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Optimization of a Pendulum System
using Optimica and Modelica

Pontus Giselssona Johan Åkessona,b Anders Robertssona

a)Dept. of Automatic Control, Lund University, Sweden
b)Modelon AB, Sweden

Abstract

In this paper Modelica and Optimica are used to solve
two different optimal control problems for a system
consisting of a pendulum and a cart. These optimiza-
tions will demonstrate that Optimica is easy to use
and powerful when optimizing systems with highly
non-linear dynamics. The optimal control trajecto-
ries are applied to a real pendulum and cart system,
in open loop as well as in closed loop with an MPC-
controller. The experiments show that optimal trajec-
tories from Optimica together with MPC feedback is
a suitable control structure when optimal transitions
through non-linear dynamics are desired.

Keywords: Optimal control, Optimica, Modelica

1 Introduction

Optimal control problems for dynamical systems with
non-linear dynamics lead to non-convex optimization
problems. These problems are usually difficult to
solve and a lot of time and effort is usually spent on
transforming the optimal control problem to a non-
convex optimization problem. In this paper we use the
high-level languages Modelica together with Optim-
ica to solve two different optimal control problems for
a pendulum and cart system. This Modelica and Op-
timica combination allows the user to concentrate on
how to formulate the optimal control problem, rather
than on how to transform it to a non-convex optimiza-
tion problem and solve it. The pendulum dynamics
are highly non-linear which is why this is an appro-
priate application. The first optimization problem is to
swing up the pendulum from the downward position
to the inverted position in as short time as possible.
The second problem is to move the cart from one posi-
tion of the track to another in as short time as possible,
with additional constraints on where the end point of
the pendulum may and may not be.

We also present experimental results where the op-
timal control trajectories are applied to a real pendu-
lum and cart system. There is a close match between
the optimal trajectories and the real system trajecto-
ries when no or small disturbances are present. This
demonstrates that optimal control is useful in a real
processes. Of course, we get good experimental re-
sults when the process is accurately described by the
model. When larger disturbances are present, e.g.,
in the initial conditions, the optimal control trajecto-
ries applied to the real process result, as expected, in
state trajectories that are far from the optimal ones. A
Model Predictive Controller (MPC) is introduced to
take care of these disturbances. Experimental results
show that the combination of optimal control feed-
forward and MPC-feedback is a suitable control struc-
ture for these problems.

The remainder of the paper is organized as follows.
In Section 2 an introduction to the Modelica extension
Optimica is given. Section 3 describes the cart and
pendulum process used in the paper. In Section 4 we
state and solve two optimization problems using Op-
timica and Modelica. Results from the optimizations
are applied to the real pendulum, in open loop as well
as in closed loop with an MPC-controller, in Section 5.
Section 6 describes how Optimica and this particular
application is used in the teaching at the Dept. of Au-
tomatic Control in Lund. Finally in Section 7 we give
some conclusions.

2 Optimica

Modelica does not offer explicit support for formula-
tion of dynamic optimization problems. In particular,
means to express quantities such as cost function, con-
straints, optimization interval, and optimization pa-
rameters are lacking. In an effort to extend Modelica
to also include high-level formulation of dynamic op-
timization problems, the Optimica extension was pro-



posed [1]. The Optimica extension is supported by the
novel Modelica-based open source platform JModel-
ica.org [8].

2.1 JModelica.org

JModelica.org is a novel Modelica-based open source
project targeted at dynamic optimization [2], [3].
JModelica.org features compilers supporting code
generation of Modelica models to C, a C API for eval-
uating model equations and their derivatives and op-
timization algorithms. The compilers and the model
C API has also been interfaced with Python [6] in or-
der to enable scripting and custom application devel-
opment. In order to support formulation of dynamic
optimization of Modelica models, JModelica.org sup-
ports the Optimica extension [1]. Optimica offers con-
structs for encoding of cost functions, constraints, the
optimization interval with fixed or free end points as
well as specification of transcription scheme.

