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Abstract

In this paper, physical limitations on antennas are presented basedon the
holomorphic properties of the forward scattering dyadic. As a direct conse-
quence of causality and energy conservation, a forward dispersion relation for
the extinction cross section is established, and isoperimetric inequalities for
the partial realized gain and partial directivity are derived for antennas of
arbitrary shape. Closed-form expressions for the prolate and oblate spheroids
are compared with Chu's classical result for the sphere, and the e�ect of invok-
ing metamaterials in the antenna design is discussed. The theory is illustrated
by numerical simulations of a monopole antenna with a �nite ground plane.

1 Introduction

Two questions of fundamental nature are addressed in this paper. For an arbitrary
geometry, what is the upper bound on the performance of any antenna enclosed
by this volume? Can electrically small broadband antennas exist unless directive
properties are sacri�ced for bandwidth? The history of these questions traces back
to Chu and Wheeler in Refs. 1 and 9 more than half a century ago. Since then,
much attention has drawn to the subject and numerous papers have been published,
see Ref. 4 for a recent summary of the �eld. However, as far as the authors know,
few successful attempts have been made to solve these problems rigorously for other
geometries than the sphere. This restriction is mainly due to the failure of extending
the spherical vector waves to form a set of orthogonal eigenfunctions on non-spherical
surfaces. In this paper, physical limitations on antennas are presented which apply
to arbitrary geometries without introducing orthogonal eigenfunctions.

The present paper is based on Refs. 2, 3, and 7, and the forward dispersion rela-
tion for the extinction cross section in Ref. 6. The theory hasalso successfully been
applied to metamaterials in Ref. 8 to yield physical limitations on scattering and
absorption by arti�cial materials over a frequency interval. The underlying mathe-
matical description is in�uenced by the theory of dispersion relations for scattering
of waves and particles in Ref. 5.

2 Physical limitations on GK B and D=Q

It is advantageous to picture the schematic antenna in Fig. 1from a scattering point
of view, i.e., consider an antenna of arbitrary shape surrounded by free space and
subject to a plane wave with time dependencee� i!t impinging in the k̂ -direction.
The material of the antenna is assumed to be lossless and satisfy the principles of
reciprocity, linearity and time-translational invariance. The material properties are
modeled by general anisotropic and heterogeneous constitutive relations in terms
of the electric and magnetic susceptibility dyadics� e and � m, respectively. The
bounding volume of the antenna is naturally delimited by a reference plane at which
a unique voltage and current relation is de�ned, see Fig. 1. Note that the present
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Figure 1 : Illustration of a hypothetic antenna subject to a plane wave impinging
in the k̂ -direction. The incident wave is perturbed by the antenna and a scattered
�eld is detected in the x̂ -direction.

analysis is restricted to single port antennas with a frequency dependent scalar
re�ection coe�cient � .

The scattered �eld caused by an incident plane wave with Fourier amplitude E 0

and electric polarizationp̂e = E 0=jE 0j has the asymptotic behavior of an outgoing
spherical wave, see Ref. 8,i.e.,

E s =
eikx

x
S(k; x̂ ) � E 0 + O(x � 2) as x ! 1 ;

where x denotes the position vector with respect to some origin, and̂x = x =x
with x = jx j. Here, S is independent ofx and represents the scattering dyadic in
the x̂ -direction. Introduce the scattering cross section� s and the absorption cross
section � a as the scattered and absorbed power divided by the incident power �ow
density, respectively. The principle of energy conservation then takes the form of a
relation between the extinction cross section� ext = � s + � a and the imaginary part
of the complex-valued function%= p̂�

e � S(k; k̂ ) � p̂e=k2. This relation is known as
the optical theorem and states that� ext = 4�k Im %for k 2 [0; 1 ).

Since the inverse Fourier transform ofS is causal in the forward direction with
respect to time ordered events,i.e., the forward scattered �eld cannot precede the
incident �eld, it can be shown that %is a holomorphic function ofk for Im k > 0.
Based on the optical theorem and the static limit of%ask ! 0, Plemelj's formulae
in Ref. 5 can be used to derive a forward dispersion relation for the extinction cross
section. The result is

