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Abstract

In the wake of the arrival of cloud computing, future applications are poised to be-
come more resilient and adaptive by embracing elasticity in an osmotic manner.
Although cloud computing is a strong attractor for application developers, there

are still unconquered performance frontiers. Latency-sensitive and mission-critical ap-
plications make up a significant portion of all software systems, and their owners are
eager to reap the benefits of cloud computing. However, they are hindered by signific-
ant delay, jitter in the delay, and relatively low resilience when operating on traditional,
distant, cloud data centres.

Fog computing is emerging as a remedy. Fog computing is a heterogeneous hyper-
distributed cloud infrastructure paradigm, ranging from small compute nodes close to
the end-users to traditional distant data centres. With greater proximity to the end-
users, delay and jitter in the delay can be reduced, and intermediate network reliability
improved. Additionally, with increased heterogeneity of resources, applications have
a richer tapestry of resources to take advantage of for their objectives. However, man-
aging and taking advantage of this heterogeneity in resources and objectives is a chal-
lenge for both the infrastructure providers and application owners alike. Only where to
place and scale application components and how to manage system resources to meet
the objectives of both parties, is non-trivial. Application placement implies elaborate
optimisation objectives, hard-to-find solutions, and operational conflicts.

The objective of this thesis is to investigate the performance-related properties of fog
computing, how such an infrastructure can be managed while applications can osmotic-
ally take advantage of the infrastructure, and what Fog computing’s potential practical
performance gains are. These are fundamental topics that need to be answered for pro-
viders and application owners alike to be able to invest in fog computing. In general
terms, the work in this thesis seeks the trade-offs between infrastructure, applications,
and software platform in contrast to the traditional cloud offering.



The thesis provides modelling and simulation tools for evaluating the performance
and feasibility of Fog computing. Based on which, the thesis goes on to propose
holistic infrastructure management algorithms. The requirements of latency-sensitive
and mission-critical applications and use cases are discussed for a fog computing
paradigm. These requirements are then translated to Fifth Generation Wireless Spe-
cifications (5G) Massive Multiple Input Multiple Output (MIMO) specifications. An
original 5G-based fog computing test-bed for time-sensitive and mission-critical ap-
plications is implemented. The test-bed is used to evaluate the potential application
performance gains of fog computing and to what extent the applications can practic-
ally take advantage of a fog infrastructure. The thesis also investigates the architecture
of the applications that are proposed to benefit from fog computing and how they per-
form in traditional cloud offerings.

The included works show that fog computing indeed has a performance advantage
over the traditional distant cloud, not only in latency but also in robustness. The be-
nefits of 5G on a time-sensitive application deployed in a fog computing infrastructure
are shown to be significant. It is also shown that a fog computing infrastructure with a
high degree of heterogeneity and with multiple objectives can be successfully managed
scalably. Additionally, the thesis sheds some light on the challenges of implementing
latency-sensitive and mission-critical applications with traditional cloud service offer-
ings.



Contents

Contents v

Preface xi

Acknowledgments xv

1 Introduction 1
1.1 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 What makes a cloud . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 High-level concerns . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 Who is the cloud for today? . . . . . . . . . . . . . . . . . . . 11

1.2 Tomorrow’s applications and the cloud frontier . . . . . . . . . . . . 12
1.2.1 Emerging application types . . . . . . . . . . . . . . . . . . . 12
1.2.2 Latency and uncertainty challenges . . . . . . . . . . . . . . . 14

1.3 Fog computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Infrastructure convergence and Fog computing attractors . . . 21
1.3.2 Elasticity in the fog and applications . . . . . . . . . . . . . . 24
1.3.3 Fog computing detractors . . . . . . . . . . . . . . . . . . . . 25

I Modelling and managing a Fog computing infrastructure 27

2 Mobility 29



2.1 Targeted system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Targeted scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Application model . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Network model and topology . . . . . . . . . . . . . . . . . . 31
2.3.3 Mobility model . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Data Center (DC) model . . . . . . . . . . . . . . . . . . . . 32

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 Waiting time degradation . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Session and Virtual Machine (VM) migration . . . . . . . . . 35
2.5.3 VM migration time . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.4 Request migration . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.5 Session migration versus node residency time . . . . . . . . . 37

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Modelling and system architecture 39
3.1 Existing Fog computing models . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Workload Models . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Set-up Models . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Costs Models . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Fog computing Meta-model . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Workload Model . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Objectives Model . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Simulation showcase . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Centralised Fog computing resource management 53
4.1 Resource Management Challenges . . . . . . . . . . . . . . . . . . 54

4.1.1 Service paradigm . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 Resource management objectives . . . . . . . . . . . . . . . . 55
4.1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4.2 Extended Fog model . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Data centre Model . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Application Model . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 User model . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Optimisation Formulation . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Resource utilisation metrics and constraints . . . . . . . . . . 60
4.3.2 Optimisation problem . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Proposed Application Placement Method . . . . . . . . . . . . . . . 63
4.4.1 Exhaustive search . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Iterative local search . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Re-evaluation interval . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Evaluation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Application Demand . . . . . . . . . . . . . . . . . . . . . . 67
4.5.3 Infrastructure and topology . . . . . . . . . . . . . . . . . . . 68
4.5.4 Application types . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.5 Placement algorithm parametrisation . . . . . . . . . . . . . . 69
4.5.6 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6.1 Workload scenarios . . . . . . . . . . . . . . . . . . . . . . . 70
4.6.2 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.3 Application types . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.4 Placement algorithms . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.1 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.2 Round Trip Time (RTT) . . . . . . . . . . . . . . . . . . . . . 75
4.7.3 Resource utilisation . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8.1 Replica placement . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8.2 CDN and caching . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8.3 Inter-and-Intra data centre VM-placement . . . . . . . . . . . 79

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Distributed Fog computing resource management 83



5.1 Extended Fog computing model . . . . . . . . . . . . . . . . . . . . 83
5.1.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.2 Data centre model . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.3 Network model . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.4 Application model . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Distributed resource management algorithm . . . . . . . . . . . . . 86
5.2.1 Common objective function . . . . . . . . . . . . . . . . . . . 87
5.2.2 Data centre agent . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Application agent . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 Data Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.4 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.5 Workload and applications . . . . . . . . . . . . . . . . . . . 94
5.3.6 Comparison methods . . . . . . . . . . . . . . . . . . . . . . 95
5.3.7 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.2 Step response . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.3 Allocation distribution . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

II Smart cities & Internet of Things 103

6 Realising smart city services with Internet of Things (IoT) and
Function-as-a-Service (FaaS) 105
6.1 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Targeted system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.1 System components . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 System properties . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.1 Amazon Web Services (AWS) Components . . . . . . . . . . 110
6.3.2 Testbed Architecture . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3 Simulated testbed architecture . . . . . . . . . . . . . . . . . 114



6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.1 Representative Scenario . . . . . . . . . . . . . . . . . . . . . 115
6.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Bounding shared state inconsistency in distributed IoT systems 119
7.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Cross-Layer Controller . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.2 Queuing dynamics . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.3 Lyapunov drift . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.4 Controller design . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.5 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.1 Comparison policies . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.3 System parameter values . . . . . . . . . . . . . . . . . . . . 128
7.3.4 Input values . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4.1 Expected deferred state traffic . . . . . . . . . . . . . . . . . . 130
7.4.2 Stability and system utility . . . . . . . . . . . . . . . . . . . 131
7.4.3 Choice of V . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4.4 Quantifying the trade-off . . . . . . . . . . . . . . . . . . . . 132

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

III 5G and IoT 135

8 Ultra-Reliable and Low-Latency Communication
for the mission-critical applications 137
8.1 Bilateral tele-operation . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2.1 The role of massive MIMO . . . . . . . . . . . . . . . . . . . 141
8.2.2 Performance of massive MIMO . . . . . . . . . . . . . . . . . 141

8.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.1 System view . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



8.3.2 Latency and reliability . . . . . . . . . . . . . . . . . . . . . . 146
8.3.3 Precoding design . . . . . . . . . . . . . . . . . . . . . . . . 147

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

IV A Fog computing test-bed 149

9 A 5G edge cloud test-bed 151
9.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2 Research test-bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2.1 5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2.2 Fog computing and network . . . . . . . . . . . . . . . . . . . 155
9.2.3 Cloud native application framework . . . . . . . . . . . . . . 156

9.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.3.1 Control application . . . . . . . . . . . . . . . . . . . . . . . 157
9.3.2 System characteristics . . . . . . . . . . . . . . . . . . . . . . 160
9.3.3 System adaptability . . . . . . . . . . . . . . . . . . . . . . . 161
9.3.4 Tightened constraints . . . . . . . . . . . . . . . . . . . . . . 162

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 167



Preface

This doctoral thesis concludes my work as a PhD candidate at the Department of
Electrical and Information Technology at Lund University. The material has
either been presented at international conferences or published in international

journals. The main overarching contributions presented in this thesis are:

1. Performance modelling and simulation tools for evaluating Fog computing in-
frastructures.

2. Scalable multi-objective dynamic resource management algorithms.

3. Scheduling algorithms and 5G radio configurations for massive wireless IoT.

4. A test-bed for evaluating opportunities and challenges with time-sensitive and
mission-critical in Fog computing.

The publications below are included in the thesis and are grouped by the chapter
they contribute to.

Part I - Modelling and managing a Fog computing infrastructure

1. William Tärneberg and Maria Kihl. Workload displacement and
mobility in an omnipresent cloud topology. In Proc. SoftCom
(Split, Croatia). IEEE, 2014.

Contributions: Problem definition, model definition, simulation
environment, experiments, and analysis.

2. Jakub Krzywda, William Tärneberg, Per-Olov Östberg, Maria Kihl,
and Erik Elmroth. Telco clouds: Modelling and simulation. In
Proc. CLOSER (Lisbon, Portugal). INSTICC, 2015.

xi



Contributions: Simulation environment, experiments, and analysis.

3. William Tärneberg, Amardeep Mehta, Eddie Wadbro, Johan Tordsson,
Johan Eker, Maria Kihl, and Erik Elmroth. Dynamic application
placement in the mobile cloud network. Elsevier, Future Gen-
eration Computer Systems, 2016.

Contributions: System model, simulation environment, experiments,
and analysis. Problem definition and algorithm development ef-
forts shared equally between authors.

4. William Tärneberg, Alessandro Papadopoulos, Amardeep Mehta,
Johan Tordsson, and Maria Kihl. Distributed approach to the
holistic resource management of a mobile cloud network. In
Proc. International Conference on Fog and Edge Computing
(Madrid, Spain). IEEE, 2017.

Contributions: Problem definition, system model, algorithm de-
velopment, simulation environment, and analysis.

Part II - Smart cities & Internet of Things

6. William Tärneberg, Vishal Chandrasekaran, and Marty Humphrey.
Experiences creating a framework for smart traffic control using
aws iot. In 9th International Conference on Utility and Cloud
Computing, International Conference on Utility and Cloud Com-
puting (UCC) (Changhai, China). IEEE/ACM, 2016.

Contributions: Problem definition, system design, and implement-
ation. Evaluation effort shared equally between authors.

7. William Tärneberg, Mehmet Karaca, Anders Robertsson, and Maria
Kihl. Cross-layer control for bounded shared state inconsistency
in wireless iot devices. In Proc. Conference on Decision and
Control (Melbourne, Australia). IEEE, 2017.

Contributions: Problem definition, system model, simulation en-
vironment, experiments, and evaluation. Algorithm develop-
ment effort shared equally between authors.

Part III - 5G and IoT

8. William Tärneberg, Mehmet Karaca, Anders Robertsson, Fredrik
Tufvesson, and Maria Kihl. Utilizing massive mimo for the
tactile internet: Advantages and trade-offs. In Proc. SECON

xii



Workshops - Robotic Wireless Networks (San Diego, CA, USA).
IEEE, 2017.

Contributions: Problem definition and system reliability simula-
tion environment. Evaluation effort shared equally between au-
thors.

Part IV - A Fog computing test-bed

9. Per Skarin, William Tärneberg, Karl-Erik Årzen, and Maria Kihl.
Towards mission-critical control at the edge and over 5G. In
International Conference on Edge Computing (EDGE). IEEE,
2018.

Contributions: Wireless system integration, PID controller imple-
mentation, networking evaluation. Problem definition, system
architecture, system implementation, and system evaluation ef-
forts shared equally between authors.

Publications not included in this thesis are:

10. William Tärneberg, Amardeep Mehta, Johan Tordsson, Maria Kihl,
and Erik Elmroth. Resource management challenges for the in-
finite cloud. In 10th International Workshop on Feedback Com-
puting at CPSWeek (Seattle, WA, USA), 2015.

11. Meiyi Ma, Sarah Masud Preum, William Tärneberg, Mohsin Ahmed,
Matthey Ruiters, and John Stankovic. Detection of runtime con-
flicts among services in smart cities. In Proc. International Con-
ference on Smart Computing (St. Louis, MO, USA). IEEE, 2016.

12. Jonas Dürango, William Tärneberg, Luis Tomas, Johan Tordsson,
Maria Kihl, and Martina Maggio. A control theoretical approach
to non-intrusive geo-replication for cloud services. In Proc.
Conference on Decision and Control (Las Vegas, NV, USA). IEEE,
2016.

13. Amardeep Mehta, William Tärneberg, Cristian Klein, Johan Tordsson,
Maria Kihl, and Erik Elmroth. How beneficial are intermediate
layer data centers in mobile edge networks? In Proc. Founda-
tions and Applications of Self* Systems (Augsburg, Germany).
IEEE, 2016.

14. Stefan Höst, William Tärneberg, Per Ödling, Maria Kihl, Marco
Savi, and Massimo Tornatore. Network requirements for latency-
critical services in a full cloud deployment. In Proc. SoftCom
(Split, Croatia). IEEE, 2016.

xiii



15. Zheng Li, William Tärneberg, Maria Kihl, and Anders Robertsson.
Using a predator-prey model to explain variations of cloud spot
price. In Proc. CLOSER (Rome, Italy). INSTICC, 2016.

16. Meiyi Ma, Sarah Preum, Mohsin Ahmed, William Tärneberg, Ab-
deltawaband Hendawi, and John Stankovic. Smart city, data
sets, modeling, decision making, real-time, integrating services.
Sumbitted ACM Transactions on Cyber-Physical Systems, Feb
2018.

17. Karl-Erik Årzén, Per Skarin, William Tärneberg, and Maria Kihl.
Control of the edge cloud-an mpc example. In 1st International
Workshop on Trustworthy and Real-time Edge Computing for
Cyber-Physical Systems (Nashville, TN, USA). IEEE, 2018.

18. Lars Larsson, William Tärneberg, Cristian Klein, and Erik Elm-
roth. Quality-elasticity: Improved resource utilization, through-
put, and response times via adjusting output quality to current
operating conditions. In Submitted to International Conference
on Autonomic Computing (ICAC) (Umeå, Sweden). IEEE, 2019.

I hope you enjoy your reading.

xiv



Acknowledgements

A t this point, I have already moved on to new endeavours. Nevertheless, the ex-
periences that I have gained throughout the PhD-process and the people how
have shaped it, are still dear to me. Somehow, just the right individuals have

come into the process at just the right time. Amardeep Metha has been there from the
start to almost the very end. We have shared plenty of grief and frustration. Our work
gave me many reasons to frequent Umeå. Thank you for everything. Also, in the first
year or two, Jakub Krzywda and I quickly realised that all conferences do not always
live up to expectations, but that they can be remedied with the presence of a swimming
pool. After I had gotten started, Jonas Dürango came along and taught me about model
predictive control. A little further along in my studies, Zheng Li dropped in for a post-
doc at the department. He taught me about what constitutes an academic contribution.
Thank you, Zheng, I wished we had collaborated more than we did.

In 2016, about half way through I had the privilege of spending a good part of that
year at the University of Virginia in Charlottesville, VA, USA. What an unforgettable
experience. Visiting Professor John Stankovic’s research group was very refreshing.
Professor Stankovic, thank you for your inclusion and patience with my perspective. I
specifically also want to thank Professor Marty Humphrey for our collaboration, your
frankness, and through-provoking discussions. After returning to the department, I
began working with Per Skarin on what became the final paper in this thesis. Per is a
delight to work with, he is diligent, passionate, and he challenges me both technically
and intellectually. Thank you, Per, our work propelled me over the edge to comple-
tion. In the midst of our test-bed-building, Haorui Peng moved into Zheng’s old office.
Thank you for being a delightful office neighbour. Over the latter part my PhD stud-
ies I frequently interacted with Mohammadhassan Safavi. I truly enjoyed our cultural
exchanges and I hope we can finish all the papers we have started. At the very end of
my studies, and far too late, Lars Larsson joined the group. I don’t think we disagree

xv



on anything other than how much more competent you are than I. I miss our daily con-
versations, they have been genuinely invaluable to me personally, academically, and
professionally. I sincerely hope our paths will cross again under similar circumstances.

Because our research group was very small, I often ventured to other departments
and institutions in search for collaborations. Therefore, I would also like to thank my
friends at Umeå University and at the Department of Automatic Control, they have
been like second homes to me. I would also like to thank my supervisors, Maria Kihl
for your incredible patience, always assuming that I will make it, and your diligent pa-
per reviews. Erik Elmroth, thank you for including me in your research group and your
frankness. Martina Maggio, thank you for unknowingly giving me a new benchmark
for academic productivity. Stefan Höst and Jens Andersson, it has been great working
with you on countless teaching assignments and labs. I hope all of the material we
have produced over the years will come to good use.

As for my close friends. Shiva and Johanna, other than exquisite company, your
compassion and determination are permanent way-points on my compass. Mikael
Hellberg, you have provided me with much needed intellectual distraction. No one
can put technology in new perspectives as you do. Marcus Källgren, we got each other
through engineering school with plenty of fu along the way, thank you. My father,
Jacob Mannerstråle, and Hans-Göran Nilsson who inspired me to take up engineering
in the first place. Thank you.

No matter how unimaginative it may sound, the love from my family has shaped
my character. I can always count on their unconditional support. My mother has
given me creativity, compassion, and frugality. My father has given me critical and
analytical thinking and taught me to not give up. My sister relentlessly inspires me to
do more to increase my positive impact on society and challenges me to do more to
decrease my negative impact on this planet. Although she was not quite sure in what
field, I remember that my grandmother, on my father’s side, told me at a young age
that she had always known that I one day will study to become a researcher. I will
always remember you. My in-laws, Christel and Lars Nilsson, and Jepser Welander
have always been there for my and my wife.

Anna, my wife, I have truly enjoyed traversing the PhD-process in tandem with
you, both personally and professionally. Although our fields never quite crossed, the
lifestyle has brought us closer together like nothing else could have and has changed
us profoundly. Who you are and what you do inspires and challenges me in everything
I do. Liam, my son who rightfully takes all my attention away from this thesis. This
work is somehow both impossible and only possible with you in my life. Liam and
Anna, without you, nothing is worthwhile.

xvi



This work was funded by the Swedish Research Council (VR) under contract num-
ber C0590801, the Lund Center for Control of Complex Engineering Systems (LCCC)
also funded by (VR).

William Tärneberg
Lund, March 2019

xvii





1
Introduction

W ith the obliquity of the Internet, virtualisation, cloud computing, and cloud-
native platforms, compute capacity, which was once contained in a phys-

ical box on our desks is increasingly resembling a utility. Today, compute
resources can be accessed almost instantly in the cloud and can satisfy most applica-
tions. With this gradual change in infrastructure as developers learn to utilise it, the
type and nature of applications are evolving to solve new problems. With a modern
infrastructure, there are few reasons for applications to be built as monolithic blocks
hosted in immutable compute machines but can be devised using distributed micro-
services and scale at will to match demand. As the costs of a digitalised world are
becoming clear, forthcoming applications will no longer adhere to dated screen-based
User Interfaces (UIs) with rigid real-time performance requirements and huge over-
heads. Applications will exist omnipresently in an Internet of Things (IoT) world, be
less visible, more adaptable, and proactive to each user’s expectations, see Figure 1.1.

Staying off the cloud is increasingly indefensible. The breadth and rate of innova-
tion in services and resource management by the large cloud providers is difficult to
match by any individual organisation whose core business is not cloud computing. The
level of technological and business agility achieved with the rapid scalability of cloud
resources is unmatched by privately operated infrastructures.

Cloud computing, as realised today, is however inaccessible to time-sensitive and
mission-critical applications. Contemporary clouds are realised with distant DC ac-
cessed over the public Internet. The intermediate networks introduce delays and un-
certainty the render the cloud an infeasible habitat for time-sensitive applications such
as control loops.

Additionally, hauling vast amounts of data to a distant Data Center (DC), promptly,
can be both technically and economically infeasible. For a DC operator, Input/Output
(I/O) is a precious resource [BCH13]. Therefore, moving vast amounts of data in and
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Figure 1.1.: A smart and wireless world

out of a cloud can be costly for its users. Data-heavy IoT applications, in particular,
incur significant bandwidth usage.

The cloud can be a hostile habitat for an application. A cloud is a shared pool of
resources. Other tenants can have an impact on the performance of your application.
Cloud providers implement intricate management policies to meet their internal per-
formance goals. These policies can implicitly conflict with the tenant applications’
goals.

In this thesis, it is assumed that the success of the cloud paradigm is founded on gen-
erality and frugality. Employing bespoke hardware (HW), resource management prin-
ciples, and programming models erode the cloud’s economies of scale and elasticity. It
is therefore assumed that all applications operate in General-purpose Processor (GPP)
environments in the DC and that users access such a DC over the public Internet.

To realise the world depicted in Figure 1.1, cloud computing is getting to the point
where it needs to spatially and conceptually extend towards its users. This is generally
referred to as Fog computing. Fog computing is essentially a heterogeneous hyper-
distributed cloud infrastructure. Its resources span the Radio Base Stations (RBSs) at
the network’s edge to traditional distant DCs. With the Fog, delay and jitter in the
delay can be reduced, and reliability can be improved with proximal placement. Not
only that, with a richer tapestry of resources, applications now have a broader spectrum
of resources to satisfy their capacity needs, given any constraints, such as cost, location,
quality, and RTT.

Fog computing infrastructures are vast and intricate, managing them is non-trivial.
The underlying Fog computing platform must be able to satisfy the needs of hetero-
geneous infrastructures while managing the needs of the applications, at scale, and
staying elastic. The intermediate wired and wireless networks play an essential role in
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realising the Fog. To be successful, the Fog infrastructure must be aware of the state
of the network, while the network must be aware of the application’s needs. Further-
more, applications should be made quality elastic in order to be able to take advantage
of dynamic and heterogeneous resource offerings. The above challenges come with
non-trivial trade-offs. These challenge are the primary topics of this thesis.

This thesis addresses the challenges mentioned above with the Fog computing in
the following manner. The remainder of this chapter provides a background and an
intuition for cloud computing, its challenges, and an overview of Fog computing to
frame the scope of the thesis. Part I discusses a set of fundamental challenges with Fog
computing. Chapters 2 and 3 introduces a set of Fog computing performance models.
The models are used to study the effects of User Equipment (UE) mobility on a Fog
computing infrastructure. In extension, and primarily, the models are used to design
and evaluate two resource management algorithms for the Fog. In Chapter 4, a cent-
ralised, optimal, algorithm is provided for an upper performance bound followed by a
tractable distributed multi-objective algorithm in Chapter 5. Part II explores the chal-
lenges of designing cloud-native IoT applications. Chapter 6 presents an architecture
for an IoT-based mission-critical smart city application using existing cloud services
in a traditional cloud. The resulting evaluation reveals significant limitations and per-
formance challenges with existing platforms. In Chapter 7, a method for limiting the
amount deferred shared state information amongst a set of IoT devices over a 5G link is
presented. The addition of 5G in Fog computing is explored further in Part III. Here, the
properties of Massive MIMO are studied to argue for the trade-off and challenges with
using Massive MIMO for Ultra-Reliable and Low-Latency Communication (URLLC)
in IoT. Finally, Part IV compounds the presented work on Fog computing, IoT, and
5G. In Chapter 9, a 5G Fog computing test-bed for mission-critical and time-sensitive
IoT applications is presented. The test-bed is used to control a physical plant over 5G
with the control-loop implemented as a cloud-native IoT application and executed dis-
tributively in the Fog. Experimentation shows that the Fog can bring real performance
enhancement to mission-critical and time-sensitive IoT applications.

1.1. CLOUD COMPUTING

This thesis deals with cloud computing technologies not as they exist today but as how
they are evolving. This section gives a general introduction to cloud computing to
convey an intuition for the cloud computing dynamics and challenges addressed in this
thesis.

The term cloud computing supposedly first appeared in 1996 [Reg11], came into
fashion in the early 2000s, and has become increasingly prevalent in the 2010s. Cloud
is a debatable metaphor. The image of a cloud has for a while been used as a metaphor
for the Internet. In this context, a cloud is supposedly meant to symbolise computing
accessed over the Internet as opposed to off-line computing, i.e. local computing or
on-premise computing. As with meteorological clouds, clouds that do computing are
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vague, open to broad interpretation, distributed, and like the weather, are unpredict-
able. Recently, cloud computing has become a layman hypernym for any higher-level
software (SW) service accessed over the Internet where its customers are agnostic of
where and how the service is hosted. In contrast to for example a desktop Personal
Computer (PC) or a campus cluster, cloud computing organises computing so that a
seemingly abundant amount of resource can be accessed almost instantly. With these
properties, arguably, cloud computing promises to move us towards ubiquitous com-
puting, where computing is available, procured, and consumed as a utility.

From a technical perspective, in this thesis, we adopt the following definition of
cloud computing. Cloud computing is the spatial and temporal pooling of general-
purpose Information Technology (IT) resources and the expedient management of
those resources. The resulting abstract IT resources and services are offered publicly
or privately and are often accessed over the public Internet, like utilities, in what re-
sembles a marketplace. Typically, these resources and services are packaged with a
certain degree of abstraction, ranging from a form of a VM or container to specialised
HW to a SW platform, and anything in between. A critical technological enabler of
cloud computing has to this point been HW and Operating System (OS) virtualisa-
tion. With virtualisation, physical resources can be partitioned, shared, and isolated
into VMs. A VM can be packaged for expedient portability and replication. Recently,
container have emerged as a nimbler alternative. A cloud customer is ordinarily able
to specify the properties of the virtual resource or service it wishes to procure but is
generally unaware of the actual nature of the underlying physical resource, its physical
location, to the extent in which it is shared, or for how long it will be retained.

As with any utility, a Service Level Objective (SLO), between a cloud provider and
its customers reassures the customer that a resource superficially equivalent to that ini-
tially procured will remain available and responsive. In other words, a cloud provider
and its customer agree upon an expected Quality of Service (QoS). The cloud pro-
viders’ ability to meet these expectations is in no small part a reflection of how they
manage those resources. It is these management principles that is the primary focus
of this thesis. In contrast to off-line computing, the performance of resources and ser-
vices in a cloud are non-deterministic, fuzzily governed by the resource management
objectives of the cloud provider. Furthermore, in return for relinquishing control, a
cloud customer receives access to seemingly abundant low-cost computing resources
with little or no maintenance effort, see Figure 1.2.

An playful metaphor for cloud computing is:

’Using the cloud is like celebrating your birthday at a bar. You can en-
tertain lots of guests, and they can all get as much as they want, but it is
going to cost you. It would have been cheaper to have bought the goods
ahead of time, but if you don’t know how many guests are coming, you
would likely rather have the bar take the risk of having to deal with half-
empty bottles when it’s all said and done. Plus, it is nice to let someone
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Figure 1.2.: Cloud computing vs. off-line computing. Imagine an applic-
ation as a multidimensional blob undulating in all resource di-
mensions. In off-line computing, that blob is contained in an
immutable cage. The blob’s owner is solely responsible for the
health of the blob and cleaning up the cage. In the cloud, across
the Internet, the blob can swell and contract at will but contends
with other blobs and is chaperoned by a supervisor. The blob’s
owner needs not to worry too much about cages but gets a bill at
the end of the month.

else deal with cleaning up. However, the bar is a shared space, and your
assumption that it has an infinite resource supply may prove to be incor-
rect. In spite of this uncertainty, it is still highly preferable to having to
buy your own virtually infinite supply yourself. ’ - Lars Larsson, 2018

For clarity, in this thesis, a service is a service provided by a cloud provider. From
here onwards, a cloud is the physical and legal entity from which you procure cloud
resources. Additionally, a cloud customer is an entity that procures cloud resources
and services and has a QoS expectation on those resources and services. A cloud
provider hosts applications for cloud customers, utilising the cloud providers services
and resources.

1.1.1. WHAT MAKES A CLOUD

Clouds are realised in large-scale compute, storage, and networking warehouses re-
ferred to as DCs [BCH13]. Contemporary cloud providers excel at running and main-
taining these DCs. Essentially, DCs enable computing at economies of scale and is in
many aspects competitive to off-line computing.

A cloud’s service offering can be public, such as the services provided by AWS,
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Figure 1.3.: Progression of utility computing implementations.
At t0 the system has no load. At just after t0 the application is
subjected to a load. Here t1 >> t2 > t3 and t5 is slightly larger
than t0

Microsoft, Google, and IBM. In a so-called public cloud, anyone can seemingly indis-
criminately procure cloud resources and services at a market price. Private clouds, on
the other hand, are DCs managed as a cloud but its services are offered only to a private
group of customers, e.g. a corporation.

The services offered by a cloud ranges from direct representations of servers, VMs
in Infrastructure as a Service (IaaS), containers in Constainer-as-a-Service (CaaS) to
hosted SW services, to hosted functions (Function-as-a-Service (FaaS)). They are all
inherently different SW execution environments. Virtualisation has played a key role
in the realisation of the cloud. See Figure 1.3 for an intuitive overview. The primary
service abstractions covered in this thesis are the following:

IaaS IaaS was the embryotic resource offering and is still cloud computing’s most
fundamental. Here, a cloud customer procures resources in the form of VMs
and containers (CaaS). The customer installs any SW on the VM and man-
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ages it as a server independently of the cloud provider. The performance of
an application hosted on the VM is predominantly a reflection of the quality of
that application, the customer’s ability to manage the instance, the operator’s
ability to schedule collocated VMs and the characteristics of the other VMs’
workloads. Performance guarantees for applications are therefore not provided.
Each SW instance type comes with a set of expected I/O throughput and cloud-
provider-defined performance abstraction. In AWS, this abstraction is called
EC2 Compute Unit (ECU).

With IaaS, the customer scales its application by adding and subtracting VMs or
containers. Selling containers in this manner is sometimes referred to as CaaS.
VMs have a non-negligible start-up time, containers less so. Additionally, on
any individual server, a VM might be collocated and interfere with other VMs
from other customers [VKF+12]. In this paradigm, a cloud customer needs to
make conscious decisions about the type and quantity of VMs it procures and
for how long. In this regard, an application owner faces similar challenges as
with off-line computing, but with the benefit of having access to an abundance
of resources and the ability to rapidly procure and relinquish resources.

PaaS Platform-as-a-Service (PaaS) offer customers the ability to host their bespoke
applications on a hosted platform in the cloud. Typically used for web services,
the customer builds an application using an Application Program Interface (API)
provided by the cloud provider and its own code. The cloud provider then scales
and manages application given that it adheres to the confines of the API. In
contrast to IaaS, here the customers do not need to procure and manage VMs
and containers but are instead confined to the abilities of the platform.

FaaS In the FaaS paradigm, the cloud provider hosts a program language runtime,
often for dynamic and interpreted languages, enabling execution of predomin-
antly stateless compute functions. An application can be contained within one
of these functions or constructed as a composition of many. A function is lim-
ited to a set of execution time and the amount of memory it can consume. The
customer can instantly execute hundreds of instances of its function, paying
only per execution. Performance guarantees are not provided, see Section 1.2.2.
Although a developer can verify the functionality and stability of the code, it is
non-trivial to estimate how it will perform in the cloud. Within these confines,
the customer is wholly responsible for the stability of the SW. This paradigm fo-
cuses on compartmentalising applications into its fundamental functions and fits
into the realm of micro-services. The major cloud providers offer the means to
trigger functions from a plethora of other services and to pass messages between
them. Messaging between micro-services is often asynchronous and does not
come with any tangible performance guarantees.

SaaS In a Software-as-a-Service (SaaS) offering, an application in the form of SW is
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hosted in the cloud and provided as a subscription to the customer. The SW is
often accessed over a web interface and requires no maintenance on behalf of
the customer. In the back-end, the cloud provider scales the SW according to
the clients’ needs. Microsoft Office 365 and Gmail are examples of a SaaS.

1.1.2. ELASTICITY

The expedient management and flexible procurement of cloud resources are the en-
ablers of elasticity. Compared to off-line computing, it should now be clear that
elasticity is cloud computing’s distinguishing quality. Presented below is a distinction
between infrastructure elasticity and process elasticity.

INFRASTRUCTURE ELASTICITY

While off-line infrastructures can adapt in the time scale of days and weeks and are
immutable, the cloud is elastic in the time-scale of minutes, see Figure 1.4. As a
consequence, resource needs can be matched more responsively. Nevertheless, cloud
resources are not perfectly elastic. VMs, containers, and SW platform have start-up
times and are affected by overlying management principles. In a perfectly elastic sys-
tem, deterministic resources on a continuous scale would be available immediately.
Figure 1.4 illustrates the dynamics of infrastructure elasticity.

PROCESS ELASTICITY

An elastic infrastructure allows for elastic processes [DGST11]. Cloud is not only
resource-scalable but is also cost elastic, and both enables and requires quality elasti-
city. With elasticity in three dimensions, cloud computing enables application owners
to set operating criteria that closely match their business needs. Given the volatility
of the cloud infrastructure and the applications’ ingress workloads, this is a non-trivial
task.

Today, cloud-based applications are designed to serve its customers at a fixed quality
level. Applications serve the workload oblivious the state of their execution environ-
ments. The execution environment includes; CPU core count, I/O, and RAM as well
the level of contention in the infrastructure. Applications indiscriminately produce
outputs of fixed quality, without regard to either current operating conditions or what
utility each customer receives at that quality level.

Quality-elasticity is defined as letting applications adapt their mode of operation to
current operating conditions by dynamically adjusting their output quality accordingly.
Quality concessions are achieved through both basic properties of their execution en-
vironments, such as opting for a more memory-intensive algorithm when memory is
more readily available than CPU time, and on current conditions such as system load
and instantaneous contention effects by other execution environments. Crucially, ap-
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Figure 1.4.: Illustration of resource matching to demand, as seen from the
cloud customer. Note that for the sake of simplicity, the sys-
tems in the figure are not work-preserving. In traditional provi-
sioning, excessive over-provisioning is common practice. Rep-
resenting a lost opportunity. In IaaS, matching demand can be
challenging. In FaaS, the cloud customer does not nor can not
control the underlying resource provision, but can occupation-
ally notice when demand is not matched.

plications shall provide lower-quality results in cases of resource scarcity, and higher-
quality ones when resources are abundant.

For the applications, the implication is that service instances can more predictably
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handle load spikes and avoid client time-outs by reducing output quality of responses.
This instantly reduces the load and thus helps maintain the desired throughput.

For the cloud providers, higher utilization and an improved ability to adapt deployed
services to resource contention mean that redundant capacity can be reduced. Output
quality reductions, a subset of quality-elasticity, have been shown to optimize cloud
infrastructure in this way [XDB16].

ELUSIVE ELASTIC POTENTIAL

When fully utilising the heterogeneity and elasticity of cloud resources, it can help
application owners to meet their business goals. Over-utilisation and thus overspending
can be capped. The quality of the output can be scaled to match the actual prevailing
requirements on timeliness and granularity.

For a process to take full advantage of process and infrastructure elasticity, the pro-
cess owner needs to have rich insight into the nature of the resource at hand. It also
needs an Elastic Reasoning Mechanism (ERM) of some sorts, such as [CMTD13], and
a definition of what the optimal use of those resources is. Finding that momentary
optimal configuration is reminiscent of the Vector Packing Problem, which is NP-Hard
[CKP03]. There are several related works on adaptive processes, but few generally
consider decisions involving cost, resources, and quality.

Because the cloud is not perfectly elastic, when resources do not match demand,
applications can enter a state of resource contention. Applications’ ability to serve re-
quests is significantly impeded when resources are scarce. Due to imperfect elasticity,
there is no practical way to scale up the underlying infrastructure instantly. In this state,
requests are either served at a lower rate or, due to client time-outs, perhaps not even
at all. Thus, service utility, resilience, and throughput suffer.

When operating with excessive resources, the problem is two-fold. Firstly, the exe-
cution environment’s resources, that have been paid for are poorly utilised. Secondly,
the underutilised resources represent a missed opportunity to provide higher quality
results at potentially no additional cost.

