Testing the temporal accuracy of keystroke logging using the sound card

Frid, Johan; Wengelin, Åsa; Johansson, Victoria; Johansson, Roger; Johansson, Mikael

Published in:
[Publication information missing]

2012

Link to publication

Citation for published version (APA):

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
BACKGROUND

• Writing research has seen an increased use of keystroke logging
• Keystroke logging programs log the writing process in a continuous and non-obtrusive way
• They enable researchers to collect fine-grained data because they log every keystroke in relation to a timestamp (in milliseconds), which indicates the time that a specific key was used.
• For the researcher interested in for example word-internal processing it’s important to know the degree of precision and accuracy that can be achieved by the program.

METHOD

• We propose a method of measuring the accuracy of keystroke timestamps using a recording of the sounds made by key presses.
 • Sound cards fit the purpose well since they typically have much better temporal resolution than computer keyboards and they are readily available in most computers
 • Key presses produce noise patterns that are easily temporally located in an acoustic waveform.
 • The timestamps of the noise patterns can then be compared with the corresponding timestamps reported by the keystroke logging program.
 • Specifically, the differences between the two timestamps of each keystroke, provides an estimate of the accuracy of the program.

EXPERIMENTS

• We tested the accuracy of different keystroke loggers, including the latest version of the keystroke logging program ScriptLog as well as two prototypes of a new ScriptLog version implemented in C++ and Java respectively.
• Due to the increased use of web-based written communication another keystroke logger was implemented in Javascript, and ran in a recent version of Firefox.
• Each test case consisted of 50 key presses of the ‘space’ bar, and was run on identical hardware and operating system.

RESULTS

<table>
<thead>
<tr>
<th></th>
<th>point-by-point</th>
<th>interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sd1</td>
<td>range1</td>
</tr>
<tr>
<td>ScriptLog</td>
<td>0.005</td>
<td>0.023</td>
</tr>
<tr>
<td>Javascript prototype (Firefox)</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>Java prototype</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>C++ prototype</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td>SoundCard</td>
<td>0.298-05</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

• We find significant differences between the variances of the prototypes and ScriptLog (example: for Java: F=0.287, p<0.001)
• This implies that a reimplemented version will provide improved timing accuracy
• This method can be implemented as part of any keystroke logging program in order for the user to test the accuracy in his/her own computer environment.

Johan Frét1, Åsa Wengelin2, Victoria Johansson1, Roger Johansson1, & Mikael Johansson1
1Lund University, Sweden
2University of Gothenburg, Sweden