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Abstract

Temporal correctness is crucial for the dependability
of real-time control systems. A problem with testing such
systems is the dependency on the execution orders of tasks.
Mutation-based testing criteria have been proposed to
determine which execution orders need to be exercised to
verify that real-time systems are timely. For flexible con-
trol systems, timeliness in itselfmay only be relevantfor a
sub-set of tasks, whereas maintained control performance
in the presence of worst-case jitter and disturbances
is essential. This paper presents an extension to the
co-simulator tool TrueTime, to support mutation-based
testing of control performance and timeliness. Further,
an approach for automatic generation of test cases using
genetic algorithms is presented. A conclusion is that
testing criteria for timeliness can be used to increase
confidence in the dependability offlexible control systems.

1. Introduction

Current real-time control systems must be both flexi-
ble and dependable. On the other hand, there is a desire
to increase the number of services that real-time systems
offer while using few, off-the-shelf hardware components.
This increases system complexity and introduces sources
of temporal non-determinism. Thus we need methods to
detect violation of timing constraints and poor control per-
formance using computer architectures where we cannot
to rely on accurate off-line assumptions.

Timeliness is the ability for software to meet timing
constraints. For example, a timing constraint can be that
it should never take more than 100 ms between an alarm
is activated until a robot arm enters a safe state. If system
timeliness is violated, a timeliness failure has occurred.

Response times of concurrent tasks depend on the or-
der in which the tasks execute. This is particularly evident
in event-triggered and dynamically scheduled systems be-
cause sporadic interrupts can continuously influence the
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execution order and schedule. Also, hardware caches af-
fect the execution times of tasks, causing response times
to become non-deterministic with respect to the inputs,
and thus, complicate verification and accurate estimations.

Timeliness of embedded real-time systems is tradition-
ally analyzed and maintained using scheduling analysis
or regulated online through admission control and contin-
gency schemes [19]. However, such techniques make as-
sumptions about the tasks execution behavior and request
patterns. Further, doing full scheduling analysis with non-
trivial system models is complicated. Thus, analysis must
be complemented with timeliness testing.

Many real-time systems have tasks that implement con-
trol applications. Such applications interact with physical
processes through sensors and actuators to achieve a con-
trol goal. For example, a painting robot may have a con-
trol application that periodically samples joint angles and
sets different motor torques so that the robot movement
becomes smooth and aligned with the painted object.
We use the concept flexible control system to denote a

real-time system that is event-triggered and dynamically
scheduled and has a mix of reactive hard and soft tasks.
The hard tasks must always meet their timing constraints,
whereas soft tasks are more tolerant to delay and irregu-
larities, and typically some deadlines of soft tasks can be
missed before the system fails.

Most control applications are based on feedback prin-
ciples, which means that they are inherently robust against
occasional timeliness failures. An occasional deadline
miss for a periodic controller task is not fatal for system
stability, but can rather be seen as a disturbance acting
on the control system. Hence, controllers can be imple-
mented with soft tasks. Soft tasks are also referred to as
adaptive tasks [5], in that missing single deadlines does
not jeopardize correct system behavior, but only leads to a
performance degradation. One example is EDF schedul-
ing during overload, which will effectively lead to re-
scaling of the sampling periods of all tasks. In this case
actually all tasks will miss all their deadlines, however,
the performance of the control loops may still be accept-
able with the slightly longer sampling intervals.

Instead, control algorithms contain built-in timing con-
straints that are more subtle than response time deadlines.
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The delay in each sample between the readings of the in-
puts and the generation of the outputs is known as input-
output latency. Excessive input-output latency will com-
promise the performance of the control system, and may
even cause instability. Further, depending on the process
under control and the controller design, there will be a
maximum variation (jitter) in the sampling instants and
the input-output latency that can be tolerated to guarantee
system stability [6].

If these constraints are violated, the control application
may fail its control goal or even become unstable. We call
this a control failure. Moreover, since faults in the esti-
mation of temporal properties may result in unanticipated
behavior, it is relevant to test control performance of the
soft controller tasks.

In this paper we present an extension to the real-time
co-simulation tool TrueTime to support test case gener-
ation. We also evaluate the capability of revealing fail-
ures in flexible control systems in a proof-of-concept test
case generation experiment. Our results indicate that a
test case generation method for testing of timeliness can
also be used for generating test cases for revealing control
failures.

