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Extending the Occupancy Grid Concept for

Low-Cost Sensor-Based SLAM

Jerker Nordh ∗ Karl Berntorp ∗

∗ Lund University, Lund, Sweden (e-mail:
Firstname.Lastname@control.lth.se).

Abstract: The simultaneous localization and mapping problem is approached by using an
ultrasound sensor and wheel encoders. To account for the low precision inherent in ultrasound
sensors, the occupancy grid notion is extended. The extension takes into consideration with
which angle the sensor is pointing, to compensate for the issue that an object is not necessarily
detectable from all positions due to deficiencies in how ultrasonic range sensors work. A mixed
linear/nonlinear model is derived for future use in Rao-Blackwellized particle smoothing.

Keywords: SLAM, Particle filtering, Kalman filtering, Occupancy grids, Mobile robots,
Rao-Blackwellized

1. INTRODUCTION

The problem of having a robot simultaneously localize
itself and learn its map is commonly referred to as si-
multaneous localization and mapping (SLAM), and is still
considered a challenging problem. The problem is often
solved using odometry readings in combination with vision
or range sensors. In mobile robotics it has been studied
extensively over the last three decades. For surveys and
tutorials of the SLAM problem and its different solutions
up to recently, see for example (Thrun, 2002) or (Durrant-
Whyte and Bailey, 2006).

At least since the early 1990s the approach to SLAM has
been probabilistic, and one of the earliest works on this
was presented in (Smith et al., 1990), where extended
Kalman filtering (EKF) was used for state estimation.
One of the problems with using Kalman filtering is that
the nonlinearities that typically are present tend to lead
to divergence of the state estimates. For example, the
kinematics of a planar robot is typically nonlinear in the
heading angle, and the consequent linearizations that the
EKF uses for estimating the odometry may lead to insta-
bility. To remedy this, particle filtering was introduced as
a means to solve the SLAM problem; the reader is referred
to (Grisetti et al., 2005) and (Grisetti et al., 2007) for state
of the art algorithms.

Several approaches exist of how to represent the map,
where two possible approaches are metric and topological.
In the metric approaches, which this paper will focus on,
the maps capture the geometric properties of the envi-
ronment, while the topological maps try to describe the
connectivity of different places using graphs, see (Thrun,
1998). Perhaps the most popular representative of the
metric approaches is known as occupancy grid mapping. In
this representation the space is described by evenly spaced
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grids, see (Siciliano and Khatib, 2008) for an introduction.
The grids are considered to be either occupied or free, with
some probability distribution associated with the grid. A
possible usage of occupancy grid maps is when utilizing
range sensors, such as laser sensors or sonar sensors. Both
types of sensors have noise and may occasionally give
severe measurement errors. Since laser sensors have very
high spatial resolution, thus giving a sharp probability
distribution, they appear to be the most common solution,
see (Hhnel et al., 2003), (Eliazar and Parr, 2003), and
(Grisetti et al., 2007) for some examples. In contrast, sonar
sensors have the problem of covering a cone in space,
which typically makes it impossible to determine from a
single measurement whether a certain cell is occupied or
not because of the low spatial resolution in the tangential
direction. Also, ultrasound sensors are very sensitive to
the angle of an objects surface relative to the sensor. This
leads to the problem that measuring the same surface
from slightly different angles may render different results.
Obviously, this could potentially lead to estimation errors.
See Fig. 1 and Section 2 for a more detailed description
of the problems encountered with ultrasound based range
sensors.

In this paper the SLAM problem is approached using only
wheel encoder readings and one ultrasonic sensor. To get
rid of, or at least attenuate, the problems inherent in
ultrasonic sensors described earlier, a new approach to grid
mapping is developed. This should be seen as an extension
to the notion of occupancy grids described in (Siciliano
and Khatib, 2008), in the sense that the angle with which
the sensor is facing the cell is now taken into account.
Particle filtering is used for position estimation, and each
particle represents a possible robot position and a map.
It is known that using particle filters for SLAM tends to
destroy the map over time caused by sample depletion, see
(Kwak et al., 2007) for an investigation. However, an idea
is that particle smoothing could be a way to get rid of
this problem. To prepare for exploiting the ideas of Rao-
Blackwellized particle smoothing established in (Lindsten



and Schön, 2011), a mixed linear/nonlinear state-space
model is developed. Compared to the regular occupancy
grid this formulation also represents the variance of each
probability estimate.

