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Abstract— We have previously shown how it is possible to
lower accident risk levels while at the same time increasing
traffic flows with the aid of vehicular ad-hoc networks. In this
paper, we extend the online traffic accident risk mitigation sys-
tem to include link choice. We develop an algorithm that allows
vehicles to choose road links that provide the current maximal
utility, based on information received over a vehicular network,
whilst remaining below acceptable risk levels. Additionally, we
investigate how to improve the performance of this algorithm
by considering the effect a vehicle’s link choice has on the utility
of other vehicles. We introduce a social penalty for reducing
other vehicles’ utility and investigate the effects of including
this as a factor in vehicles’ link choices. The resulting system
sheds new light on the problem of effective link choice by route
selection algorithms and highlights the potential that exists in
VANET-based traffic management.

I. INTRODUCTION

Route choice, that is, the path a vehicle chooses in
the road network in order to reach its destination, has a
significant bearing on accident risk, through factors such
as road type, intersections, geometry and other features
all contribute to accident risk [1], [2]. When taking route
decisions, drivers have been shown to adjust their choices
in response to perceived accident risk [3], [4]. As we move
increasingly towards ITS-based approaches to route choice
— from satellite navigation systems providing routing advice
to drivers up to self-driving vehicles where the route is
chosen entirely autonomously — accident risk should be a
consideration in addition to travel time or other measures
of utility. By utilising a vehicular network, risk information
can be dynamically updated and always kept relevant to the
current situation, allowing vehicles to include up-to-date risk
information about the links ahead in their routing decisions.

In [5], [6], we proposed a system for traffic accident risk
mitigation based on differentiated vehicle behaviour (Fig.
1). Each vehicle calculates and updates its risk level as it
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receives new information over the network, and compares
it to a given threshold: the risk limit. We model risk as a
relative measure, with a reference value of 1.0 representing
an average risk level across all vehicles, drivers and situ-
ations. Any risk factors included then increase or decrease
the risk level relative to this; for instance, a risk value of
2.0 represents a doubling in the probability of an accident
occurring. Road users must aim to keep their risk levels under
the risk limit and to this end, when a vehicle’s current risk
exceeds the threshold, either the driver or the vehicle itself
takes risk-mitigating behaviours such as reducing speed,
increasing headway, or changing into a lane with a lower
risk value. However, when a vehicle’s current risk is below
the threshold, it may engage in utility increasing behaviours,
where utility is considered in terms of vehicle speed and road
network flow. Our system does not dictate how action takes
place and is equally applicable to driver and autonomous
vehicle controlled actuation.

In this paper, we extend this model to include link choice.
Vehicles choose links that provide the current maximal util-
ity, based on information received from other vehicles and/or
roadside base stations, while adjusting other behaviours,
primarily speed, to remain within the risk limit. In this
way, the risk associated with choosing a particular link is
directly related to that link’s utility — a riskier link will
require a vehicle to travel more slowly in order to maintain
a sufficiently low risk level and the converse is true for a
less risky link.

Previous work on vehicle routing choices has primarily
focused on utility such as attempting to reduce vehicle
travel time. There have been some examples of incorporating
accident risk into vehicles’ routing choices [7]–[9]. However,
this work has either relied on static (or only slowly-changing)
accident risk models, global knowledge across the road
network, or both. In contrast, our work in this paper will
focus on using our risk model which allows for highly
dynamic and distributed calculation of accident risk [6]. This
makes it suitable for implementation in a vehicular ad-hoc



Fig. 1. A model for dynamic, online traffic accident risk mitigation

network and use by vehicles in real-time without relying on
communications to a centralised controller.

In section II, we provide an algorithm for vehicles to make
risk-aware link choices and present experimental results
demonstrating its effectiveness. Here we do not consider
overall route choice, only incorporating risk when choosing
amongst links that are equally useful or valid in reaching a
vehicle’s destination. Section IV discusses how this might be
extended to include risk in end-to-end route choices.