The JModelica.org platform contains an implemen-
tation of a simultaneous optimization method based on
orthogonal collocation on finite elements [5]. Using
this method, state and input profiles are parametrized
by Lagrange polynomials, of order three and four re-
spectively, based on Radau points. This method cor-
responds to a fully implicit Runge-Kutta method, and
accordingly it possesses well known and strong sta-
bility properties. By parameterizing the variable pro-
files by polynomials, the dynamic optimization prob-
lem is translated into a non-linear programming (NLP)
problem which may be solved by a numerical NLP
solver. This NLP is, however, very large. In order
to efficiently find a solution to the NLP, derivative in-
formation as well as the sparsity patterns of the con-
straint Jacobians need to be provided to the solver.
The simultaneous optimization algorithm has been in-
terfaced with the large-scale NLP solver IPOPT [10],
which has been developed particularly to solve NLP
problems arising in simultaneous dynamic optimiza-
tion methods.

The choice of a simultaneous optimization algo-
rithm fits well with the properties of the dynamic opti-
mization problems treated in this paper. In particular,
simultaneous methods handle unstable systems well,
and also, state and input inequality constraints are eas-
ily incorporated.

2.2 Optimica example

In this section the Optimica syntax is explained by
stating and solving a double integrator optimization
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Figure 1: Control signal in the constrained double in-
tegrator example in Section 2.2.
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Figure 2: Phase plot ofx andẋ in the constrained dou-
ble integrator example in Section 2.2. Also the non-
linear constraint and the solution to the unconstrained
problem are plotted.

problem. The example will also serve as an evalua-
tion of the accuracy of the Optimica solution compared
to the optimal solution. The following optimization
problem is solved:

min
u

t f

subject to ¨x = u
0.2cos 15x+ ẋ≤ 1
|u| ≤ 5
x(0) = 0 ẋ(0) = 0
x(t f ) = 0.5 ẋ(t f ) = 0

(1)

wheret f is the final time,u is the control signal,x is the
position and ˙x is the velocity. The non-linear constraint
is added to make the problem a bit more complex. A
Modelica model for a double integrator is:

model DoubleIntegrator

package SI = Modelica.SIunits;

SI.Position x(start=0);

SI.Velocity x_dot(start=0);

input SI.Acceleration u;



equation

der(x) = x_dot;

der(x_dot) = u;

end DoubleIntegrator;

An Optimica specification of the problem is:

optimization DIopt (objective=finalTime,

startTime=0,

finalTime=(free=true,

initialGuess=1))

DoubleIntegrator DI(u(free=true,

initialGuess=0.0));

constraint

DI.x(finalTime)=0.5;

DI.x_dot(finalTime)=0;

0.2*cos(15*DI.x)+DI.x_dot <= 1;

DI.u <= 5;

DI.u >= 5;

end DIopt;

In the first line of the Optimica specification the opti-
mization objective is specified. In this case the objec-
tive to be minimized is the final time. Then the Mod-
elica model of the dynamical system that is used in the
optimization is specified andu is chosen to be the de-
cision variable. Then all constraints, inequality as well
as equality constraints, are listed.

The solution to (1) is to accelerate with maxi-
mum positive acceleration until, or if, a constraint is
reached. Then continue with maximum allowed ve-
locity until deceleration is needed to reachx= 0.5 and
ẋ = 0. The Optimica solution is plotted in Figures 1
and 2. These plots clearly show that the Optimica so-
lution coincides with the optimal solution.

3 The Process

In the Department of Automatic Control in Lund we
have a history of designing and building our own lab-
oratory processes. One of the latest processes that
are built in-house is the pendulum and cart process
found in Figure 3. This process is used in this paper to
demonstrate the applicability of Optimica and optimal
control.