2. Automated test case generation

When testing software, a test criterion is typically set
up to define the test requirements that must be satisfied.
Examples of test criteria include 'execute all statements'
and 'cover all transitions' in a state machine.

The mutation-based testing technique presented in this
paper is mainly inspired by a specification-based method
for automatic test case generation presented by Ammann
Black and Majurski [2]. The main idea behind the tech-
nique is to systematically "guess" what faults a real-time
design contains and then evaluate what the worst effect of
such faults could be.

Each hypothesized fault is represented as a copy of the
system specification containing that fault; such a speci-
fication is called a mutant*. As a part of test case gen-
eration, the mutant models are analyzed and classified as
benign or malignant. Mutants containing faults with bad
consequences are classified as malignant and specialized
test cases are constructed that aim to reveal those faults if
they exist in the final implementation.

For a more detailed overview of mutation-based test
case generation, consider Figure 1. The inputs to
mutation-based testing are a specification of a real-time
system and a test criterion. The test criterion specifies
the mutation operators to use when creating mutants, and
thus, determines the kind of test cases that are produced.
An advantage of using mutation-based testing criteria is
that the testing effort can be estimated and quantified by
the number of malignant mutants.

Note: These mutants are not related to the mutations and cross-
overs perforned when using genetic algorithms

Testing Mutation
Criterion operators

Real-time Mutant Mutant Execution

modele generator models analysis

KilledTest Test case mutants
Cases generator Traces

Figure 1. Mutation-based test generation

A mutant generator applies the mutation operators and
sends the mutated specifications to an execution order an-
alyzer that determines if and how a mutation can lead to a
timeliness or control failure (see Figure 1). If the analysis
reveals a missed hard deadline or an unstable controller,
it is marked as killed, otherwise the mutation is consid-
ered to be benign and discarded. For pure timeliness test-
ing, this execution order analysis can be done using model
checking [14].

Traces from the killed mutants are sent to a test case
generation filter that converts the traces to input sequences
and their corresponding expected and critical execution
orders. These are used as test cases for the target system.

Test execution is focused on running the generated in-
put sequences and trying to detect the derived critical ex-
ecution orders using, for example, prefix-based or non-
deterministic testing techniques [10, 13, 17].

2.1. System model
Real-time application behavior is typically modelled

by a set of periodic and sporadic tasks that compete for
system resources. Periodic tasks are requested with fixed
inter-arrival times, thus the times when the task will be
requested are known. Sporadic tasks can be requested as
a response to some event at any time. However, to sim-
plify analysis, sporadic tasks are specified with a minimum
inter-arrival time. If no minimum inter-arrival time can be
determined, the task is aperiodic. Each real-time task has
a specified deadline and sometimes an offset, which de-
notes the time before any task of that type is requested.

In this paper we use a subset of Timed Automata with
Tasks (TAT) [15, 7] to specify the assumptions about the
system under test.

Timed Automata (TA) [1] have been used to model dif-
ferent aspects of real-time systems. A timed automaton is
a finite state machine extended with a collection of real-
valued clocks. Each transition can have a guard, an action
and a number of clock resets. A guard is a condition on
clocks and variables, e.g., a time constraint. An action can
perform operations such as assigning values to variables.
The clocks increase uniformly from zero until they are in-
dividually reset in a transition. When a clock is reset, it
is instantaneously set to zero and then starts to increase at
the same rate as the other clocks. Within TAT, TA is used
for specifying activation pattern of tasks, i.e., the points
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Task
Ta A

Task executing
Task executing with resource 1 locked

time

Figure 2. Visualization of execution pattern

ID c d SEM PREC
A 8 20 |{(R1,1,6)} {}
B 9 40 |{(R1,2,8)} {}

Table 1. Example TAT task set description

in time when a task is requested for execution. In this pa-
per we focus on sporadic and periodic tasks with generic
automata templates.

TAT extends the TA notation with a set of real-time
tasks P. The set P represents tasks that perform computa-
tions in response to requests. Elements in P express infor-
mation about tasks as quadruples (c, d, SEM, PREC).
c is the required execution time and d is the relative dead-
line. These values are used to create a new task instance
as it is released by a TAT automaton action. Shared re-
sources are modelled by a set of system-wide semaphores
R. SEM is a set of tuples of the form (s, tl, t2) where t1
and t2 are the relative lock and unlock times of semaphore
s C R when an instance of the task is executed. Prece-
dence constraints are relations between pairs of tasks A
and B stating that an instance of task A must have com-
pleted between the execution of two consecutive instances
of task B. For example, such constraints can model a
blocking producer-consumer relation between task A and
B. Hence, PREC is a subset of P that specifies which
tasks must precede a task of this type.