Low resource utilisation is costly for both application owners and cloud infrastruc-
ture providers alike. Average utilisation is reaching only around 15% [SSH+16]. In a
sense, resources are wasted to essentially keep the lights on [RTG+12, BH07]. Cloud
providers are also under market pressure to provide seemingly infinite resources, which
requires large buffers of available resources to cope with request peaks. This is costly
and constitutes a barrier to entry for smaller providers. Thus, both service providers
and cloud infrastructure providers have clear incentives to make better use of available
resources.

Eventual consistency, explored at length in [CIL+15], is a form of quality-elasticity
for databases. This mode of operation has taught users to not expect consistent results
to imprecise queries: what products are recommended changes based on factors and
proprietary algorithms that users cannot inspect. Thus, they cannot judge whether these
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results are accurately modelled to their particular preference, instead just trusting that
they have been generated “somehow”. This non-strictness is ripe for optimisation. For
service delivery, we can use this to our advantage, as intuitively, some result (of some
quality) is better than none.

1.1.3. HIGH-LEVEL CONCERNS

Although the cloud has elusive potential, it is not without a set of challenges for its
customers.

Availability Despite all its redundant systems, a DC is a single-point-of-failure. Power
black-outs and brown-outs can hit DCs and intermediate infrastructure. SW
bugs, human error, and malicious attacks can render DCs inoperable. Addi-
tionally, a customer’s Internet Service Provider (ISP) can go down and vary
significantly in quality over tine.

Latency The best-effort networks separating the cloud providers’ DCs with its cus-
tomers provide no performance and availability guarantees. Cloud DCs are
spread far and wide. Network latency delay and jitter in the delay can be sig-
nificant. Additionally, the response times from cloud platforms vary greatly.
These two properties are discussed further in Section 1.2.2.

Vendor lock-in The rate of service innovation and differentiation means that applic-
ations are becoming less portable between clouds, especially when employing
PaaS. The lack of standards across cloud providers is making it difficult to
switch cloud provider or spread across multiple cloud providers.

Data security Once in the cloud, there is almost no transparency as to how and where
data is stored. It is virtually impossible to prove that data cannot and is not
leaked, given the complexity and rate of change of cloud platforms and systems.

Cost Although the cloud is a potential cost saver, it does require a conscious effort.
Cloud deployment costs can quickly escalate if left unchecked. Recent cloud-
native offerings might appear cost-effective but can be costly if not used frugally
or as intended, [VGO+17].

1.1.4. WHO IS THE CLOUD FOR TODAY?

Start-ups have embraced the scalability of the cloud as the ability to snowball. The
cloud is very suitable for both small companies that want to snowball and that cannot
afford large up-front investments as well as large enterprises that want to become more
agile and cost-effective with their IT infrastructure. Today, the cloud is primarily used
to host web-services, databases, and for Content Delivery Network (CDN)-like content
hosting. The next chapter looks at the next cloud frontier.
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1.2. TOMORROW’S APPLICATIONS AND THE CLOUD FRONTIER

Regardless of the shifting merits of cloud computing, enough momentum has gathered
around this massive compute immigration to grab everyone’s attention. In the midsts
of the hype [Gar], cloud business models go in and out of fashion. However, new and
existing applications still find it challenging to deploy and make the migration to the
cloud, respectively. In this section, emerging computer needs and existing reluctant
cloud incumbents are examined. Their potential success and challenges in the tradi-
tional and in emerging cloud computing paradigms are discussed and contrasted with
the backdrop of general empirical observations.

1.2.1. EMERGING APPLICATION TYPES

Internet access is both kinetically and conceptually increasingly mobile. Humans in-
teract with services from the cognitively arduous confines of mobile devices as they
traverse the surface of the earth. Mobility is a challenge for cloud services. As users
move through the network, switching from mobile to WiFi infrastructures with varying
quality, applications, content, and cloud platforms must adapt and reorganise to meet
the user’s QoS expectations. Additionally, users accessing bandwidth-intensive and
latency-sensitive cloud applications can significantly strain mobile networks. Today,
humans downloading content constitutes a much ten times the amount of bandwidth
as they upload. That ratio is expected to inverse in the coming years as machines
communicate more and more.

Analogously, a great deal, if not the vast majority, of computing workloads are ini-
tiated or conceived by humans. Humans submit queries, tune parameters, create and
remove content, and constitute content popularity churn. From a birds-eye view, most
processes are not only initiated by humans but also have humans in the loop. Some ar-
gue for a formalisation; an introduction or ratification of a social compute unit [DB11].
These human resources will and are doing cognitive tasks that computers still cannot
satisfactorily complete. For example, labelling data for Machine Learning (ML) mod-
els, resolve ambiguous conflicts and approve significant state transitions. However,
perhaps more commonly, humans act as interfaces between SW or human systems.
Waiting an arbitrary amount of time for a human response or interpretation can be a
significant performance bottleneck for any system. Often these responses are predict-
able and can thus arguably be made by Artificial Intelligence (AI). A current example
is Google Duplex [LM18]. Here, a AI-based assistant can successfully make arduous
phone calls on behalf of its human client to another human-based system interface,
without its client’s involvement. The Google Duplex team provide two primary ex-
amples; booking a haircut appointment and making a restaurant reservation. More sys-
tems like these that handle human-to-machine human-to-constraint arbitration might
eliminate some need to for our current app-based work-flows. These types of applica-
tions require that the cloud can close the communication loop with the IoT-world. Here
both delay and data volume is a challenge. Traditional distant DCs is proving to be a



1.2. Tomorrow’s applications and the cloud frontier 13

Figure 1.5.: Industry 4.0

challenge. Hauling vast volumes of data over the intermediate network is both costly
and incurs congestion. The latency to distant DCs is often significant, see Section 1.2.2.

Industry 4.0 or industrial IoT is an example that reflects the challenges above. Here,
sensors, actuators, and machines connect to an omnipresent cloud platform. There,
control loops, ordering systems, and analytics systems co-exist, scale, and share data.
Pervasive IoT and micro-services play an essential role in realising industry 4.0, see
Figure 1.5. Real-time automation systems are time-sensitive. At an industrial scale,
they require significant network bandwidth. Such systems require I/O performance
symmetry, something which current cloud providers don’t provide. I/O performance
symmetry refers to the ratio of quantity and timeliness at which that data can be input-
ted and outputted to and from the cloud. Contemporary cloud services are primarily
designed to consume data. Moving data out of the cloud in a timely manner is both
expensive and technically challenging. Most cloud providers’ IoT solutions are good
at hauling data into the cloud but don’t provide the means to create a near real-time
communication loop. Any downstream communication is typically best-effort over
Message Queuing Telemetry Transport (MQTT) topics and is primarily intended for
device management. Section 1.2.2 presents a set of performance challenges for such
applications.

Collaborative computing is another emerging paradigm where computation needs to
be coordinated or even consolidated [GLPL14]. In collaborative computing, intelligent
entities or data sources collaborate to improve the quality of the application’s output
or their performance. The collaboration can be either event-based or continuous. It is
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triggered either by the devices themselves or by a third party. The resulting process or
task can either be shared amongst the entities or completed by a third party.

An application domain ripe for collaborative computing is autonomous and semi-
autonomous vehicles. Here, no single vehicle has the data nor the computational capa-
city to handle every situation. Additionally, as they operate in a shared physical space,
no one vehicle can resolve contention. For example, with collaborative computing,
the intersections of tomorrow might not need traffic lights [RTM17]. For example, an
entity in an intersection detects approaching vehicles, retrieves relevant data from the
affected vehicles, arbitrates the use of the intersection, and finally acts on the vehicles.
One can also imagine situations where the vehicles themselves initiate the collabora-
tion. The sensors in a vehicle only ’see’ so far. If the autonomous entity in a vehicle
determines that its actions are too uncertain, it can plausibly both supplement its data
from proximal cars and augment its computational capacity using other vehicles or a
third party to increase the quality of its output.

These concepts are not necessarily new. They have been around since the dawn of
Vehicle to Vehicle (V2V) communication, but with the arrival of abundant computing
and vehicle technology, they just might become a reality. The cloud is an alluring third
entity in such systems. Its resources are abundant and quickly scalable. However, as
such systems deal with human lives, the level of uncertainty in contemporary clouds
and wireless networks renders such applications inviable.

1.2.2. LATENCY AND UNCERTAINTY CHALLENGES

Traditional cloud computing relies on distant DCs, shared amongst a large number of
applications. Although DCs operate at a low level of utilisation, multi-tenancy has a
significant impact on an application’s performance [BCH13]. Additionally, to be cost-
effective, cloud operators implement resource management mechanisms in their DCs
that balance Operational Expenditure (OPEX) with perceived performance. Analog-
ously, both these factors impact the achieved RTT between a customer and the services
in a cloud provider’s DC and the services therein. Below, RTT includes both network
delay and system delay from the cloud platform.

As a reference, an RTT of≥ 100ms makes real-time and time-sensitive applications,
as we know them today, infeasible. Achieving an RTT of 1 ms, along with carrier-
grade robustness and availability, enables these time-sensitive applications to run in
the cloud. These applications constitute what is known as the Tactile Internet.

A distributed system like the Internet and the global cloud infrastructure can incur
long-tailed delays and jitter in the delay. These are often due to congestions in the
systems and policies implemented to mitigate over-utilisation and cost savings. Even
with a low mean delay, the occasional proportionally larger delay can equate to a cata-
strophic interruption of an application. Because the delays have many sources, they
can even be multi-modal and therefore both correlated and uncorrelated. As a simple
example, network delays within a short time frame are typically not correlated while
for example the delays incurred by warming up a container are correlated.
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NETWORK PERFORMANCE

The network separating a cloud customer from a cloud provider’s DC is not always re-
liable but also incurs delays and jitter in that delay. Figure 1.6 shows the RTT between
the Lund University campus in Lund, Sweden and to all AWS’s availability regions
in the autumn of 2017. The RTT was measured by sending 100 ICMP pings to each
availability region’s lambda endpoint every 30 minutes from August to December in
2017. Considering the quality of the campus network and the ISP, the achieved RTT is
viewed as ideal.

The geographically nearest availability region is eu-central-1, located in Frankfurt,
Germany. Between Lund and eu-central-1 a very consistent RTT of just short of 20ms
is observed. When staying in Europe, the RTT is between 20− 35ms. Although a
RTT of 20ms can seem low, it is a challenge for real-time applications. For example,
for a process operating at 50Hz, with a RTT of 20ms, every action is applied with a
delay equivalent of one period. Persistent delays can be compensated for using the
practices of networked control [ZBP01] in some systems. Not compensating for delay
can have a significant, long-lasting impact on process performance and even make
the process unstable. Variance in the delay, i.e. jitter in the delay, is non-trivial and
requires remedies that are bespoke to the application, such as process switching and
quality elasticity.

Going beyond Europe sees the tails grow significantly. Crossing the Atlantic Ocean
adds another 70ms. The network quality to the AWS availability zones in Asia is less
than favourable, and the RTT is well above 250ms. Inter-regional connectivity is re-
latively weak, while intra-regional connectivity is acceptable in the U.S. and Europe
[clo18a]. Interesting to note from Figure 1.6 is that the number of hops does not signi-
ficantly increase with spatial separation.

Connectivity over Ethernet is preferred but stationary. In near all industrial IoT
scenarios, devices are connected either over a fixed or wireless links. Figure 1.7 shows
the same experiment but conducted over a public Long Term Evolution (LTE) network.
Here, the variance, or jitter in the delay, is significant. The mean RTT to eu-central-1
is now above 50ms, with some instances close to 80ms.

A large number of IoT devices need to be connected wirelessly. It is evident that LTE
is not suited for massive IoT deployments, not only with regards to latency but also en-
ergy efficiency and reliability. In many cases, Ethernet performance is not enough. The
results presented in Part III show how Massive MIMO in 5G can facilitate industrial
IoT and the tactile Internet. In short, the increase in spectral efficiency in Massive
MIMO can be utilised to archive URLLC and massive Machine Type Communica-
tion (mMTC), essential for industrial IoT.

Exiting ISP’s network and crossing a continent’s backbone network can result in the
traversal of more than 20 nodes. Figure 1.8 shows the mean latency per hop to all
AWS availability zones from Lund University in Sweden. The figure shows after how
many hops the ISPs’ networks end, on average, and how the jitter in the delay becomes
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Figure 1.6.: Network delay over campus network to AWS availability zones.
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Figure 1.7.: Network delay over public LTE network to AWS availability
zones.

significant as you leave the ISPs’ networks.

CLOUD NATIVE SERVICE PERFORMANCE

Compounding tens of ms of network delay with system delays at the cloud provider’s
DC, the RTT can extend well into 1s. In this section, an IoT-like application is built
using a composition of AWS services to study cloud platform system delays. The
application is then used to gauge the RTT of the application as a composition of AWS
services and its constituent AWS services.

An IoT application is assumed to consist of at least one connected device that sends
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Figure 1.9.: Rudimentary IoT application architecture using AWS services.

data to the cloud. The data is processed in the cloud, a result or action is then returned to
the device and saved in the cloud to represent the state of the device or the system. The
application is built using AWS IoT for device management and communication, AWS
Lambda for computation, and AWS DynamoDB for storing state. The device is, in
this case, a desktop PC running Ubuntu Linux 17.04, connected to the Lund University
campus network. The device posts a value to an uplink AWS IoT MQTT topic at a set
rate. A rule in AWS IoT triggers an instance of an AWS Lambda function on the uplink
post. The AWS Lambda function reads a value from an AWS DynamoDB table, com-
bines it with the reported value, updates the Database (DB), and returns the value. The
Lambda function publishes the resulting value on downlink AWS IoT MQTT topic, to
which the device subscribes, thus closing the communication loop. The AWS Lambda
function was implemented in Python and Boto 3 was used throughout. An overview of
the architecture is provided in Figure 1.9.
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Figure 1.10.: RTT of AWS services common in cloud-based IoT-
applications. Dashed line represents the ’brute-force’ ap-
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DynDB’ therefore includes all λ, IoT, and DynamoDB.

Figure 1.10 shows the eCDF of the RTTs for the targeted IoT application, measured
with 1000 samples every 15 minutes from August to October 2018. Note that the
mean RTTs for the individual services, namely AWS IoT, AWS Lambda, and AWS
DynamoDB are 129ms, 40ms, and 69ms, respectively. It is clear from Figure 1.10 that
communicating over an AWS IoT MQTT queue incurs a significant delay and a heavy
tail. Note that the samples captured during the warm-up period, for each sampling
instance, have been removed. The warm-up time can be up to 300ms for AWS Lambda,
5s for AWS IoT, and 72s for AWS DynamoDB. The values presented in Figure 1.10
should, therefore, be considered to have been produced by a continuously operating
system, under ideal circumstances.

AWS IoT and AWS Lambda are combined in the eCDF labelled ’+ IoT’. The com-
plete application with the DB component is presented in the eCDF labelled ’+ DynDB’.
The solid lines show the synchronous RTT. Notice that the incurred RTT for the entire
application (+ DynDB) is significantly greater than the sum of the individual services.
From Figure 1.10 it is clear that accessing DynamoDB in a lambda function comes
with a substantial time penalty.

The dashed lines show the lowest RTT out of 20 near-concurrent asynchronous calls.
The cost of each additional concurrent call grows linearly, but the benefits diminish
exponentially, in both scenarios, as seen in Figure 1.11. The disparity shows that there
are gains to be made with this ’brute-force’ approach and hits at the innate quality
variance of AWS’s services. This effect is an indication of the performance variance
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Figure 1.11.: Benefit of 20 concurrent asynchronous calls. The pink line
demarks the highest median.

one might encounter with cloud-native or micro-services in the cloud.

1.3. FOG COMPUTING

Fog computing is emerging as a new cloud paradigm in the wake of IoT and an in-
creasingly distributed cloud infrastructure. IEEE 1934-2018 [83818] defines a Fog
computing system as a system of heterogeneous and distributed cloud resources. Be-
fore IEEE’s draft standard what we now know as Fog computing was known by many
different names. For example, half a decade ago; omnipresent cloud, distributed cloud,
infinite cloud, mobile edge cloud, and edge computing were all emerging and partially
overlapping definitions.

The premise of Fog computing is to make cloud computing accessible to time-
sensitive, and mission-critical applications where traditional DCs don’t suffice. By in-
troducing cloud capacity proximal to the end-users, applications are accessed at lower
delay with less jitter in the delay and with greater network reliability. User-proximal
nodes also permit applications to consider data and processing-locality constraints, as
well as more elaborate fault-tolerate mechanisms relying on relative geographic ad-
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Figure 1.12.: Schematic overview of a fog computing infrastructure

vantages. Here, proximal resources are resources near the end customers in contrast to
traditional DCs.

Recently, a distinction has emerged between Edge and Fog computing, [AZTS18].
Edge computing is becoming synonymous with technologies and systems that take
advantage of IoT and mobile devices at the edge of the network. These devices are
managed in a cloud-manner and applications can span across or move between devices
and traditional DCs.

In this work, a Fog computing computing infrastructure is defined as:
A system of a set of heterogeneous hyper-distributed general-purpose cloud comput-

ing nodes with varying degrees of proximity to the system’s end-users. The system’s
resources can be federated and opportunistic, meaning that they are not necessarily
purposefully for Fog computing. Applications deployed to such an infrastructure can
take advantage of the infrastructure’s heterogeneity to meets their performance targets.
Likewise, the infrastructure is actively managed to meet its performance goals as well
as those of the applications.

Figure 1.12 provides a general overview of a Fog computing infrastructure. Here,
cloud resources are distributed in a network ranging from traditional distant DCs to the
edge of the mobile network, e.g. in RBSs. The resources vary in capacity and ability
across the network. Computational capacity arguably decreases with network depth
as DCs further down the network will serve fewer end-users. Conversely, the cost per
compute and time unit arguably increase with network depth as economies of scale
diminish with successively smaller DCs. On the other hand, aggregate bandwidth cost
will likely decrease with depth. In this thesis, the mobile network plays an integral
part of the Fog computing infrastructure. With the arrival of 5G, the networks are
capable enough to support Ultra-Reliable and Low-Latency Communication (URLLC)



1.3. Fog computing 21

and massive Machine Type Communication (mMTC) applications which would justify
Fog computing.

Numerous proposed use-cases have emerged in the Fog computing research sphere.
Massive IoT is a reoccurring theme [BMNZ14] that has gained traction amongst cloud
providers. If an over-engineered IoT-world materialises, it arguably needs the support
of Fog computing. In such a setting; compute, storage, and networking are subject to
data gravity [YIJ17b]. Hauling data to distant DCs is often infeasibly when concerning
both cost and performance [YIJ17a]. Some non-controversial use-cases are; mobile of-
floading, caching, and Network Function Virtualisation (NFV). More targeted use cases
include building smaller DCs in areas with computing needs but with poor connectiv-
ity. One can imagine both ships and oil rigs that continuously produce large amounts of
data and that want to have that data timely analysed for operational efficiency. Oil rigs
and ships often rely on expensive, low throughput, and high latency satellite or radio
links. The idea is here to process the data where it is needed and only communicate
what has value to the outside world. More technically challenging use-cases revolve
around collaborative autonomous vehicles and vehicle platooning [TRA+17]. These
use cases fall under the notion of serendipitous or augmentative computing, meaning
that the vehicles do not necessarily rely on Fog computing but will take advantage of it
whenever and wherever it is available. Due to heterogeneity in both infrastructure and
performance requirements, applications in a Fog computing infrastructure will have to
be process-elastic on a conceivably broad range. Quality elasticity is not just technic-
ally challenging, objectively. Subjectively, users’ expectation has to be appropriately
managed.

A more straightforward but very relevant use case is when obsolete user-proximal
HW is structurally or serendipitously augmented by Fog computing resource. Imagine
a piece of production machinery. Modern production environments are dynamic; pro-
cesses are adapted and integrated to meet particular performance targets. The compute
HW that was delivered with the machinery will not suffice for long in such an envir-
onment. Neither is it in the production machinery manufacturer’s business interest to
supply and support computing capabilities in their machines that will quickly outgrow
their customer’s needs. Instead, ultimately all process can be executed in a proximal
cloud node, sharing data amongst each other and peripheral ordering, monitoring, and
management systems. For a recent comprehensive survey see [YFN+18].

1.3.1. INFRASTRUCTURE CONVERGENCE AND FOG COMPUTING ATTRACTORS

Although an actual Fog computing infrastructure does not currently exist, many industry-
lead developments are resulting in a more distributed end-user-proximal cloud infra-
structure. In many aspects, new and incumbent cloud providers are leaping towards the
edge of the network. For example, investments are being made in edge-aware services
and infrastructure relatively closer to the end-users. 5G and the use-cases it promises
to deliver is often an instigator for these investments. The primary factors driving the
convergence towards Fog computing are detailed in this section.
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With exponential growth in cloud computing usage, providers are continuously in-
creasing their availability presence. The dominant cloud providers are investing in
more and larger DCs in more regions. The result is a geographically denser network
of DCs. Having a DC in the backbone network near to where you operate can both
significantly reduce communication delay and increase availability. Not to mention,
your data can be stored where it can more easily be stored in the originating geograph-
ical region. In some regions, this is required by law. These investments should not
necessarily be seen as a deliberate encroachment towards the edge. These DCs are
superficially equivalent and are meant to increase general availability and not specific-
ally to satisfy edge use cases. Recently, AWS has begun to offer AWS infrastructure
on-premise through a service named AWS Outposts 1. This allows customers to run
AWS-native application on their premises and managed as if a AWS DC.

To satisfy classic edge use cases, AWS and Microsoft have begun to offer specialised
edge solutions. They come either in the form of CDN-type caches that can host limited
dynamic content (Edge Side Includes (ESI)), to simple on-premise IoT devices running
a SW-platform provided by the cloud operator. These offerings allow developers to
deploy code to the edge or on-premise, typically as a FaaS. Although these locally
hosted platforms are well integrated with the cloud operator’s service offerings, they
are primarily intended as a means to extract and haul data to a distant DC for storage,
processing, and a ML model. Furthermore, the platforms don’t scale as DC-based
cloud computing, and the application owner is responsible for deciding where to place
application components.

CDNs such as Akamai and Cloudflare have extensive networks of user-proximal
DCs. Although not at the magnitude of the big cloud providers’ DCs, they scale well
to the demand in their network vicinity. Typically only hosting static content, CDNs
such as Cloudflare have started to change their infrastructure to allow it to host simple
applications [Clo18b] (ESI). They are primarily intended to intercept and personalise
web responses dynamically and are therefore not equatable to the FaaS services offered
by the big cloud providers. However, ESIs are a significant step towards intercepting,
routing, and manipulating in-transit web and IoT traffic.

Starting with 4G, telcos and Telecom Original Equipment Makers (OEMs) have had
the ambition to virtualise some to all functions of the Radio Access Network (RAN).
NFV involves deploying network functions previously hosted on dedicated and spe-
cialised hardware to cloud-like DCs with GPPs. The idea is to aggregate the func-
tionality to a set of geographically proximal RBSs in one common DC or processing
node. With full virtualisation, a RBS is split into a Remote Radio Head (RRH) and a
Baseband Unit (BBU). The RRH and the BBU can be spatially separate. The RRH
relays any baseband signals over what is called a front-haul network to the BBU for
processing. This paradigm is often referred to as Cloud-RAN [CCY+15], CRAN, or
virtualised RAN. The prospected benefits are the ability to load-balance workloads

1https://aws.amazon.com/outposts/
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across cells, more flexible and scalable HW independent deployments, and reduced
cost. Again, the draw of elastic GPP computing resources is a major attractor. Addi-
tionally, virtualising the telco’s infrastructure would also allow equipment owners to
slice their infrastructure.

Network functions are very latency sensitive, especially lower level Medium Access
Control Layer (MAC) and Physical Layer (PHY) functions [CCY+15]. Latency sensit-
ivity is set to increase as throughput requirements and Radio Access Technology (RAT)
processing increases with each successive 3rd Generation Partnership Project (3GPP)
iteration. Higher level functions such as billing and location registry are already de-
ployed to GPP platforms. Furthermore, routing and fire-walling have been running
successfully in the cloud for some time. However, MAC scheduling decisions, channel
coding, and estimation occur at a very high rate, proportional to the channel through-
out. Therefore, the delay and jitter in the delay subjected to the baseband signal would
have to be much lower than what can be achieved over the public Metropolitan Area
Networks (MANs). Coupled with GPP-based cloud platforms many RAN functions’
real-time constraints cannot be satisfied with the traditional cloud paradigm. Full stack
virtualisation might require bespoke front-haul networks and bespoke hardware in the
BBU. Again, moving away from GPP erodes the benefits of the cloud. Analogously,
these requirements limit the potential geographical reach of virtualised telco systems.

Telcos are new to the cloud domain. They are accustomed to providing availability
rates that are much higher and latencies that are much lower than traditional cloud pro-
viders. Telcos are currently implementing or investigating business-models for selling
any excess cloud capacity embedded in the network. Such services range from CDN-
type caching to dynamic applications, to NFV. This is often referred to as the telco
cloud [SGP+15]. The advantage, a telco cloud can potentially offer application own-
ers deeper integration into the network by for example exposing users’ locations and
prevailing network conditions. The telco-operated DCs will arguably not be at the scale
of traditional DCs and therefore not achieve the same level of economies of scale. Con-
ceivably, they need to operate with a higher utilisation factor.

The positive effects of the fog computing paradigm might be undercut by develop-
ments in RAT, RAN, and Wide Area Network (WAN) technologies. With 5G, RAT
latency is proposed to go down to 1ms, in what is called Ultra-Reliable and Low-
Latency Communication (URLLC) [SMS+17]. The backbone networks are also con-
tinuously getting upgraded. The star and ring topologies are giving way to more point-
to-point topologies and Software Defined Networks (SDN). Meanwhile, optical fibre
is becoming the norm for the last mile. All of these improvements contribute to lower
latency communication on less congested networks. On the other hand, Network Func-
tion Virtualisation (NFV), SDN, and slicing might contribute to increased aggregate
network delay and jitter in the delay.
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1.3.2. ELASTICITY IN THE FOG AND APPLICATIONS

A fog computing infrastructure provides to a large extent the same degrees of freedom
as traditional cloud computing, namely; cost, resource, and quality, but also adds spati-
ality and heterogeneity. An application deployed to a fog computing infrastructure can
disaggregate, place, and scale individual components at different geographical points
in the network, in whichever constellations it may achieve its desired performance, at
that point in time. Although a Fog computing infrastructure has a wide pallet of re-
sources, they will arguably not be as resource elastic as a traditional DC. Smaller DCs
will have fewer resources on which to scale and will come at a higher cost.

Responding and mitigating to a ephemeral system state and a mobile demand is non-
trivial. Continuously migrating full applications or application components around a
massive fog computing infrastructure, at every whim, is not desirable. Migrating and
starting up VMs and containers, and reconnecting data paths incurs a significant per-
formance overhead and can have a profound negative impact on smaller DC and on the
application itself. With higher load factors and to some degree a constant churn, ap-
plications will arguably be exposed to more execution jitter. With dynamic application
placement, a highly mobile user base, and resource-constrained edge applications the
Fog computing infrastructure can quickly become confined to an undesirable or even
inoperable state.

To take advantage of and cope with increased heterogeneity and uncertainty, applic-
ations in a Fog computing infrastructure should be encouraged to embrace an osmotic
existence. Osmotic computing [VFD+16] is an application paradigm that is driven
by the emergence of distributed heterogeneous cloud infrastructures. Operating con-
ditions frequently change because resources can be scarce and are shared by many.
Additionally, a Fog computing infrastructure owner’s management policies also con-
tribute uncertainty. Applications, therefore, need to have the ability to adapt to a con-
tracting environment. An osmotic application takes advantage of the ephemeral and
heterogeneous nature of such infrastructures by continuously practising resource, cost,
and quality elasticity. Application components scale vertically and horizontally in the
infrastructure to where they incur the least cost, perform the best, or where they can
take advantage of a unique resource. Furthermore, applications do not necessarily have
the necessary quantity or type of resources available in the part of the network to meet
lofty or ideal performance targets. Even though the current operating conditions are
undesirable, moving an application or one of its components might not always be cost-
effective or feasible.

This trade-off is non-trivial. For an Elastic Reasoning Mechanism (ERM) to achieve
elasticity in every dimension require a great deal of insight into the infrastructure
and the dynamic properties of the resident applications. Attempts have been made
at designing an ERM for IoT workflows [NND+17].

The principles of osmotic computing do not singularly apply to fog computing. The
service offering by traditional cloud providers is also becoming more heterogeneous.
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Additionally, an elastic application is a robust application. For example, a quality
elastic robust web application is proposed in [KMÅHR14].

1.3.3. FOG COMPUTING DETRACTORS

Fog computing bows to the same detractors as cloud computing, only exacerbated by
heterogeneity and distribution. Given the scale of these new resources, one can then
argue there won’t be enough elasticity at the edge to allow for the dynamic osmotic
effect that we desire in a fog computing infrastructure. The relative cost of execut-
ing, maintaining, and deploying small edge devices will conceivably only increase as
large DC approach ever greater economies of scale. Moving to a hyper-distributed
infrastructure also implies a software development paradigm shift. Once the dust has
settled, and applications have found their rightful place in the infrastructure, how likely
is it that they will ever have to move and will application developers or operators even
want them to, given the uncertainty this adds?





Part I.

Modelling and managing a Fog
computing infrastructure
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2
Mobility

End-user mobility is a key differentiating factor between traditional DC -centric
clouds and Fog computing. In Fog computing, an end-user’s location, within
a few meters or kilometres, determines in which DC an application executes.

The rate at which the end-users move determines to what extent and to where an ap-
plication needs to be migrated to achieve its performance target.

The relationship between application performance and geographic location has re-
ceived little research attention [SNM10, ZDZQ13]. There is thus comparatively little
research bridging state of the art cloud hosting research and a cloud’s ability to operate
in a mobile network with mobile end-users. What is explicitly lacking is how the mo-
bile end-user’s generated workloads will vary and be displaced between Fog computing
DCs as a consequence of end-user mobility and a study of the associated resource cost.
The authors of [GHMP08] investigate DC latency in geo-distributed networks in the
context of the operational cost of transmitting and operating the intermediate network
at the desired performance level. The authors of [ADJ+10] studied the effect of mi-
grating end-user instances geographically to existing geo-distributed DCs, in response
to a end-users location on a global, inter/intra-continental scale. However, in Fog com-
puting, end-user movement is potentially significantly more granular.

This work explores the fundamental dynamics of workload displacement as a res-
ult of end-user mobility between independent DCs adjacent to and associated with
an RBS. The paper then proceeds with examining the proportion of workload being
displaced to adjacent DCs, and the proportion of resources the act of migration con-
sumes in a DC proportional to the work it completes. A simulation model is proposed,
that includes the basic building blocks of Fog computing, in conjunction with a mo-
bility model aimed at provoking and exploring basic system workload displacement
vulnerabilities and the dynamic effects on an application’s performance as a result of
mobility.
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Figure 2.1.: One dimensional simulation scenario

The results show that end-user mobility in a Fog computing topology prompts a
cumulative spatial displacement of the workload in successive DC. Additionally, when
the DCs are over-provisioned, the simulation reveals that the DCs, at an increasing rate,
spend more time migrating VMs than executing them. As a result, a stable system-wide
waiting time is only attainable with a system load of less than 80%. The simulations
also reveal that despite a stable system, the waiting time still increases in the spatial
domain as a result of end-user mobility. The paper also investigates an end-user’s
utility in subscribing to a Fog computing node.

Section 2.2 details which aspects and abstractions of a Fog computing topology that
are included in the experiments. Furthermore, the resulting simulation model and its
constituent parts are specified in Section 2.3 followed by Section 2.4, which accounts
for the specifics of the simulation experiments. Lastly, Sections 2.5 and 2.6 present the
results and consultations drawn from the experiment.

2.1. TARGETED SYSTEM

An application is geographically migrated with the end-user(s) to the closest DC, to
maintain proximity to its end-user(s) as it moves around the network. Moving to the
closest DC is a naïve approach and should be seen as a lower performance bound.
Proposedly, where Fog computing infrastructure is available an application instance
can be migrated from a distant DC where it traditionally resides to a Fog computing
DC in the mobile network. As mobile end-users move through the network, and when
it is deemed feasible to migrate an application given a geographic discrepancy, the
concerned VM is migrated to where latency and congestion are minimised. However,
doing so will incur an additional load both on the receiving and sending DC, and the
intermediate WAN. Moreover, migration and its overhead are minimised when the
amount of work completed in each DC is maximised during a end-user’s residency,
and when inter-DC transmission is minimised.

2.2. TARGETED SCENARIO

To explore an extreme scenario, in this paper, to strictly minimise the proximity to the
end-user, each abstract RBS will host a cloud server entity, a DC, see Figure 2.1. From
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now on, an RBS DC pair is referred to as a node. To be able to observe consecutive
workload displacement, end-users are displaced according to a train model at a constant
speed along a linear path through a one-dimensional space. Furthermore, throughout
the one-dimensional space, RBSs are positioned equidistantly.

In the proposed model, end-user movement and network resources are homogen-
eous. As a result, the proportional displacement of workload between comparable
nodes, as end-users move between nodes, can be observed. Additionally, this will also
show the subsequent proportional degradation of perceived application quality, exper-
ienced by the end-user over the whole network. One will also be able to discern the
rate of which an application needs to be migrated, which can be seen as an abstract
measure of the scale of a resulting VM or container migration. The simulation will
show how mobility affects the proportion of sessions that will be migrated between
consecutive nodes, consecutive degradation of waiting time, and the potential resulting
VM migration burden imposed on the system.

2.3. SIMULATION MODEL

The simulation model is discrete-time and contains multiple independent end-users
Nu, each with a unique location determined by a train mobility model. A end-user’s
location within a network determines which singular RBS it is associated with.

The modelled network contains multiple, equidistant RBSs. Each RBS or cell has a
fixed coverage radius, rcell . The network re-evaluates end-user and RBS association at
a specific rate throughout the simulation. All end-user-generated requests are sent to
its current associated RBS. The RBS forwards subsequently all incoming requests to a
single node which processes the incoming requests at a particular service rate Tservice.

2.3.1. APPLICATION MODEL

The adopted application model is based on the open-loop, one tier, long tailed, HTTP
request model detailed in [BC98]. The modelled traffic is consistent with web surfing
on mobile devices, where end-users access mobile-adapted web pages with very little
in-line dynamic content, revisited at a high frequency. Additionally, the duration of
the resulting sessions is proportional to the radius of the networks cells. Each session
spawns some requests proportional to the File size (S f ) and the Request size (Sr) in
KB, both Pareto-distributed. Each request is separated by an Inter-request Weibull-
distributed delay (Dr). Moreover, each session is separated in time by a Pareto distrib-
uted inter-session delay (Ds).

2.3.2. NETWORK MODEL AND TOPOLOGY

Each RBS is bounded by a cell coverage radius, rcell . Given that an end-user is within
the aggregated cell coverage of the network, that end-user will always be associated
with the RBS closest to it. The network periodically evaluates each end-user’s proxim-
ity to all the RBSs in the network. If an end-user moves closer to another RBS, at that
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threshold, a handover will occur, and the RBS association will be updated, see Figure
2.1.

2.3.3. MOBILITY MODEL

The simulation model uses a train mobility model in one dimension with clusters of
Nu end-users, and a constant velocity, Vtrain. This train model presents an extreme
mobility condition where the total end-user population and thus traffic is displaced in
concentrated groups from node to node, progressively and permanently abandoning
RBSs in rapid succession.

2.3.4. DC MODEL

Each DC in each node is modelled as a single server queue that processes requests from
its deferred queue with an exponentially distributed service time Tservice. Furthermore,
when a end-user is handed over from one RBS to another, all deferred requests from
that end-user in the active node queue are instantly migrated to the newly associated
node. More precisely, this occurs when the current process is completed and incurs no
additional load to the network or the server. The migrated requests are placed at the
end of the receiving node’s queue. Any ongoing processing is completed before the
migration procedure begins.

The mechanisms that govern the provisioning of network resources and cloud re-
sources are, in this model, independent. The association and connection between RBS
and a DC is not specific to any particular mobile system generation topology.

2.4. EXPERIMENTS

The adopted simulation model was implemented as a discrete-event Java simulator
using simjava [HM98] as the event engine. To be able to evaluate geographic load
displacement and the subsequent application performance degradation in relation to
server load scenarios, using the model above, server load levels at 50% to 150% were
deployed in the simulation model. Furthermore, server load is defined as the inverse
percentage of the request service time Tservice. Moreover, the request service time is
defined as the quotient of the total arrival rate at full end-user residency, see Equation
2.1, where λi is the arrival rate for the ith end-user. For example, a 50 % load is when
Tservice is twice as high as the aggregate inverse arrival rate.

