riktning. Denna obalans i partikelelektronernas spinnfördelning

gör att strömmen genom vår en-elektron-transistor beror av de externa elektroder-

nas magnetiseringsorientering relativt varandra. Är magnetiseringarna parallella

blir strömmen större än i det antiparallella fallet. Fenomenet att strömmen, eller

resistansen, beror av elektrodernas relativa magnetiseringsorientering kallas mag-

netoresistans och tillämpas redan i hårddiskars skriv- och läshuvuden.

Magnetoresistans definieras som en relativ differens mellan den resistans som

motsvarar antiparallell magnetiseringsorientering och resistansen för de parallellt

orienterade magnetiseringarna. När fenomenet orsakas av tunnlande elektroner,

som i just vårt fall, heter det tunnelmagnetoresistans (TMR). I experimentet (ar-

tikel IV) har vi dock inte sett en tydlig TMR, vilket tyder på att de injicerade elek-

tronerna förlorar sitt spinn ganska snabbt när de tunnlat in i guldpartikeln. Med

hjälp av teoretiska modelleringar har vi uppskattat tiden för denna "spinn-förlust"

till högst några nanosekunder.

I det experimentella försöket som tillhör artikeln V har vi undersökt en ferro-

magnetisk transistors resistans i olika externa magnetfält. Olika riktningar på mag-

netfälten motsvarar olika riktningar på elektrodernas magnetiseringar. Experi-

mentet har gett en TMR på ca. 18% och de teoretiska beräkningarna visar på en

TMR av samma storleksordning. TMR avtar snabbt som funktion av elektrisk

spänning tillämpad genom systemet, vilket vi tillskriver exciteringar av magnoner,

vilket i sin tur minskar partikelns magnetisering.

Fortsatta studier inom avhandlingens område kommer troligtvis att leda till

synnerligen praktiska och viktiga tekniska tillämpningar i extremt kompakta, ström-

snåla komponenter, som t.ex. sensorer, minnesenheter och magnetiska logikkret-
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sar.

Avhandlingens första kapitel innehåller en konceptuell inledning till de stud-

erade systemen. Det andra kapitlet diskuterar metoden för teoretiska beräkningar

(masterekvation). De två sista kapitlen handlar om elektrontransport i nanomag-

neter och magnetoresistanseffekter i ferromagnetiska en-elektron-transistorer.
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1
Conceptual background

Two leitmotivs continue to recur and interweave throughout this thesis: mag-

netism and electron transport. Their meeting point is the realm of small systems,

nanophysics. The aim of this introductory chapter is to give a flavor of these two

themes.

1.1 Magnetism in matter

1.1.1 Basic ideas

In principle all the magnetic properties of matter can be derived from the relativis-

tic Dirac equation which describes the time evolution of an electron wave function

1



2 1 Conceptual background

ψ(~r, t) in an external electromagnetic field

Hψ(~r, t) = ih̄
∂ψ(~r, t)

∂t
, (1.1)

where the Hamiltonian H is given by a relativistic formula

H = c α̂ ·
(
~p− e

c
~A

)
+ β̂mc2 + eφ. (1.2)

For Eq. (1.1) to make sense with the Hamiltonian defined as above, the coefficients

can be written [1] as

β̂ =

 1̂ 0

0 −1̂

 and α̂ =

 0 ~σ

~σ 0

 , (1.3)

where the components of ~σ are the Pauli matrices according to the following

~σ = (σ̂x, σ̂y, σ̂z) =

 0 1

1 0

 ,
 0 −i

i 0

 ,
 1 0

0 −1

 (1.4)

and 1̂ is a 2× 2 identity matrix. Obviously, Eq. (1.1) is a four-dimensional prob-

lem and ψ(~r, t) has four components. Two of them describe an electron (positive

energies), while the other two correspond to positron holes (negative energies).

The two electronic components are in a direct relationship to the electron spin

and the very concept of electron spin comes out here automatically, without any

prior assumptions. In the nonrelativistic limit, it is possible to decouple the Dirac

Hamiltonian (1.2) into the positive and negative solutions [1]. When this is done,

we obtain a row of terms, each corresponding to a different single-electron inter-

action.

In particular, one of the terms, known as the Zeeman Hamiltonian and result-

ing from the aforementioned decoupling procedure, describes the influence of an

external magnetic field ~B on the electron orbital motion

HZee = −~m · ~B = −µB
h̄
~B ·
(
~l + 2~s

)
, (1.5)
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where the electron magnetic moment ~m = −µB
(
~l + 2~s

)
/h̄ includes the con-

tribution both from the orbital angular momentum ~l and the spin ~s. The Zeeman

interaction aligns the orbital and spin magnetic moments with the field ~B. Without

the Zeeman interaction it would be impossible to magnetize materials at a macro-

scopic scale. This interaction is also responsible for the splitting of spectroscopic

lines, since the external magnetic field affects through it the electronic levels of

the system in question.

Before we turn our attention to another interaction that can be deduced from

the Dirac equation, let us first ponder a little on the situation that arises when

we put together a certain number of electrons; this is quite a typical case if we

study atoms, molecules, nanostructures or bulk. The electrons will interact with

each other and we are now facing a vast variety of collective phenomena that

all stem from the electron-electron interaction. Understanding "correlation", as

electron-electron interactions are sometimes referred to, has been one of the ma-

jor challenges of solid state physics and is yet to be fully accomplished. The key

ingredients in the electron-electron interaction are the Coulomb repulsion and the

Pauli exclusion principle that leads to the symmetrization postulate imposed on

the electron wave function. These two contributions give rise to a so-called ex-

change interaction that couples the spins of interacting electrons. This spin-spin

coupling is directly visible in the Heisenberg Hamiltonian, which constitutes an

approximate, effective model for studying exchange. The Heisenberg model for a

system of N spins can be stated as follows

HHeis = −
N∑
i 6=j

Jij~si · ~sj . (1.6)

Here the spins ~si, ~sj are coupled pairwise by the coupling constant Jij . This

coupling occurs via the orbital parts of the electron wave functions and the elec-

trostatic interaction. The sign of the coupling constant determines how the spins

will be aligned with each other. Its positive value gives a ferromagnetic (paral-

lel) alignment, while its negative value yields an antiferromagnetic (antiparallel)
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configuration. The exchange integral Jij vanishes quickly with the distance be-

tween the interacting electrons, which means that the exchange is a short-range

interaction. Nevertheless, it is the strongest magnetic interaction and the one re-

sponsible for the occurrence of spontaneous magnetization (that is, a collective

spin moment) at a microscopic scale. Roughly speaking, exchange can be inter-

or intra-atomic, or itinerant.

Let us now go back to the Dirac equation (1.1). Another important term that

can be deduced from Eq. (1.2) is the spin-orbit interaction. Essentially, the spin-

orbit interaction couples the spin ~s with the orbital angular momentum ~l, and for

an electron in a central electrostatic field (akin the field felt by electrons in an

atom), it takes a simple form of

Hs−o = ξ(r)~s ·~l, (1.7)

where the expectation value ζ = 〈ξ(r)〉 is positive and is called the spin-orbit

coupling constant; its dimension is that of energy. The moments ~s and ~l can both

represent single-electron angular momenta or be collective moments of a number

of electrons (e.g., a whole atom or a nanoparticle).

The orbital motion of an electron is affected by its crystal environment, that

is, the electric field created by the lattice. This ligand field, highly dependent on

the system symmetry, can deform the electron orbital motion and even quench

it. Since the orbital angular momentum is coupled to the electron spin by means

of the spin-orbit interaction, the ligand field can succeed in locking the spin (or

the macroscopic magnetization, which in many ways may be perceived as a giant

spin angular momentum) in a certain direction. Such direction, called an easy

axis, will be energetically favorable, and the energy gain is referred to as the

magnetic anisotropy energy. It is important to note that there would be no magne-

tocrystalline anisotropy, i.e., magnetic anisotropy caused by the crystal (or ligand)

field, were it not for the spin-orbit interaction. The exchange interaction alone is

in itself isotropic (cf. Eq. (1.6)) and, furthermore, it does not include the effect

of the ligand field (or the orbital motion, for that matter). The magnetocrystalline
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anisotropy is a crucial phenomenon when designing new, both micro- and macro-

scopic, devices, as it is present in molecules, nanostructures and bulk.

However, the magnetocrystalline anisotropy is not the only contribution to the

magnetic anisotropy of a system. Another kind of anisotropy, also arising from

the influence of the ligand field, is the surface anisotropy, which can appear in

small systems, where the surface is relatively large when compared with the vol-

ume part of the system (nanoparticles are a good example here). The mere exis-

tence of a reduced symmetry at the surface does not automatically imply a surface

anisotropy though [2]. In thin films or elongated systems, such as nanowires, the

shape anisotropy is important. This kind of anisotropy stems out of the magne-

tostatic dipole-dipole interaction between the atomic magnetic dipoles ~m which

minimizes the energy for the direction parallel to the geometric axis of the system.

Irrespective of the microscopic origin of the magnetic anisotropy, the energy

dependence on the magnetization direction is usually expressed with the use of

a phenomenological model, the starting point of which is the following second-

order uniaxial approximation

E1/V = K1 sin2 ϑ, (1.8)

where V is the volume of the sample and K1 denotes the second-order uniaxial

anisotropy constant. This simple model can be extended to higher-order, uniax-

ial or of a more reduced symmetry, terms. The Mn12-acetate molecular mag-

net, which I discuss in Chapter 3 (and Papers II-III), is a beautiful example of a

highly symmetric system with almost uniaxial anisotropy and a very large value

of magnetic anisotropy energy (4− 5 meV). Otherwise, the ferromagnetic single-

electron transistors discussed in Chapter 4 (Papers IV-V) involve the use of shape

anisotropy for aligning the magnetizations of their elongated electrodes.

1.1.2 3d transition metals

Transition metals of the iron series (Mn, Fe, Co and Ni) are of particular impor-

tance for the work done for this thesis. The average spin moment per atom is
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noninteger in these elements (e.g., 1.73 µB for Co [3], where µB is the Bohr mag-

neton), which suggests an itinerant nature of their magnetic properties. Namely, it

is the electron gas, grouped in energy bands, that is responsible for the magnetism

of these materials. The valence electrons in the iron-series elements belong to

Figure 1.1: The density of states (DOS) for (a) Co (fcc) and (b) Fe (bcc) calculated by

ab-initio methods. The DOS is much higher for the minority-spin band, as most of the

majority-spin electrons occupy states below the Fermi energy (taken to be equal to zero).

Adapted from Ref. [4].

a wide, completely delocalized and free-electron-like 4s band and a narrow band

of more localized and weakly interconnected 3d orbitals. The 4s band, due to its

small density of states (DOS) is of little bearing on the magnetic properties. On

the other hand, the 3d band has a large DOS and, consequently, takes responsibil-

ity for the magnetism of the transition metals. The ferromagnetic phase occurs for



1.1 Magnetism in matter 7

Figure 1.2: Elementary excitations in a ferromagnet. The Stoner quasiparticles are al-

lowed everywhere between the two straight lines. The magnon excitations weaken and

broaden as they cross the Stoner band. Based on Ref. [4].

Co, Ni and Fe, i.e., the elements for which the 3d band is more than half-filled,

and that permits the electrons to be easily delocalized from one atomic 3d orbital

to another. Mn appears in an antiferromagnetic configuration, since this element

has a half-filled 3d band and hence delocalization is possible only between those

neighboring orbitals the magnetic moments of which are aligned antiferromagnet-

ically (delocalization between ferromagnetically aligned orbitals is forbidden by

the virtue of Pauli exclusion principle).

For the iron-series elements an electron band can be divided into a "majority-

spin" band and a "minority-spin" band. The densities of states for two such sub-

bands are moved relative one to another by an exchange splitting ∆ = ε~k↑ − ε~k↓,
and do not differ otherwise, as postulated by Stoner [4]. Figure 1.1 shows the

results of ab-initio calculations carried out for Co (fcc) and Fe (bcc). We can see

from this figure that Stoner’s postulate makes a very good approximation, as the

DOS for the majority spins has shifted down from the Fermi energy, relative to

the minority spins. This shift takes place due to the strong exchange coupling. A
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broad and low in magnitude 4s subband can also be seen, while the 3d bands are

narrower and much more intensive.

The Stoner model is essentially based on the idea of quasiparticles. However,

ferromagnetic transition metals support even low-energy collective spin excita-

tions. These spin waves or magnons have a quadratic dispersion relation accord-

ing to

h̄ω = D|~q|2 + h̄ω0, (1.9)

where ~q is the magnon wave vector. The spin-wave stiffness constant D is pro-

portional to the exchange constant J and the square of the lattice constant a, and

its value is 34 meV for Fe, 79 meV for Co and 29 meV for Ni [5]. The energy gap

h̄ω0, i.e., the energy of the uniform spin wave for which q = 0, is proportional

to the magnetic anisotropy energy of the system (including shape anisotropy) and

amounts to a small fraction of 1 meV. Both the energy Eq = ε~k+~q,↓ − ε~k↑ of

the Stoner particle-hole excitations (a change in the electron momentum and spin)

and the energy of the magnon are plotted in Fig. 1.2. The spin waves are distin-

guishable for low energies (small q) and decay more readily when they enter the

region of Stoner excitations (higher energies and larger q).

To conclude our deliberations on the basic concepts of magnetism in matter, it

is instructive to take a look at the scale of the energies for the Coulomb, exchange,

bonding and spin-orbit interactions. Figure 1.3 shows an order-of-magnitude es-

timate of these energies for 3d ions in bulk. The largest energy corresponds to

a change of charge of the 3dnion (ionization). The second largest is the energy

of the Coulomb and exchange interactions that couple the n electrons into terms
2S+1L. Bonding (or interaction with the ligand field) is comparable to the two

latter interactions, since the 3d electrons are not completely localized and overlap

with the neighboring ligands. The smallest is the energy of the spin-orbit cou-

pling. This is due to the quenching of the orbital angular momentum that occurs

in the ligand field. As a result, the effective spin-orbit interaction energy is about

100 times smaller than the spin-orbit parameter [6].
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Figure 1.3: The energy scale of the relevant interactions in the bulk 3d transition-metal

ions. Adapted from Ref. [6].

1.2 Transport in nanostructures

Over the last decades, hopes for new applications in the fast developing sector

of data storage and computation, as well as the new technological possibilities

and interest in nanostructures as a crossover region between the macro- and mi-

croscopic phenomena have drawn much attention to transport in nanometer-sized

systems. A typical transport-study object is a double-junction nanodevice, that is,

a device composed of a nanoscaled central electrode (island) which is attached
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to two external, micro- or macroscopic, electrodes (source and drain), as in the

schematics of Fig. 1.4; the contact region between the island and the leads func-

tions as a tunneling potential barrier. These three electrodes form a closed circuit,

and when a finite bias voltage is applied across the nanodevice, an electric current

might flow through it. Whether the current will flow or not depends on the inter-

play between the electrochemical potentials in the leads and the energy spectrum

of the island. Three factors, related to the three regions of the nanodevice (leads,

island and contact regions), are crucial when modeling the nanodevice. The first

factor is the energy spectrum and other properties (such as the size, charging en-

ergy, spin relaxation or magnetic moment) of the central island. Next are the

magnetic moments of the external electrodes and their relative orientation (which

can be ferromagnetic, antiferromagnetic or generic; of course, the external elec-

trodes may as well be nonmagnetic). And the last factor is the strength of the

inter-electrode coupling in the contact regions is of vital importance, since it sets

rules for how the electrons that make up the current will hop from one element of

the device to another.

Figure 1.4: Schematics of a single-electron transistor (SET), the system typical for this

thesis. Note the three electrodes: source, drain and island, as well as the tunneling barriers

(painted in grey).
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The unique property of nanostructures is their small size. The smallness of

the central island affects transport through it in two ways. First, the spectrum of

the island electrons becomes discrete when the island size decreases sufficiently,

and the average level spacing δ becomes finite. Second, the energy to add an

electron to the island, i.e., the so-called charging energy EC = e2/2C (C is the

island capacitance), depends on the island size: the smaller the island, the smaller

its capacitance, and the more it costs to charge it. This energy cost must be paid

by sources of the bias voltage applied across the device. If the energy provided

by the bias is lower than EC , electrons are prohibited from hopping from the

external electrodes onto the island. Such a complete suppression of current is

referred to as Coulomb blockade. The value of EC is typically of the order of

10−5− 10−4 eV [7], which corresponds to temperatures T ≈ 1− 10 K. Thus, for

low temperatures charging effects dominate the electron transport. For the energy

spectrum to be discernible in the form of conductance resonances, it is required

that δ � kBT , where kB is the Boltzmann constant.

The strength of the island coupling to the external electrodes determines the

value of the energy-level broadening Γ in the island.1 The level broadening helps

us distinguish different tunneling regimes in which transport takes place in sig-

nificantly different ways. The most relevant for the systems studied in this thesis,

is the limit of weak coupling between the island and the leads, where Γ � kBT .

Within the weak-coupling regime transport occurs via sequential tunneling pro-

cesses of individual electrons. Consequently, a transistor-like nanodevice, such

as the one sketched in Fig. 1.4, in which tunneling occurs via sequential pro-

cesses, is called a single-electron transistor. These tunneling processes, first-

order in the coupling, dominate if the system is far from degeneracy points of two

consecutive charge states. The second-order processes that constitute cotunnel-

ing become important for intermediate coupling strengths, Γ ∼ kBT . For even

1Γ can be viewed also as the tunneling rate for the electrons hopping from one electrode to

another: the stronger the coupling, the larger the tunneling rate, and the more broadened the island

levels.
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stronger couplings, when the junction resistance falls below the quantum resis-

tance h/e2, higher-order processes take over and the perturbative approach is no

longer suitable at the degeneracy points. An example of higher-order processes is

the Kondo effect that, below a certain temperature, leads to an enhanced conduc-

tance in quantum dots.

The external leads in the nanodevice of Fig. 1.4 can be made from normal

metal or ferromagnet. The leads are assumed to be Fermi liquids throughout this

thesis, that is, reservoirs of noninteracting particles (quasiparticles). If the leads

are ferromagnetic, the relative orientation of their magnetic moments affects the

current, giving rise to tunneling magnetoresistance (TMR). TMR may appear if

at least two of the three electrodes of the given SET are ferromagnetic. However,

for a SET with two ferromagnetic leads and a nonmagnetic island, TMR will be

observable only if spin relaxation on the island is slow enough to allow for a net

magnetic moment of the spins injected from the leads to build up on the island [8];

the process is referred to as the spin accumulation.



2
Method

Since all the experiments that motivated the work done for this thesis were con-

ducted in the weak-coupling regime (kBT > Γ), the natural choice of tool for

theoretical calculations was the master equation (see e.g. [9, 10]). Below follows

a detailed description of the master-equation technique, in general and as applied

to the studied systems.

2.1 Single-electron transistor (SET)

The electric-circuit geometry of a single-electron transistor (SET) in its typical

double-junction configuration is drawn in Fig. 2.1. The left (L), right (R) and

central (I) electrodes can be either ferromagnetic or nonmagnetic, and the magne-

tization of one of the electrodes can be controlled independently of the magneti-

13
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zations of the other electrodes. The central island is separated from the external

leads (which sometimes are called source and drain) by means of tunneling barri-

ers (usually a thin layer of an oxide insulator). The energy spectrum of the island

is regulated electrostatically by the gate electrode (parametrized by capacitance

Cg and gate voltage Vg). The bias voltage applied across our double junction is

usually chosen in a symmetric way, so that the potentials at the two leads satisfy

VR = VL. The bias provides electrons in the leads with energy necessary for

overcoming the Coulomb blockade, and creating the electric current IL (or IR)

through the left (or right, respectively) junction. The junctions can be viewed as

capacitors of capacitances CL and CR.

Figure 2.1: A single-electron transistor represented as an element of a dc-circuit. The left

and right junctions are described by their capacitance and resistance, respectively. Gate

capacitance and gate voltage control the island energy landscape.

The total Hamiltonian of the system in Fig. 2.1 can be written as

H = HL +HR +HI +HT, (2.1)

where HL and HR are the Hamiltonians for the left and right leads, respectively,

HI describes the island and HT corresponds to tunneling processes that occur be-

tween the island and the leads. The external electrodes are assumed to be normal
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or ferromagnetic Fermi liquids:

Hα =
∑
~pσ

εα~pσc
†
α~pσcα~pσ, (2.2)

where the Fermi operators c†α~pσ (cα~pσ) create (destroy) a quasiparticle measured

with respect to the chemical potential µα of lead α = L or R. In the case of a fer-

romagnetic lead, the Stoner model [11] tells us that the electron band is exchange

split into two, majority (↑) and minority (↓), subbands. The spin asymmetry be-

tween the densities of states for the two subbands is strong: ρα↑(ε) 6= ρα↓(ε)

(cf. Fig. 1.1). If we assume that the density of states (DOS) does not depend on

energy, we can define an effective spin polarization Pα of the given lead:

Pα =
ρα↑ − ρα↓
ρα↑ + ρα↓

. (2.3)

For normal-metal leads PL = PR = 0 and for a half metal we have Pα = 1.

The shape of the island part of the Hamiltonian, HI, depends on the details

of the system in question. The island can have a discrete (see Section 2) or a

(quasi-)continuous (see Section 3) energy spectrum or DOS. The details of HT

also depend on this classification.

2.2 Sequential tunneling – master equation

2.2.1 General

In general, a full system of the previous section is governed by the von Neumann

equation for the total density operator [12]. Assuming that the interaction partHT

of the Hamiltonian (2.1) can be treated perturbatively and that the off-diagonal

terms in the density matrices vanish, we obtain a master equation that describes

the time evolution of the probability Pn(t) that a given system is in state n at time

t [12]
dPn(t)

dt
=
∑
m

[WnmPm(t)−WmnPn(t)] , (2.4)
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whereWmn is a transition rate of going from state n to statem (cf. e.g. Ref. [13]).

The process of going from n to m is assumed to be Markovian, i.e., independent

of the previous transitions. Both for metallic [14–16] and discrete dots [10, 17–

20], the master equation turned out to be a perfect model for describing the SET

in the limit of weak coupling, where tunneling of electrons from the source to the

drain is incoherent and takes place in a sequence of two processes independent of

each other. The charging energy of the island quenches simultaneous tunneling of

two electrons of opposite spins [21].

We calculate the tunneling rates Wnm by using the first-order perturbation

theory in the tunneling HamiltonianHT and solve a set of master equations for all

the states n in the steady-state limit

dP̂

dt
= ÂP̂ = 0 (2.5)

together with the normalization condition
∑
n Pn = 1. Here P̂ is the probability

vector, the components of which are probabilities Pn, and Â is a matrix that com-

prises all the transition rates Wnm. By the use of the probability distribution and

rates we can later compute the current through a given junction (lead).

2.2.2 Quantum dots

For a quantum dot, that is, an island with a discrete DOS (∆ε � kBT ), n and

m label the many-body energy states on the island, and Wmn will be a rate for

transition from state n to state m. This transition is triggered and accompanied

by a tunneling of an electron onto or off the island. We calculate the rate of this

transition by the use of Fermi’s golden rule

Wα
mn =

2π

h̄

∑
iα,fα

|〈fα| 〈m|HT |n〉 |iα〉|2WiαWfαδ (εf − εi) , (2.6)

whereWiα andWfα are thermal distribution functions of the final |fα〉 and initial

|iα〉 states in lead α. The initial (final) energy of the system is εi(f). The tunneling
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Hamiltonian for a quantum dot is given by

HT =
∑
α~kσm

(
T
α~kσ

c†
α~kσ

d
mσ

+ H.c.
)
, (2.7)

where we assumed spin conservation under tunneling. Operator dmσ destroys the

island many-body state m with spin σ.

The general formula for the current through the lead α can be expressed as

Iα = −e
∑
m,n

Pn
(
Wα(charging)
mn −Wα(discharging)

mn

)
, (2.8)

where the transitions Wα(charging)
mn are due to the tunneling of an electron onto

the island, and the transitions Wα(discharging)
mn are due to tunnelings off the island.

In the weak-coupling regime, the island states |m〉 are assumed to be unaffected

by the interaction with the leads. Consequently, we calculate first the many-body

energy spectrum of the island, and then use this spectrum in Eq. (2.6). We interpret

the tunneling events in terms of transitions between the island many-body states

of different charge.

The quantum-dot method of calculating the rates and current is employed for

the ferromagnetic nanoparticle with electron-magnon coupling (Paper I) and the

molecular magnet of the Mn12-acetate molecule (Papers II-III). We discuss the

details of the calculation leading to the spectra of the isolated nanomagnets in the

following chapter.