Using sonar sensors for SLAM has been studied before;
an example is (Burgard et al., 1999), in which an offline
expectation maximization algorithm was used for occu-
pancy grid mapping using 24 Polaroid sensors with 15
degrees opening angle. An early work is (Rencken, 1993),
where the SLAM problem was solved in simulation using
24 ultrasonic sensors by estimating the errors introduced in
the localization and mapping parts, respectively, and cor-
recting for them using a modified Kalman filter approach.
A third example is (Leonard et al., 1992) in which the
SLAM problem was solved using a feature based approach
with the aid of servo-mounted ultrasonic sensors. A more
recent work is (Ahn et al., 2008), where ultrasonic sensors
and a stereo camera is used in an EKF-SLAM setting.

The paper is organized as follows: The SLAM problem
is introduced in Section 2, where the difficulties with
ultrasonic sensors is explained in more detail. Section 3
details the scope of the work presented in this article. In
Section 4 the kinematics, sensor, map modeling, as well
as the SLAM algorithm are introduced. Implementational
aspects are discussed in Section 5. The validation results
are shown in Section 6. Finally, the paper is concluded in
Section 7.

2. PROBLEM FORMULATION

As previously mentioned there are two major systematic
issues with ultrasonic sensor that have been observed:

(1) Large field of view; making it uncertain from which
point a measurement originated. This leads to a fun-
damental limitation on the resolution of the sensor,
which varies with the distance to the object. Because
of the typically large opening angle of ultrasonic sen-
sors the resolution is of the same order as the distance
to the detected object. That is, when detecting an
object at a range of 1 meter, the spatial resolution
of the sensor is roughly 1 meter in the tangential
direction.

(2) Angle of incidence; for angles above a certain thresh-
old the object becomes more or less invisible for the
sensor. Thus an object can only be detected from
certain directions. This problem becomes apparent
when the sensor is close to a wall and measuring along
it. Typically the wall will be inside the field of view of
the sensor, but the sensor will not detect it because
of a too narrow angle of incidence. If the same wall
is then measured from another position within the
room where the sensor faces it perpendicularly, it will
be detected. Note that the angle is dependent on the
material of the observed object.

See Fig. 1 for an illustration.

The basic premise for the SLAM problem is that it
is possible to reobserve parts of the environment, thus
relating the current position to those before. Therefore if it
is not possible to observe objects that have been detected
previously, it will lead to inconsistencies in the map as well
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X

Fig. 1. Properties of ultrasonic sensors. The sensor has an
opening angle, β. The sound only reflect back to the
sensor if the angle of incidence is less than α. The
figure illustrates a straight wall. Sections marked 3
are outside the field of view, the section marked 2 is
inside the field of view but the angle of incidence is so
large that it is not visible to the sensor. The section
marked 1 is inside the field of view. Also, the angle of
incidence is steep enough for it to be detected by the
sensor. The range returned by the sensor will be the
distance to the closest point within section 1, marked
with an X .

as inaccuracy in the position estimate. This article aims to
provide a method for dealing with these systematic errors.

3. ARTICLE SCOPE

The method presented in this paper extends the concept
of occupancy grids to take the angle of incidence into
consideration and partitioning each cell of the map into
several parts, where each part is visible only from certain
regions within the environment. This reduces the problem
of conflicting measurements. The drawback is that it also
reduces the correlation between measurements, and thus
the underlying SLAM algorithm will require more data to
converge.

3.1 Computational Complexity

Particle methods are sensitive to the number of states in
the model as the number of particles needed to represent
the probability density function explodes with the number
of states. Therefore a conditionally linear model is very
beneficial for reducing the computational burden. The
method presented in this paper is conditionally linear
given the position and orientation of the sensor, thus for
the planar case only 3 nonlinear states are needed. The
number of linear states depends on the size and resolution
of the map.

3.2 Evaluation

To evaluate the model, simulated data corresponding to
different sensors characteristics were generated. The data
sets were used with different levels of subdivision of the
grid cells, showing the methods strengths and weaknesses
for a selection of sensor characteristics. The focus is on
investigating how the angle-of-incidence limitations on the
sensor affect the position estimate of the SLAM algorithm.