Tservice =
1

∑λi
(2.1)

To ensure that the system is subject to multiple migrated sessions, the mean applic-
ation session duration is set proportional to the radius of a cell, rcell and the velocity
of the train. As a result, all requests equal to and below the mean session length will
on average be completed in one node, while those above, will on average, be subject
to migration. Given the previously mentioned node displacement and end-user spatial
density, each end-user will be associated with and reside within the domain of each
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Parameter Value
rcell 650 m
Nu 120
Vtrain 110 km/h
Tservice 50-150% of 0.0039 seconds
Tsim 8,8 minutes (7 nodes)

Table 2.1.: Simulated environment parameter values

Component Distribution Parameters
S f Pareto K=133000 α =1.1
Sr Pareto K=1000
Dr Weibull α =1.46 β =0.382
Ds Pareto K=1 α=1.5

Table 2.2.: Application model parameter values

RBS for 40 seconds.
The simulation runs for Tsim minutes, through which the train of passengers pass

through 7 RBS domains. Given the application model described in Section 2.3.1, the
simulation reaches its steady state after 3.6 simulation minutes, at which point the first
end-user gets in range of the first RBS. Consequently, the total steady-state simulation
time amounts to 5,2 simulation minutes. The steady-state simulation time is sufficient
to allow each end-user to spawn several open-loop sessions and thus to reveal the fun-
damental dynamics of the system. Designedly, the first node will not be subject to
migrated requests.

The simulation scenario includes several node load levels. Feasibly, homogeneous
nodes subject to a load higher than 100% results in an unstable system with a transient
workload growth. Given a certain end-user velocity, an unstable system will experi-
ance varying application response times with displacement. Note that, as the system is
modelled without signalling latency, the waiting and service times can be regarded as
the server response time.

Furthermore, application model parameters are sampled from the distributions in
Table 2.2 in accordance with [BC98]. Similarly, Table 2.1 details the global simulated
environment parameters.

Each node is sampled for; queue length, waiting time, and processed and migrated
request sizes per session. These parameters allowed us to reveal how mobility affects
the proportion of sessions that will be migrated between consecutively nodes, consec-
utive degradation of waiting time, and the potential resulting VM migration burden
placed on the system. The resulting data is comprised of the mean of 10 independent
replications.
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Figure 2.2.: Queue length displacement at 100%, 110%, and 120% load, re-
spectively. Each node is marked with its corresponding number.

2.5. RESULTS AND DISCUSSIONS

In this section, the results from the simulations and their implications are presented.
Figure 2.2 shows how the workload is spatially displaced when nodes are subject to
a load greater then 100%. As end-users move out-off and in range of the subsequent
node, any incomplete requests will be migrated to the subsequent node. The mean
deferred queue length exhibits growth according to c ·nl

i , where ni is the ith node and
l the load quotient, e.g. 120% = 1.2. Additionally, given that the sessions are longer
than the duration a end-user spends in a node, the subsequent nodes will need to, on
average, be able to absorb the additional migrated load.

Figure 2.2 reveals the load point where the system becomes unstable. Any node
loaded greater than 100%, results in an unstable system with progressive degradation
of waiting times. As a consequence of end-user mobility, a cumulative amount of
workload is migrated to the subsequent nodes to the point where the system is unable
to recover.

Furthermore, note that Figure 2.2 shows how the deferred queue length at 100%
load grows during maximum end-user residency to the point where sessions are not
completed and are thus migrated to the subsequent node. Nevertheless, both the send-
ing and receiving nodes can recover during the transitions between nodes, and thus
maintain stability.

2.5.1. WAITING TIME DEGRADATION

Degradation of waiting time is another consequence of the above-mentioned progress-
ive workload build-up. Degradation occurs when the nodes are subject to loads greater
than 80%, which is shown in Figure 2.3. As can be seen, the mean waiting times dur-
ing max residency increase linearly for each consecutive node. An end-user will thus
experience a linear degradation of the mean response time in space. Also, the mean
waiting times for each node as a function of the load level grows quadratically with
increased load.

As illustrated by Figure 2.2, at the maximum stable load (100%), beyond which, the
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Figure 2.3.: Waiting time degradation

queue length diverges, the system is able to maintain a consistent deferred queue length
and session residency, but because of migration and the resulting session migration
effort, waiting time degrades 5 fold across the span of the network. Only at a load
of less than 80% is the system able to recover the incurred migration effect and thus
maintain a consistent waiting time. This implies that to maintain system stability the
individual nodes can never be provisioned to utilise 100% of its resources.

2.5.2. SESSION AND VM MIGRATION

It was shown above that request migration incurs a degraded response time. Further-
more, each of those requests constitutes a subset of a session. As detailed earlier, each
session is regarded as a VM instance in a generic cloud server. As such, observing the
residence and migration of sessions reveals how often VM migration occurs and the
potential load a VM migration can incur.

The investigations show that at 100% load, 90% of the VM are completed in one
node and are not subject to migration. On the other hand, at 120% load, on average,
a VM in the last of the 7 nodes only completes 10% of its request, the corresponding
value for the first node is 20%. Moreover, at a 120% server load, on average 65% of
the incoming requests receive 0% of that node’s compute cycles. In other words, some
VMs do not receive any resources to complete any of its requests despite the system
spending resources migrating these VMs to the next node. At this point, the paradigm
is contributing far more latency than it is eliminating.

2.5.3. VM MIGRATION TIME

Concerning the VM migration time, to maintain a consistent waiting time and allow
a migration to recover, VM migration needs to be performed within the period of the
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Figure 2.4.: Migrated vs. processed packets

mean waiting time. The simulation discloses that waiting time recovery is only feasible
at less than 80% load, and is only fully able to do so when the system is subject to a
load less than 50%.

2.5.4. REQUEST MIGRATION

In contrast to sessions or VMs, the rate at which requests are processed versus end-user
node residency is a metric of utility. Figure 2.4 displays the proportion of processed
requests that were generated in the domain of that node. The figure reveals that the
total received requests decays exponentially with each subsequent cell. At 120% load,
the first node processes 90% of the requests generated in, while associated with that
node. The rate diminishes to 8% in the final node. Feasibly, the utility of subscribing
to that node is negligible. Moreover, at 100% workload, the amount of requests being
processed that were generated while subscribing to that node decays faster than the
number of migrations, which quickly converges. This behaviour is a contributing factor
to why the waiting time is decaying in an otherwise stable system, as discussed above.

Consequently, the amount of time spent processing migrated requests by each node
grows exponentially, converging to where no intra-node generated requests are pro-
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cessed. At this point, the migrated VMs contribute more requests than what is gen-
erated within the domain of the server node. It would arguably be more efficient to
eliminate much of the migration by consolidating multiple nodes and spend those re-
sources on processing tasks.

Furthermore, the mean waiting time in proportion to the time spent in the domain
of a node gives you one metric of how much that node is contributing work. At the
far node, at 120% load, almost the whole residency is rewarded with, on average, 1,11
processed requests. As such, using that node carries very little return. The effect of the
diminishing return of the time spent in a node is shown by Figure 2.4.

2.5.5. SESSION MIGRATION VERSUS NODE RESIDENCY TIME

Another relevant comparison is that of session migration versus node residency, which
corresponds to the general scale requirements of the resources. As one can expect, in
a stable system the number of VMs will remain relatively constant over time, given a
100 % workload. It is made evident by Figure 2.2 that the system can recover from
temporary overloads in one node, as any excess workload is gradually spread to the
adjacent vacant nodes. This self-balancing effect is, of course, proportional to the
distribution of end-users, the speed of which they are moving in and the dimensions of
the RBS cells.

2.6. CONCLUSIONS

The Fog computing model and simulation reveal the challenges facing mobility in Fog
computing. The simulation results made it apparent how mobility incurs severe pro-
gressive workload accumulation, and that VM migration will contribute to a large over-
head, depending on the topology. The incurred VM migration load on the system con-
sumes such a large proportion of the system’s resources that it will require the system
administrators to greatly over-provision the system to maintain consistent performance.

It was also made clear that the return of subscribing to the closest Fog comput-
ing node has a diminishing utility with node order and server load. At the simulated
extremes, slightly more than 1 request is processed during the time an end-user on av-
erage spends in a cell. Thus the cost of migrating the session far exceeded the amount
of work it contributes.

Complementary, it will conceivably be relevant to determine network topological
placement of Fog computing DCs and determine the effects of applications and VMs
migrating to and from a distant DC and horizontally in the network, and through other
network access media, such as 802.11, as a means to load balance the system of dis-
tributed DCs.





3
Modelling and system architecture

D espite the interest in the Fog computing paradigm, there are no simulation mod-
els capable of simultaneously modelling the dynamics of UEs, placement and
capacity of DCs, and network infrastructure. Understanding these relations is

essential for Fog computing stakeholders, e.g., Infrastructure Providers (IP) can use
that knowledge to reduce infrastructure costs, while still delivering competitive per-
formance.

In this chapter, a comprehensive Fog computing meta-model is proposed, which fa-
cilitates experimentation and evaluation of possible configurations, such as placement
and capacity of DCs. The meta-model uses existing, well-established simulation mod-
els, e.g., for RANs or DCs, for modelling of the aforementioned individual parts of
the infrastructure behaviour. The model describes the dynamics of a Fog computing
infrastructure, including QoS, and the associated costs of this paradigm. Additionally,
a meta-model is presented that captures the described dynamics using existing and
composite models.

3.1. EXISTING FOG COMPUTING MODELS

To support the creation of a meta-model that incorporates workload, set-up, and ob-
jectives of the Fog computing described in the previous section, existing models are
surveyed in the following categories: application request generation and resource re-
quirements, UE mobility, networks, DCs, and infrastructure costs.

Most of the models and simulators are assigned to only one of the categories men-
tioned above. However, the capabilities of the four surveyed simulators extend to many
categories. They are summarised in Table 3.1.

39
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Table 3.1.: Overview of surveyed simulators.
Framework RG RR M N DC
NS-3 X X X
OMNeT++ X X X
CloudSim X X
GreenCloud X X

RG – Request Generation, RR – Resource Requirements,
M – Mobility, N – Network, DC – Data Centre.

3.1.1. WORKLOAD MODELS

Applications running in the Fog consist of a set of User Equipments (UEs), users, and
a server processing offloaded computations. Therefore, they should be modelled from
two perspectives: request generation that describes how requests are created and sent to
the DCs; and resource requirements that describes how many computational resources
are needed to process the requests.

TRAFFIC

Traffic models capture a user’s behaviour by primarily representing interaction times,
or the timing clicks through a stochastic process, often Poissonian. A user behavioural
model can be further refined by introducing a stochastic model for the duration of time
a user consumes a particular type of content. The transition between types of content
is conventionally modelled as a Markov process.

Furthermore, the traffic characteristics are commonly modelled with multiple stochastic
processes, encompassing the number of packets in a session, and the size of each
packet. Traffic models are either closed or open looped. In an open loop model, the
generation of each new session is typically a Poisson process independent of the res-
ulting DC action. Conversely, in a closed loop model, the generation of new sessions
is dependent on the timing of the response from the DC and thus the properties of the
previously generated session.

In the packet-level event driven network simulators; NS-3 [RH10] and OMNeT++
[V+01], a node can act as either a client or server. Either by sending packets provided
by a stochastic model, at a given rate, within a specified period, and at a specified
interval, or processing received packets from a buffer, at a given rate. Both server and
client models can be augmented with a more complex system of queues to such an
extent that they can represent an abstract DC that hosts multiple applications.
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RESOURCE REQUIREMENTS

CloudSim [CRB+11], which is a simulator of cloud infrastructure, provides an applic-
ation model that describes computational requirements – the number of resources that
needs to be available (e.g. number of cores, memory and storage); and communic-
ational requirements – the amount of data that needs to be transferred. GreenCloud
[KBK12], which is a packet level simulator based on NS-2, apart from computational
and communicational requirements, also describes QoS requirements, expressed by an
execution deadline. The application model may also include the size of the code that
has to be offloaded and dependencies on other services, e.g., regarding the amount of
data that has to be sent or received [Kov12].

MOBILITY

The NS-3 and OMNeT++ nodes described above can be set into motion given a specific
stochastic mobility model. They can, for example, traverse the space as pedestrians, or
automobiles, with corresponding velocity and rate of change. The spatial relationship
between nodes and RBS affects the current channel properties and RBS-to-node asso-
ciations. Node mobility will also result in handover between RBSs, which in turn will
alter the paths of the node-generated workload in the network.

3.1.2. SET-UP MODELS

Described below are existing models and simulators of networks and DCs, which can
be used to configure the setup of the Fog computing meta-model.

NETWORK

Several well-established event-driven frameworks model computer networks, mobile
networks, applications, packet-level network traffic, infrastructure, and independent
mobile users. The two primary examples are NS-3 and OMNeT++. These two are
commonly deployed in academic network research and provide detailed results on net-
work utilisation, throughput, congestion, and latency.

Both NS-3 and OMNeT++ are comprehensive packet-level network simulation frame-
works that include wired and wireless standards and can simulate communication chan-
nel conditions. Furthermore, both frameworks have detailed models for channel defin-
ition, such as propagation delay, interference, data rate, and medium access schemes.
Also, to a varying degree, NS-3 and OMNeT++, by default or through extension, sup-
port control plane signalling for many wireless standards and complex network topo-
logies.

Both frameworks have support for modelling different types of network nodes, ran-
ging from computers to routers and switches. Each edge and node pair has a defined
communication and medium access standards, such as TCP/IP and Ethernet. Each
packet that is sent over the network is treated in accordance with the current network
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and transport protocols and routing standard. In both, the event of arrival and departure
of packets drives the simulation clock.

Furthermore, they require detailed configuration of all communication modes as well
as node behaviour, making it very time-consuming to implement and verify systems
with different levels of abstractions, and are thus cumbersome to model systems that
cannot yet be described in such detail.

A Fog computing infrastructure topology is yet to be defined with unspecified con-
trol planes, it would thus be counter-intuitive and time-consuming to implement Fog
computing infrastructure topologies in either NS-3 or OMNeT++. In some instances,
some modules would have to be redesigned entirely, and others would have to be spe-
cified to much greater detail than the Fog can offer at this stage.

DATA CENTRE

The purpose of this section is to survey the DC models that are the most suitable for
inclusion in the Fog computing meta-model. An extensive list of mathematical models,
simulation approaches, and test beds can be found in [SL13], while [AS14] provides
a survey of twelve cloud simulators. After careful examination, a handful are further
reviewed below.

DC models and simulators are compared based on descriptions provided by the au-
thors of the simulators. For each model the following is described: Resource Provision-
ing – what resources are included and how they are modelled; QoS – what performance
indicators are measured; Costs of computation in the DC; Performance of simulator –
an estimation of the time needed to perform a simulation.

CloudSim is an event-based simulator implemented in Java, for simulation of cloud
computing system and application provisioning environments.

Resource Provisioning. The CloudSim simulation layer offers dedicated man-
agement interfaces for Central Processing Unit (CPU), memory, storage and
bandwidth allocation, as well as, defining policies in allocating hosts to VM
– VM provisioning. Hosts are described by their processing capabilities (in
MIPS) and a core provisioning policy, together with an amount of available
memory and storage. A model supports time-sharing and space-sharing core
provisioning policies on both host and VM levels.

Latency (QoS). The latency model is based on conceptual networking abstrac-
tion, where the communication delays between each pair of entity type (e.g.
host, storage, end-user) are described in a latency matrix as a constant value
expressed in simulation time units (e.g. milliseconds).

Costs. CloudSim provides a two-layered cost model, where the first layer relates
to IaaS, with costs per unit of resources, while the second one relates to SaaS,
with costs per task units (application requests). This model allows calculation
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of the costs of using the cloud from the end-user perspective or the revenue from
the IP perspective.

Performance. CloudSim can perform large-scale simulations, e.g., it can in-
stantiate an experiment with 1 million hosts in 12 seconds. Moreover, memory
usage grows linearly with the host number and even with 1 million hosts it does
not exceed 320 MB.

CloudAnalyst [WCB10] is a simulator of geographically distributed large-scale cloud
applications, developed with Java and that utilises CloudSim and SimJava.

Resource Provisioning. Cloud Analyst uses the same resource provisioning
model as CloudSim.

Latency (QoS). A latency model allows configuration of network delays, avail-
able bandwidth between regions, and current traffic levels. CloudAnalyst facil-
itates experiments with latency by producing the following statistical metrics:
the average, minimum, and maximum response times of all user requests; and
response time grouped by time of the day, location, and DC.

Costs. CloudAnalyst supports the calculation of costs for using cloud resources,
such as cost per VM per hour and cost per Gigabit of data transfer.

Performance. To improve the performance of simulation entities are grouped
at three levels: clusters of users, a cluster of requests generated by users, and
clusters of requests processed by VM.

GreenCloud is a packet level simulator based on NS-2, for simulation of energy-
aware clouds.

Resource Provisioning. Servers are modelled as a single core node with a
defined processing power limit (in MIPS or FLOPS), size of memory and stor-
age, and implementing different task scheduling mechanisms.

Latency (QoS). Full support for the TCP/IP protocol reference model is provided
and thanks to that the simulator can calculate communication latency with high
accuracy.

Costs. GreenCloud allows detailed modelling of energy consumption by imple-
menting energy models for every DC element.

Performance. Given that GreenCloud has to simulate the full stack of Internet
protocols, each simulation only takes in the order of tens of minutes for a DC
with a few thousands of nodes.

3.1.3. COSTS MODELS

The DC models mentioned above focuses mostly on the costs of running applications
in DCs from the end-user perspective. To be able to investigate Fog computing re-
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source management challenges models for Capital Expenditure (CAPEX) and OPEX
are needed.

CAPEX includes costs of peripheral infrastructure and the servers.

Infrastructure Costs. Costs of building, power distribution, (and cooling can
be estimated using a following equation: $200M · (1+ cm)/ai, where cm is
the cost of money1, and ai is the time of infrastructure amortisation [in years]
[GHMP08].

Server Costs. Costs of servers can be modelled as ns · ps · (1+ cm)/as, where
ns is the number of servers, ps is the price of one server [in $], cm is the cost of
money, and as is the time of server amortisation [in years] [GHMP08].

OPEX consists of utilities and personnel costs.

Power Costs. Here, power is assumed to be the primary utility expense common
to all DC-types. To estimate costs of power, the following equation can be used,
ns · pcs/1000 ·PUE · pKWH · 24 · 365, where ns is the number of servers, pcs is
the power consumption of one server [in W], PUE is Power Usage Efficiency,
and pKWH is the price of electricity [in $ per KWH] [GHMP08].

Personnel Costs. Costs of personnel can be calculated using M1 ·C1 +M2 ·C2 +
M3 ·C3, where M1 is the number of IT personnel per rack, M2 is the number
of facility personnel per rack, M3 is the number of administrative personnel per
rack, and C1, C2, C3 are the average costs per person for each of the above
mentioned categories [PS05].

3.2. FOG COMPUTING META-MODEL

In this section, the models surveyed above are composed into a Fog computing meta-
model. Figure 3.1 visualises of the proposed meta-model. UEs, such as cell phones or
laptops, are carried by end-users, who are in motion. The UEs generate requests which
are sent over the network to a DC. It is also possible that requests are generated by
sensors that may be static (e.g. traffic cameras) or mobile (e.g. trains). The requests
are processed in the DC and the response is sent back to the UE or sensor. Processing
requests, in case of state-full applications, generate a user state, that has to be migrated
with the end-user if he moves to another DC.

The primary objective of the meta-model is to capture the interactions between ap-
plication workload, UE mobility, network topology, DC characteristics, and their influ-
ence on QoS and costs of a Fog computing infrastructure. The parameters that define
the meta-model are presented in Table 3.2 and described in detail below.

1Cost of money is the rate of interest or dividend payment on borrowed capital.
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Figure 3.1.: Visualisation of the proposed Fog computing meta-model.

3.2.1. WORKLOAD MODEL

The first group of parameters in Table 3.2 describes the mobility of end-users carrying
UE and the characteristics of requests generated by these UEs.

REQUEST GENERATION

Nser applications may concurrently be deployed in the Fog computing. An application
is modelled as a state-full web application. Each session is separated in time with
a Poisson process λses [RLGPC+99]. Each session produces Nreq requests, sampled
from an inverse Gaussian distribution, where each request is separated in time by Log-
Normal distributed delay Dreq in seconds. The size of each request is given by Sreq KB
and is drawn from a Pareto distribution.

RESOURCE REQUIREMENTS

Application resource requirements are modelled using a linear model specifying the
needed amount of resources, both for an idle application and per processing each re-
quest. An idle application uses CPUidle CPU operations, memidle amount of memory,
and diskidle amount of storage. Additionally for each processed request, the applica-
tion uses CPUreq CPU operations, memreq amount of memory, and diskreq amount of
storage. The amount of user’s state data created by each request is defined by state and
expressed in absolute value or percentage of request size Sreq.
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Table 3.2.: Fundamental meta-model parameters.
Type Parameters Unit Description

WORKLOAD

Request
generation

Nser Total number of applications
λi

ses, where i = 1,2, . . . ,Nser s Session arrival rate to DC
Ni

req, where i = 1,2, . . . ,Nser Number of requests per user session
Si

req, where i = 1,2, . . . ,Nser KB Size of requests for a given application
Di

req, where i = 1,2, . . . ,Nser s Inter-request time

Resource
Requirements

CPU i
idle, CPU i

req, where i = 1,2, . . . ,Nser MI CPU cycles used by application
memi

idle, memi
req, where i = 1,2, . . . ,Nser MB Size of memory used by application

diski
idle, diski

req, where i = 1,2, . . . ,Nser MB Size of storage used by application
statei, where i = 1,2, . . . ,Nser MB Size of user’s state produced per req.

Mobility
NUE Number of UEs
si

t , ai
t , θi

t , ωi
t , where i = 1,2, . . . ,NUE Movements of UEs

SETUP

Network
NRBS Number of RBSs
dRBS m Dimensions of an RBS cell
Dnet s Cumulative network delay

Data Centre

NDC Number of DCs
Ni

S, where i = 1,2, . . . ,NDC Number of servers in DC
N j

CPU , where j = 1,2, . . . ,Ni
S Number of CPUs per server

s j
CPU , where j = 1,2, . . . ,Ni

S MIPS CPU’s speed
memory j, where j = 1,2, . . . ,Ni

S MB Amount of memory per server
storage j, where j = 1,2, . . . ,Ni

S GB Amount of storage per server
networki

bw, where i = 1,2, . . . ,NDC Mb/s Network bandwidth
tinit , tidle, tterm s Times of VM transitions

Service Placement placement ={every, n-closests} Service placement policy
OBJECTIVES

Quality of Service
RT i, where i = 1,2, . . . ,Nser s Application response time
T Pi, where i = 1,2, . . . ,Nser req/s Application throughput

Costs Cost $ Total costs of infrastructure

MOBILITY

NUE UEs populate the network, each subscribing to a subset of the Nser available ap-
plications. The 2-dimensional, multimodal, mobility model detailed in [Bet01] provides
us with an on-average uniform distribution of users, with movement proportional to the
duration of a session and the scale of the mobile network. The model mentioned above
defines the properties of a UE’s movement. A UE’s momentary movement is defined
by its velocity constituted by the current speed s and current direction θ. Changes in
mobility are defined by multiple stochastic processes that describe the duration of its
state. An entity’s speed s is independent of direction θ and is maintained for Ts seconds,
after which acceleration a is applied between amin and amax for time Ta, until it reaches
smin or smax. Furthermore, direction θ is maintained for time Tθ until the next change-
event where the direction θ is altered for Tω seconds with at the rate of ω radians per
second. Ts, Ta, Tθ, and Tω, describing the timing of each change-event, are set for each
mobility mode and are each defined by a probability distribution bounded by maxima
and minima.
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3.2.2. MODEL PARAMETERS

The second group of parameters in Table 3.2 characterise the network and DCs.

NETWORK

In the proposed model, the core network introduces a cumulative propagation, switch-
ing, and routing delay. This delay is modelled with a Weibull distribution Dnet in
multiples of the number of network nodes between the source and the destination
[PMF+03].

The network distance between RBSs is equal to the cell dimension dRBS. The as-
sociated RBSs are equidistant to their common DC and are for the sake of simplicity
assumed to be separated by one network edge.

Furthermore, forthcoming cell planning practices aim to increase area energy effi-
ciency by favouring smaller cells in urban areas [SKA13, FRF09]. The model em-
ploys a small homogeneous mobile network composed of NRBS equidistantly distrib-
uted RBSs.

Agnostic to a specific mobile generational standard, a UE is handed over between
RBSs at the geographic point where they cross the cell boundary distinguishing two
independent RBSs defined by the width of the rectangular cells dRBS.

DATA CENTRE

The DC model captures the influence that its capacity has on performance and costs of
computation. To model DC performance, the quantity and quality of each DC resource
is described. A DC consists of NS servers. NS is a function of the DC’s scale. A
server contains NCPU CPUs capable of executing sCPU operations per second. Values
of memory and storage specify the total amount of available memory and storage,
respectively. The network bandwidth is networkbw. The DC model also includes a
provisioning model, that describes how available resources are shared among several
applications, e.g., time-sharing or space-sharing.

In this work, for the sake of simplicity, a DC hosts applications in VMs or containers.
Again, for the sake of simplicity, we refer to these discrete compute units simply as
VMs. An application can be distributed over multiple VMs. The incoming workload
is load-balanced by either a method of round-robin, random selection, or placed in the
VM with the lowest load. However, a user’s requests are always forwarded to the VM
that served its first request. An application can specify a minimum and a maximum
number of VMs it requires. The DC scales the application within these bounds based
on the load-balancing outcome.

To emulate the life-cycle of a VM six VM states are defined. The states and their
corresponding transitions are illustrated in Table 3.3. The transitions between the states
are presented in Figure 3.2. In the beginning, all VMs are in the INACTIVE state. A
VM is initiated when the first request arrives at a DC. It takes tinit seconds before
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Table 3.3.: States of Virtual Machine.

Name Description
INACTIVE VM is turned off.

INITIATING VM is booting up.
PROCESSING VM is serving requests.

IDLE VM is waiting for requests.
MIGRATING VM is transmitting data.

TERMINATING VM is shutting down.

Inactive Initiating Idle

Processing

Migrating

Terminating

Figure 3.2.: Transitions between Virtual Machine states.

a VM is ready to start processing requests or receiving migrated requests and user
state from other DCs. It is assumed that a VM is not able to process requests and
handle migrations at the same time, so it changes state between PROCESSING and
MIGRATION over the time. Moreover, migrations are given a higher priority than
processing, so processing is paused if there are any migrations to perform. When
there are no requests to process and no migrations to handle a VM goes into the IDLE
state. A VM is terminated if IDLE state lasts for longer than tidle seconds, and the VM
termination takes tterm seconds.

SERVICE PLACEMENT

Service placement policies define in what DC(s) an application should be hosted, what
number of replicas should be running, and when an application should be migrated
between DCs. These decisions depend on the mobility of users, the size of the user’s
state that has to be migrated, and Service Level Agreements (SLAs). For example,
an application can be hosted in n Proximal DCs closest to the majority of its users
(n-closests), or in the case of latency-sensitive applications in every Proximal DC that
is needed to provide acceptable QoS (every).
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3.2.3. OBJECTIVES MODEL

The third group of parameters in Table 3.2 describe QoS and costs of a Fog computing
infrastructure.

QUALITY OF SERVICE

Combining the resource requirements model, which describes the number of resources
an application needs, with a DC model, allows simulating how collocation of different
applications in a DC influences their response times RT i and throughputs T Pi.

COSTS

Cost models available in the literature and described in Section 3.1.3 are arguably
"country dependent", because of the inclusion of variable parameters such as salaries,
costs of energy or costs of property. They are also not taking into account parameters
important from the perspective of Fog computing, such as the size of DC. There-
fore, the costs of a Fog computing infrastructure are modelled using a basic heuristic
based on the observation that dispersion of infrastructure causes additional costs, e.g.:
increase of administrator travel time between locations, and higher unit costs of com-
putation in proximal DCs because of smaller scale and high initial costs.

Cost ∝
NDC

∑
DC NS

(3.1)

As shown in Equation 3.1, the total cost of a Fog computing infrastructure is directly
proportional to the number of DCs and inversely proportional to the total number of
servers in all DCs. This implies that; distributing the same number of servers among
many DCs is more expensive than placing them in one DC.

3.2.4. LIMITATIONS

The proposed meta-model has several limitations. The application model assumes that
all requests generated by one application are homogeneous and each of them consumes
the same amount of resources. The mobile access network model does not take into
account the physical layer, channel provisioning, and cell load balancing. Addition-
ally, the radio access network functions as a mechanism to associate UEs with DCs
propagation and system processing delays are thus not modelled. However, the model
is granular enough to be efficient and includes sufficient dynamics to run a meaning-
ful experiment to study a Fog computing infrastructure’s performance. Additionally,
at this point, not enough is known about Fog computing infrastructures to add more
details to the model.
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3.3. SIMULATION SHOWCASE

A coarse-grained simulator was implemented using SimJava [HM98] as the underlying
event-driven simulation framework. All modules are implemented from scratch and
are based on the meta-model presented in Section 3.2. The simulator fully implements
the proposed request generation and network models but implements more abstract
mobility, resource requirements, DC, and service placement, models.

To demonstrate the scope of the Fog computing meta-model and the simulator ele-
mentary showcase scenario is introduced below. The scenario is designed for studying
the fundamental relationship between workload – UE mobility, set-up – Proximal DC
catchment, and objectives – the aggregate utilisation of a Fog computing infrastructure.

3.3.1. EXPERIMENTS

A simple scenario with one application is presented below. The size of the simula-
tion is reduced from a full-scale Fog computing infrastructure. The VM scalability
and placement models shall be seen as proofs-of-concept. The goal is to obtain clear
conclusions about the relation between UE mobility, and DC catchment and avoid the
interference of other elements. The scenario is described in detail below.

The telecommunication infrastructure is composed of 16 RBSs, in a 4x4 layout, as
presented in Figure 3.3. The cells, depicted with dashed lines, are tangent but not
overlapping and are dimensioned as a typical LTE micro-cell at 750 m, as detailed in
[SKA13]. The number of DCs varies between the experiments and thus so, also the
DC catchment, represented with the solid lines, and defined as the ratio between DCs
and RBSs, changes between (1:1) and (1:16). Note that a (1:16) catchment covers the
whole simulation area with one DC. In abstract terms, the (1:1) catchment represents a
set-up with one Proximal DCs per RBS. In contrast, the (1:16) catchment approaches
a more traditional case of Remote DC serving all users in the domain.

To study the effects of DC catchment, all DCs are of the same capacity. The number
of VMs in each DC is scaled proportionally to the number of users they serve. The
DC in the (1:16) catchment scenario has 16 VMs, while the DC in the (1:1) scenario
has just one VM. The workload is balanced among available VMs; new sessions are
forwarded to the least loaded VM. To observe the full extent of the effect of user
mobility, user states, and requests are strictly migrated to the geographically nearest
DC.

The request generation model has a session arrival rate of λses described by a Log-
Normal distribution with the parameters µ= 3 and σ= 1.1. The number of requests per
session Nreq is taken from an Inverse Gaussian distribution with the parameters λ = 5
and µ = 3. Inter-request time is Dreq seconds and is modelled with with an Exponential
distribution with λ = 0.1. The simulation domain is populated by 480 UEs, all sub-
scribing to the same service. Due to the size and simplicity of the network topology
in the proposed scenario, a Markov-based mobility model is deployed. The mobil-
ity mode is based on a car and is as specified in Section 3.2.1, with parameters from
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1:1 1:2 1:4 1:8

Figure 3.3.: RBSs ranges and DC catchments.

[Bet01]. To allow the mobility and workload models to reach a steady state jointly,
the simulation is run for 8 simulated hours. This results in an average processing load
of 30%; this level should give enough margin to for example migrations to complete
successfully.

The user state is proportional to the aggregate size of that user’s sessions with the ap-
plication it subscribes to and is defined by a 5th order AR-process with linearly decay-
ing parameters. The initialisation of a VM takes tinit = 81s, similarly as for m1.small
VM type in Amazon EC2 [OIY+10]. A VM is terminated if it remains in the IDLE
state longer than tidle which is equal to the mean inter-session time. It takes tterm = 21s
to terminate a VM.

To investigate the influence of Proximal DC, catchment on the aggregate perform-
ance of a Fog computing infrastructure the simulator observes the life cycle of the VMs
that run within the DCs by recording the amount of time each VM spends in each state.
Two sets of experiments are conducted. In the first set, end-users are static. The second
set of tests introduces mobility. In both sets, the variations in the distribution of time
that VMs spend in each state is investigated.

3.3.2. RESULTS

Figure 3.4 shows the breakdown of the mean time spent in each VM state in the system
per DC catchment. With a (1:1) DC catchment the utilisation suffers from the propor-
tion of time spent in IDLE state due to the relatively low request arrival rate generated
by one-sixteenth of all users. The inefficiency is caused by the time the system spends
in the IDLE, INITIATING, and TERMINATING states. The composition of time spent
in these states changes with DC catchment, and is a reflection of the number of VMs
in a DC and load-balancing effort. Reducing the time spent on starting and terminating
VMs would free up more resources and perhaps also make the system more reactive to
sudden workload changes. The intelligent management of VM scalability and place-
ment is something that needs to be optimised.

Figure 3.4 reveals the overhead of user mobility and the migration effort it incurs.
Depending on the DC catchment, different migration dynamics come into play. As
migrations are more frequent in the (1:1) case than in the (1:8) case, user states do not
have the time to grow as much between migrations in the former case. The migration
effort is therefore not a factor eight lower in the (1:8) case versus the (1:1) case, but
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Figure 3.4.: DC catchment vs. time spent in each VM state.

rather, they spend 26% and 47% of their time in the MIGRATING state, respectively.
The system dynamics revealed by Figure 3.4, where at worst, 47% of the execution
time is spent migrating users, points to the need to find scaling mechanisms for Fog
computing that take into account mobility and inactivity, so that resources can be freed
dynamically for other revenue generating applications. A policy of strictly migrating
user states and requests to the geographically closest DC, regardless of DC catchment,
to obtain minimal propagation and communication latency, is suboptimal.



4
Centralised Fog computing resource

management

M eeting the objectives of a set of heterogeneous applications and a heterogen-
eous Fog computing infrastructure, is non-trivial. The highly distributed and
heterogeneous nature of the Fog introduces several interesting resource man-

agement challenges arising from a highly dynamic workload, heterogeneous energy
costs and resources, rapid user mobility, and multi-component applications, [KET+13].
The topology depicted in Figure 1.12 reflects the union of a Mobile Network Operat-
ors (MNO)’s network and a federated cloud infrastructure and should be seen as an
abstraction of a Fog computing infrastructure topology proposed in [BDPW11].

The Fog computing paradigm will proposedly enable and drive new types of ser-
vices and applications that exploit the increased proximity to the end-users and critical
infrastructure components. Contemporary cloud resources are housed in centralised
DCs that are separated from the end-users by the intermediate WANs, core, and access
networks. The added latency and weak-backhaul introduced by those networks has
proven to inhibit the performance of cloud-based applications [BS10]. Furthermore,
there is a large and growing set of mission critical real-time applications such as tele-
robotic surgery [Bal02], RBS baseband signalling [CCY+15], gaming [HTÖ+16], and
Augmented Reality (AR) [CKW13] that are unable to operate in such a latency-, jitter-,
and throughout-uncertain environment, provided by a centralised cloud paradigm. The
decreased distance between the cloud infrastructure and the end-users, provided by a
Fog computing infrastructure, reduces the RTT and jitter, increases availability, and
fault-tolerance [SBL15] for the infrastructure’s resident cloud applications.

To operate a viable Fog computing infrastructure, its operator needs to adminis-
ter the admitted applications and the system’s resources such that resources are not
over-provisioned, the total operational cost is minimised, and that all applications’ per-
formance requirements are met. When managing a Fog computing infrastructure, its
operator’s primary degree of freedom is the placement of the system’s resident ap-

53



54 Centralised Fog computing resource management

plications. Continuously and scalably evaluating the placement of a vast set of het-
erogeneous applications over a set of heterogeneous nodes is non-trivial and is the
fundamental problem addressed in this paper.

In this chapter, the feasibility of a Fog computing infrastructure is evaluated by
studying application placement algorithms in such an infrastructure. Because the work-
load is highly mobile, this work focuses on where to run applications in the network
and how to continuously evaluate that decision as an instrument to fulfil the holistic
management objectives of a Fog computing infrastructure. To this effect, an object-
ive function is proposed that minimises the global system cost to manage the DCs
and the network resources of a Fog computing infrastructure when hosted in a tree-
structured network topology. Furthermore, experiments designed to study the validity
of the placement algorithms in the Fog paradigm are provided.