2.2.3 Metallic grains

In the case of a metallic (or ferromagnetic) island, in which the level spacing

∆ε� kBT , we can interpret m and n of Eq. (2.4) as different numbers of exces-

sive electrons on the island. The occupancy of the electronic states of the island

relaxes to a Fermi-Dirac distribution between subsequent tunneling events. Re-

calling that the electrons tunnel one by one, we can write the master equation for

the time evolution of the probability P (N) that there are N excessive electrons
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on the island in the following fashion

dP (N)

dt
= − (WN+1,N +WN−1,N )P (N) +WN,N+1P (N + 1)

+ WN,N−1P (N − 1) (2.9)

with the normalization condition∑
N

P (N) = 1. (2.10)

The term WN,N+1 = WL
N,N+1 + WR

N,N+1 defines the rate of transition that cor-

responds to discharging the island from N + 1 to N excessive electrons.

In the steady-state regime, appropriate for dc-current circuits, we set the time

derivative of the probability distribution function equal to zero in Eq. (2.9). We

note that the net probability of going between two subsequent states (e.g., N and

N + 1) is zero [22]. Hence we obtain a simple recursive relation

P (N)WN−1,N = P (N − 1)WN,N−1. (2.11)

The above equation can be solved by making use of the normalization condition

(2.10). The solution was given in Ref. [22] and reads

P (N) =

∏N−1
i=−∞Wi+1,i

∏+∞
i=N+1Wi−1,i∑+∞

j=−∞

(∏j−1
i=−∞Wi+1,i

) (∏+∞
i=j+1Wi−1,i

) . (2.12)

The current through the lead α will read

Iα = −e
∑
N

P (N)
(
Wα
N+1,N −Wα

N−1,N

)
. (2.13)

In general, the ratesWα
N±1,N may depend on the spin polarization (‘up’ or ‘down’)

of the tunneling electrons. Therefore the current can be split into two spin chan-

nels and the spin-polarized current in one of those channels becomes

Iσα = −e
∑
N

P (N)
(
Wασ
N+1,N −Wασ

N−1,N

)
, (2.14)
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where σ =↑, ↓ denotes the spin polarization with respect to a chosen quantiza-

tion axis. Special caution needs to be paid when dealing with SETs where the

electrodes exhibit noncollinear magnetic moments. Obviously,

Iα = I↑α + I↓α. (2.15)

In the considered limit of a metallic grain with a continuous energy spectrum,

we calculate the tunneling rates Wα
N±1,N (α = L or R) by integrating, over the

energy, the square of the tunneling matrix element that couples the initial and final

states at energy E, |T (E)|2 (akin to the one in Eq. (2.7)), weighing it with the

densities of states of the central, ρI(E), and of the external α-electrode, ρα(E),

and with the number of occupied or unoccupied (depending on the direction of the

tunneling process) initial and final states. For instance, the charging (N → N+1)

tunneling rate through the right junction will be [22]

WR
N+1,N =

∫ ∞
−∞

dE
2π

h̄
|T (E)|2ρR(E − εR

F)f(E − εR
F)ρI(E − εI

F)

×
[
1− f(E − εI

F)
]
. (2.16)

Here εR
F and εI

F are the Fermi energies of the right and central island, respec-

tively, and f(E) is the Fermi-Dirac distribution function. The integration can be

simplified if we, for simplicity, assume that

ρR(E) = ρR0 (2.17)

and

ρI(E) = ρI0, (2.18)

and

T (E) = T0. (2.19)

Then, Eq. (2.16) becomes [23]

WR
N+1,N =

1

e2RR

εR
F − εI

F

1− e−(εRF−ε
I
F)/(kBT )

(2.20)
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where

RR ≡
h̄

2πe2ρR0ρI0|T (0)|2
(2.21)

is the resistance of the right junction. A similar derivation can be carried out for

the other tunneling rates, and the general result reads as follows

Wα
N+1,N =

1

e2Rα

εαF − εI
F

1− e−(εαF−ε
I
F)/(kBT )

(2.22)

and

Wα
N,N+1 =

1

e2Rα

εI
F − εαF − 2EC

1− e−(εαF−ε
I
F−2EC)/(kBT )

. (2.23)

In order to understand better the meaning of the Fermi-energy difference εαF−
εI

F, let us first analyze the circuit loop for our double-junction system (Fig. 2.1).

The difference between the Fermi energies εαF and εI
F is the energy the electron

gains when it tunnels from the lead α to the island:

ε
R(L)
F − εI

F =
e

C

[(
N +

1

2

)
e± CL(R)V − CgVg +Q0

]
, (2.24)

where the upper (lower) sign corresponds to the index R (L). The first term in

the parenthesis is the change, due to tunneling, in the electrostatic energy of the

island. The second term represents the work done by the voltage source. The

gate-voltage readjustment of the island spectrum is described by the third term,

and the last one is some background charge. Equation (2.24) holds if we assume

fast charge relaxation on the island, i.e., the time of tunneling is much longer than

the time it takes to redistribute the island charge, but still shorter than the time

between tunneling events (sequential tunneling limit!).

Equations (2.22) and (2.23) are true for normal-metal islands when the exter-

nal leads are also nonmagnetic. However, if the leads are ferromagnetic and spin

relaxation on the island happens more slowly than charge relaxation, a nonequi-

librium spin state forms on the island leading to a spin-dependent splitting in the

island Fermi energy, ∆EσF, where σ is ‘up’ or ‘down’ (and we assume that the

magnetic moments of the leads are collinear). Now, Eq. (2.14) becomes valid for

the current, but what happens to equations (2.22) and (2.23)? The rates will be
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now spin dependent and the argument in the general expression for a tunneling

rate

Wα(ε) =
1

e2Rα

ε

1− e−ε/(kBT )
(2.25)

will be modified according to the following

Wα
↑±(ε) =

1

e2Rα

ε∓∆EF/2

1− e−(ε∓∆EF/2)/(kBT )
(2.26)

for electrons with spin ‘up’, and

Wα
↓±(ε) =

1

e2Rα

ε±∆EF/2

1− e−(ε±∆EF/2)/(kBT )
(2.27)

for electrons with spin ‘down’. The upper (lower) sign corresponds to tunneling

onto (off) the island.

Since, obviously, the spin polarized current of Eq. (2.14) will influence the

Fermi-level splitting ∆EF, and the latter one will in its turn affect the current,

the calculation of the current must be done self-consistently. The self-consistent

equation for the spin-polarized current reads [24]∑
α=L,R

(
I↑α − I↓α

)
= (ρVe∆EF) /τs (2.28)

where τs is the electron-spin relaxation time in the central electrode, ρ is the den-

sity of states (per spin species) and V is the volume of the central electrode.





3
Quantum transport in ultrasmall

nanomagnets

In this chapter I discuss single-electron transistors, the central islands of which

possess discrete energy spectra (or, to phrase it differently, discrete densities of

states). Section 3.1 deals with the first example of such a discrete system: an

ultrasmall magnetic nanoparticle. The magnetic nanoparticle forms a good intro-

duction to the far more complex Mn12-based molecular magnet. The problem of

transport through the latter system is studied in Section 3.2.

23
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3.1 Magnetic nanoparticles

This section summarizes our theoretical study of single-electron tunneling trans-

port through a ferromagnetic nanoparticle. The objective of this project was, on

the one hand, to provide a model that captures the coupling between particle-hole

and spin collective modes in such a nanoparticle and, on the other hand, to pur-

sue an explanation of some important experimental results of Refs. [25] and [26].

A few remarkable features seen in experiment emerge in a very transparent and

direct way from our treatment of the electron-magnon coupling. In particular,

for strong electron-magnon coupling, we find that the tunneling conductance as

a function of bias voltage displays a large and dense set of resonances. Their

magnetic-field dependence in the large-field regime is linear and monotonic.

Figure 3.1: (a) Experimental set-up of Ref. [25]. (b) STEM image of the layer of Co par-

ticles used in the experiment [25]. Note the smallness of size. Reprinted from Ref. [25].

I start this section with a short resumé of the experiments [25, 26] seminal

to the problem in question. Next, I present our model of electron-magnon cou-

pling, followed by its application to the sequential-tunneling calculation. Finally,

I discuss the magnetic-field dependence of the conductance spectrum.
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Figure 3.2: (a) Experimental set-up of Ref. [26]. (b) and (c) Plots of tunneling differential

conductance in a Co nanoparticle as a function of the magnetic field and bias voltage

(the latter quantity is translated into the quasiparticle energies here). Bright (dark) colors

correspond to high (low) conductance; the maximum conductance is 3 nS. Reprinted from

Ref. [26].

3.1.1 Motivation – experiments

About a decade ago Ralph et al. [25, 26] conducted two seminal SET experiments

on small ferromagnetic nanoparticles. In the experiments, the two external elec-

trodes were made of Al, the gap between them being ≤ 5 nm, the tunnel barriers

were formed by oxidizing the Al leads, and a layer of Co nanoparticles was evap-

orized between the oxidized electrodes (see Figs. 3.1 and 3.2(a)). The typical

diameter of the Co nanoparticles was 1-4 nm, and their center-to-center spacing

was 2-5 nm (Fig. 3.1(b)). Devices for which the current-voltage characteristics at

4.2 eV manifested a Coulomb staircase were selected for detailed measurements,
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Figure 3.3: Tunneling spectra of three different samples at T = 20 mK and B = 1 T.

Reprinted from Ref. [25].

ensuring that transport took place via individual nanoparticles. The SET set-up

in Ref. [26] was also equipped with a gate electrode for probing the many-body

states on the nanoparticle.

Conductance spectra of well-resolved resonance peaks (Figs. 3.3 and 3.4)

and a magnetic-field dependence of the tunneling resonances (Figs. 3.2(b,c), 3.5

and 3.6) were measured. The tunneling conductance spectrum is denser (the

mean energy spacing is about 0.2 meV) than the one predicted in an independent-

particle picture (Figs. 3.3 and 3.4), which suggests that the quasiparticle Stoner

states are coupled to spin-wave excitations. As the many-body energy levels are

coupled to the direction of the particle magnetization, the reorientation of the mag-

netization leads to energy shifts and energy-level crossings, which underlines the

importance of nonequilibrium transitions. Furthermore, the tunneling resonances

exhibit a complicated nonmonotonic behavior as a function of the magnetic field

(Figs. 3.2(b,c)) at small fields, i.e., in the region where the field can trigger a

magnetization flip. For large magnetic fields, the tunneling resonances change
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Figure 3.4: Conductance of a Co nanoparticle as a function of bias and gate voltage. The

electron temperature is about 90 mK. Reprinted from Ref. [26].

monotonically with the field (Fig. 3.6), which confirms earlier theoretical sugges-

tions [27, 28] that it is the minority-spin electrons that dominate tunneling through

a ferromagnetic nanoparticle and that the total spin will increase when an electron

is removed from the nanoparticle, due to a large DOS for minority electrons and

strong exchange.

3.1.2 Magnetic nanoparticle – Hamiltonian

The choice of our model is motivated by the microscopic analysis of Ref. [29],

where the explicit derivation of the exchange field-fluctuation propagator allows

one to determine the elementary excitations (Stoner particle-holes and spin waves)

of a magnetic nanoparticle. For a small nanoparticle, one finds one isolated spin

collective mode ω0 below the lowest particle-hole excitation energy, which cor-

responds to the spatially uniform q = 0 spin wave (see Chapter 1). For a large

nanoparticle, there is a quasi-continuum of particle-hole excitations, in the re-

gion of which lies the uniform spin wave. In the nanoparticles investigated in

Refs. [25, 26] there occur interactions between particle-hole excitations and spin-

wave modes, both uniform and nonuniform (q 6= 0). If a particle-hole excitation of

energy εab = ξa − ξb, close in energy to a spin collective mode ω, interacts with
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Figure 3.5: Magnetic-field dependence for the conductance resonances in Ref. [25]. Note

the monotonic behavior at large fields µ0H = B. Reprinted from Ref. [25].

that mode (uniform or not), the quasiparticle states a and b should in principle

have opposite spins. This is so, because the coupling constant γ of the interaction

between the particle-hole and magnon excitations is proportional to |〈b|Sx |a〉|.
However, since states |a〉 and |b〉 contain, due to the spin-orbit interaction, a small

admixture of the other spin direction, the matrix element |〈b|Sx |a〉| will not van-

ish even if |a〉 and |b〉 have the same spin. The electron-magnon coupling boils

down ultimately to the exchange interaction, which conserves spin.

We assume that the isolated nanoparticle can be represented by a single particle-

hole excitation (two electronic states), a magnon, and an interaction thereof, ac-

cording to the following Hamiltonian

Hd =
∑
i=a,b

εic
†
ici + ωβ†β + γ

(
c†acbβ

† + c†bcaβ
)

+ Un̂ (n̂− 1) , (3.1)

where c†i (ci ) with i = a, b creates (annihilates) the electronic level of energy εa
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Figure 3.6: Conductance of the Co nanoparticle in Fig. 3.4 as a function of the magnetic

field, for high fields. Note the monotonic behavior. (a) Vg = 20 mV, (b) Vg = 125 mV.

Reprinted from Ref. [26].

(εb), with εa < εb. The Bose operators β† and β describe a magnon of energy

ω. All the energies below are measured in the units of the mean-level spacing

δ ≡ εa−εb (the particle-hole excitation energy). The third term in Eq. (3.1) can be

viewed as a pair of vertices (see Fig. 3.7) that describe an electron scattering from

the electronic state a (b, respectively) to the state b (a) while absorbing (emitting)

a magnon of energy ω. The coupling strength γ is treated as a phenomenological

parameter; γ ∼ ω stands for strong coupling. An interaction term similar to ours

has been used in investigating magnon-assisted transport in ferromagnetic tunnel

junctions [30]. The last term in Eq. (3.1) is the usual charging term, which enters

when both electronic levels are occupied, 〈n̂〉 = 2.

The Hamiltonian (3.1) can be solved exactly. For n = 0 and n = 2, the energy

spectrum is

εnm = mω +
n

2
(εa + εb + 2U) , (3.2)

where m stands for the number of magnons. For n = 1, the spectrum becomes

more complicated and splits into two subspaces |±, k〉 with energies:

ε±k = ε0
k + εav ±

1

2

√
ε2

res + 4γ2(k + 1), (3.3)

where εres ≡ (εb − εa)−ω = δ−ω and εav = 1
2 (εa + εb + ω). Besides the states
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Figure 3.7: (a) Electron scattering from state a to state b associated by the absorption of

a magnon. (b) Scattering from b to a with the emission of a magnon.

|±, k〉 there is also the state |1a, 0〉, with energy εa, which forms a decoupled one-

dimensional subspace in the n = 1 sector of the Fock space.

3.1.3 Transport calculation

We now apply the obtained spectrum of energy levels to the master-equation

scheme of Chapter 2, which is appropriate when we assume the nanoparticle to

be weakly coupled to the two external metal leads (left L and right R). We as-

sume further that our double junction is symmetric with ΓL = ΓR = Γ and

µL = −µR = V/2, where V is the bias voltage across our SET. The dc-current I

and the differential conductance dI/dV are plotted in Figs. 3.8 and 3.9 for differ-

ent γ-coupling regimes.

First, we consider coupling the p-h excitation to the uniform (q = 0) spin-

wave mode. The case ω = 0.1δ, plotted in Fig. 3.8, pertains to this situation,

as δ ∼ 1 meV for nanoparticles in Refs. [25, 26], and ω ∼ 0.1 meV. We notice

that increasing the value of γ makes the extremely dense conductance spectrum,

which for a weak coupling consists of two clusters, merge into one cluster, whose

individual peaks now start to become discernible. However, the mean-level spac-

ing between the peaks is≈ 0.05δ, much smaller than the experimentally observed
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resonance spacing 0.2δ. Therefore we conclude that such a large density of res-

onances, caused by an unrealistically strong coupling (γ = 2ω) is not the one

observed experimentally.

Figure 3.8: Transport in a magnetic nanoparticle with electron-magnon coupling: Current

and differential conductance versus bias voltage V for ω = 0.1δ. (a) The electron-magnon

coupling strength is γ = 0.1δ, (b) γ = 0.2δ. The temperature T is set equal to 0.005δ,

except in the inset, where it is equal to 0.001δ.

Let us now investigate coupling to a nonuniform spin-wave mode (Fig. 3.9).

The energy of the first nonuniform mode is ω ≈ 1 meV for a 4-nm Co nanopar-

ticle, which is approximately equal to δ [25]. For a weaker coupling we have

again two sets of resonances (this time discernible at a very low temperature,

T = 0.005δ) (Fig. 3.9(a)) that merge when the coupling increases (Fig. 3.9(b)).

The resonance spacing is now ≈ 0.2 − 0.5δ, which is one of the characteristic

features observed experimentally (Figs. 3.3 and 3.4).
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Figure 3.9: Transport in a magnetic nanoparticle with electron-magnon coupling. Current

and differential conductance versus bias voltage V for ω = δ. (a) γ = 0.3δ, (b) γ = 0.8δ.

The temperature T is in both cases set equal to 0.005δ.

3.1.4 Magnetic-field dependence

In this subsection we discuss how the resonance spectrum depends on the mag-

netic field. In our analysis we assume that the two bare electronic states |1a, 0〉 and

|1b, 0〉 are of a predominantly minority-spin character. Our assumption is justified

by the fact that minority electrons dominate tunneling transport in ferromagnetic

grains [26–28]. In the region of small fields B (below the switching field), where

the magnetic moment of the grain is close to a reversal, the energies of the grain

fluctuate randomly [31, 32] and will give a quasi-random dependence of conduc-

tance resonances on the field. After the reversal, at larger fields, we obtain a

monotonic linear dependence on the field (Fig. 3.10). The slopes of the resonance

energies have the same sign (positive), like in the experiment [26], which is a

reflection of the assumed spin character of the bare electronic levels.
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Figure 3.10: Transport in a magnetic nanoparticle with electron-magnon coupling.

Magnetic-field dependence of the conductance resonances at high fields for two values

of the coupling constant: γ = 0.3 and 0.8. Note the monotonic behavior.

3.2 Molecular magnets

Another, and even more promising in terms of applications and basic research,

example of nanomagnets are single-molecule magnets (SMM) [33]. SMMs are

molecules that possess a magnetic moment which is at least several times larger

than that of a single electron. Interestingly, SMMs manifest a purely quantum

phenomenon of magnetic-moment tunneling at the level of macroscopic experi-

ments [34–37]. A prototypical example of an SMM is the Mn12-acetate, which

is made of 12 Mn atoms that are interconnected with organic ligands (Fig. 3.11).

The Mn ions contribute to the high value of the magnetic moment (S = 10). The

Mn12-acetate has a long relaxation time (of the order of months), and is therefore

particularly suitable for SET studies that intend to capture the magnetic properties

of the molecule.

Indeed, the main objective of the work presented in this section was to perform

a transport calculation in the limit of weak coupling on a SET with Mn12 as its
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Figure 3.11: Structure of the center of the Mn12-ac molecule; the Mn atoms are in blue

on the left, and in blue and yellow on the right. Eight Mn3+ (s = 2) ions surround the

four Mn4+ ions (s = 3/2) of the molecule core. The total spin becomes S = 10.

central island. As a result, we find that the spatial part of the many-body wave

functions of the Mn12 molecule as well as the energy splitting of these many-

body states strongly affect the electronic transport and can lead to strong negative

differential conductance (NDC).

This section begins with a short summary of two important SET experiments

with a Mn12 SMM as a central island [38, 39]. Then, I present briefly the spin

density-functional theory (SDFT) that yields the many-body spectrum of the Mn12

molecule. Finally, the transport calculation follows together with a discussion of

the results.

3.2.1 Motivation – experiments

As of now, two groups have carried out SET measurements on an individual

Mn12 SMM [38, 39]. Those measurements were conducted in the weak-coupling

regime, relevant to this thesis. The geometry of the samples is sketched in the inset

of Fig. 3.12 and in Fig. 3.13 and has the typical SET appearance. Both experi-

ments were done at low temperatures (3K in Ref. [39] and ≤ 0.3 K in Ref. [38]).

The Mn12 molecule used was given by the chemical formula Mn12O12(O2C-
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Figure 3.12: Current-voltage characteristics for several values of Vg at T = 300 mK

for a SET with Mn12-ac as a central electrode (the inset shows a cartoon of this SET).

Reprinted from Ref. [38].

R)16(H2O)4, where R is a generic chemical functional. The diameter of the

molecule (core and ligands) varied from ∼ 3 to ∼ 5 nm, depending on R. The

connection to the external leads (made of Au in Ref. [39] and Al in Ref. [38], re-

spectively), and thus to the SET as such, seems to have been under better control

in Ref. [39]. The external ligands served as tunneling barriers between the core of

the molecule and the external metallic electrodes. In both experiments, Coulomb-

blockade-like conductance resonance spectra were measured as a function of the

gate and bias voltages (Figs. 3.12 and 3.14). In Ref. [38] also a magnetic-field

effect on the conductance was established (Fig. 3.15).

Heersche et al. [39] found current suppression and NDC (Fig. 3.14). The

focus of the other experiment [38] was on the magnetic-field dependence of the

conductance spectrum (Fig. 3.15). The molecule states were found to be nonde-

generate at B = 0, and depended nonlinearly on B. Surprisingly, no hysteresis in

the electron tunneling spectrum was observed, which differs from observations in

Mn12 bulk crystals [35, 36, 40, 41].
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Figure 3.13: (a) SET with a Mn12 molecule as a central electrode. (b) SEM image of

the SET, the contact gap is not discernible. Scale bar’s length is 200 nm. Reprinted from

Ref. [39].

3.2.2 Mn12 molecule. Spin model

Mn12-ac is a prototypical SMM thanks to its large magnetic moment (with large

spin S = 10), high magnetic anisotropy of essentially uniaxial character (∼
70 K [42, 43]), and long magnetic-moment relaxation time (of the order of months).

The core of Mn12 consists of four Mn4+ ions (s = 3/2) and is surrounded

by a crown of eight Mn3+ (s = 2) ions, as it is shown in Fig. 3.11. The spins

of these two species of Mn ions are oriented in an antiparallel fashion, leading

to an overall ferrimagnetic configuration of the magnetic ions, with the total spin

S = 8×2−4×3/2 = 10, that defines the easy axis of the molecule. The exchange

interaction between the Mn ions is very strong, which gives a very robust S = 10

molecular magnet.

The first, and in many cases very accurate (due to the high symmetry of the

molecule), approximation to model the energy of the neutral (uncharged) Mn12
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Figure 3.14: (a) Differential conductance as a function of gate and bias voltages, at 3 K.

Current suppression (the dashed line indicates the suppressed conductance resonance) and

negative differential conductance (NDC) (black lines) are observed. (b) Current-voltage

characteristics for two magnetic fields. Note the NDC dips. Reprinted from Ref. [39].

molecule is to treat it as a giant spin S = 10 in a magnetic field ~B:

H = −DS2
z − gµBSzBz , (3.4)

where the first term is responsible for the magnetic anisotropy, and the other one

is the usual Zeeman Hamiltonian that lifts degeneracy of the energy levels corre-

sponding to opposite spin directions. For Mn12, D = 0, 548 K and g = 1.94 [44].

The resulting energy spectrum has a shape of a double-well potential with the

anisotropy barrier that separates one well from another (Fig. 3.16(a)). The exter-

nal magnetic field changes the depths of the two potential wells (Fig. 3.16(b)).

The previous theoretical models [38, 39, 45–51] that aimed at explaining the

experiments described in the subsection above are largely based on the giant-spin

Hamiltonian (3.4). As such, they disregard the orbital degrees of freedom and

the spin-orbit interaction with their influence on the electron that tunnels into a

Mn12 molecule. Clearly, a model that implements the orbital degrees of freedom

is desired.
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Figure 3.15: (a) Differential conductance as a function of the bias voltage and the mag-

netic field for a Mn12 SET. The color scale varies from deep purple (10 nS) to light pink

(200 nS). Reprinted from Ref. [38].