The goal is position estimation, the map is merely a tool.
Therefore the map estimates are not presented.

The results presented are generated using more pessimistic
noise values than what could be expected for even very
inexpensive sensor, typically available from hobby elec-
tronics suppliers for a few tens of dollars. The amount
of noise introduced by the wheel encoders is also believed
to be exaggerated. The interesting quantity to study is the
relative performance of using the simulated ultrasonic sen-
sor for SLAM, with angle-of-incidence dependence, com-
pared with relying only on dead reckoning. The absolute
positioning error is therefore not as relevant and all the
results presented in the article are normalized against the
dead-reckoning scheme.

The model presented contains a large number of parame-
ters, but the work in this paper does not address how to
optimally choose them. Rather, the same set of parameters
for all parametrizations of the model are used to show
the relative merits of the method. It is surely possible
to improve the results by better parameter choices and
more sophisticated particle methods, but that is outside
the scope of this paper. More effective methods for storing
the map could be implemented. This is however not done
as this is currently only a proof of concept.

The concept of modeling the angle of incidence could also
be applied to methods for the SLAM problem which are
not particle based.

4. MODELING

4.1 State-Space Model

The robot used is a differential-driven mobile robot, with
the sensor placed at the front end. Since the robot moves
in a plane, only three states are needed to describe the
motion. Using the position variables px and py, as well as
the heading θ as state variables, the robot’s kinematics is

ẋr =
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2





cos θ cos θ
sin θ sin θ
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(1)

which in short is written as ẋr = f(xr, ω, v). Here, ωl,r is
the left and right wheel angular velocity which have noise
vl,r, R is the wheel radius, and B is the distance between
them. To be implementationally useful, this model is
discretized using a second order approximation.

By assuming that the map is slowly time varying, the map
can be modeled as a constant position model. Every cell
in the occupancy grid representation is a state. Since each
state represents a probability it should only take values
between zero and one, representing the probability that a
cell is occupied. The discretized occupancy grid model is
on the form

xm
t+1 = xm

t + vm, (2)

where each xm is a cell in the map and vm is the noise
on the states. This representation allows that the map
varies over time meaning that old measurements should
not be given as much weight as more recent measurements.
Taking the angle of incidence into account gives rise to
additional states. As an example, assume that a map
with two cells is used, and assume further that the angle

dependence has a resolution of 45 degrees. This means that
the cell can be viewed from 8 different angles, which gives
that there will be 16 states in total for representing this
simple map.

4.2 Measurement Model

Assume that an ultrasound measurement returns a dis-
tance, and that the opening angle of the sensor is β de-
grees. The field of view is then a closed cone with aperture
2β. The cells that are inside the field of view can now be
calculated, given that a position estimate exists. Assuming
that a method exists for directly measuring the states of
each cell inside the field of view the measurement equation
would be linear, and the C-matrix in the equation y = Cx
would be sparse with a single 1 per row, and the same
number of rows as the number of cells inside the field of
view.

The question of how to generate the measurements, y, is
not trivial. A common way to generate the measurements
is to create a probability function with a peak in the
center of the cone, depending on the distance from the
robot that the sensor returned. The probability function
then decays with the angle from the center of the cone
and the distance from the most probable cell, reaching the
nominal value of occupancy at the end of the cone. This
is called evidence mapping. Here, the focus is instead on
exploiting variance. Each measurement is given a variance,
dependent on which distance is returned from the sensor.
If the distance is short the variance should be low, since
fewer cells are visible. Furthermore, the cells’ angles with
respect to the center of the cone is also influencing the
variance. For cells at a given distance the probability is
the same. This is of course an approximation, as a single
distance measurement does not contain information about
the individual cells. However, it provides the conditionally
linear formulation that is desired.

A typical C matrix for the example in Section 4.1 could
be

yt =

(

1/2
1/2

)

=

(

1 0 0 0 · · · 0
0 0 1 0 · · · 0

)

xm
t + wt = Ctx

m
t + wt.

(3)
In this particular example both cells were equally probable
to be occupied since they were at the same distance from
the sensor. The cells not inside the field of view at time t
does not generate any measurements at all for time t. The
measurement noise at time t, wt, is a tuning parameter,
parametrized by the angle and distance as previously
discussed.