4.1. RESOURCE MANAGEMENT CHALLENGES

One of the foremost challenges in the Fog computing paradigm is how to manage
the highly heterogeneous and distributed resources in a complex system. The sheer
size of the infrastructure and the number of management parameters renders a fully
centralised resource allocation strategy infeasible [AS07]. As a result, a decentralised
collaborative resource management approach needs to be considered. Before we can
begin to design a distributed management approach we explore the theoretical optimal
solution. A centralised system can provide an optimal management solution but might
be practically infeasible due to, for example, computational complexity, scalability,
and fault tolerance. With the hypothetical and experimental scope of this work, it is
free from such constraints.

4.1.1. SERVICE PARADIGM

The nodes in a Fog computing infrastructure can be viewed as nodes in a federated
cloud [RBL+09] whose resources are brokered globally but are for example sought
after for their locality to a specific group of users, sensors, or actuators. Application
components are submitted by application owners from beyond and within the network
to serve a subset of the network’s population. Application owners impose perform-
ance, availability, latency, and locality requirements on the Fog platform in the form of
a SLO or a Service Level Agreement (SLA). Here, Fog platform refers to the SW plat-
form that runs on the Fog computing infrastructure. Additionally, both end-users and
application owners alike are agnostic to where the application is hosted and how the
network and cloud infrastructure is managed. The end-users cannot impose require-
ments on the network or the applications’ performance. Performance requirements,
SLOs, for applications originating from an end-user device, are defined by the ap-
plication owners. Additionally, there is no resource competition between applications
and a Fog computing infrastructure honours no priorities, but rather, applications have
global performance objectives where a Fog computing infrastructure might augment
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performance and facilitate scalability. The decision to deploy an application to the Fog
is therefore assumed to be made by the application owner.

A Fog operator’s overall management objective is to ensure that the fundamental
circumstances for an application to perform according to its SLO or SLA are met. As
such, a Fog operator practices admission control and can reject new applications if the
application will compromise its internal management objectives and the integrity of
the other applications’ SLO or SLA. Once an application component has been placed,
the performance of an application is the result of the applications’ properties and the
internal resource management policies of the DC the application is running on, and is
beyond the scope of this work. Note that this work is thus not concerned with VM
or application to Physical Machine (PM) mapping. Application components hosted in
the Fog are assumed not to have a scheduled deadline but are instead being terminated
based on the application’s internal management objectives.

4.1.2. RESOURCE MANAGEMENT OBJECTIVES

The management objectives for a Fog infrastructure operator are similar to those found
when operating a wireless network, such as user mobility and limited network capacity.
Nevertheless, there is a clear paradigm chasm between Telecom and cloud services.
Telecom provided services such as voice have very well defined and strict SLAs. De-
pending on the service type, cloud service SLOs on the other hand are more loosely
defined, where the service offering is multidimensional and given the nature of the
resource offering, performance responsibility is more opaque [Bas12]. Additionally,
operable core and access networks are prerequisites to hosting and accommodating
cloud resources and traditional Telecom services in the network. As such, the success-
ful operation of the access and core networks are therefore prioritised over the cloud
services. The scope of this work does therefore not cover MNO services and network
infrastructure virtualisation, as their objectives overlap with that of a Fog computing
infrastructure.

It is assumed that a Fog computing infrastructure is managed on top of the existing
Telecom infrastructure. The Fog computing infrastructure management process is ag-
nostic the momentary load and objectives of the Telecom network. The objective of the
Fog computing’s management entity is, therefore, to minimise the resource usage and
thus the resulting operational cost and incurred load on the shared Telecom network,
and to provide a service with a finite set of resources.

4.1.3. CHALLENGES

The internal Fog computing management challenges are found in the union of cloud
and mobile infrastructure. a Fog infrastructure operator has only a few degrees freedom
to control the operations of the infrastructure. An operator can alter:

• The number of applications in the network.

• The pallet of applications and
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application’s heterogeneity.

• Which pieces of infrastructure to run.

• Where to run the application components.

Continuous evaluation of application component placement is the common denom-
inator. No assumptions are made about how specific applications or set of users behave.
It is therefore assumed that any application can behave in any manner in the realm
of what is physical and computationally possible. When re-evaluating an application
placement, the management process determines if the energy, computing, network, and
latency costs fall short of any of the possible placement possibilities that qualify, for
a certain period. The systems’ rate of change determines the duration under which a
decision is valid. The number of possible placement combinations and the rapid rate
of change means discrete placement decisions need to rely on the prevailing workload,
resource availability, and user location. The system needs to re-evaluate the placement
of application components, whenever workload changes for an application, when new
applications arrive or are terminated, when applications scale up or down, or when
foreground traffic volumes change. The triggers and decisions need to be at the granu-
larity of individual application components.

Operating a profitable network relies on an operational network and the ability to
cost-manage that network. The resource heterogeneity of a Fog computing infrastruc-
ture, the mobility of the users in the network introduce and the heterogeneity of the ap-
plications to which they subscribe introduce a complex set of management decisions.
A Fog infrastructure operator will need to manage the placement decision and the sub-
sequent placement revaluation of application components in a manner that minimises
the overall resource usage.

4.2. EXTENDED FOG MODEL

Here, although analogous, the model presented in Chapter 3 is augmented and re-
worked to fit the extended problem addressed in this chapter. Also, the notation has
been modified and made more compact to better fit the formulations below.

The placement and scale of a Fog computing infrastructure’s DCs is dependent on
the degree virtualisation of a MNO’s infrastructure [ZZGTG10], the degree of conver-
gence of core and access networks, and the prevailing geographic demand for proximal
compute capacity. Although some bounds can be identified, these properties are not
yet defined as the design of forthcoming mobile access network standards and topo-
logies are far from being finalised [SS12]. Additionally, no assumptions are made of
DC placement or scale but the models are generic enough to handle many possible
next-generation infrastructure topologies.

As a whole, a Fog computing infrastructure is modelled as an undirected forest or
tree graph [RMK+09, BDPW11, JPE+11, MPZ10], where the vertices are DCs and the
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Figure 4.1.: Model overview

edges are network links, each with a set of finite resources, see Figure 4.1. Applications
are hosted in a DC and are subject to demand through the network links, originating
at the leaf nodes. The graph, G = (V ,E) denotes a tree depicting a Fog computing
network topology, where

V = {vi | i = 1,2, ..., I},
E = {e j | j = 1,2, ...,J},

(4.1)

where v1 is the root node. The subscript i of the node vi is named such that all the
nodes vk between vi and v1 follows

dist(vk,v1) ≤ dist(vi,v1), ∀k ≤ i, (4.2)
where the distance between nodes v∈V and w∈V , dist(v,w) is measured in number

of vertices that is on the shortest path from v to w. RBSs connect the leaf vertices
from which the end-users access the network. Thus, the leaf vertices are geographic
aggregation points of application demand.

4.2.1. DATA CENTRE MODEL

The Fog compute resources will proposedly reside in existing MNO infrastructure
[BDPW11], such as in a MNO’s regional offices or what remains of previous gen-
eration network infrastructure. Furthermore, the compute capacity is proportional to
the aggregate demand of applications from their users that have access to it, thus suc-
cessively decreasing with depth. Henceforth, the computing cost will increase with
depth.
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Each vertex is a DC and hosts applications using a set of finite resources. Vertex vi,
i ∈ {1,2, . . . , I} in the graph has the following features:

• Compute capacity ci, a number describing the total compute capacity of the
DC.

• Memory capacity mi, a number describing the amount of memory on the DC.

• Bandwidth, bi, a number describing the maximum throughput that the DC can
handle.

In addition to the features above, vertex vi, i ∈ {1,2, . . . , I} is associated with the
following operational cost

• DC cost ζi, a function of resource usage (compute, memory, and bandwidth)
that returns the DC’s running cost per time unit.

In general, the leaf vertices of the graph correspond to smaller DCs and thus the
compute costs are arguably more significant at the leaf vertices than at vertices at lower
depths in the tree, [BCH13].

4.2.2. NETWORK MODEL

Existing 3rd and 4th generation mobile access networks are generally tree-structured
[EEsS14]. Future mobile infrastructure generations will feasibly inherit this struc-
ture. Furthermore, bandwidth availability as well as communication latency and jitter
decrease with tree depth. Additionally, the network topology is modelled as a tree-
structured graph, where each edge has network resources and exhibits latency and con-
gestion.

Each edge e j, j ∈ {1,2, ...,J}, in the graph has the following features

• Bandwidth t j, a number specifying the maximum throughput over the edge.

• Latency d j, a function of the throughput that returns the delay caused by that
link’s resource utilisation and length.

In addition, each edge has the following operational cost

• Link cost η j, a function of throughput that returns the link’s running cost per
time unit.

The communication latency of an application is dictated and maintained by the ap-
plications’ relative locations to its demand and the level of congestion on the links
it employs. As the demand mobility from one edge node to another can be highly
dynamic, the size and location of applications’ demand can vary with time. Latency
is modelled as a function of propagation delay and network congestion [FTD03]. In
general, the bandwidth cost increases with the distance to the root vertex.
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4.2.3. APPLICATION MODEL

A Fog computing infrastructure hosts applications an, where n = 1,2, . . . ,N. Let A =
{an | n = 1, . . . ,N} denote the set of all applications hosted in the Fog. Application an,
n ∈ {1,2, . . . ,N}, see Figure 4.2, has the following features:

• Position pn ∈ {1,2, . . . , I}, a number specifying that the application component
is running on the DC at vertex vpn .

• Compute intensity γn, an increasing function of the demand of the application
component that describes the number of computational resources required by
the application component.

• Memory intensity σn, an increasing function of the demand of the application
component that returns the amount of memory required by the application com-
ponent.

• Uplink usage β+
n , an increasing function of the demand of the application com-

ponent as well as the locations of the application component’s end-users that
returns the uplink throughput associated with the application component,

• Downlink usage β−n , an increasing function of the demand of the application
component as well as the location of the application component’s end-users that
returns the downlink throughput associated with the application,

• Maximum delay dn, the longest delay (latency) that provides the users of the
application component a satisfactory experience. This delay is specified in the
SLA between MNO and application owner.

Applications thus scale vertically in a DC, as a function of demand.
Note that in the experiment section of the current work, only single-tier applications

are considered. However, the model can be generalised to account for multi-tier applic-
ations. In the multi-tier setting, application an can be considered as being composed
of sn stages or sub-applications. Each of these sub-applications will have the same
features as a single tier application. The relationship between application components
is expressed with a demand affinity as described in [UPS+05]. As an alternative to the
viewpoint of handling multi-tier application would be to include general affinity and
anti-affinity constraints between application components.

4.2.4. USER MODEL

Finally, let U = {um | m = 1,2, . . . ,M} be the set of users of the Fog computing infra-
structure. Each user um, m ∈ {1,2, . . . ,M} has the following features

• Location `m ∈ {1,2, . . . , I}, a number specifying that the user is currently served
by the DC at vertex vlm .
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Figure 4.2.: Application model

• Active applications Am ⊂ A, a set of application components that the user cur-
rently runs.

For future notation, Un = {um ∈U | n ∈ Am is the demand for an application com-
ponent n and let Un,i = {um ∈Un | `m = i}. Note that for the numerical experiments
in this chapter, users are not explicitly tracked, only the demand of each application
component at each leaf vertex.

4.3. OPTIMISATION FORMULATION

In this section the proposed Fog application placement algorithms are detailed. The in-
frastructure is restricted by resources with finite capacity and can thus not host an infin-
ite number of applications. Furthermore, not all placement constellations can meet all
application constraints. Accommodating an application’s constraints and meeting its
SLA/SLO is a prerequisite to generate revenue. Therefore, analogously, when search-
ing for possible placement options applications’ constraints are the primary concerns.
Applying the application’s resource and performance constraints, prunes the search
tree. After that, the algorithm searches for a set of placement options that incurs the
least overload in that point, over time.

4.3.1. RESOURCE UTILISATION METRICS AND CONSTRAINTS

The primary objective of the optimisation in this paper is to decrease the running
costs of a Fog computing infrastructure by placing/moving the applications on dif-
ferent DCs by normalising the usage of the infrastructure’s DC resources and minim-
ising the incurred network usage. Here, the control or decision variable is the vector
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p = (p1, p2, . . . , pN), that holds the position of all applications. For full generality, the
set of admissible placements are

A =
{

p ∈ZN | pn ∈ {1, . . . , I}
}

. (4.3)
To detail the relations resources and how they are utilised, the following objects are

defined: Let Pi,i′ denote the path from DC i to DC i′, that is, the set of edges that
connects the two DCs. Moreover, let Ei = {e ∈ E | vi ∈ e} be the set of edges that
represents links that are connected to DC i.

The throughput t j over link j is the total usage (uplink plus downlink) for all pairs of
users and applications such that the link is on the path connecting the DC serving the
user and the DC hosting the application. More precisely, the throughput is given by

t j = ∑{
n,m

∣∣∣um ∈ An ,
e j ∈ Ppn ,`m

}
(

β
+
n
(
|Un,`m |

)
+β

−
n
(
|Un,`m |

))
. (4.4)

For each application an ∈ A and user um ∈ Un of that application, the latency dn,m
experienced by the user is the sum of all latencies on the path connecting the DC
serving the user and the DC hosting the application. Thus, the latency dn,m can be
computed as

dn,m = ∑
{ j |e j∈Ppn ,lm}

d j(t j). (4.5)

Any additional latency incurred by intermediate DCs is not included. The computing
and memory usage at DC i is the sum of the corresponding usage by the applications
that are running at the DC, that is,

ci = ∑
{n|pn=i}

γn(|Un|) (4.6)

and
mi = ∑

{n|pn=i}
σn(|Un|). (4.7)

The throughput over vertex i is the sum of the throughputs of all edges that are connec-
ted to the corresponding DC. Thus,

bi = ∑
{ j|e j∈Ei}

t j. (4.8)

Each of the resource metrics is associated with a constraint connected to the features
of the DC, application, and network models. These constraints are

ci/ci ≤ 1, i = 1,2, . . . , I, (4.9)

mi/mi ≤ 1, i = 1,2, . . . , I, (4.10)

bi/bi ≤ 1, i = 1,2, . . . , I, (4.11)

t j/t j ≤ 1, j = 1,2, . . . ,J, (4.12)

dn,m/dn ≤ 1, n = 1,2, . . . ,N and {m | um ∈Un}. (4.13)
All constraints above are written on the form a/a≤ 1, that is that the relative usage (or
latency) of a particular resource should be at most 1. The choice of a common form
simplifies the discussion about the formulation of the optimisation problem below.
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4.3.2. OPTIMISATION PROBLEM

The objective function in Equation (4.14) is designed to capture the application ex-
ecution cost and the overload penalty on the node as well as edge resources in the
system. Here, the objective function is constructed from the infrastructure providers’
viewpoint. Primarily, they want to minimise the overall running cost.

J(p) =
I

∑
i=1

ζi(ci,mi,bi)+
J

∑
j=1

η j(t j). (4.14)

In this work, it is assumed that the cost for running the DCs is linearly proportional to
their compute resource usage and that the cost for the network is linear to the through-
put over each link. Remark that adding a constant background cost that represents the
cost for when the links and DCs are idle does not influence the possible savings by
migrating the applications. Thus, in principle, the optimisation problem is formulated
as

min
p∈A

J(p), (4.15)

subject to constraints (4.9–4.13).
The problem formulation above is straightforward and intuitive. A Fog computing

infrastructure is subject to a highly volatile workload. Even small changes in the loca-
tion and quality of demand can render any previously optimal solution obsolete. In the
worst case, significant migrations would be required to resolve the infeasibility. To en-
sure feasibility of the constraints stating that the relative usage should be smaller than
1 and to avoid link or vertices becoming overloaded, therefore a penalty initialisation
point x̃ < 1 is introduced, and a penalty–barrier function is defined as;

fx̃(x) =

{
0, if x < x̃,

1
1−x +

2x̃−x−1
(1−x̃)2 . if x≥ x̃.

(4.16)

In the equation above, x should be viewed as the relative usage (or latency) that is the
quotient on the left hand side in constraints (4.9–4.13). For the case when x ≥ x̃, the
first term is selected to ensure that fx̃(x)→∞ as x→∞ and the second term is selected
so that fx̃(x̃) = fx̃(x̃) = 0, that is, to guarantee that fx̃ is continuously differentiable in
the interval [0,1).

By construction, the function fx̃ acts as both a penalty and a barrier function; it is a
penalty function for constraints of the type x≤ x̃ and a barrier function for the constraint
x ≤ 1. In essence, this makes it easy to modify the point where the penalisation starts
for each constraint separately. The algorithm utilises this versatility by having different
penalty initialisation points for constraints corresponding to different features. A more
elaborate set-up could, for example, have a penalty initialisation point for the comput-
ing resource usage that depends on the level in the tree that the corresponding DC is
located. To compute the overall penalty G, the penalty–barrier function corresponds to
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all constraints with their respective penalty initialisation points. That is,

G(p) =
I

∑
i=1

fc̃
(
ci/ci

)
+

I

∑
i=1

fm̃
(
mi/mi

)
+

+
I

∑
i=1

fb̃
(
bi/bi

)
+

J

∑
j=1

ft̃
(
t j/t j

)
+

+
N

∑
n=1

∑
{m|m∈Un}

fd̃
(
dn,m/dn

)
,

(4.17)

where c̃, m̃, b̃, t̃, and d̃ are the penalty initialisation points corresponding to the con-
straints for compute usage, memory usage, DC throughput, link throughput, and ap-
plication latency, respectively. Here, the individual penalty–barrier functions for all
constraints are added. This corresponds to taking the 1-norm of the vector whose ele-
ments hold the values of the individual penalty–barrier functions for all constraints. An
alternative overall penalty–barrier method is obtained by taking another vector norm
of the constraint vector.

To conclude, rather than solving problem (4.15) subject to constraints (4.9–4.13),
we solve the following problem

min
p∈A

J(p)+ µG(p), (4.18)

where µ is a positive penalty parameter and J and G are defined in expressions (4.14)
and (4.17). Dimension for J is in terms of monetary cost per time unit, whereas G is
dimensionless. Hence, the unit for µ is the monetary cost per time unit.

4.4. PROPOSED APPLICATION PLACEMENT METHOD

One approach to solving the optimisation problem (4.18) is to perform a so-called ex-
haustive search, that is to evaluate the objective function for each admissible placement.
The computational complexity of this approach is exponential, since |A |= NI . For ex-
ample, to evaluate the objective function in a setting with 22 applications and 12 DCs
would require O(1018) summation operations (each evaluation of the objective func-
tion requires O(102) summation operations). Thus, even for relatively small problems,
this approach is computationally intractable. Here, a local search algorithm is em-
ployed, described below, to find approximate solutions to optimisation problem (4.18).

The objective function is re-evaluated, J + µG, during runtime to compute the total
cost for running all the applications inside the infrastructure. The re-evaluations are
triggered either by an internal event in the infrastructure, entity, or application or is
triggered by a periodic heartbeat signal, agnostic to the state of the system.

For each p ∈ A , a k-neighbourhood of p is defined as
N k

p = {q ∈ A | ‖p−q‖A ≤ k} , (4.19)
where ‖ · ‖A is a measure of the network distance for elements on A . A larger k gives
more freedom to migrate, replicate, and consolidate application components; however,
we need to select k such that |N k

p | is not too large. The network distance can be
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computed as,

||p−q||A =
N

∑
n=1

δA (pn,qn), (4.20)

where a possible choice of function δA is:

δA (pn,qn) =

{
1, if pn 6= qn,

0, else .
(4.21)

An alternative choice is:

δA (pn,qn) =

{
|Ppn,qn |, if pn 6= qn,

0, else ,
(4.22)

where |Ppn,qn | can be computed considering the latency in all the traversed edges.
We employ a depth-first search algorithm to find the neighbourhood nodes in the

tree. We start with finding all the solutions with neighbourhood depth k and com-
pute the local optimal solution. From the local solution, we construct its subsequent
k−neighbourhood solutions and compute the local optimal solution. We repeat the
process until we achieve the specified maximum number of iterations or the cost starts
increasing. The algorithm is described as,

Algorithm 1 Local Optimisation or Local Search

1: Input : current placement vector of applications (p), maximum number of itera-
tions (maxIter), depth (k)

2: Output : new placement vector for applications
3: Cp← J(p)+ µG(p)
4: nIter← 0
5: while nIter < maxIter do
6: N ← get N k

p , the k-neighbourhood of p
7: Cq← min

q∈N
J(q)+ µG(q)

8: if Cp ≤Cq then
9: break

10: end if
11: Cp←Cq
12: p← q
13: nIter← nIter+ 1
14: end while
15: return p

For larger neighbourhoods, that is when k is large, branch and bound techniques can
be used to efficiently solve the local optimisation problem in Line 6 in Algorithm 1.

4.4.1. EXHAUSTIVE SEARCH

To yield the optimal solution to problem (4.18), so-called exhaustive search is per-
formed, that is to evaluate the objective function for each admissible placement. Doing
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so provides an upper performance bound of the system at each time it re-evaluates the
system. However, the computational complexity of this approach is exponential, since
|A |= IN . Thus, this approach is not feasible for large-scale systems.

The algorithm re-evaluates the objective function, J + µG, during run-time to com-
pute the total cost for running all the applications inside the infrastructure. With a-priori
knowledge of the system’s rate of change, one could adjust the rate at which the applic-
ations’ placements are re-evaluated, accordingly. However, the rate of re-evaluation is
beyond the scope of this work; therefore, in this chapter, the algorithm is designed to
re-evaluate periodically.

As applications are admitted to the system, an initial placement is performed by
searching for the globally optimal location for all applications, which minimises the
objective function detailed in Section 4.3. In other words, there is no formal distinction
between initial and continuous placement.

4.4.2. ITERATIVE LOCAL SEARCH

To make the algorithm more scalable, the number of evaluations can be reduced by
limiting the spatial search domain for each application, in the following called the
Iterative local search approach. This algorithm employs a depth-first search approach
to find the neighbourhood nodes in the tree. The algorithm starts by finding all the
solutions with neighbourhood depth k and computes the local optimal solution. From
the local optimal solution, the algorithm constructs its subsequent k−neighbourhood
and computes a new optimal solution. The algorithm then repeats the process until it
achieves the specified maximum number of iterations or a locally optimal solution is
found. The algorithm is described as in Algorithm 2,

For larger neighbourhoods, that is when k is large, branch and bound techniques can
be used to efficiently solve the local optimisation problem in Line 6 in Algorithm 2.

Each applications distance to its optimal placement determines how many iterations
the algorithm will converge. It is therefore vital to have a strategy for placing admitted
application’s. In the simplest form, the algorithm can, for example, start by randomly
placing applications in the network and then let the placement algorithm converge over
a certain number of iterations. Starting in a random location can produce situations
where the application’s placement might never converge to its optimal point. In this
chapter, the algorithm places applications as they are admitted optimally by doing an
exhaustive search of the entire network.

4.4.3. RE-EVALUATION INTERVAL

At each time stamp of evaluation, all applications are simultaneously evaluated to find
the constellation with the lowest global overload and cost. A local or exhaustive search
is performed over the possible placement options to find the placement. No discrete
events are identified, such as spikes or spatial shifts in demand. Nor does it make
any predictions on the workload or resource availability. The system only acts on the
momentarily incurred overhead.
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Algorithm 2 Iterative local search algorithm

1: Input : current placement vector of applications (p), maximum number of itera-
tions (maxIter), depth (k)

2: Output : new placement vector for applications
3: Cp← J(p)+ µG(p)
4: nIter← 0
5: while nIter < maxIter do
6: N ← get N k

p , the k-neighbourhood of p
7: Cq← min

q∈N
J(q)+ µG(q)

8: if Cp ≤Cq then
9: break

10: end if
11: Cp←Cq
12: p← q
13: nIter← nIter+ 1
14: end while
15: return p

4.5. EVALUATION MODEL

In this section, the simulation set-up is detailed. The behaviour of the placement al-
gorithms is studied by subjecting them to a set curated configuration and workload
scenarios. The performance of each algorithm is evaluated in Section 4.6 using a set of
heuristics detailed below.

Section 4.5.1 outlines the premise of the experiments and their objectives. Sec-
tion 4.5.6 details the simulation software framework used to execute the experiments.

4.5.1. EVALUATION METHOD

This section describes the experiment platform used to study the properties and beha-
viours of the algorithms. First, a description of the different degrees of freedom of the
experiments is provided, such as the simulator’s parameters, workload properties, and
the parameter space for the placement algorithms.

To identify the system’s performance boundaries, the placement of each applica-
tion is evaluated at run-time in a discrete-time manner, employing a set of placement
algorithms to regularly re-evaluate the placement of all applications to minimise the
total cost of the tree-structured system. To evaluate the performance of the placement
methods, a number of performance metrics are observed, including the overall heuristic
system cost, resource utilisation, and application RTT. Primarily, the overall cost as
defined in Equation (4.14), will contrast how well each placement algorithm deals with
a specific scenario or configuration, the system’s operational objectives. Secondly, the
resource utilisation will show how well the method is meeting the system’s objective of
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minimising the incurred network usage. Lastly, the measured application RTT intends
to show to what extent the application’s performance will be penalised by a specific
placement method.

4.5.2. APPLICATION DEMAND

The application demand model is constructed using four parameters that capture each
scenario: time variation, spatial variation, popularity distribution among applications,
and resource usage diversity among applications.

To examine the system’s behaviour, three relevant example scenarios are considered.
The first scenario has a high degree of User Mobility, where demand for each applica-
tion is concentrated to a few leaf nodes and is highly mobile. Second, a diurnal-centric
University Campus scenario is presented, where the demand of all applications is con-
centrated at the University campus during daytime and disperses geographically to
a uniform distribution at night. Furthermore, the third scenario captures a Sporting
Event where an application becomes popular in a small group of nodes due to a very
high local demand.

User Mobility In the User Mobility scenario, the spatial demand distribution is mod-
elled as a normal distribution over a few consecutive nodes to show demand
from a batch of users for an application. Time-variation is modelled as a random
walk, traversing the consecutive nodes next to the nodes where demand is cur-
rently residing. The quantity of demand is not varied, but the spatial distribution
changes with time. Furthermore, the popularity distribution among applications
is modelled using a uniform distribution. This workload captures the behaviour
of a small number of groups of users subscribing to one application each, on
consecutive nodes and their independent movement in their locality. This situ-
ation resembles that of applications such as Augmented Reality, autonomous
vehicles applications, or cloudlets.

University Campus In the University Campus scenario, the demand for an application
across the network’s leaf nodes is modelled as a normal distribution. To capture
the students’ pronounced diurnal migration patterns [SB04], the standard devi-
ation (σ) is varied diurnally to achieve a night-time near-uniform distribution
with higher σ, to a noon distinctly normal distribution with lower σ. As a result,
the demand for all applications is higher at the nodes near the university cam-
pus during the daytime. The popularity among applications is modelled using a
Zipf distribution [Zip49, BFF+10]. The demand variation from a uniform dis-
tribution during the night to a normal distribution during the day is modelled as
linearly process as a function of time.

Sporting Event During a Sporting Event, demand on the nodes corresponding to the
places where the teams are based or where they are playing is likely to increase
as fans and spectators start browsing for scores or stream the game to their
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Mobile Devicess (MDs).

An unexpected surge in demand for these applications is modelled as a spike. In
[MDTE15], spikes were formally analysed and defined as a significant shift in the
workload pattern. In this work, the time variation for the growing phase of a spike are
modelled as,

yτ = yτ−1(1+αg(1−λgyτ−1)), (4.23)
where yτ is a time series of demand for an application, αg and λg are coefficients, αg

denotes the growth rate and lambdag denotes the slope in the log scale. The inverse of
λ is the maximum of the popularity. The decreasing phase of an spike is modelled as,

yτ = yτ−1(1−αd(λdyτ−1−1)), (4.24)
where αd and λd are coefficients. Using the model defined above, a spike similar to

the one experienced during the Fifa 1998 world championship [AJ00] is constructed
using the parameters, α and λ for each stage of the spike. The growing phase has two
stages, one stage for the decreasing phase for the first peak followed by a stage each
for the growing and decreasing phases for the second peak. The spike is only present
in one node and is stationary.

4.5.3. INFRASTRUCTURE AND TOPOLOGY

In the experiments, the infrastructure is composed of a set of DCs, distributed amongst
the veracities of a tree with a certain depth. The capacity and cost of the DCs vary with
depth. The veracities are connected with links. The links’ capacities progressively
diminish with depth.

Application demand originates from the leaf nodes in the network, and it propagates
to the DC where the application is hosted. Application demand incurs a proportional
resource usage on the DC its applications are hosted on and on the intermediate links.

For each workload scenario, the total amount of resources required for all the ap-
plications at each leaf node at each time instance is computed. Based on the aggregate
demand, the nodes and links of the system are allocated a proportional amount of
resources, so that no application is denied admission to the system due to lack of re-
sources. The remaining nodes are allocated a proportion of the aggregate demand from
its children.

4.5.4. APPLICATION TYPES

Applications consume a heterogeneous quantity of resources proportional based on
an empirical resource consumption profile and the size of its demand. In the presen-
ted model, applications can be CPU, or I/O intensive [WSVY07, QKP+09, QJM+09,
KRDZ10, CSW+12]. An example of a CPU intensive benchmark application is Sys-
bench, while PostMark is a benchmark for I/O intensive applications.

Because the infrastructure is cost heterogeneous and capacity heterogeneous, each
application type is expected to have a bias towards a certain depth of the network
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where it incurs the least operational cost globally or locally. For example, I/O intensive
applications are likely to gravitate towards the capillaries of the network where they
incur less aggregate network traffic and where I/O is relatively cheaper.

4.5.5. PLACEMENT ALGORITHM PARAMETRISATION

In this section, the exhaustive- and local-search algorithms are parametrised. Details
are provided on how they are configured in the experiments. The experiments encom-
passes the following placement principals/algorithms:

Random static Each application component is initially placed at random in the net-
work and is not dynamically moved.

Random continuous Each application at each re-evaluation is relocated to a random
node in the network.

Local continuous Finds local minimal cost search with 4 iterations.

Global static Applications are initially placed in the globally optimal node but are not
continuously re-evaluated and relocated. The search depth is set to 4.

Global continuous Each application’s placement is continuously re-evaluated and is
relocated accordingly. The search depth is set to 4.

The methods that minimise the global cost are bound by the parameters of the cost
function and on the penalty function defined in Equation (4.16) and can be configured
in many different manners to accommodate different objectives. The optimisation
function Equation (4.18) contains a weight µ that combines the overall running cost
and the overall penalty (or overload cost).

The Iterative local search was specified in Section 4.4.2. This algorithm minimises
the cost function specified in Section 4.3, iteratively, over a confined neighbourhood k,
a maximum of maxIter times per evaluation.

4.5.6. SIMULATOR

An event-driven simulator is used to validate and evaluate the topology and the presen-
ted placement methods. Existing simulation frameworks such as NS-3 [HLR+08] and
CloudSim [CRB+11] offer competent network and data centre models, respectively.
Nevertheless, neither framework offers a complete solution at the desired abstraction
level nor do they scale adequately for large networks. As a result, a coarse-grained
event-driven simulator in Python was developed. The simulator utilises SimPy [Mat08]
as the underlying event-driven framework. Furthermore, the simulator is constructed
around the system model detailed in Section 4.2 which represents a Fog computing in-
frastructure topology with DCs, a network, and time-variant demand. The input to the
simulator is a time series workload composed of a quantity of demand for each applic-
ation in each leaf node for each time instance. The workload is propagated throughout
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Time instance Parameters
0 µ = 10,σ = 50,size = 100
1 µ = 15,σ = 40,size = 100
2 µ = 20,σ = 30,size = 100
3 µ = 30,σ = 20,size = 100
4 µ = 40,σ = 10,size = 100
5 µ = 50,σ = 1,size = 100

Table 4.1.: University campus scenario parameters

the network to the DCs in which the application is hosted, incurring a resource usage
on the host resources proportional to the demand.

To manage the experiments and its outputs, the simulator features a centralised man-
agement unit that places new applications as they arrive and updates the network with
resources consumed by the applications. One or multiple parallel controller modules,
in each DC, can trigger placement re-evaluations, either periodically or at an arbitrary
event. The placement algorithms are those specified in Section 4.3. The simulator
monitors and outputs the momentary total cost, application RTT, and resource utilisa-
tion levels.

4.6. EXPERIMENTS

This section presents the parameter values for the experiments.

4.6.1. WORKLOAD SCENARIOS

Three workload scenarios are presented, User Mobility scenario, University Campus,
and Sporting Event. For the User Mobility scenario, three nodes are selected at random
and users are distributed amongst them according to a normal distribution (µ = 20,σ =
10). The demand is spatially moving according to a random walk.

For the University Campus scenario, users are distributed among all the leaf nodes
according to a normal distribution. The mean and standard deviation of the distribution
are varied with time as shown in Table4.1. A histogram is then generated with bin sizes
equal to number of leaf nodes, 6 in this work. The time stamps 1 and 5 represent mid-
night and mid-day workload for the University Campus scenario respectively.

For the Sporting Event scenario, application popularity is initially uniformly distrib-
uted with parameters a = 0.1,b = 0.6. An application is made popular by assigning
a higher probability after time stamp 25. Parameters α = 0.4,λ = 0.001 are used for
Equations (4.23) and (4.24).
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Property Value Description

Topology
Depth 3 Network depth
DCs 9 Number of DCs in the network
Links 16 Number of links in the network

DC capacity
Large 1 Large DC prop. capacity (Reference)
Medium 1

2 Medium DC prop. capacity to Large DC
Small 1

6 Small DC prop. capacity to Large DC

DC cost
Large 1 Large DC prop. cost (Reference)
Medium 5

9 Medium DC prop. cost to Large DC
Small 2

9 Small DC prop. cost to Large DC

Link capacity - - Link capacity is homogeneous

Link cost - - Link cost is homogeneous

Table 4.2.: Topology and infrastructure parameters

DC 8 DC 6

DC 5

DC 0

DC 7 DC 4 DC 2

DC 1

DC 3

L 13

L 0L 2L 4L 7L 9L 11

L 10 L 8L 12 L 3 L 1L 5

L 6

Figure 4.3.: Experiment infrastructure topology

4.6.2. INFRASTRUCTURE

The infrastructure employed in the experiments is distributed in a tree structure as in
Figure 4.3 whose parameters are presented in Table 4.2.

The topology has a depth of 3, see Figure 4.3. This topology yields a set of 9 DCs
and 14 links. Furthermore, the demand for each application originates at the tree’s leaf
nodes and is propagated to the node that hosts that particular application. This scale is
sufficient to reveal the dynamics of the system. This structure is persisted throughout
all experiments.

Let x be the resources consumed by an application. The operational cost is propor-
tional to x

1.33 for a large DC, whereas it will be proportional to x
1.2 and x for a medium

and small DCs respectively.
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Figure 4.4.: Overload function vs. Resource Execution cost of large and
small DC and link

4.6.3. APPLICATION TYPES

The application model described in Section 4.5.4 is used to classify the applications
based on their heterogeneous resource requirements as shown in Table 4.3. For ex-
ample a compute intensive application’s requests (of Type 1 in the Table 4.3) spends
5% of it execution time using compute resources and 95% time using I/O resources.

Table 4.3.: Heterogeneous application Model
Type Compute (%) I/O (%)
1 5 95
2 50 50
3 95 5

4.6.4. PLACEMENT ALGORITHMS

In the experiments, x̃ in Equation (4.16) is set to 0.7. The execution cost and overload
cost for the reference simulation system is illustrated in Figure 4.4. The meeting point
of the curves in Figure 4.4 determines the dynamics for the cost for running applica-
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tions in the system.

4.7. RESULTS

This section presents and discusses the results of the experiments specified in Sec-
tion 4.6. Firstly, the resulting cost for each placement algorithm in Section 4.7.1 is
discussed. Sections 4.7.2 and 4.7.3 contrasts the mean RTT experienced by all applic-
ations and the mean utilisation level of each DC as a result of each placement policy,
respectively.

4.7.1. COST

Observing the system’s aggregate cost as defined in Equation (4.14) reveals how well
the set of placement algorithms can meet the systems management objectives, at each
point in time. The cost time series of the Mobile users scenario is presented in Fig-
ure 4.5, followed by the University Campus and Sporting Event represented by Fig-
ures 4.6 and 4.7 respectively.

Starting with the cost-minimising methods, Figure 4.5 illustrates that for the Mobile
Users scenario, the continuous globally optimal method achieves an average of 25%
lower cost than when applications are statically placed in a globally optimal manner.
Additionally, the contrast between the static and the continuous approaches reveals that
no matter how deliberately you place the applications as they are deployed, there are
significant gains to be made if their placement is continuously re-evaluated.

The stochastic nature of the Mobile users scenario makes it particularly challenging
to manage. In that scenario, the algorithm has no a-priori knowledge of the demand’s
location and therefore attempts to move the application at the rate at which the demand
is changing. Furthermore, the workload in the Mobile user scenario is transient, and
thus, the volume and constellation of demand will never return to the same quantity
and location. Consequently, the cost incurred by an application placed permanently
in a DC, optimally or otherwise, is not likely to be either equal or greater to the cost
achieved at initial placement. As illustrated by Figure 4.5, on average, when applic-
ations are randomly statically placed, the cost is 5% higher than when employing the
optimal static placement scheme but comes at a much lower computational cost.