Z 1

0

� ext (k)
k2

dk =
�
2

X

i = e,m

p̂�
i � 
 i � p̂ i ; (2.1)

wherep̂m = k̂ � p̂e, and 
 e and 
 m denotes the electric and magnetic polarizability
dyadics, respectively. For details on the derivation of (2.1) including de�nitions of
the pertinent boundary value problems for
 e and 
 m, see Refs. 2 and 6.
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The forward dispersion relation (2.1) can be used to establish upper bounds on
the partial realized gainG and the relative bandwidth B of the schematic antenna
in Fig. 1. In fact, for any �nite interval K � [0; 1 ),

Z 1

0

� ext (k)
k2

dk �
Z

K

� a(k)
k2

dk = �
Z

K
(1 � j � j2)

G(k)
k4

dk; (2.2)

where 1 � j � j2 represents the impedance mismatch of the antenna. In the last
equality, it has been used that the absorption cross sectionis related to the partial
realized gain as� a = � (1 � j � j2)G=k2, see Ref. 2. The estimate in (2.2) is generally
not isoperimetric but can be sharpened bya priori information of the scattering
properties of the antenna. For this purpose, introduce the quantity

� K =
Z

K

� a(k)
k2

dk
� Z

K

� ext (k)
k2

dk ; (2.3)

which is related to the absorption e�ciency � = � a=� ext via � K � supk2 K � . In
particular, minimum scattering antennas de�ned bysupk2 K � = 1=2 contribute with
at most an additional factor two on the right hand side of the inequality in (2.2).

Introduce the minimum partial realized gainGK = inf k2 K (1 � j � j2)G and the
relative bandwidth B =

R
K dk=k0, wherek0 denotes the center wave number inK .

Then the integral on the right hand side of (2.2) is estimatedfrom below by
Z

K
(1 � j � j2)

G(k)
k4

dk � GK

Z

K

dk
k4

=
GK B

k3
0

1 + B 2=12
(1 � B 2=4)3

�
GK B

k3
0

: (2.4)

The inequality on the right hand side of (2.4) is motivated bythe fact that B � 1
in many applications. Based on this observation, (2.2) and (2.4) inserted into (2.1)
yields the fundamental inequality

GK B �
k3

0

2

X

i =e ;m

p̂�
i � 
 i � p̂ i : (2.5)

The corresponding physical limitation for the partial directivity D and the Q-factor
Q is obtained from a resonance model for the absorption cross section, see Ref. 2.
Under the assumption of a perfectly matched antenna atk = k0, the upper bound
on D=Q di�ers only by a factor � from (2.5), viz.,

D
Q

�
k3

0

2�

X

i =e ;m

p̂�
i � 
 i � p̂ i : (2.6)

Recall that GK and D both depend on the incident directionk̂ and the electric
polarization p̂e.

It is intriguing that it is just the static response of the antenna that bound the
quantities GK B and D=Q. From the right hand side of (2.5) and (2.6), it is clear
that the upper bounds onGK B and D=Q are independent of any coupling between
electric and magnetic e�ects. Instead, electric and magnetic properties are seen to
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be treated on equal footing both in terms of material parameters and polarization
description. For non-magnetic materials,i.e., 
 m = 0, the sum on the right hand
sides of (2.5) and (2.6) is simpli�ed to only include electric quantities. Moreover,
since both 
 e and 
 m are proportional to the volumeV of the antenna, it follows
that the bounds in (2.5) and (2.6) scale ask3

0a3, wherea denotes the radius of, say,
the volume-equivalent sphere.

In many antenna applications, it is desirable to boundGK B and D=Q inde-
pendently of both polarization states and material parameters. For this purpose,
introduce the high-contrast polarizability dyadics
 1 as the limit of either 
 e or

 m when the elements of� e and � m become in�nite large. From the variational
properties of
 e and 
 m discussed in Ref. 6, it then follows that

sup
p̂e�p̂m =0

GK B �
k3

0

2
(
 1 + 
 2); sup

p̂e�p̂m =0

D
Q

�
k3

0

2�
(
 1 + 
 2); (2.7)

where
 1 and 
 2 denote the largest and second largest eigenvalue of
 1 , respectively.
The interpretation of (2.7) is polarization matching, i.e., the polarization of the
antenna coincides with the polarization of the incident wave. For non-magnetic
material parameters,
 2 vanishes in (2.7), and the upper bounds onGK B and D=Q
are sharpened by at most a factor of two. Recall that
 1 and 
 2 are easily calculated
for arbitrary geometries using either the �nite element method (FEM) or the method
of moments (MoM).