4.3 Map Estimation

Since the approximated measurement model is linear,
a Kalman filter approach will yield the optimal result.
The Kalman filter equations are written out next with
the notation from (2) and (3). The reader is referred to
(Anderson and Moore, 1979) for a thorough investigation
on linear filtering.



x̂m
t|t−1 = x̂m

t−1|t−1 (4)

Pt|t−1 = Pt−1|t−1 + Qn (5)

St = CtPt|t−1C
T
t + Rn (6)

Kt = Pt|t−1C
T
t S−1

t (7)

et = yt − Cx̂m
t|t−1 (8)

x̂m
t|t = x̂m

t|t−1 + Ktet (9)

Pt|t = (I − KtCt)Pt|t−1 (10)

Here, x̂m are the linear states and P is the estimated
covariance matrix. The matrices Qn and Rn are the
variances of the process noise and measurement noise,
respectively.

This is a convenient result. First of all, it means that
the solution is analytic. Secondly, the computation of the
distribution function, characterized by the mean x̂m

t|t and

the variance Pt|t, is relatively cheap compared to if a
particle filter would be used for map estimation.

4.4 Pose Estimation

As already mentioned, particle filtering is used to estimate
the robot’s pose. A good tutorial on particle filters is
(Arulampalam et al., 2002); only the parts relevant for
this paper will be explained next: The key idea with the
particle filter is to approximate the density function p as
a weighted set of samples

pN(xt|yt) =

N
∑

i=1

wi
tδ(xt−xi

t),

N
∑

i=1

wi
t = 1, wi

t ≥ 0, ∀i, (11)

where δ is the Dirac function used to represent the empiri-
cal probability density function with support in N discrete
samples. The weights wi reflects the importance of each
particle. These values are updated when new measure-
ments arrive.

Each of the N particles represent a filtered trajectory
estimate. To proceed in the algorithm the particles are
simulated forwards one step using the input signals, yield-
ing

x̂i
t = f(xi

t−1, ωt−1, vt−1), i = 1, . . . , N. (12)

The weights are normally calculated according to the
measurement density error function p(yt|xt). However, due
to the parametrization used for the measurements, the
weights are now instead updated as

wi
t = (ei

t)
T S−1

t ei
t, i = 1, . . . , N, (13)

wi
t = wi

t/

N
∑

i=1

wi
t. (14)

The weighting in (13) stemming from (4)-(10) reflects how
likely the particle was, given the ultrasound measurement.
The state estimate may now be formed as

x̂t =

N
∑

i=1

wi
tx̂

i
t.

Since all particles but a few will have negligible weights
after a while, new particles are drawn with replacement
according to the sampling importance resampling principle

P(xi
t = x̂j

t ) = wj
t , j = 1, . . . , N. (15)

Note that this step is only performed given that the

effective sampling number 1/(
∑N

i=1
(wi

t)
2) < Neff , where

Neff is a number between zero and N . To summarize: The
SLAM algorithm is run by first calculating (3) as explained
in Section 4.2, and then running (4)-(15).

5. IMPLEMENTATION DETAILS

There are a number of parameters to be chosen when
implementing the model described in Section 4. In addition
to this a number of minor tweaks to help with the
implementation have been made.

Each particle contains a Kalman filter that estimates the
probability of occupancy for each cell in the grid. Instead of
storing this value directly it is first converted to log-odds
format and thus spans the entire range of real numbers
instead of only the interval (0, 1). All measurements are
also converted to this format before being passed to the
Kalman filter. The covariance matrix grows quadratically
with the map size, therefore it is critical to exploit the spar-
sity that occurs. Under the assumption that all cells are
independent only the diagonal elements will be nonzero.

Because of the large field of view of the sensor it rarely
provides accurate information on the position of objects.
However, it provides information on which cells are likely
to be empty. To exploit this fact a threshold value has
been added, and whenever the measured range exceeds this
value only the cells that are detected as empty are included
in the measurement update. For closer distances also the
cells that are on the edge of the cone and thus likely to be
occupied are included in the measurement update.

Since the model not only contains an estimate of the
probability of occupancy, but also an estimate of how
certain that estimate is, it is possible to have a very high
prior probability of occupancy since the map will quickly
converge to the new estimate once a measurement has been
made. This allows the algorithm to successively clear areas
of the map, relying more on the information on which
areas are empty rather than those that are occupied. This
is a better match for the characteristics of an ultrasound
sensor.

