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Abstract—The girth profile is introduced and search algo-
rithms for regular and irregular quasi-cyclic LDPC block codes
with both good girth profile and good degree distribution are
presented. New QC LDPC block codes of various code rates are
obtained and their bit error rate performance is compared with
that of the corresponding LDPC block codes defined in the IEEE
802.16 WiMAX standard of the same block length and code rate.

I. INTRODUCTION

Due to their low decoding complexity and good bit error
rate (BER) performance close to the theoretical limit, low-
density parity-check (LDPC) codes are a suitable choice for
modern communication standards [1]–[3]. For example, the
IEEE 802.16 WiMAX standard defines LDPC block codes
with code rates from 1/2 up to 5/6 and block lengths between
576 and 2304.

In this paper, we shall focus on quasi-cyclic (QC) LDPC
block codes, which can be efficiently represented in the form
of tailbitten convolutional codes, and, hence, support searching
for new low-complexity codes. QC LDPC block codes can
be characterized by being either regular or irregular. If each
column and each row of its parity-check matrix H contains
exactly J and K ones, respectively, the corresponding QC
LDPC block code is said to be (J,K)-regular; and irregular
otherwise. While the symbol node and constraint node degree
distribution of the parity-check matrix H is constant for
regular codes (equal to J and K, respectively), it varies
for irregular codes, which significantly affects the BER per-
formance. Hereinafter we shall focus solely on the degree
distribution of symbol nodes and will refer to it simply as
the degree distribution.

Interpreting the parity-check matrix of an LDPC block code
as the biadjacency matrix of a bipartite graph yields its cor-
responding Tanner graph [4]. The length of the shortest cycle
in a Tanner graph is called the girth of the LDPC block code
and is commonly considered to be one of the most important
code parameter, as it determines the number of independent
iterations in belief-propagation (BP) decoding. Typically, new
QC LDPC block codes are constructed by assigning suitable
labels to the edges of its base graph, that is, replacing the
nonzero entries of its binary base matrix with monomial
entries, such that the girth of the corresponding QC LDPC
block code after tailbiting to length M is larger than or equal to
a certain target value (see, for example, [5]–[7] and references

therein). When constructing QC LDPC block codes in such a
way, it is intuitively clear that their BER performance depends
on the underlying structure of the base matrix. Moreover, there
exists a common conjecture [5]–[7] that the structure of the
base matrix has a larger influence on its BER performance than
its girth. For example, a QC LDPC block code with “only”
girth 6, but good degree distribution, which, for example,
satisfies approximately the criterion on the degree proportions
given in [8], can achieve a BER performance close to its
theoretical limit. A set of such irregular QC LDPC block codes
are defined in the IEEE 802.16 WiMAX standard [1], and, to
the best of our knowledge, nobody reported QC LDPC block
codes with improved BER performance, especially for block
lengths as short as n ≈ 576.

In this paper, we shall study the influence of the degree
distribution and the girth profile of QC LDPC block codes,
as defined in Section II, on the BER performances of BP
decoding. Two greedy algorithms are presented in Section III:
one for constructing a base matrix for an irregular QC LDPC
block code with a given degree distribution and another for
obtaining a set of labels for (regular and irregular) QC LDPC
block codes yielding a good girth profile. Note that in case
of regular QC LDPC block codes which have a constant
degree distribution, base matrices constructed from all-one
matrices (AO) and Steiner triple systems (STS) will be used. In
Section IV, the BER performance of these QC LDPC block
codes is compared with the corresponding codes defined in
the IEEE 802.16 standard of the same code rate and block
length. In particular, we shall show that for a fixed degree
distribution, the BER performance can be further improved
by choosing edge labels yielding a good girth profile. The
paper is concluded with some final remarks in Section V.

