LUND UNIVERSITY

A plan for building renaming support for Modelica

Hedin, Gorel; Akesson, Johan; Séderberg, Emma

2009

Link to publication

Citation for published version (APA):
Hedin, G., Akesson, J., & Soderberg, E. (2009). A plan for building renaming support for Modelica. Paper
presented at WRT'09: 3rd ACM Workshop on Refactoring Tools.

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/82cfa51c-92c2-46d1-a8d3-ca5dd545be20

A Plan for Building Renaming Support for Modelica

Gorel Hedin

Dept. of Computer Science, Lund University

Emma Nilsson-Nyman

(gorel /emma)@cs.Ith.se

Abstract

We discuss our current work on building an IDE for Mod-
elica, and how we intend to support renaming. Our current
implementation of the compiler and the name completion
support is done using reference attribute grammars, imple-
mented in the JastAdd metacompilation system. For renam-
ing we plan to follow the approach of inverse lookups, devel-
oped by Schifer, Ekman, and de Moor. Modelica has chal-
lenging naming semantics, providing a good test for this ap-
proach.

1. Introduction

The successful development of extended and new program-
ming languages is currently hampered by the high cost of
tool building. Developers are accustomed to the integrated
development environments (IDEs) that exist for general-
purpose languages, and demand the same services for new
and experimental languages. We are working on lowering
the cost for building IDEs by making use of declarative com-
piler technology. More specifically, we are using reference
attribute grammars [7] as implemented in the JastAdd sys-
tem [8, 4], and shown to work for full languages like Java
[5]. This way of building compilers allows tools like IDEs
to make use of computations defined by the compiler, and
to extend those computations to fit the needs of the tools.
In particular, the semantic services of an IDE, i.e., services
that make use of various static program analyses, can bene-
fit from this approach. Examples include cross-referencing
[10], name completion [6], and renaming [12].

We are in the process of building several IDEs using this
approach, and one of our case studies is an IDE for the
language Modelica [1]. Modelica is a language for mod-
elling physical systems by means of differential equations.
It makes use of classes and inheritance for modularizing
knowledge and has substantial standard libraries for differ-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

3rd Workshop on Refactoring Tools '09 Oct. 26, 2009, Orlando, FL

Copyright © 2009 ACM 978-1-60558-909-1. .. $10.00

Johan Akesson

Dept. of Automatic Control, Lund University
jakesson@control.lth.se

ent engineering fields, for example, electrical engineering,
chemical engineering, mechanical engineering, etc. Also,
embedded control systems modeling is supported. While
having many similarities to general-purpose object-oriented
languages like Java and C++, it also differs in many ways.
For example, it has no runtime semantics. Instead, Model-
ica programs are used for analysis of physical models, using
time simulation of the differential equations.

Modelica is primarily used to construct detailed mathe-
matical models of the physical behavior of products or pro-
cesses. Typically, such models are large, commonly in the
range of 10,000 to 100,000 equations and variables. The
Modelica language emerged as a result of the need to ef-
ficiently manage such models while at the same time pro-
mote model reuse and standardized model exchange. Once
a model has been constructed, virtual experiments can be
performed where the properties of the modeled system are
assessed. This approach is referred to as model-based engi-
neering. One of the main benefits of model-based engineer-
ing is that it enables engineers to explore system behavior
early in the design process, even prior to construction of the
product. While virtual experiments do not replace field tests,
they can help reducing the need for expensive real world test-
ing. Also, models enable design activities to be performed in
parallel; a model of a physical plant can be used as a basis
for developing a control system, while at the same time the
real product is constructed. This methodology is used exten-
sively, e.g., in the car industry.

Modelica has some specific language constructs that are
challenging for name analysis, and thereby also for build-
ing semantic services like refactoring support. In addition
to structural subtyping, multiple inheritance, and unlimited
nesting of classes, it has a feature for redeclaring types, a
construct somewhat similar to generic types.

Our work is done in the JModelica.org project on creating
open-source extensible tools for Modelica [11]. Concerning
semantic services, the JModelica.org IDE so far supports ba-
sic name completion, and the next step will be to build basic
refactoring support, focusing on renaming. We plan to use
the renaming approach based on inverse lookups, developed
by Schifer, Ekman, and de Moor [12], but adapted to the
specific constructs of Modelica.

File Edit Navigate Search Project Run Window Help

(v L& | Qv | B 4 halh e

v(g

=0 [bikeExample.mo &2

model Bike
Wheel frontwheel;
Wheel backwheel;
end Bike;

[y Project Explor %

B & v

< 12 Example
P [bikeExample.mo
b [testmo model Wheel
replaceable Brake brake;
end Wheel;

model Brake
end Brake;

model DiscBrake extends Brake;
Real discTemp;
end DiscBrake;

model DrumBrake extends Brake;
end DrumBrake;

model MyBike extends Bike

=1 | M Modelica|

= 0 | 5= outline & . M Instance Outline| = 8

A

< () model Bike
@ backwheel : Wheel
© frontwheel : Wheel
(O model Brake
v () model DiscBrake
@ discTemp : Real
@ model DrumBrake
@ model MyBike
< (@ model Wheel
@ brake : Brake

