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Abstract

In this paper, physical limitations on antennas are presented basedn the
holomorphic properties of the forward scattering dyadic. As a diret conse-
quence of causality and energy conservation, a forward dispersigelation for
the extinction cross section is established, and isoperimetric ineqliies for
the partial realized gain and partial directivity are derived for antennas of
arbitrary shape. Closed-form expressions for the prolate and d&te spheroids
are compared with Chu's classical result for the sphere, and the ect of invok-
ing metamaterials in the antenna design is discussed. The theory is illtrmted
by numerical simulations of a monopole antenna with a nite ground plare.

1 Introduction

Two questions of fundamental nature are addressed in this jpar. For an arbitrary
geometry, what is the upper bound on the performance of any temna enclosed
by this volume? Can electrically small broadband antennasxist unless directive
properties are sacri ced for bandwidth? The history of thes questions traces back
to Chu and Wheeler in Refs. 1 and 9 more than half a century ago. née then,
much attention has drawn to the subject and numerous paperste been published,
see Ref. 4 for a recent summary of the eld. However, as far asetlauthors know,
few successful attempts have been made to solve these protsdeigorously for other
geometries than the sphere. This restriction is mainly duetthe failure of extending
the spherical vector waves to form a set of orthogonal eigenictions on non-spherical
surfaces. In this paper, physical limitations on antennasra presented which apply
to arbitrary geometries without introducing orthogonal egenfunctions.

The present paper is based on Refs. 2, 3, and 7, and the forwaidpkrsion rela-
tion for the extinction cross section in Ref. 6. The theory haalso successfully been
applied to metamaterials in Ref. 8 to yield physical limitatons on scattering and
absorption by arti cial materials over a frequency intervd. The underlying mathe-
matical description is in uenced by the theory of dispersio relations for scattering
of waves and patrticles in Ref. 5.

2 Physical limitations on GkB and D=Q

It is advantageous to picture the schematic antenna in Fig. ftom a scattering point
of view, i.e., consider an antenna of arbitrary shape surrounded by frepace and
subject to a plane wave with time dependence " impinging in the R-direction.

The material of the antenna is assumed to be lossless and sBtithe principles of
reciprocity, linearity and time-translational invariance. The material properties are
modeled by general anisotropic and heterogeneous condiita relations in terms

of the electric and magnetic susceptibility dyadics . and ,, respectively. The
bounding volume of the antenna is naturally delimited by a rerence plane at which
a unique voltage and current relation is de ned, see Fig. 1. dte that the present
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Figure 1 : lllustration of a hypothetic antenna subject to a plane wag impinging
in the K-direction. The incident wave is perturbed by the antenna ah a scattered
eld is detected in the R-direction.

analysis is restricted to single port antennas with a frequey dependent scalar
re ection coe cient

The scattered eld caused by an incident plane wave with Fougr amplitude E o
and electric polarizationp, = E ¢5E o] has the asymptotic behavior of an outgoing
spherical wave, see Ref. 8¢.,

ékx

SR

S(k:®) Eo+ O(x ) asx!1l ;

where x denotes the position vector with respect to some origin, anfl = x=X
with x = jxj. Here, S is independent ofx and represents the scattering dyadic in
the R-direction. Introduce the scattering cross sections and the absorption cross
section , as the scattered and absorbed power divided by the incidenbwer ow
density, respectively. The principle of energy conservatn then takes the form of a
relation between the extinction cross sectiong: = s+ 5 and the imaginary part
of the complex-valued function%= p, S(k;K) p.=k?. This relation is known as
the optical theorem and states that ¢ =4 k Im %for k 2 [0; 1 ).

Since the inverse Fourier transform o8 is causal in the forward direction with
respect to time ordered eventsi.e., the forward scattered eld cannot precede the
incident eld, it can be shown that %is a holomorphic function ofk for Imk > O.
Based on the optical theorem and the static limit ofbask ! 0, Plemelj's formulae
in Ref. 5 can be used to derive a forward dispersion relationrfthe extinction cross
section. The result is

£ k) X

. K2 dk = > i i Pi (2.1)

i=e,m

wherep,, = R P, and . and |, denotes the electric and magnetic polarizability
dyadics, respectively. For details on the derivation of (2) including de nitions of
the pertinent boundary value problems for . and |, see Refs. 2 and 6.