3.2.3 Spin density-functional theory

In principle, the most exact way for obtaining the energy spectrum of the Mn12

molecule, or any other many-body system for that matter, would be to solve the

appropriate Schrödinger equation. The only problem is that our molecule exceeds

by far the regime where this is doable, analytically or even numerically. We are

thus in need of an approximation; and the density-functional theory (DFT) [52–

57] has proved to be a suitable one. The fundamental assumption of DFT is that

the total nondegenerate GS energy of the system in question can be expressed as

a unique functional of the electron density ρ (~r) [52]

Etot = T0 [ρ (~r)] +

∫
d~rρ (~r) v (~r) + VH [ρ (~r)] + Exc [(~r)] , (3.5)
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Figure 3.16: (a) In the first approximation, the Mn12 molecule has a double-well energy

landscape (giant-spin model). Different expectation values of the Sz operator are indi-

cated for S = 10. The magnetic field is zero. (b) The double well shifts when a magnetic

field parallel to the molecule easy axis is applied. Adapted from Ref. [44].

where v (~r) describes an external potential at point ~r, T0 [ρ (~r)] is the kinetic en-

ergy of a gas of noninteracting electrons the density of which is ρ (~r), VH [ρ (~r)]

represents the energy of the average electrostatic interaction between the electrons

according to

VH [ρ (~r)] =
1

2

∫ ∫
~r~r′
ρ (~r) ρ (~r′)

|~r − ~r′|
, (3.6)

and Exc [ρ (~r)] is the exchange-correlation energy. This Exc is generally not

known and needs to be approximated.

If we express the electron density in terms of single-particle orbitals [53] ψiσ
that correspond to a set of fictitious noninteracting quasiparticles, such that all the

orbitals (and only those) below a certain chemical potential µ are occupied, we

are left with a set of so-called Kohn-Sham equations [58](
−∆

2
+ v (~r) + VH [ρ (~r)] +

δExc [ρ↑ (~r) , ρ↓ (~r)]

δρσ (~r)

)
ψiσ = εiσψiσ, (3.7)

where

ρ (~r) = ρ↑ (~r) + ρ↓ (~r)
∑
i,σ

θ (µ− εiσ) |ψiσ|2 . (3.8)

Essentially, we have now replaced a system of interacting electrons with a system

of noninteracting particles in an external field. The only unknown is stillExc. One
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can account for it accurately by using one of the available approximations, e.g.,

the local spin-density approximation (LSDA) or the generalized gradient approx-

imation (GGA) [58].

One, particularly important, numerical implementation of DFT, the results of

which have been used as a starting point for the transport calculations in Mn12

within this thesis, is the Naval Research Laboratory Molecular Orbital Library

(NRLMOL) [59–68], a program package developed by Pederson, Jackson and

Porezag. In this package, one expands the molecular orbitals in terms of lin-

ear combinations of Gaussian functions which center at the atomic sites of the

molecule. Then, the Kon-Sham equations (3.7) are solved self-consistently, with

the assumption of one of the many available LSDA or GGA functionals. One can

also determine the forces acting on all the atoms and, in this way, the equilibrium

geometry of the system [58]. Once the Kohn-Sham wave functions and the geom-

etry are established, many physical observables can be calculated, e.g., the elec-

tron density of states, magnetic moments, charge states or magnetic anisotropy

energies.

An important interaction in magnetic systems is the spin-orbit coupling. Its

usual form (1.7) is exact only for electrons in a single-center system with a central

electrostatic potential. For multi-center systems, such as our Mn12, a Cartesian

representation turns out to be more adequate:

Hs−o

(
~r, ~p, ~S

)
= − 1

2c2
~S · ~p×∇Φ (~r) , (3.9)

where Φ is the Coulomb potential, ~p the linear momentum of the electron, and ~S

its spin. Spin-orbit coupling in this form has recently been used by Pederson and

Khana [69, 70] for accounting for second-order anisotropy energies. If we expand

the Kohn-Sham orbitals as a linear combination of a basis set [58] according to

ψis (~r) =
∑
jσ

cisjσϕj (~r)χσ , (3.10)

with ϕj (~r) and χσ being the orbital and spin components of the basis wave func-

tions, respectively, we obtain the following expression for the Hs−o matrix ele-
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ments

Hjσkσ′

s−o = 〈ϕjχσ|Hs−o

(
~r, ~p, ~S

)
|ϕkχσ′〉

= −i 〈ϕj |Vx |ϕk〉 〈χσ|Sx |χσ′〉 , (3.11)

where Vx is defined as

〈ϕi|Vx |ϕj〉 =
1

2c2

(〈
dϕj
dz

∣∣∣∣Φ ∣∣∣∣dϕkdy

〉
−
〈

dϕj
dy

∣∣∣∣Φ ∣∣∣∣dϕkdz

〉)
. (3.12)

Hence, the cumbersome calculation of ∇Φ matrix elements is replaced by a sim-

pler task of computing gradients of the basis functions. This method of including

spin-orbit interaction, and by that the orbital degrees of freedom, answers to the

desire expressed in the previous section.

Mn12 calculation

By following the SDFT method outlined above, we solve the set of Kohn-Sham

equations for different charge systems of the Mn12 molecule (neutral, cationic and

anionic). We impose a constraint that the expectation value of the system’s total

spin
〈
~S
〉

be quantized along the axis determined by two angles θ and φ. The

solution is a set of single-particle orbitals ϕk. Then we construct approximate

many-body wave functions for the ground and low-lying excited states as single

Slater determinants of the spin orbitals ϕk∣∣∣Q, θ, φ, ~S; k1, k2, . . . kNQ

〉
≡
∣∣∣ϕk1 , ϕk2 , . . . ϕkNQ〉 , (3.13)

where NQ is the number of electrons for a given charge state Q. The expec-

tation values of Sz are close to the values of M in the giant-spin model for

θ satisfying S cos θ = M . Therefore, we obtain 2S + 1 nearly orthonormal

linearly independent many-body Slater determinants with 〈Sz〉 ≈ M , where

M = −S,−S + 1, . . . S − 1, S. We call this set of many-body states a spin

multiplet.

The SDFT calculation yields, for different Q, such total-system quantities as

the spin, GS energy, HOMO (highest occupied molecular orbital) and LUMO
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(lowest unoccupied molecular orbital) levels, and magnetic anisotropy energy.

The obtained values are summarized in Table 3.1. These numbers are the first

ab-initio results for the charged Mn12 molecule; they are discussed in more detail

in papers II and III. Here we note only the increase of the total spin due to adding a

delocalized electron. The energies of the spin multiplets (Fig. 3.17) and overlaps

between spin multiplets that correspond to different charge states Q (Fig. 3.18)

are used later for transport calculations (cf. next section). Each charged state

has several excited low-lying spin multiplets, which ultimately stems from the

quasidegeneracy around the HOMO and LUMO levels of the neutral molecule.

The same reason leads to the enhanced MAE (Table 3.1) when a delocalized elec-

tron is added to the neutral molecule.

Table 3.1: The GS properties from DFT: spin, energy, and magnetic anisotropy energy as

a function of charge.

Charge state Charge Q Spin Energy (eV) MAE (K) MAE (meV)

Anion -1 21/2 -3.08 137 11.8

Neutral 0 20/2 0.00 55 4.7

Cation 1 19/2 6.16 69 5.9

3.2.4 SET with Mn12

The spin-multiplet energy spectra (Fig. 3.17) and the transition rates between the

spin multiplets of different charge (Fig. 3.18) are now implemented into the gen-

eral SET scheme (see Chapter 2) for a quantum dot with a discrete set of en-

ergy levels, weakly coupled to two external metallic leads and to a gate electrode.

When a finite bias voltage is applied across such a double junction, current flows,

as plotted in Fig. 3.19 for two values of the gate voltage: Vg = −20 V and

Vg = 10 V. Figure 3.20 shows the differential conductance G = dI/dVb as a

function of Vb and Vg. The numerical calculations are done at zero temperature.
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Figure 3.17: SDFT results for the Mn12-ac molecule. (a) The energy spectrum of the

three charge states plotted in the same energy scale. (b) A zoom-in of the spectra for the

cation, neutral molecule and anion (from top to bottom). (c) A zoom-in of the lowest-

lying multiplets for the cation (top) and anion (bottom).

The molecule couples to the two leads with equal strength (symmetric double

junction); the gate capacitance is equal to 1/20 of the total capacitance of the

system. Three Coulomb-blockade stability diamonds are visible, corresponding

to the three charge states Q = −1, 0, 1, where transport is blocked. The lines

that border each diamond correspond to transitions between the GSs of two con-

tiguous charge states. In the region indicated by (−1, 0), the current flows due

to transitions between anionic and neutral states. In the region (0,+1) transitions

between neutral and cationic states occur, and in the region (−1, 0,+1), all the

three charge states are present. The additional lines, parallel to the lines of GS-GS

transitions are due to transitions between excited states. In Fig. 3.20 we can also

see two dark lines, indicated by white arrows, that correspond to a decrease in

the current while Vb is increased (NDC). NDC in a Mn12-SET has been observed

experimentally [39].
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Figure 3.18: SDFT results for the Mn12-ac molecule. Matrix elements for transitions

between neutral and anionic (a) and cationic (b) charge states. From top to bottom: giant-

spin model, transitions from the neutral GS spin multiplet to the anionic (a) and cationic

(b) GS spin multiplets, transitions from the neutral GS spin multiplet to the anionic (a)

and cationic (b) first, second and third excited spin multiplets.

In order to see exactly how the orbital degrees of freedom reveal themselves in

the SDFT-based calculation, we plot I(V ) characteristics for a uniaxial giant-spin

model (3.4) (SM) in Fig. 3.19. We note that the blue I(V ) curve (Vg = −20 V)

starts off much more rapidly for SM (dashed line) than for SDFT (solid line). In

order to understand why this happens, it is instructive to take a look at the tran-

sition overlaps (Fig. 3.18(a)) between the neutral and anionic GS spin multiplets,

both for SM and SDFT. We see from Fig. 3.18(a) (the two plots on the top) that

the two overlaps differ substantially. The SM overlap connects well the GS lev-

els (largest |M | and |M ′|) of the neutral and anionic GS spin multiplets, while

the SDFT overlap does not. This lack of connection between the GS levels for
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Figure 3.19: Theoretical current-voltage characteristic for the Mn12 SET. The solid

(dashed) lines correspond to the calculation done within the SDFT (SM) approach. The

blue (red) line represents the I(V ) curve for Vg = −20 V (Vg = 10 V). The double

junction is symmetric, and the gate capacitance is 1/20 of the total capacitance, the tem-

perature is zero.

SDFT leads to a current suppression at the onset of transport (solid blue line in

Fig. 3.19). The negligibility of this connection is also responsible for the drop in

current visible in the solid red I(V ) curve (Vg = 10 V). When this drop happens,

the anion-to-neutral transport channel opens; the GS multiplet of the anion be-

comes occupied, but since it is only weakly connected to the neutral GS multiplet,

the system gets trapped in the GS anion multiplet, and that leads to the noted drop

in current or, in other words, to a NDC dip (see Fig. 3.20). From this difference

between a purely-spin SM and the SDFT-based calculation that includes the spa-

tial degrees of freedom, we draw the conclusion that the spatial selection rules can

override the spin selection rules and affect transport dramatically, leading to cur-

rent suppression and NDC. Otherwise, we note that the conductance resonances

representing transitions between spin multiplets of different charge are separated

by voltages that correspond to the energies of the order of MAE.
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Figure 3.20: Differential conductance for the Mn12 SET as a function of bias and gate

voltages, calculated within the SDFT approach. Numbers −1, 0,+1 denote the excess

charge on the molecule in units of e and label regions of Coulomb blockade; in regions

(−1, 0), (0,+1) and (−1, 0,+1) transport is possible via transitions between charge

states given in the parentheses. The double junction is symmetric, and the gate capac-

itance is 1/20 of the total capacitance; the temperature is zero. The two white arrows

indicate the transition lines at which we observe negative differential conductance.



4
Magnetoresistance effects in

ferromagnetic SETs

4.1 Ferromagnetic single-electron transistor (F-SET)

After studying single-electron tunneling spectroscopy in quantum-dot-like sys-

tems with a discrete spectrum and a net magnetic moment, we switch now our

attention to another class of systems, where spin-dependent electron transport ap-

pears: the ferromagnetic single-electron transistor (F-SET). An F-SET is defined

as a double-junction device, the external electrodes of which are ferromagnetic (F)

and possess a net magnetization. The central island can be made of a ferromag-

netic (F) or normal (N) metal: we have an F-SET of either F/I/F/I/F or F/I/N/I/F

type (Fig. 4.1). ‘I’ denotes here an insulating interface (it is usually omitted in this

47
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notation, though, so we write F/F/F or F/N/F instead), typically an oxide, between

the central and external electrodes; this interface serves as a potential barrier for

the tunneling electrons. The energy spectrum of the island is quasi-continuous,

and the only discretization of the transport comes from the charging effects.

Figure 4.1: A schematic of a collinear F-SET: the two external leads are ferromagnetic

(F), and the central island can be made either of a normal metal (N) or a ferromagnet (F);

‘I’ stands for the insulating tunneling barrier. The magnetic moments of the three (or two)

electrodes are parallel or antiparallel to each other.

The resistance of F-SETs depends on the relative orientation of the magneti-

zation of the electrodes; hence the second section is devoted to the phenomenon of

magnetoresistance and emphasis is put on the so-called tunneling magnetoresis-

tance (TMR), a phenomenon of utmost importance for the whole chapter. Sections

3 and 4 deal with single-electron tunneling and TMR in Ni/Au/Ni and Co/Ni/Co

F-SETs, respectively. The experiments done by RuiSheng Liu et al., central to

our theoretical work, are presented, together with the main results and a theoreti-

cal analysis.
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4.2 Tunneling magnetoresistance

The electron spin remains undetectable unless in the presence of an external mag-

netic field or the field produced by the material in which the electron is placed

(magnetization). The static magnetic properties of solid matter affect the electron

spin and hence the dynamics of the electron motion, in particular, electronic trans-

port. This effect, known as magnetoresistannce (MR), can be expressed quantita-

tively as the relative change ∆R of the system resistance R due to the change of

magnetic field or magnetization orientation

MR =
∆R

R
. (4.1)

The value of this ratio is typically expressed in percents. The magnetoresistive

effect which occurs in tunneling devices is called tunneling magnetoresistance

(TMR), and ∆R results from rearranging the relative orientation of the mag-

netic moments of the electrodes in a given F-SET. TMR is an outcome of spin-

dependent tunneling processes and can be up to about 50% in room tempera-

tures [71]. In our treatment we assume that the electron spin does not flip during

a tunneling event.

In order to understand the basic physics of TMR, it is sufficient to limit oneself

to the study of tunneling through a single magnetic junction, such as the one

in Fig. 4.2, where we have two ferromagnetic layers FM1 and FM2 separated

by a thin layer of an insulator (i.e., an F/I/F junction). The resistance for the

parallel alignment of the two magnetizations, Rp, is smaller than the one for the

antiparallel configuration, Rap. This difference originates from the exchange shift

between the DOS of the spin-minority and spin-majority electrons, as explained

in Fig. 4.3. In the regime of sequential tunneling and by virtue of Fermi’s golden

rule, we can write the current through F/I/F as proportional to the spin-dependent

DOS of states ρ1σ in FM1 and ρ2σ in FM2 (σ =↑ or ↓)

I↑↑ = ρ1↑ρ2↑ + ρ1↓ρ2↓ (4.2)
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Figure 4.2: A ferromagnetic thin film separated by a layer of an insulating material forms

a single tunneling junction where TMR is observed. Reprinted from Ref. [71].

and

I↑↓ = ρ1↑ρ2↓ + ρ1↓ρ2↑, (4.3)

where ↑↑ (↑↓) denotes the parallel (antiparallel) alignment, and we assumed spin

conservation at tunneling. We used here also Mott’s idea of a two spin channel

model, in which the majority and minority spins tunnel independently of each

other, as if there were two transport channels (resistors) connected in parallel, as

in Fig. 4.4. Looking at Fig. 4.3, we conclude that, since ρ↓ > ρ↑ at the Fermi

level, the current I↑↑ will be larger than I↑↓.

The magnitude of TMR for our F/I/F interface is defined by

TMR =
R↑↓ −R↑↑

R↑↑
=
G↑↓ −G↑↑

G↑↑
, (4.4)

and will be positive in our example of an F/I/F junction; G stands for the differ-

ential conductance. Using the definition of the spin polarization Pα in the lead α

(α = 1 or 2 labels the two leads FM1 and FM2) in Eq. (2.3), we can write

G↑↑ =
1

2
(1 + P1P2) (4.5)

and

G↑↓ =
1

2
(1− P1P2) , (4.6)
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Figure 4.3: TMR results from a difference in the DOS for the two spin species. Mostly

‘down’ electrons tunnel from left to right. The number of empty ‘down’ states in the

right electrode, which can become occupied by the ‘down’ electrons coming from the

left electrode, decreases when the orientation of the magnetic moments of the two leads

changes from parallel to antiparallel. Reprinted from Ref. [71].

and the TMR can be expressed as

TMR =
∆R

R↑↑
=

2P1P2

1− P1P2
. (4.7)

This result was first derived by Jullière [72] and is generally valid for low temper-

atures.

For an F-SET of the form F/I/N/I/F, the same formulae as derived above apply

for TMR. The situation changes when also the central island is a ferromagnet.

Then, in principle, an infinite multitude of noncollinear alignments is possible.

However, for us (see Section 3) three cases are of importance which can be repre-

sented pictorially as: ↑↑↑ (all the magnetic moments point in the same direction),

↑→↑ (the magnetic moments of the external electrodes are parallel to each other,
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Figure 4.4: The electric current through a single ferromagnetic junction can be thought

of as composed of two channels – spin ‘up’ and spin ‘down’ – that run in parallel of each

other (the idea belongs to Mott). The spin components of the current, in terms of DOS

for the two spin species, are noted for the two collinear configurations of the magnetiza-

tions. The indices ‘p’ and ‘ap’ stand for the parallel and antiparallel configuration of the

magnetization vectors, respectively.

while that of the island is perpendicular to their direction), and ↑→↓ (the magnetic

moments of the external electrodes are antiparallel to each other, and the island

moment points perpendicularly to them). The differential conductance for an ar-

bitrary angle ϑ between the magnetizations of two adjacent FM electrodes that

form a single junction can be written [71] as

G (ϑ) = G0 (1 + P1P2 cosϑ) , (4.8)

where G0 = (Gp + Gap)/2. Therefore, for the alignments ↑→ and →↑ (↓) we

have within Jullière’s model

G↑→ = G→↑(↓) = G (90◦) = G0(1 + 0) = G0. (4.9)

Jullière’s model describes particularly well amorphous barriers [73], for which the

passing electrons have the same transmission amplitude – the assumption that is

at the heart of this model.
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4.3 Metallic island

When spin-polarized current enters a normal-metal island, it can create a spin

imbalance on the island, so that the island gains a nonequilibrium magnetic mo-

ment. Search for this spin accumulation, as this phenomenon is often referred to,

was the motivation for carrying out the experiment on the Ni/Au/Ni F-SET, which

I describe in the following subsection. However, the measurements yielded no

signature of a TMR signal, the presence of which would have indicated spin ac-

cumulation on the island due to spin injection from the ferromagnetic leads. The

absence of spin accumulation is attributed to fast spin relaxation (caused by the

strong spin-orbit interaction in Au), as I discuss later within this section. By do-

ing Coulomb-blockade rate-equation calculations, we were able to find an upper-

bound of several nanoseconds for the spin-relaxation time on the island. Experi-

mentally, although the desired TMR signal was not observed, the very fabrication

technique used to produce Ni/Au/Ni samples was a success as now unconventional

hybrid devices could be realized with unprecedented control, including real-time

tunable tunneling resistances (see Paper IV for more details).

4.3.1 Experiment on a Ni/Au/Ni SET

The F-SET composed of two Ni leads and a central nanodisk-shaped Au island

was fabricated with AFM manipulation. Then, conductance measurements were

carried out at T = 1.7 K that led to a typical (for Coulomb-blockade trans-

port) plot as a function of the bias and gate voltages (Fig. 4.5). From the 2D

conductance plot the capacitances and resistances of the junctions were deter-

mined. Later, their values were used as parameters of a theoretical simulation.

The magnetic-field dependence of the conductance was also measured (Fig. 4.6).

The magnetic field ~B was swept from -0.4 to 0.4 T in-plane, and parallel to the

Ni electrodes. The study showed that the conductance was constant for the whole

range of B. This indicates clearly absence of any magnetic effects in the island;

in particular, there is no spin accumulation. The same conclusion can be drawn



54 4 Magnetoresistance effects in ferromagnetic SETs

Figure 4.5: The differential conductance dI/dVb as a function of the bias, Vb, and gate,

Vg, voltages. The measurement was done at 4.2 K. The dark areas ("diamonds") corre-

spond to the Coulomb blockade regime.

from the TMR measured as a function of the bias voltage (Fig. 4.7).

In order to exclude the influence of the quality of the magnetic tunnel junc-

tion on the lack of TMR, a single Ni/NiOx/Ni junction was investigated. The

Ni electrodes had the same spatial dimensions as those in the Ni/Au/Ni F-SET

(Fig. 4.8). The magnetic sweep shows a clear maximum in TMR as the configu-

ration switches from parallel to antiparallel; this is typical for an F/I/F junction.

Thus, the magnetization alignment is controllable in Ni electrodes, and the spin

injection is efficient in a single magnetic tunnel junction. It is what happens in the

island that is responsible for the absence of a TMR signal in our F-SET.

4.3.2 Spin accumulation

In order to model theoretically our F-SET with two magnetic leads an a normal-

metal island, we apply the theoretical machinery introduced for metallic islands
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Figure 4.6: The differential conductance dI/dVb as a function of the bias voltage, Vb,

and the magnetic field B at Vg = 0 and T = 1.7 K.

in Chapter 2. Since now the two external electrodes possess magnetic moments,

there is an imbalance between minority and majority electrons in each of these

electrodes. This imbalance leads to a possibility of spin accumulation on the is-

land when transport is activated and lead electron spins are injected into the island.

The spin accumulation translates into a nonequilibrium shift of the island Fermi

energies between the two spin species. Assuming that the equilibrium DOS in the

island is independent of spin [74] (which is generally true for normal metals), we

can write

∆EF↑ = −∆EF↓ =
∆EF

2
(4.10)

for the Fermi-energy shifts. We solve then the rate-equation problem (Chap-

ter 2) by imposing the self-consistency condition on the spin polarized current

(Eq. (2.28)). The iteration is cut when IσL = −IσR within a desired accuracy for

σ = ↑ and ↓. We carry out the calculation for a parallel (↑↑) and an antiparallel

(↑↓) alignment of the magnetization vectors of the leads, and compute the TMR
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Figure 4.7: TMR as a function of the bias voltage at T = 1.7 (a) and 0.1 K (b), respec-

tively. The solid black curve is the experimental result, while the color curves represent

the theoretical simulations for a few values of the dimensionless spin-relaxation time α.

defined as

TMR =
Ip − Iap

Iap
. (4.11)

We plot TMR(V ) curves obtained for two temperatures T = 1.7 and 0.1 K in

Figs. 4.7(a,b) (color lines). The parameters used in the numerical simulations

were assumed to be of the same order of magnitude as those extracted from the

measured Coulomb diamonds (Fig. 4.5). The capacitances are CL = 24 aF,

CR = 20 aF (CL + CR = 63.2 aF in the experiment), Cg = 0.8 aF (which is

equal to the experimental estimate), and the resistances of the left and right tunnel

junctions are assumed to be equal RL = RR = 0.34 MΩ (the experimental esti-

mate). We note that the oscillatory character of the TMR curve is a result of spin

accumulation and Coulomb blockade, and it has been seen in other experiments
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Figure 4.8: Switching behavior of a single tunnel junction between two Ni electrodes

separated by NiO as a function of the magnetic field at 1.7 K. A scanning electron micro-

graph of the device is shown in the inset.

(magneto-Coulomb oscillations of Refs. [75, 76]). However, our experiment does

not exhibit oscillations in the TMR, and the overall TMR signal is rather strongly

suppressed (≤ 2% in Fig.4.7 (the experimental curve)).

These experimental observations indicate that the spin-relaxation time τs in

the Au nanodisk is shorter than expected. Based on the comparison of the exper-

imental and theoretical curves (Fig. 4.7(a)), we find an upper bound for τs. We

see that the numerical result for the dimensionless α = 0.2 fits the values of TMR

best, at least at higher bias voltages. Although the fit is far from perfect, the order

of magnitude is right, which allows for an estimate to be made. The dimensionless

constant α is defined as

α =
τs

e2ρVRtotal
, (4.12)

where ρ is the DOS per eV and m3 for one spin channel on the disk (i.e., assuming
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a bulk normal-metal DOS, ρ = ρ↑ = ρ↓ = ρAu/2). V is the volume of the disk

and Rtotal = RL + RR is a sum of the bare tunnel resistances. For ρAu =

1.6× 1028 eV−1m−3 (estimated for ρ(EF) in Au on the basis of the free-electron

values in Ref. [5]), with the island volume V = π × (15 nm)2 × 30 nm and the

total resistance Rtotal = 0.68 MΩ, we have τs = 4 ns. Given the uncertainty in

the interpretation of the experimental TMR signal, it must be emphasized that this

value is nothing but an upper bound for τs. Nevertheless, recent magnetotransport

measurements on F-SETs with small Au nanoparticles do report τs of the order of

1 ns [77], which confirms that our numerical estimate of the spin-relaxation time

is reasonable.