6. RESULTS

The focus of this section is to show the relative merits
of the method for different sensor characteristics, and to
give an indication of what performance different number
of angular subdivisions of each cell provide. Therefore the
figures are normalized such that the absolute position error
of the dead reckoning is 1 at time 1.

The data used for the simulations were generated by
driving a robot in a simulated environment consisting of
a number of walls with different orientations and lengths.
The trajectory was a circle repeated roughly twenty times,
with the sensor sweeping back and forth through 180◦ in
front of the robot.

The data presented in this section are the absolute errors
of the position estimates. As a reference comparison for
the SLAM algorithm the same number of particles (200)
was simulated using the same noise model, but only using
the information from the wheel encoders. The position of
the dead-reckoning estimate was then taken as the mean
of these particles. For the SLAM estimate the position was
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Fig. 2. Comparison of the absolute position error for 3 different sensors with different characteristics and number of
angular subdivisions for each grid cell. All the simulated sensors have an opening angle of 60◦. The maximum angle
of incidence is denoted α, the number of subdivisions is denoted d. Note that d = 1 is similair to a normal occupancy
grid approach. All figures are normalized such that the total accumulated error of the dead reckoning is 1 at time 1.
The red line is the accumulated error for the dead-reckoning. For each simulation the dead reckoning is evaluated
as the mean of 200 particles simulated using the same noise model as that provided to the SLAM algorithm. The
blue line corresponds to the same quantities when using the SLAM algorithm. The position of the SLAM estimate
is taken as the weighted average of 200 simulated particles. The dot-dashed line is the 1 standard-deviation interval
estimated by repeatedly running the Monte-Carlo simulation but with different noise realizations for each iteration.
From the results shown it can be seen that for all the sensor characteristics it is beneficial to increase the number
of subdivisions, d, for each cell. Counter-intuitively this also seems to hold for the ’perfect’ sensor where the angle
of incidence, α, does not affect the measurement.



taken as a weighted mean with the weight at each instant
being proportional to how good the particular particle is
deemed to be, with the particles being resampled whenever
the weights are considered to be too unevenly distributed.

The results presented in Fig. 2 are the mean of the es-
timates and standard deviations calculated by repeated
Monte-Carlo simulations using different noise perturba-
tions of the correct input. As can be seen in the figure the
SLAM estimate is clearly improved by subdividing each
cell taking the angle of incidence into consideration. Most
notable is the significant decrease in the variance of the
estimate, the mean error is roughly the same for all the
different subdivisions.

Unexpectedly this method also seems to improve the esti-
mates when using a simulated sensor with no dependence
on the angle of incidence, which can be seen in the right-
most column in Fig. 2. It is believed that this could be
explained from the fact that the wide field of view of the
sensor is still a limiting factor of the performance, and
that using the angular subdivision scheme increases the
resolution by separating the measurements from differ-
ent positions. This effect, however, might not always be
desirable since it also decreases the correlation between
different robot poses, making it harder for the particle
filter to converge.

7. CONCLUSIONS AND FUTURE WORK

The results presented in this paper show that by extending
the concept of the regular occupancy grid to model the fact
that objects are not necessarily detected from all positions
within a room, the performance for a particle filtering
based SLAM algorithm can be significantly improved. The
method presented here can thus be seen as a way to
trade sensor performance against computational resources.
In a world with computing power becoming cheaper day
by day, this tradeoff will become more relevant as time
progresses, perhaps allowing the use of SLAM algorithms
in inexpensive consumer products.

The model presented in this paper is clearly suited for
Rao-Blackwellized particle methods due to its conditional
linearity, and in the future the implementation will most
likely be extended with smoothing methods, such as those
presented by (Lindsten and Schön, 2011). It is believed
that smoothing will decrease the position error since a
single measurement contains fairly little information of
the robot pose. Also, the problem with particle depletion
should be possible to solve with particle smoothing. There-
fore a method which takes the trajectory into considera-
tion is likely to perform significantly better, but with larger
computational burden

More extensive simulations and individual tweaking of
the parameters for the different number of subdivision of
the cells would be beneficial for clearly establishing the
methods merits, but our initial results seem promising.

We will gather actual measurement data under conditions
where we have access to a reliable ground truth. In this way
it is possible to provide proper estimates on the accuracy
of the method under real-world conditions.
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