The University Campus and Sporting Event workload scenarios presented in Fig-
ures 4.6 and 4.7, respectively, are more structured since changes follow a less uncer-
tain trajectory. In these scenarios, with a-priori knowledge of workload characteristics,
the random placement scheme is particularly ineffective. Therefore, the results for the
random placement scheme are not included as it incurs a cost way beyond the scale of
the globally and locally optimal solutions, which are the primary methods evaluated in
this paper. Because of a-priori knowledge, the static and continuous solutions perform
nearly identically, with only a slight advantage to the continuous solution.

As illustrated by Figure 4.5, the locally optimal algorithm, with a maximum of 4
iterations, performs near-optimal on the Mobile Users workload. The cost difference
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Figure 4.5.: Cost time-series for all placement methods for the Mobile users
workload
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Figure 4.6.: Cost time-series for all placement methods for the University
Campus workload

is on average 1%. The discrepancy is due to the temporal and spatial diversity of the
workload and the resulting multiple minima. This is confirmed by Figures 4.6 and 4.7
where the workloads are less spatially and temporally complex. In the University Cam-
pus and Sporting Event workloads, the cost difference between the locally optimal and
globally optimal is on average < 0.5%.

Furthermore, the experiments also show that the search depth has little impact on the
system’s ability to minimise costs. A search depth of less than 4, the maximum depth
of the network, introduces an occasional lag when contrasted with the optimal that is
recovered in the next iteration.
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Figure 4.7.: Cost time-series for all placement methods for the Sporting
Event workload

4.7.2. RTT

Although none of the applications in this scenario have SLA constraints dictating RTT,
it is worthwhile to explore the effect the cost minimisation effort has on the mean RTT
across all applications. The effort of minimising the aggregate cost and managing each
application’s RTT are not entirely mutually exclusive. For example, minimising the
cost in the manner presented in this paper, applications that are I/O intensive will tend
to converge towards the origin of its demand in an attempt to reduce network usage.
Moving closer to the origin of its demand also potentially reduces overall contention
and thereby also latency.

Figure 4.8 reveals in the Mobile Users scenario, that applications on average ex-
perience a 35% lower RTT when applications’ placements are continuously evaluated
than when they are statically placed on admission. Intuitively, placing the applica-
tions at random results in a significantly higher RTT for each application on average
as the mean network distance tend to be higher between the application instance and
its demand. Furthermore, in the University Campus workload case, as the geographic
discrepancy between the application instance and its demand increases, RTT increases
by 10% throughout the scenario, see Figure 4.9. The uniformity of demand across all
applications and the stationarity of the spatial centre of demand, leave little room to
significantly alter the placement of the applications, resulting in a gradual decline in
RTT as demand concentrates around a few nodes. Running the Sporting Event work-
load shows how the affected applications can relocate to accommodate a spatial surge
in demand and mitigate some of the incurred latency, see Figure 4.10.

4.7.3. RESOURCE UTILISATION

As stated in Section 4.1, the primary objective of any application placement algorithm
is to minimise network usage and to mitigate skewed resource usage of the MNOs’
DCs, while meeting the resident applications’ SLAs. Attention is now directed at how
well the methods mitigate skewed resource utilisation. The algorithms work towards
avoiding overloading individual components in the system by progressively penalising
high utilisation levels through the penalty component in the objective function, defined
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Figure 4.8.: RTT time-series for all placement methods for the Mobile Users
workload

Time
0 2 4 6 8 10 12 14 16 18

R
T

T
 i
n
 m

s

9

10

11

12
Round Trip Time

Global static depth 4
Local and Global continuous

Figure 4.9.: RTT time-series for all placement methods for the University
Campus workload
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Figure 4.10.: RTT time-series for all placement methods for the Sporting
Event workload

in Equation (4.16).
Figures 4.11 to 4.13 show that network utilisation is reduced when applications’

placements are continuously evaluated. The jagged shape of the DC utilisation CDF
exhibited in Figure 4.11 can be explained by the stochastic discrete movement of the
demand, from one branch of the tree to another. The stochastic nature of the Mobile
users workload can also be attributed the more gradual ascent of the link utilisation
CDF. Although it exhibits discrete levels, the depth of the network and the number of
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Figure 4.11.: DC and Link utilisation for the Mobile users workload

links increase the granularity of the utilisation levels.
Looking closer at the outcome when employing continuous re-evaluation, the glob-

ally optimal algorithm achieves lower mean utilisation levels than the locally optimal
algorithm. Figure 4.11 shows that the mean link resource utilisation in the Mobile user
case is reduced by 5% in favour of the optimal search over the local search method. On
the other hand, mean DC utilisation increased by 5%. Figure 4.11 shows that the con-
tinuous methods persistently achieve lower utilisation levels but with a similar gradient.
This property can be attributed to the reasonably persistent mean spatial offset to the
optimal placement. A more extensive network would thus exhibit a greater separation.
Furthermore, the random static, random continuous, and globally optimal static place-
ment algorithms produce the same utilisation levels within a range of 2%, with a slight
advantage to the globally optimal static placement algorithm.

Having observed the properties of the Mobile User scenario, attention is now direc-
ted to the structured workloads of University Campus and Sporting Event. Figures 4.12
and 4.13 illustrate that no algorithm has a mean link utilisation advantage. The results
are thus represented as one graph. Again, this can be attributed to the structured nature
of the workload where demand is confined in space. Additionally, the steep utilisation
level ascent in Figure 4.13 is a consequence of the high concentration of demand in the
Sporting Event scenario, which confines the application to a small group of DCs. This
effect also manifests itself as a higher mean utilisation level in that scenario. Neverthe-
less, the mean DC utilisation level is more clustered and is confined to a narrow range
when using the continuous globally and locally optimal algorithms over the static glob-
ally optimal placement scheme, see Figures 4.12 and 4.13. In either case, the utilisation
levels are kept at a desirable level.

4.8. RELATED WORK

In this section, related works are surveyed, and a discussion is provided on how the
result can be employed in Fog computing research and some of the challenges that
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Figure 4.12.: DC and Link utilisation for the Campus workload
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Figure 4.13.: DC and Link utilisation for the Sporting event workload

remain unanswered by the literature. There exists an extensive body of work in the
field of content and service placement in distributed compute and content delivery sys-
tems. Existing research results address many of the challenges facing a Fog computing
infrastructure.

4.8.1. REPLICA PLACEMENT

There have been numerous efforts at developing algorithms for replicas in a network of
computers [KK04]. In general, their objectives are to either optimise the application’s
performance in existing infrastructure, to reduce the computational complexity of the
decision or minimise the infrastructure cost while meeting the application’s SLA. The
suboptimal algorithm proposed in [SPvS05] attempts to minimise the communication
latency between the application and its clients by identifying and placing replicas in
regions based on the relative latencies between nodes. Similarly, [RGE02] proposes
a topology-aware replica placement. The two algorithms achieve near-optimal place-
ment of replicas, but do not address the mobility of the service’s users and thus the
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continuous evaluation of the service’s placement in the network.

4.8.2. CDN AND CACHING

Many challenges facing a Fog computing infrastructure, such as application placement
in a distributed Telco-infrastructure and stochastic workload/demand are also found
in CDNs. Research on CDNs has yielded mature centralised [RGE02, QPV01] and
distributed [ZG11] methods for initial and churn-driven continuous placement of con-
tent in caching infrastructure core networks to mitigate network contention, and ensure
content availability. The methods often employ a Mixed Integer Programming (MIP)
approach to compute a global or local placement optimum. The minimisation functions
often incorporate system properties such as demand churn, network topology, and fore-
ground traffic to meet the MNO’s objectives. Due to the nature of CDN infrastructures,
the methods mentioned above do not take into account user mobility, application/con-
tent component affinity and execution, and finite heterogeneous resources.

4.8.3. INTER-AND-INTRA DATA CENTRE VM-PLACEMENT

Research in intra-DC VM placement and continuous placement evaluation has yielded
methods [SLW+14, MPZ10, THOP13] to primarily consolidate applications, improve
locality, and to minimise network and energy usage inside and across DCs. The liter-
ature often assumes a tree-structured topology with resource contentions similar those
found in a Fog computing infrastructure. Methods that actuate Intra-DC VM placement
are often agnostic to the intermediate topology between the DCs, relying primarily on
observed performance. Although the surveyed methods adequately take into account
network topology and heterogeneity, compute resources are assumed to be homogen-
eous, with no application component affinity. A high degree of resource heterogeneity
and application component affinity are two fundamental properties of a Fog computing
infrastructure.

These works often resort to Mixed Integer Programmings (MIPs) to resolve a com-
plex set of constraints and relationships between DC resources and application require-
ments. The objective is often to reduce/minimise Intra-DC network contention and to
reduce cost and energy consumption by improving application locality and more ap-
propriate VM to PM mappings. As the placement domain is either within a DC, or in
a set of DCs, [KFCM12] the research fails to take into account end-user locality and
rapid spatial and temporal changes in demand.

A method to increase individual end-user proximity to their user data by migrating
and duplicating user instances on a planetary scale with the objective to reduce RTT
is presented in [ADJ+10]. The work highlights the inherent challenges of what to
migrate, duplicate, and replicate, and how to evaluate the action’s performance return.
The work does however not take into account demand churn and replicating whole
instances of an application, nor does it consider a fine-grained network topology, such
as an MNO’s access network. In [LSYR11], the authors have devised an approach to
migrate and duplicate data across continental distances while taking into account the
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intermediate network’s availability and the contention the transfer incurs.
The challenge of placing applications in a cloud environment has been addressed in

the literature for content routing [MPZ10], intra- and inter-DC application placement
[BB12, LSYR11], and in optimal content distribution in CDNs [BGW10]. To the best
of our knowledge, none of the presented approaches simultaneously and holistically
consider a set of criteria that are synonymous with vast resource cost- and capacity-
heterogeneous infrastructures with a high geographic granularity.

The broad challenges of VM placement across DCs are taxamonised in [Man15]
and formalised in [PM15]. The literature contains work on the placement of applic-
ations and their constituent VMs in DCs, to minimise cost [BB12], energy consump-
tion [BAB12], data-locality [PSLJ11], and network usage [BCF+12]. These methods
primarily address the internal objectives of a DC and therefore inherently disregard the
geographical discrepancy to the end-users and the heterogeneity in both applications
and infrastructure. Thus, they cannot be applied to this problem. Additionally, the
internal administration of a Fog computing infrastructure’s DCs is beyond the scope of
this work.

Furthermore, CDNs share much of the same distributed topological properties of a
Fog computing infrastructure but operate with the objective of maximising the hit-rate
of a set of content over a finite set of resources as a function of the content’s pop-
ularity. In a CDN, content is static, and resource usage is often not proportional to
the demand and is confined to storage. Additionally, no performance guarantees can
be given for all applications, and immediate scalability needs are not a concern. In
contrast, in a Fog computing infrastructure, resources are heterogeneous, and applica-
tions are highly dynamic with heterogeneous performance requirements that all must
be accommodated.

4.9. CONCLUSIONS

One of the foremost challenges in the Fog computing paradigm is how to manage
the highly heterogeneous and distributed resources in a complex system. This work
contributes with a system model for a Fog computing infrastructure and an objective
function to minimise the global system cost as a means to manage the computing and
network resources in a Fog computing infrastructure. Based on this model, globally
optimal placement of static and mobile applications was designed. Further, a locally
optimal placement scheme with at a fraction of the computational cost was designed.
Additionally, a set of near-optimal and intuitive methods are used to contrast the per-
formance of the presented algorithms. Also, based on the presented model, a simula-
tion environment was developed on which the algorithms are evaluated using a set of
challenging Fog computing workloads.

The results reveal that when user demand is highly mobile and stochastic, signific-
ant resource utilisation and cost gains can be made when one employs any method
that attempts to map the location where the application is executed with the location of
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that application’s demand. Furthermore, the experiments also reveal that the globally
optimal and locally optimal schemes can achieve near equal performance with work-
loads that have a spatially uniform distribution of demand. A difference in performance
between the algorithms was uncovered when subjecting the system to a workload with
a spatially non-uniform demand. Here, the globally optimal approach outperforms the
locally optimal. Nevertheless, with a transient workload, system cost and resource
utilisation are with either algorithm non-divergent.
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O ptimally placing the resident applications in a Fog computing infrastructure,
given the constraints addressed in this thesis, is NP-hard [SG76]. The optimal
placement of the Fog’s resident applications was studied in Chapter 4, where

it was concluded that a centralised solution is not scalable because it fundamentally
fails to keep up with the system’s rate of change. A centralised agent can not feasibly
manage a massive heterogeneous infrastructure hosting a vast number of applications.
Scalability is a significant challenge for a Fog resource manager. The work in this
chapter extends upon the work in Chapter 4 with a distributed scalable algorithm that
takes into account the objectives of the Fog computing infrastructure and the resid-
ent applications, that solves the application placement challenge. The algorithm takes
a holistic approach by accommodating the system’s primary objectives over a neigh-
bourhood of DCs. By doing so, the algorithm can accommodate the heterogeneous
resources and applications in the system without incurring additional cost and applica-
tion placement oscillations. The algorithm is defined in Section 5.2. The algorithm is
evaluated over a set of infrastructure topologies and contrasted with an optimal and a
naïve method, detailed in Section 5.3. The results of the evaluation presented in Sec-
tion 5.4 show that the algorithm can quickly and consistently converge while meeting
all constituent entities’ objectives. It is also shown that the algorithm approaches the
system’s optimal cost point within 8% and in a reasonable amount of time. Further-
more, the algorithm also outperforms the naïve method, both in term of convergence
and cost. The evaluations also reveal some of the distinct challenges with the different
topologies.

5.1. EXTENDED FOG COMPUTING MODEL

In this section, the models in Chapters 3 and 4 are extended upon to accommodate the
challenge addressed in this chapter. Note that the model notations from Chapter 4 will

83
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Figure 5.1.: Model overview with entities and their properties

feel mostly familiar, but have been extended to incorporate the richer system dynam-
ics addressed in this chapter. The presented model is used for defining the presented
algorithm as well as for constructing a simulated environment for evaluating the al-
gorithm. An overview of the model’s components can be seen in Figure 5.1.

5.1.1. TOPOLOGY

A Fog computing infrastructure is modelled as an undirected graph where the vertices
are DCs and the edges are network links, each with a set of finite resources. Applic-
ations admitted to the Fog are hosted in DCs and are subject to demand through the
network links, originating at the graph’s leaf, i.e. vertices with degree one. Thus, let
the graph G = (V ,E) denote a Fog computing infrastructure topology, where

V = {vi | i = 1,2, ..., I}, (5.1)

E = {e j | j = 1,2, ...,J}, (5.2)

See Figure 5.1 for a visualisation of the system’s topology.



5.1. Extended Fog computing model 85

5.1.2. DATA CENTRE MODEL

In a Fog computing infrastructure, traditional, centralised DCs are supplemented by
a large set of geographically dispersed DCs that are embedded in an MNO’s infra-
structure. The DCs within a Fog computing infrastructure are both capacity- and cost-
heterogeneous.

A vertex vi in the graph has the following capacities, expressed as real positive num-
bers: compute capacity ci, storage capacity si, and bandwidth bi. A DC’s resource
requests are aggregated into resource units. These units can be seen as VMs or con-
tainers. A resource unit is defined by a compute capacity cV M , a storage capacity
sV M , and a bandwidth bV M , expressed as real numbers, where cV M � ci, sV M � si,
bV M � bi. The momentary utilisations of these resources are expressed as real num-
bers; compute utilisation ci, storage utilisation si, and bandwidth utilisation bi. A DC
is assumed to be able to accommodate any set of applications that aggregately do not
exceed its capacity.

Additionally, a vertex vi is associated with an operational cost per resource and time
unit. These operational costs are defined by the following real number functions of
utilisation: compute cost ζci , storage cost ζsi , and bandwidth cost ζbi .

5.1.3. NETWORK MODEL

In a Fog computing infrastructure, the links that join the DCs have different cost and ca-
pacity depending on the depth they are at in the network, who owns them and their com-
munication media type. A link in the network is modelled as an edge e j, j ∈ {1,2, ...,J}
in G and has a non-directional capacity expressed as a bandwidth µ j. Additionally, a
network resource e j has a link cost η j, which is a function of throughput that returns
the link’s running cost per time unit.

5.1.4. APPLICATION MODEL

The set of applications hosted by a Fog computing infrastructure, A = {an | n =
1, . . . ,N}, are assumed to be wholly managed by the Fog. The resident applications’
owners are therefore agnostic to where and how their applications are executing.

Each application an, where n ∈ {1,2, . . . ,N} is served by a DC, vi. Each DC vi

hosts a set of applications Ai ⊆ A . An application an is defined by the following
increasing functions of the demand for the application’s operational compute intensity
γ

op
n , operational storage intensity α

op
n , and operational bandwidth intensity β

op
n .

Migrating an application between two DCs incurs additional resource usage for both
the recipient and the host. The additional load is defined by a migration compute
intensity γ

mig
n , migration storage intensity α

mig
n , and migration bandwidth intensity β

mig
n ,

all functions of the application’s aggregate demand.
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DEMAND

The applications’ end-users subject the applications to a quantitatively and spatially
time-variant demand. An application an is subject to an aggregate demand from a set
of demand sources Un = {un,m|m ∈Mn} where Mn ⊂V is the set of leafs from which
the demand originates. Each source of demand un,m is represented by a function of
time that returns a real number specifying the demand for application an at time t from
leaf m.

PERFORMANCE REQUIREMENTS

Application owners can impose a set of performance requirements per application that
the operator of a Fog computing infrastructure is obliged to accommodate, an SLA.
In this work, an application’s SLA is expressed as by convention; the maximum of
the 95th-percentile of the network delay distribution [SBDR07]. Furthermore, network
delay is proportional to the number of links separating an application’s end-user from
the current hosting DC. Thus, an application’s SLA ρn

′
is defined as the upper limit of

the 95th percentile of the mean network distances between its set of sources of demand
Un and the DC it is hosted vi. The set of network distances for application an is defined
as:

ln = {|σV (vi,vm)| | m ∈Mn} (5.3)
where | · | denotes the cardinality of a set, σV : V ×V → P(V ), with P(·) being

the power set operator, is a function that determines the minimum path between two
nodes. See Figure 5.1 for an illustration of the relationship between the applications
and their demand.

5.2. DISTRIBUTED RESOURCE MANAGEMENT ALGORITHM

The presented algorithm scalably solves the challenge of placing a set of highly hetero-
geneous applications in a cost-heterogeneous and capacity-heterogeneous distributed
cloud infrastructure while meeting both the DCs’ operational cost and the infrastruc-
ture’s resident applications’ performance objectives.

Central to the algorithm are two types of reactive agents, a DC-agent and an application-
agent. The agents represent the objectives of the two primary stakeholders in the sys-
tem, namely DCs and applications. The agents act independently based on the per-
formance of their respective objectives, namely operational cost and application SLA.

To achieve the objectives in a tractable manner, each agent reacts to a violation of a
system objective, by re-evaluating the placement of a set of applications over a subset
of DCs in a neighbourhood. The neighbourhood of depth at most k for vi is defined as
the set:

N k
i :=

{
|σV (vi,v j)| ≤ k+ 1 | j = 1, . . . , I, j 6= i

}
. (5.4)
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The resulting placement decision is reached using a common heuristic objective
function R that is formalised in Section 5.2.1. The two agent types react to a system
objective violation by re-evaluating the common heuristic objective function R over a
subset of the system’s resources and applications. To meet their objectives, the com-
mon heuristic objective function is applied differently for each agent. The fundamental
properties of the algorithm are illustrated in Figure 5.2.

Strict caps on resource utilisation and costs do not accommodate variations in de-
mand across the system and might either put the system in an unstable state or require a
much finer granularity of evaluation, at a significant cost. Therefore, in this algorithm,
a budget for each DC is adopted to represent its desired resource utilisation or cost
level, over time. The long-term objective of the algorithm is to maximise the mean
budget surplus across the system. A DC’s budget surplus or deficit history is distrib-
uted amongst its peers and is used to evaluate its suitability when re-evaluating the
neighbourhood’s application’s placements. More on the budget-mechanism in Sec-
tion 5.2.2.

5.2.1. COMMON OBJECTIVE FUNCTION

In a distributed heterogeneous system, such as the Fog, an application can incur very
different loads and costs in different DCs in a neighbourhood. Similarly, applications’
SLAs might be accommodated with varying success amongst a set of neighbouring
DCs. Thus, migrating a set of applications from one DC to mitigate its budget violation
may violate the applications’ SLAs or incur budget violations in the recipient DCs.
They, in turn, might incur additional violations and application placement oscillations
due to subsequent mitigation actions.

Application migrations are preferably avoided as they incur additional resource us-
age. Consequently, because a migration incurs a cost, a placement decision should
preferably be long-lasting. Thus, the objective function should take into account both
budget constraints, SLA constraints, and the additive cost of link usage in a holistic
manner.

The common objective function R is formulated for DC vq ∈ V and the running
applications A at time t as,

R(q,A , t) := ∑
i∈N k

q

∑
n∈A

P q
i,n(

+φb
1− (ϑop

n,i(t)+ϑ
mig
n,i (t))

ξi(t)

+φs
1−ρ

95th
n,i

ρn
′

+φlL)

(5.5)

where ϑ
op
n,i is the momentary operational cost for each application in DC i,
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ϑ
op
n,i(t) = ψn(t)ζV M

i , (5.6)
with ψn(t) being the unitary resource allocation cost of application n in any DC that

is defined as:

ψn(t) =
⌈

max
(

γn(t)
cV M

,
αn(t)
sV M

,
βn(t)
bV M

)⌉
, (5.7)

where ζV M
i is the cost of each resource unit in DC i and is defined as:

ζ
V M
i = cV Mζci + sV Mζsi + bV Mζbi . (5.8)

where L is the aggregate system-wide link and is formally defined as,

L = ∑
i∈V

∑
n∈Ai

∑
m∈Un

ηmβ
op
n un,m(t) (5.9)

and P q
i,n being the elements of a binary matrix P q of size |A | × |N k

q |, here called
application placement decision matrix. In particular, P q

i,n is equal to 1 if and only if
application ai ∈ A is placed in node vn ∈N k

q , 0 otherwise. Note that, by construction,
each row sums to 1, since an application cannot be placed in more than one node.
Finally, {φb,φs,φl} are weights in the interval [0,1]. The ith row of the matrix represents
the placement of the ith application ai ∈ Ā amongst the DCs in the neighbourhood N k

q ,
represented by the columns.

The placement decision is expressed as follows,

P q,?(t) := argmax
P q

R (q,A , t) (5.10)

constrained by each evaluated DC’s budget surplus ξi and the operational cost εi,
formalised as,

∑
n∈Aq

P q
i,nϑ

op
n,i(t)te ≤ ξi(t) (5.11)

∑
n∈Aq

P q
q,nϑ

op
n,q(t)te ≤ εi (5.12)

Because the algorithm is applied iteratively and is not evaluated over the entire net-
work, hard constraints cannot be applied to individual application’s performance. In
the worst case, an application might have to traverse a set of DCs where its SLA will
be violated to reach a DC where it can run in compliance with its SLA.

When maximising the objective function R (q, Ā , t), the remaining budget across all
its neighbours reduces the number of additional violations in the neighbourhood and
the process also takes into account any pending SLA violations, when the system is
in a stable state. By normalising each component in the objective function with their
quantitative targets, the algorithm can indiscriminately evaluate the placement of Ā
across a highly heterogeneous set of DCs and applications. As the incurred is not
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Figure 5.2.: The algorithm’s mechanism; agents, actions, and evaluation do-
mains.

accommodated in a DC’s budget, the link cost is treated independently. The above-
detailed mechanisms of the algorithm and its parameters are illustrated in Figure 5.2.

The use of a budget to represent the state of a DC and the limited evaluation domain
imposed by the neighbourhood decouples the algorithm allowing it to be implemented
in a distributed manner. Additional information and state granularity would require
significantly more synchronisation between agents and states and information passing,
marking the implementation intractable.

5.2.2. DATA CENTRE AGENT

Each DC in the network is governed by a DC agent. The objective of a DC agent is
to contain the operational cost of a DC and is realised by the budget monitor process
which is continuously run in each DC vi ∈ V .

Essential to the algorithm and the DC agent is a budget that is assigned to each DC.
A DC’s budget is the maximum allowed operational expenditure over a period and is
a heuristic for a DC’s capacity and desired maximum utilisation over that period. In
practice, the budget allows the Fog operator to set coarse-grained holistic objectives for
the system’s resources that do not interfere with the internal management of each DC.
Additionally, the budget also allows the algorithm to integrate temporary costs, over
time, such as migration overheads and smaller workload variations, within the confines
of the budget over an epoch.
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BUDGET MONITOR PROCESS

The budget monitor process in each DC is assigned a budget εi for its operational cost
over a period, referred to as an epoch ∆te. The operational cost of a DC is defined as,

ζi(t1, t2) =
∫ t2

t1
∑

n∈Ai

ϑ
op
n (t)dt, (5.13)

In runtime, the operational cost ζi of each DC is evaluated over an epoch of length
∆te. If the budget is violated before the end of the epoch, i.e., ζi(h∆te, t2) ≥ εi, with
h ∈N, and h∆te ≤ t2, the placement of the resident applications Ai is evaluated over
the neighbourhood N k

i using the objective defined in Section 5.2.1.
When a budget is violated or when an epoch expires without a budget violation,

the budget is renewed for another epoch. For each such event, the budget surplus
ξi(t) = εi−ζi(h∆te, (h+1)∆te) of vi is passed to all its neighbours N k

i . The resulting
vector of the last reported neighbours’ budget surpluses for DC i is denoted as,

Bi(t) = {ξq(t) | q ∈N k
i } (5.14)

The budget monitor process is summarised in Algorithm 3.

Algorithm 3 Budget monitor process for DC vi,
for each epoch.

1: Input : Budget εi, application set Ai, current placement P i, and budgets in neigh-
bourhood Bi,

2: Output : Budget surplus ξi,
3: application placement matrix P i,?

4: t← 0, ζ
′
i← 0

5: P i,?← P i

6: while t < ∆te do
7: ζ

′
i← ζ

′
i + ζi(t, t +∆t)

8: if ζ
′
i ≥ εi then

9: ξi← 0
10: P i,?← argmaxP i R (i,Ai, t)
11: break
12: end if
13: ξi← εi−ζ

′
i

14: t← t +∆t
15: end while
16: return {ξi,P i,?}
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Algorithm 4 SLA monitor process for application n.

1: Input : Hosting DC vi, SLA ρn

2: Output : Application placement matrix P i,?

3: while true do
4: if ρi,n ≥ ρn

′
then

5: P i,?← argmaxP i R (i,{an}, t)
6: break
7: end if
8: t← t +∆t
9: end while

10: return P i,?

STATE

The state of a DC agent is defined by its budget surplus ξi, its resource unit cost ζV M
i ,

its resident applications Aq, and the budget surplus of its neighbours.

5.2.3. APPLICATION AGENT

An application agent monitors the performance of each resident application in the in-
frastructure. The objective of an application agent is to ensure that the observed ap-
plication meets its SLA. This is realised by an SLA-monitoring process which is con-
tinuously run in parallel to each application an in each vi.

SLA MONITORING PROCESS

An application’s performance is measured in terms of its SLA, ρn
′
. An application’s

placement is re-evaluated when its SLA is violated, ρi,n ≥ ρn
′
. The SLA monitoring

process is summarised in Algorithm 4.
Note that in the case of an SLA violation, only one application is evaluated, i.e.

Ā = an.

STATE

The state of an application is defined by its demand’s location, quantity Ûn, and current
latency performance ρ

95th
i,n .

5.3. EXPERIMENTS

The experiments detailed below are designed to examine the viability of the algorithm
as a tractable holistic Fog computing resource management approach. Given the dis-
tributed nature of the algorithm, the evaluation is primarily focused on stability and
on how closely it performs to optimal, as defined in [TMW+16]. The experiments
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Table 5.1.: DC categories, their capacity and costs.
Small Medium Large Huge

Capacity ψn 250 500 1000 2000
Unit cost 2 150% 125% 112.5% 100%

are designed to reveal the algorithm’s convergence time from a random state as well
as its step response. For comparison, both a random placement method and a naïve
method are included. They are defined in Section 5.3.6. Additionally, to evaluate how
the distributed algorithm performs in both current and forthcoming network topolo-
gies, the experiments employ both fat-tree and random graph network topologies. The
parameters in the experiments are based on the findings in [MTK+16].

As there are no Fogs yet in existence, the experiments are conducted in a simulated
environment. The simulator is written in python 1 around a SimPy’s time-driven core
using MILP solvers from PuLP [MOD11] to represent and solve the objective function.

5.3.1. INFRASTRUCTURE

Similar to the model presented in Chapter 4, a Fog computing infrastructure is repres-
ented by a set DCs and links in a network. The model is defined in Section 5.1. To add
cost- and capacity-heterogeneity to the infrastructure, a set of categories for each re-
source categories are defined. Each category has a unique capacity and cost, reflective
of their position in the infrastructure, these are specified below.

5.3.2. DATA CENTERS

A DC’s resources are partitioned into and provisioned as discrete units. DCs are cat-
egorised as either Small, Medium, Large, or Huge. The DC capacity is halved for each
following category, proportional to its depth in the network, while the operational cost
grows linearly with depth. For example, a Huge DC is 8 times larger than a Small DC
and cost 44% less to operate per resource unit. The properties of each DC category are
summarised in Table 5.1. The DCs are assigned a budget εi that is proportional to 80%
of the total cost of all resources over an epoch, as advised by [PBM+07].

5.3.3. LINKS

The links are categorised by capacity µ j as either Small, Medium or Large. A definition
of each link category’s properties can be found in Table 5.2.

5.3.4. TOPOLOGY

The DCs and links specified above are situated in a network. In this work, a fat tree and
an Erdös-Rényi random graph are used to evaluate the performance of the distributed
algorithm, representing a current and forthcoming network topology, respectively. The

1Code and experiments available at: gitlab.com:eit- wit/mcn\_placement\_simulator.
git
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Table 5.2.: Link categories, their capacity and costs.
Small Medium Large

Capacity µ j 3000 5000 80000
Unit cost 3 77% 87% 100%

(a) Fat-tree with depth 4 and branching
factor 3.

(b) Erdös-Rényi random graph with branch-
ing probability of 1.1.

Figure 5.3.: Network topologies used in experiments, each with 40 nodes.
DC assignment: Huge, Large, Medium, Small. Link assign-
ment: Large, Medium, Small.

topologies used in the evaluation both consist of 40 nodes (I = 40), which corresponds
to the typical size of a regional Fog computing infrastructure. The topology types have
an equivalent depth and total DC capacity, see Figure 5.3.

FAT TREE

Mobile core and access networks often take the shape of fat trees, with the middle
tiers having the highest degree of interconnectivity [Bed14]. The network is assigned
a Huge DC in the root node, Small DCs are assigned in the leaf nodes, and remaining
nodes are assigned a DC category per its depth in the network. Figure 5.3a illustrates
the structure and resource assignment of the fat-tree topology.

RANDOM GRAPH

Access and core networks are becoming more and more interconnected, through mul-
tiple carriers and with the addition of new disaggregated network technologies [BHL+14].
To imitate this type of topology, an Erdös-Rényi random graph of I = 40 nodes is used.
The graph is generated using a branching probability of 1.1.
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The nodes in the network are assigned to a DC category based on their number of
connections. The tier of nodes with the fewest connections is assigned a Small DC.
The top 10% of the nodes with the highest number of branches are assigned a Huge
DC. Intermediate nodes are assigned either Large and Medium DC in proportion to
their network distance to one of the Huge DCs. The topology’s structure and resource
assignment are illustrated in Figure 5.3b.

A critical difference between the two topologies is that a random graph is more
heterogeneous than a fat-tree in the sense that a fat-tree is symmetric and that the depth
of the network strongly correlates with the mean distance to the demand, DC capacity,
and degree of connectivity. Furthermore, in a random graph, a set of neighbours do not
have to be of similar capacity and with very different degrees of connectivity.

5.3.5. WORKLOAD AND APPLICATIONS

To model the spatial- and quantitative-heterogeneity of the applications and users in
a Fog computing infrastructure, the system is subjected to a workload that is com-
posed of a set of applications and their respective demand, as defined in Section 5.1.
In this work, 400 heterogeneous applications are hosted in the infrastructure. The ap-
plications’ aggregate requested resource needs equal to a time-average of 50% of the
system’s resources. A system load of 50% is reasonable for this type of system, yet
high enough to cause resource contention.

Three properties define an application; its demand, its performance requirements
(SLA), and its resource usage profile. They are as defined below.

DEMAND SPREAD AND QUANTITY

The demand of an application is spread over a set of leaf nodes. In this work, the
spread of an application’s demand is categorised as either local, regional, or global.
The demand spread of an application is linked to the branching factor of the network’s
DCs. Local demand is associated with small DCs, regional demand is associated with
medium and large DCs, and global demand is associated with huge DCs. The demand
spread types are uniformly distributed across the 400 applications. Furthermore, the
quantity of demand is proportional to the capacity of the DC type, which is associated
with their demand spread.

PERFORMANCE REQUIREMENTS

The performance requirements or SLA for an application is a real number upper limit
of the 95th percentile of the network distance distribution of the number of hops from
all users of an application to where the location of the DC in which the application is
hosted. An application’s SLA is associated with the type of DC that the application’s
demand spread is associated with. The SLA is sampled from a uniform distribution in
the range from the minimum to the mean network distance between all leafs nodes to
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Table 5.3.: Application SLA range as the maximum of the 95th percentile of
the distance distribution

SLA range
Local [1,2]
Regional [2,3]
Global [3,5]

Table 5.4.: Application resource utilisation characteristic types with utilisa-
tion intensities.

Compute Storage I/O
CPU Intensive 0.95 0.5 0.05
I/O Intensive 0.05 0.75 0.95
Symmetric 0.5 0.5 0.75

all DCs of the corresponding type. The ranges are specified in Table 5.3.

RESOURCE USAGE

An application’s resource usage profile is categorised as either compute, storage, or
I/O intensive. For example, a compute-intensive application is characterised as using
relatively more compute resources than storage and I/O resources, in proportion to its
total demand. The resource usage intensity classes used in this work are detailed in
Table 5.4. In this work, the resource usage profile types are uniformly distributed over
the 400 applications and assigned independently of the application’s SLA and demand
spread.

5.3.6. COMPARISON METHODS

In the experiments, the performance of the proposed algorithm is compared with an
optimal, a random, and a naïve placement method. They are defined below.

RANDOM SELECTION AND PLACEMENT

This method utilises the agents of the presented algorithm, but the decision is applied
randomly. To be more precise, if the budget is violated in DC vi, one application out of
Ai is uniformly randomly selected and migrated to a DC in N k

i with a recorded budget
surplus greater than 0, randomly selected from a uniform distribution. Similarly, if the
SLA of an application an ∈ Ai is violated, it is migrated to a DC in N k

i with a reported
budget surplus greater than 0, randomly selected from a uniform distribution. From
now on this method is referred to as the random method.
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NAÏVE - MAXIMUM IMPROVEMENT WORST-FIT MITIGATION

This heuristic method utilises the change agents from the presented algorithm, but the
decision is applied in a maximum improvement worst-fit approach. The reasoning
here is to locally minimise the additional operational cost and load incurred by an
application placement change. If the budget is violated in DC vi, a set of applications
are selected for expulsion, based on the cost they incur if they are migrated in relation
to how much the application contributes to the aggregate operational cost of the hosting
DC, as given by:

ai = argmax
an∈N k

i

ϑ̂
op
i (t0, t0 +∆te)

ϑ̂
mig
i

(5.15)

The applications are then placed in the DC in N k
i with the largest budget surplus.

SLA violations are mitigated by placing the application in the vk ∈N k
i where the mean

distance to the demand is minimised, per:

minimize
i∈N k

q

ρ
95th
i,n (5.16)

subject to ϑ
op
n,i(t)te +ϑ

mig
n,i ≤ ξ̂i(t) (5.17)

The method is naïve in the sense that it acts locally without and independently of the
system’s other objectives.

CENTRALIZED OPTIMAL PLACEMENT

To provide an upper performance bound for the presented algorithm, the centralised
optimal placement method from Chapter 4 is also included. All applications are placed
where they incur the least amount of cost, meet their performance requirements, given
that they do not aggregately exceed any individual DC’s desired allocation level.