Spin relaxation

A few words about spin-relaxation and spin-decoherence mechanisms are in place

here. Spin relaxation in matter is generally ascribed to the action of fluctuating

magnetic fields [78]. These fields are usually the effective fields that result from

the spin-orbit and exchange interactions [79]. Such a fluctuating magnetic field

can be described by an amplitude and a correlation time τc during which the field

is constant. If we put an electron spin in this given magnetic field of a certain ran-

dom direction, the electron spin will precess around this direction with frequency

ω over time τc. When a fluctuation happens, the magnetic field changes its di-

rection and magnitude, which makes the spin precess about this other direction.

When this repeats many times, the electron loses, in the end, its memory of the

initial spin it had. If the angle of precession is small (ωτc � 1), the spin will

undergo a slow angular diffusion. Otherwise, for ωτc � 1, the spin projection

perpendicular to the magnetic field will vanish completely, and the parallel one

will be preserved. A fluctuation in the magnetic field leads then to vanishing of

the new perpendicular projection; thus the initial spin polarization gets destroyed

immediately after the first change of the magnetic field.

The mechanism of spin relaxation relevant in metals such as Au is that of

Elliott-Yafet [80]. Here the relaxation of conduction-electron spins takes place



4.4 Ferromagnetic island 59

through momentum scattering on phonons (at high temperatures) or impurities (at

low temperatures), under the condition that the lattice potential mixes pure spin

states into minority and majority states. This mixing happens by means of the

spin-orbit interaction. The spin-relaxation time in bulk metals was measured to

be 0.1–1 ns, typically. These values can be, however, significantly enhanced if

the sample dimensions go down. The level-discretization that emerges in small

systems will lead to a substantial weakening of the spin-orbit interaction. In our

case of the Au nanodisk, we are still in the limit of a quasi-continuous spectrum

(metallic dot), so the found upper bound of 4 ns is not surprising.

4.4 Ferromagnetic island

The last system considered in this thesis is a Co/Ni/Co F-SET whose all three

electrodes (source, drain and the central, wire-like, island) are ferromagnetic. The

experiment showed TMR traces with negative coercive fields, which are inter-

preted in terms of a switching mechanism driven by the shape anisotropy of the

central elongated Ni island. A large TMR signal of about 18% decays rapidly

with increasing bias voltage. This rapid drop is attributed to the bias-driven exci-

tation of magnons in the central island and is accounted for by a bias-dependent

exponential decay of the island spin polarization.

4.4.1 Experiment on a Co/Ni/Co SET

The Co/Ni/Co F-SET (Fig. 4.9) was fabricated by electron-beam lithography. The

source and the drain electrodes (made of Co) have dimensions 1.5 µm × 80 nm

and 800 nm × 280 nm, respectively. The central Ni island has an elongated,

wire-like shape and is 20 nm wide and 150 nm long. The tunneling barriers be-

tween the electrodes are made of NiOx. A Ni gate was also made for carrying out

conductance measurements.

First, the magnetic-field dependence was measured for the F-SET resistance

at 1.8 K and Vb = 1 mV. The magnetic field was applied in-plane, along the long
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Figure 4.9: (a) Top-view SEM image of the device geometry. (b) Zoomed-in view of

an isolated F-SET located inside the white rectangle in (a). (c) Circuit diagram of the

connected device.

axes of the Co leads. The results are plotted in Fig. 4.10 (solid lines). As we

can see, the TMR signals start off at negative fields for both sweep directions.

The negative sign of the sample coercive fields originates from the geometry of

the sample, in particular, from the shape anisotropy of the wire-like Ni island.

The shape anisotropy makes the island magnetization align perpendicularly to the

magnetic field when the field is small enough. Hence, the first (when going from

the large negative field region in Fig. 4.10; at large fields the three magnetiza-

tions are parallel) switch of the magnetization configuration occurs already before

B = 0, that is, before the coercive field for the wider Co electrode (0.13 T) is

reached. Next, at B = 0.21 T, the narrower Co electrode switches its magneti-

zation direction, and finally, B = 0.3 T is the coercive field for the Ni island.

This scheme of magnetization alignment switchings was confirmed by a micro-

magnetic simulation within the Object Oriented Micromagnetic Framework. The

results of the simulation are presented in the insets of Fig. 4.10.
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Figure 4.10: Magnetic-field dependence of the total resistance of the double junction,

at T = 1.8 K and Vb = 1.5 mV. The solid (dashed) lines represent the results of the

experiment (theoretical calculations). Horizontal arrows denote the magnetic field sweep

direction. The insets show schematic magnetization configurations of the device obtained

from micromagnetic modeling, given the field is swept from -1.5 to 1.5 T.

The second part of the experiment consisted of investigating the I(V ) char-

acteristics of our double junction. The current was measured at T = 1.8 K for

two values of the magnetic field: B = 0 (the black curve in Fig. 4.11(a)) and

B = −1.5 T (the red curve). The absence of Coulomb staircase suggests that the

two junctions have equal tunneling rates. From the I(Vg) curve we deduce the

value of the charging energy, EC ≈ 1 meV. The TMR, defined as

TMR =
I−1.5T − I0T

I0T
, (4.13)

was plotted as a function of bias in Fig. 4.11(b). Interestingly, the TMR reaches its



62 4 Magnetoresistance effects in ferromagnetic SETs

Figure 4.11: (a) Current-voltage characteristics measured at 1.8 K, with B = 0 (black

curve) and -1.5 T (red curve), respectively. (b) TMR defined as TMR = (I−1.5T −
I0T)/I0T, normalized by its maximum value, as a function of the bias voltage (black

curve). The values for the current are taken from (a). The color lines represent numerical

simulations done for different decay rates of the spin polarization of the island. The

dimensionless decay time assumes values γ = 1, 5,∞; the shorter the decay time, the

steeper the TMR(V ) function.

maximum value of 18% in the region of Coulomb blockade (i.e., for eVb < EC)

and falls rapidly when the drain-source voltage Vb exceeds EC .

4.4.2 A noncollinear F-SET

The motivation of our work was to provide an explanation for the aforementioned

experiments on F/I/F/I/F double junctions. Due to the geometry of the experimen-

tal set-up of Fig. 4.9, the orientation of the three electrodes (the cobalt source and

drain, and the central island of nickel) is expected to be noncollinear for some
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values of the external magnetic field. The magnetic field is applied in plane of

our device and its value can be varied. We seek a simple theory that could sup-

port (some of) the experimental data and help us understand better the transport in

F/I/F/I/F junctions with a noncollinear configuration of the magnetization vectors.

Weak coupling between the central island and the external electrodes is assumed,

therefore the calculations are performed in the regime of sequential tunneling of

Chapter 2.

There has been a number of papers dealing with double ferromagnetic junc-

tions of a noncollinear magnetization orientation, but the central electrode in

those papers was always either a single-level quantum dot [81–83] or a normal

metal [84–87]. More work, both theoretical and experimental, has been done on

single F/I/F noncollinear junctions [88–92].

The relative configuration of the magnetization vectors of the junction is de-

scribed uniquely by two angles: ϑL and ϑR between the magnetization of the cen-

tral island and the magnetization of the left and right leads, respectively (Fig. 4.12).

We assume fast energy relaxation on the island, i.e., after a tunneling of an elec-

tron onto or from the island, the electron distribution function on the island relaxes

to the Fermi-Dirac distribution function in a time shorter than the time of a single

tunneling event. The spin-relaxation time, τs, on the other hand, can be arbitrary

and is a parameter in our simulations. The total Hamiltonian of the system is that

of Eq. (2.1). The coupling between the leads and the central island is described by

the tunneling part HT of the Hamiltonian of our system, which is now somewhat

more complicated than the Hamiltonian for the collinear system of Chapter 2; it

reads

HT(ϑL, ϑR) =
∑
α

∑
k,k′

[ (
Tαk↑,k′↑c

†
αk↑ cos

ϑα
2
− Tαk↓,k′↑c

†
αk↓ sin

ϑα
2

)
cαk′↑

+

(
Tαk↓,k′↓c

†
αk↓ cos

ϑα
2

+ Tαk↑,k′↓c
†
αk↑ sin

ϑα
2

)
cαk′↓ + H.c.

]
(4.14)

where the ‘up’ and ‘down’ direction of the electron spins is measured with respect
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Figure 4.12: The three magnetization vectors of our noncollinear F-SET. The magnetiza-

tion directions for the external electrodes are determined with respect to the direction of

the island’s magnetic moment by virtue of angles ϑL and ϑR.

to the local quantization axes. We follow the method of Chapter 2 and Ref. [93],

except that now the magnetizations are noncollinear. This noncollinearity means

that there are three different spin quantization axes here, and the tunneling rates

will depend on the spin before and after the fact of tunneling. That is, the rate

of tunneling for an electron with, say, spin ‘up’ from a lead to the island will

now be more complicated than in Ref. [93], and depend on the angle between

the magnetizations of that lead and the island. We apply Fermi’s golden rule to

calculate the tunneling rates, just as we did in the collinear case of the previous

section (the F/I/N/I/F double junction), which ultimately lead to the spin currents

(see Eq. (2.14)). These spin-polarized currents are calculated in the presence of

spin accumulation in the island, so we must impose a self-consistent condition on

them:

IR
σ − IL

σ = (ρσVe∆EσF) /τs. (4.15)

Note how this condition is different from the case of the normal-metal island of

Eq. (2.28). The difference stems from the fact that the Fermi-energy spin split-

ting is symmetric in a normal metal, according to ∆E↑F = −∆E↓F, while this

is not generally true in a ferromagnet. In a ferromagnet, we have an asymmetry

between the DOS for the two spin species, and a condition for the Fermi-energy
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spin splitting becomes

ρ↑∆E
↑
F = ρ↓∆E

↓
F. (4.16)

The directions of spins in the notation for the currents and Fermi-energy spin

splittings are taken with respect to the quantization axis in the island.

The formulae for the rates from Section 2.4 still hold, only now the effective

resistances in Eqs. (2.26) and (2.27) for the α-th junction become spin-dependent

and can be written as

R↑(↓)α =
2Rp

α (1 + PiPα)

(1± Pi) (1± Pα cosϑα)
(4.17)

and, naturally, the Fermi-energy splitting due to spin accumulation will no longer

be symmetric, as we just mentioned. Rp
α denotes the resistance of the α-th junc-

tion when the magnetizations of the three electrodes are parallel to each other;

the value of this parameter is taken from the experiment. Pα and Pi are the spin

polarizations of the α-th electrode (left or right) and of the island, respectively.

We need resistances (or tunneling rates) that depend on the spin explicitly, at least

if we want to take the spin relaxation into account (Eq. (4.15)).

It is worth commenting briefly on the values of the spin density of states (or

spin polarization of the electrodes) that one should use for the simulations. It

has been pointed out that there is a difference between these quantities yielded

in band calculations and their values measured in tunneling transport [94]. For

transition-metal ferromagnets not only the value, but also the sign of the spin po-

larization differs depending on whether we use the results of band calculations

or tunneling measurments. In all the formulae above for transition rates and re-

sistances, the spin polarization should be understood as the tunneling spin po-

larization, since it is transport we are looking at. However, the self-consistency

condition (Eq. (4.15)) for the current contains the band-structure-calculation value

of the spin density of states. As this condition describes the spin-splitting of the

Fermi level in the island, all the electrons at the Fermi level, not only the ones that

participate in transport, should be involved.
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4.4.3 Numerical simulations

In practice, as the insets of Fig. 4.9 – a result of micromagnetic simulations –

showed, the only three configurations of the magnetization vectors necessary for

understanding the behavior of the double-junction resistance as a function of the

magnetic field are those where ϑL(R) is either 0◦, 90◦ or 180◦. We use these

angles to calculate the corresponding effective resistances (Eq. (4.17)), which then

are incorporated into the matrix-equation calculation akin to that of the previous

section (and of Section 2.4).

First, we calculate the current and the total resistance of the F-SET at Vb =

1.5 V and for the relevant magnetic-moment configurations. Then we plot the

resistance as a function of the magnetic field (see the dashed curves in Fig. 4.10),

by interpreting the system’s magnetic configuration in accord with the insets of

Fig. 4.10. We observe that the theoretical TMR is of the order of 8%, about

two times smaller than the experimental one. This discrepancy, although large, is

understandable considering the simplicity of our theoretical model. Besides, the

order of magnitude has been reproduced.

Second, we compute the I(V )-characteristics of our double junction for two

magnetic fields that correspond to the ↑↑↑ and ↑→↑ magnetization orientations,

respectively. Later, the TMR is calculated, defined as in Eq. (4.13); the theoretical

results are plotted in color in the lower panel of Fig. 4.11. The three color curves

correspond to different decay rates 1/γ in the modified expression for the spin

polarization of the central island as a function of bias voltage

P(V ) = Pie[(EC−eV )/(γEC)], (4.18)

where EC is the charging energy for the island (EC/e ≈ 1 mV). The larger the

decay rate, the steeper the V -dependence of the TMR. This phenomonological

exponential decay of the spin polarization is an attempt of taking into account

creation of magnons at the F/I interface, which is quite likely the phenomenon

behind the drastic drop in TMR [95]. Energetically, the creation of magnons is

not impossible at the range of small voltages of Fig. 4.10, as we explain in Paper
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V. In the same paper we mention even other, less significant, mechanisms that

may lead to a decay of spin polarization of the island.





Outlook

In Papers I-III we studied transport properties of small magnetic nanoparticles

and the Mn12-ac molecule. In practice, small magnetic nanoparticles are diffi-

cult to control, and the Mn12 molecule, though in many respects outstanding as

an SMM, reacts strongly with the environment (e.g., when attached to a metallic

electrode), which makes transport measurements very difficult and hard to repro-

duce [38, 39]. However, there exist more robust SMMs that do not loose their

magnetic properties when attached to surfaces. Transport experiments on these

SMMs [96, 97] are more easily reproducible. Thus, one possible extension of our

work would be to do an SDFT calculation for these smaller molecular magnets

and then compare it to the appropriate spin models. The coupling of the SMM

to the external leads can be modeled more realistically by including explicitly the

magnetic and electric fields in the SDFT approach. Another possibility for fu-

ture research stems from the fact that higher-order tunneling processes contribute

to the transport in some of these smaller and robust SMMs [97]. Consequently,

extending the master-equation technique beyond the sequential-tunneling limit, in

particular by taking into account cotunneling processes, seems to be a natural road

to follow.

As for the theoretical part of Papers IV-V, in which we studied transport in

large, metallic (ferromagnetic and normal-metal) nanoparticles, at least two issues

require further investigation. The first one is the phenomenon of spin relaxation

and how it originates from the strong spin-orbit interaction in metallic grains. A

more detailed and realistic theory would enable us to estimate the spin accumu-
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lation in such grains more accurately. Next, we have the very interesting issue

of the F/I/F(N) interfaces that need to be accounted for more explicitly than what

the single-electron-tunneling theory applied here does. Then, of course, it would

be worthwhile to investigate at what point higher-order tunneling processes start

playing a significant role in transport through our F-SETs. All those additional

details, challenging theoretically, as they are, are of vital importance for better

control and future applications of the studied systems.
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[93] I. Weymann and J. Barnaś, “Transport characteristics of ferromagnetic

single-electron transistors,” Phys. Stat. Sol. (B), vol. 236, p. 651, 2003.

[94] R. Meservey and P. M. Tedrow, “Spin-polarized electron tunneling,” Phys.

Rep., vol. 238, p. 173, 1994.

[95] S. Zhang, P. M. Levy, A. C. Marley, and S. S. P. Parkin, “Quenching of

magnetoresistance by hot electrons in magnetic tunnel junctions,” Phys.

Rev. Lett., vol. 79, p. 3744, 1997.

[96] J. E. Grose, E. S. Tam, C. Timm, M. Scheloske, B. Ulgut, J. J. Parks,

H. D. Abru na, W. Harneit, and D. C. Ralph, “Tunneling spectra of indi-



Bibliography 81

vidual magnetic endofullerene molecules,” Nature Mater., vol. 7, p. 884,

2008.

[97] E. A. Osorio, K. Moth-Poulsen, H. S. J. van der Zant, J. Paaske, P. Hedegård,

K. Flensberg, J. Bendix, and T. Bjørnholm, “Electrical manipulation of spin

states in a single electrostatically gated transition-metal complex,” Nano

Lett., vol. 10, p. 105, 2010.





Acknowledgements

First of all I would like to express my gratitude toward my supervisor Prof. Carlo

M. Canali. His diligence, self-discipline, honesty and deep physical intuition,

raised on a solid foundation of knowledge, as well as readiness to talk physics day

and night make him an excellent scientist and a perfect guide in the fascinating,

and sometimes treacherous, realms of solid-state physics. Thank you for all your

support, Carlo.

I am very indebted to Prof. Håkan Pettersson, my co-supervisor, and Dr

Ruisheng Liu for many fruitful discussions on the experimental physics of fer-

romagnetic single-electron transistors. I have learned a lot thanks to our collabo-

ration. Prof. Vincenzo G. Benza and Dr Mark R. Pederson deserve special thanks

for sharing with me of their rich expertise on the theory of nanomagnets. I would

also like to thank Dr Magnus Paulsson for his help with some of the numerical

calculations.

Special thanks go to Dr Susan R. Canali for her help with the English of

this dissertation, and to Peter Liljenberg for his critical reading of the Swedish

summary.

During the final period of my studies I have received a lot of support and

positive reinforcement at my new workplace, Korrespondensgymnasiet. I would

therefore like to thank my principal Bertil Tjerneld and all of my new Colleagues

at Korr. Tack! It is great to teach, but it is even greater to teach among you.

Beata and Per Ekström deserve my deepest gratitude and friendship, as they

were the first ones to make me feel more at home on this side of the Baltic Sea.

83



84 Acknowledgements

I would also like to thank Fr Paul Kozhippat for all his time and encouragement.

Many thanks for numerous conversations and all the good time we shared go to all

my friends in Kalmar, especially to Stefan Jönsson and Mirka Michalak. Among

my friends back in Poland I wish to extend particular gratitude to Przemek Staroń
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We present a theory of single-electron tunneling transport through a ferromagnetic nanoparticle in
which particle-hole excitations are coupled to spin collective modes. The model employed to describe the
interaction between quasiparticles and collective excitations captures the salient features of a recent
microscopic study. Our analysis of nonlinear quantum transport in the regime of weak coupling to the
external electrodes is based on a rate-equation formalism for the nonequilibrium occupation probability of
the nanoparticle many-body states. For strong electron-boson coupling, we find that the tunneling con-
ductance as a function of bias voltage is characterized by a large and dense set of resonances. Their
magnetic field dependence in the large-field regime is linear, with slopes of the same sign. Both features
are in agreement with recent tunneling experiments.

DOI: 10.1103/PhysRevLett.97.096804 PACS numbers: 73.23.Hk, 72.10.Di, 72.25.Ba, 75.30.Ds

Metallic nanoparticles are among the best physical real-
izations of the concept of Fermi liquid introduced by
Landau more than 50 years ago. Their discrete low-energy
spectra can be put in a one-to-one correspondence with
those of corresponding noninteracting electron systems.
Single-electron tunneling spectroscopy [1] in normal-
metal nanograins provides a vivid example of Landau’s
enormous simplification of interacting Fermi systems.
Most of the interesting phenomena studied in these experi-
ments can indeed be understood in terms of the quantum
mechanics of confined noninteracting quasiparticles. If the
grain is made of a ferromagnetic transition-metal material,
however, the discrete resonant spectrum seen in tunneling
experiments [2,3] is far more complex than the one pre-
dicted in an independent particle picture, and indicates that
the quasiparticle states are coupled to the collective mag-
netic moment of the grain. Since ferromagnetic transition
metals, in addition to Landau’s particle-hole (p-h) excita-
tions, support low-energy collective spin excitations, it is
reasonable to assume that tunneling transport through fer-
romagnetic nanoparticles involves some kind of spin ex-
citations that are the finite-system analogue of the famil-
iar spin-waves or magnons of bulk ferromagnets. So far
attempts of including spin collective modes in tunnel-
ing transport based on a simple toy model [4–6] have
explained only in part the rich phenomena seen in
experiment.

In this Letter we present a theoretical study of single-
electron tunneling transport through a ferromagnetic metal
nanoparticle based on a model that captures the salient
features of its elementary excitations—p-h and spin col-
lective—as derived from a recent microscopic study [7]. A
few remarkable features seen in experiment emerge in a
very transparent and direct way from our treatment of the
electron-magnon coupling. We find that when a low-
energy p-h excitation is strongly coupled to one of the

spin collective modes, the tunneling differential conduc-
tance versus bias voltage displays an enhanced density of
resonances with spacings smaller than the independent-
electron energy mean-level spacing �. The dependence
of the tunneling resonances on external magnetic field is
regulated by the behavior of the underlying quasiparticle
states; it is characterized by mesoscopic fluctuations at
small fields and a monotonic dependence at fields larger
than the switching field. The model further predicts that in
the limit of ultrasmall nanoparticles, where � is much
larger than the typical magnon energy, the conductance
should display clusters of resonances separated by an
energy of order �.

The choice of our model is motivated by the microscopic
analysis of Ref. [7], where the explicit derivation of the
exchange-field-fluctuation propagator allows one to deter-
mine the elementary spin excitations (Stoner p-h and col-
lective) of a magnetic grain. One finds that for a small
nanoparticle there is one isolated spin collective mode
below the lowest p-h excitation energy, which corresponds
to the ferromagnetic resonance excitation (spatially uni-
form q � 0 spin wave), of energy Eres� magnetic anisot-
ropy energy=atom � 0:1 meV in cobalt. For large nano-
particles, the ferromagnetic resonance lies in a region of
p-h quasicontinuum and acquires a linewidth �Eres, where
�< 1 is the Gilbert damping parameter. The crossover
between these two regimes occurs when one p-h excitation
contributes to the resonance, namely, when � �

����
�
p

Eres.
Although the nanoparticles investigated in Ref. [2,3] are
too small to strictly satisfy this condition, interactions
between p-h excitations and spin-wave modes, including
the nonuniform ones (q � 0), will frequently occur. As
long as the mechanism of the interaction of one p-h exci-
tation with one spin-wave mode is independent on the
latter being uniform or nonuniform, we can illustrate it
by following Ref. [7], where the uniform case was consid-
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ered. It was shown that when only one p-h excitation of
energy �ab � �b � �a is close to Eres, the exchange-field
propagator has two poles at energies

 !� �
Eres � �ab

2
� f��Eres � �ab	=2
2 � �2g1=2: (1)

The avoided crossing gap � resulting from the collec-
tive mode p-h coupling is found to be �� �Eres �
�MF����

2S
p jhbjSxjaij, where 2S � N" � N# is the total spin of

the nanoparticle, and �MF is the amplitude of the spin-
splitting field. The presence of the matrix element
jhbjSxjaij in the expression for � emphasizes the fact
that the coupling between spin waves or magnon and
electrons is ultimately due to the exchange interaction,
which conserves spin. Thus the quasiparticle states a and
b should have opposite spins. In spite of the fact that most
of the states lying close to the Fermi level have minority-
spin character, because of spin-orbit coupling, the quasi-
particle states jIi are in fact linear combinations of spin-up
and spin-down components jIi � �Ij "i � �Ij #i, and the
matrix element jhbjSxjaij will not vanish. Notice, however,
that since spin-orbit interaction is relatively weak in
transition-metal ferromagnets, the quasiparticle states can
still be assumed to have in general one predominant spin
character with just a small admixture of the other.