(frontwheel (redeclare DiscBrake brake),
backwheel(redeclare DrumBrake brake));
equation
assert(frontwheel.brake.discTemp > 368,
"Alarm: front wheel temperature too high");

end MyBike;

[<]

e Writable

Smart Insert 26:6

Figure 1. A Modelica example in the JModelica IDE

The rest of this position paper is structured as follows:
In Section 2 we discuss name analysis for Modelica, and
how the redeclare construct is handled, showing examples
from our current Modelica IDE. In Section 3 we outline how
we intend to adapt the inverse lookup approach to support
renaming for Modelica. Section 4, finally, gives a few con-
cluding remarks.

2. Name analysis in the JModelica IDE

Fig. 1 shows a screenshot from our IDE with some example
Modelica classes, called models in Modelica.

In Modelica, a class can have components, which are
compile-time instances of other Modelica classes. For ex-
ample, the class Bike has two components of class Wheel.
When declaring a component, its class may be modified by
redeclaring certain internal components by more specific
types. For example, the Wheel has a component brake of
a replaceable type Brake. When declaring a Bike com-
ponent, or a subtype like MyBike in the example, we can

redeclare the brake component of its wheels to have a
more specific type. In the example, we define the front
wheel to have a DiscBrake and the back wheel to have
a DrumBrake. This is similar to covariant generics in
general-purpose languages, but does not bring about the
same kinds of assignment compatibility issues, see e.g., [9],
since components in Modelica are compile-time instances.

In class MyBike, an equation has been added which
accesses the temperature of the front wheel’s brake disc,
in order to set an alarm when the temperature is too high.
Note that while the brake of a Wheel is declared as a
Brake, MyBike can treat it as a DiscBrake because of
the redeclaration, and access the discTemp component.

To perform name analysis, consider finding the declara-
tion of the discTemp in the expression

frontwheel.brake.discTemp

To do this, the redeclaration of the frontwheel brake needs
to be taken into account. In the JModelica compiler, a com-

Source

\
~-=<

--

-

1
o _/\,/,L<\ ==
«” DiscBrake L Wheel) Wheel)
_ | o Wheel)] B
1

s T

,—'_7'_“1/’»‘ LY /’7‘\\

«__DrumBrake, ', Brake) ¢ Brake J
= i

\

(v&ﬁe;lj)
-
(Brake) -
.

frontwheel.brake I

nstance type

Figure 2. Structure of expanded AST, the source subtree
to the left (white nodes) and the instance subtree to the right
(grey nodes). Dashed lines indicate on-demand expansion of
the AST, dashed nodes are unexpanded nodes. The instance
node for MyBike has been expanded. The thick arrow points
out the instance type of frontwheel.brake in MyBike.

ponent instance tree is built during compilation to simplify
this problem. The abstract syntax tree (AST) is extended at
compilation time with a component instance tree whose up-
per part is isomorphic to the class structure of the source
code, and with lower subtrees corresponding to the unfolded
component structure of those classes. See Fig. 2.

The instance AST is introduced mainly to handle mod-
ification environments, which consist of an ordered set of
modification constructs, including redeclares as seen in the
example code in Fig. 1. When a class is instantiated, a cor-
responding modification environment must be considered
in order to take potential redeclarations into account. No-
tice also that the same class may be instantiated in sev-
eral locations in different environments. Within the instance
tree, modification environments are represented explicitly,
which gives a transparent and efficient implementation. An
instance node does not contain a complete copy of the cor-
responding source class, but only sufficient information for
allowing name analysis. A link back to the source class is
used for accessing information that is the same for all in-
stances. See [2] for details on the construction of instance
trees.

As an example, to perform name analysis inside MyBike,
the AST will be expanded with an instance of MyBike,
which in turn will contain instances of frontwheel and
backwheel that have brake instances of the correct types
(DiscBrake and DrumBrake). This allows the declara-
tion of discTemp to be found from within MyBike. The
instantiation tree is also used to compute name completion
menus in the IDE.

3. Renaming in JModelica

Name analysis is implemented in the JModelica compiler us-
ing reference attribute grammars, applying the lookup tech-
nique developed for the JastAddJ Java compiler [3]. In this
technique, each identifier access has an attribute that refers to
the appropriate declaration. To define that attribute, param-
eterized lookup attributes are used that delegate the name
analysis computation, for example, from local method, to
class, to superclass, etc. In the JModelica compiler, the same
general technique is applied to fit the particular constructs in
Modelica and it is adapted to perform the lookup in the in-
stance AST rather than in the source AST in order to handle
redeclares.