To increase the potential total utilisation level of the system given a highly hetero-
geneous workload this method does not have a global load balancing objective. A
soft load balancing constraint would contradict the soft cost minimisation constraint.
This is contrary to the presented distributed algorithm where a uniform load across
a neighbourhood is actively pursued, as it is essential for the algorithm to permutate
successfully to find a steady state iteratively.

5.3.7. EVALUATION METRICS

The algorithm is evaluated on its ability to meet the system’s management objectives
using the following metrics.

Total system cost The total momentary cost of all resources at time t, defined as:

κ(t) := ∑
i∈V

∑
n∈Ai

(ϑop
n (t)+ϑ

mig
n (t))+L (5.18)
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The system’s management objectives seek to minimise the total momentary
cost, which means that a low value is desired.

Number of budget violations by any resource, at each point in time. A low number
is desired.

Number of SLA violations by any application, at each point in time. A low number
is desired.

Resource allocation distribution is defined as the standard deviation of the distribu-
tion of DC allocation levels across the infrastructure. The metric shows how
well the load is balanced across the system. A low standard deviation is desired.

5.4. RESULTS

In this section, the results from the experiments detailed in Section 5.3 are presented
and analysed. This section begins with observing the algorithm’s convergence time
to a steady state from a random state followed by their step responses and resource
utilisation distributions.

5.4.1. CONVERGENCE

From the onset, at time t = 0, all applications are placed uniformly random in the net-
work with a 50% load of the system’s DCs. Thus, on average, 65% of the applications
violate their SLAs, and 50% of the DCs violate their budgets. Below, the convergence
time of the algorithm is evaluated for both its agents’ performance objectives, SLA and
budget. The convergence time from a random state is representative of how quickly, if
at all, an algorithm can reach a steady state.

Note that, when an agent evaluates the objective function the agent uses the last
reported budget surplus values from its neighbours. Therefore, neither method begins
to act until the first budget surpluses ξi are communicated, namely at the end of the
first epoch t = 10. Furthermore, as the optimal method is already in a steady state, its
convergence time is naturally not considered.

SLA

Starting with the traditional fat-tree topology, as illustrated by Figure 5.4a, the dis-
tributed algorithm can meet all resident applications’ SLAs after 20 time steps. The
naïve method does not do so until t = 70. This is due to the naïve method’s competing
actions, the budget violation and SLA processes. To this effect, up until this point,
the naïve method has retarded 19% of the applications’ SLA deficits while working
towards meeting all DCs’ budgets. In the random case, the SLA violation process does
not converge within the time-frame of the experiment.
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(b) Cumulated budget violations.

Figure 5.4.: Objective violations in a fat-tree topology.

The random graph scenario leads to a different outcome. Due to the higher degree
of connectivity, the distributed algorithm’s SLA process is now able to converge after
12 time steps, see Figure 5.5a. The naïve and random methods fail to converge because
they can at this point no longer be propelled by the differential between the heterogen-
eous layers in the fat-tree topology. Instead, the naïve method permanently deposits
9% of the applications that violate their SLA’s in DCs from which it cannot find more
suitable hosts. Interesting to note is that the random method is well suited to handle
this degree of heterogeneity. Although it does not converge until t = 140, the random
method can reach a steady state.

BUDGET

The distributed algorithm’s budget violation process converges after 40 time-steps
when deployed in the fat-tree topology scenario, see Figure 5.4b. The naïve method
converges at t = 70, at the expense of an additional 100 budget violations. When
considering the SLA deficit/surplus of the applications, none of the applications with a
small SLA surplus are migrated up until the point the SLA process converges at t = 20.
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(b) Cumulated budget violations.

Figure 5.5.: Objective violations in a random graph topology.

Again, the random method does not converge within the time frame of the experiment.
A similar outcome can be found in the random graph topology, see Figure 5.5b.

Again, the algorithm is assisted by the higher degree of connectivity, and now con-
verges at t = 35.

OPERATIONAL COST

Starting with the fat-tree topology; once converged, the distributed algorithm incurs a
total system cost within 9% of the operational cost achieved by the optimal method,
see Figure 5.6a. The method’s ability to approach the optimal cost point is a reflection
of the system load or budget. A smaller budget forces the methods to find a lower
cost point but at the cost of the ability to permutate. Despite failing to meet all DCs’
budgets, the naïve method incurred cost converges to 13% of the optimal. As with the
previous scenarios, the random method fails to converge.

The outcome for the random graph topology is illustrated in Figure 5.6b. The total
system cost achieved by the distributed algorithm when employed in the random graph
topology converges to 13% within the cost incurred by the optimal approach. In this
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(a) Fat-tree topology.
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(b) Random graph topology.

Figure 5.6.: Total operational cost relative to the cost incurred by the optimal
approach.

case, both the naïve and random methods converge to an incurred system cost of 18%
and 20% from the optimal, respectively.

5.4.2. STEP RESPONSE

Observing the algorithms’ step responses reveal how well they can respond to changes
from a steady state. To subject the system to a change, the capacity of a random
medium-sized DC in the network is instantly halved at t = 75. The budget of that DC
is reduced accordingly.

In the fat-tree topology, the distributed algorithm can spread the affected DC’s ex-
cess demand to its neighbours, who then propagate any excess to their neighbours
while attempting to balance the load throughout the system. Because the objective
function considers the SLA deficit/surplus of the applications, only applications that
would reduce the net load in the neighbourhood or improve its SLA deficit, are likely
to be affected. The distributed algorithm’s budget process thus reaches a new steady
state after 7 time steps. The naïve method, on the other hand, fails to spread the excess
load over DC 2’s neighbours, and instead creates a bottleneck in the middle of the net-
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(a) Fat-tree topology.
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(b) Random graph topology.

Figure 5.7.: Standard deviation of the distribution of DC allocation levels
across the system.

work. From this point on, the naïve and random methods’ budget process diverges and
therefore fails to load balance the system, which will inhibit the system to handle any
forthcoming changes in load or capacity.

In the random topology, with a larger number of neighbours per DC, the distributed
algorithm can converge to a new steady state with only 20% of the violations compared
to the fat-tree topology. Due to the increased interconnectivity of the random graph,
it can handle a significant change in capacity. Furthermore, the naïve and the random
methods have still not converged at t = 150, with a significant number of both SLA
and budget violations.

5.4.3. ALLOCATION DISTRIBUTION

Although resource allocation is not one of the system objectives, as explained earlier, it
does provide an idea of the state to which the algorithms converge to. A more uniformly
load balanced system is desirable as it leaves the system in a better state to accommod-
ate changes uniformly in the network. If the change and quantity in changes followed a
particular distribution, then perhaps a uniform load balance might not be what is sought
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after. Analogously, the optimal solution does not have this objective. A wide allocation
distribution across the system’s resources implies that specific resources are less able
to permutate in the event of a change in capacity or demand. In these experiments the
load distribution imposed on the system by the applications’ demands is uniform; thus
a narrow distribution is desired.

Figure 5.7a shows the standard deviation of the distribution of DC allocation levels
across a fat-tree topology. The figure reveals that all the non-optimal methods achieve
a very similar level of allocation distribution. Note that each algorithm converges to its
previous level despite a significant reallocation of resources.

For the random graph topology, presented Figure 5.7b, all the non-optimal solutions
achieve a lower allocation variance than the optimal solution. Additionally, in the
random graph topology, all non-optimal methods converge significantly faster and are
less disrupted by the change in the capacity at t = 75 than the fat-tree topology. This
can be attributed to the greater variety of resources available to any given node in the
random graph topology.

5.5. CONCLUSIONS

In this chapter, a distributed algorithm to holistically manage a large set of heterogen-
eous DCs and applications with different objectives was presented. The main challenge
has been to reach a steady system state and while accommodating a set of entities with
heterogeneous objectives hosted in a cost- and capacity-heterogeneous network. The
distributed algorithm was evaluated over two different types of topologies with vary-
ing degrees of heterogeneity and compared to both a centralised optimal solution, and
two naïve methods. The results reveal that the distributed algorithm presented in this
chapter can quickly and consistently converge despite a high degree of heterogeneity
in the system. The evaluations also reveal some of the properties in a heterogeneous
topology that can be used to extend this work.

A possible investigative extension of this work is a thorough investigation of the
distributed algorithm’s convergence performance under a transient workload and re-
sources with time-variant capacity and cost. Possible extensions to the algorithm in-
clude elastic horizontal scaling of applications and multi component applications.
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6
Realising smart city services with IoT

and FaaS

A long-held goal of many scientific projects has been real-time manipulation of
sensing devices and actuators. For example, a system to monitor animals could
be constructed with a lattice of mobile sensing devices, and the discovery of

a particular animal could alert a scientist to dynamically reconfigure both sensor posi-
tions/techniques and gating/routing mechanisms to improve data collection or improve
the animals’ lives. However, in general, because of cost and technology constraints,
such devices usually lack network capabilities and thus are unable to be read/controlled
in real-time. Instead, scientists are typically forced to collect the data sometime after
the fact manually. This data is then analysed on lab computers, perhaps leading to
modifications to the sensing algorithms/positions and control logic used in subsequent
re-deployments. These constraints have significantly limited the rate of scientific pro-
gress.

Two recent developments have brought such real-time science scenarios closer to
reality. First, device manufacturers have begun to believe that there is a market for
network-enabled devices in many scenarios (e.g., a “connected” light bulb for the
home). Such cost reductions and broadly-available capabilities can be extended or
applied to scientific devices, thereby significantly reducing the cost to deploy such
devices. Second, public clouds have recently added specific support for IoT. For ex-
ample, in October 2015, AWS introduced AWS IoT, to “support billions of devices and
trillions of messages”. While these two developments are promising, there are many
open issues that must be addressed before large-scale scientific experiments based on
real-time sensors and actuators are feasible. Long-lasting power supplies and the avail-
ability of networking infrastructure (e.g., cell towers) for devices/actuators must be
addressed in general. Additionally, while early public cloud IoT success stories have
focused on smaller-scale scenarios such as connected houses, it is unclear to what ex-
tent these new public cloud mechanisms and abstractions are suitable and effective for
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larger-scale or scientific scenarios, which often have a different set of constraints or
requirements.

This chapter addresses the challenge of implementing a scalable IoT infrastructure
test-bed in the public cloud for scientific experimentation. There are two main contri-
butions to this chapter. The design and implementation of a representative cloud-based
IoT infrastructure in AWS are presented and the evaluation of that system. The system
created is for dynamic vehicle traffic control based on vehicle volumes/patterns and
public transport punctuality. Specifically, in-road induction sensors and vehicle GPS
positioning comprise the input to a control algorithm to regulate the red-green patterns
of traffic lights with the goal of increasing safety and minimising wait/idle times. The
targeted system operates in real-time and is both data-driven and stateful. In this first
phase, the system has been designed and implemented based on a simulated system
and sensors; as the system matures, these simulated sensors can be replaced seamlessly
with real sensors that report to the cloud, without needing to modify any of the control
logic. Three primary non-trivial challenges when developing such an application in
AWS are presented:

1. Designing and defining scalable stateful data-driven IoT services that operate
asynchronously with real-time constraints.

2. Long tail latency performance barriers.

3. Practically managing and extending the infrastructure components in a scalable
manner.

This chapter is structured as follows. Section 6.1 discusses related work, and the
suspends the research gap. Section 6.2 details the requirements and properties of the
targeted system. Section 6.3 describes the infrastructure’s components and presents the
design. Section 6.4 presents the evaluation, and Section 6.5 concludes the chapter.

6.1. RESEARCH GAP

In this work, a smart city-like traffic control service is used to evaluate the feasibility
of deploying a scientific test-bed in the cloud. Below a review of the state-of-the-art in
the field of traffic control and how this thesis contributes to that field.

In [DDMM15], Djahel et al. present the requirements of a future traffic manage-
ment system in the IoT era. These requirements include providing real-time road traffic
simulation and visualisation to help authorities more efficiently manage the road infra-
structure and ensuring the integration of existing systems and new technologies and
managing the evolution of these systems. In [GGD+07], Gradinescu et al. present an
adaptive traffic light system based on wireless communication between vehicles and
fixed controller nodes deployed at intersections. They prove that total time delay ex-
perienced at intersections can be significantly reduced using their system. In [HPL15],
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Hu et.al. propose an intelligent Transport Signal Priority logic based on connected
cars. Transit Signal Priority (TSP), also referred to as bus priority, is a collection of
techniques that provide preference to transit buses at intersections. By adjusting the
traffic signal plan according to bus arrivals, the delay that transit buses experience at
intersections is reduced. This system aims to improve the overall transit service quality.

The above findings have to various degrees been evaluated either in a simulator or
small real-world systems. There is to the author’s knowledge no work done on how
such policies and systems interact with tangent systems in a Smart City or at scale.
Additionally, neither the proposed systems nor the evaluations take much consideration
to the supporting sensor and orchestration platforms that would be required in a real-
world deployment.

Inspired by the past work in smart traffic management, this work looks at a cloud-
based infrastructure to support such systems. In particular, the work examines the use
of contemporary cloud services and platforms to scale experiments and create a hybrid
simulated and real-world experiment environment.

This work aims to leverage AWS IoT services to build the cloud infrastructure neces-
sary for such a forthcoming traffic management system. In this work, the effectiveness
of using AWS IoT is evaluated. Additionally, the challenges faced during development
and suggestions for improvements are presented.

6.2. TARGETED SYSTEM

In smart cities, a Traffic Signal Control (TSC) system incorporated into a general traffic
and public transport subsystem will employ a wide range of sensor types with hetero-
geneous availability, data types and quantities, and outputs. The aggregate system state
is represented by the state of the individual connected vehicles and devices as well as
historical and real-time data external and internal to the system. Several parallel, event-
driven, real-time, and periodic processes will orchestrate devices and vehicles, collate
and aggregate data, and provide feedback control based on the system’s objectives. The
system’s many objectives, such as actuating traffic lights to meet a specific deadline are
in their nature, real-time. Accommodating a data-flow to achieve real-time decisions
in a distributed system at scale is a challenge on its own. Ingress data to such a system
and its various processes is arguably heterogeneous both in terms of volume, velocity,
variety, and veracity.

A scientific IoT TSC test-bed will need to be able to orchestrate both real-world as
well as virtual objects scalably and in real-time [ZDZ12]. A system state shall be able
to be defined by any subset of the system’s inputs and states. Processes, administrative
actions, and system states shall be able to be triggered by devices and vehicles and by
observing data flows. Data generated by the system and its constituent components,
therefore, needs to be made available in real-time to those processes and states.

The scale of the set-up and the duration of the experiments vary from experiment
to experiment and even during runtime. The system, therefore, needs to be able to
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scale to a large number of devices without affecting the real-timeliness of the control
processes nor limit the number of concurrent scientific data analysis processes. It is
also desirable for a scientific team not to have to commit to, develop, and maintain
their infrastructure.

This work begins to address this challenge by evaluating and exploring the possib-
ility of using an emerging cloud IoT PaaS, namely AWS IoT and AWS Lambda. To
provide a platform for developing and evaluating such a system, the TSP solution pro-
posed in [HPP14] is employed. In the remainder of this section, the system components
are described and then the system properties are enumerated.

6.2.1. SYSTEM COMPONENTS

The Transit Signal Priority with Connected Vehicles (TSPCV) system presented in
[HPP14] relies on connected public transit vehicles and wireless TSC sensors [YAKS10]
to fulfil its objective of reducing mean commuter waiting times. The paper proposes to
do so by manipulating the en-route traffic lights to allow the en-route buses to maintain
their schedules while considering their current ridership and the impact on peripheral
traffic in the affected intersections.

More specifically, the triggers in such a system are realised with a set of sensors in
bus stops reporting the arrival of buses. In parallel, buses report their location, speed,
and ridership. The state of the en-route traffic lights can be manipulated and observed
in real-time. The punctuality of each bus is monitored by a process that compares
the reported arrival of buses at bus stops and a set timetable. A change in the traffic
light program will be considered when the bus approaches the intersection and is be-
hind schedule. The evaluation process queries the punctuality process, the state of the
affected traffic light, and the prevailing peripheral traffic conditions from the nearby
induction loops, cameras, or collaborative, connected vehicles [TRL+09]. The result-
ing control decision is then relayed to the affected traffic light(s). The consequences of
that decision will be picked up by separate processes that continually produce, analyse,
store, and monitor prevailing traffic conditions.

The following components are needed to construct such a system (see Figure 6.1):

Sensors and actuators The system will collect data from a large set of sensors. The
sensors produce and attempt to report data at a specific rate. The sensors are
geographically distributed throughout the evaluation domain. Due to intermit-
tent connectivity, sensors might not be able to report at the desired rate success-
fully. Additionally, sensors report data with an error. The traffic lights are the
system’s actuators. A traffic light can be queried for its last reported state, and
the state can be changed with a control signal.

Device orchestration The devices, sensors and actuators are orchestrated in such a
manner that enables them to register, validate, and securely communicate with
the system.
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Figure 6.1.: Targeted system and application scenario

Scientific analysis To determine the effectiveness of a strategy, an analysis is per-
formed on the data. The set of running analyses can be changed in runtime to
reflect the ongoing experiments. The intent and output of analysis can either be
preprocessing for the controller or scientific evaluations of the system.

Storage The data collected by the devices, the control decisions, the current state of
the systems processes and entities, and the analysed data is recorded and stored
indefinitely for concurrent and future analysis.

Controller The system operates a set of controllers that act on multiple inputs from
both real-time, stored, and preprocessed sensor data to each produce a set of
control signals that are then relayed to their constituent traffic lights.

Monitoring The performance and availability of the system’s components and devices
are monitored in runtime.

The components of the targeted system are illustrated in Figure 6.2.

6.2.2. SYSTEM PROPERTIES

The targeted scientific IoT test-bed has the following properties and requirements.

Real-time The system shall be able to forward, process and store information as well
as run control loops in real time.

Multiple inputs The system shall support MIMO by exposing the entire set of sensors
to the set of controllers.

Scalable To cover large geographic and densely populated areas, the systems need to
scale from 10’s to 1000’s of devices with a comparable number of controllers.
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Figure 6.2.: System components of the targeted system

Survey-able The system and its component’s states shall be made available to the
operator of such a system

No-Operations (NoOps) The system shall not require active provisioning, software
maintenance, nor extensive software development

6.3. IMPLEMENTATION

In this section, the implementation of the targeted system using AWS components
is presented. AWS was chosen because it has at this point the most comprehensive
portfolio to construct a scalable, extensible, and NoOps cloud IoT infrastructure. Ad-
ditionally, the AWS service offering allows the architecture to bridge real and simu-
lated paradigms by interacting with both virtual and physical devices. The relevant
individual AWS components are first described, followed by how they were used to
construct the real-time vehicle control system.

6.3.1. AWS COMPONENTS

To realised the components and requirements of the targeted system, the following
AWS are employed.

IOT

AWS IoT is a platform that enables connected devices to securely communicate and
relay information to and from the AWS platform using MQTT [BG14]. Alongside Zig-
Bee [A+06], MQTT has become one of the prevailing home-IoT messaging protocols.
In addition to message passing, AWS IoT also offers data stream endpoint connectiv-
ity and message routing from a simple state-less rule engine with an Structured Query
Language (SQL)-like syntax. Simple system logic can be achieved with rules, using
stateless thresholds and trigonometric functions.
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To connect a physical infrastructure of devices to the AWS IoT platform, the accom-
panying AWS IoT Software Development Kit (SDK) supports a number of embedded
systems such as Embedded C and Arduino Yún. Additionally, AWS IoT supports
RESTful communication to ensure that virtually any device of any capability can be
connected to the system, as long as it is connected to the Internet.

An entity in AWS IoT is referred to as a Thing. AWS IoT maintains the state of each
Thing, through what is referred to as a Shadow state. A Shadow state can be queried
through services external and internal to AWS IoT. The relationship is maintained
regardless whether the physical device is connected or not. The targeted system will
require a stateful logic that goes beyond the capabilities of the AWS IoT. Therefore,
AWS IoT is in this work used to scalably and securely orchestrate the resident devices’
communication and authentication, in real-time. All external entities are connected to
the cloud-hosted infrastructure over AWS IoT.

LAMBDA

In addition to its traditional collection of Virtual Machines, AWS is offering a highly
scalable server-less micro-computing platform called Lambda. A Lambda function is
a state-less piece of code, with an input and an output that can be triggered by a wide
array of sources internal and external to AWS. In contrast to an Elastic Compute Cloud
(EC2) instance, a Lambda function has one dedicated purpose and deliberately only
runs for up to a few minutes. Arguably, instead of running an entire application in a
single VM, it can now be broken up into a set of redundant asynchronous sub-functions.
Lambda functions scale instantly to hundreds of instances, with almost no platform
maintenance. In this work, Lambda functions constitute all computational instances
used for evaluating bus punctuality, aggregating and maintaining data in databases,
sensors fusion, and traffic control loops.

DYNAMODB

AWS offer a number of DB services. AWS DynamoDB is a low-latency No-SQL
schema-based DB. In this work AWS DynamoDB is used for storing collected data
and maintaining shard states.

KINESIS

AWS Kinesis is a highly scalable aggregating streaming data buffer. Kinesis is scal-
able in the sense that it can achieve high throughput by forwarding ingress data to a
practically infinite pool of parallel end-points. Its ability to maintain high throughput
and thus ensure that what is beyond the endpoints is updated promptly is what makes
it real-time. This property also ensures that additional end-points can be introduced
non-intrusively, without interrupting or throttling the existing end-points. In this work
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Figure 6.3.: AWS components and data flow for the test-bed

AWS, Kinesis is used to scalably aggregate and process the flow of reported sensor
values. In practice, the Kinesis stream is also used as a means to expose the ingress
stream of data to any future end-point or experiment.

CLOUDWATCH

AWS CloudWatch is a platform for monitoring AWS services through logs as well as
predefined and custom metrics. AWS CloudWatch is the primary outlet for debugging
AWS services in run-time. Additionally, AWS CloudWatch provides a set of primitive
plotting capabilities for monitoring existing and user-defined metrics. Cloud watch
also allows the setting of time-based triggers.

6.3.2. TESTBED ARCHITECTURE

The system’s various entities such as traffic lights, buses, and induction loops are con-
nected to the cloud infrastructure as Things via AWS IoT (see Figure 6.3). The commu-
nication between the sensors and the cloud infrastructure is encrypted using Transport
Layer Security (TLS). The credentials for each device are stored locally on the device.
This implies that each device is registered and trusted by the system. This satisfies the
security and reliability requirements. Additionally, entities, or Things, can be added
dynamically to the system in runtime.

Data from all traffic and bus monitoring sensors are published to a shared data chan-
nel for analysis in real time. A rule is deployed as an end-point to each upstream
channel to route the message to a AWS Kinesis stream. The received messages are in
their entirety deposited into the Kinesis stream. From this point on, any 3rd service can
be set-up to access the incoming streaming data without altering the set-up of running
AWS IoT flow provided that they have been granted access. In other words, new data
stream endpoints can unobtrusively and trivially be added. Furthermore, a channel in
AWS IoT is achieved by an MQTT topic.

Both AWS IoT and Kinesis have a high enough throughput to receive and route hun-
dreds of sensor readings per second successfully. The number of concurrent Lambda
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functions automatically scales to meet the number of ingress sensor values. In theory,
this ensures that the information flow expedited end-to-end in near real-time.

To aggregate and demultiplex the streaming data, AWS Lambda functions are at-
tached as end-points to the streams. A Lambda function is employed to introduce a
simple mean value calculation of traffic throughput, that observers the traffic flow data
and aggregate the samples from each sensor over an epoch, arguably at the scale of
the duration between control loop evaluations. The values are aggregated in an AWS
DynamoDB entry for each epoch and are used in the analysis and classification of long-
term behaviours. Moreover, at the arrival of a bus at a bus stop, an event message is
sent on the bus_stop_event MQTT topic containing the bus stop id, the bus number
and route, and the time of its arrival. The message is intercepted by a nAWS IoT rule
which internally spawns a Lambda function that assesses the punctuality of that bus by
comparing the ingress data with a timetable in DynamoDB. The result is stored in a
DynamoDB table. Subsequent Lambda functions can be added to evaluate the state of
the entire route or the transit system as a whole. The benefit of a Lambda function as
compared to an EC2 instance is made clear in this scenario. The evaluation of a bus’s
punctuality is event-driven and does not happen continuously, but multiple evaluations
might run concurrently for multiple buses. An equivalent EC2 instance would have to
be run continuously, maintained, and the resident software would have to be able to
scale to multiple evaluations while guaranteeing real-timeliness on one machine and
one socket. Lambda functions and Kinesis thus contribute to the system meeting its
scalability, real-timeliness, and NoOps requirements.

At this point in the system, data is accumulated in a set of DynamoDB tables that are
structured in such a way that they are suitable for both long-term storage and the con-
troller. There are several ways to access the data from both AWS-internal and -external
services. Access privileges can be established to regulate who and what services can
access the DB.

When a bus approaches an intersection, the adjacent induction loops register the
presence of a bus and report the intersection id, bus number, and the time of the event to
a dedicated AWS IoT topic, intersection_event . The rule performs two operations
– the data is forwarded to Kinesis for record keeping and further analysis. Primarily,
the rule triggers a Lambda function intended to evaluate the state of the traffic lights
in the affected intersection. The resulting Lambda function begins by querying the
punctuality DB entry for that specific bus to determine the extent of the need to assist
the bus by altering the traffic pattern. If so, then the AWS IoT Thing shadow states
of the induction loops in the affected intersection are queried for their last reported
state. In addition to forwarding the relevant data to the control loop, the state update
is intercepted by a AWS IoT rule that forwards the data aggregation and processing to
the Kinesis stream. The control output is acted on by sending the new states of the
affected traffic lights; this is accomplished by setting the Shadow State. The process
is repeated for each such incident. Multiple such processes can run concurrently. Any
interactions with AWS services are done through Python Boto3.
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Figure 6.4.: AWS components and data flow with simulated/emulated end-
points

If the controller was designed to be triggered on multiple events, an intermediate
state would have to be created in for example Dynamo DB. Although, Lambda function
can be triggered from a variety of data driver sources, such as an update in a table,
and another Lambda function via an intermediary AWS Simple Notification Service
(SNS) message, it cannot be atomically triggered based on a state composed of multiple
inputs. This is because data is submitted and processed asynchronously in the system,
there is no one active entity in the information flow that can make the atomic decision
to iterate the control loop. Founded in the fundamental concept of the Kinesis and
Lambda, AWS cannot be ensured that a Kinesis entry will only be processed once.
Multiple entries can be due to an error in the input or an error in the Lambda code.
If AWS were able to guarantee that a table entry was atomic, then multiple controller
Lambda functions that each trigger on an update for a subset of reported sensors over
the past epoch could be deployed. As a result, the controller is therefore activated
asynchronously and independent of the data source using a CloudWatch Scheduled
Event. This ensures that only one instance of the controller Lambda function is called,
and allows the controller to act independently of the data source.

6.3.3. SIMULATED TESTBED ARCHITECTURE

To validate the infrastructure and to provide a portable proof-of-concept, a simulated
environment was developed based on the scenario presented in Section 6.2. Evaluating
and experimenting with the infrastructure with actual sensors and real traffic at a real-
world rate is neither safe nor allows the stressing of the limitations of the infrastruc-
ture. The simulated environment, therefore, employs a simulated traffic environment
with virtual entities. The primary architectural discrepancies between the real-world
test-bed and the simulated environment is illustrated in Figures 6.3 and 6.4. The in-
formation flow and control logic in the simulator are maintained with a few additional
states and signals.
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Simulation of Urban MObility (SUMO) [BBEK11] supplies the simulated traffic
environment. SUMO is an inter- and multi-modal, space-continuous, and time-discrete
traffic flow simulation platform. A SUMO simulation scenario is at the minimum
specified by a network of roads, traffic-monitoring induction loops, traffic lights, and
vehicle arrival rates, speeds, and entry points. SUMO is accompanied by a visualisation
tool that renders the environment and the changes within it. The tool also allows real-
time interaction with the simulation.

SUMO provides an extensible interface, Traffic Control Interface (TraCI), that al-
lows researches and developers to interact with the simulator, environment, and the
visualisation tool over a socket in real-time. This decoupling enables external entities
to control the simulator’s clock, traffic lights, and extract the prevailing traffic condi-
tions. In this work the TraCI module is used to expose the induction loops, buses, cars,
bus-stops, and traffic lights to the information flow as Things in AWS IoT. This is
achieved by running the SUMO simulator core and an MQTT enabled TraCI python
script on a Windows AWS EC2 instance. Because Boto3 cannot act as an AWS IoT
Thing a virtual Thing module was developed to connect SUMO entities with AWS IoT.
As a result, SUMO entities are managed by AWS IoT, have a shadow state, and can be
queried in the same manner as their real-world counterparts.

SUMO can run in real time with real-world input, but to be able to scale any experi-
ments the simulator clock needs to be centrally controlled. In this implementation, the
simulator clock has therefore been made to drive time progression in the entire system.
At each instance that the simulator progresses the time horizon, it sends a time-stamp
on a dedicated AWS IoT MQTT topic, time_tick . To realise a pseudo-real-time en-
vironment, all external data-producing entities subscribe to the time_tick topic. At
each time update, any data producing entity updates its shadow state. This structure
enables the system to execute at almost any rate. Being able to vary both the input rate
and the rate of execution allows one to scale the experiments to load the information
flow in both time and volume.

6.4. EVALUATION

In this section, the designed architecture is evaluated using a representative scenario
based on the proposed TSP-CV from [HPP14] detailed in Section 6.2. Based on this
set-up, a basic cost and a latency analysis are presented.

6.4.1. REPRESENTATIVE SCENARIO

To evaluate the designed architecture, a representative scenario was developed in the
simulated environment. The scenario is based on an area of roads and intersections in
Charlottesville, VA. The area incorporates two intersecting bus routes, namely the Free
Trolley and Route 7. The buses follow their regular schedule and are along with all the
entireties connected to AWS IoT. Furthermore, the area features four intersections;
each intersection implements the TSP-CV policy proposed [HPP14]. The integrated
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Figure 6.5.: Show case TSP-CV scenario in Charlottesville Virginia.

components and the layout of the scenario are illustrated in Figure 6.5.

6.4.2. PERFORMANCE

THROUGHPUT AND SCALABILITY

AWS IoT provides an interface to add and manage Things (sensors) deployed in the
test-bed. The developed infrastructure can support thousands of sensors, as AWS can
scale on demand. However, the credentials required for sensors to communicate with
AWS IoT have to be stored locally in each sensor. This means that overhead is incurred
each time a sensor is added to the system. Further, when the number of sensors in the
system is very high, managing the sensors via the interface provided by AWS is tedious
and error-prone. Thus, the infrastructure can scale to support thousands of sensors, but
manually managing the sensors via the AWS IoT interface is challenging.

LATENCY

As the control loop is decoupled from the simulator, it operates asynchronously with
the simulation clock. The control loop is the most latency-sensitive component in the
system and determines the maximum rate of the system. Although AWS claims to offer
their services in real time, running the control loop in a separate entity subjects it to the
AWS-internal latencies.

To find the upper bound for the simulation rate, the individual latencies for the op-
erations involved in the control loop, as specified in Section 6.3, were measured. Fig-
ure 6.6 presents the distribution of latencies for AWS IoT Shadow State get, and Dy-
namoDB reads from a Lambda function using Boto3. The bimodal distributions for
each operation are attributed to the first such operation each time an instance of a con-
trol Lambda function is instantiated. This phenomenon is independent of the way the
Boto3 instance is initialised and reused.

Figure 6.6 also reveals the total round trip time for the control action, measured
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Figure 6.6.: Latency distributions per AWS operation.

from the time an event is sent on bus_stop_event until the affected traffic light’s
Shadow State is updated on the virtual entity. This finding suggests that it will take on
average 1.2103 seconds for the control action to take effect. This implies that either
the simulation or the real world will need to accommodate 1.2-second delay from the
time a bus is detected until the first instance a traffic light can be changed. Moreover,
the system, at some point, will need to be aware and compensate for this additive
stochastic delay. Furthermore, running with real devices would subject the system to
an additional WAN latency, in the range of 30 to 150 ms, depending on your physical
proximity to a AWS DC.

COST

The cost of deployment is an essential factor in determining the effectiveness of a cloud
service provider in terms of deploying a large-scale scientific experiment. The cost of
the developed infrastructure for varying data sampling rate and a varying number of
deployed sensors is depicted in Figure 6.7. It is assumed that the number of shards
used is 1 and the data sampling rate is the data collected per minute from each deployed
sensor.

6.5. CONCLUSIONS

In this work, the emerging IoT support in public clouds was investigated and eval-
uated for scientific experimentation. The system created provided dynamic vehicle
traffic control based on vehicle volumes/patterns and weather conditions. It was found
that while AWS IoT performance and performance scalability often do not meet the
requirements of many next-generation scientific IoT use-cases. Additionally, manage-
ability/modifications of a scientific IoT scenario can be challenging for moderate- to
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Figure 6.7.: Cost per month for operating one road intersection in AWS.

large-scale deployments. We are currently investigating techniques to replace the sim-
ulated sensors and actuators with their corresponding real devices. Also, new control
algorithms are being pursued to control traffic efficiently. Such application-specific
developments will synergise with any new IoT support from public clouds.



7
Bounding shared state inconsistency in

distributed IoT systems

A s IoT matures and enters new fields of operation, the notion of independent wire-
less sensors and actuators is becoming obsolete. Contemporary IoT applica-
tions are more focused on data generation and distributed decision making than

merely connecting mundane household things for the sake of programmability and re-
mote actuation. Forthcoming IoT applications and services will instead operate across
multiple devices to, for example, accomplish a one-time task, operate a continuous
process, or collect data. These applications will be composed and provisioned dynam-
ically at runtime in a distributed manner to meet real-time demands. Additionally, IoT
devices and their capabilities are discovered and managed in a manner reminiscent of
micro-services from the Fog computing domain, see Figure 7.1.

Emerging platforms such as Ericsson’s Calvin [PA15] will proposedly enable and
orchestrate these types of IoT applications and systems of IoT devices. To do so, these
platforms rely on a shared distributed state realised using a Distributed Hash Table
(DHT) [PP12]. The DHT contains the capabilities and state of the system’s devices
and hosted applications. The information shared through the DHT allow devices to
autonomously broker resources. This approach removes the need for centralised con-
trol and introduces some degree of platform fault tolerance. This also allows services
and server-less functions to migrate between IoT devices and Fog computing resources
seamlessly. Nevertheless, all autonomous distributed management decisions in such a
system rely on a consistent DHT. Although a DHT is inherently fault-tolerant, fine-
grained, and mission-critical decisions require near complete knowledge of the state’s
consistency. The expected consistency of the DHT is thus linked to the operational
efficiency of the system and its applications.

An IoT device, being it a thermometer or a multi-purpose robot, quintessentially
connects to the world beyond, wirelessly. Devices that have sparse and intermittent
power supplies or are entirely self-reliant must be frugal with how they use the wire-
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Figure 7.1.: Forthcoming IoT application paradigm.

less medium. Emerging 5G concepts are embracing these challenges faced by IoT
devices [PDG+16]. Proposed 5G standards consider device limitations and intermit-
tency, multiple medium access methods [SJ16], Device-to-Device (D2D) communica-
tion, and new radio-access technologies [LETM14]. The propositions of 5G are more
about IoT and enabling mission-critical applications than higher throughput.

In IoT devices, as applications and internal processes serve requests, they generate
both egress application data and updates bound for the DHTs. From now on, the former
is referred to as application traffic and the latter as state traffic. Although significant to
the consistency of the system as a whole, the state traffic is not as latency-sensitive as
the application traffic.

Application traffic and state traffic contend for the device’s wireless resources. The
amount of state traffic versus application traffic produced by a service request is stochastic,
as is the rate of service requests. Consequently, the state traffic will intrude on the
application traffic. The trade-off between application traffic and state traffic is non-
trivial. For example, naïvely prioritising the application traffic or capping the state
traffic can disrupt the state traffic entirely. Doing so will ensure neither a favourable
trade-off between the two traffic flows nor that the system will be stable. As the traffic
and the wireless link connecting the device is stochastic and vary significantly over
time, no absolute bounds on either traffic flow can be trivially set that accommodates
both traffic flows. It is evident that maintaining a consistent DHT comes at a signi-
ficant performance cost for the applications that the system is intended for. Therefore
some level of DHT inconsistency needs to be tolerated. However, uncertainty in the
DHT’s inconsistency has a detrimental effect on the quality of the system’s distributed
decision-making.