3.1 Cart control

The cart is driven by a DC-motor which is controlled
in a cascaded structure. See Figure 4 for a schematic
view of the cascaded control structure. There is an
inner loop that controls the current through the DC-
motor. P1 represents the current dynamics which be-
haves like a first order system with a time-constant of
0.17 ms.C1 represents the PI-controller in the current
loop that controls the current,i, to its reference,ir . The

Figure 3: Photo of the cart and pendulum system de-
scribed in Section 3.
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Figure 4: Cascaded control structure for the cart con-
trol.

current reference,ir , is set by the outer loop that con-
trols the cart velocity. The current dynamics are fast
in comparison to the velocity dynamics, which makes
ir ≈ i a good approximation. The transfer function
from i to v, i.e. P2, is ideally an integrator with a gain.
The velocity dynamics are controlled with another PI-
controller,C2. The reference to the velocity control
loop, vr , is integrated from an acceleration reference,
u, since acceleration is our desired control signal. This
cascaded control structure is suitable when fast closed
loop dynamics fromvr to v is desired. Sincevr ≈ v is
a good approximation, we have double integrator dy-
namics from control signal,u, to cart position,x.



3.2 Hardware setup

On the cart there are two Atmel ATmega16 micro pro-
cessors. The current controller,C1 in Figure 4, dis-
cussed in Section 3.1, is running on one of them at a
sampling rate of 28.8 kHz. This micro processor gets
the current reference,ir , from the other micro pro-
cessor, where the velocity controller,C2, is running
at 1 kHz. This second micro processor also commu-
nicates with a PC via the serial interface. This com-
munication is performed at frequencies around 50 Hz.
From Matlab/Simulink on the PC the velocity refer-
ence,vr , is sent to the velocity controller on the mi-
cro processor. The velocity reference is obtained by
integrating the acceleration reference,u, on the PC-
side. Since a smooth acceleration profile of the cart
is desired, the velocity reference needs to be updated
more frequently than at 50 Hz. Therefore the accel-
eration reference,u, is also sent to the velocity con-
troller from the PC. The velocity reference is updated
in the micro processor at a frequency of 1 kHz accord-
ing to vr(t) = vr(t0) + u(t0)(t − t0), wheret0 is the
time when the last references was received from the
PC,t ∈ [t0, t0+h] andh is the PC communication sam-
pling time. These updates are consistent with the ve-
locity reference in the next sample from the PC which
is vr(t0 +h) = vr(t0)+u(t0)h.

One alternative would be to send only the accelera-
tion reference to the micro processor and to calculate
the velocity reference there. This would imply that in
order to stop the cart, it must be controlled with a feed-
back loop on the PC. With our implementation struc-
ture the cart can easily be stoped by setting the velocity
reference to zero.

The PC also receives cart position and pendulum an-
gle measurements as well as velocity estimates from
the micro processor. This enables for us to, on the PC,
create another level of feedback loops in the cascaded
control structure.

3.3 System modeling

Due to the low level control of the cart, described in
Section 3.1, the cart behaves as a double integrator.
When x is the cart position andu the control signal,
we have the following cart dynamics

ẍ = u

The pendulum dynamics are well known; letθ be the
pendulum angle and we get

θ̈ = −
g
l

sinθ +
a
l

cosθ

model pendulum

package SI = Modelica.SIunits;

parameter SI.Length l = 0.4;

constant SI.Acceleration g = 9.81;

SI.Position x(start=0);

SI.Velocity x_dot(start=0);

SI.Angle theta(start=0);

SI.AngularVelocity theta_dot(start=0);

SI.Position x_p;

SI.Position y_p;

Real u_dot(unit="m/s3");

input SI.Acceleration u;

equation

der(x) = x_dot;

der(x_dot) = u;

der(theta) = theta_dot;

der(theta_dot)=g/l*sin(theta)+1/l*cos(theta)*u;

der(u) = u_dot;

x_p = xl*sin(theta);

y_p = l*cos(theta);

end pendulum;

Listing 1: A Modelica model for the pendulum and
cart system.

whereθ = 0 is defined to be the pendulum downward
position, g is the gravitational acceleration,l is the
pendulum length anda is the horizontal acceleration
of the pendulum pivot point. This horizontal acceler-
ation, a, is equal to the cart acceleration, ¨x, and thus
equal to the control signal,u. This gives us the follow-
ing model for the complete system