The Hamiltonian describing the isolated nanoparticle in
which a magnon is coupled to one p-h excitation is

 Hd �
X
i�a;b

�ic
y
i ci �!�

y�� ��cyacb�
y � cybca�	

�Un̂�n̂� 1	; (2)

where cyi and ci with i � a, b are Fermi operators creating
and annihilating two electronic levels of energy �a and �b,
respectively, with �a < �b. The Bose operators �y and �
describe a magnon of energy !. Below we measure all
energies in units of the mean-level spacing � � �b � �a.
The term ��cyacb�y � c

y
bca�	 represents the electron-

magnon coupling. It can be interpreted as a vertex describ-
ing an electron scattering from the electronic state a (re-
spectively, b) to the state b (a), while absorbing (emitting)
a magnon. We will view the coupling strength � as a
phenomenological parameter; ��! represents strong
coupling. Recently, electron-boson interactions have been
used extensively to model electron-phonon coupling in
molecular single-electron transistors [8]. An interaction
term more similar to ours has been used in studying
magnon-assisted transport in ferromagnetic tunneling
junctions [9]. The last term in Eq. (2) represents a
Coulomb repulsion energy, which is nonzero when both
electronic levels are occupied, hn̂i � 2. The model in
Eq. (2), representing a double-level system coupled to
one boson mode, is well known in quantum optics and
cavity quantum electrodynamics under the name of the
Jaynes-Cummings model [10]. The model can be solved
exactly, since it conserves both the number of electrons

n � na � nb and the quantity �nb � na	=2�m, where m
is the number of bosons. In the trivial cases n � 0 and n �
2 the energy spectrum is �nm � !m� n=2��a � �b � 2U	;
the corresponding eigenstates are j0; mi � ��y	mj0i and
j2; mi � cyac

y
b ��

y	mj0i, where j0i is the vacuum. The n �
1; �nb � na	=2�m� 1=2 � k� 1 eigenspace is spanned
by the states

 j1a;k�1i�cya ��y	k�1j0i; j1b;ki�c
y
b ��

y	kj0i: (3)

The Hamiltonian is now diagonalized within each k sub-
space, yielding the eigenvalues ��k and ��k ,

 ��k � �0
k � �av �

1

2

�������������������������������������
�2

res � 4�2�k� 1	
q

; (4)

where �res � ��b � �a	 �! and �av �
1
2 ��a � �b �!	.

The corresponding eigenvectors are

 j�; ki � ��1 �k	j1a; k� 1i � ��2 �k	j1b; ki; (5)

where

 ��1 �k	 �
�

������������
k� 1
p

���������������������������������������������������������������������������
���k � �a �!�k� 1	
2 � �2�k� 1	

q ; (6)

 ��2 �k	 �
���k � �a �!�k� 1	
���������������������������������������������������������������������������

���k � �a �!�k� 1	
2 � �2�k� 1	
q : (7)

On top of these states j�; ki there is also the state j1a; 0i
with energy �a, which forms a decoupled one-dimensional
subspace in the n � 1 sector. We now assume that the
magnetic grain is weakly coupled to metallic external
electrodes and investigate single-electron tunneling trans-
port through the grain [1]. The total Hamiltonian describ-
ing the system is H � Hd �Hl �Hr �Ht, where Hd is
given in Eq. (2); Hl and Hr describe the left and right
electrodes, assumed to be normal Fermi liquids H� �P
p�p�c

y
p�cp�, � � l, r, where p is the quantum number

specifying a quasiparticle of energy �p� measured with
respect to the chemical potential of lead �; Ht is the
tunneling Hamiltonian coupling the grain to the electrodes
Ht �

P
p;��r;l�tp�c

y
p��ca � cb	 � H:c:
. In the limit of

weak coupling, transport takes place via sequential tunnel-
ing, which can be described by means of a standard rate-
equation formalism for the occupation probabilities of the
grain many-body states [11]. We are interested in the
regime where Coulomb blockade is first lifted by applying
an external bias voltage, and only the two charge states
n � 0, 1 are involved. The master equations describing the
kinetics of the nonequilibrium occupation probabilities
Pnk � fP

0
k; P

a
0 ; P

�
k ; P

�
k g for the states fj0; ki; j1a; 0i; j�; ki;

j�; ki; k � 0; 1; . . .g, are
 

_P0
k � �

X
k0;�

�2P0
k�W

�
0k;�k0 �W

�
0k;�k0 �W

�
0;a	

� P�k0W
�
�k0;0k � P

�
k0W

�
�k0;0k � P

a
0W

�
a;0
; (8)

 

_P a
0 � 2P0

0

X
�

W�
0;a � P

a
0

X
�

W�
a;0; (9)

PRL 97, 096804 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 SEPTEMBER 2006

096804-2



 

_P�k � �
X
k0;�

�P�k W
�
�k;0k0 � 2P0

k0W
�
0k0;�k
: (10)

The coefficients W�
... appearing in Eqs. (8)–(10) are tran-

sition rates between two many-body states of the grain
caused by electron tunneling from and to the leads. For
instance, W�

0k;�k0 is the transition rate from state j0; ki to
j�; k0i due to an electron tunneling from the � electrode
onto the grain. The W�

... are given by Fermi’s golden rule

 W�
0k;�k0 � ��0k;�k0nF��

�
k0 � �

0
k ���	��

�
1 �k

0	2�k0;k�1

� ��2 �k
0	2�k0;k
; (11)

 W�
0;a � ��0;anF��a ���	; (12)

where �� is the electrochemical potential of lead �, which
we assume to be shifted symmetrically around zero by the
applied bias voltage V: �l � ��r � V=2. The transition
rates W�

�k0;0k and W�
a;0 are obtained from W�

0k;�k0 and W�
0;a,

respectively, by replacing the Fermi function with �1� nF

evaluated at the same energy. The tunneling rates ��0k;�k0 �
2�
@

P
pjtp�j

2���p� � ���k0 � �k	
 will be taken for simplic-
ity to be independent of energy and lead index, ��0k;�k0 �

�. The nonequilibrium steady-state probability Pnk is the
solution of the matrix equation �M �P � 0, where the matrix
�M includes all the transition rates, and �P is a vector of all

the Pnk’s. The dc current through the left or right junction is
then written as
 

I���=�	e
�X
k

�
2P0

k

X
k0
�Wl=r

0k;�k0 �W
l=r
0k;�k0 	�P

�
k

X
k0
Wl=r
�k;0k0

�P�k
X
k0
Wl=r
�k;0k0

�
�2P0

0W
l=r
0;a�P

a
0W

l=r
a;0

�
: (13)

The transition sequence jn � 0i ! jn � 1i ! jn � 0i al-
lows the tunneling electron to probe the coupled p-h spin-
wave excitations of the grain, which appear as resonances
in the differential conductance dI=dV as a function of the
bias voltage V. We discuss first the case where the p-h
excitation is coupled with the uniform (q � 0) spin-wave
mode. For the nanoparticles considered in Refs. [2,3], ��
1 meV, while the energy of the uniform spin wave is
approximately equal to the anisotropy energy=atom�
0:1 meV. In Fig. 1 we plot I and dI=dV vs V for the
case ! � 0:1�, which pertains to this situation. The cal-
culations are done at temperature T � 0:005�, correspond-
ing to the experimental T � 50 mK. When � � !
[Fig. 1(a)], three sets of peaks in the conductance are
visible. The first isolated peak occurs when the current
starts to flow, and corresponds to the successive transitions
j0i ! j1a; 0i ! j0i which are possible when �l � V=2 �
�a [12]. On further increasing V, the current remains
constant until the next lowest charging state ��0 becomes
available (at eV � 6:8� for this case). For yet larger V
higher states j0; ki and j�; ki acquire a finite nonequilib-
rium occupation probability, and new transport channels
open up. In principle, each allowed transition j0; ki !

j�; ki gives a resonance at ��k � �
0
k, as shown in the inset

of Fig. 1(a), calculated at very low temperature, T �
0:001�. But at T � 0:005� only their envelope is visible
in the form of a small bump in the conductance centered at
eV � 6:9�. The third large peak, appearing at eV � 7:0�
is also the envelope of many closely spaced resonances,
caused primarily by the transitions through the second
group of charged states, j�; ki, which become available
at that energy. Although values of � >! are not very
realistic, it is instructive to study the limit behavior of the
tunneling conductance for large values of the magnon-
electron coupling. In Fig. 1(b) we plot I and dI=dV vs V
for � � 2!. We can see that a large � causes the sets of
resonances of Fig. 1(a) to merge into one cluster, whose
individual peaks now start to become visible also at T �
0:005�. Notice however, that the mean-level spacing be-
tween the peaks is � 0:05�, in fact much smaller than the
experimentally observed resonance spacing, 0:2�. This
leads us to conclude that such a large density of reso-
nances, caused by an unrealistically strong coupling to
the uniform spin-wave mode, is not the one observed
experimentally.

We now turn to the case where the p-h excitation is
coupled to a nonuniform spin-wave mode. The exchange
energy of the first nonuniform mode is !���a=R	2,
where � is proportional to the exchange constant, a is
the lattice constant, and R is the nanoparticle diameter.
For a 4-nm Co nanoparticle we find ! � 1 meV, which is
approximately equal to � [2]. In Fig. 2(a) we plot the IV
characteristics for the resonant case, ! � �, and two dif-
ferent values of �. At small � we have again two separate
sets of resonances, which are now perfectly resolvable
even at the experimental temperature. When � is increased
up to 0.8, the two sets of resonances merge into one cluster,
as shown in Fig. 2(b). The number of resonances in the
cluster is of the order of 15, with level spacing �0:3� �
0:3��b � �a	 � 0:3!. Such a dense set of resonances with
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FIG. 1 (color online). Current and differential conductance
versus bias voltage V for ! � 0:1�. (a) The electron-magnon
coupling strength is � � 0:1�; (b) � � 0:2�. The temperature T
is set equal to 0:005�, except in the inset, where it is equal to
0:001�.
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spacing � 0:2–0:5� is one of the characteristic features
observed experimentally in tunneling spectroscopy of
magnetic nanograins. The results of Fig. 2 do not de-
pend on ! being exactly equal to �, but remain valid for
� � !, although the larger! the larger is � that takes to go
from Fig. 2(a) and 2(b). For nanoparticles much smaller
than the ones considered in Refs. [2,3], when � !, our
model predicts that the conductance spectrum should even-
tually exhibit sets of resonances separated by an energy
�� / 1=R3.

We finally discuss the magnetic field dependence of the
resonance spectrum. A crucial feature of our analysis is
based on the assumption that the two bare electronic states
j1a; 0i and j1b; 0i have predominantly minority-spin char-
acter. The fact that minority electrons dominate the tunnel-
ing transitions had been originally predicted in Refs. [4,5]
and was later confirmed by experiments in gated devices
[3]. We consider first the regime of small external fields,
where the magnetic grain is close to a reversal of the
magnetic moment. The electronic states are coupled to
the moment itself, and as this moves under the effect of
the field, the energies of the states will be subject to
random fluctuations [13–15]. Also the frequency of the
ferromagnetic mode can fluctuate strongly [7]. Within our
model these fluctuations will result in a quasirandom
dependence of conductance resonances as a function of
the field. At larger fields, after the reversal has taken
place, the situation is different. The grain magnetic mo-
ment will point along the field and the energies of the
minority states j1a; 0i and j1b; 0i will increase linearly
with the field strength B, with a slope given by their
effective ga=b factors, which are � 2 since spin-orbit cou-
pling is weak. Similarly the spin-wave energy dependence
can be parameterized by !�B	 � !�0	 � g��BB [7]. We
obtain ��k � �

0
k � const� 1

2 �ga � gb � g� � ��B	
�BB
and ��k ��

0
k�1� const� 1

2�ga�gb�g����B	
�BB for

the resonance excitation energies, where ����������������������������������������������������������
�ga�gb�g�	

2�const=B2
q

. If we take ga=b � 2 and

g� � 2 [7], we find that the excitation energies are increas-
ing functions of B. Thus we conclude that the conductance
spectrum exhibits essentially a monotonic linear depen-
dence on the field, and the slopes of the resonance energies
have the same sign.

In conclusion, we have proposed a model that describes
coupled electron-magnon excitations in a ferromagnetic
metal nanoparticle. The conductance spectrum of single-
electron tunneling exhibits a broad and dense set of reso-
nances when the coupling is of the order of the magnon
energy. The resonant peaks show Zeeman shifts of the
same sign as a function of the external field. Both features
of the model are in agreement with experiment. We expect
that the resonances originate from the coupling to nonuni-
form spin waves; furthermore, the tunneling spectrum
should break into individual clusters for ultrasmall
particles.
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FIG. 2 (color online). Current and differential conductance
versus bias voltage V, for ! � �. (a) � � 0:3�; (b) � � 0:8�
The temperature T in both cases is set equal to 0:005�.
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We consider tunneling transport through aMn12 molecular magnet using spin density functional theory.

A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for

the determination of spin-dependent matrix elements for use in transport calculations. The tunneling

conductance at finite bias is characterized by peaks representing transitions between spin multiplets,

separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets

and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the

excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.

DOI: 10.1103/PhysRevLett.104.017202 PACS numbers: 75.50.Xx, 31.15.ej, 73.23.Hk, 85.65.+h

There is a growing interest in exploring the rich physics
and spintronics functionality of molecular single-electron
transistors (SETs) consisting of a few magnetic molecules
weakly coupled to nanogapped electrodes [1]. Recently
two groups [2,3] have carried out single-electron tunneling
experiments on individual magnetic molecules based on
Mn12O12 (henceforth Mn12) with organic ligands. Mn12 is
the most studied and perhaps the most remarkable molecu-
lar magnet [4]. In its crystal phase, Mn12 is characterized
by a long spin relaxation time due to its large uniaxial
magnetic-anisotropy energy. Furthermore, at low tempera-
tures, quantum effects in the relaxation properties are
clearly discernible [5–8] and have been attributed to quan-
tum tunneling of the molecule collective magnetization
[4]. How these properties are revealed in electronic quan-
tum transport is a question of great significance for the field
of molecular spintronics [1]. Indeed, the SET experiments
[2,3] show signatures of the molecule magnetic state and
its low-energy collective spin excitations. The theoretical
models proposed so far [2,3,9–15] are typically based on
effective giant-spin Hamiltonians with large uniaxial an-
isotropy barriers. This approach has two drawbacks [16].
First, the effective spin Hamiltonian for the charged states
(anion and cation) of Mn12 needed to describe sequential
tunneling transport, is not known. Scaling of the global
anisotropy parameter to account empirically for changes in
the number of electrons forming a macro-spin is fraught
with uncertainty [17]. Second, the orbital degrees of free-
dom are not included in the giant-spin Hamiltonian formal-
ism. The orbital effects due to changes in electron
population on the Mn12 molecule modify the symmetry
and magnitude of the magnetic-anisotropy Hamiltonian
and can even change the spin ordering [18].

In this Letter we provide a microscopic many-body
description of the ground state (GS) and low-lying spin

excitations of both neutral and charged states of a Mn12
molecular magnet. Our approach is based on spin density
functional theory (SDFT), which has been very successful
in describing the spin-orbit-induced magnetic-anisotropy
barrier in Mn12 and other molecular magnets [19–21]. We
find that when a delocalized electron is added to (sub-
tracted from) the molecule, the GS spin of the molecule
increases (decreases) by 1=2. For both charged states, the
GS magnetic-anisotropy energy is larger than for the neu-
tral Mn12. We then incorporate this information into a
quantum master equation for electronic transport in the
sequential tunneling approximation, which is appropriate
for the experimental Coulomb blockade (CB) regime. The
approximate many-particle eigenstates lead to a tunneling
conductance that exhibits fine structure on the order of the
anisotropy energy and, under certain circumstances, to
strong negative differential conductance (NDC).
Comparison with the giant-spin model shows that spatial
selection rules play a crucial role in determining which
spin excitations contribute the most to the tunneling
conductance.
We need to know the many-electron wave functions,

representing low-energy spin excitations, as a function of
the excess charge (Q), spin ordering (M � f��g�¼1;12),

applied electric E and magnetic B fields, and the parame-
ters �, � describing the quantization axes. We refer to the
collection of all possible variables as the ‘‘order-parameter
vector’’ (OPV), p � ðQ;M;E;B; �; �Þ to label the states.
Given a specific OPV, we first construct a set of Kohn-
Sham (KS) single-particle states�kðpÞ, by diagonalizing a
KS single-particle Hamiltonian HðpÞ that depends upon
this OPV. Since some of these effects (Q, M) are clearly
large and some (�, �) are generally small, there is flexi-
bility as to which of these terms must be accounted for self-
consistently. Specifically,
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HðpÞ ¼ HðQ;M;E;B; �; �Þ
¼ H0ðDFT; Q;MÞ þ VL�Sð�;�Þ þ E � r

þ B � ðLþ 2SÞ (1)

contains a spin-polarized term H0ðDFT; Q;MÞ, which is
treated self-consistently for the cation, neutral, and anionic
states (Q ¼ þ1, 0 and�1); VL�Sð�;�Þ represents the spin-
orbit interaction. We neglect the last two terms represent-
ing the coupling to external fields.

The spin-ordering M corresponds to that obtained from
the local moments of the 12 Mn atoms (��) in the classical
ferrimagnetic state of the neutral molecule [22]. The spin-
orbit operator is treated exactly [19]—albeit non-self-
consistently—in the basis of the eigenstates of
H0ðDFT; Q;MÞ. Diagonalizing the above Hamiltonian
with the constraint that the expectation value of the total
spin (hSi) is quantized along the axis determined by �, �
results in a set of single-particle, noncollinear spin or-
bitals, �kðpÞ, expressed as �k ¼ �þ

k ðrÞ�þð�;�Þ þ
��

k ðrÞ��ð�;�Þ. Here, the angle-dependent spinors

��ð�;�Þ are spin-1=2 coherent states specified by
the quantization axis, ��ð�;�Þ ¼ cosð�=2Þj�i �
sinð�=2Þe�i�j�i.

We now construct approximate many-body functions for
the ground and excited electronic states as single Slater
determinants (SDs) of the spin orbitals �kðpÞ:

jp; k1; k2; . . . ; kNQ
i � j�k1ðpÞ�k2ðpÞ . . .�kNQ

ðpÞi: (2)

The above states are generally not eigenstates of either S2

or Sz. However, a state with jhS2ij ¼ S0ðS0 þ 1Þ, espe-
cially when constructed from a closed shell of spatial
states, is expected to be the primary contributor to an S ¼
S0 eigenstate. While the variables (�, �) generate a con-
tinuous overdetermined set of SDs, a judicious choice of
2S0 þ 1 values of � and � can lead to a nearly orthogonal
set of normalized linearly independent many-particle SDs,
with hSzi taking on integer or half integer values akin to the
standard M ¼ �S0;�S0 þ 1; . . . ; S0 quantum numbers.
Choosing 2Sþ 1 values of � given by S cosð�MÞ ¼ M
leads to integer or half integer hSzi regardless of the choice
of �; however, choosing �M ¼ M�0 leads to destructive
interference in the off-diagonal elements of these states
and aids in producing approximate Sz eigenstates. For the
case of S ¼ 10, we find that choosing �0 ¼ 34� leads to
the smallest off-diagonal overlaps between approximate
eigenstates. We call the 2S0 þ 1 many-electron states con-
structed with this procedure a spin multiplet. Besides the
GS spin multiplet, the anion and cation have a few low-
lying excited spin multiplets. These come about because
the HOMO level of the charged molecule is quasidegener-
ate with a many-fold of LUMO levels [18]. Using Eq. (2),
we can construct several SD excited-states close in energy
to the GS, all having the same spin, S0. The relevant spin
multiplets for the molecule are shown in Fig. 1(a).
Typically, the level spacing within each spin multiplet is

of the order of 0.1–1 meV, while different multiplets are
separated by energies of the order of 10 meV. Note that the
energies of a given spin multiplet are not exactly invariant
under M ! �M, since the choice of the angle �M is
incommensurate with the nonperfectly uniaxial symmetry
of Mn12. The breaking of the level degeneracy for the (M,
�M) pair is of the order of the transverse anisotropy terms
coming from 4th order spin-orbit contributions, and there-
fore very small [23]. For a later comparison with the giant-
spin approach, we disregard the small deviations from
uniaxial symmetry and consider the spin Hamiltonian
HSQ ¼ P

i;nDSQ;i;n½SzQ;i�n, given in terms of spin variables

~SQ;i for each spin multiplet i of charge state Q; DSQ;i;n are

anisotropy constants which we extract by fitting the corre-
sponding SDFT energy spectra. Table I shows the total
spin, GS energy and magnetic-anisotropy energy of the
lowest spin multiplet calculated for the different charge
states of Mn12. Adding an electron to the molecule in-
creases the molecule spin and decreases the energy.
Furthermore, the anisotropy increases significantly when
a delocalized electron is added to the neutral molecule.
This is due to the fact that there is a near degeneracy
between unoccupied onefold and twofold states. The
spin-orbit interaction leads to a strong mixing between
these states which, because of the orbital components,
enhances the anisotropy.
In the following we discuss quantum transport

through a Mn12 molecule weakly coupled to metallic
electrodes. Electron tunneling between leads and the

molecule is described by the Hamiltonian HT ¼
P

�;l

P
k;p t�la

y
�lckðpÞ þ H:c:, where cyk (ck) creates (de-
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FIG. 1 (color online). (a) Lowest lying spin multiplets for the
three charge states of the molecule; the small energy difference
between states M and �M is due to transverse anisotropy terms
coming from 4th-order spin-orbit contributions and our choice of
the 2Sþ 1 values of (�M, �M). See text after Eq. (2).
(b) Differential conductance of a Mn12 SET as a function of
bias and gate voltage, for a symmetric double junction, with gate
capacitance equal to 1=20 of the total capacitance, at zero
temperature. Numbers �1, 0 and þ1 denote the excess charge
on the molecule and label regions of Coulomb blockade. In
regions (�1, 0), (0,þ 1) and (�1, 0, þ1) transport is possible
via transitions between different charge states.
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stroys) an electron in orbital k in the molecule, and t�
depends on the tunneling barrier between lead � ¼ L, R
(left or right) and the molecule. The leads, at electrochem-
ical potential ��, are described by the independent-

electron Hamiltonian H� ¼ P
l��la

y
�la�l, where a

y
�l (a�l)

creates (destroys) a quasiparticle of quantum number l. We
also take into account the work function for the external
leads. As a result, the charge state populated at zero gate
and bias voltages is the neutral one, and not the anion as
it would seem from Table I. The sequential tunneling
current is obtained from a master equation for the occu-
pation probabilities of the molecule many-body states.
The transition rate between two many-body states via
tunneling of an electron from lead � into the molecule, is

proportional to fðEðp0; k0i; NQ0 Þ � Eðp; ki; NQÞ � ��Þ �
jhp0; k01; k

0
2; . . . ; k

0
NQ0 jcyk ðpÞjp; k1; k2; . . . ; kNQ

ij2, where

fðEÞ is the Fermi distribution function and Eðp; ki; NQÞ is
the energy of state jp; k1; k2; . . . ; kNQ

i, modified by the bias

Vb ¼ ð�L ��RÞ=e and gate voltage Vg. We then solve

numerically the master equation in steady-state and obtain
the current as a function of Vb and Vg. Figure 1(b) shows

the differential conductanceG ¼ dI=dVb as function of Vb

and Vg. The calculations are done at zero temperature. We

choose equal coupling of the molecule to the two leads; the
gate capacitance is equal to 1=20 of the total capacitance of
the system. Three CB stability diamonds are visible, cor-
responding to the three different charge states Q ¼ �1, 0,
þ1, where transport is blocked. In region indicated by (�1,
0), [respectively (0,þ1)], current flows through transitions
between anionic (cationic) and neutral states. In region
(�1, 0, þ1) all three charge states are present. The addi-
tional lines parallel to the GS-GS transitions are due to
transitions between excited states. In Fig. 1(b) we can also
see two lines, indicated by arrows, that correspond to a
decrease in the current with increasing Vb (NDC). These
lines give the bias at which, for a given Vg, anionic states

become occupied in the (0,þ1) region. NDC inMn12-SET
has been observed experimentally [2].