In this work, a Cross-Layer Control (CLC) is presented that bounds DHT inconsist-
ency uncertainty by bounding the time-average amount of deferred state traffic by using
a virtual queue technique [GNT+06]. The proposed method is expressed as a jointly-
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formulated flow control and scheduling decisions derived using stochastic Lyapunov
drift optimisation techniques found in [GNT+06, NML08]. The proposed controller
is thus able to accommodate the stochastic nature of the two traffic flows and ensure
a bounded amount of deferred state information while maintaining queue and system
stability. More precisely, the proposed controller schedules the two traffic flows so
that the expected deferred state traffic is bounded at a predefined level without expli-
citly violating the application traffic. Intuitively, the deferred state traffic represents
the amount of state information that would be lost if the device fails or the level in-
consistency of the distributed state. This level can be dynamically adjusted to reflect
each devices’ probability of failure, or a system-wide tolerated level of distributed state
inconsistency. The resulting flow control decision is implemented and operated inde-
pendently in each device while the scheduling decision is implemented centrally in the
wireless infrastructure.

The authors of [LMS12] stabilise a network with finite queues. This is not adequate
for the problem presented in this chapter as it needs to accommodate a variable target
consistency while adequately accommodating the application traffic. In doing so, one
must be able to violate the target consistency to maintain a high throughput temporarily.
Lyapunov drift analysis has been used extensively when analysing the performance
and stability of mesh networks, such as [RYS10]. Although related concerning the
characteristics of the devices, these works do not share the same objectives nor do
they consider the consistency of a shared data source, such as a DHT. The work in
[FLJ13] taxonomies methods for achieving consistent DHT-base routing algorithms in
mesh networks. Although such methods are related, they cannot be applied at the scale
and rate of change of IoT systems. Additionally, in [DTT+16] a similar trade-off is
explored but without explicit consistency objectives using Model Predictive Control
(MPC).

Through simulation, it is shown that the proposed controller can bound the time-
average shared state inconsistency within a narrow margin of the desired level while
keeping the system stable. It is also shown that the controller is also able to do so while
accommodating changes in load and wireless channel conditions. Additionally, the
proposed controller is also able to more successfully balance the system’s two traffic
flows than comparable and conventionally used methods.

7.1. SYSTEM MODEL

In this section, the model is presented for a device and the system’s infrastructure.
As depicted in Figure 7.1 the target system consists of N devices and an RBS. To
accommodate the traffic flows’ individual objectives, each device operates two egress
traffic queues, one for each traffic class; application traffic Qa

i and state traffic Qs
i .

The state queue has a variable time-average limit li(k). The limit li(k), constitutes the
bound on the deferred amount of state data. Both egress queues share the same sink,
the wireless interface. All devices communicate over the wireless interface provided by
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Figure 7.2.: Infrastructure model.
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Figure 7.3.: Device model with virtual queue Yi(t).

the RBS. Each device has a time varying channel capacity of µi(k) in the time interval
[k,k+1]. µi(k) has a probability distribution. Access to the medium is scheduled by the
RBS at each time instance. For each device i, the capacity µi(k) can be shared between
the application and state queues. Let µa

i (k) and µs
i (k) be the capacity allocated to the

application and state queues for device i at time period k, respectively and µi(k) =
µa

i (k)+ µs
i (k). The targeted system as a whole is depicted in Figure 7.2. An overview

of the device model is illustrated in Figure 7.3.
Each device is subject to ingress application requests at the rate of λi(k). The ap-

plication requests are deposited in a FIFO reservoir and processed at a controllable rate
Ri(k). As a request leaves the reservoir, the device commits to processing the request,
which subsequently results in a change to the DHT. Specifically, Ri(k) is the number
of requests committed at time k, and θi is the mean of the size of each request. βi is
the fraction of Ri(k) that is application traffic while (1− βi) of Ri(k) is state traffic
βi,θi,λi(k) are constant for a device, but can be different among the devices, and are
unique for each application i.
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7.2. CROSS-LAYER CONTROLLER

In this section, the premise of the target problem is formalised and the proposed Cross-
Layer Controller is presented. From here on, the cross-layer controller is simply re-
ferred to as the controller. The controller is formulated using the Lyapunov drift-plus-
penalty Theorem presented in [GNT+06]. In the resulting formulation, the controller
has two control decisions; flow control and user (IoT device) scheduling. The two
decisions are jointly formulated but act independently.

Contrary to the predictive approach in [DTT+16], this approach acts only on the sys-
tem’s current state in each time instance. This allows the controller to accommodate
the stochastic nature of the system’s queuing dynamics. Also, the proposed controller
can handle stochastic wireless channel conditions. The time-average horizon object-
ive is achieved by acting on the relative changes in the system’s queue sizes, i.e., the
Lyapunov drift.

7.2.1. OBJECTIVE

The objective of the controller is to maximise the utility of the application queue while
ensuring its stability, i.e., E[Qa

i (k)] < ∞ and bound the time-average occupancy of the
state queue, i.e., E[Qs

i (k)] ≤ li. In a practical sense, the utility achieved by an IoT
device is defined as the number of requests (average Ri(k)) that is to be handled by that
IoT device. The achievable utility depends on the designed flow controller, scheduling
decisions, and the network capacity. A strictly increasing utility function is defined for
for the application queue i, ∀i as a function of output rate of the application request
reservoir Ri(k), as follows: let ri be the time-average utility of the application queue i,

ri = lim
k→∞

1
k

k−1

∑
τ=0

E[βiRi(τ)] (7.1)

The objective of the controller is formally expressed as,

max
N

∑
i=1

g(ri) (7.2)

s.t. E[Qs
i (k)] ≤ li ∀i (7.3)

E[Qa
i (k)] < ∞ ∀i (7.4)

Note that imposing the constraints in Equation (7.3) make the solution of the op-
timisation problem complicated and the problem is a complex Markov Decision Pro-
cess (MDP). It is well-known that MDP suffers from the curse of dimensionality since
the queue state vectors grow geometrically with the number of IoT devices. Therefore,
it is not feasible to find a suitable algorithm in practice. In this paper, instead of find-
ing an optimal solution to the problem Equations (7.2) to (7.4), in this chapter a much
simpler sub-optimal controller which is based on Lyapunov drift technique [GNT+06]
is developed.
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7.2.2. QUEUING DYNAMICS

Firstly, the system’s queue dynamics is defined. The application and state queue’s
dynamics of IoT device i are as follows,

Qa
i (k+ 1) = max{Qa

i (k)−µa
i (k),0}+Ri(k)θiβi

Qs
i (k+ 1) = max{Qs

i (k)−µs
i (k),0}+Ri(k)θi(1−βi)

To satisfy the constraint in 7.3 a virtual queue (see Figure 7.2) is introduced with the
following dynamics,

Yi(k+ 1) = max{Yi(k)− li(k),0}+Qs
i (k+ 1) (7.5)

= max{Yi(k)− li(k),0}+max{Qs
i (k)−µs

i (k),0}
+Ri(k)θi(1−βi)

The virtual queue Yi(k) for application i in Equation (7.5) accumulates that applic-
ation’s number of deferred state data in Qs

i (k) and deducts its bound on the deferred
number of state data li(k). Consequently, if the virtual queue Yi(k) is stabilised then the
constraint in Equation (7.3) will be satisfied. This can be achieved by using Lyapunov
Optimisation Drift, as shown next.

7.2.3. LYAPUNOV DRIFT

In this paper, a quadratic Lyapunov function is used and expressed as,

L(k) =
1
2

N

∑
i=1

Qa
i (k)

2 +Yi(k)2

This Lyapunov function is the scalar measure of the total of both actual and virtual
queues in the network. The Lyapunov drift is given by,

∆L(k) = E[L(k+ 1)−L(k) | Q̄] (7.6)
Where Q̄ = {(Qa

1(k),Y1(k)), . . . , (Qa
N(k),YN(k))}. It is a well-established result that

minimising the following function [GNT+06],

min∆L(k)−
N

∑
i=1

V E[g(Ri(k))] (7.7)

maximises Equation (7.2). Clearly, it enables a simple multi-objective optimisation
problem where the first term (the Lyapunov drift) satisfies the constraints in Equa-
tions (7.3) and (7.4), whereas the second term (∑N

i=1 V E[g(Ri(k))]) maximises the
total network utility as expressed in Equation (7.2). The drift-plus-penalty theorem
in [GNT+06] does not require strict convexity assumptions. However, it ensures that
the expected of the optimisation problem’s primals converge to a solution that is within
a factor of optimality, with bounded queue sizes. Furthermore, V is a system parameter
which allows for making a trade-off between the achieved utility and the average queue
backlog in the queues, as applied in [GNT+06, NML08]. Next, a controller which min-
imises Equation (7.7) at each period k is presented.
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7.2.4. CONTROLLER DESIGN

Since there is no explicit close-form expression for Equation (7.7), to formulate a con-
troller that minimises Equation (7.7) in discrete time, the bounds for Equation (7.6)
need to be found. With the following in mind: max{x,0}2 ≤ x2 and max{x,0} ≤ x2 to
express,

Qa
i (k+ 1)2 ≤Qa

i (k)
2 + µa

i (k)
2 +(Ri(k)βiθi)

2

−2Qa
i (k)(µ

a
i (k)−Ri(k)βiθi),

Yi(k+ 1)2 ≤(Yi(k)− li(k))2 +Qs
i (k)

2 + µs
i (k)

2

+ 2Yi(k)(Qs
i (k)+Ri(k)(1−βi)θi)

−2Qs
i (k)(µ

s
i (k)−Ri(k)(1−βi)θi)

+ (Ri(k)(1−βi)θi))
2

Note that the network capacity at a period k is always upper-bounded due to practical
limitations (e.g., transmit power). That is to say, µa

i (k) ≤ µmax, µs
i (k) ≤ µmax for all

i and k. Also, the number of requests that can be admitted is upper-bounded, i.e.,
Ri(k) ≤ Rmax, for all i and k. µmax and Rmax are constants. The choice of Rmax

i is
independent of the stability of the system. However, a choice of Rmax

i less than the
allocated aggregate mean channel capacity results in a strictly underutilised system.
Then,

Qa
i (k+ 1)2−Qa

i (k)
2 (7.8)

≤ Ba−2Qa
i (k)(µ

a
i (k)−Ra

i (k)βiθi)

where Ba = µ2
max +(Rmaxβiθi)2.Similarly, a bound for the virtual state queue Yi(k)

is found,

Yi(k+ 1)2−Yi(k)2 ≤ li(k)−2Yi(k)li +Qs
i (k)

2 (7.9)

+ 2Yi(k)(Qs
i (k)+Ri(k)(1−βi)θi)

+ (Ri(k)(1−βi)θ1)
2 + µi(k)2

−2Qs
i (k)[µi(k)−Ri(k)(1−βi)θi]

≤ BY +Qs
i (k)

2

−2Yi(k)(li−Qs
i (k)−Ri(k)(1−βi)θi)

−2Qs
i (k)(µ

s
i (k)−Ri(k)(1−βi)θi)

Where BY = l2
max + µ2

max + (Rmax(1− βi))2 and lmax(k) = max{li(k)}. By using
Equations (7.8) and (7.9), Equation (7.7) can now be expressed in its entirety,
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∆L(k)−
N

∑
i=1

V E[g(Ri(k))] (7.10)

≤
N

∑
i=1

Ba−2E[Qa
i (k) | Q̄](µa

i (k)−Ra
i (k)βiθi)

+BY −2E[Yi(k)(li(k)−Qs
i (k)−Ri(k)(1−βi)θi) | Q̄]

−2E[Qs
i (k) | Q̄](µs

i (k)−Ri(k)(1−βi)θi)

+E[Qs
i (k)

2 | Q̄]−V E[g(Ri(k))]
Minimising the right-hand side of the inequality in Equation (7.10) ensures queue

stability and maximises the objective in Equation (7.2). The controller can now be
defined, which jointly minimises the right-hand side of Equation (7.10) at each k.

FLOW CONTROL

The flow control decision’s objective is to regulate the flow Ri(k) from the application
request reservoir. Collecting the expressions from Equation (7.10) that include Ri(k)
which is given as,

N

∑
i=1

E[2Yi(k)Ri(k)(1−βi)θi + 2Qs
i (k)Ri(k)(1−βi)θi

+ 2Qa
i (k)Ri(k)βiθi−V g(Ri(k))]

Minimising the above expression for each device i at each k will minimise the right-
hand side of Equation (7.10). Each device i solves the following problem, which will
determine the flow decision for that device at time k,

argmin
Ri

Ri[Qs
i (k)(1−βi)θi +Qa

i (k)βiθi

+Yi(k)(1−βi)θi]−Vig(Ri)

s.t. Ri ≤ Rmax
i

The choice of Rmax
i is independent of the stability of the system. V is a parameter that

determines the balance between the controller’s desire to back pressure requests and
maximise its utility through Ri. Any positive V will result in a stable system.

Furthermore, the flow control is at its most effective when it keeps up with the sys-
tem’s rate of change, rflow(k) = min{λi(k),µa

i (k)µ
s
i (k)/(µ

a
i (k)+ µs

i (k))}. However, a
lower rate does not violate the stability criterion.

SCHEDULING

The other control decision in Equation (7.10) is the scheduling decision (i.e., determ-
ination of µa

i (k) and µs
i (k)). The scheduling decision is centralised to the RBS. The
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idea is that µa
i (k) and µs

i (k) are determined in a way that the right-hand-side of Equa-
tion (7.10) is minimised. Grouping and maximising in terms of µa

i (k) and µs
i (k) from

Equation (7.10) yields,

argmax
i

max{Qa
i (k)µ

a
i (k),Q

s
i (k)µ

s
i (k)} (7.11)

This essentially implies that the largest queue amongst all the devices will receive
the channel capacity at that time k.

7.2.5. PARAMETER ESTIMATION

The distribution of the parameters θi and βi are unknown to the system at runtime.
The mean of the parameters is estimated using stochastic gradient descent, θ

k+1
i ←

θk
i − γi∇F(θk

i ), where γi = γ ∀i.

7.3. EVALUATION

In this section, the evaluation scenarios for the proposed CLC are presented and mo-
tivated. To evaluate the controller, a simulator was developed in Python using SimPy
for queue representations and the simulation core. CVXPY [DB16] is used for solving
convex optimisation problems.

The simulations presented below are designed to reveal how the proposed controller
can maintain the maximum time-average deferred state information, converge, and
handle variations in inputs.

7.3.1. COMPARISON POLICIES

Three different scheduling policies are used to evaluate the proposed controller.

Round Robin (RR) scheduling In RR scheduling, the queues are scheduled in a se-
quential order regardless of their occupancy, i.e., this approach does not enforce
an explicit scheduling objective. RR is a commonly used scheduling approach.

Prioritised scheduling In prioritised scheduling, the queues in the system are par-
titioned into different prioritisation sets. The set of queues in a prioritisation
level are never scheduled unless the queues in the higher prioritisation levels are
empty. In this scenario, the Qa

i (k) is prioritised over Qs
i (k) to ensure minimum

application latency.

Priority Threshold (PT) scheduling In PT scheduling the queues in the system are
partitioned into two sets. One of the sets has an occupancy threshold. A queue
in that set is only scheduled if its occupancy exceeds the threshold. In the sim-
ulations below, the set of Qs

i (k) are assigned a threshold of li(k).

7.3.2. METRICS

The metrics below are used to evaluate the proposed controller.
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Utilisation ρ The utility level of a system of queues is expressed as ρ = λ/µ. In the
simulations below, two utilisation factors are observed; end-to-end utilisation
for device i ρe2e

i (k) and the resulting level of utilisation due to back pressure
from the flow control decision ρflow

i (k). The time designed time-average utiliza-
tion of a device as determined by the load and system parameters in Table 7.1, is
define as ρ̄e2e(k). Furthermore, ρ̂e2e(k) and ρ̂flow(k) are the instantaneous time-
averages for system and post-controller utilisation levels, respectively, over all
N devices. If the system is stable, E[ρflow

i ] ≤ 1. Consequently, ρ̄e2e(k) ≥ 1 is a
system loaded over 100%.

Utility The utility of the system is proportional to R.

Trade-off The trade-off between the competing traffic flows is at the core of the prob-
lem addressed in this paper. This trade-off is formally expressed as,

α(k) =

{Qs
i (k)−li(k)

li(k)
if ρe2e

i (k) ≥ 1

|∆Qs
i (k)−∆Qa

i (k)| if ρe2e
i (k) < 1

Where ∆ is the forward difference of f (x), ∆ f (x) = f (x+ 1)− f (x). The first
component premiers stability and a bounded Qs

i (k) when the system is over-
utilised. The second component premiers that Qa

i (k) and Qs
i (k) change at a

similar rate when the system is underutilised. A low value is desired.

Finally, λ̂(k), µ̂(k), Q̂a(k), Q̂s(k), and R̂(k) are the instantaneous mean for those val-
ues over all N devices.

7.3.3. SYSTEM PARAMETER VALUES

The simulation parameters used to evaluate the proposed controller are presented in
Table 7.1. For this scenario, a Poisson arrival process and exponential service times
are assumed. In the simulation scenario below, the total system utilisation ρ̄e2e(k) is
intermittently over 100%, ρ̄e2e(k) > 1, see Figure 7.4. Furthermore, for the policies
detailed in Section 7.3.1, Ri(k) = λi(k) ∀i.

7.3.4. INPUT VALUES

When evaluating the proposed Cross-Layer Controller, the instances when the system
is over-utilised is of particular interest. Therefore, the system inputs are balanced to
achieve a desired level of system utilisation as presented by ρ̄e2e(k) in Figure 7.4.
This is achieved by either varying λi(k) or µi(k). The system utilisation depicted in
Figure 7.4 has three different load scenarios recurring over five time periods. The three
load scenarios are; strictly underutilised, strictly over-utilised, and transient. They are
distributed over five periods, as de-marked in Figure 7.4.

After the epoch of intermittent over-utilisation t > 600, system load enters the tran-
sient epoch where the designed utilisation drops to 55%, ρ̄e2e(k) = 0.55. Up until this
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Parameter Value
Sim. duration 500
N 10
λi(k) Poisson process, exp(λ = 0.24) ∀i, see Figure 7.4
µi(k) See Figure 7.4
rflow 0.01
RMax

i 0.05 ∀i
θi N (µ = 3,σ2 = 3/2) ∀i, sampled for each arrival
βi U(0.35,0.65), sampled once
li(k) See Figure 7.4
γi 0.01 ∀i
V 16
gi(R) gi(R) = lnβRi(k)

Table 7.1.: Simulation parameter values of the proposed controller.
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Figure 7.4.: System parameters and designed utilisation.

point the change in ρ̄e2e(k) was attributed change in λi(k). After this point t > 600,
λi(k) is kept constant and µi(k) is varied as a sinusoid, see Figure 7.4. The intermittent
over-utilisation and transit epochs are from now on referred to as epoch 1 and epoch 2,
respectively.

7.4. RESULTS

In this section, the results from the simulations detailed in Section 7.3 are presented.
Note that the time scale in the simulations is unit-less. It is also worth noting that the
estimations for σi and βi have converged after 100 time units.
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7.4.1. EXPECTED DEFERRED STATE TRAFFIC

The design objective of the controller is E[Qs
i ]≤ li for each device i. Throughout epoch

1, as the system is over-utilised, the objective of the controller is to keep E[Qs
i ] =

li. Figure 7.5 shows that the controller can maintain a time-average within the 95th

percentile < 1% of li(k).
li(k) is increased to 20 at k = 200 and then decreased back to 10 at k = 400. Note that

Q̂s(k) tracks the target li(k) practically immediately. The quick adjustment is achieved
by momentarily sacrificing instantaneous stability ρ̂flow(k) > 1. This is practically
instantly compensated for by a proportional reduction in Ri(k). The expected stability
of the system is thus maintained.

At the beginning of epoch 2, ρ̂flow(k) lags ρ̂e2e(k) and ρ̄e2e(k) as the controller
accommodates accumulated deferred application requests. Between k = 600 and just
before k = 680 the controller gradually balances the application traffic and state traffic
to when ρ̂flow(k) < 1. After this point, there is no contention between the two traffic
flows and Q̂s drops to just above 0, see Figure 7.5.

In epoch 2, λi(k) and li(k) are kept constant and µi(k) is oscillated sinusoidally
around ±10% of ρ̄e2e(k) = 1. The scheduling component of the controller will be first
to act on the change in µi(k). Consequently, there is small lag in R̂(k) from the change
in ρ̂e2e(k), see Figure 7.5. However, this lag has evidently no practical impact on the
controller’s ability to track li(k) in relation to ρ̂e2e(k).

Furthermore, PT scheduling has the objective E[Qs
i ] = li. As Figure 7.6 shows,

PT scheduling can meet this objective while the system is over-utilised. However,
contrary to the proposed controller, as the system moves into phase 2, Q̂s(k) does not
diminish. This is because none of the state queues will be served if there are any non-
empty application queues ∑

N
i=1 Qa

i (k) > 0 or Qs
i (k) ≥ li∀i in the system. This is an
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Figure 7.6.: Q̂s(k) and li(k) for PT scheduling.

undesirable trade-off for the targeted system as the intent is to reduce the amount of
deferred state information when possible.

7.4.2. STABILITY AND SYSTEM UTILITY

Another objective of the controller is to maintain a stable time-average system of
queues, namely E[Qs

i ] < +∞ and E[Qa
i ] < +∞ for each device i. The system’s sta-

bility is revealed by observing the growth of the queues ˆQs(k) and ˆQa(k) as well as the
system utilisation after back-pressure is applied, ρ̂flow(k). As illustrated by Figure 7.7,
both conditions: E[Qs

i ] <+∞ and E[Qa
i ] <+∞ are met using the proposed controller.

In Figure 7.5, note that ρ̂flow(k) persist a level of around 1 even though ρ̂e2e(k)≥ 1.
This is because the controlled system administers deferred application requests that
have been back pressured. This is as designed and means that the system of N devices,
as well as all application queues and service queues, are stable.

Furthermore, the back pressure effect can be directly observed through R̂(k) in Fig-
ure 7.5. Note the inverse relationship between R̂(k) and ρ̂flow(k) in Figure 7.7.

Neither of the methods; RR, PT, nor Prio. have stability as an objective. This is
made evident by their growing queue sizes while ρ̂e2e(k)≥ 1 in Figure 7.7. In the case
of RR scheduling, as it does not discriminate between two traffic flows, they grow with
a similar gradient. Prioritised scheduling, on the other hand, prioritises Qa and thus
lets Qs grow uncontrollably. PT scheduling inadvertently maintains a stable Qs at the
expense of Qa stability.

Because the proposed controller practices back pressure, it will analogously achieve
a lower utility than the other scheduling methods as Ri is in this case suppressed. RR,
PT, and Prio, will on the other hand persist Ri(k) = min{Rmax,λi(k)}. This difference
is contrasted in Figures 7.5 and 7.6 for the controller and the other methods respect-
ively. The difference is small, but operating with a utility beyond the stability point has
a detrimental effect on the latency experienced by each serviced application request.

7.4.3. CHOICE OF V
As discussed in [GNT+06, NML08], although any positive V will result in a stable
system, the choice of V does have an impact on the controller’s ability to meet its other
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objectives. A large V will promote the utility function, while a small V will promote
back pressure. This is reflected in the immediate value of R at each k. However, all
values of V will achieve the same time-average R, see Figure 7.8.

Furthermore, as illustrated by Figure 7.8, the choice of V has an impact on the
sample variance of Qs

i , s2
Qs

i
. Although the time-average converges at V > 10, it is

desirable to minimise s2
Qs

i
(k) provided it is not at the expense of system utility Ri(k).

Also, note that R is not affected by V . As illustrated in Figure 7.8, s2
Qs

i
(k) is convex to

V . For this system, minimum s2
Qs

i
(k) is at V = 16.

7.4.4. QUANTIFYING THE TRADE-OFF

It has now been established that the controller successfully bounds the size of Qs
i (k)

to li(k) when the system is over-utilised ρ̄e2e(k) ≥ 1 and that the controller is able
to stabilise the system. The trade-off metric formulated in Section 7.3.2 attempts to
summarise the performance of the controller in comparison to the other scheduling
methods presented in Section 7.3.1 over time.
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Figure 7.9.: Cumulative difference in trade-off to the controller.

In terms of the metrics in Section 7.3.2, the controller performs strictly better than
the comparison scheduling methods. Therefore, for increased contrast, Figure 7.9
shows the cumulative trade-off for each method subtracted by the cumulative trade-
off for the controller. PT scheduling tracks the proposed controller well but fails to
balance the two flows as ρ̂flow(k) < 1 in the underutilised epoch. Prioritised schedul-
ing allocates, on average, no resources to Qs which therefore always maintains a high
occupancy. RR scheduling indiscriminately schedules Qa and Qs and thus achieves a
middle-of-the-road value during over-utilisation.

7.5. CONCLUSIONS

In this chapter, a CLC for achieving both a predictable maximum time average shared
state inconsistency, and system stability was presented. The proposed controller and
system objectives were formulated using Lyapunov Drift optimisation with penalty.
The resulting Cross-Layer Controller was verified through simulation. The simulator
showed that the proposed Cross-Layer Controller can track the desired level of shared
state inconsistency within a narrow margin. It was also shown that the Cross-Layer
Controller achieves system stability and can more successfully balance the system’s
two traffic flows than comparable and conventionally used methods. Additionally, the
proposed Cross-Layer Controller can accommodate both momentary stochasticities in
the queues and rapid changes in set points li while maintaining the desired time average
shared state inconsistency.

Possible extensions of this work include a downlink scheduling policy for scheduling
entire application processes across the system’s IoT devices. To capture the energy
constrained nature of IoT devices, such a system controller can include maximum time-
average transmission energy for each device.
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The recent uptake in factory automation and robotisation is just the beginning of
a more comprehensive adaptation of IoT, machine learning, big data, and Fog
computing technologies to automate a large set of the professions that have come

to characterise the twentieth century. This change is commonly referred to as the fourth
industrial revolution [Sch17].

This technological revolution is still in its infancy. There are significant techno-
logical challenges yet to be addressed for the revolution to encompass cognitive and
motorically intense professions. The fourth industrial revolution does not only im-
ply that most tasks and professions will be automated at the rate of which technology
matures. The ambition is not to indiscriminately eliminate human capital. Technology
will instead be used to make use of the human cognitive advantage wherever it might be
needed. This notion includes, for example, precise teleoperation, such as telesurgery.
One can trivially imagine a future where machine decisions seamlessly inter-operate
and complement physical human actions. Haptic feedback is a critical enabling tech-
nology in this pursuit [NS91]. It has consequently been argued that the Internet as we
know it today will shift from content delivery to labour delivery [Fet14]. The tactile
Internet enables this paradigm shift. A tactile Internet can include of amongst other
things, a large number of connected tactile surfaces and robotic limbs, accessed re-
motely at high precision, see Figure 8.1.

Enabling the tactile Internet and haptic feedback for the fourth industrial revolu-
tion will require a communication intensive distributed system where a large set of
resources are shared, and decisions are made in a distributed fashion in a network
with many wireless links. It is a well-known fact that the stability of tactile control
loops is particularly sensitive to jitter. The tactile Internet will, therefore, require near-
deterministic single-digit millisecond latencies. Additionally, at the rate at which tact-
ile feedback loops operate, there is a minimal margin for error [ADA+15]. Traditional
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Figure 8.1.: The tactile Internet and massive MIMO.

mechanisms that provide reliability such as Hybrid Automatic Repeat Query (HARQ)
and Automatic Repeat Query (ARQ) found in LTE might not be feasible at such a low
over-the-air latency. Unlike audio and video content, tactile feedback can currently not
be scalably compressed in a lossy fashion. Tactile feedback, contrary to audiovisual
content, can therefore not trivially be adapted to prevailing wireless throughput capa-
city. Furthermore, the surfaces and robotic limbs that are part of tomorrow’s tactile
Internet do not operate in just one tactile dimension. They each rely on multiple multi-
modal data inputs and outputs across multiple devices [PCW12], requiring each device
to communicate at the same level of reliably and latency simultaneously. Providing
wireless URLLC to the devices that constitute these services has been proven to be
non-trivial.

Existing mobile specifications, as they are deployed, are unable to provide URLLC
cost-effectively at scale [HAS+16]. They cannot also deliver reliable low latency com-
munication to multiple users simultaneously. Consequently, the proposed 5G are fo-
cusing on addressing the challenges of scale, device heterogeneity, and mission crit-
icality. In other words, the aim is to provide control communication for closing the
global tactile control loop and not just deliver, e.g. audiovisual content.

Work is beginning to emerge in the literature on how to generally realise URLLC
and the tactile Internet using 5G. [ADA+15] taxonomises the tactile Internet design
challenges facing 5G. The work primarily addresses system design challenges and
presents a reasonable foundation of performance requirements and limitations. There
are also proposed system architectures for achieving URLLC [SMK+17]. The Fog
computing paradigm will arguably also play an essential role and undergo significant
changes in realising the services and the infrastructure of the tactile Internet [Mos15].
Although the entire wireless system infrastructure needs to operate at low latency, the
over-the-air latency in the physical layer is fundamental in achieving URLLC. Con-
sequently, there are for example proposed physical layer specifications for URLLC
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wireless networks [WMP+16]. However, none of these works has uniformly looked
at the physical layer for closing the tactile feedback loop with the performance gains
Massive MIMO can deliver.

This work investigates how to realise URLLC communication for the tactile Inter-
net using Massive MIMO. Requirements of bilateral teleoperation, an application of
haptic feedback, is adopted as a baseline, and investigate how its reliability and latency
requirements can be fulfilled with Massive MIMO. Furthermore, this chapter contrib-
utes to the performance analysis of Massive MIMO under URLLC-conditions which
is used to formulate upper performance bounds for such a system. Additionally, the
analysis allows us to constructively discuss trade-offs and specifications for a URLLC
Massive MIMO system. The results in the analysis are contrasted with what is attain-
able with the current LTE specifications.

8.1. BILATERAL TELE-OPERATION

In this section, the communication requirements for bilateral tele-operation which is
an application of tactile feedback and one of the most promising applications of the
tactile Internet is given a closer look. Generally speaking, closing force-feedback con-
trol loops for mechanical manipulators with interaction in stiff, as opposed to elastic,
environments is challenging and becomes notoriously difficult from a stability point-
of-view when uncertain delays are introduced in the loop. Also, in scenarios with
less stiff interaction forces, transmission delays and communication jitter deteriorate
performance and robustness. The concept of haptic tele-operation with bilateral force-
velocity reflection between a "master" (human operator) and a so-called "slave" (slave
robot) provides a mean of transparency and experienced interaction of contact forces
and end-effector motions for the operator, see Figure 8.1.

Bilateral tele-operation has been studied extensively. The method of ’wave vari-
ables’, introduced in [NS91], has successfully been extended and applied in remote-
controlled mining, dental and medical surgery, and even for space applications with
significant delays. In such systems, fundamental limitations will impose a trade-off
between stability and quality in terms of experienced transparency of the bilateral tele-
operation depending on the properties of the communication channel.

For remote control, a good complement to haptic feedback is streaming video from
a remote site, which allows the operator on the master side to visually inspect the inter-
action. However, for a consistent user experience, it is vital that the different feedback
channels, with possibly significantly varying amount of data, are synchronized without
unnecessary delays and jitter.

In a typical system, each joint is controlled separately over wireless links. Robotic
joints typically update at 250Hz [ABB]. A latency of at most 4ms is therefore desired,
preferably 1− 2ms to accommodate jitter. Furthermore, the jitter is fundamentally
addressed with a high wireless link reliability, Bit Error Rate (BER) < 1e−5.

For a good survey of haptic bilateral tele-operation case, see [HS06]. In [Mil14]
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the quality-latency trade-off for bilateral haptic tele-operation is investigated for dif-
ferent wireless standards. In [MRkFS13], the effect of network quality on bilateral
tele-operation was investigated. In that work, the performance metric was how ac-
curate the slave system follows the command of the master system as well as how
transparent the environment is to the operator. In that work, it was shown that packet
loss (i.e., BER) affects the signal oscillations, while the latency in the network causes
the steady-state tracking error increase. Based on this result, one can conclude that the
reliability and latency issues must be addressed together.

8.2. RELIABILITY

In this section, it is evaluated how Massive MIMO can be dimensioned to achieve the
desired reliability level, BER, presented in Section 8.1. The analysis was done through
simulation using MATLAB’s communications toolbox executed on Lund Unversity’s
cluster, LUNARC.

With the reliability challenges detailed in Section 8.1 coupled with the URLLC am-
bitions in [HWW+16], a BER of 1e−5 is targeted. Because the UEs are relatively
computationally underpowered and do not require particularly high throughput, as dis-
cussed in [BSHD14], we use the Quadrature Phase Shift Keying (QPSK) modulation
scheme.

In this work, the Independent and Identically Distributed random variables (i.i.d)
Rayleigh fading channel model is adopted. Using i.i.d Rayleigh fading channels will
form a reasonable upper performance bound, as a best-case scenario. In reality, due to
the correlation between users, the i.i.d assumption will not hold, and one can expect
that the minimum requirements for URLLC haptic feedback will be more stringent.
For fading channels, to improve the reliability of the channel, it is common to use
channel coding such as convolutional or turbo coding depending on the application.
Nevertheless, using the coding incurs additional cost in terms of receiver complexity
and decoding delay. Note that convolutional coding with rate 1/2 and constraint length
7 is used in this study since it yields a lower delay compared to Turbo coding and
Low-Density Parity-Check (LDPC) codes. Concerning diversity combining, the use of
both Maximum-Ration Combining (MR) and Zero-Forcing (ZF) is investigated. These
are both linear precoding schemes. Although MR is arguably not entirely beneficial in
massive MIMO, MR is included as a reference to a low-complexity mechanism. MR,
therefore, acts as a lower performance bound and will effectively contract the channel
properties with ZF.

As for our targeted haptic feedback system, in the scenario evaluated in [Mil14], a
6-Degrees of Freedom (DoF) robot was considered. The authors of [ADA+15] propose
segments of 48 data bits for a 3-DoF set-up. A packet size of 100 bits is therefore
adopted with near-constant traffic flow is when the UE is operational. To detect errors,
it is also assumed that Cyclic Redundancy Check (CRC) is applied. These parameters
can also be considered to be true for other robotics systems.
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Modulation QPSK
Channel
model

i.i.d Rayleigh fading

Precoding MR, ZF
Channel cod-
ing

Convolutional code with
rate 1/2, constraint length 7

SNR (−14,10) dB
BER target 1e−5
Packet size 100 bits

Table 8.1.: Physical layer parameters.

8.2.1. THE ROLE OF MASSIVE MIMO

Massive MIMO provides the means to significantly reduce the BER over existing LTE
Multi-User MIMO (MU-MIMO) specifications in a relatively straightforward manner
[MVL+16]. Because of the focusing effect in massive MIMO [LETM14], more UEs
can be served with a lower BER at a lower Signal-to-Interference-plus-Noise Ratio
(SNR) than in current deployed wireless specifications. The UEs of the tactile Internet
operate over a wide range of power requirements. Some UEs are for example battery
powered with a targeted lifespan expressed in years. Here massive MIMO offers an
advantage over conventional techniques as the UEs can be made relatively simple as
much of the complexity can be moved to the RBS. Predictable power consumption is
an integral part of the reliability of a UE. A low transmission power typically results
in a low SNR. To therefore sweep across SNR levels from as low as −14 dB to 10 dB.
The targeted massive MIMO system’s parameters are summarized in Table 8.1.

8.2.2. PERFORMANCE OF MASSIVE MIMO

A fundamental differentiating design parameter in a massive MIMO system is the num-
ber of RBS antennas, M. A high M/N ratio yields a lower BER or allows the system to
operate with a lower SNR. In the targeted Massive MIMO system, the UEs is assumed
to operate with one antenna. For the sake of generality, the robotic joints and surfaces
in this scenario are referred to as UEs.

We proceed by investigating the relationship between the number of antennas and the
system’s reliability by finding the minimum number of antennas M required to achieve
a BER of 1e−5 for a given N simultaneously served UEs at a certain SNR level. Here,
SNR is defined as the input SNR where it is defined as the ratio of transmitting and
noise power. Since the N UEs in the system are low powered and we do not want to add
additional delay as a result of the computational complexity, and since massive MIMO
achieves an inherently low BER, we initially proceed without any channel coding.
Using the scenario in [Mil14] as our reference. The ABB robotic arms in that scenario
have 3-6 Degrees Of Freedom (DOF) [ABB].

Figure 8.2 reveals the difference in performance between MR and ZF for i.i.d chan-
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Figure 8.2.: Number of antennas required to simultaneously serve N UEs at
a specific SNR with a BER of 1e−5. Without channel coding.

nels. The graphs can be read as either the minimum number of antennas required to
achieve a certain BER or the degradation of BER as a function of the number of UEs
and SNR. With either pre-coding schemes, there is no significant degradation in BER
until SNR= 0. From this point, ZF’s performance degrades at a relatively higher rate
with than MR but still performs strictly better than MR. ZF outperforms MR on aver-
age a factor of 2 at high SNRs values and with a factor of almost 10 at low SNRs. ZF’s
gain over MR increases linearly with SNR. However, ZF’s gain over MR increases
quadratically with the number of UEs, N.