θ̈ = −
g
l

sinθ +
u
l

cosθ (2)

ẍ = u (3)

A schematic view of the full system is found in Fig-
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Figure 5: Schematic view of the system.

ure 5, whereSpend represents the non-linear pendulum
dynamics (2) andGcart represents the double integra-
tor dynamics (3),z is a vector containing the states,
z = (x ẋθ θ̇ )T andS represents the full system. The
position of the cart and the pendulum angle are defined
such that the pendulum end point in the horizontal di-
rection,xp, and in the vertical direction,yp, are given



by

xp = x− l sinθ
yp = −l cosθ

The Modelica model that describes this pendulum and
cart system is found in Listing 1.

4 Optimization

In this section we use Modelica and Optimica to solve
two different optimization problems based on the pen-
dulum and cart model. The first problem is to swing
up the pendulum in as short time as possible. The sec-
ond problem is to move the pendulum and cart from
rest at one cart position on the track to another, while
the end point of the pendulum must avoid an elliptical
obstacle. Also in this second problem the objective to
be minimized is the final time.

4.1 Time-optimal Swing-up

The optimization objective is to swing up the pendu-
lum from the downward pendulum position to the in-
verted pendulum position in as short time as possible.
The cart should stop at the same position as it started
and the cart and angular velocities should be zero at
the final time. The control signal, i.e., the cart ac-
celeration,u, is limited to the interval± 5 m/s2. Its
derivative, ˙u, is limited to the interval± 100 m/s3.
The cart track is limited, which lead to constraints
in the cart position. The cart position must satisfy
−0.5 m ≤ x ≤ 0.5 m. The optimization problem is
stated mathematically in (4)

min
u

t f

subject to θ̈ = −g
l sinθ + u

l cosθ
ẍ = u
−0.5≤ x≤ 0.5
|u| ≤ 5 |u̇| ≤ 100
θ(0) = 0 θ̇ (0) = 0
x(0) = 0 ẋ(0) = 0
θ(t f ) = π θ̇ (t f ) = 0
x(t f ) = 0 ẋ(t f ) = 0

(4)

wheret f is the final time. The Modelica and Optim-
ica codes that describe the optimization problem are
found in Listings 1 and 2 respectively. The resulting
time optimal state and control trajectories are found in
Figures 6 and 7. The pendulum angle changes sign
two times during the swing-up. It starts with a positive
angle, switches to negative and finally it reaches its in-
verted position with a positive angle. This means that
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Figure 6: Optimal trajectory of the pendulum end
point for swing-up problem in Section 4.1.
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Figure 7: Optimal control signal, i.e., cart accelera-
tion, for swing-up problem in Section 4.1.

the optimal swing-up is performed with three swings
before the inverted position is reached. In [4] the min-
imum number of pendulum swings needed for swing-
up, given a maximum acceleration of the pendulum
pivot point,amax, is analyzed. Three swings are needed
if 0.388g ≤ amax ≤ 0.577g which is equivalent to
3.81 m/s2 ≤ amax ≤ 5.66 m/s2. This analysis
is not directly applicable to our setup since cart con-
straints and acceleration rate limitations are not con-
sidered in the analysis in [4]. When cart terminal po-
sition and acceleration rate constraints are chosen as
in our setup, three swings are needed for swing-up if
4.45 m/s2 ≤ amax ≤ 7.70 m/s2. This interval is ob-
tained simply by solving the swing-up problem with
different acceleration constraints in Optimica. The fact
that our problem with additional constraints requires
more acceleration to swing-up the pendulum with a
fixed number of swings, is not surprising. The max-



optimization swingup (objective=finalTime,

startTime=0,

finalTime=(free=true,

initialGuess=1))

pendulum pend(u(free=true,initialGuess=0.0));

constraint

pend.x(finalTime)=0;

pend.x_dot(finalTime)=0;

pend.theta(finalTime)=3.1415;

pend.theta_dot(finalTime)=0;

pend.x <= 0.5;

pend.x >= 0.5;

pend.u <= 5;

pend.u >= 5;

pend.u_dot <= 100;

pend.u_dot >= 100;

end swingup;

Listing 2: An Optimica model for time optimal swing-
up of the pendulum.

imum acceleration in our example is 5 m/s2 which is
within the interval where a minimum of three swings
are needed.