The forward dispersion relation (2.1) can be used to establi upper bounds on
the partial realized gainG and the relative bandwidth B of the schematic antenna
in Fig. 1. In fact, for any nite interval K [0;1 ),

ext(k) a(k) — : :2 G(k)
e dk e dk = K(11 i*)

dk; (2.2)

wherel | j? represents the impedance mismatch of the antenna. In the tas
equality, it has been used that the absorption cross sectias related to the partial
realized gainas .= (1 j j?)G=k? see Ref. 2. The estimate in (2.2) is generally
not isoperimetric but can be sharpened bw priori information of the scattering
properties of the antenna. For this purpose, introduce theugntity

Z Z

a(K) ext(K) . .
K 2 dk 2 dk ; (2.3)
K K
which is related to the absorption eciency = .= ¢ Via g SUp,k - In

particular, minimum scattering antennas de ned bysup,x = 1=2 contribute with

at most an additional factor two on the right hand side of thennequality in (2.2).
Introduce the minimgm partial realized gainGg = inf ok (1 ] j2)G and the

relative bandwidth B = | dk=ky, wherek, denotes the center wave number ik .

Then the integral on the right hand side of (2.2) is estimatedrom below by
Z Z

. . G(k dk GkB 1+B?%=12 GgB
@i k(4) dk Gy = = S

« k4T k¢ (1 B2y k3 -

(2.4)
K

The inequality on the right hand side of (2.4) is motivated bythe factthat B 1

in many applications. Based on this observation, (2.2) and2(4) inserted into (2.1)

yields the fundamental inequality

k§ X

> i i Bi (2.5)

i=e;m

Gk B

The corresponding physical limitation for the partial direstivity D and the Q-factor
Q is obtained from a resonance model for the absorption crosscson, see Ref. 2.
Under the assumption of a perfectly matched antenna & = kg, the upper bound
on D=Q di ers only by a factor from (2.5), viz.,
3 X

e 2 b (2.6)
i=e;m
Recall that Gk and D both depend on the incident directionk and the electric
polarization ..

It is intriguing that it is just the static response of the antenna that bound the
guantities Gx B and D=Q. From the right hand side of (2.5) and (2.6), it is clear
that the upper bounds onGk B and D=Q are independent of any coupling between
electric and magnetic e ects. Instead, electric and magnietproperties are seen to



be treated on equal footing both in terms of material paramets and polarization
description. For non-magnetic materialsj.e., ,, = 0, the sum on the right hand
sides of (2.5) and (2.6) is simpli ed to only include electd quantities. Moreover,
since both . and , are proportional to the volumeV of the antenna, it follows
that the bounds in (2.5) and (2.6) scale ak3a®, wherea denotes the radius of, say,
the volume-equivalent sphere.

In many antenna applications, it is desirable to boundsk B and D=Q inde-
pendently of both polarization states and material paramefrs. For this purpose,
introduce the high-contrast polarizability dyadics , as the limit of either , or

n When the elements of . and |, become in nite large. From the variational
properties of . and , discussed in Ref. 6, it then follows that
3 3
Sup GeB (4% i sup o (v o @)
Be B =0 2 pepn=0 Q 2
where ; and , denote the largest and second largest eigenvalue qf, respectively.
The interpretation of (2.7) is polarization matching, i.e., the polarization of the
antenna coincides with the polarization of the incident was. For non-magnetic
material parameters, , vanishes in (2.7), and the upper bounds 06k B and D=Q
are sharpened by at most a factor of two. Recall that; and , are easily calculated
for arbitrary geometries using either the nite element metod (FEM) or the method
of moments (MoM).