A specification of the execution of a task, including the
points in time when resources are locked and unlocked, is
called an execution pattern in this paper. Figure 2 shows
the execution pattern of task A in Table 1.

In TAT, task execution times are fixed. This may ap-
pear unrealistic if the input data to a task is allowed to
vary. However, to divide the testing problem, this test
case generation step assumes that each task is associated
with a particular (typical or worst-case) equivalence class
of input data so that the only variance in execution times
comes from non-deterministic components and the target
platform. Several complementary methods exist for deriv-
ing such classes of input data for real-time tasks [16, 12].
Further, when a malignant mutant is found, tasks can be
run in a critical execution order to see if a failure can be
reproduced in the real system using other input data.

2.2. Mutation operators
A mutation-based test criterion is defined by a set of

mutation operators. Mutation operators have previously
been presented for testing of timeliness and formally de-
fined for TAT-specification models [14]. In this paper, we
summarize the relevant operators informally and discuss
the faults generated by the operators from a flexible con-
trol system perspective. In many of the operators, some
property of the execution pattern is modified slightly, so
A is used to denote the size of the change.

Execution time operators: Execution time mutation op-
erators increase or decrease the assumed execution time of
a task by a constant A. These mutants represent an overly
optimistic estimation of the worst-case (longest) execu-
tion time of a task or a overly pessimistic estimation of
the best-case (shortest) execution time. Estimating execu-
tion times is generally very hard [16]. The execution time
of a task running concurrently with other tasks may also
be slightly different than running the task uninterrupted, if
there are caches and pipelines in the target system.

Lock time operators: Lock time mutation operators in-
crease or decrease the time when a particular resource is
locked relative to the start of that task. In one mutant the
lock time is increased with A and in the other mutant the
lock time is decreased by A. An increase in the time a
resource is locked increases the maximum blocking time
for a higher priority task. Further, if a resource is held for
less time than expected, the system can allow execution
orders that may result in timeliness or control violations.
This mutation operator requires test cases that can distin-
guish an implementation where a resource is locked too
early from one where it is not.

Unlock time operators: Unlock time mutation operators
change the time when a resource is unlocked. For each
task and each resource that the task uses, two mutants can
be created. One increases the unlock time and one de-
creases the unlock time of that particular resource. This
mutation operator requires test cases that can distinguish
an implementation where a resource is held too long from
one where it is not.

Inter-arrival time operators: This operator decreases or
increases the inter-arrival time between requests for a task
execution by a constant time A. This reflects a change in
the system environment that causes requests to be more
frequent than expected. The resulting test cases will stress
the system to reveal its sensitivity to higher frequencies of
requests. For periodic tasks (E.g., controllers) a decrease
in invocation frequency may also result in failures.

Pattern offset operators: Recurring requests can have
patterns that are assumed to have fixed offsets relative to
each other; for example, periodic tasks with harmonic ac-
tivation patterns. This operator changes the offset between
such patterns by increasing or decreasing the offset with
A time units.
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3. Flextime: A test generation extension

Flextime is an add-on tool for the real-time control sys-
tems simulator TrueTime [8]. The purpose of the Flex-
time add-on is primarily to support automated analysis
and mutation-based test case generation. For this purpose
TrueTime must be adapted to (i) do efficient simulation of
TAT system models, (ii) support structured parametriza-
tion of simulations, and (iii) simplify extensions that are
consistent with TAT specifications.
When Flextime is used for mutation-based test case

generation, TAT models should be mapped to simulation
entities. The following subsections describe the TrueTime
tool and how TAT task sets and activation patterns are
mapped to simulations by the Flextime extension.

3.1. TrueTime
TrueTime is a real-time kernel simulator based on

MATLAB/Simulink. The main feature of the simulator
is that it offers the possibility of co-simulation of task ex-
ecution in a real-time kernel and continuous-time dynam-
ics modeling controlled plants. The simulator is mainly
used for integrated design of controllers and schedulers,
and can be used to analyze the effects of timing non-
determinism on the performance of the control systems.