Additionally, in section III, we investigate how to improve
the performance of this algorithm by considering the effect
a vehicle’s link choice has on the utility — as measured by
throughput and vehicle speed - of other vehicles. When a
vehicle takes a risk-mitigating behaviour, such as reducing
speed, as a result of its link choice, this negatively impacts
on the vehicles following it, particularly in the case of single-
lane links. To deal with this, we include a social penalty for
reducing utility of other vehicles and investigate the effects
of including this penalty as a factor in vehicles’ link choices.

Finally, section IV discusses some of the questions raised
by this work and directions for future investigation.

II. RISK-AWARE LINK CHOICE

To include accident risk in vehicle link choices, we first
need to assign a risk value to each link. This can be
calculated in a way similar to vehicle risk calculations in [5],
by combining any relevant risk factors that apply specifically
to the link, such as the road type, condition and geometry, the
surrounding environment (e.g. whether it is urban, suburban
or rural, the presence of hazards such as cliffs or whether
animals are likely to walk onto the road), and features
such as intersections. However, since we are concerned with
examining vehicle link choice in the presence of links of

different risk levels, we take the link risk as an independent
variable and assign each link a value as outlined in section
II-A.

As a vehicle approaches an intersection, it uses the risk
values for each link it can choose to determine what its risk
level would be if it were travelling on that link. We give the
vehicle risk and link risk equal weighting, so to determine a
vehicle’s risk level on a given link, take the average of the
vehicle risk and the link risk.

r =
rv + rl

2
(1)

In reality, both the vehicle risk and the link risk would
be a combination of multiple factors, with the vehicle risk
incorporating factors relating not only to the vehicle itself,
but also to the driver. As such they would not be likely to
have equal weight in calculating the total risk, however since
here we are using both vehicle risk and link risk as indepen-
dent variables and thus varying them arbitrarily, and since we
use only these two parameters to represent the aggregates of
many factors, varying the weightings is equivalent to varying
the values themselves and thus unnecessary.

This then allows the vehicle to determine the maximum
speed it can travel on that link whilst maintaining the risk
limit. We will refer to this speed as vehicle maximum speed
(for a given link). A brief description of how this maximum
speed is determined can be found in section II-A; for full
details, we refer the reader to [5].

If there are other vehicles already on the link, it is possible
the vehicle will not actually be able to reach its allowed
maximum speed, however. For this reason, the vehicle also
calculates the maximum speed it would be possible to travel
on the link. We will refer to this speed as link maximum
speed (which varies over time as traffic conditions on the
link change). To calculate the link maximum speed, we use
the current speeds of vehicles on the link and their positions
along the link. This is to account for vehicles that, while
slow, may be close to the end of the link and thus have little
impact on the maximum speed possible on the link.

To do this, we consider each lane on the link separately.
In each lane, the speed and position of the last vehicle
on the link are used to calculate the time it will take this
vehicle to reach the end of the link. The total length of
the link is then divided by this time to give the maximum
possible average travel speed for that lane without colliding
with preceding vehicles. This process is repeated for each
lane and the highest resulting speed is taken as the overall
maximum speed for the link. In the case where there is at
least one lane with no vehicles in it, the maximum speed
for the link is infinity. This is not a perfect measure as it
does not take into account vehicle headway or the possibility
that vehicles will change lanes or speed before the vehicle
doing the calculation actually reaches them. However, this
level of detail is sufficient for choosing amongst links and is
relatively fast to calculate.

The vehicle then takes the minimum of the speeds it has
calculated — the vehicle maximum speed for the link, and



Fig. 2. Road network used for risk-aware link choice experiments

the link maximum speed at that point in time — in order to
obtain the resulting overall highest speed for that link. We
will call this speed the effective speed for that vehicle and
link. Once the vehicle has calculated its effective speed for
each link, it then chooses the link with the highest effective
speed as its next link.

The risk-aware link choice algorithm is summarised in
Figure 2.

Using this algorithm, each vehicle chooses the best link
based on its own risk, the link risk, and the current traffic sit-
uation. Initially, vehicles will favour the link with the lowest
risk as it allows them to travel at higher speeds. However,
as this link becomes congested, its current travel speed will
drop, causing vehicles to choose other links. Additionally, if
a slow (high risk) vehicle is already travelling on the “fastest”
(lowest risk) link, other, lower risk vehicles may choose a
higher risk link since although their own maximum speed
on this link would be lower, the current travel speed may
be higher, making it the better choice. The combination of
these processes means that traffic load between the links is
dynamically balanced in a distributed, emergent fashion that
takes into account link risk and compensates for it.