In Figure 8.3, channel coding is used to improve reliability and reveal its relative
gain. Again, ZF outperforms MR on average of a factor of 0.85 across all configura-
tions. Contrasting Figures 8.2 and 8.3 shows that adding channel coding to ZF provides
on average a factor 0.5 improvement at low SNR levels and practically no improvement
for high SNR level when it comes to the minimum number of required antennas. MR,
on the other hand, sees a more than four-fold increase in performance.

As suggested by the results in Figures 8.2 and 8.3, with ZF, as long as M is suffi-
ciently high (e.g, M = 100) we arguably stand to gain very little from channel coding.
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Figure 8.3.: Number of antennas required to simultaneously serve N UEs at
a specific SNR with a BER of 1e−5. With channel coding.

As seen in Figures 8.2 and 8.3 the BER is satisfied at SNR= 0, at which point the
minimum number of antennas does not decrease with increased SNR. At this point,
there is no gain in BER when using channel coding. It is also evident from Figures 8.2
and 8.3 that channel coding is not contributing when the number of UE high and SNR
< 0. This is illustrated by the convergence of the minimum number of required anten-
nas for each number of users as SNR is decreased. The gain diminished on average
quadratically with diminishing SNR. Channel coding gain is therefore only present for
K ≤ 30 and low SNR conditions. This can be attributed to the fact that the channel
coding gain is very low when the intra-UE interference is high, e.g. when K > 30.

Furthermore, increasing the number of UEs N will require a factor 1 increase in the
number of antennas on the RBS side. However, the number of simultaneously served
UEs, N, does not only depend on M, and when the latency requirements are taken into
account M and N should be carefully decided as we show next.
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8.3. LATENCY

In this section, we evaluate how ultra low latency can be achieved with multi-user
massive MIMO. The starting point is a round-trip latency of 1ms specified in [ADA+15]
and Section 8.1.

The latency contributors can be decompose into three components: i-) processing/cod-
ing at the transmitter; ii-) over-the air transmission; iii-) the processing/decoding at the
receiver. The first and third components are strongly related to the hardware, software,
and coding scheme used at the transmitter and receiver UEs [MVL+16]. The second
component is however strongly related to the frame structure used in the communic-
ation link. In the current LTE specifications, over-the air latency (i.e., transmission
time interval (Transmission Time Interval (TTI)), is in part determined by the symbol
duration. This is already at 1ms, which makes it impossible to achieve the desired
low-latency. Therefore, TTI duration should be reduced. One solution is to reduce the
symbol duration. More specifically, the current Orthogonal Frequency-Division Multi-
plexing (OFDM) symbol duration is too long. One way to do decrease it is to increase
the sub-carrier spacing which will reduce OFDM symbol duration and consequently
TTI, as according to the following relationship,

TTI = τ

(
1

∆ f
+Tg +Tp

)
, (8.1)

where τ, ∆ f , Tg and Tp are the number of OFDM symbols in one TTI, the sub-
carrier spacing (in kHz), cyclic prefix duration (in µs) and some processing delay which
may depend on the software and hardware on the UE, respectively. Furthermore, one
OFDM duration (e.g., symbol duration) is expressed as,

Ts =
1

∆ f
+Tg (8.2)

For example, in the LTE standard, ∆ f = 15kHz and Tg = 4.76µs. Consequently, one
OFDM duration in LTE is, Ts = Tu +Tg = 71.4µs where Tu =

1
∆ f = 66.7 µs and there

are 14 OFDM symbols in one TTI. Clearly, in order to reduce the TTI duration, ∆ f
should be reduced since the other factors Tg and Tp are not controllable and usually
depend on the channel characteristics and the type of the UE, respectively. As it can be
seen from Equation (8.1) that another alternative to reduce TTI is to use fewer OFDM
symbols at each TTI (i.e., reduce τ) without needing to change ∆ f . One drawback of
using a reduced number of OFDM symbols is that the resulting scheduling cost can
increase.

In order for massive MIMO to operate efficiently, the RBS needs to collect Channel
State Information (CSI), which is achieved through the pilots symbols transmitted from
each UEs to the RBS. In an OFDM based system, each pilot symbol correspond to a
sub-carrier in one OFDM symbol. That is to say, some number of OFDM symbols
should be dedicated for CSI. If β number of OFDM symbols out of τ symbols are
used for pilots, then the number of UEs that can be simultaneously served by a massive
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MIMO RBS is,

K = βS = β

(
1

∆ f Tg

)
(8.3)

where β < τ and S is frequency smoothness as defined in [Mar10]. In other words, S
is the coherence bandwidth of the channel in terms of number of sub-carriers and over
S sub-carriers the channel can be seen as constant and a reliable communication for the
CSI transmission can be realized. Note that if β symbols are used for pilots then the
actual data communication will be (τ−β) symbols, which are used by all the scheduled
UEs at the same time. Here, the system efficiently is defined as ξ = (1−β/τ). Clearly,
with higher β values we can support more UEs. However, the amount of data that can
be received or transmitted will be reduced.

Combining Equations (8.1) to (8.3) highlights an interesting trade-off. A higher ∆ f
yields a lower TTI but also lowers the number of UEs K that can be simultaneously
served, when N ≥ K. Generally speaking, we have strict latency requirement, i.e.,
TTIthr and proceeding to maximize K yields the following optimization problem,

max K (8.4)

s.t. TTI≤ TTIthr (8.5)
The solution is straightforward and given by,

∆ f ∗ =
1

TTIthr
τ
−Tg−Tp

(8.6)

and

K∗ = β

(
TTIthr

τTg
−

Tp

Tg
−1

)
(8.7)

8.3.1. SYSTEM VIEW

Figure 8.4 depicts the optimal sub-carrier spacing and the number of simultaneously
supported UEs with varying Tg values by using Equations (8.6) and (8.7). As an ex-
ample, when β = 2 and τ = 7 (i.e., ξ=71%) and TTIthr = {100,200}µs. Less strict TTI
requirements can create an opportunity to support more UEs simultaneously. For ex-
ample, in the targeted scenario we require the TTI duration to be 100µs, i.e., TTIthr =
100µs which is short enough to provide 1 ms end-to-end delay including encoding/de-
coding1 and processing delays [ADA+15]. Thus, each OFDM symbol needs to be
14.28µs, Tg = 0.9µs, and Tu = 13.38µs as a consequence of Equation (8.6) ∆ f ∗ =
75kHz. When β = 2, by using Equation (8.7) the system can serve K∗ = 28 UEs
simultaneously.

Figure 8.4 can help us design the required frame structure by illustrating the primary
system trade-offs. For example, after measuring the channel characteristics (e.g., the

1The encoding/decoding delay should be in the same order of one OFDM symbol duration in
order to avoid any memory issue.
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delay spread) and deciding the length of the cyclic prefix one can use the results in Fig-
ure 8.4 to decide the sub-carrier spacing depending on the latency requirements given
in Section 8.1. Then, the number of the supported UEs, K, can trivially be determined
by using Equation (8.7). In order to support K UEs, the results in Section 8.2 can be
utilized to determine how many antennas are needed at the base station. The design can
also be realized in reverse, such that for a given number of RBS antennas, M, one can
determine the number of simultaneously supported UEs, K, based on a given latency
requirement by using Equation (8.7). If K is not supported with the given number of
antennas, a lower K can be considered. However, a lower K will require an increased
sub-carrier spacing to reduce the TTI further. The increased sub-carrier spacing comes
at the expense of increased bandwidth. If there is a bandwidth shortage then there may
not be sufficient number of pilot symbols, and consequently K will decrease.

8.3.2. LATENCY AND RELIABILITY

In the real-time scenario presented in Section 8.1, reliability and latency are inextric-
ably linked. Irregardless of the over-the-air latency, a high BER will result in packet
losses. With a BER of 0, the over-the-air latency would be deterministic. However, we
are able to achieve BER of 1e−5. Assuming that some degree of error detection mech-
anism is applied, retransmission mechanisms such as ARQ would contribute with jitter.
Packet losses can either be remedied in the controller by compensating for the uncer-
tainty permanently lost information introduces or through ARQ. However, when the
TTI is reduced to 100µs, the relative latency of retransmission increases dramatically.
ARQ might therefore not be applicable in this scenario.



8.4. Conclusions 147

8.3.3. PRECODING DESIGN

Lastly, we would like to discuss the impact of precoding design. This is an essential
part of a massive MIMO system in terms of the end-to-end latency. It has been shown in
[PRLE17] that in a typical massive MIMO system with 128 antennas at the base station
and 8 UEs transmitting uplink data, the precoding delay due to the required matrix
inversion and multiplications for ZF can be up to 150µs. Since ZF has a complexity
proportional to K2M, the precoding latency will dramatically increase as K and M
increase. This amount of latency is significant and a challenge for tactile Internet
applications. One possible solution to reduce the precoding latency is to use more
hardware resources, which however will increase the equipment cost.

8.4. CONCLUSIONS

In this chapter, the potential gains of utilizing Massive MIMO was investigated for real-
izing ultra-reliable, low-latency communication which is an essential part of the tactile
Internet and thus applications that rely on haptic feedback. Although this chapter spe-
cifically investigates the requirements for the tactile internet and haptic feedback, the
results can generally be applied to any ultra reliable communication scenario in ro-
botics, control, IoT, etc. The minimum reliability and latency requirements for these
type of applications and through systematic simulation studied and analyzed the per-
formance of Massive MIMO given these requirements were addressed. The results
reveal that depending on the precoding scheme used, the performance may vary but
that ZF is highly preferable even without channel coding. Additionally, it arguably
would be worthwhile to investigate the performance of Polar Codes in this scenario.
Polar Codes [Ari09] have been deemed beneficial for short packet transmission. The
latency requirements can be achieved by modifying the frame structure but the trade-
off between the latency and the number of simultaneously supportable devices must
be taken into account in the design of the system. In the following chapter the above
findings are used to control a real-time application over LuMaMi.
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9
A 5G edge cloud test-bed

This chapter targets the feasibility of running time-sensitive and mission-critical ap-
plications in a Fog computing infrastructure. The chatper proceeds by presenting
a design and implementation of a Fog computing research test-bed that encom-

passes a distributed set of compute nodes, a distributed PaaS framework, a 5G cell, and
a time-sensitive mission-critical process under control, see Figure 9.1.

A mission-critical system is one in which a failure or interruption comes with an
unacceptable business or human cost. Here, a failure may be an arbitrarily small de-
viation from the desired operation. Naturally, this includes all systems that create a
risk of injury but also systems in which failure incurs a very notable inconvenience,
such as a means of transportation rendered practically useless because it is making
passengers nauseous. Such applications are time-sensitive in the manner that they are
unable to cope with delay and jitter in the delay, to the point where they violate their
requirements.

The WANs separating a time-sensitive mission-critical system from a traditional dis-
tant DC may incur latencies beyond what is operationally acceptable. Fog computing
was proposed to mitigate the latent latency, throughput, and availability barriers that
separate the end-users from distant DCs. When accessing the Fog over URLLC 5G
[SMS+17], the latencies are sufficiently low that time-sensitive mission-critical ap-
plications can be deployed in the Fog. An additional benefit of Fog computing is that
resident applications can be made spatially redundant and fall-back solutions can be
implemented at various geographical points in the infrastructure for additional resili-
ence.

Historically, control systems have been deployed as monolithic SW implementations
on carefully tuned HW, adjacent to the plants they control. Deploying monolithic
SW on static HW makes such systems undesirably non-modular, less extensible, and
limits their ability to self-adapt. Conversely, cloud-native applications are built for the
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Figure 9.1.: System overview

cloud, offering the prospect of greater flexibility, reuse, availability, and reliability with
lower latencies. When applications are implemented in a disaggregated manner, their
execution can be distributed across the system’s many nodes, migrated, and scaled to
meet their individual objectives as well as that of the system as a whole. To adapt to,
and prosper in, the Fog, applications will arguably have to adhere to a cloud-native
paradigm.

The premise of this chapter is that deploying mission-critical applications over the
cloud, with wireless devices, must arguably occur in conjunction with the availability
of edge cloud resources, the flexibility of cloud-native applications, and the reliability
and low latency of 5G. This thesis argues that such applications can operate in and
make use of a distributed Fog computing but that there need to be relevant tools for
them to be native to this context. There are many challenges and performance uncer-
tainties in this premise. Therefore, the feasibility of deploying time-sensitive mission-
critical applications and their performance when deployed on an actual Fog computing
infrastructure is studied. The contributions of this chapter are:

• A state-of-the art Fog computing research test-bed aimed at the study of soft-
ware autonomy and mission-critical applications.

• An empirical baseline evaluation of the plausibility of deploying latency-sensitive
applications in the Fog computing.

• An empirical evaluation of the system’s ability to dynamically reconfigure dur-
ing run-time and the impact this has on the application.

• An empirical evaluation of the benefits of deploying latency-sensitive mission-
critical applications at the edge, at the plant, and on a distant DC.

Section 9.1 covers the related work in the field and highlights the research gap.
This is followed by a detailed account of the implemented test-bed in Section 9.2.
Section 9.3 presents an example automatic control application which is used to evaluate
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the test-bed. Finally, Section 9.4 highlights the contributions of the chapter and points
to new research directions.

9.1. RELATED WORK

In this section, related work and highlight the apparent research gaps left by the liter-
ature are surveyed. The works below cover both related attempts at research test-beds
and experiments that pursue the viability of a Fog computing infrastructure.

Test-beds spanning UEs, wired and wireless networks, distributed cloud infrastruc-
ture and platforms are crucial instruments to realise and study the complexity of a Fog
computing infrastructure. The literature contains a number of such attempts. The au-
thors of [KBLG13] present the SAVI test-bed which is an edge cloud test-bed realising
NFV with a Field-Programmable Gate Array (FPGA)-cloud. SAVI is used in the in-
vestigation of virtualising the wireless access network. Although comprehensive, the
test-bed does not provide a general edge cloud implementation for cloud native applic-
ations nor does the implementation span multiple tiers of cloud resources, including
the device. In [WTS+16], a full test-bed using existing wireless technologies, IoT
frameworks, and devices is deployed on an actual production line. The industrial ap-
plications targeted in the paper are not time-sensitive and the focus is on framework
integration rather than system and application performance. The authors of [HGH+16]
implemented a rudimentary edge cloud test-bed to quantify the impact of Edge Com-
puting on Mobile Applications using WiFi and the public 4G network. Their effort
reveals significant latency and energy usage improvements compared to distant DCs.
Additionally, the author has in a previous work [TCH16] studied the performance of
cloud native applications on commercially available platforms in a smart city context.

iFogSim [GVDGB17] offers a platform for abstract modeling of resource manage-
ment techniques in IoT and edge cloud environments, through simulation. In previous
works the authors has developed several simulators for studying the dynamics of the
edge cloud, culminating in [TPM+17]. In the absence of a test-bed and in the pursuit of
greater flexibility at a higher level of abstraction, simulators are valuable tools. How-
ever, we are at the point where a test-bed can be practically implemented and where a
simulator cannot capture the complexities of a Fog computing infrastructure.

Other works attempt to characterise and profile the performance of different aspects
of a Fog computing infrastructure. For example, the authors of [MSV14] evaluate a
generic platform for industrial control, with respect to latency, throughput, and CPU
load. Their focus is on the pros and cons of virtualisation in a ’Multi-core’ environment
rather than the ’cloud’. Similarly, [HK16] implements a water tank control process and
evaluates latency over a virtual Software Programmable Logic Controllers (vSoftPLC)
on top of LinuxRT. In both of these works, the system implementation rather than the
plant under control is evaluated. In [HH15], the authors propose Industrial automation
as a cloud service. In that paper the authors evaluate a system of time-sensitive control
processes in a 1-tier distributed cloud environment. Latency compensation is modelled
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and redundancy with stability and smooth controller handover is achieved. True for all
systems surveyed above, is that they are neither mission-critical nor time-sensitive at
the scale addressed in this paper.

9.2. RESEARCH TEST-BED

The presented research test-bed consists of a 5G radio transmitter and multiple receiv-
ers (UEs) (constituting a 5G cell), PC-type compute nodes in DCs and adjacent to the
radio transmitter (the RBS node), and reduced capacity input-output devices and phys-
ical plants at the radio receiver ends. Here, the physical plant can be a mechanical
device that continuously performs a task, for example a robotic arm or an autonomous
vehicle. It is assumed that the process which controls the plant is mission-critical and
time-sensitive.

A platform with enough knowledge about the application to perform load balancing
while allowing an application its own mobility within the network of compute nodes
is desired. Further, there is a strong interplay between the edge cloud and the end
user equipment such that an application can automatically scale on top of the cloud
and provide fall back on local devices. The radio subsystem shall be capable of paral-
lel, synchronised low latency communication with several receivers. Furthermore, the
properties of the system’s individual components are defined below. From here on the
research test-bed is referred to as the system.

9.2.1. 5G

A 5G wireless system represents the next generation wireless infrastructure [SMS+17].
The emerging focus of 5G is URLLC and mMTC where a large number of IoT devices,
can reliably be served simultaneously at a low latency,≤ 5ms. These conditions cannot
be replicated with current 802.11 or LTE systems.

A next generation wireless network also implies a deeper integration with associ-
ated cloud computing resources. On-demand resources are integrated into the RBS
and access networks to off-load the back-haul and eliminate the latency overhead of
traversing multiple networks and providers.

Massive MIMO is the emerging RAT for 5G. Fundamentally, massive MIMO is
a MU-MIMO scheme, which can simultaneously communicate with multiple UEs on
the same wireless resource. Additionally, on the RBS-side, massive MIMO operates
with significantly more antennas than existing LTE-based RATs. Massive MIMO is
typically configured with an order of magnitude more RBS-side antennas than simul-
taneously served UEs. Consequently, the system’s spectral efficiency is a few orders of
magnitude greater than existing RATs. The increased spectral efficiency can be used to-
wards serving more simultaneous UEs, increase throughput, or realising mMTC, bey-
ond what can be achieved with existing RATs.

A 5G wireless network is created using Lund Massive MIMO (LuMaMi). LuMaMi
is a Massive MIMO test-bed at Lund University, Sweden. LuMaMi’s scope and de-
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Node Device Location
Plant Raspberry Pi 3Bs Plant adjacent
Edge Intel Core i7 Desktop LuMaMi adjacent
ERDC Intel Core i7 VM Lund, Sweden.
AWS Intel Xeon VM Frankfurt, Germany

Table 9.1.: Node types

tailed implementation are found in [MVL+17]. LuMaMi can be seen as one solitary
5G cell that can simultaneously communicate with twelve UEs.

LuMaMi is configured according to [TKR+17]. This configuration premiers low
latency and reliability over high throughput. The modulation scheme is QPSK. The
resulting throughput is 4.6 Mbps downlink and 9.1 Mbps uplink, per UE, which is
more than sufficient to support the application. LuMaMi allows us to directly route
traffic through the system, allowing us to place a compute node in the RBS.

9.2.2. FOG COMPUTING AND NETWORK

The system as a whole is tied together by a set of compute nodes joined by a network.
A summary of the compute nodes is presented in Table 9.1. The system’s network is
conceptually configured as depicted in Figure 9.1. Adjacent to each plant is a Rasp-
berry Pi. In order to sample and manipulate the plant, each Raspberry Pi has been
equipped with a ADC/DAC shield. They are compute nodes and may service other
functions in addition to interacting with the plant. Each Raspberry Pi is also connected
to a 5G UE. The 5G cell is isolated in its own subnet. The subnet includes the wireless
infrastructure, a Fog computing node, and plant nodes. The plant-adjacent Raspberry
Pis are connected to the system’s subnet over LuMaMi. The RBS node is adjacent to
the LuMaMi RBS. It therefore connects directly to the RBS without traversing addi-
tional networks.

A router is connected to the cell’s subnet and the larger DCs. The Ericsson Research
Data Center (ERDC) resides in Lund, Sweden a few kilometres from the cell. ERDC
is a research DC operated by Ericsson (Lund, Sweden), that is open to industrial and
academic research efforts within the Wallenberg Autonoms Systems and Software Pro-
gram (WASP). The VM is run on top of Open Stack Pike and the instance (a c4m16)
has four Intel i7 cores registered by Linux as 1.6 GHz, and 16 GB of RAM. The AWS
EC2 instance (a c4.large) is hosted on eu-central-1 (Frankfurt, Germany). This node
has two Intel Xeon cores at 2.9 GHz and 8 GB of RAM. All cores are not used and
therefore expect the latter system to be the best performing. The two VMs on ERDC
and AWS connect to the subnet over VPN, allowing direct access between all compute
nodes.
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9.2.3. CLOUD NATIVE APPLICATION FRAMEWORK

In this work, a cloud-native application is defined as an application that has been dis-
aggregated into logical and independent components connected in a data-flow graph
and that is hosted on a PaaS framework. The PaaS and its resident applications ubi-
quitously operate over multiple geographically distributed and heterogeneous compute
nodes. An application’s data flow graph can be rerouted and extended in run-time,
when for example adding a new feature. Additionally, the components shall be able to
traverse the cloud and associate with and discover physical input-output devices if the
application so requires.

Amazon’s AWS, Microsoft’s Azure, IBM’s Bluemix, and Google’s Cloud offer their
own flavours of cloud native application platforms, ranging from SaaS to server-less
FaaS. However, none of these providers allow their users to define logical data flows
nor do they provide necessary performance guarantees. They are typically intended for
lifting data from the edge and IoT-devices to the cloud. The services do not provide
native support for closing logical loops from edge devices over the cloud and back to
the edge device with guarantees on latency and consistency. For the purpose of build-
ing an open research test-bed, these platforms are proprietary and cannot be arbitrarily
deployed and independently managed across an fog infrastructure. This is a require-
ment for the system in order to realise the view where one specification of the software
can be deployed anywhere.

In this work, Calvin [PA15] is used as the cloud platform. Calvin is distributed,
event-driven, server-less, and is based on a data-flow programming model. There are a
number of such platforms for different workloads, such as: Nebula [ROCW14], Node-
RED[nod], IEC 61499 [Vya11], and Naiad [MMI+13]. The aforementioned systems
are targeted for the IoT domain and cater for workloads varying from simple event-
driven automation to high-throughput Hadoop jobs, but none of them have been built
with the intention to run tight control loops over a dynamic distributed system.

Of the above, Calvin is most similar to Node-RED. However, while Node-RED
emphasises the programming model and graphical tools, Calvin puts more focus on
runtime dynamics and distributed deployment. The perspective of Calvin is well at-
tuned to the presentation of the Distributed Data-flow model in [GBLL15], where a
Distributed-NodeRED (DNR) extension is proposed. A notable operational difference
is that DNR employs duplication to realise mobility while Calvin’s code migration
technique is arguably more efficient and is better suited for computationally intense
applications [GBLL15]. Additionally, in Calvin, an application can be migrated using
various optimisation criteria to provide for instance load balancing or jitter reduction.

Calvin is conceptually structured as follows. The operational units of Calvin are
called actors (nodes in data-flow) while a runtime is an instantiation of the Calvin ap-
plication environment on a device. In the present implementation there is a one-to-one
mapping between Calvin runtimes and compute nodes and are therefore interchange-
ably refer to them simply as nodes. An actors’ input and output messages, are known
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as tokens. A set of actors and their interconnections constitute an application. Each
node independently schedules its resident actors in a round-robin manner.

Actors’ states can be migrated and horizontally scaled across nodes. What consti-
tutes an actors’ state is defined by the developer. The Calvin framework can autonom-
ously migrate and place actors to load-balance nodes and to meet its own performance
goals. However, application owners can specify requirements for actors which tie them
to a preferred runtime. For example, a sensor reading actor can be required to be placed
on the node associated with the physical plant it is observing.

9.3. EVALUATION

In this section, the automatic control application that is the system’s time-sensitive
mission-critical application is presented. The controller is used to evaluate the per-
formance and plausibility of the test-bed. That is, is mission-critical control over the
Fog plausible and does the system exhibit the properties associated with an fog. This
section begins by detailing the application in terms of the software implemented on top
of Calvin and the plant that it controls. To evaluate its performance a set of experiments
are designed to:

1. Reveal the characteristics of the system and the controller by establishing a
baseline observation of the performance and behaviour of the controller over
long time periods.

2. Verify the adaptability of the system by continuously migrating the controller
actor across the system’s nodes, in run-time.

3. Explore operating limits of the system’s nodes and thus their relative advantage
by deploying a well-tuned but computationally demanding and time-sensitive
controller on the system.

In order to observe the system’s performance potential, the study is limited to normal
operating conditions. Notably, the connections to the DCs may at times degrade. It is
assumed that these are infrequent, transient behaviours and do not consider how to
handle them in this work.

9.3.1. CONTROL APPLICATION

A ball and beam process [Vir04] is the plant under control. The control has to be
fast and there are clear limits set by physical constraints, yet enough flexibility for us
to modify conditions to create various operating scenarios.Control is critical in that a
failure may cause an unrecoverable state.

The objective of the ball and beam process is to expediently move to and maintain a
ball on a set location (the set-point) on a beam. The length of the beam is 110 cm. The
controller acts on the beam which is manipulated by a motor. The plant outputs the
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Figure 9.2.: Calvin MPC implementation

angle (α) of the beam and the position of the ball on the beam (x). The control signal,
the input to the plant, is the radial velocity of the beam (ω). Naturally, the further the
ball goes towards the end of the beam the higher the risk that the ball falls off the beam
due to network delays, noisy sensors readings, and other system deficiencies.

An MPC [RM09] is used to implement a controller for the ball and beam. The
application periodically samples the position of the ball and the angle of the beam.
With every sample the MPC interacts with the plant by changing the velocity of the
beam. To figure out what velocity to set the MPC performs a numerical optimisation
where it takes into account a series of actions that will bring the ball into the desired
state. In a primitive and general form this optimisation may be expressed as

minimize
u0,u1,...

T−1

∑
t=0

L(xt ,ut)+φ(xT ) (9.1)

s.t. xt+1 = f (xt ,ut) (9.2)

ut ∈U ,xt ∈ X (9.3)
where L(xt ,ut) in Equation (9.1) is the cost function which puts a value to a state

xt and control input ut at time step t. The function φ(xT ) assigns a different value
specification to the final (or terminal) state xT . The number of time steps T is called the
horizon and specifies how far into the future the controller anticipates control actions.
f (xt ,ut) in Equation (9.2) is the plant model which specifies the dynamics of how
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the system states evolve with the time step t. Equation (9.3) is a set of expressions
which state limitations to the plant inputs and the state space. All of this is defined
to set the operating conditions for the controller. The initial state, x0, is drawn from
measurements and state estimation. The end result is a quadratic program which is
re-evaluated every sample.

For the optimisation, a dynamically linked binary created with the use of QPgen [Gis18]
is used. The implementation is using sampling period of 50 ms (20 Hz). This choice
is a reasonable trade-off between control performance and early observations of the
system’s latencies. Unlike the well known and often used Proportional Integral Deriv-
ative (PID) controller, the execution of an MPC is demanding and the execution time
is not constant. The time it takes to solve its optimisation routine varies with disturb-
ances acting on the system and where within its operating range it is currently acting.
QPgen is an efficient solver and the optimisation problem has few variables, it will be
apparent that the time it takes to find a solution can be considerable. Sometimes there
is no solution or one is very hard to find. In such a case, the search is terminated after
a fixed amount of iterations in the optimiser.

The processor and memory demands of the MPC optimisation may be consider-
able and the many ways of tuning it for various situations make it interesting as an
fog application. A number of controllers can be designed for the same problem where
computational and memory demands are weighted to performance, operational range,
stability regions, and erratic behaviour. To handle the presence of plant and sensory
noise a Kalman filter is introduced. The filter is also used to estimate the speed of the
ball. A simple plant is employed, a basic MPC controller and a standard state estimator
but even this rather simple case allows us to study and demonstrate behaviour in the
experimental platform and the effects on the control.

The Calvin application graph for the MPC control loop is shown in Figure 9.2. The
rounded rectangles represent individual components, implemented as actors, which are
deployed onto the systems. The two Analog to Digital Converter (ADC) sensory actors
adhere to component reuse and the principle idea that they need not be collocated.
However, they are to be read jointly and therefore share a clock tick. The components
within the grey area can be freely placed within the system. The ADCs (the position
and angle sensors) and the Digital to Analog Converter (DAC) (the motor actuator)
have an affinity to the plant-adjacent node.

Note that the scheduling and inter-node communication in the software platform
introduce a significant amount of delay and jitter, which affects the performance of the
controller and cause oscillations. In extension, much can be done in terms of model
and controller tuning, state estimation, delay prediction, system improvements etc., but
in this work the focus is on studying the overall performance of the platform. Remedies
and improvements are left for later work, here the basic system is characterised and do
not focus on details of control performance.

All related software runs on top of Linux and the Calvin runtime is launched using
real-time priority and the POSIX FIFO scheduling policy. The edge nodes are allowed
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Figure 9.3.: Statistical summary of the MPC baseline measurements.

to take full advantage of this as it runs on bare metal. The kernels have not been patched
with the PREEMPT_RT patch set [Fou18].

9.3.2. SYSTEM CHARACTERISTICS

To characterise and verify the basic functionality of the system the MPC is run on each
of the nodes in Section 9.2.2. With each test, the MPC controls the beam for 60 minutes
while alternating the set-point of the ball between the centre position and one side of
the beam. To be robust in this experiment, the set-point is restricted with large margin
to the end of the beam. On the other hand, the further out the ball is moved, the more
the controller is put to work, which is something that is returned to in Section 9.3.4.

Figure 9.3a shows the RTTs from the Raspberry Pi at the plant to the other systems.
Notably the wireless link realised with LuMaMi introduces a latency of 5ms one way,
as made evident by the 10ms RTT between the plant and the edge node. 5G is pushing
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for even faster RTT but this is good radio link performance compared to commercially
available alternatives.

Figure 9.3b shows the MPC execution time. A simple scenario is chosen where all
nodes can execute the MPC with a significant margin. However, clearly, the Raspberry
Pi at the plant is many times slower than the other systems. The AWS node is faster
than edge and ERDC which is to be expected by the specification in 9.2.2. That graph
shows that there are large outliers in terms of execution time at the plant. Even though
the process is executed in real-time modem, recurrent extended system interruptions to
the MPC on the Raspberry Pi are present. This could be the cause of these outliers. On
the DCs real-time properties are not expected to apply outside the virtual machine and
can therefore expect some outliers. Due to the short execution times, they are expected
to be unlikely.

Figure 9.3c shows the aggregate latency from reading the position of the ball to ap-
plying the control signal (i.e. adjusting the velocity of the beam). This is an important
measure because the controller is designed with the assumption that the input to out-
put is instantaneous and hence, that the state of the system has not changed when the
control signal is applied. That figures shows that the differences in delay are not as
pronounced as in Figure 9.3a. The execution times in Figure 9.3b and the network
latency in Figure 9.3a are not the only contributors to the control latency. This tells us
that a significant proportion of the delay in the system is introduced by the software
platform or application design and not the network. The system dynamics causing the
increasing variance in Figure 9.3c is also an interesting topic for further research. The
effect on the process due to these properties are visualised in Figure 9.3d where it can
be seen that the energy of the control signal u increases the further the process moves
from the plant. Notice that the AWS node performs well but network delays causes it
to exhibit a larger mean and variance in the control signal. Such an effect can be part
of the heuristics when deciding where to place control in the edge cloud.

9.3.3. SYSTEM ADAPTABILITY

At this point it is established that a controller can successfully be implemented on the
edge cloud test-bed and studied characteristics in terms of execution times, latencies
and jitter. Essential to the mutability of the system is its ability to migrate applications
and actors to respond to the applications’ and the infrastructure’s changing object-
ives. During a migration the Calvin cluster performs the necessary modification of the
network communication path, recreates the actor at the target node, copies state and
handles the transition of token queues. Although the actor moves point-to-point, chan-
ging the communication paths may involve many nodes in the cluster. This perspective
is now explored by way of relocating the MPC amongst the nodes while balancing and
repositioning the ball as in Section 9.3.2.

In Figure 9.4 the MPC actor is continuously randomly migrated across the four com-
pute nodes, in run-time. When doing this, the system must ensure to keep the Kalman
filter, the set-point, the previous states, and tracing meta data intact. Delays, data loss
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or duplication, and incorrect state transfer negatively impacts the control performance.
Figure 9.4c shows the placement of the actor in time. Figure 9.4b and Figure 9.4a show
the controller inputs and outputs respectively.

Figure 9.4b shows that the process is stable and is able to operate without inter-
ruptions. The ball stays on the beam and close to the desired position. Figure 9.4a
confirms what is presented in Figure 9.3d, i.e., the control signal increases as a func-
tion of the distance to the plant. Set-point changes are clearly visible has high peaks
but the migrations in Figure 9.4c are not evident in Figure 9.4a nor Figure 9.4b. How-
ever, the peak in the control signal near the set-point change after 650 seconds is likely
caused by a coinciding migration. In its current form, the system is not aware of when
or to where a migration will occur nor is there any effort to attempted to mitigate its
potential effects.
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9.3.4. TIGHTENED CONSTRAINTS

Below is an example use case that demonstrates how the controller takes advantage
of the fog. Here, relative to the previous example, the control signal to the plant is
constrained. Albeit being a synthetic exercise, it is not an unreasonable action since
limits in control signal are commonly used to, for instance, reduce actuator wear and
to avoid non-linear parts of the operating range. To make the associated optimisation
problem harder the ball is moved just short of the end of the beam. In combination with
the constraints this will cause a higher load on the MPC host node. Small disturbances
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may cause the ball to fall off.
The experiment shown in Figure 9.5 applies this configuration. The graphs show

time series of the inputs to the controller, the execution time of the MPC, and the total
latency from input to output of the measured nodes. The blue circles mark occasions
when the MPC fails to find a solution.

As constraints are tightened it becomes increasingly hard to find a control signal
sequence which moves the system from the present state to the target state, while stay-
ing within the bounds. This manifests in longer execution times for the optimisation.
As seen in the execution times in Figure 9.5, when the system has settled around a
set-point, the optimisation is easy to solve and computationally light. In these situ-
ations the controller on the plant performs well. Latency and jitter of the networked
controllers may cause them to deviate more from the set-point.

Eventually however, the computational limitations of the plant cause the ball to falls
off the beam as a set-point change occurs. Note that the plant is not unable to move
the ball to the position at the end of the beam but eventually, model errors and noise
become too large for it to handle. In contrast, the edge node is able to operate without
failure. Also note that on the AWS instance, despite its computational capacity, the
controller fails to cope with the resulting latency and system jitter - the ball falls off.

The execution time at the plant when the MPC fails to find a feasible solution, is
close to an order of magnitude that of the sampling time, represented by a line which
extends well beyond the top of the graph. This is representative of the computational
problems experienced at the plant due to noise during a set-point change. In contrast,
an equal number of iterations consumes 80 ms on the edge node and only 40 ms on the
AWS.

With the position closer to the end of the beam and with reduced range in the control
output signal, the controller repeatedly experiences non-trivial situations which require
additional iterations of the optimisation loop. At times, noisy readings make a tough
situation even worse and there may seemingly be no solution that keeps the ball on the
beam. When a new evaluation can be made quickly enough then the state of the system
may still be such that the ball can be saved. On the AWS node the communication
delays increase the frequency of these tough situations and as a result there are repeated
problems of finding a solution. However, the speed of the AWS node allows it to cope
with many of these situations since the combined execution and communication delay
is much less than the compute time at the plant. Only the edge node is in a position
where it is able to handle the full range of the system noise.

9.4. CONCLUSIONS

In this chapter, a Fog computing research test-bed for an IoT and heterogeneous cloud
environment was presented. The test-bed deployed an automatic control application
on the test-bed to act on a time-sensitive and mission-critical process. The control-
ler’s viability, performance, and system characteristics were evaluated. The evaluation
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Figure 9.5.: Time-series of experiments run with tightened constraints on the
plant, egde, and AWS nodes.

shows that cloud native control loops can viably be deployed on the edge cloud. The
system operates at a sampling rate of 20 Hz but there is potential for this to be pushed
further in the near future. It was also shown that the controller can benefit from the
edge cloud and that the system and the placement of the controller can be dynamically
reconfigured in run-time without strictly sacrificing stability.

To further improve the software platform, there remain work to be done on actor
scheduling, overheads of message passing, and synchronisation of such a tightly con-
nected system in an inherently uncertain cloud environment. With improvements, the
requirements on the application can be increased and the system to move towards
anticipated future applications which require such a system to be user friendly, self-
adaptive, resilient, high performing, and deliver low latency and low jitter.

Importantly, it can be conclude that the test-bed is observable which enables us to
continuously operate mission-critical applications while performing targeted experi-
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ments. The test-bes is now in such a state that allows broad experimental research of
the interplay between the application and the underlying platform. Continuations to
the work targets novel and established techniques within the fields of control theory,
distributed systems, and software engineering.

The project source code is available on GitHub [ST18].
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