II. REGULAR AND IRREGULAR QC LDPC CODES

A rate R = b/c binary convolutional code C is determined
by its polynomial parity-check matrix of memory m

H(D) =


h11(D) h12(D) . . . h1c(D)
h21(D) h22(D) . . . h2c(D)

...
...

. . .
h(c−b)1(D) h(c−b)2(D) . . . h(c−b)c(D)

 (1)

where the parity-check polynomials hij(D) are either zero or
monomial entries Dw

ij of degree wij , where wij are nonneg-



ative integers. Such a parity-check matrix H(D) can be rep-
resented by its degree matrix W = (wij), i = 1, 2, . . . , c− b,
and j = 1, 2, . . . , c, where wij = −1 if hij(D) = 0. If every
row and column of H(D) contains K and J nonzero entries,
respectively, we call C a (J,K)-regular LDPC convolutional
code; and irregular otherwise.

Next we express the (c− b)× c parity-check matrix H(D)
in terms of its m+ 1 binary matrices Hi, i = 0, 1, . . . ,m,

H(D) = H0 +H1D + · · ·+HmD
m

Tailbiting the convolutional code C to length M c-tuples,
where M > m, yields the M(c−b)×Mc parity-check matrix
of a quasi-cyclic (QC) block code B as

HT
TB =


HT

0 HT
1 · · · HT

m−1 HT
m 0

0 HT
0 HT

1 · · · HT
m−1 HT

m

HT
m 0 HT

0 HT
1 · · · HT

m−1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
HT

1 · · · HT
m−1 HT

m 0 HT
0

 (2)

where T denotes transpose. Interpreting HT
TB as a biadjacency

matrix [9] yields the corresponding Tanner graph G of this
QC LDPC block code. The length of the shortest cycle in this
graph is called the girth g.

On the other hand, if we let M tend to infinity we return to
the convolutional parity-check matrix H(D) (1) of the parent
convolutional code C. In terms of Tanner graph representa-
tions, this corresponds to unwrapping the underlying graph and
extending it in the time domain towards infinity. The shortest
cycle in such an infinite Tanner graph shall be called the free
girth gfree, where gfree ≥ g.

Moreover, let the base matrix of a tailbiting LDPC block
code, whose parent convolutional code with parity-check ma-
trix H(D) (1) has only zero or monomial entries, be defined
as

B = H(D)
∣∣
D=1

(3)

that is, all nonzero entries in H(D) are replaced by 1. Its
base graph follows as the bipartite graph, whose biadjacency
matrix is given by the base matrix B. Denote the girth of such
a base graph by gB.

The problem of finding new QC LDPC block codes can
be separated into two different tasks: finding a suitable base
matrix (base graph) and determining a set of suitable labels
(monomial degrees). In particular, it has been shown that for
every such base matrix B (with base graph GB) there exists a
tailbiting length M and a set of labels, such that the girth g of
the Tanner graph after tailbiting to length M c-tuples satisfies
the inequality [7]

g ≥ 2max {gB + dgB/2e , d2} ≥ 3gB (4)

where d2 is the minimum second generalized Hamming dis-
tance of the linear (Jc, (J−2)c+b) block code whose parity-
check matrix is equal to the incidence matrix of the base graph
GB.

Let Hi(D), i = 1, 2, . . . , c, denote the submatrix formed by
the i columns of H(D) with the smallest column weight and

let gfree,i be the free girth of the corresponding infinite Tanner
graph with biadjacency matrix Hi(D). Then the c-tuple

gp
free = (gfree,1 gfree,2 . . . gfree,c) (5)

is called the free girth profile (GP) of the parent infinite Tanner
graph, where gfree,i ≥ gfree,i+1, i = 1, 2, . . . , c−1, and gfree,c =
gfree. It can be efficiently represented as the ordered set

Sg =
{
g
(1)
free

(
n(1)

)
, g

(2)
free

(
n(2)

