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Popular summary in English

Opver the last century, mankind has experienced an unparalleled technological revolution.
This revolution has been particularly noticable in the fields of electronics and information
technology, where we today take computers, mobile phones, the internet and other tele-
communications for granted in our daily lives. Much of the technological development has
been made possible thanks to basic research in the fields of physics and electronics during
the 19th and 20th centuries, which has given us an increased understanding of fundamental
phenomena such as electromagnetism as well as new inventions, such as the transistor. But
as much as basic research has paved the way for new technology, the technological evolution
has also paved the way for new research possibilities. Thanks to new technology, it is today
possible to control and manipulate components on increasingly smaller length scales in a
way that yesterday’s physicists could only dream of. This allows us to explore completely
new regimes with exciting, novel physics in so-called nanoscale systems, small components
where the dimensions may be as small as a millionth of a millimeter.

The physics of nanoscale systems differs significantly from our daily, macroscopic world.
Single particles, such as electrons and photons, typically play a crucial role for the func-
tionality of these systems, whether it is a nanoscale transistor or a nanoscale engine. New
phenomena arise that we normally do not observe in our daily lives. This includes, among
other things, so-called quantum effects and the increasing importance of fluctuations and
surface physics as the dimensions are scaled down. In this thesis, we treat two particular
phenomena which are both present in nanosystems: quantum correlations and temperature
fluctuations.

Quantum correlations are correlations that arise between particles which are quantum en-
tangled, i.e., their states (e.g., position, momentum or spin) cannot be described inde-
pendently of each other, despite full knowledge about the system as a whole. The prime
example of an entangled state is the singlet state of two spins. In that case, the total spin is
zero, i.e., the spins must be pointing in opposite directions. However, which spin is point-
ing in which direction is undefined; they are both in a quantum mechanical superposition
between up and down along any arbitrary measurement axis, at least until a measurement
is performed.

The presence of quantum correlations between entangled particles in quantum physics was
first highlighted in the mid-1930s. Their actual existence was first questioned since they
violate a fundamental physical principle called local realism in classical physics. But dur-
ing the second half of the 20th century, experiments confirmed their existence and with
the advent of quantum information theory during the 1980s, quantum correlations and
quantum entanglement came to emerge as indispensable resources for quantum computers.
Quantum computers are computers taking advantage of quantum effects to perform more
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efficient algorithms than classical computers. Many algorithms which are meant to be used
in quantum computers are based on the access to quantum entangled particles which dis-
play quantum correlations. It is therefore a neccessity to be able to generate and detect
quantum entanglement to build quantum computers.

In principle any particles may be entangled. The main problem, though, is that entan-
glement is a very fragile resource, that is easily lost as the entangled particles interact with
other particles in their surrounding, a process called decoherence. Electrons, which would
be the natural choice given their role in conventional electronics, are unfortunately par-
ticularly exposed to decoherence. The main reason is that they are charged, making them
interact strongly with their environment. In this thesis, we propose a way of generating
and detecting electrons on a time scale much shorter than the time scale on which the
interaction with the environment destroys the entanglement. The idea is to use so-called
cotunneling processes to both generate and detect the entanglement between pairs of elec-
trons. These processes take place on the picosecond time scale, much shorter than the
nanosecond time scale on which the decoherence destroys the entanglement. We also in-
vestigate how the detection of entanglement can be made simpler in nanoscale systems.
Conventional methods require many complicated measurements, but it turns out that by
using so-called entanglement witnesses it is actually possible to detect entanglement with
much fewer measurements.

The second topic treated in this thesis concerns temperature fluctuations. Fluctuations, i.e.,
deviations from the mean value of a certain quantity, become more and more important as
the system size of a physical system decreases. In small systems, such as nanoscale systems,
it is therefore crucial to take into account the noise in, for instance, temperature and heat to
describe the physics correctly. Quantum thermodynamics is the field of physics describing
heat transport in small, quantum mechanical systems where those fluctuations play an im-
portant role. There are many promising applications within this field, such as heat engines
which may generate electricity out of heat with high efficiencies.