To support renaming for Modelica, we plan to apply the
inverse lookup technique, introduced by Schifer, Ekman and
de Moor [12]. This is a general technique for renaming,
that extends the above mentioned lookup technique for name
analysis. The key idea is to define access attributes that invert
the lookup attribute. More precisely, for a program position
p in the AST, the lookup attribute can be seen as a partial
function from access to declaration:

lookupy, : access — decl
The inverse of this relation, or the access computation, is:
accessy : decl — access

where access,, should be defined in such a way that the
following correctness condition holds, for any position p and
declaration d, and provided that access,(d) is defined:

lookup,(access,(d)) =d

This technique supports more general renaming than
most other refactoring tools, in that accesses can be replaced
by accesses with another syntactic structure. For example,
renaming a field from x to y could cause a simple access
x to be replaced by a qualified access this.y, to avoid a
name conflict with a local argument named y.

To find endangered accesses when a declaration has been
renamed from x to y, the technique used in [12] is to traverse
the entire AST, and treat all simple accesses of x and y as
potential candidates. This simple technique is reported to
perform well in practice.

In applying this technique to our JModelica IDE, we will
need to define inverse lookup functions that take the Model-
ica language constructs into account. Examples of relevant
differences from Java include Modelica’s use of structural
subtyping, multiple inheritance, and the redeclaration fea-
ture. The JModelica compiler already includes name analy-
sis support, i.e., lookup attributes, that take these constructs
into account. We expect that the definition of the inverse
lookup functions will be possible to develop in a similar way.
As a first step, we will only support simple name changes
of accesses, like in standard refactoring tools. We will then

investigate how to handle replacing simple accesses by qual-
ified ones, to make full use of the approach.

Even if the name analysis is performed in the instance
AST, it will be important to do the computation of endan-
gered accesses in the source AST. This is because the in-
stance tree can potentially be extremely large, containing un-
folded components of all classes, including those in libraries.
For compilation, the size of the instance tree is not a prob-
lem because it is built on demand, and only the parts actu-
ally needed for name analysis will be expanded. To limit the
traversal to the source AST, we will need to add reference
attributes that link each component or class in the source
AST to the corresponding instance in the instance AST.
Because of the compile-time instantiation, these points are
well-defined. The compiler already contains reverse links,
linking each instance back to its corresponding position in
the source AST.

4. Concluding remarks

We are building JModelica, an open-source compiler and
IDE for the language Modelica. In this position paper we
have sketched how we intend to extend the IDE with re-
naming support. A key challenge when implementing se-
mantic services for Modelica is to handle the complex name
analysis rules including structural subtyping, multiple inher-
itance, and type redeclaration. In the JModelica compiler we
have solved this by performing name analysis in an instance
tree, containing a compile-time unfolding of the program.
The name analysis is implemented using reference attribute
grammars, adapting a lookup attribute technique previously
developed for Java. To implement renaming, we will follow
the ideas presented in [12], extending the lookup attributes
with inverse attributes that compute new accesses. By ap-
plying this technique to a challenging and fairly different
language than Java, we expect to experimentally confirm
the generality of this approach to renaming. Further work
includes additional refactoring support, and including such
support in a toolkit for building IDEs for new and extended
languages.

Acknowledgments

We are grateful to our master’s students Jesper Mattsson
and Philip Nilsson for their implementation work on the
JModelica IDE.

References
[1] The Modelica Association, 2009. http://www.modelica.org.

[2]1 J. Akesson, T. Ekman, and G. Hedin. Implementa-
tion of a modelica compiler using jastadd attribute gram-
mars. Science of Computer Programming, July 2009.
doi:10.1016/j.s¢ico0.2009.07.003.

[3] T. Ekman and G. Hedin. Modular name analysis for Java using
JastAdd. In Generative and Transformational Techniques in

Software Engineering, International Summer School, GTTSE
2005, volume 4143 of LNCS. Springer, 2006.

[4] T. Ekman and G. Hedin. The jastadd system - modular exten-
sible compiler construction. Science of Computer Program-
ming, 69(1-3):14-26, 2007.

[5] T. Ekman and G. Hedin. The Jastadd Extensible Java Com-
piler. In OOPSLA 2007, pages 1-18. ACM, 2007.

[6] G. Hedin. Context-Sensitive Editing in Orm. In K. S. et al.,
editor, Proceedings of the Nordic Workshop on Programming
Environment Research, Tampere University of Technology.
Software Systems Lab. TR 14., 1992.

[7] G. Hedin. Reference Attributed Grammars. In Informatica
(Slovenia), 24(3), pages 301-317, 2000.

[8] G. Hedin and E. Magnusson. JastAdd: an aspect-oriented
compiler construction system. Science of Computer Program-
ming, 47(1):37-58, 2003.

[9] O. L. Madsen, B. Magnusson, and B. Mgller-Pedersen. Strong
typing of object-oriented languages revisited. In OOPSLA/E-
COOP, pages 140-150, 1990.

[10] E. Magnusson, T. Ekman, and G. Hedin. Demand-driven eval-
uation of collection attributes. Automated Software Engineer-
ing, 16(2):291-322, 2009.

[11] Modelon AB. JModelica Home Page, 2009.
http://www.jmodelica.org.

[12] M. Schifer, T. Ekman, and O. de Moor. Sound and Extensible
Renaming for Java. In G. Kiczales, editor, 23rd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2008). ACM
Press, 2008.