A. Experimental Set-up

We used the Quadstone Paramics microsimulator [10] to
conduct an evaluation of the risk-aware link choice algo-
rithm. This simulator models vehicle behaviour in detail,
including models for car following, lane changing, gap
acceptance and other driver behaviour. For more details
on these models, see [11] and [12]. The road network
used consisted of a single feeder link to an intersection,
at which there were two subsequent links, equal in length,

Fig. 3. Road network used for risk-aware link choice experiments

which vehicles could choose. These two links then joined
again into a single link to facilitate easier measurement of
total throughput. The feeder and final links each had four
lanes, while the intermediate links had two. All links were
unidirectional. A diagram of the road network is shown in
Fig. 3.

We assigned the vehicles a lognormal distribution of risk
values (mean: 1.0, stddev: 0.5) as this distribution fits our
definition of risk, i.e. that it is non-negative with a mean of
1.0. We also experimented with using a uniform and a normal
distribution, and with varying the distribution parameters,
however, the results were not qualitatively different.

To determine the maximum speed a vehicle can travel on
a link, we take the default maximum speed as calculated by
the simulator, and apply a multiplier α given by

α = 0.17 +
0.90r
rL

(2)

where r is the total risk as determined by (1) and rL is
the risk limit. This function has been derived empirically for
the simulation environment we use (see [5] for details) and
its coefficients would likely need to be recalibrated for use
elsewhere.

For these experiments, we assume all vehicles are
equipped with our risk-aware link choice and accident risk
estimation systems and are thus homogeneous in their link
choice method (but not in their actual risk values). We
are primarily interested in determining whether vehicles are
able to make dynamic risk-aware link choices and how this
relates to congestion in the road network. As such, we do
not consider the specific messaging protocol in the wireless
network for relaying speed information between vehicles
and assume only that it is possible for vehicles to obtain
this information. For an examination of risk information
exchange in our model and how it is affected by network
phenomena, see [6].

In our experiments, the risk value of the right-hand link
was held constant at 1.0, while the risk value of the left link
was used as the independent variable. Since we calculate
risk relatively and the values are used to compare links, it
is only the difference in risk values between the links that
is relevant. For each risk value, ten simulation runs of two
hours duration (simulation time) each were performed. All
figures below are shown with 95% confidence intervals. The
risk limit used for these experiments was 1.1.
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B. Results

Fig. 4 shows the number of vehicles choosing each link
as well as the total vehicle count (i.e. throughput) as the risk
value of the left link varies. As would be expected, more
vehicles chose the link with the lower risk as it allows for
travel at higher speeds. However, despite the lower risk link
being a priori a better choice, some vehicles did choose the
higher risk link due to congestion on the lower risk link.

Fig. 5 shows the average risk of vehicles choosing each
link. The average risk was lower for vehicles choosing the
high risk link, indicating that low risk vehicles could more
readily change their preference to the high risk link in
order to get a speed increase under congestion conditions.
For higher risk vehicles, congestion would not cause as
significant a slowdown (or none), since their higher risk
limits them to a lower speed in the first place.

III. SOCIAL LINK CHOICE

In the previous section, vehicles always chose the link
that gave them the highest speed. Now we present a link
choice algorithm where vehicles also consider the effects
their choices have on other vehicles.

Vehicle
A

Link 3
Risk: 1.5
Current 
Speed: 11.6 m/s

Link 2
Risk: 1.0
Current 
Speed: 14.0 m/s

Link 1
Risk: 0.5
Current 
Speed: 18.0 m/s

Fig. 6. Vehicle A’s preferred link is link 1, however the maximum speed
vehicle A can travel on this link is only 16.09m/s, which is lower than the
current link speed of 18.0m/s

TABLE I
MAXIMUM SPEED VEHICLE A CAN TRAVEL ON EACH LINK

Link Link risk Link maximum speed (m/s)

1 0.5 16.09

2 1.0 13.33

3 1.5 11.45

A. Motivation

Since different vehicles have different risk values, their
maximum travel speeds on a given link will also differ. This
means that it is possible for a vehicle’s maximum speed to be
lower than the current speed for a given link, but for that link
to nonetheless be its preferred link. Fig. 6 gives an example
of such a scenario.