3 Comparison with classical limitations

Closed-form expressions of
 1 and 
 2 exist for the homogeneous ellipsoids,viz., 
 1 =
V=L1 and 
 2 = V=L2, where L1 and L2 denotes the smallest and second smallest
depolarizing factor, respectively. The depolarizing factors satisfy 0 � L j � 1 andP

j L j = 1 and are de�ned by

L j =
a1a2a3

2

Z 1

0

ds

(s + a2
j )

p
(s + a2

1)(s + a2
2)(s + a2

3)
; j = 1; 2; 3: (3.1)

Closed-form expressions of (3.1) in terms of the semi-axis ratio � = min j aj =maxj aj

exist for the ellipsoids of revolution,i.e., the prolate (L2 = L3) and oblate (L1 = L2)
spheroids.

The eigenvalues
 1, 
 2 and 
 3 (smallest eigenvalue
 3 = V=L3) are depicted in
Fig. 2 for the prolate and oblate spheroids as function of� . The solid curves on the
right hand side of Fig. 2 correspond to the combined electricand magnetic case,
while the dashed curves represent pure electric material parameters. Non-magnetic
material parameters with minimum scattering characteristics, i.e., supk2 K � = 1=2,
is depicted by the dotted curves. In fact, the three curves for the prolate spheroid
in the right �gure vanish as � ! 0, while the corresponding curves for the oblate
spheroid approach16=3� , 8=3� , and 4=3� , respectively.

A simple example of the upper bound onD=Q in (2.7) is given by the sphere
of radius a for which 
 1 = 
 2 = 4�a 3. In this case,D=Q is bounded from above
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Figure 2 : The eigenvalues
 j (left �gure) and the quotient D=Q (right �gure) for
the prolate and oblate spheroids as function of the semi-axis ratio � . Note the
normalization with the volume Vs of the smallest circumscribing sphere.

by 4k3
0a3, which is sharper than the classical limitation6k3

0a3 when both TE- and
TM-polarizations are present, see Ref. 4. For omni-directional antennas with non-
magnetic material parameters, the upper bound onD=Q is still slightly sharper than
Chu's limit 3k3

0a3=2 in Ref. 1 when minimum scattering characteristics (MSA) are
assumed. Recall however that the classical results6k3

0a3 and 3k3
0a3=2 are restricted

to the sphere in the limit ask0a ! 0, which is not the case for the theory set forth
in this paper.

4 The e�ect of metamaterials

The fact that (2.5) and (2.6) are independent of any temporaldispersion implies
that there is no di�erence in the upper bounds ofGK B and D=Q if metamateri-
als are invoked in the antenna design instead of ordinary materials with identical
static material parameters. In fact, it is well known that passive metamaterials are
temporal dispersive since the Kramers-Kronig relations imply that lim ! ! 0+ � e(! )
and lim ! ! 0+ � m(! ) elementwise are non-negative in the absence of a conductivity
term, see Ref. 8. When an isotropic conductivity termi&=!� 0 (scalar conductivity
& > 0 independent of! ) is present in � e, the Kramers-Kronig relations is modi�ed
due to the singular behavior of� e in the static limit. In the presence of a conduc-
tivity term, the analysis in Ref. 8 shows that the right hand side of (2.5) and (2.6)
instead should be evaluated in the limit as the eigenvalues of � e approach in�nity
independently of � m. Metamaterials may have the ability to lower the resonance
frequency, but from the point of view of maximizingGK B and D=Q, such materials
are believed to be of limited use.
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Figure 3 : The extinction and absorption cross section for the monopole antenna
(left �gure) and the corresponding absorption e�ciency (right �gure). The di�erent
curves in the left �gure correspond to a MoM solution (solid curves), Q-factor ap-
proximation (dashed curves), and limitation on the extinction cross section (shaded
box).

5 A numerical example: the monopole antenna

The monopole antenna in Fig. 3 with a wire ground plane is usedto illustrate the
physical limitations introduced in Sec. 2. A monopole antenna behaves similar to a
dipole antenna and the method of images can be used to analyzethe antenna if the
ground plane is su�ciently large, see Ref. 3. Here, a monopoleantenna with height
` and ground plane radius̀ =2 is considered. The wires are cylindrical with radius
2:5 � 10� 5`. A MoM solution together with a gap feed model is used to determine
the cross sections and impedance of the antenna.