In [4] they also discuss an energy based swing-up
strategy that was originally proposed in [11]. The idea
of the method is to control the system to the energy-
level that corresponds to the inverted pendulum posi-
tion using maximum acceleration in either way. When
this energy based approach is applied to this system,
with amax= 5 m/s2, the pendulum reaches its inverted
position when the cart position is approximately 3m
from its starting point. This position is far outside the
track, which is why this energy based method is not
directly applicable when track limitations are present.

4.2 Optimization with path-constraints

In this optimization problem we want the cart to start
at rest at positionx= 0 with the pendulum in the down-
ward pendulum position,θ = 0. At the final time,
the cart and pendulum should be at rest at position
x = 0.8 m and pendulum angleθ = 0. We also intro-
duce an additional constraint stating that the end point
of the pendulum must never enter an elliptical area de-
scribed by

(

xp−0.5
0.05

)2

+

(

yp +0.4
0.3

)2

= 1

Due to the track limitations we need the cart position
to satisfy−0.1 m ≤ x ≤ 0.9 m. The control sig-
nal limitations are the same as in the previous opti-
mization problem, i.e.−5 m/s2 ≤ u ≤ 5 m/s2 and

−100 m/s3 ≤ u̇ ≤ 100 m/s3. The objective of the
optimization is to reach the final states as fast as possi-
ble. The optimization problem is described mathemat-
ically in (5)

min
u

t f

subject to θ̈ = −g
l sinθ + u

l cosθ
ẍ = u
xp = x− l sinθ
yp = −l cosθ
(

xp−0.5
0.05

)2
+

(

yp+0.4
0.3

)2
≥ 1

−0.1≤ x≤ 0.9
|u| ≤ 5 |u̇| ≤ 100
θ(0) = 0 θ̇ (0) = 0
x(0) = 0 ẋ(0) = 0
θ(t f ) = 0 θ̇ (t f ) = 0
x(t f ) = 0.8 ẋ(t f ) = 0

(5)

wheret f again is the final time. The codes in the cor-
responding Modelica and Optimica files are found in
Listings 1 and 3 respectively. This problem turns out

optimization path (objective=finalTime,

startTime=0,

finalTime=(free=true,

initialGuess=1))

pendulum pend(u(free=true,initialGuess=0.0));

constraint

pend.x(finalTime)=0.8;

pend.x_dot(finalTime)=0;

pend.theta(finalTime)=0;

pend.theta_dot(finalTime)=0;

pend.x <= 0.9;

pend.x >= 0.1;

pend.u <= 5;

pend.u >= 5;

pend.u_dot <= 100;

pend.u_dot >= 100;

((pend.x_p0.5)/0.05)^2+((pend.y_p+0.4)/0.3)^2>=1;

end path;

Listing 3: An Optimica model for the path following
problem.

to be more difficult to solve than the swing-up prob-
lem. Actually it is not easy to find a solution that is
feasible, i.e., that satisfies all constraints. In order to
solve this problem we need to give the solver an ini-
tial guess that is feasible and not too far away from
the optimum. One crucial decision to make is if the
pendulum should follow behind the cart over the ob-
stacle, or if it should go in front of the cart. It turns
out that if the pendulum follows behind the cart we get
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Figure 8: Optimal trajectory of the pendulum end
point for path constrained problem in Section 4.2.
Also the pendulum end point in the two parts of the
initial guess is plotted.
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Figure 9: Optimal control signal, i.e., cart accelera-
tion, for path constrained problem in Section 4.2.

very large oscillations after the obstacle. It is time-
inefficient to damp these resulting pendulum oscilla-
tions because of the track and control limitations. Thus
the time-optimal solution must have the pendulum in
front of the cart when passing the obstacle. To help the
optimizer finding this solution the problem is divided
into two smaller and easier subproblems.