The TrueTime kernel is flexible and highly config-
urable. Both periodic and aperiodic tasks are supported,
and the attributes of the tasks may be changed dynami-
cally during simulation. The scheduling algorithm used
by the kernel is configurable by the user. Synchronization
between tasks is supported by events and shared resources
can be protected with mutual exclusion monitors.

Each task in TrueTime is implemented in a separate
code function that defines the execution behavior. The
code function includes everything from interaction with
resources and I/O ports and networks to specification of
execution time of different segments. The TrueTime code
functions may be written either as C++ functions or as
MATLAB m-files.

3.2. Task sets and execution patterns
For the purpose of automated analysis and mutation-

based test case generation, we find it useful to separate
between application functionality and execution behavior.
Therefore, in the Flextime extension, execution times, re-
source requirements, and precedence constraints are spec-
ified separately from code functions. This specification
style makes it possible to specify execution patterns of
large task sets without having to generate a specific code
function for each type. The role of code functions in Flex-
time is specialized to perform control-related calculations
and to interact with external Simulink blocks.

Figure 3 shows a subset of the class diagram of Flex-
time. The class ftTask is an abstract class that maps down
to the TrueTime tasks. This means that when objects of
any of the sub-classes to this class are created, a True-
Time task is also created and initialized. The abstractft-