3 Comparison with classical limitations

Closed-form expressions of; and , exist for the homogeneous ellipsoidsjz., | =
V=L, and , = V=L,, whereL,; and L, denotes the smallest and second smallest
gepolarizing factor, respectively. The depolarizing faots satisfy0 L 1 and

i Lj =1 and are de ned by

Z
ajaag ! ~ ds _
2 o (st@) (sta)(s+ @)(s+ )

L; = ] =1;2;3: (3.1)
Closed-form expressions of (3.1) in terms of the semi-ax&tio = min; a;=max; g
exist for the ellipsoids of revolution,i.e., the prolate (L, = L3) and oblate (L; = L>)
spheroids.

The eigenvalues ;, , and 3 (smallest eigenvalue ;3 = V=L3) are depicted in
Fig. 2 for the prolate and oblate spheroids as function of. The solid curves on the
right hand side of Fig. 2 correspond to the combined electriand magnetic case,
while the dashed curves represent pure electric material @aneters. Non-magnetic
material parameters with minimum scattering characterists, i.e., sup.,x = 1=2,
is depicted by the dotted curves. In fact, the three curves fahe prolate spheroid
in the right gure vanish as ! 0, while the corresponding curves for the oblate
spheroid approachl6=3 , 8=3 , and 4=3 , respectively.

A simple example of the upper bound o=Q in (2.7) is given by the sphere
of radius a for which ; = 5, =4 a3. In this case,D=Q is bounded from above
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Figure 2 : The eigenvalues ; (left gure) and the quotient D=Q (right gure) for
the prolate and oblate spheroids as function of the semi-axratio . Note the
normalization with the volume V; of the smallest circumscribing sphere.

by 4k3a3, which is sharper than the classical limitation6k3a® when both TE- and
TM-polarizations are present, see Ref. 4. For omni-directi@al antennas with non-
magnetic material parameters, the upper bound oD=Q is still slightly sharper than
Chu's limit 3k3a®=2 in Ref. 1 when minimum scattering characteristics (MSA) are
assumed. Recall however that the classical resubg3a® and 3k3a®=2 are restricted
to the sphere in the limit askpa! 0, which is not the case for the theory set forth
in this paper.

4 The e ect of metamaterials

The fact that (2.5) and (2.6) are independent of any temporatlispersion implies
that there is no di erence in the upper bounds ofGx B and D=Q if metamateri-
als are invoked in the antenna design instead of ordinary matals with identical
static material parameters. In fact, it is well known that passive metamaterials are
temporal dispersive since the Kramers-Kronig relations ipty that lim,, ¢+ (')
and lim,, o« ,(!) elementwise are non-negative in the absence of a condudyivi
term, see Ref. 8. When an isotropic conductivity term&=! o (scalar conductivity
& >0 independent of! ) is present in , the Kramers-Kronig relations is modi ed
due to the singular behavior of . in the static limit. In the presence of a conduc-
tivity term, the analysis in Ref. 8 shows that the right hand sile of (2.5) and (2.6)
instead should be evaluated in the limit as the eigenvalues o, approach in nity
independently of .. Metamaterials may have the ability to lower the resonance
frequency, but from the point of view of maximizingGx B and D=Q, such materials
are believed to be of limited use.
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Figure 3 : The extinction and absorption cross section for the monop®m antenna
(left gure) and the corresponding absorption e ciency (right gure). The di erent
curves in the left gure correspond to a MoM solution (solid arves), Q-factor ap-
proximation (dashed curves), and limitation on the extincton cross section (shaded
box).

5 A numerical example: the monopole antenna

The monopole antenna in Fig. 3 with a wire ground plane is usdd illustrate the
physical limitations introduced in Sec. 2. A monopole antara behaves similar to a
dipole antenna and the method of images can be used to analyke antenna if the
ground plane is su ciently large, see Ref. 3. Here, a monopoéntenna with height
*and ground plane radius'=2 is considered. The wires are cylindrical with radius
2,5 10 . A MoM solution together with a gap feed model is used to deterine
the cross sections and impedance of the antenna.

The antenna is rst considered as a passive scatterer loadedth 25 in the gap
feed. The extinction and absorption cross sections for andident wave polarized
matched at =90 are depicted in the left gure in Fig. 3. It is observed that the
antenna is resonant for  0:27 , where = 2 =k denotes the wavelength in free
space. The corresponding absorption e ciency is depictechahe right hand side of
Fig. 3. It is observed that 0:5 at the resonance frequency, withy  0:5 for
"= 2 [0;1]. Note that the rather small ground plane gives a dipole-likeadiation
pattern at the quarter wavelength resonance.