For a better understanding of transport just above the CB
gap, in Fig. 2(a) we plot the differential conductance as a
function of Vb, for Vg ¼ �20 V. Transport in this region is

due to transitions between the spin multiplets of the neutral
and anionic molecule. The conductance peak spectrum
displays a rich fine structure, with peak spacing on the
order of 0.1–1 meV, which corresponds to that seen in
experiment [2,3]. The first set of peaks at the very onset

of transport is caused by transitions between the GS spin
multiplets. Surprisingly, the conductance in this region is
very small, G 	 10�8e2=h, as shown in the inset; it is
practically invisible for transitions between the low-lying
states (large jMj and jM0j) and slightly larger for transi-
tions between higher-lying states (small jMj and jM0j). As
we argue below, this is caused by the very small overlap of
the orbital parts of the many-body wave functions of
the two GS spin multiplets. The second set of peaks in
Fig. 2(a), Vb 
 1:485 V, corresponds to transitions be-
tween the GS spin multiplet of the neutral molecule and
the first three excited spin multiplets of the anion. This
cluster of resonances is largely determined by the first
excited spin multiplet of the anion, since reaching this
multiplet opens up transport also via other multiplets. In
particular, the dominant peak seen in the figure is due to
transitions between the lowest-energy states of the GS spin
multiplet of the neutral molecule and the first excited spin
multiplet of the anion, as shown in Fig. 2(b).
In order to shed light on the interplay between orbital

and spin-selection rules, we compare the SDFT-based cal-
culation with the giant-spin model. Within this spin model,
transitions are possible only between states whose spin
differs by 1=2 (spin-selection rule), with transition rates
given by Clebsch-Gordan (CG) coefficients [24]. In the
computation of the conductance, we include the GS spin
multiplet of the neutral molecule, and the GS and first three
excited spin multiplets of the anion. The conductance for
the giant-spin model is shown with the dotted line in
Fig. 2(a). The first 11 peaks correspond to subsequent
transitions between states M ¼ �S;�ðS� 1Þ; . . . ; 0 and
M0 ¼ �S0;�ðS0 � 1Þ; . . . ; 1=2, where S0 ¼ Sþ 1=2. The
intensity of these peaks decreases monotonically with
decreasing jMj, which is different from the SDFT-
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FIG. 2 (color online). (a) Differential conductance as a func-
tion of bias at Vg ¼ �20 V. Parameters are as in Fig. 1. Solid

(dotted, offset for clarity) lines: calculation based on SDFT
(giant-spin model). Inset of (a) shows a zooming of the onset
of SDFT transport due to transitions between the ground-state
(GS) spin multiplets of the neutral and anionic molecule. Visible
peaks in the main plot correspond to transitions between the GS
spin multiplet of the neutral and the first three excited multiplets
of the anion. (b) Spin multiplets involved in the transport. The
transitions between the states generating the dominant peak in
(a) are indicated by arrows joining the states.

TABLE I. The GS properties from DFT: spin, energy, and
magnetic-anisotropy energy as a function of charge.

State Q Spin Energy (eV) MAE (K) MAE (meV)

Anion �1 21=2 �3:08 137 11.8

Neutral 0 20=2 0.00 55 4.7

Cation 1 19=2 6.16 69 5.9
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based conductance. The more complicated set of peaks at
Vb 
 1:485 V in Fig. 2(a) resembles the analogous cluster
of peaks for SDFT and has the same interpretation. We
examine the matrix elements giving the neutral-to-anion
transition rates. Figure 3(a) shows the results for the giant-
spin model, where the matrix elements are proportional to
the CG coefficients and the spin-selection rule jM�
M0j ¼ 1=2 is strictly obeyed. Figure 3(b) shows that the
same spin-selection rule is approximately satisfied by the
SDFT matrix elements of the transitions between the GS
spin multiplet of the neutral molecule and the first excited
spin multiplet of the anion. In particular, the orbital part of
the wave functions does not modify substantially this
condition. In contrast, Fig. 3(c) shows that the SDFT
matrix elements for the transition between the two GS
spin multiplets are different: the effect of the spin-selection
rules is now overridden by space selection rules, which
suppress most of the transition rates near jMj ¼ S and lead
to a vanishing conductance. Furthermore, the GS matrix
elements close to the diagonal behave differently as a
function of jMj for the two models: they decrease with
jMj for SDFT and increase for the spin model, which is
reflected in the conductance [Fig. 2(a)] for Vb < 1:485 V.
Based on Figs. 3(a)–3(c), we expect the giant-spin model
to agree better with the SDFT calculation for transitions
involving the first excited-state spin multiplet of the anion.
Indeed, Fig. 2(a) shows that for bias voltages Vb 

1:485 V the two models yield qualitatively the same con-
ductance. The small matrix elements in Fig. 3(c) are also
the cause of the NDC seen in Fig. 1(b) along the line
separating the transport regions (0, þ1) and (�1, 0, þ1):
when Vb becomes large enough to access the anion GS
multiplet, the system remains trapped in these states due to
their small connection to the neutral states. Thus, the
current decreases.

In conclusion, we presented a microscopic study of the
GS properties and low-energy spin excitations for the

neutral and charged Mn12 molecular magnet, based on
SDFT. Resonances in the tunneling conductance are gov-
erned both by spin and spatial selection rules. The latter
ones play a key role in determining the relative contribu-
tion to transport of various spin multiplets, and can lead to
NDC. The orbital properties of the spin states provided by
SDFT are essential to build a correct effective spin model
and interpret the transport experiments.
This work was supported by the Faculty of Natural

Sciences at Kalmar University and the Swedish Research
Council under Grant No. 621-2007-5019. M.R. P. thanks
the DOD HPCMO for computational resources.
Note added.—After this manuscript was submitted, an-

other Letter [25] related to our work appeared.
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Abstract

A detailed analysis of a recently proposed theoretical approach (Phys. Rev. Lett. 104, 017202

(2010)) to quantum transport in a Mn12 single-electron transistor based on spin density-functional

theory (SDFT) is presented. SDFT is used to construct low-energy many-body states describing

collective spin excitations relevant to transport. We investigate, in particular, the HOMO and

LUMO levels of all charge states of Mn12 and how their energy gap affects the magnetic anisotropy

and the collective spin excitations of the system. We then discuss in detail how to construct all

the transition rates between the spin many-body states used in the master-equation for quantum

transport. The ab-initio approach that includes orbital degrees of freedom of the excess charge on

the molecule is compared with a pure spin model in the transport calculations. We observe that

the orbital degrees of freedom lead to a suppression of certain transition matrix elements, which

results in a current suppression and negative differential conductance. We also propose an efficient

way for circumventing the numerical difficulties that concern the singularity of the linear-equation

system for transport calculations.
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I. INTRODUCTION

Low-dimensional nanostructures that possess a net magnetic moment have been enter-

taining considerable attention over the last decades, mainly due to their possible applications

in data storage, spintronics, and quantum computation. Magnetic nanoparticles are a typical

example of such structures, but their importance for applications might be even surpassed

by another class of systems - single-molecule magnets (SMMs) [1], that is, molecules that

are characterized by a magnetic moment at least several times larger than that of a single

electron [2]. Single-molecule magnets are typically characterized by large anisotropy barri-

ers, responsible for very long spin relaxation times. Unlike nanoparticles, molecules can be

easily synthesized chemically in multiple identical copies, which is clearly an advantage both

for research and technology. Specifically, the net magnetic moment of a molecule will be the

same in each molecule of the given compound and it will not depend on the environment (as

long as the temperature is kept low and magnetic field is off). SMMs exhibit also, at the level

of macroscopic experiment, a purely quantum phenomenon of magnetic-moment tunneling,

which lies at the basis of the observed staircase-shaped hysteresis loop [3–6]. The magnetic

moment of the molecule is thus controlled by an external magnetic field. A prototypical

example of an SMM is the Mn12-acetate, which is comprised of 12 manganese ions that are

interconnected with organic ligands; the Mn ions are responsible for the molecule magnetic

moment. Its high value of the magnetic moment (S = 10) and long relaxation time (of the

order of months in crystal phase) make Mn12 a particularly promising candidate for future

applications.

For designing data-storage or quantum-computation applications of SMMs, or magnetic

nanostructures in general, transport studies are of considerable importance. An SMM, used

as a central electrode together with metallic external leads, will form a single-molecule

transistor in which transport occurs via sequential tunnelings of individual electrons, due

to the charging effects that become manifested when the central island is small enough.

Furthermore, the molecule magnetic moment can depend on the molecule charge. Hence

adding (removing) one electron to (from) the molecule by means of transport could be yet

another way of controlling the molecule magnetic moment.

As of now, two groups have performed single-electron tunneling measurements on an

individual Mn12 SMM [7, 8]. These experiments were conducted in the Coulomb-blockade
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regime, that is, the coupling to the leads was weak. Current suppression and negative

differential conductance (NDC) [7], and a puzzling lack of hysteresis [8] have been observed.

The theoretical models for single-electron transistors (SETs) with Mn12 as a central island

developed so far [7–15] are based on giant-spin Hamiltonians. As such, they disregard the

orbital degrees of freedom in the energy spectrum of the Mn12 molecule and how they affect

the tunneling electron [16]. These models make also some arbitrary assumptions as to the

magnitude of the magnetic moment of the charged molecule [16]. The theoretical models

proposed by another two groups [17, 18] for transport in Mn12 combine nonequilibrium

Green’s functions technique with density-functional theory (DFT). However, this mean-field

approach is not very well-suited for transport calculations with electrodes well separated

from the central islands by potential barriers, that is, for the Coulomb-blockade regime.

Besides, these two models do not include the effect of charging on the magnitude of the

molecule magnetic moment or on the molecule energy spectrum. The additional electron

spreads over the contact region and no direct hopping onto/off the molecule, reminiscent of

the aforementioned experiments, is present.

From looking at these two groups of theoretical models of single-electron transistors

(SETs) with Mn12 as the central island, we see that, in order to make some advancement,

it is essential to provide an ab-initio microscopic model for both the charged and uncharged

molecule that includes the orbital degrees of freedom (by means of spin-orbit coupling) on

top of the spin ones. Later, the molecule has to be well separated from the external leads so

that the weak-coupling regime of the experimental set-up is mimicked. This is done much

better by a master-equation method, where tunneling between the ground and excited states

of the charged and neutral molecule corresponds to adding an electron to or removing it from

the molecule, than by approaching the subject with mean-field machinery.

In our paper we provide an ab-initio description (more detailed when compared to that of

Ref. [19]) of the Mn12 molecule and apply the resultant knowledge of the molecule electronic

structure to a SET set-up in such a way that these two demands are met. For modeling the

molecule itself, we use spin density-functional theory (SDFT) which, by including spin-orbit

coupling, allows us to compute the crystalline magnetic anisotropy of the molecule. We find

that adding a delocalized electron causes the magnetic moment of the molecule to increase by

1/2. When the energy spectrum is at hand, the molecule is sandwiched between two external

metallic electrodes and transport in the regime of weak coupling is allowed [19]. Spin-orbit
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coupling modifies the rates of tunneling between the many-body states of different charge,

which – in turn – leads to a modification of the conductance spectrum, when compared

to a giant-spin model. Under certain circumstances, the inclusion of the orbital degrees of

freedom leads to NDC. The conductance exhibits fine structure of the order of the anisotropy

energy.

Compared with Ref. [19], the present paper provides a more detailed description of the

SDFT method as applied to Mn12, as well as of the transport-calculation approach. Also

the results are presented and discussed in a more comprehensive manner. In particular, we

present the full many-body energy spectrum of the Mn12 molecule and all the transition

overlaps between the spin multiplets belonging to the three different charge states (anion,

neutral, and cation). Furthermore, the enhancement of the magnetic anisotropy energy

(MAE) due to charging and the origin of the existence of several spin multiplets for the

charged states (anion and cation) are elaborated on in a larger extent. Next, the values

for the charging energy are given (≈ 2.5 eV) and commented on. In the transport part,

we compare the spin-model- and SDFT-based electric currents in a broader range of bias

voltage that covers transitions to/from the neutral molecule from/to both charged states;

the analysis of Ref. [19] was limited to the onset of transport (low bias voltage, and only

anion-to/from-neutral transitions). In addition, we present here a numerical way of dealing

with a sparse (and thus singular) system of rate equations that we encounter in the transport

calculations.

This paper is organized as follows. Section II gives a detailed description of calculating the

energies of the ground state (GS) and lowest excited states of a charged and neutral molecule

(Part A). In Part B of Section II we provide and discuss the energy spectrum of the molecule

and some GS properties for the three different charges (anion, neutral, cation). Section III

covers the transport calculation by means of master equations; it also includes a discussion

of some numerical difficulties encountered in this calculation. Results for conductance and

their discussion are given towards the end of that section. Finally, Section IV contains a

summary and a few words on the possible future extensions of our work.
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II. SPIN DENSITY-FUNCTIONAL CALCULATION

A. Method

The goal of our calculation is to obtain low-energy properties of the Mn12 neutral, anionic

and cationic molecule. We do that within the framework of the Kohn-Sham method of the

spin density functional theory. A set of variables defines our system, such as: the excess

charge Q (Q = 0 for the neutral molecule and Q = ±1 for the cation and the anion,

respectively), the spin ordering M (M ≡ {µν}ν=1,12 where µν is the magnetic moment of

the ν-th Mn ion), the external electric E and magnetic B fields, and the parameter angles

θ and φ that determine the quantization axes with respect to the easy axis of the molecule,

which is given by the molecule symmetry. These variables put together constitute an order-

parameter vector (OPV), p ≡ (Q,M,E,B, θ, φ), which is used for labeling the states. Not

all of the components of OPV have the same effect on the system, in particular the effect

of Q and M is large when compared to the dependence on θ or φ. Thus, we are allowed to

split the total Hamiltonian, which is a function of OPV, into the following terms:

H(p) = H(Q,M,E,B, θ, φ) = H0(DFT,Q,M)

+Vs−o(θ, φ) + E · r + B · (L + 2S). (1)

The self-consistent diagonalization of the first term, H0(DFT,Q,M), for a given OPV,

provides us with a set of Kohn-Sham single-particle states Φk(p). When we have this set

of wave functions at our disposal, we can now include the spin-orbit interaction, Vs−o, by

applying the usual time-independent perturbation theory to the obtained set of states (for

d-orbitals, which are responsible for the main magnetic properties of the Mn12 molecule,

the spin-orbit interaction is much weaker than the exchange or Coulomb interactions, so a

perturbative treatment is well justified). The external fields E and B, contained in the last

two terms in the equation above, are set to zero throughout this paper.

The spin ordering M is obtained from the classical ferrimagnetic arrangement of the

local magnetic moments of the 12 Mn ions (µν) in the neutral molecule [20, 21]. This spin

configuration is constructed from four µ = 3 minority-spin Mn ions, 3d(t2g)
3, on the inner

cubane Mn4O4 unit of the molecule and eight µ = 4 majority-spin Mn ions, 3d(t2g)
33d(eg), on

the outer crown of the molecule. Through exact diagonalization of Heisenberg Hamiltonians

developed from DFT calculations [20], Park et al. [21] find that the classical ferrimagnetic

5



configuration has a weight of approximately 36 percent in the exact many-spin S = 10 state.

Similarly, by determining exchange parameters from inelastic neutron scattering followed by

exact diagonalization, Waldmann and Guedel [22] find that this configuration has a weight

of approximately 64 percent.

The spin-orbit matrix elements are not calculated by assuming the usual L ·S representa-

tion, which is suitable only for spherically symmetric systems. Instead, the more appropriate

and exact Cartesian representation, as developed for non-symmetric and/or multi-centered

systems [23], is used. The first-order corrections to the energy eigenstates vanish due to

the quenching of the angular orbital momentum of the d-orbitals in the ligand field of the

molecule, and the second-order ones are always negative [23] and sensitive to the angles θ

and φ. The spin-orbit coupling accounts for the magnetic anisotropy in our system.

When diagonalizing the total Hamiltonian in Eq. (1), including the spin-orbit correction,

we impose the constraint on the expectation value of the total spin (〈S〉) that it be quan-

tized along the axis determined by θ and φ. As a result, we obtain a set of single-particle

noncollinear spin orbitals φk(p)

φk(p) = φ+
k (r)χ+(θ, φ) + φ−k (r)χ−(θ, φ), (2)

where χ±(θ, φ) = cos(θ/2)|±〉 ± sin(θ/2)e±iφ|∓〉 are the spin-1
2

coherent states defined by

the quantization axis.

We are now ready to construct approximate many-body wave functions for the ground

and low-lying excited states as single Slater determinants (SDs) of the spin orbitals φk(p)

|p; k1, k2, . . . kNQ
〉 ≡ |φk1(p)φk2(p) . . . φkNQ

(p)〉, (3)

where NQ is the number of electrons for a given charge state Q. The excited states can be

represented in terms of creation and destruction operators acting on the GS Slater deter-

minants for a given OPV. Overlaps between many-body states corresponding to different

charge states lead to transition rates that are used in the conductance calculation later on.

The variables θ and φ yield a continuous overdetermined set of SDs which are clearly

not eigenstates of either S2 or Sz. However, as can be deduced from Ref. [21], a state with

|〈S〉| = S0, especially when constructed from a closed shell of spatial states, is expected to be

the primary contributor to an S = S0 eigenstate. In addition, a brief look at the behaviour

of a high-spin coherent state provides us with a way of extracting physically meaningful SDs
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that are expected to be approximate eigenstates of Sz. We note that for a ferromagnetically

ordered case, a high-spin product function of 2S rotated χ+ spinors, |S(θ, φ)〉 =
∏2S

i=1 |χi+〉,

such that the total spin vector is now oriented along the quantization axis given by the

angles θ and φ, can be reexpanded in terms of the original |SM〉 states, quantized along the

easy axis, according to:

|S(θ, φ)〉 =
S∑

M=−S

(
2S

S −M

)1/2

cosS+M(
θ

2
) sinS−M(

θ

2
)

×ei(S−M)φ|SM〉. (4)

For this spin coherent state, choosing 2S + 1 values of θ given by S cos(θM) = M leads to

〈Sz〉 = M . Accordingly, we expect the expectation values of Sz to be close to the values

of M , once the same choice of the θ angles is made (see Fig. 1). Indeed, this choice leads

to (almost) integer or half-integer values of 〈Sz〉 regardless of the choice of φ. Furthermore,

choosing φM = Mφ0 (Fig. 1) leads to destructive interference in the off-diagonal elements of

the many-body states and aids in producing approximate Sz eigenstates. Thus we obtain a

set of 2S + 1 nearly orthonormal linearly independent many-body SDs with 〈Sz〉 taking on

values akin to the magnetic quantum numbers M = −S,−S + 1, . . . , S. We call such a set

of states a spin multiplet. For the case of S = 10 (neutral molecule), explicit calculations

show that setting φ0 = 34◦ produces the smallest off-diagonal overlaps between approximate

Sz eigenstates. With this choice of the phase factor, several figures of merit can be used

to assess the error in the approximate Sz states. For example, the diagonal coefficients

range has magnitudes between 0.4 and 1.0, and the average projection onto other states is

approximately 0.2.

B. Results and discussion

We have carried out calculations for the neutral, cationic and anionic states of the Mn12

molecule. In Table 1, the moments, GS energies, HOMO and LUMO levels, as well as the

MAE are shown as a function of charge. One of the important results here is determining

the magnetic moment of the charged molecule: our calculation shows that the energy is

minimized for S = 21/2 (19/2) in the case of the anion (cation), that is, adding an electron

to the molecule increases the molecule spin. The GS energy of the molecule decreases with

adding an electron to the molecule. The positive electron affinity simply means that the
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FIG. 1: The constraints imposed on 〈Sz〉 for the purpose of generating approximate many-body

states: S cos(θM ) = M and φM = Mφ0. Two subsequent values of 〈Sz〉 are shown.

isolated molecule will have a tendency to attract an extra electron. However, it by no means

implies that the molecule attached to external leads should have an excessive charge while

at the offset of transport, since now, as we argue in the second part of this paper, one has

to take into account the work function of the leads, and that makes the neutral (and not

the anionic) charge state the state from which transport is initiated.

TABLE I: The GS properties from DFT: spin, energy, frontier-orbital energies for the neutral

molecule (and their shift as one electron is added (removed) to (from) the molecule) and magnetic

anisotropy energy as a function of charge

State Q Spin Energy (eV) Neutral HOMO (eV) Neutral LUMO (eV) MAE (K) MAE (meV)

Anion -e 21/2 -3.08 -2.28 -1.73 137 11.8

Neutral 0 20/2 0.00 -4.86 -4.43 55 4.7

Cation +e 19/2 6.16 -7.45 -7.00 69 5.9
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The energies for the low-lying spin-multiplets of the three charge states are plotted in

Fig. 2 as a function of 〈Sz〉. We note that the anion and cation have a few low-lying excited

spin multiplets besides the ground-state spin multiplet. In the case of neutral Mn12, previous

DFT calculations published by one of us [24] have shown that, while there is a large energy

gap of the order of 0.5 eV between the HOMO and the LUMO for the neutral molecule

(Table 1), the next unoccupied molecular level (LUMO+1) is a two-fold degenerate state

which is only 8 meV above the LUMO. When one electron is added to the molecule, the

new HOMO is only a few meV below the new LUMO. A similar situation happens for the

cation: when an electron is taken away from the molecule, the HOMO has a narrowly avoided

crossing with the LUMO. There is an analogy with the case of impurities in a semiconductor

that can help understand this point. Neutral Mn12 behaves like an intrinsic semiconductor,

which at zero temperature is an insulator with a gap separating a filled valence band from

an empty conduction band. The Mn12 anion corresponds to adding a donor impurity to the

semiconductor. Now the new Fermi level is very close to empty states of the conduction band

and has therefore metallic properties. Similarly the cation behaves like an acceptor added

to the system, with a hole state very close in energy to the highest occupied valence states.

Both anion and cation molecules are therefore characterized by very small HOMO-LUMO

gaps.

We note that charging or discharging the neutral molecule yield rigid shifts of the neutral-

molecule HOMO and LUMO levels, with the energy gap essentially unchanged (Table 1);

however, we have to remember that these levels are no longer frontier orbitals when one

electron has been added (removed) to (from) the molecule. The new HOMO and LUMO

levels for the charge states are in fact quasi-degenerate, as we explain above.

These orbital quasi-degeneracies in the single particle spectrum are responsible for the

occurrence of excited spin-multiplets just above the ground-state spin multiplet, with the

same total spin. Typically, the level spacing within each spin-multiplet is of the order of

0.1-1 meV, while different multiplets are separated by energies of the order of 10 meV.

For transport calculations, we need the absolute values of matrix elements

〈Φ(p; 1, 2, . . . N − 1)|ck(p′)|Φ(p′; 1, 2, . . . N)〉, (5)

where ck(p
′) is a destruction operator that removes orbital φk(p

′) from the SD

|Φ(p′; 1, 2, . . . N)〉 thus creating an (N − 1)-particle many-body state from an N -particle
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FIG. 2: (color online) (a) The energy spectrum of the three charge states plotted in the same

energy scale. (b) A zoom-in of the spectra for the cation, neutral molecule and anion (from top to

bottom). (c) A zoom-in of the lowest-lying multiplets for the cation (top) and anion (bottom).

many-body state. This change of the excess charge corresponds to an electron being re-

moved from the molecule due to, e.g., a transport process. In order to evaluate the above

many-body overlap, it is necessary to expand the single-particle orbitals for OVP p in terms

of the single-particle orbitals of OVP p′. Transition matrix elements relevant for low-bias

transport are shown in Fig. 3, where we also added, for comparison, a plot of the matrix

elements in the case of the giant-spin model, which are given entirely by the Clebsch-Gordan

coefficients.

In Fig. 2 we see that the energies corresponding to 〈Sz〉 = M and 〈Sz〉 = −M are

not identical. In addition, the overlaps between states of different charge do not preserve

the M → −M symmetry in Fig. 3. This apparent (albeit small) violation of Kramer’s

degeneracy stems from a trade-off between choosing spin coherent eigenstates that are as

orthogonal as possible (accomplished with our choice of the best wrapping angle φM = Mφ0),

and dealing with the absence of perfect cylindrical symmetry of the molecular magnet Mn12,
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FIG. 3: (color online) Matrix elements for transitions between neutral and anionic (a) and cationic

(b) charge states. From top to bottom: giant-spin model, transitions from the neutral GS spin

multiplet to the anionic (a) and cationic (b) GS spin multiplets, transitions from the neutral GS

spin multiplet to the anionic (a) and cationic (b) first, second and third excited spin multiplets.

which generates transverse anisotropy terms. If the symmetry was perfectly cylindrical,

our construction would trivially give doubly degenerate eigenstates. The small term that

breaks the cylindrical symmetry is exactly the order of magnitude of our approximation.

Alternatively, we could choose S pairs of spin-coherent states (θM , φM) and (θ−M , φM) that

comply with the symmetry of Mn12 and would therefore be degenerate. Unfortunately these

states would have larger (off-diagonal) overlaps with each other and therefore would be less

suitable in the transport calculation.

Also presented in Table 1 is the magnetic anisotropy of each reference state that is

determined from exact diagonalization of the spin-orbit interaction. As indicated in the

table, when a delocalized electron is added to the neutral Mn12 molecule the anisotropy

increases. As shown explicitly in Ref. [23], the anisotropy barrier in the Mn12 molecule

is enhanced mostly due to the second order energy shifts in the Vs−o potential between

11



occupied and unoccupied states; both the spatial overlaps between these states and small

energy denominators are important. For the neutral molecule there is a large HOMO-

LUMO gap, while for the charged states this gap is very small, which leads to a quasi-

degeneracy of the HOMO and LUMO states for the charged molecule. Hence, the energy

denominators are smaller for the charged states thus leading to a stronger enhancement of

the anisotropy. To see exactly how this enhancement happens, it is instructive to look at a

simple model developed by Skomski [26]. Consider two d-electron orbitals |Ψ1〉 = |xy〉 and

|Ψ2〉 = |x2 − y2〉 in a crystal field that splits their otherwise identical energy by 2A, where

A > 0, as the following Hamiltonian describes it:

H0 =

 A 0

0 −A

 .