ftResource ftTask -(ordered) executionitem

IPC_Resource FP IPC Task takeRes releaseRes executeWork

~~~~
Figure 3. Flextime classes

Task class contains basic information about tasks, such as

periods, deadlines and offsets. Moreover, the ftTask class
extends TrueTime tasks with a list of execution items that
defines the execution pattern for each instance of this task.

The sub-classes of ftTask and ftResource are primar-
ily used for supporting different concurrency control pro-

tocols, but other types of execution environment exten-
sions are also supported. For example, one pair of sub-
classes can be used to simulate tasks and resources under
the immediate priority ceiling protocol [18], whereas an-

other pair may be used for simulation of tasks under EDF
scheduling and the stack resource protocol [4]. The rea-

son why sub-classes are needed for both types of entities
is that such protocols often require specific data to be kept
with task and resource representatives.
When an ftTask begins its execution, a virtual do-seg

method is called sequentially on each item in the execu-

tion item list. Execution items of type takeRes and re-

leaseRes specify that a particular resource is to be locked
or unlocked. The do-seg function in these execution items
simply invokes a corresponding virtual take and release
function in the ftTask class with the resource identifier as

a parameter. In this way, the logic associated with ac-

quiring and releasing resources can be implemented in the
protocol-specific sub-classes offtTask, and execution item
classes remain protocol independent. Execution items of
type executeWork are generic and specify that execution of
code should be simulated for some duration, and option-
ally, that a segment of a Flextime code function should be
executed.

3.3. Activation patterns
The activation patterns from environment automata

triggering periodic tasks are deterministic and can simply
be included in the static configuration of the simulator.
The activation pattern for sporadic tasks should be varied
for each iteration of the simulation to find execution orders
that can lead to timeliness or control failures.

Consequently, an input to the simulation of a particular
system (corresponding to a TAT model) is the activation
patterns for the sporadic tasks. The relevant output from
the simulation is an execution order trace where the spo-

radic requests has been injected according to the activation
pattern. A "positive" output from a mutation testing per-

spective is an execution order trace that contains violated
time constraints or simulated control failure.
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y==M IAT+t(n)-
y:= 0

LEASE
._.TaskXFS+t(O) y == OFS+t(0) y <- MIAT+t(n)

y 0

Figure 4. Annotated TAT template

MATLAB
Task set
Specification |,_ Mutation _

| Operators |

Genetic
Algorithm

Test-cases
* 1<

Mutated Task set
Snecifications

SrimuIl patteracestrice

Simulation traces

Simulink

. Truetime +
Flextime

Figure 5. Flextime tool

By treating test case generation like an optimization-
based search problem, different heuristic methods can be
applied in order to find a feasible activation pattern for
revealing failures. In Section 5 we present an experi-
ment where genetic algorithms are used for this purpose.
Genetic algorithms have previously been used on various
noncontinuous search problems [11], and for testing other
aspects of control systems [20].

Figure 4 contains an annotated TAT-automaton for de-
scribing activation patterns of sporadic tasks. The tem-
plate has two parameters that are constant for a particular
mutant. The constant OFS denotes the assumed minimum
offset, i.e., the minimum delay before any instance of this
task can be requested. The constant MIAT denotes the as-
sumed minimum inter-arrival time between instances of
this task. An array of delay values t(O..m) defines the
variable part of the intervals between requests of this task.
The constant m is the maximum number of arrivals that
can occur in the simulated interval. By combining the ar-
rays for all sporadic tasks we get a matrix t(1..s, O..m) of
real values, where each row corresponds to an activation
pattern of a sporadic task. Flextime supports importing ac-
tivation pattern matrices of this type from the global MAT-
LAB workspace. Moreover, relevant information from the
simulation run is logged and exported to MATLAB where
it can be analyzed, filtered and converted to test cases.

4. Using Flextime for test generation

Figure 5 gives an overview of how Flextime is used
together with other tools to perform automated test case
generation. As seen in the figure, a task-set specification
must be supplied as input to Flextime simulations and mu-
tation operators. Task-set parameters and execution item
lists can be initialized in two different ways in the Flex-
time tool. One way is to define the execution item lists
and task set parameters statically in the TrueTime initial-
ization code. Figure 6 shows the C++ syntax required for
initializing the task-set of Table 1. If no specific C++ ini-
tialization file is given, Flextime assumes that the system

ID TS matrix
Type Priority Period Offset Deadline

/MIAT /OFS
A SPOR 1 0.040 0.0 0.020
B PER 2 0.040 0.020 0.020

Table 2. Initialization matrix TS

ID || XP matrix
A 0.001 -1 0.005 -1 0.002 NaN
B 0.002 -1 0.006 -1 0.001 NaN

Table 3. Initialization matrix XP

characteristics for a simulation is given through two ma-
trices, TS and XP, in the global MATLAB workspace.

As seen in Table 2, the TS matrix contains one row for
each task, specifying its type, priority, period, offset, and
deadline. Depending on the type of the task, some fields
are interpreted differently. For example, if the type field