In this thesis, we specifically consider the possibilities of utilizing temperature fluctuations
to detect single particles, such as photons or electrons, in nanoscale systems. By coupling
a superconductor to a small piece of metal, we may detect electrons that are transferred
between the superconductor and the metal piece using the temperature fluctuations in-
duced in the metal. This method, called quantum calorimetry, would, hopefully, in the
future facilitate new investigations of quantum thermodynamical phenomena in nanoscale
systems. A concrete example of such a phenomenon is emissions of photons from a mi-
crowave cavity, which is discussed in the fifth paper of this thesis.

Overall this thesis aims at contributing to an increasing understanding for quantum cor-
relations and temperature fluctuations in nanoscale systems.
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Populirvetenskaplig sammanfattning pa svenska

Det senaste arhundradet har minskligheten upplevt en teknologisk revolution som sak-
nar motstycke i historien. Denna utveckling har varit sirskilt tydlig pd elektronik- och
informationsteknik-omradet, ddr vi idag tar datorer, mobiler, internet och annan telekom-
munikation for givet i vara dagliga liv. Mycket av den tekniska utvecklingen har majliggjorts
tack vare grundforskning pa fysik- och elektronikomradet under 1800- och 19oo-talet, vilket
har gett oss bland annat 6kad forstéelse for grundliggande fenomen sasom elektromagne-
tism och uppfinningar som till exempel transistorn. Men lika mycket som grundforskning
har banat vigen for ny teknologi, har den teknologiska utvecklingen ocksa banat vigen for
ny grundforskning. Tack vare ny teknik 4r det idag méjligt att kontrollera och manipule-
ra komponenter pd allt mindre lingdskalor pa ett sitt som girdagens fysiker bara kunde
drdmma om. Detta tilldter oss att utforska helt nya fysikaliska regimer med ny spinnande
fysik i sa kallade nanosystem, som bestir av komponenter dir dimensionerna kan vara sa
sma som en miljondels av en millimeter.

Fysiken i nanosystem skiljer sig markant fran var vardagliga, makroskopiska virld. Enskilda
partiklar, sdsom elektroner och fotoner, spelar typiske sett en avgorande roll for funktio-
naliteten hos nanosystem, oavsett om det handlar om en transistor eller en liten motor pa
nanoskala. Nya fenomen uppkommer ocksd som vi normalt inte mirker av i vir vardagliga
virld. Det handlar bland annat om si kallade kvanteftekter och den 6kade betydelsen av
flukcuationer och ytfysik i takt med att dimensionerna skalas ner. I den hir avhandlingen
behandlar vi sirskilt tvd fenomen som bada ir forekommande i nanosystem: kvantkorrela-
tioner och temperaturfluktuationer.

Kvantkorrelationer ir korrelationer som uppkommer mellan partiklar som ir kvantsam-
manflitade, vilket innebir att deras tillstand (t.ex. position, rorelsemingd eller spinn) inte
kan beskrivas oberoende av varandra, trots full kunskap om systemet i sin helhet. Ett typex-
empel pd ett sammanflitat tillstdnd ir singlett-tillstdndet f6r tva spinn. Det totala spinnet
ar i det fallet noll, vilket innebir att spinnen méste vara motriktade. Exakt vilket spinn
som pekar at vilket hall 4r ddremot inte vildefinierat; de befinner sig bada i en kvantme-
kanisk superposition mellan de tva méjliga riktningarna lings med en godtycklig mitaxel,
dtminstone tills en mitning utfors.

Forekomsten av kvantkorrelationer mellan sammanflitade partiklar inom kvantfysiken upp-
mirksammades f6r férsta gangen i mitten av 1930-talet. Deras faktiska existens ifragasattes
eftersom de bryter mot en grundlidggande fysikalisk princip som inom klassisk fysik kallas
lokal realism. Men under 1900-talets senare del pavisades deras existens genom experiment
och sedan uppkomsten av kvantinformationsomridet pa 198o-talet har kvantkorrelationer
och kvantsammanflitning kommit att utvecklas till en oumbirlig resurs f6r kvantdatorer.
Kvantdatorer r datorer som drar nytta av kvanteffekter for att kunna utféra mer effektiva
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algoritmer dn klassiska datorer. Manga algoritmer som ir tinkta att koras pa kvantdatorer
bygger pa tillgingen av just kvantsammanflitade partiklar som kan uppvisa kvantkorrela-
tioner. Det dr dédrfor helt avgorande att kunna generera och detektera kvantsammanflitning
for att kunna bygga fungerande kvantdatorer.