Now, add to this Hamiltonian, as a small perturbation, the spin-orbit coupling Vs−o = ξL ·S,

where ξ has the units of an energy. By treating the spin S as a classical vector that makes

angle θ with the z-axis, one can show that

H = H0 + Vs−o =

 A 0

0 −A

+ 2ξ cos θ

 A 0

0 −A

 .

Diagonalization of the above Hamiltonian yields two energy eigenvalues:

E± = ±
√
A2 + 4ξ2 cos2 θ. (6)

If we now assume that only the lowest level E− is occupied, then the total energy is E−(θ)

and it reaches its minimum for θ = 0, π. These angles determine the z-axis to be the easy

axis of our two-level system. The anisotropy energy is defined as

Ea = Ehard plane
− − Eeasy axis

− = E−(θ =
π

2
)− E−(θ = 0, π) (7)

and becomes equal to

Ea =
√
A2 + 4ξ2 − A =

2ξ2

A
, (8)

where we assumed ξ << A. The ξ2/A dependence transcends this simple model and gener-

ally applies to 3d anisotropies obtained by perturbation theory [26]. From this dependence
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we see more clearly why the anisotropy becomes enhanced when the two levels mixed by

the spin-orbit coupling are quasi-degenerate. This mixing, due to the spatial components of

the wave functions, is obviously stronger if we allow the added electron to spread over the

whole molecule (as we do in our calculation) than if we make it localize in one region of the

molecule.

An important property in transport phenomena is the charging energy, that is, the en-

ergy required to add one electron to the system in question. In transport calculations, the

charging energy is often accounted for by a Hubbard term (so called Hubbard U) in the

total Hamiltonian of the system coupled to a source and drain. In our case this energy

is not assumed to be some constant parameter U , as electron-electron interactions are in-

cluded in the very DFT calculation, which is performed independently for the molecule with

different values of Q. It is, nevertheless, possible to extract values of the charging energy

from our calculations. Mn12 has a closed-shell neutral state, so the charging energies for the

neutral HOMO and LUMO are not equal to each other. The value of the charging energy

can be determined most easily by calculating the derivatives of the HOMO and LUMO

eigenvalues with respect to charge. Thus, in practice, a couple of additional self-consistent

calculations, in which we change Q by a small fraction, on either of the Q ground states

yields the charging energy for the given frontier orbital. For the neutral molecule we find

the charging energy, U , of 2.61 eV for the HOMO and 2.75 eV for the LUMO. These values

are entirely consistent with trends for U in other molecules. For instance C60 (size of 1.3

nm) has a Hubbard U of approximately 3.0 eV [25] and the smaller C28 fullerene has a U

of approximately 4.1 eV [27]. While the charging energy U of the Mn12 molecule is slightly

dependent upon which occupied or unoccupied state is vacated or filled, variations in this

parameter are negligibly small.

III. TRANSPORT CALCULATION

A. Method

Equipped with the microscopic spectrum of the total energies for different charge states

of the Mn12-molecule and the overlaps for the transitions between these energy states, we are

now ready to launch on the transport calculation for a SET with Mn12-ac as its central island
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(Fig. 4). The molecule is assumed to be weakly coupled, through tunneling barriers, to two

external normal-metal leads. The weakness of the coupling means that the broadening of the

molecular many-body energy levels due to tunneling is negligible, and that electrons tunnel

onto and off the molecule in a one-by-one fashion (so called sequential-tunneling regime).

The time between two consecutive tunneling events is much longer that the energy-relaxation

time in the molecule (that is, the molecule is back in its equilibrium before the next electron

hops onto or from it).

The Hamiltonian of the external lead α (where α = L or R) describes a normal Fermi

liquid

Hα =
∑
l

εαla
†
αlaαl, (9)

where a†αl and aαl denote creation and destruction operators, respectively, of a quasiparticle

given by the quantum number l in lead α. The quasiparticle energies εαl are measured with

respect to the electrochemical potential µα of a given lead. The tunneling Hamiltonian, that

stands for the lead-island coupling is given by

HT =
∑
α,l

∑
k,p

(
tαla

†
αlck(p) + h.c.

)
, (10)

where c†k (ck) creates (destroys) an electron in orbital k in the molecule. The tunneling

constant tαl depends on the tunneling barrier in the contact region between lead α and

the molecule. In principle it depends on the energy εαl of the tunneling electron, but we

disregard that in the following calculation.

In the weak-coupling regime, the tunneling Hamiltonian (10) is treated perturbatively

and the tunneling rates for transitions between states defined by two different parameter

vectors p′ and p are calculated by virtue of the Fermi golden rule. The final shape of the

transition rate for going from state p to state p′ becomes

Γα+p′,p =
2π

~
Γαf

(
E(p′, k′i, NQ′)− E(p, ki , NQ)− µα

)
×∣∣∣〈p′; k′1, k′2, . . . , k′NQ′ |c

†
k(p)|p; k1, k2, . . . , kNQ

〉
∣∣∣2 (11)

for tunneling onto the molecule, and

Γα−p′,p =
2π

~
Γα

[
1− f

(
E(p, ki , NQ)− E(p′, k′i, NQ′)− µα

)]
×∣∣∣〈p′; k′1, k′2, . . . , k′NQ′ |ck(p)|p; k1, k2, . . . , kNQ

〉
∣∣∣2 (12)
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for tunneling off the molecule. Here Γα =
∑

l |tαl|2 describes the tunneling rate through

junction α, f(ε − µα) is the Fermi-Dirac distribution function for energy ε in lead α. The

charging (discharging) tunneling rate corresponds to the charge change Q′−Q = ∓e (where

e > 0) on the molecule or, in other words, to NQ′ − NQ ± 1, the change in the electron

occupation of the molecule. Our SDFT calculations have shown also that
〈
SNQ′

〉
−
〈
S
NQ

〉
=

±1/2 for charging and discharging the molecule, respectively.

We note here that the parameter vector reduces in practice to p = (Q,M, θ, φ) for

E,B = 0. Since the last three arguments of p describe essentially the expectation values for

the molecule spin, 〈S〉 and 〈Sz〉, it is possible to express p as p = (Q,S,M), where S and M

are akin to the usual spin quantum numbers. In this way, states p label directly the total-

energy levels within the multiplets of Fig. 2 in Section III and can be put in a one-to-one

correspondence (within each multiplet) to the |S,M〉 eigenstates of the phenomenological

giant-spin model:

HSQ
=
∑
i,n

DSQ,i,n

(
SzQ,i

)n
, (13)

which is given in terms of spin variables SQ,i for each spin multiplet i of charge state Q;

DSQ,i,n are anisotropy constants extracted from the SDFT spectra of Fig. 2. This identifica-

tion facilitates a comparison between the SDFT- and giant-spin-model-based conductance

calculations. The energies for the spin model are thus given by Eq. (13). In order to deter-

mine the transition overlaps between different |S,M〉 states, we observe that adding (taking

away) an electron to the molecule with the total spin S is equivalent to adding the spin

angular momentum of the added (subtracted) electron s (s = 1/2) to the spin momentum

S of the molecule before the electron addition (subtraction) [28]. The addition of angular

momenta yields 〈S ′,M ′|S,M〉 overlaps in terms of a product of the Clebsch-Gordan coeffi-

cients and a factor which depends on the t tunneling coefficient in Eq. (10). In the numerical

calculations, we choose this factor arbitrarily in such a way so that the largest overlap for

the SM has the same order of magnitude as that from the SDFT calculations; in practice,

this t-dependent factor has a dimensionless value of 20.

By using the rates given by Eqs. (11) and (12), we find the electric current through the
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tunneling barrier between the molecule and lead α:

Iα = −e
∑
pp′

Pp

(
Γα+p′p − Γα−p′p

)
=

= −e
∑

M,i;M ′,i′

PQ=0,S=10,M,i

(
Γα+Q−e,S′=S+1/2,M ′,i′;Q,S,M,i − Γα−Q+e,S′=S−1/2,M ′,i′;Q,S,M,i

)
, (14)

where we made use of the fact that S = 10 for the neutral molecule (Q = 0), and Pp

(or, more specifically, PQ,S,M,i) is the probability that the molecule is in the state given by

p ≡ (Q,S,M, i). The probabilities Pp are the numerical solution to the system of master

equations in the steady-state condition:

dP̂

dt
= ÂP̂ = 0, (15)

with the probability normalization condition
∑

p Pp. Here P̂ is a vector whose components

are the individual-state probabilities Pp. The matrix Â contains all possible transition rates

given in Eqs. (11) and (12).

On top of the microscopic energy levels of the molecule, the transport in our SET is

governed by the usual, transistor-like, electrostatics [29, 30], as shown in Fig. 4. CL, CR and

Cg represent the capacitances that describe the left and the right junction, and the coupling

to the gate electrode, respectively. The electrostatic modification of the energy spectrum

of Mn12 appears via the gate voltage Vg together with the gate capacitance Cg. Across the

double junction, a bias voltage Vb is applied which shifts the Fermi levels of the left and right

electrodes, as sketched in Fig. 5, according to µL−µR = (EF +eVb/2)− (EF−eVb/2) = eVb.

The work function, which determines how far from the vacuum level the equilibrium (i.e.,

for Vb = 0) chemical potentials of the two leads (EF) are, makes the neutral-charge state

favorable when the gate and bias voltages are zero (see Fig. 5).

B. Singularity of the rates matrix

Before we proceed to a presentation and analysis of the numerical results of the previous

section, it is important to mention a certain numerical difficulty one encounters while carry-

ing out master-equation based SET calculations with our molecule as the central electrode.

Not only is the energy spectrum of the Mn12 molecule discrete and rich, as we see in Fig. 2,

but its energy levels that belong to different charge states of the molecule are also relatively

16



FIG. 4: Studied SET with the Mn12 molecule as a central electrode in a typical transistor-like

dc-circuit.

weakly interconnected (Fig. 3). As a matter of fact, most of the levels are not connected at

all, at least if we are to treat the zeros of the SDFT calculation for the transition overlaps

as exact zeros. The vanishing of the transition overlaps for a majority of energy levels leads

to a singularity of matrix Â in Eq. (15). This singularity must be somehow removed.

One way of circumventing this obvious problem is to couple the levels within a given spin

multiplet by the use of a certain “phonon bath”. This phonon bath makes the excited states

within a given spin multiplet relax to the multiplet’s GS, and that relaxation depends on the

bath temperature Tbath. This method proves to be efficient inasmuch as it removes the trou-

blesome singularity. However, there is one important drawback in letting the excited states

relax: it complicates and changes the physical situation of the whole transport system. In

particular, the transition overlaps given by the SDFT are effectively and severely modified

now, as the excited states become largely depopulated due to the “phonon”-assisted relax-

ation. The transport becomes now dominated by the transitions between the GSs of the

spin multiplets belonging to different charge states. Clearly, another approach is in place.

Another way of solving the problem of the singularity of the rates matrix Â boils down

to a realization that the zeros in the SDFT overlaps are not exact zeros; they are instead –

as any result of any numerical simulation is – given with a finite uncertainty. Reasoning like

this, we replace by hand the zeros in the transition-overlap matrices with a small parameter

a. We find that Â is not singular for a > 10−14. Then we study the change in the value
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FIG. 5: Energy cartoon of the studied SET with the Mn12 molecule as a central electrode. The

chemical potential of lead L (R) is shifted upwards (downwards) due to the bias voltage Vb. The

work function WF determines the distance from the equilibrium chemical potential EF to the

vacuum level; we assume the value for gold (≈ 5 eV). The chemical potential of the molecule is

plotted for the GSs of the three charge states (Q = −1, 0, 1 in units of e). The values of the

chemical potential for the neutral molecule, µQ=0, and for the anion µQ=−e, lie in the energy

window between µL and µR for the bias voltages given in the figure, which means that these two

charge states participate in transport (the curvy arrows). Whenever the chemical potentials of

the external leads cross the chemical potential for the charged states of the molecule, transport

channels open.

of the current when a is varied, and find that the current does not change more than by a

5× 10−6 fraction of its value for the range 10−13 < a < 10−8, which means that the current

is quite stable with respect to the changes in a. We then choose a = 10−10 and carry out the

Coulomb-blockade transport calculation as described in the A part of the present section.

Obviously, this new method of dealing with the singularity of Â is not free of drawbacks.

In particular, one has to point out that now each level of a given spin multiplet of a given

charge is coupled to each level of any other spin multiplet of a different charge, even though

this extra coupling is very small. Adding a to the overlaps opens a multitude of additional
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transport channels that otherwise would have stayed closed. However, adding a will not

change the value of the current substantially, so the influence on the I(Vb) curves is irrelevant.

One could see the procedure of introducing a as some kind of a low-temperature fluctuation

that joins all the energy levels and makes them relax one to another. After all, this is what

temperature does in the real-life experiments on SETs.

C. Results and discussion

The numerical calculations are done at zero temperature. The molecule couples to the

two leads with equal strength (symmetric double junction); the gate capacitance is equal to

1/20 of the total capacitance of the system. The zero matrix elements of both SDFT and

SM overlaps are replaced with a = 10−10. We plot the current-voltage characteristic of our

Mn12 SET for two values of the gate voltage: Vg = −20 and 10 V. In order to see exactly

how the orbital degrees of freedom reveal themselves in the SDFT-based calculation, we plot

I(Vb) characteristics for both the uniaxial giant-spin model (SM) of Eq. (13) and the SDFT

approach in Fig. 6. The blue (red) color corresponds to the negative (positive) value of the

gate voltage. We note that the blue I(Vb) curve (Vg = −20 V) starts off much more rapidly

for SM (dashed line) than for SDFT (solid line).

In order to understand why this happens, it is instructive to take a look at the transition

overlaps (Fig. 3(a)) between the neutral and anionic GS spin multiplets, both for SM and

SDFT. We see from Fig. 3(a) (the two plots on the top) that the two overlaps differ sub-

stantially. The SM overlap connects well the GS levels (largest |M | and |M ′|) of the neutral

and anionic GS spin multiplets, while the SDFT overlap does not. This lack of connection

between the GS levels for SDFT leads to a current suppression at the onset of transport

(solid blue line in Fig. 6). The negligibility of this connection is also responsible for the drop

in current visible in the solid red I(Vb) curve (Vg = 10 V). When this drop takes place, the

anion-to-neutral transport channel opens, the GS multiplet of the anion becomes occupied,

but since it is only weakly connected to the neutral GS multiplet, the system gets trapped

in the GS anion multiplet, and that leads to the noted drop in current or, in other words,

to a NDC dip (see also the two-dimensional conductance plot and other transport results in

our earlier work [19]). From this difference between a purely-spin SM and the SDFT-based

calculation that includes the spatial degrees of freedom, we draw a conclusion that the spa-
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tial selection rules can and do, indeed, override the spin selection rules and affect transport

dramatically, leading to current suppression and NDC.

FIG. 6: (color online) Theoretical current-voltage characteristic for the Mn12 SET. The solid

(dashed) lines correspond to the calculation done within the SDFT (SM) approach. The blue (red)

line represents the I(Vb) curve for Vg = −20 V (Vg = 10 V). The double junction is symmetric,

and the gate capacitance is 1/20 of the total capacitance; the temperature is zero.

IV. SUMMARY

In conclusion, we presented a more detailed description of our SDFT method of calcu-

lating the many-body properties of the Mn12-ac molecule and discussed the results of this

method more extensively than in our previous work [19]. In particular, we present the full

many-body energy spectrum of the molecule and attribute its asymmetry with respect to

the M spin quantum number to the imperfection of the uniaxial symmetry of the molecule,

which is manifested by the presence of transverse anisotropy terms. We explained in detail,

by using a toy-model example, why the anisotropy becomes enhanced when the HOMO and

LUMO levels mixed by the spin-orbit coupling are quasi-degenerate. The charging energy of

the molecule was estimated, and the estimate was judged consistent with SET experiments

on other molecules.
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We also compared the current-voltage characteristics for the SDFT-based approach and

the giant-spin model. A current suppression and NDC is observed for the former one,

while the latter one does not exhibit these features. We attribute these features to the

suppression of the SDFT transition rates between the GS spin multiplets of different charge.

This transistion-rate suppression is a result of including orbital degrees of freedom in the

SDFT calculation. Since the linear master-equation system in our simulation is singular due

to the sparseness of the transition rates (both in SDFT and SM), we proposed a way of

solving this numerical issue.

The Mn12 molecule, though in many respects outstanding as an SMM, reacts strongly

with the environment (e.g., when attached to a metallic electrode), which makes transport

measurements very difficult and hard to reproduce [7, 8]. However, there exist more robust

SMMs that do not loose their magnetic properties when attached to surfaces. Transport ex-

periments on these SMMs [31, 32] are more easily reproducible. Thus one possible extension

of our work would be to do an SDFT calculation for these smaller molecular magnets and

then compare it to the appropriate spin models. The coupling of the SMM to the external

leads can be modeled more realistically by including explicitly the magnetic and electric

fields in the SDFT approach. Another possibility for future research stems from the fact

that higher-order tunneling processes contribute to the transport in some of these smaller

and robust SMMs [32]. Consequently, extending the master-equation technique beyond the

sequential-tunneling limit, in particular by taking into account cotunneling processes, seems

to be a natural road to follow.
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ABSTRACT

We have investigated spin accumulation in Ni/Au/Ni single-electron transistors assembled by atomic force microscopy. The fabrication technique
is unique in that unconventional hybrid devices can be realized with unprecedented control, including real-time tunable tunnel resistances. A
grid of Au disks, 30 nm in diameter and 30 nm thick, is prepared on a SiO 2 surface by conventional e-beam writing. Subsequently, 30 nm thick
ferromagnetic Ni source, drain, and side-gate electrodes are formed in similar process steps. The width and length of the source and drain
electrodes were different to exhibit different coercive switching fields. Tunnel barriers of NiO are realized by sequential Ar and O 2 plasma
treatment. By use of an atomic force microscope with specially designed software, a single nonmagnetic Au nanodisk is positioned into the
25 nm gap between the source and drain electrodes. The resistance of the device is monitored in real time while the Au disk is manipulated
step-by-step with angstrom-level precision. Transport measurements in magnetic field at 1.7 K reveal no clear spin accumulation in the device,
which can be attributed to fast spin relaxation in the Au disk. From numerical simulations using the rate-equation approach of orthodox
Coulomb blockade theory, we can put an upper bound of a few nanoseconds on the spin-relaxation time for electrons in the Au disk. To
confirm the magnetic switching characteristics and spin injection efficiency of the Ni electrodes, we fabricated a test structure consisting of
a Ni/NiO/Ni magnetic tunnel junction with asymmetric dimensions of the electrodes similar to those of the single-electron transistors.
Magnetoresistance measurements on the test device exhibited clear signs of magnetic reversal and a maximum tunneling magnetoresistance
of 10%, from which we deduced a spin polarization of about 22% in the Ni electrodes.

Electron tunneling through ferromagnetic junctions is of
current interest due to expected applications in magnetic
random access memories (MRAM), in read/write heads in
hard disks, and in other spintronic devices.1 Most of the
experimental and theoretical work published up to now
focuses on tunnel magnetoresistance (TMR) behavior in
simple planar junctions. In this context, TMR implies an
increase in the junction resistance when the magnetic
moments of the two leads change from parallel to antiparallel
alignment. More recently, spin-dependent tunneling in more
complex systems, e.g., ferromagnetic single-electron transis-
tors (F-SETs), has become an attractive topic for both
experimental and theoretical studies.2 In these devices, novel
phenomena are expected to occur due to the interplay
between charging effects and spin-dependent transport.
Indeed, several experiments on F-SETs, starting with the
seminal work by Ono et al.,3,4 have demonstrated enhanced

TMR,3,5 and magneto-Coulomb oscillations of the TMR4,6

as a function of external magnetic field and bias voltage.
On the other hand theoretical work,7-13 besides clarifying
some of these earlier experimental observations, predicts that
spin accumulation on the central island of an F-SET should
manifest itself in a variety of effects showing up in the
magnetoresistance properties. Spin accumulation, together
with spin injection, is a key concept in spintronics, and refers
to a nonequilibrium spin population created in confined
structures by external magnetic fields or spin-polarized
currents. So far experimental verification of spin accumula-
tion in F-SETs has been elusive. Only very recently two
experiments14,15 have shown indirect evidence of its occur-
rence, albeit the interpretation of one of them14 has been
controversial.16

In the following, we use the notation F/F/F and F/N/F for
SETs with ferromagnetic leads and a ferromagnetic central
island or nonmagnetic island, respectively. One fundamental
difference between F/F/F and F/N/F SETs is the connection
between spin accumulation and TMR. For F/F/F SETs, a
nonzero TMR can exist even in the case of vanishing spin
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accumulation on the central island.7 In this case, discrete
charging effects lead to TMR oscillations as a function of
the bias voltage.7 In contrast, for F/N/F SETs a net spin
accumulation on the central island is necessary to observe a
nonzero TMR at all. In this case the intrinsic spin-relaxation
time on the central island is sufficiently long compared to
the time interval between two successive tunneling events,
so that a spin-polarized current generates a finite magnetic
moment. The landmark of the occurrence of spin accumula-
tion in both devices is a periodic sign change of the TMR
as a function of the bias voltage, with dips directly related
to the Fermi level splitting for electrons with different
spin.9,11-13 Such features were indeed observed in the
experiment by Yakushiji et al.15 on F-SETs with one
magnetic lead and a central island consisting of a Co
nanoparticle.

One important conclusion from ref 15 is that the crucial
parameter that controls spin accumulation, namely the spin-
relaxation time,τRE, is apparently strongly enhanced in
nanoparticles over bulk structures. For instance,τRE in Co
nanoparticles is enhanced up to hundreds of nanoseconds in
comparison with tens of picoseconds in ferromagnetic layers.
Among the possible reasons for such longτRE is the
suppression of the spin-orbit mediated spin-flip scattering
caused by the discreteness of the nanoparticle energy levels
or by the properties of the matrix in which the nanoparticle
is embedded.17,18 It is fair to say, however, that spin-
relaxation mechanisms in metal nanoparticles are at present
not well understood.

In this paper, we demonstrate a novel type of SET design
suitable for studying spin accumulation in well-controlled,
strongly confined nanoparticles. The nanoparticle is in our
case attached to a SiO2 surface and not embedded in a
disturbing matrix. We have chosen to study nanoscaled Au
disks since no conclusive reports on the dependence of
confinement on the spin-relaxation mechanism have been
reported. In addition, Au is inherently interesting due to its
very strong spin-orbit interaction.

In the present work, F/N/F SETs are fabricated on top of
a 100 nm thick SiO2 layer grown on a Si substrate (shown
in Figure 1A). A grid of Au disks, 30 nm in diameter and
30 nm thick, is prepared by conventional electron-beam
lithography followed by thermal evaporation and subsequent
lift-off. Ferromagnetic Ni source and drain electrodes, 30
nm thick, 220 and 80 nm wide, 300 nm and 1.5µm long,
respectively, are formed in subsequent similar process steps
together with a 30 nm thick Ni side-gate. Tunnel barriers of
NiO are fabricated by sequential Ar plasma etching at a
pressure of about 1.0× 10-4 mbar for 5 min and O2 plasma
etching at a pressure of about 1.0× 10-1 mbar for 3 min.

The width (80 nm) of the drain electrode is comparable
to the size of single Ni domains,19,20 while the source
electrode is considerably wider (220 nm) and shorter (300
nm). Because of this shape anisotropy, the two electrodes
will undergo magnetic reversal at different magnetic fields,
confirmed by performing micromagnetic simulations using
the OOMMF code21 which give the coercivity field of 40
and 90 mT for the source and drain electrodes, respectively.

By sweeping the magnetic field, it should thus be possible
to switch from parallel to antiparallel alignment of the
magnetic moments in the two electrodes. The magnetic
switching behavior and spin-injection efficiency of the
electrodes is investigated in a test structure shown in the
inset of Figure 1B. The test structure consists of a Ni/NiO/
Ni magnetic tunnel junction with overlapping Ni electrodes
of the same dimensions as those used for the SET. The
junction was fabricated by first forming a Ni electrode using
conventional methods. Following this, a sequence of plasma
treatment steps forms the NiO tunnel barrier on top of the
electrode. Subsequently, a second Ni top electrode is defined
to overlap the bottom electrode with approximately 50 nm
using a high-precision alignment procedure. Magnetoresis-
tance measurements clearly show a maximum TMR signal
of about 10% while sweeping the magnetic field (Figure 1B).
This TMR signal provides strong support for that we can
control the relative orientation of the magnetization of the
two leads and, additionally, that the electrodes are efficient
injectors of spin polarized current. Using Julliere’s model,22

TMR ) (RAP - RP)/RP ) 2P2/(1 - P2), whereRP andRAP

are the resistances in parallel and antiparallel magnetic
configurations, respectively, andP is the spin-polarization,
we deduce a spin polarization of 22% in the Ni electrodes.
This value is in good agreement with the tunneling spin
polarization measured by Tedrow and Meservey in planar
tunnel junction experiments.23 It is noted that the magnetic
switching occurs for slightly lower fields than expected from
the OOMMF simulations, a discrepancy probably due to
exchange bias introduced by the antiferromagnetic NiO.