Vehicle A, with a risk value of 1.5, is approaching the
intersection. Table I shows the maximum speeds for vehicle
A on each of the links it can choose.

The current link maximum speeds for the links are 18.0m/s
for link 1, 14.0m/s for link 2 and 11.6m/s for link 3. Then
vehicle A’s preferred link when it considers only its own
effective speed is link 1. However, should vehicle A choose
link 1, the link maximum speed for this link will be reduced
to vehicle A’s maximum speed of 16.09m/s, a reduction of
1.91m/s (although this reduction will become less severe over
time as vehicle A progresses along the link). Any following
vehicles would have their speed on link 1 correspondingly
reduced, until such time as vehicle A leaves the link.

However, since the current link maximum speeds for
the links are different, this detrimental effect on following
vehicles is not even across the links. Table II shows the
slowdown caused by vehicle A choosing each of the links.
We see that the smallest reduction in speed would be caused
by vehicle A choosing link 3. However, this also gives
vehicle A the lowest possible speed.

Values for vehicle speeds and risk chosen for this example
are not unusual and as such the situation described above,
in which one link would give the best speed for a vehicle,



TABLE II
REDUCTION IN LINK SPEED CAUSED BY VEHICLE A CHOOSING EACH

LINK

Link Current link
maximum

speed (m/s)

Vehicle
maximum
speed for
vehicle A

(m/s)

Speed
reduction if
vehicle A

chooses this
link (m/s)

1 18.0 16.09 1.91

2 14.0 13.33 0.67

3 11.6 11.50 0.10

while a different link gives the lowest speed reduction for the
following vehicles, is common. In the following section, we
give a method for balancing the two concerns of individual
vehicle speed and speed reduction for other vehicles.

B. Algorithm

We define a social penalty associated with each link a
vehicle can choose at a given intersection. The social penalty
is given by the speed reduction: the current link maximum
speed minus the vehicle maximum speed. The social penalty
is always non-negative — if the speed difference is negative,
the social penalty is set to zero — as the vehicle is still
constrained by the speed of the vehicles in front of it.

Each vehicle then calculates a score for each link based
on its effective speed and the social penalty for the link.

c = s− p×M (3)

where c is the score for the link, s is the effective speed
for the vehicle on this link, p is the social penalty for the
link, and M is a multiplier indicating how much weight is
given to the social penalty versus the link speed.

The social penalty multiplier corresponds to how selfish
a vehicle’s behaviour is. A multiplier of zero would mean a
vehicle always chooses the link with the best speed for itself,
regardless of the effect on other vehicles. Higher multipliers
correspond to greater weight given to the speed reduction for
others. Note that both the effective speed s and the social
penalty p are in metres per second, however since one is
absolute speed while the other is a speed difference, they
will typically not be close in magnitude.

In the following section, we describe experiments carried
out to test the effect of incorporating social penalties into
vehicle link choices.

C. Experimental Set-up

The simulation environment used for these experiments
was similar to that described in section II-A, except that
the number of lanes in the links was reduced. The feeder
and final links were reduced to two lanes each and the
intermediate links were reduced to one lane each in order
to make the social effects of vehicles’ link choices more
apparent.

The social penalty multiplier was varied from zero (com-
pletely selfish) to 100. Additionally, the case where vehicles
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were completely selfless was tested, denoted by the infinity
symbol in the figures in the following section. In this case,
vehicles could only choose the link which gave them the
best effective speed if there were no differences in the
social penalty at all. Again, ten simulation runs of two hours
duration each were performed for each data point, and figures
are shown with 95% confidence intervals. Three risk values
for the left link were used for these experiments: 1.5, 2.0
and 3.0.