The maximal gain, the partial gain at = 90 , and the partial realized gain at

=90 for the antenna are depicted in the left gure in Fig. 4. At theresonance
frequency, it is observed that the gain (and directivity) isl:52 and that the radiation
resistance i25 . The Q-factor is estimated toQ = 22 by numerical di erentiation
of the re ection coe cient. The MoM solution is also used to cetermine the forward
scattering properties of the antenna in terms of the extinabn volume %on the right
hand side of Fig. 4.

The physical limitations in (2.7) require calculation of tte eigenvalues; and ».
An electrostatic MoM simulation of the monopole antenna wh a ground plane in
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Figure 4 : The maximal gain, the partial gain at = 90 , and the partial real-

ized gain at =90 (left gure), and the extinction volume %(right gure) for the
monopole antenna. The di erent curves in the right gure corespond to a MoM
solution (solid curves) and Q-factor approximation (dashe curves). The low fre-
guency estimates of the monopole antenna with wire groundapie is indicated by
the cross.

the form of a circular disk yields ; = 0:2°2 and henceQ 19if D = 1:52 and

k = 0:5are used in (2.7). Note that , vanishes from the upper bounds in (2.7)
since no magnetic materials are present. As the circular gnad plane contains more
material than the wire ground plane it is clear that ; for the monopole antenna
with wire ground plane is smaller than ; for the corresponding antenna with circular
disk ground plane,cf., the variational results in Ref. 6. The eigenvalue; for the
monopole with the wire ground plane can either be determinday an electrostatic
MoM solution or estimated by the forward dispersion relatio (2.1). The latter
method yields ; 0:183, and assuming ; =0:18 3 in (2.7) impliesQ 22

In Figs. 3 and 4 it is observed that the single resonance modelashed curves)

with Q = 22 is a good approximation of the cross sections, extinction kmne, and
partial realized gain. Note also that the dipole antenna haa circumscribing sphere
with ka > 1 and is therefore not considered electrically small accordj to the
classical limitations in Ref. 1. In summary, the monopole asnhna with wire ground
plane show excellent agreement with the theory introducea iSec. 2.

6 Conclusion

In this paper, physical limitations on reciprocal antennaf arbitrary shape are
presented based on the holomorphic properties of the forwdascattering dyadic.
Upper bounds onGk B and D=Q are derived in terms of the electric and magnetic
polarizability dyadics, .and ,, respectively. Since these bounds are proportional
to the volume of the antenna, it is clear that for electricalf small antennas, partial
realized gain or partial directivity must be sacri ced for andwidth or Q-factor.



Based on the limitations, it is also concluded that metamatgls and other exotic
material models do not contribute to the upper bounds oG B and D=Q in any
larger extent than naturally formed substances.

The inequalities introduced in this paper are isoperimetti in the sense that
equality in (2.5) and (2.6) hold for some physical antennag-or example, it is well
known that the impedance of a cylindrical dipole antenna psgs a reversed logarith-
mic singularity as the radius of the cylinder vanishes. In ReR, this singularity is
shown to coincide with the corresponding behavior of; for the prolate spheroid as

I 0. In fact, numerical simulations of the dipole antenna in Ref3 show excellent
agreement with the bounds presented in this paper. The pregelimitations are
believed to be isoperimetric for a large class of antennasaifpriori information of

k from antenna simulations is taken into account.

The analysis in this paper generalizes in many aspects theassical results by
Chu and Wheeler in Refs. 1 and 9. The main advantages of the newrfmlation
are sixfold: 1) they hold for arbitrary geometries; 2) they g formulated both in
terms of gain and bandwidth as well as directivity and Q-fadar; 3) they include
polarization e ects with applications to diversity in MIMO communication; 4) they
successfully separate electric and magnetic antenna projpes in terms of the nature
of the intrinsic materials; 5) they are isoperimetric; 6)a priori information about
the scattering characteristics in the form of x improves the bounds.
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