)
, . . . , g

(l)
free

(
n(l)
)}

(6)

where n(j) < n(j+1), n(l) = c, and gfree,i = g
(j)
free(n

(j)) for
n(j−1) < i ≤ n(j) with n(0) = 0. In other words, the
submatrix, consisting of up to n(j) columns with smallest
column weights, has a free girth which is greater than or equal
to g(j)free. Note that a girth profile gp

free is said to be better (>)
than another profile gp′

free if there exists a positive integer `
such that

g
(j)
free

{
= g

(j)′
free j = 1, 2, . . . , `− 1

> g
(j)′
free j ≥ `

(7)

Similarly, let Jmax be the maximum number of nonzero
entries in any column of the parity-check matrix H(D) of
the parent convolutional code C. Moreover, denote by nd,
d = 1, 2, . . . , Jmax, the number of columns (symbols) of the
parity-check matrix H(D) with d nonzero entries (of degree
d). Then the Jmax-tuple

dp
s = (n1 n2 . . . nJmax) (8)

is called the (symbol node) degree distribution of the parent
infinite Tanner graph. Since dp

s contains mostly zero entries,
it can be efficiently represent as the set

λs =
{
d(1)

(
n(1)

)
, d(2)

(
n(2)

)
, . . . , d(l)

(
n(l)
)}

(9)

where the nd(i) = n(i) and, clearly,
∑l

i=1 n
(i) = c. Note

that the degree distribution of the convolutional parity-check
matrix H(D) and its base matrix B coincide. Moreover, its
degree distribution is invariant among column permutations.

III. TWO GREEDY ALGORITHMS FOR OBTAINING QC
LDPC BLOCK CODES WITH GOOD DEGREE DISTRIBUTION

AND FREE GIRTH PROFILE

First, we shall determine a base matrix B with a given
degree distribution λs, having at most Pc and Pr common en-
tires among its columns and rows, respectively. Then, suitable
labels (monomial degrees wij) will be obtained, such that the
infinite Tanner graph corresponding to the constructed polyno-
mial parity-check matrix H(D) has a good free girth profile.
Finally, tailbiting H(D) to length M yields the corresponding
parity-check matrix of an (Mc,Mb) LDPC block code with
girth g ≤ gfree and similar girth profile. By taking the tailbiting
length M into account when determining the labels, g = gfree
can be guaranteed.

Assume that a base matrix B of size (c − b) × c shall be
constructed, and let the set

λt
s =

{
d
(1)(

n(1)
)
, d

(2)(
n(2)

)
, . . . , d

(l)(
n(l)
)}

(10)



TABLE I
PARAMETERS OF RATE R = 1/2 AND R = 2/3 QC LDPC BLOCK CODES

OF LENGTH n = 576 (*n = 572)

Description g gfree distribution
R = 1/2

IEEE 802.16 4 6 λs = {2(11), 3(8), 6(5)}
Irregular 8 8 λs = {2(12), 3(4), 4(4), 6(4)}
Irregular

6 6
λs = {2(12), 3(4), 4(4), 6(4)}

(good GP & BD) Sg = {12(18), 10(20), 8(23), 6(24)}
(3, 6)-reg. STS* 6 10 λs = {3(26)}
(3, 6)-reg. STS*

8 8
λs = {3(26)}

(good GP) Sg = {10(22), 8(26)}
(3, 6)-reg. AO

8 8
λs = {3(6)}

(good GP) Sg = {12(4), 10(5), 8(6)}
(3, 6)-reg. AO

4 4 λs = {3(6)}(random)
R = 2/3

IEEE 802.16 (A) 6 6 λs = {2(7), 3(12), 6(5)}
IEEE 802.16 (B) 4 4 λs = {2(7), 3(1), 4(16)}

IEEE 802.16 (A)
(good GP) 6 6

λs = {2(7), 3(12), 6(5)}
Sg = {14(11), 12(12), 10(17),

8(20), 6(24)}
Irregular

8 8
λs = {2(1), 3(5), 4(6)}

(good GP & BD) Sg = {12(2), 8(12)}
(3, 9)-reg. AO

8 8
λs = {3(9)}

(good GP) Sg = {12(3), 8(9)}
(3, 9)-reg. AO

4 4 λs = {3(9)}(random)

be a given target degree distribution with l entries, such
that their proportions approximately satisfy, for example, the
criterion given in [8].