The first subproblem is an altered version of the
original problem (5). The elliptical constraint is re-
moved and the final constraints are set to

θ(T) = −75.52π
180 θ̇ (T) = 0

x(T) = 0.1127 ẋ(T) = 1.4
(6)

This terminal point of the optimization corresponds
to when the pendulum is precisely above the obstacle
with the pendulum leaning in the forward direction.
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Figure 10: Experimental results for swing-up prob-
lem when control trajectory applied in open loop as
described in Section 5.1. The optimal pendulum end
point trajectory is also plotted for comparison reasons.

The terminal cart velocity, ˙x, is set to a positive value
since we want the cart to have a forward motion over
the obstacle. The angular velocity of the pendulum,θ̇ ,
is set to zero which makes it possible for the pendu-
lum angle to decrease directly after passing the obsta-
cle. The terminal cart and pendulum angular velocities
are chosen intuitively to enable a fast transition from
above the obstacle to the terminal point of the original
problem (5).

The second subproblem continues from where the
first subproblem terminated. The initial conditions in
the second subproblem are the same as the terminal
constraints of the first subproblem, (6). The terminal
constraints of this second subproblem are the same as
in the original problem, (5). This means that the pen-
dulum continues on the other side of the obstacle until
it reaches the terminal point.

The resulting optimal trajectories of the two sub-
problems are then merged and given as an initial guess
when solving the original problem. Given this initial
guess, the solver converges to the optimal solution.
The resulting pendulum end point movements for the
two parts of the initial guess and for the optimal solu-
tion are found in Figure 8. The control signal for the
optimal solution is found in Figure 9. The final time
for the merged initial guess is 3.39 s while the optimal
solution has a final time of 3.34 s. The first part of
the initial guess takes 2.18 s while the second part is
performed in 1.21 s. The corresponding first and sec-
ond parts of the optimal solution take 1.94 s and 1.40 s
respectively. This means that the intuition behind the
choice of terminal constraints for the first subproblem
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Figure 11: Experimental results for path constrained
problem when control trajectory applied in open loop
as described in Section 5.1. The optimal pendulum end
point trajectory is also plotted for comparison reasons.

(6), i.e., to enable for a fast second part, is good. The
second part of the initial guess is fast and the merged
initial guess is not very far from the optimal one in
terms of the optimization objective, namely the final
time, t f .

5 Experiments on the real Pendulum

In this section the optimal control trajectories obtained
in the previous section are applied to the real system.
These experiments will serve as an evaluation of how
well the model describes the actual system and it will
show the practical applicability of optimal control tra-
jectories in a real system.

5.1 Open loop results

Figures 10 and 11 show how the real system responds
to the optimal control trajectories. The figures also
show the optimal trajectories from the previous sec-
tion for comparison reasons. The trajectories are very
similar, which means that the model of the system is
accurate.

In the optimizations it is presupposed that the ini-
tial conditions of the pendulum and cart are such that
the cart is at rest at position,x = 0, and the pendu-
lum is at rest at angleθ = 0. If the experiments are
performed with initial conditions of the pendulum that
do not satisfy the presupposed ones, i.e., if the pen-
dulum is swinging when the experiment is started, we
get results as shown in Figures 12 and 13. The mag-
nitude of the initial swings are approximately 45◦ in

these experiments. The figures show that we are far
from reaching our objectives when this kind of distur-
bances are present. To make the optimization results
usable in reality, we need feedback to take care of de-
viations from the optimal trajectories.
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Figure 12: Pendulum end point trajectory for the real
system when pendulum is swinging initially and no
feedback is used as described in 5.1.
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Figure 13: Pendulum end point trajectory for the real
system when pendulum is swinging initially and no
feedback is used as described in 5.1.