After the real sample is mounted and bonded on a standard
chip carrier, a Au nanodisk is positioned step-by-step with

Figure 1. (A) Atomic force micrograph of the ferromagnetic SET
studied in the present work. The device is fabricated on top of a
100 nm thick SiO2 layer. (B) Switching behavior of a tunnel junction
between two Ni electrodes separated by NiO as a function of
magnetic field at 1.7 K. The inset shows a scanning electron
micrograph of the device. (C) Schematic circuit diagram of the SET.
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angstrom precision into the 25 nm gap between the drain
and source electrodes using the atomic force microscopy
(AFM) manipulation technique described in ref 24. The
resistance of the device is monitored in real time, while the
Au disk is manipulated, and the desired resistance (1 MΩ
to 1 GΩ) for a good device can normally be obtained after
merely a few attempts. For a given device, it is possible to
tune the tunnel resistance by repositioning the Au disk. A
fairly high fabrication yield of typically 10% is obtained.
The present devices differ significantly from previously
reported AFM-assembled devices in that the electrodes are
ferromagnetic with plasma-processed NiO tunnel barriers and
that only a single disk is used to bridge the gap between the
source and drain electrodes. These substantial developments
have resulted in well-controlled ferromagnetic SETs with
long-term stability and a decreased fabrication complexity.25

After the fabrication is completed, extensive conductance
measurements are performed at 4.2 K in a liquid helium
Dewar (schematic circuit diagram is shown in Figure 1C).
Following these measurements, the sample is transferred to
a cryostat housing a 6 Tsuperconducting magnet where the
magnetoresistance measurements were carried out at 1.7 K.
The magnetic field is in the plane of the device with a tunable
orientation with respect to the orientation of the electrodes.

Figure 2 shows a color-coded plot of the differential
conductance dI/dV as a function of drain-source voltageVd

and gate voltageVg. The dark areas correspond to Coulomb
blockade regimes. The gate capacitanceCG is determined
from the spacing between neighboring degeneracy points at
Vd ) 0 where dI/dV is nonzero, resulting inCG ) e/
(200 mV) ) 0.80 aF. The asymmetry observed in the
Coulomb diamonds with respect toVG ) 0 reflects the
presence of a nonzero background charge. The drain-source
threshold voltage required for tunneling of one electron
through the device is given byVth ) e/C∑ and amounts to
about 2.5 meV. From this we estimate a total capacitance
C∑ ) CS + CD + CG of 64 aF, and a corresponding charging
energyEC ) e2/2C∑ of 1.25 meV. From the absence of any

Coulomb staircase in theI-V characteristics, it is evident
that the rates with which electrons tunnel through the source
and drain junctions are similar; henceΓS ) ΓD. The tunnel
junctions can be regarded as plate capacitors withC ) εrε0A/
r, whereA is the area andr is the thickness of the tunnel
barrier. Assuming similar capacitances for the source and
drainC ) CD ) CS ) 31.6 aF,εNiO ) 10.31, andr ) 1 nm
(estimated), we obtain an effective tunnel junction area of
346 nm2 corresponding to 30 nm (height)× 11.5 nm (width).

Figure 3 shows a color-coded plot of dI/dV as a function
of the drain-source voltageVd and magnetic fieldB at VG

) 0. The in-plane magnetic field, swept from-0.4 to 0.4 T,
was applied parallel to the source-drain electrodes. Evi-
dently, no clear signs of TMR were observed when sweeping
the magnetic field. In fact, an almost constant value of dI/
dV was observed at the Coulomb blockade threshold voltage
(white narrow strip), indicating the absence of spin ac-
cumulation. The same results were obtained when applying
the magnetic field perpendicular to the source-drain elec-
trodes. We have carried out magnetotransport measurements
on four samples, and none of them gave any clear TMR
signal. Clearly, some obvious causes for the lack of TMR,
such as a poor quality of the magnetic tunneling junctions
and poor spin injection efficiency of the Ni leads, can be
ruled out from the observed 10% TMR of the test structure
discussed above. To estimate the noise level of our device,
we have calculated TMR values defined as TMR) (IB1 -
IB2)/IB2 as a function of the bias voltage. HereB1 was chosen
to be-0.200 T in order to facilitate parallel magnetization
of the electrodes, while different values ofB2 were selected
in the interval-50 to 50 mT since the relative magnetization
is expected to reverse in this region (see Figure 1B). The
data look similar for differentB2 values, and we plot a typical
TMR curve forB2 ) 0 T in Figure 4.

An estimate of the expected magnetoresistance ratio at
large bias is given by the well-known expression TMR)
2(τRE|P1P2|/e2Fν(RS + RD)), whereF is the density of states
in the Au disk,ν is the disks’ volume, andP1 andP2 denote
the conduction electron spin polarization of the source and
drain electrodes, respectively.11 In our case the spin polariza-

Figure 2. Color-coded plot of the differential conductance dI/dV
as a function of drain-source voltageVd and gate voltageVg

obtained at 4.2 K. The dark areas correspond to Coulomb blockade
regions.

Figure 3. Color-coded plot of dI/dV obtained at 1.7 K as a function
of the drain-source voltageVd and magnetic fieldB at Vg ) 0.
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tion of the Ni electrodes is 22%. The denominatore2Fν(RS

+ RD) can be identified as an effective dwell timeτdwell. The
spin-relaxation timeτRE, which is the most crucial parameter
of the TMR effect, depends on the island material and can
also be considerably affected by the small size of the
nanoparticle. In order to get a more accurate quantitative
measure of the expected TMR, and its dependence on the
bias voltage, we have performed detailed numerical simula-
tions using the rate-equation approach of orthodox Coulomb
blockade theory. In dealing with F-SETs with noncollinear
configurations, it is often necessary to use a more sophisti-
cated theoretical treatment in the spin transport.26-29 In our
device only the external electrodes are magnetic, and most
likely their magnetization is parallel or antiparallel to the
external magnetic field. Even in the case in which a certain
degree of noncollinearity is present in the device, we believe
that its effect is much more subtle than what we are after. It
is plausible that a noncollinear configuration can to some
extent modulate the TMR as a function of external field,
but it will not completely suppress spin accumulation. In
the following we thus consider only collinear configurations.

The parameters of the model, namely, tunnel resistances
and capacitances, are adjusted to give the best fit of the
experimental tunnel current and threshold voltage of the
Coulomb blockade region. The capacitances are taken to be
CS ) 24 aF,CD ) 20 aF, andCG ) 0.8 aF. The tunnel
resistances are bothRS ) RD ) 0.34 MΩ. We have also
introduced an offset chargeQ0 ) -0.25e to correctly
reproduce the asymmetry of theI-V curve around zero gate
bias. In Figure 4 we plot the theoretically predicted TMR at
T ) 1.7 K as a function of the bias voltage for a few values
of the dimensionless relaxation timeR ) τRE/τdwell, which
enters the self-consistent equation for the splitting of the
Fermi energy and thus controls the spin accumulation on
the Au disk. Comparing the experimental and theoretical
TMR in Figure 4, it is difficult to say if there is indeed any
genuine TMR. The apparent sign change of the noisy
experimental TMR at low biases is not reproduced in the
simulations at this temperature and for this choice of SET
parameters. In fact, from our calculations it is evident that

devices with symmetrical tunnel junctions in general exhibit
changes in the sign of TMR only at very low temperatures.
In Figure 5 we show the calculated TMR at 0.1 K, which is
the highest temperature for which negative dips in the TMR
are observed outside the Coulomb blockade region. From
Figure 4, we furthermore note the presence of an experi-
mental TMR value of about 1-2% at larger bias. This signal
could obviously be interpreted as a genuine TMR signal,
but it could also simply reflect a spurious charging effect.
The discrepancy between the experimental results and
numerical simulations hence makes the interpretation of the
data in terms of TMR uncertain, leading us to settle with a
determination of an upper bound for the spin relaxation time.
We note that forR ≈ 0.2 the value of the theoretical TMR
is of the order of 2%, which is approximately equal to the
experimental TMR at large bias. With the choice of the
tunnel resistances made above and using bulk density of
states for Au, we estimateτdwell ≈ 20 ns. UsingR ) 0.2, we
obtain an upper bound forτRE of 4 ns in an Au island with
dimensions of a few tens of nanometers, which is several
order of magnitudes larger than the spin-relaxation time
previously reported in thin Au films.30 Given the uncertainty
in the interpretation of our TMR signal, we emphasize that
this estimate is only an upper bound forτRE. Nevertheless
this conclusion is still significant and complementary to other
recent magnetotransport measurements on F-SETs with
smaller Au nanoparticles, which report aτRE of the order of
1 ns.29,31 It should also be noted that our deduced spin-
relaxation time is much larger than the spin-orbit scattering
time τSO estimated in Au nanoparticles of comparable size
by investigating the individualg-factors of the noninteracting
electron states.32 The timeτSO represents merely an average
strength of the spin-orbit interaction and does not correspond
to any real relaxation process. The difference between these
two times clearly shows that the strong spin-orbit interac-
tion, certainly present in noble metals33,34 and responsible
for a very shortτSO in nanoparticles, is only one variable
controlling τRE. The other crucial element leading to spin
relaxation is the coupling of the electron spin to other degrees
of freedom of the nanoparticle and the surrounding substrate,
such as phonons and magnons. The microscopic mechanisms

Figure 4. TMR as a function of the drain-source bias atT )
1.7 K. The solid curve is the experimentally obtained TMR signal.
The other curves are theoretical TMR signals calculated within the
orthodox theory for several values of the dimensionless spin
relaxation timeR.

Figure 5. TMR as a function of the drain-source bias. A
temperature of 0.1 K was chosen in the simulations. The solid curve
is the experimentally obtained TMR signal, recorded at 1.7 K,
adopted from Figure 4.
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of this coupling, and their dependence on the nanoparticle
size, are important problems in spintronics which need to
be unraveled by further theoretical and experimental studies.

In conclusion, we have studied spin accumulation in a Au
nanodisk by performing magnetotransport measurements on
a novel type of SET design assembled with an AFM.
Ferromagnetic Ni source and drain electrodes are realized
using conventional e-beam writing. In the same process we
also produce the Ni side-gate electrode. Different widths and
lengths of the source and drain electrodes facilitate magnetic
reversal of the two electrodes at different magnetic fields.
Tunnel barriers of NiO are realized by sequential Ar and O2

plasma treatment. Using an AFM with specially designed
software, a single nonmagnetic Au nanodisk is positioned
into the 25 nm gap between the drain and source electrodes.
From measurements of spin-polarized transport via the Au
nanodisk, we conclude that no clear signatures of TMR are
seen, indicating that spin accumulation in the Au island is
not occurring due to fast spin relaxation in the Au island.
From comparison with results of theoretical modeling we
deduce an upper bound of 4 ns for the spin-relaxation time
in an Au island with dimensions of a few tens of nanometers.
To investigate the switching characteristics and spin-injection
efficiency of the Ni electrodes, reference Ni/NiO/Ni tunnel
junctions with dimensions of the electrodes similar to those
employed in the SETs were fabricated. A maximum 10%
TMR was observed from which we deduce a conduction
electron spin-polarization of about 22% in the Ni electrodes
in good agreement with theory.
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The authors report on magnetotransport investigations of nanoscaled ferromagnetic Co/Ni/Co
single electron transistors. As a result of reduced size, the devices exhibit single electron transistor
characteristics at 4.2 K. Magnetotransport measurements carried out at 1.8 K reveal tunneling
magnetoresistance �TMR� traces with negative coercive fields, which the authors interpret in terms
of a switching mechanism driven by the shape anisotropy of the central wirelike Ni island. A large
TMR of about 18% is observed within a finite source-drain bias regime. The TMR decreases rapidly
with increasing bias, which the authors tentatively attribute to excitation of magnons in the central
island. © 2007 American Institute of Physics. �DOI: 10.1063/1.2714289�

The tunneling magnetoresistance �TMR� observed in
spintronic devices is usually defined as TMR= �RAP

−RP� /RP, where RA and RAP are the device resistances in the
parallel and antiparallel magnetization configurations, re-
spectively. TMR has been extensively investigated both ex-
perimentally and theoretically because of promising applica-
tions, e.g., magnetic random access memories and read/write
heads in hard disks as well as in various other spintronic
devices.1 More recently, a lot of research has focused on the
dependence of TMR on the interplay between spin-
dependent tunneling and the Coulomb blockade effect2 in
ferromagnetic single electron transistors �F-SETs�.3 Theoret-
ical investigations of F-SETs predict exciting magnetoresis-
tance properties connected to spin accumulation on the cen-
tral island.4–10 Indeed, several experiments on F-SETs,
starting with the seminal work by Ono et al., have demon-
strated enhanced TMR and magneto-Coulomb oscillations of
the TMR as a function of external magnetic field and bias
voltage.11,12 However, due to the relatively large size of their
devices, a sample temperature in the range of tens of mil-
liKelvins was required in order to observe any significant
TMR signals. For future spintronic applications, it is obvi-
ously important to realize F-SETs with a considerably higher
operating temperature.

In this letter, we present magnetotransport investigations
of nanoscaled Co/Ni/Co F-SETs exhibiting single electron
transistor characteristics at 4.2 K. The fabrication yield of
the device is about 50%. The devices are fabricated on top of
a 100 nm thick SiO2 layer, thermally grown on a Si substrate
�shown in Fig. 1�. The wirelike Ni islands measure 150 nm
in length, 20 nm in width, and 25 nm in thickness. The is-
lands are prepared together with Ni side gates in one step
employing electron-beam lithography, followed by thermal
evaporation and lift-off. Tunnel barriers of NiO are subse-
quently formed by O2 plasma etching at a pressure of about
5 mbars for 1 min. Ferromagnetic Co source and drain elec-

trodes, 40 nm thick, are defined on top of the Ni islands
using a high-precision alignment procedure during a second
electron-beam lithography step. The area of the tunnel junc-
tions amounts to only about 40�20 nm2. The source elec-
trode has a length of 1.5 �m and a width of 80 nm. The
corresponding dimensions of the drain electrode are 800 and
280 nm, respectively. The separation between the parallel
drain and source electrodes is approximately 55 nm. Because
of shape anisotropy, the two electrodes are expected to un-
dergo magnetic reversal at different magnetic fields.13 After
the fabrication, conductance measurements are carried out at
4.2 K in a liquid helium Dewar. The schematic circuit dia-
gram is shown in Fig. 1�c�. Following these measurements,
the sample is transferred to a cryostat housing a 6 T super-
conducting magnet, where magnetoresistance measurements
are carried out at 1.8 K. The magnetic field is in the plane of
the device with a tunable orientation with respect to the ori-
entation of the electrodes.

Figure 2 shows a typical nonlinear current-voltage �I-V�
curve for the device at 4.2 K. From the absence of a Cou-
lomb staircase in the I-V curve, we conclude that the device
has two symmetric tunneling junctions with the same elec-
tron tunneling rates. The modulation of the current with gate

a�Author to whom correspondence should be addressed. Electronic mail:
hakan.pettersson@ide.hh.se

FIG. 1. �a� Top-view SEM image of the device geometry. �b� Expanded
view of an isolated F-SET marked by a white short-dashed rectangle in �a�.
The Ni island has dimensions of 150 nm �length��20 nm �width�
�25 nm �thickness�. �c� Circuit diagram of the connected device.
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bias is shown in the inset at 4.2 and 1.8 K, respectively, at a
drain-source bias of 0.4 mV. Here each peak corresponds to
addition of one electron to the island. The gate modulation of
the current was visible up to a drain-source threshold voltage
of about 2 mV at 1.8 K, from which we deduce a charging
energy EC=e2 /2C� of about 1 meV.

Figure 3 shows the dependence of the resistance on the
magnetic field for two sweep directions. The measurements
were performed at 1.8 K with an in-plane magnetic field ap-
plied parallel to the long axis of the electrodes. From this
figure two obvious interesting results are readily observed:
Firstly, as the magnetic field is swept from −1.5 to 1.5 T, a
substantial TMR is observed with a largest magnitude reach-
ing �13% between −0.15 and 0.5 T. Secondly, the TMR
trace displays negative coercive fields for the two sweep di-
rections. The origin of this phenomenon can be attributed to
the special design of our device. Since the central Ni island
has a wirelike shape, a substantial shape anisotropy is ex-
pected, which favors a magnetic moment in the direction of
the island �wire�. This leads to noncollinear configurations
and switching mechanisms for certain values of the external
magnetic field. To explicitly clarify this point, we have per-
formed micromagnetic modeling of the magnetization con-
figurations of the device using the OOMMF code,14 in con-

junction with rate-equation simulations of the quantum
transport with noncollinear magnetization vectors of the ex-
ternal leads and the central island. The quantum transport
simulations, shown in Fig. 3, are an extension of the usual
sequential tunneling calculations for a collinear F-SET in the
spirit of Ref. 8. All the relevant magnetization configurations
of the device used in the transport calculations, and the val-
ues of the external magnetic field at which transitions be-
tween two configurations occur, are obtained from micro-
magnetic simulations. At large negative external magnetic
fields, the electrodes and the central Ni island �wire� are all
magnetized along the field and no TMR is observed. At
−0.1 T, the magnetic moment of the Ni island spontaneously
relaxes to its easy magnetization axis and thus becomes per-
pendicular to the magnetic moments of the Co electrodes,
resulting in a theoretical TMR of 8%. As the magnetic field
goes through zero and subsequently increases, the two Co
leads reverse their magnetization directions in a conventional
manner at 0.13 T �wide one� and 0.21 T �narrow one�, re-
spectively, together with a progressive flip of the magnetiza-
tion in the central Ni island. The theoretical value differs by
a factor of �2 from the experimentally observed TMR,
which is acceptable in consideration of complex magnetiza-
tion effects not included in our theoretical model. At 0.3 T,
the shape anisotropy of the Ni island is completely overcome
by the external field and all magnetic moments are aligned
parallel to the external field, resulting in minimum resis-
tance. The magnetization configurations and corresponding
resistance changes are expected to occur in an analogous
manner when decreasing the magnetic field from large posi-
tive values. From Fig. 3 it is evident that there is a shift of
the experimental TMR curves towards positive magnetic
field, especially for the reverse sweeping curve �red one�,
which could be due to an exchange bias caused by the anti-
ferromagnetic oxides on top of both the Ni island and the Co
electrodes.15

Figure 4�a� shows the current-voltage �I-V� characteris-
tics measured at T=1.8 K at B=0 T �black curve� and
B=−1.5 T �red curve�, respectively. In Fig. 4�b�, we plot the
TMR, normalized by its maximum, as a function of the
drain-source bias voltage �blue curve�. The TMR is derived
from the two I-V curves in �a� according to TMR= �I−1.5 T

− I0 T� / I0 T. Interestingly, the maximum TMR reaches 18%
within the Coulomb blockade regime and decreases rapidly
as the drain-source bias increases above EC. This abrupt de-
crease of TMR is not reproduced in our numerical simula-
tions in the sequential tunneling regime, even after taking
into account the decrease of spin asymmetry of the tunneling
electrons for energies larger than the Fermi energy �in the
simulations we assume that the spin polarization of both ex-
ternal electrodes and central island decays exponentially for
energies larger than their corresponding Fermi energy in
units of EC�, as shown by the purple curve of Fig. 4�b�. Such
a dependence is meant to account, in a simplified way, for
the bias dependence of the density of states �DOS�, which is
known to influence the TMR.16,17 Modeling microscopically
this effect is very difficult, particularly since the electrodes
are thermally grown, which leaves no control over the crystal
structure. Nevertheless, comparing our experimental results
to those of Ref. 17, we note that the bias dependence of the
TMR is much stronger in our case, and we therefore hesitate
to primarily attribute our results to a bias-dependent DOS.
The influence of the applied electric field �bias� on the tun-

FIG. 2. Nonlinear current-voltage �I-V� characteristics at 4.2 K recorded at
zero magnetic field with gate voltage Vg=0 V. Lower right inset: Gate
modulated current curves at 4.2 K �upper� and 1.8 K �lower�, respectively,
at an applied drain-source bias of 0.4 mV.

FIG. 3. �Color� Dependence of the resistance on the magnetic field at 1.8 K
with an applied drain-source bias of 1.5 mV. The solid and dotted curves are
experimental data and simulation results, respectively. The magnetic field
sweep directions are denoted with horizontal arrows in different colors. The
insets show schematic magnetization configurations of the device obtained
from micromagnetic modeling, sweeping the magnetic field from −1.5 to
+1.5 T.

123111-2 Liu et al. Appl. Phys. Lett. 90, 123111 �2007�

Downloaded 31 May 2010 to 130.235.187.60. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



neling barrier height does not explain the abrupt decrease
either.18,19 Cotunneling5 can also be ruled out since it would
result in rather a gentle decrease of the TMR with increasing
bias for the relatively large ratio kBT /EC�0.15 given in our
case. Higher order tunneling processes can furthermore be
excluded, since the tunneling resistances of the investigated
junctions ��1 M�� are much larger than the quantum resis-
tance ��26 k��.20

A more likely mechanism for the decrease in TMR with
increasing bias is the excitation of spin waves or magnons by
the spin-polarized tunneling current.21–23 In our devices,
electron spin injection orthogonal to the magnetization of the
island can exert a torque acting like a transverse magnetic
field which creates magnons. If many magnons are present,
the island magnetization can be considerably disrupted,
which results in a decrease of the magnetoresistance. The
excitation of magnons is an inelastic process, whose energy
is provided by the bias. The dispersion of low-energy spin
waves in a ferromagnet is given by ��q�=�+D�q�2, where D
is the spin-wave stiffness constant which is of the order of
500 meV in Ni.24 The energy gap � is proportional to the
magnetic anisotropy of the system, including shape aniso-
tropy, and amounts to a small fraction of 1 meV. The al-
lowed wave vectors in our small islands are discrete and can
be written as qn=2�n /L, n=0,1 ,2. . ., where L is the size of
the island. From this we estimate that some of the lowest
modes can, in principle, be present already at small biases
where the F-SET is in the Coulomb blockade regime. How-
ever, their excitation is not very efficient because the current
in the off state is small. In contrast, the current is finite in the
on state, and for larger biases short wavelength magnons can
be excited. A full microscopic implementation of this effect
in transport is beyond the purpose of the present letter. Here
we consider a phenomenological model in which the creation
of spin waves causes an exponential decrease of the spin

polarization of the island for biases above the Coulomb
blockade gap. The effect of such a dependence on the nor-
malized TMR is shown by the red curve in Fig. 4�b�, which
seems to capture the drastic decrease of TMR with increas-
ing bias. This scenario would also explain the persistence of
TMR for biases above the Coulomb blockade gap observed
in other F-SET experiments,25 where a smaller size of the
grains and considerably larger tunneling resistances make the
excitation of spin waves both more energetically costly and
less efficient.

In summary, we have fabricated Co/Ni/Co F-SETs ex-
hibiting single electron transistor characteristics at 4.2 K.
Magnetotransport measurements at 1.8 K reveal TMR traces
with negative coercive fields, which we interpret in terms of
a switching mechanism driven by shape anisotropy in the
central wirelike Ni island. A large TMR signal of a maximum
magnitude of 18% has been observed within a small drain-
source bias regime. The TMR decreases rapidly with increas-
ing bias, which we tentatively attribute to an excitation of
magnons in the central island.
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FIG. 4. �Color� �a� Current-voltage characteristics measured at 1.8 K at
B=0 T �black curve� and B=−1.5 T �red curve�, respectively. �b� The de-
pendence of TMR= �IB=−1.5 T− IB=0 T� / IB=0 T, normalized by its maximum
value, on drain-source voltage. The current values are taken from the two
I-V curves in �a�. The red, green, and purple solid curves are the results of
numerical simulations in which the spin polarization P�V� of the central
island is assumed to decay exponentially for biases larger than the Coulomb
blockade gap according to the expression P�V�= P0e��EC−eV�/�EC�. The three
curves correspond to �=1,5 ,� �no decay�, respectively.
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