Algorithm BD: Determine randomly a base matrix B for
a degree distribution λt

s and the numbers of overlapping
positions Pc and Pr.

1) Let B be an empty matrix, v a column vector of length
c−b, set i = 1, j = n = 0, and denote by S the maximum
number of trials.

2) While the number of columns of B is less than c:
(a) If n = 0, then j ← j + 1 and n← n(j).
(b) Set t← d

(j)
and s← 1.

(c) Set t randomly chosen entries of the vector v to 1;
and all other entries to 0.

(d) If the vector v and none of the columns and rows of
B coincide in less than or equal to Pc and Pr entries,
respectively, set B ← [B ;v], increase i ← i + 1,
decrease n← n− 1, and go to step 2).

(e) If s = S, the algorithm fails and a base matrix B with
such a degree distribution can not be found within S
number of trials. Restart at step 1.

(f) Otherwise, increase s← s+ 1 and go to step 2(c).
The numbers of overlapping positions Pc and Pr are pre-

determined constants which directly influence the girth of the
base graph gB and its second generalized Hamming distance
d2, and, hence, the lower bound (4) on the girth g, achievable
by a proper labeling of B. From the point of maximizing the
girth value g, choosing Pc = 1 is most suitable but is only

TABLE II
PARAMETERS OF RATE R = 3/4 AND R = 5/6 QC LDPC BLOCK CODES

OF LENGTH n = 576

Description g gfree profiles
R = 3/4

IEEE 802.16 (A) 4 4 λs = {2(5), 3(1), 4(18)}
IEEE 802.16 (B) 4 6 λs = {2(5), 3(12), 6(7)}
IEEE 802.16 (A)

6 6
λs = {2(5), 3(1), 4(18)}

(good GP) Sg = {14(6), 12(7), 8(13), 6(24)}
(3, 12)-reg. AO

6 6
λs = {3(12)}

(good GP) Sg = {12(3), 10(4), 8(11), 6(12)}
(3, 12)-reg. AO

4 4 λs = {3(12)}(random)
R = 5/6

IEEE 802.16 4 6 λs = {2(3), 3(10), 4(11)}

IEEE 802.16
(good GP) 6 6

λs = {2(3), 3(10), 4(11)}
Sg = {14(4), 12(5), 10(6),

8(13), 6(24)}
(3, 18)-reg. AO

6 6
λs = {3(18)}

(good GP) Sg = {12(3), 8(9), 6(18)}
(3, 18)-reg. AO

4 4 λs = {3(18)}(random)

feasible when constructing rather large base matrices. On the
other hand, Pc = 2 yields the girth of the base graph as gB = 4.
However, for suitable structured base matrices, it can be shown
that their second generalized Hamming distance is d2 = 7 and,
hence, it is possible to find a labeling yielding an LDPC block
code with girth g = 14. This motivated the choice of Pc = 2
in our search procedures, while Pr is iteratively increased until
such a base matrix can be found.

Next, denote by Bi, i = 1, 2, . . . , c, the submatrix formed
by i columns of the base matrix B with the smallest column
weight, while the set pz

i describes the indices of all rows with
zero entries in column i. Moreover, let the ordered set

S t
g =

{
g
(1)
free(n

(1)), g
(2)
free(n

(2)), . . . , g
(l)
free(n

(l))
}

(11)

be an upper bound on the desired target free girth profile with l
entries, where g(j)free > g

(j+1)
free , n(j) < n(j+1), j = 1, 2, . . . , l−

1, and n(l) = c. Optionally, denote by M the desired tailbiting
length.