5.2 MPC-Feedback

Model Predictive Control feedback (MPC) is intro-
duced to take care of disturbances to the system. A
schematic view of how the feedback is introduced is
found in Figure 14 wherez and S are defined as in
Figure 5. In MPC a finite time-horizon optimization
problem with state and control constraints is solved in
every sample. In our setup deviations from the optimal
state and control trajectories are minimized, such that
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Figure 14: A schematic view of how the MPC-
feedback is introduced.

control magnitude and cart position constraints are not
violated.

The mathematical and implementational aspects of
the MPC-feedback is beyond the scope of this paper
and will be described in a future paper. The results
when applying the MPC-feedback to the real system
are, however, relevant to show that the optimal feed
forward trajectories must be accompanied with feed-
back to be useful in reality. Experimental results of
optimal trajectory feed-forward in combination with
MPC-feedback are visualized in Figures 15 and 16.
The experiments are performed with initial pendulum
swings. Also here the initial swings have a magnitude
of around 45◦ to be comparable to the results in the
previous section. Due to the initial swinging, the tra-
jectories are far from the optimal ones in the beginning
but the feedback takes us closer with time. If the feed-
back control authority is large enough, the original ob-
jectives of the optimizations can be achieved despite
errors in the initial conditions. The figures show that
we have enough control authority in these experiments
since we manage to swing-up the pendulum in the first
experiment and avoid the obstacle in the second exper-
iment, as desired.

6 Teaching

Optimal control of the cart-pendulum system was in-
troduced as a new laboratory exercise in the course on
Nonlinear Control and Servo systems (FRTN05) at the
Dept. of Automatic Control, Lund, in 2009, see [9].

The cart system has previously been developed as a
general module for different control experiments and
has been used as a test bed in both student and research
projects as well as in other courses [7].

The preliminary evaluation of the new computer
and laboratory exercises has been very positive from
both the students as well as from the lecturer and the
teaching assistants. Optimal control has already be-
fore played an important role in the course curriculum,
but was mainly focused on the theoretical aspects and
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Figure 15: Pendulum end point trajectory for the real
system when pendulum is swinging initially and feed-
back is used as described in 5.2.
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Figure 16: Pendulum end point trajectory for the real
system when pendulum is swinging initially and feed-
back is used as described in 5.2.

lacked from the gap between constrained-low-order-
pen-and-paper-problems and more realistic examples
and applications. Here Optimica has played an im-
portant role to bridge that gap and to complement the
previous course contents.

The new software gives the the students the possi-
bility to concentrate on the formulation of the optimal
control problem separately from the system modeling
and to experimentally evaluate how solutions change
with respect to the cost function and to the constraints.

Obtaining a numerical solution naturally raises the
question of accuracy, but also to related questions on
sensitivity to initial conditions and to discrepancies of
the model and the real plant. In the lab exercises this is
evaluated where pure feedforward solutions are com-
pared to the combination of a feedforward reference



from the optimal control problem together with feed-
back around this trajectory, similar to what has been
outlined in Sections 4 and 5.

7 Conclusions/Future Work

The second optimization problem with path con-
strained pendulum end point movements shows that
optimal control problems can be difficult to solve. Al-
though the Optimica tool is very powerful, you need to
have an understanding of the problem and sometimes
supply an initial guess to help the solver converging to
the correct solution.

The results of the Optimica optimizations are open
loop control trajectories. When applying these to a
real system, everything must be accurately modeled
and only very small disturbances maybe present to get
good results. This is however rarely the case, which
is why we need feedback that controls the actual state
trajectories towards the optimal ones. This combina-
tion of optimal feedforward and feedback has shown
to be very efficient when optimal transitions through
nonlinear dynamics are desired.

In this paper optimal trajectories are pre-calculated
using Optimica and MPC-feedback is used to stay
close to the optimal trajectories. An extension to this
work would be to instead of pre-calculating the opti-
mal trajectories, rather let an MPC-controller run with
Optimica in real time. Then the optimization problems
stated in (4) and (5) would be solved in each sample
with different initial conditions. The initial conditions
would be the measured state variables at the current
sample. The main difficulty would be to ensure fast
enough computations for this to be implementable in a
real time application.
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