specifies a hard sporadic task, then the period and offset
fields are interpreted as the values for the MIAT and OFS
parameters for the template in Figure 4.

The rows in an XP matrix contain the execution pat-
terns for the tasks with the same row number in the TS
matrix. All positive values are translated to simulated ex-
ecution time. All negative values are assumed to be in-
tegers and are used for locking and unlocking the shared
resources with the specified index. The XP matrix for the
task set in Table 1 is given in Table 3. The first occurrence
of '-1' in Table 3 means that the resource with index '1'
should be locked, whereas the second occurrence means
that it should be unlocked.

The matrix representation of task sets has the advan-
tage that different mutation operators easily can be applied
to create new mutants. If new task types, concurrency
control mechanisms, or scheduling protocols are used, the
C++ initialization file must be customized accordingly.

Returning to Figure 5, the task set specification is used
as input to mutation operators, which automatically create
mutants containing hypothesized faults. For the purpose
of the following experiments, these operators have been
implemented for the matrix representation.

4.1. Applying genetic algorithms
For each created mutant, a search is performed to find

an activation pattern that forces the mutant to miss a hard
deadline or causes a control failure. A genetic algorithm
drives the simulation of a particular mutant by providing a
population of initially random activation pattern matrices
as input. For each activation pattern matrix, the execution
order and control performance traces from the simulation
are used to calculate a fitness value. The fitness value re-
flects the ability of the activation pattern to show a bad
behavior of the mutant.

Based on their fitness value, the best activation patterns
are copied and changed according to stochastic heuristics.
The newly created activation patterns replace some of the
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least optimal activation patterns in the set and the evalua-
tion is iterated in a new generation . This way, the differ-
ent execution orders of a mutant are searched for missed
deadlines and bad control performance. Consequently, an
application-specific fitness function must be provided to
use genetic algorithms.

For testing of flexible controllers, both potential time-
liness violations and poor control quality must be used to
calculate a good fitness value to drive the heuristic search.
The slack of a real-time task is the time between the actual
response time of a task instance and its absolute deadline.
For the timeliness factor, the minimum slack among hard
tasks provides an intuitive fitness value. All slack times
can be recorded during simulation.

For evaluation of control performance it is common to
use weighted quadratic cost functions. For a scalar sys-
tem, with one output y and one input u, the cost can be
written

J- (y2(t) + pu2(t)) dt (1)

where the weight factor, p, expresses the relation be-
tween the two counteracting objectives of control design,
i.e., to keep the regulated output close to zero and to keep
the control effort small. The controllers designed for the
inverted pendulum control described in the next section
are explicitly designed to minimize a cost function of the
type given by Equation (1). This is called LQ control [3].

The higher the cost during a simulation run, the worse
the control performance. Therefore, in this context, we as-
sume that 1/J is proportional to the control performance.

The fitness of a simulation trace is defined as

// String ID
IPC_Resource Rl("State_Sem");

// TYPE, StringID, Priority , MIAT, OFS, Deadline
FP_IPC_Task A(SPOR,"Safety_check", 1 , 0.040,0.0,0.020);
A << 0.001 <<+Rl<< 0.005 << -R1 << 0.002 << FINISHED;

FP_IPC_Task B(PER,"Pendulum", 2 , 0.040, 0.020, 0.040);
B << 0.002 << +R1 << 0.006 << -R1 << 0.001 << FINISHED;

Figure 6. C++ Syntax for initializing task-set

5. Proof-of-concept experiment

The purpose of this experiment is to investigate if a
mutation-based testing technique can generate test cases
for revealing timeliness and control failures in flexible
control systems. Hence, the experiment should evaluate
whether the mutation operators can create malignant mu-
tants and how effective our genetic algorithm based tool
set is in finding such malignant mutants.

For this experiment we simulate a real-time system
with fixed priorities and shared resources under the im-
mediate priority ceiling protocol [18]. The task set con-
sists of three soft periodic tasks that implement flexible
controllers for balancing three inverted pendulums. The
linearized equations of the pendulums are given as

O= Lo20 +w2u (3)

where 0 denotes the pendulum angle and u is the con-
trol signal. Lo is the natural frequency of the pendulum.
The controllers were designed using LQ-theory with the
objective of minimizing the cost function

=J (02(t) + 0.002u2(t)) dt

where Smim denotes the least slack observed for any

hard real-time task. The variable Jk denotes the value of
J for flexible controller k at the end of the simulation. A
weight variable w is used for adjusting the minimum slack
so that the timeliness factor is of the same magnitude as

the control quality factor.
Apart from calculating the general fitness that drives

the genetic algorithm heuristics towards evaluating more

optimal solutions, the fitness function can also be used to
detect failures and halt the search. Relevant failure con-

ditions are that (i) a hard critical deadline is missed, (ii)
the control system becomes unstable (the cost, J, exceeds
some threshold value), or (iii) a control constraint is vio-