Algorithm GP: Determine a set of labels for a given base
matrix B such that the corresponding infinite Tanner graph
has a good girth profile Sg .

1) Set i = 2, j = 1, n = 0, initialize W with a binary
column vector of length c − b, and set all of its entries
determined by pz

1 to −1; and to 0 otherwise. Moreover,
let v be a column vector of length c− b and choose the
maximum number of trials to be S.

2) While the number of columns of W is less than c:
(a) If n = 0, then j ← j + 1 and n← n(j).
(b) Set t← g

(j)
free, s← 1, and u← c− b− |pz

i|, where |·|
denotes the cardinality.

(c) Set all entries in the vector v specified by the set pz
i to

−1. That is, v is a column vector with u unknowns.
(d) Construct a system of girth inequalities for [W ;v]

with target girth t using algorithm A or B from [7]
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Fig. 1. Bit error rate performance for R = 1/2 LDPC block codes.

containing u unknowns, where the tailbiting length
M can be optionally taken into account.

(e) Choose randomly these u unknowns.
(f) If all inequalities are satisfied, let W ← [W ;v], set

i← i+ 1, n← n− 1, and go to step 2).
(g) If s = S, then decrease t← t− 2 (since the girth is

even), set s← 1, and go to step 2(d).
(h) Otherwise, increase s← s+ 1 and go to step 2(e).

The final degree matrix W of size (c− b)× c specifies a con-
volutional parity-check matrix H(D), whose infinite Tanner
graph has free girth t. Moreover, if the tailbiting length M has
been taken into account in step 2(c), the corresponding Tanner
graph, whose biadjacency matrix is obtained by tailbiting
H(D) to length M , follows as g = t.

IV. SIMULATION RESULTS AND COMPARISONS

In the following a small selection of regular and irregular
QC LDPC block codes of rates 1/2, 2/3, 3/4, and 5/6, with
block length n ≈ 576 shall be presented and compared with
the corresponding LDPC block codes as defined in the IEEE
802.16 WiMAX standard [1]. The corresponding codes are
given in Table I and Table II together with the free girth gfree
of the infinite Tanner graph, the girth g of the Tanner graph
after tailbiting to length M , as well as their degree distribution
λs and, if applicable, their girth profile Sg in compact form.
The corresponding degree matrices are omitted due to space
restriction, but are available online at [10]. Note, that the girth
profile is only included if the GP algorithm has been applied,
as it depends on the column order of the parity-check matrix
H(D) and would otherwise lead to an improper comparison.

In particular, the following QC LDPC block codes shall be
compared: (The applied algorithms are given in parenthesis)
• Irregular codes as defined in the IEEE 802.16 standard
• Irregular codes with identical degree distribution as

above, but good girth profile (GP) for rates R ≥ 3/4
• Irregular codes with both good degree distribution [8] and

good girth profile (BD & GP) for rates R ≤ 2/3
• Regular codes with base-matrices constructed from

Steiner triple systems (STS) and good girth profile (GP)
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IEEE 802.16 (B)
IEEE 802.16 (A) (good GP)
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(3, 9)-reg. AO (good GP)

(3, 9)-reg. AO (random)

Fig. 2. Bit error rate performance for R = 2/3 LDPC block codes.

for rate R = 1/2
• Regular codes with all-one (AO) base matrices with good

girth profile (GP)
• Regular codes with all-one (AO) base matrices and ran-

domly chosen monomial entries
The corresponding BER performance for those codes is given
in Figs. 1– 4 using 60 BP decoding iterations. Generally, codes
with a good girth profile and/or good degree distribution yield
an improved BER performance, typically around 0.5 − 1 dB
for small and medium signal-to-noise (SNR) values. In the
following, the influence of these parameters shall be discussed
in more detail.