The antenna is �rst considered as a passive scatterer loadedwith 25 
 in the gap
feed. The extinction and absorption cross sections for an incident wave polarized
matched at � = 90� are depicted in the left �gure in Fig. 3. It is observed that the
antenna is resonant for̀ � 0:27� , where � = 2�=k denotes the wavelength in free
space. The corresponding absorption e�ciency is depicted on the right hand side of
Fig. 3. It is observed that � � 0:5 at the resonance frequency, with� K � 0:5 for
`=� 2 [0; 1]. Note that the rather small ground plane gives a dipole-likeradiation
pattern at the quarter wavelength resonance.

The maximal gain, the partial gain at � = 90� , and the partial realized gain at
� = 90� for the antenna are depicted in the left �gure in Fig. 4. At the resonance
frequency, it is observed that the gain (and directivity) is1:52and that the radiation
resistance is25 
 . The Q-factor is estimated toQ = 22 by numerical di�erentiation
of the re�ection coe�cient. The MoM solution is also used to determine the forward
scattering properties of the antenna in terms of the extinction volume%on the right
hand side of Fig. 4.

The physical limitations in (2.7) require calculation of the eigenvalues
 1 and 
 2.
An electrostatic MoM simulation of the monopole antenna with a ground plane in
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Figure 4 : The maximal gain, the partial gain at � = 90� , and the partial real-
ized gain at � = 90� (left �gure), and the extinction volume %(right �gure) for the
monopole antenna. The di�erent curves in the right �gure correspond to a MoM
solution (solid curves) and Q-factor approximation (dashed curves). The low fre-
quency estimates of the monopole antenna with wire ground plane is indicated by
the cross.

the form of a circular disk yields
 1 = 0:2`3 and henceQ � 19 if D = 1:52 and
� K = 0:5 are used in (2.7). Note that
 2 vanishes from the upper bounds in (2.7)
since no magnetic materials are present. As the circular ground plane contains more
material than the wire ground plane it is clear that 
 1 for the monopole antenna
with wire ground plane is smaller than
 1 for the corresponding antenna with circular
disk ground plane,cf., the variational results in Ref. 6. The eigenvalue
 1 for the
monopole with the wire ground plane can either be determinedby an electrostatic
MoM solution or estimated by the forward dispersion relation (2.1). The latter
method yields
 1 � 0:18̀ 3, and assuming
 1 = 0:18̀ 3 in (2.7) implies Q � 22.

In Figs. 3 and 4 it is observed that the single resonance model(dashed curves)
with Q = 22 is a good approximation of the cross sections, extinction volume, and
partial realized gain. Note also that the dipole antenna hasa circumscribing sphere
with ka > 1 and is therefore not considered electrically small according to the
classical limitations in Ref. 1. In summary, the monopole antenna with wire ground
plane show excellent agreement with the theory introduced in Sec. 2.

6 Conclusion

In this paper, physical limitations on reciprocal antennasof arbitrary shape are
presented based on the holomorphic properties of the forward scattering dyadic.
Upper bounds onGK B and D=Q are derived in terms of the electric and magnetic
polarizability dyadics, 
 e and 
 m, respectively. Since these bounds are proportional
to the volume of the antenna, it is clear that for electrically small antennas, partial
realized gain or partial directivity must be sacri�ced for bandwidth or Q-factor.
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Based on the limitations, it is also concluded that metamaterials and other exotic
material models do not contribute to the upper bounds ofGK B and D=Q in any
larger extent than naturally formed substances.

The inequalities introduced in this paper are isoperimetric in the sense that
equality in (2.5) and (2.6) hold for some physical antennas.For example, it is well
known that the impedance of a cylindrical dipole antenna posses a reversed logarith-
mic singularity as the radius of the cylinder vanishes. In Ref. 2, this singularity is
shown to coincide with the corresponding behavior of
 1 for the prolate spheroid as
� ! 0. In fact, numerical simulations of the dipole antenna in Ref.3 show excellent
agreement with the bounds presented in this paper. The present limitations are
believed to be isoperimetric for a large class of antennas ifa priori information of
� K from antenna simulations is taken into account.

The analysis in this paper generalizes in many aspects the classical results by
Chu and Wheeler in Refs. 1 and 9. The main advantages of the new formulation
are sixfold: 1) they hold for arbitrary geometries; 2) they are formulated both in
terms of gain and bandwidth as well as directivity and Q-factor; 3) they include
polarization e�ects with applications to diversity in MIMO communication; 4) they
successfully separate electric and magnetic antenna properties in terms of the nature
of the intrinsic materials; 5) they are isoperimetric; 6)a priori information about
the scattering characteristics in the form of� K improves the bounds.
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