lated, for example, the motion of a robot arm becomes too
irregular. Failure condition (i) and (ii) can easily be de-
tected by checking the minimum slack of hard tasks and
the value of the cost function for the controller tasks. Fail-
ure condition (iii) is application-specific and might require
specific values to be traced during simulation.

Further, the system has four sporadic real-time tasks
with hard deadlines, assumed to implement logic for re-

sponding to frequent but irregular events, for example, ex-

ternal interrupts or network messages. The system also
has two resources that must be shared with mutual exclu-
sion between tasks. Examples of resources are data struc-
tures containing shared state variables and non-reentrant
library functions.

Table 4 lists the exact properties of the simulated task
set. The first column ('ID') contains task identifiers.
Columns two to five contain the TAT task set description
tuple as described in Section 2.1. The column 'IAT' con-

tain the assumed inter-arrival times of tasks; periodic tasks
are released with fixed inter-arrival times and the mini-
mum inter-arrival times of the sporadic tasks are defined
using the 'MIAT' parameter in Figure 4. Column 'OFS'
contain the corresponding parameter value for the spo-

radic task template; for periodic tasks, this column con-

tains the offset.
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ID ]c d SEM |PREC IAT I OFS]
Al] 3 7 {(R2,0,2)} I {} > 30 10
B |5 |15| {(R1,0,3)(R2,2,5)} } > 40 |20
C |l 4 20 {(R1,0,3)}1 {}_| > 40 0
Dl] 5 26 | {(R2,2,5)} {} I > 50 28
E 5 20 {(R1,4,5)} {} 20 1
F 5 29 { (R2,0,4)} {} 29 1
G 5 35 { (R1,0,3)} {} 35 1

Table 4. Case study task set

Three continuous-time blocks modeling the inverted
pendulums were included in the simulation and connected
in a feedback loop to the TrueTime block with the flex-
ible control system. Each pendulum has slightly differ-
ent natural frequency, Lo, and the goal of the control ap-
plication is to balance the pendulums to an upright po-
sition. The pendulums have an initial angle of 0.1 radi-
ans from the upright position when the simulation starts.
An application-specific control failure is assumed to oc-
cur when the angle of a pendulum becomes greater than
or equal to wr/8 (- 0.39) radians.
A set of mutants was generated by applying the mu-

tation operators described in Section 2.2 on the extended
task set in Table 4 using a A of two time units for the first
three mutation operator types and four time units for the
last two. The total number of mutants generated for each
operator type is listed in column 'T' of Table 5. The ge-
netic algorithm toolbox [9], developed at North Carolina
University was used to construct a genetic algorithm that
could interact with the Flextime tool.

For the genetic algorithm setup, we used a popula-
tion size of 25 activation pattern matrices. A mix of
generic cross-over functions supplied with the genetic al-
gorithm toolbox and heuristic cross-over functions cus-
tomized for revealing timeliness faults was used for sto-
chastically changing activation patterns. The fitness func-
tion defined in Section 4.1 was used when analyzing the
simulation traces.

First, the unmodified system was simulated for 200
generations to gain confidence in the assumed correct
specification. This was repeated five times with different
random seeds to protect against stochastic variance. No
failures were detected in the original model.

Second, each mutant was simulated for 100 genera-
tions or until a timeliness or control failure was detected.
When a mutant was killed, the same activation pattern was
applied on the assumed correct model. The motivation for
this extra step is to further increase the confidence in the
correctness of the specification model.

The experiment was repeated five times to assess the
reliability of the approach. Table 5 summarizes the results
for each mutation operator and failure type. The number
of mutants that was classified as malignant in any of the
experiments is listed in columns marked "K". Columns
marked "A" lists the average number of malignant mutants
that were killed per experiment. The average number of

Failure type 11 Timeliness _ Control_
Mutation operator [ T lK]_AIG || K |AA G
Execution time 14 1 1.01 2 6 5.2 29
Lock time 13 1 2 2.0 3 0 0 { -
Unlock time 15 1 1.0 20 1 5 2.1 -1
Inter-arrival time 14 O1 1 5 2.1 16
Pattern offset 13 0 01- 0 0 -

[Total 69 114 14.0 -1 117.31-
Table 5. Mutants killed in case study

generations needed to kill malignant mutants is listed in
column "G".

As seen in Table 5, our mutation-based approach that
uses the Flextime tool automatically generate test cases
for revealing both timeliness and control failures.

Further, the malignant mutants that cause timeliness
failures were killed in all of the experiments. This result
indicates that the genetic algorithm is effective in reveal-
ing critical execution orders in flexible control systems of
this size. The low average of generations needed to reveal
these failures suggests that many execution orders lead to
failures in the malignant mutant specifications.

The relatively low average of killed mutants causing
control failures indicates that finding a critical scenario
with respect to control is more difficult. A possible ex-
planation is that the optimization problem contains local
optima with respect to control performance fitness.
A possible way to increase the reliability is to redo

the search multiple times using a fresh initial population.
Since the approach for searching the mutant specifications
is fully automated, the additional cost of searching multi-
ple times may be acceptable.

Lastly, for this system we actually observe a relatively