A. Monomial labels yielding a good girth profile

Comparing for example the two irregular QC LDPC block
codes of R = 1/2 in Fig. 1 with identical degree distribution,
free girth gfree and girth g, we see that QC LDPC block
codes with a good girth profile usually yield a better BER
performance. Note, however, that our search for rate R = 2/3
QC LDPC block codes with good girth profiles did not yield
any code with an improved BER performance compared to the
rate R = 2/3 IEEE 802.16 (A) code in Fig. 2, since the girth
profile for this code, after reordering its columns, is already
λs = {14(11), 12(12), 10(18)}, and, hence, better than the best
result that we have obtained from the GP algorithm for this
code rate. However, when starting from a base matrix with a
good degree distribution, and applying our GP algorithm, we
were able to improve the BER performance for SNR values
above > 4.0 dB.

B. Base matrices with a good degree distribution

Determining a base matrix for a given target degree distri-
bution λt

s and the numbers of overlapping positions Pc and Pr
imposes a lot of restrictions on the entries of the base matrix,
which often can be satisfied only for rather large matrices. For
rate R = 1/2 LDPC block codes we were able to find such
an irregular base matrix of size 12×24 and potential girth 14.
Its BER performance with random labelings as well as after
improving its girth profile is illustrated in Fig. 1, where the
latter case yields the best BER performance for this rate and
block length.
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Fig. 3. Bit error rate performance for R = 3/4 LDPC block codes.

For rate R = 2/3 we were only able to determine a rather
small irregular base matrix of size 4× 12 with potential girth
12, which yielded the best BER performance for high SNR
values. For higher rates, we were so far unable to construct
examples of base matrices for good degree distributions due
to the additional restrictions imposed by the reduced row
per column ratio of the corresponding parity-check matrices.
However, using larger computational resources it should be
possible to determine similar base matrices of larger sizes and
for higher code rates.

C. Regular versus irregular

While irregular LDPC block codes yield the best BER
performance among all considered rates, the difference be-
tween short regular LDPC block codes with good girth profile
and the best irregular LDPC block codes is surprisingly
small, in particular for higher rates. For example, the rate
R = 5/6 (3, 18)-regular QC LDPC block code has a better
BER performance than the irregular code defined within IEEE
802.16 with same rate and block length.

Since (3,K)-regular LDPC block codes can be described
by a small set of parameters, it should be possible to further
improve such high-rate codes by combining an extensive
search with a set of suitable rejection rules.

D. Error floor

In our simulations of the BER performance using BP
decoding, we were so far unable to observe any error floor
behavior for QC LDPC block codes with good girth profile.

E. Search complexity

Determining suitable labels for a given base matrix is the
most complex step in the presented algorithms. We used the
algorithm as presented in [7] and generated between 103 and
106 different labelings per column, taking in average between
one and three hours per code. Among the final set of QC LDPC
block codes with good girth profile, we randomly selected 10
codes and based our final decision on their SNR values which
lead to a bit error probability around 10−5.

Typically the BER performances of all randomly chosen
codes were very close to each other, where the BER was
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Fig. 4. Bit error rate performance for R = 5/6 LDPC block codes.

improved by a factor of two for the best code, while it
increased by a factor of two for the worst code.

V. SUMMARY

Two greedy algorithms for constructing base matrices with
a given degree distribution and for finding monomial labels
yielding a good girth profile have been presented. Newly
found QC LDPC block codes of rates between R = 1/2
and R = 5/6 have been compared with the corresponding
codes defined in the IEEE 802.16 standard. QC LDPC block
codes with a good girth profile yielded significantly better BER
performances for the rates R = 1/2 and R = 5/6 compared
to the IEEE 802.16 standard, while for the rates R = 2/3
and R = 3/4, only moderate improvement, especially in the
high SNR region, could be achieved. By starting from base
matrices with a good degree distribution for rates R = 1/2
and R = 2/3, these results have been further improved.
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