D. Results

Fig. 7 and 8 show how the arrival rate (i.e. throughput) and
average vehicle speed vary with the social penalty multiplier.
From these figures, we can see that neither completely selfish
nor completely selfless behaviour produces the best results
in terms of overall utility — throughput and average vehicle
speed — of the road system, but rather an intermediate
strategy works best.

Fig. 9 and 10 show the minimum and maximum values
for the average speed of any vehicle in each simulation. As
can be seen in the figures, the range of speeds remained
consistent throughout. However, Fig. 11, which shows the
standard deviation of individual vehicles’ average speeds,
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shows that the speed varied least when vehicles were entirely
selfish, i.e. a selfish strategy provides for greater consistency
between vehicles in terms of their speeds. Fig. 12 provides
a larger plot of the speed standard deviation data points for
social penalties from 0 to 10. The speed standard deviation
was highest when the average vehicle speed was also highest,
indicating that there is a trade-off between obtaining the best
speed and fairness to all vehicles over a single link. It is not
clear without further work whether this result would persist
in a larger network with more link choices, since it is possible
that averaging may occur over several links, with a vehicle
which is disadvantaged on one link instead preferenced on
others, which would lead to greater fairness in the system.

These results were consistent across the different risk
values for the left link that we tested, showing that these
trends do not rely on a particular set of relative risk values
for the links.

IV. FUTURE WORK

Thus far, we have considered the choice of only a single
link. However, vehicles are unlikely to face such choices
in isolation — the situation where a vehicle must decide
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amongst links that are equally useful in getting to its desti-
nation does not occur very often. Instead, a link choice will
typically be part of an entire route. We now consider two
approaches to extending this work to deal with end-to-end
route choice.

The first approach would be to use a similar process as in
section II but consider entire routes rather than single links.
This would require calculating trip time over the entire route,
taking into account the risk levels of each link along the
route as well as current traffic conditions, and optionally
incorporating social penalties as in section III. This then
becomes a shortest-path problem, where the edge weights
are determined by not only travel time, but also risk and
social cost.

However, using such a system, travel speeds along any
given link are far more variable than in existing systems, as
each vehicle adjusts its speed in accordance with its current
risk level, although the use of social penalties mitigates this
somewhat. A vehicle’s risk level also depends on the vehicles
around it, and so traffic conditions on the link influence travel
speed not only by slowing them when there is congestion, but
also by varying the current risk level and thus the maximum



speeds vehicles can travel at. In addition, we have the usual
variance in travel time due to traffic density changing with
the time of day and other factors.

While the shortest-path problem is well-studied, standard
algorithms such as Dijkstra’s [13], may produce suboptimal
solutions in the case of dynamic and stochastic systems [14].
There is substantial previous work in this area, with a range
of approaches that have been developed to deal with the
time-varying and uncertain nature of traffic routing and travel
time prediction [8], [14]–[17]. Further work is required to
determine the best approach under the conditions described
above.

The second approach would be to include a measure of
how useful each possible link at a given intersection is
in reaching the destination and use this in calculating the
score for that link, with links that cannot be used to reach
the destination having a score of zero. This approach is
more similar to the single link choice problem we have
investigated and would be easier to adapt dynamically to
changing conditions, however it could also result in the
overall route being less optimal than an end-to-end approach.

V. CONCLUSION

We have extended our risk model developed in [5] and [6]
to include vehicle link choice. This is an important vehicle
behaviour as road links are significant sources of risk and
so the ability to mitigate this is crucial in a system for
traffic accident risk management. We have developed an
algorithm for risk-aware link choice which deals gracefully
with congestion, varied risk difference between links and any
number of links to choose from.

We investigated strategies for incorporating the effect a
vehicle’s link choice has on following vehicles by including
a social penalty as a factor in link choice. These strategies
ranged from completely selfish to completely selfless. We
found that an intermediate strategy is the best approach
for maximising road system utility. However, including a
social penalty causes greater variance in average speeds from
vehicle to vehicle and so fairness is a concern that needs
further attention. Since the experiments were carried out over
a single link it is necessary to extend the experiments to
incorporate multiple link networks. It is not unlikely that

several consecutive links will result in statistical averaging
of the variance, hence increased fairness for the vehicles.
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