large number of malignant mutants that lead to control
failures. This result suggests that mutation operators for
testing of timeliness indeed is useful for testing control
performance.

6. Conclusions

This paper has presented an extension to the real-time
co-simulator TrueTime that prepares it for interacting with
heuristic search algorithms for generation of test cases.
The extension tool maps configurable TAT task set speci-
fications to TrueTime task entities. This makes it possible
to use existing mutation-based testing criteria while ex-
ploiting the TrueTime ability to interact with Simulink.

Further, the paper presents a mutation-based method
for generation of tests cases for testing of timeliness and
control performance of flexible real-time systems. A
proof-of-concept case study shows that mutation opera-
tors for testing of timeliness also can be used to produce
mutants that cause control failures in flexible real-time
control systems. Apart from producing test cases, the test
case generation process provides a limited form of au-
tomated analysis that may increase confidence in control
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system models robustness against variations in activation
patterns and deviations from assumptions.
A limitation in the presented approach is that the im-

plementation currently assumes that a specific TAT au-
tomata template generates the activation patterns of ape-
riodic tasks. The mapping function can be generalized
to support a larger class of TAT automata templates, and
thus, allow a better modeling of inherent causal dependen-
cies between aperiodic events occurring in the environ-
ment. Future work includes investigating the scalability
of the approach when generating test cases for larger and
more complex control systems. In this context it is also
relevant to investigate heuristics that increases the genetic
algorithms ability to reveal control failures.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoret-
ical Computer Science, 126:183-235, 1994.

[2] P. Ammann, P. Black, and W. Majurski. Using model
checking to generate tests from specifications. In Pro-
ceedings of the Second IEEE International Conference on
Formal Engineering Methods (ICFEM'98), pages 46-54.
IEEE Computer Society, December 1998.

[3] K. J. Astrom and B. Wittenmark. Computer-Controlled
Systems. Prentice Hall, 1997.

[4] T. P. Baker. Stack-based scheduling of real-time processes.
The Journal ofReal-Time Systems, (3):67-99, 1991.

[5] B. Bouyssounouse and J. Sifakis. Embedded Systems De-
sign - The ARTIST Roadmap for Research and Develop-
ment. Springer-Verlag, 2005.

[6] A. Cervin, B. Lincoln, J. Eker, K.-E. Arz6n, and G. But-
tazzo. The jitter margin and its application in the de-
sign of real-time control systems. In Proceedings of the
10th International Conference on Real-Time and Embed-
ded Computing Systems and Applications, Goteborg, Swe-
den, aug 2004.

[7] E. Fersman. A Generic Approach to Schedulability Analy-
sis ofReal-Time Systems. PhD thesis, University of Upp-
sala, Faculty of Science and Technology, 2003.

[8] D. Henriksson, A. Cervin, and K.-E. Arz6n. True-
Time: Real-time control system simulation with MAT-
LAB/Simulink. In Proceedings of the Nordic MATLAB
Conference, Copenhagen, Denmark, Oct. 2003.

[9] C. Houck, J. Joines, and M. Kay. A genetic algorithm for
function optimization: A Matlab implementation. Techni-
cal Report NCSU-IE TR 95-09, Department of Computer
Science, North Carolina State University, 1995.

[10] G. Hwang, K. Tai, and T. Hunag. Reachability testing:
An approach to testing concurrent software. International
Journal of Software Engineering and Knowledge Engi-
neering, 5(4), December 1995.

[11] Z. Michalewicz and D. B. Fogel. How to solve it: Modern
Heuristics. Springer, 2nd edition, 1998.

[12] F. Mueller and J. Wegener. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints. In In Proceedings of the 19th Real-Time Technol-
ogy andApplications Symposium, pages 179-188, Madrid,
Spain, 1998.

[13] R. Nilsson, S. Andler, and J.Mellin. Towards of a Frame-
work for Automated Testing of Transaction-Based Real-
Time Systems. In Proceedings ofEigth International Con-
ference on Real-Time Computing Systems and Applica-
tions (RTCSA2002), pages 109-113, Tokyo, Japan, March
2002.

[14] R. Nilsson, J. Offutt, and S. F. Andler. Mutation-based
testing criteria for timeliness. In Proceedings of the 28th
Annual Computer Software and Applications Conference
(COMPSAC), pages 306-312, Hong Kong, September
2004. IEEE Computer Society.

[15] C. Nordstrom, A.Wall, and W. Yi. Timed automata as task
models for event-driven systems. In Proceedings ofReal-
time Computing, Systems and Applications (RTCSA'99),
Hong Kong, December 1999.

[16] S. M. Petters and G. Farber. Making worst case execu-
tion time analysis for hard real-time tasks on state of the
art processors feasible. In Proceedings of the 6th Interna-
tional Conference on Real-Time Computing, Systems and
Applications (RTCSA'99), Hong Kong, 1999.

[17] A. Pettersson and H. Thane. Testing of multi-tasking real-
time systems with critical sections. In Proceedings of
Ninth International Conference on Real-Time Computing
Systems and Applications (RTCSA'03), Tainan city, Tai-
wan, February 2003.

[18] L. Sha, R. Rajkumar, and J. P. Lehczky. Priority inher-
itance protocols: An approach to real-time synchroniza-
tion. IEEE Transactions on Computers, 9(39):1175-1185,
1990.

[19] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C.
Buttazzo. Deadline scheduling for real-time systems.
Kluwer academic publishers, 1998.

[20] Q. Zhao, B. H. Krogh, and P. Hubbard. Generating test in-
puts for embedded control systems. IEEE Control Systems
Magazine, August 2003.

VOLUME 2730