I princip kan vilka partiklar som helst sammanflitas. Huvudproblemet ir dock att kvant-
sammanflitning dr en mycket skor resurs, som litt forloras om de sammanflitade partiklar-
na interagerar med andra partiklar i sin omgivning, en process som kallas for dekoherens.
Elektroner, som vore det naturliga valet att anvinda med tanke pd deras roll i konventionell
elektronik, ar dessvirre sirskilt utsatta for dekoherens. Detta beror frimst pd deras laddning,
som gor att de interagerar starkt med sin omgivning. I den hir avhandlingen foreslar vi ett
stt att generera och detektera sammanflitade elektroner pa en tidsskala mycket kortare dn
den tidsskala pa vilken omgivningen f6rstér sammanflatningen. Idén ér att anvinda si kal-
lade kotunnlingsprocesser for att bade generera och detektera sammanflatning mellan par
av elektroner. Eftersom dessa processer dger rum pa pikosekundskalan sa dr de tillrackligt
snabba for att inte utsittas for dekoherens frin omgivningen. I avhandlingen undersoker
vi dven hur man kan underlitta detektionen av sammanflitning i kvantsystem. Konven-
tionella metoder kriver méinga komplicerade mitningar, men det visar sig att genom att
anvinda sig av si kallade sammanflitningsvittnen kan man detektera sammanflitning med
betydligt firre mitningar.

Det andra amnet som behandlas i den hir avhandlingen rér temperaturfluktuationer. Fluk-
tuationer, det vill sidga avvikelser frin medelvirdet for en viss storhet, fir i allminhet en
stdrre och storre betydelse ju mindre ett system ér. I smd system, sdsom nanosystem, méste
man darfor ta hinsyn till brus i till exempel temperatur och virme for att erhilla en kor-
reke fysikalisk beskrivning. Kvanttermodynamik ar det omrade inom fysiken som beskriver
virmetransport i sma, kvantmekaniska system dir just fluktuationer spelar en viktig roll.
Det finns manga lovande tillimpningar inom detta omrade, exempelvis nya virmemotorer
som kan alstra el frin virme med en hog verkningsgrad.

I den hir avhandlingen tittar vi sdrskilt pA méjligheterna att anvinda temperaturfluktuatio-
ner till att detektera enstaka partiklar, till exempel fotoner eller elektroner, i nanosystem.
Genom att koppla en supraledare till en liten metallbit, kan vi detektera elektroner som
overfors mellan supraledaren och metallbiten med hjilp av de temperaturfluktuationer som
uppkommer i metallbiten. Denna metod, som kallas kvantkalorimetri, banar ocksd vigen
for att studera andra kvanttermodynamiska fenomen. Exempelvis undersoker vi emissionen
av fotoner frin en mikrovagskavitet i det femte pappret i avhandlingen.

Allt som allt syftar denna avhandling till att bidra med 6kad férstéelse och kade kunskaper
om kvantkorrelationer och temperaturfluktuationer i nanosystem.






Part I

Background and Theory






Chapter 1

Introduction

This thesis takes its starting point in nanoscale systems, objects with at least one dimension
in the nanometer range (1 — 100 nm) [1]. Being somewhere on the borderland between
the macroscopic world and the domain of single atoms, these systems may display physical
phenomena that are drastically different from the ones we are used to in our daily lives. The
perhaps most astonishing ones are quantum effects, non-classical features originating from
the wave properties of single particles, e.g., electrons and photons. Other key phenomena
include the increasing importance of fluctuations and surface effects as physical dimensions
are scaled down.

Besides fundamental aspects, the prospects of utilizing nanoscale phenomena for novel ap-
plications, such as quantum computers [2] or quantum heat engines [3], have stimulated a
tremendous amount of research in the field of nanophysics over the last few decades, includ-
ing the work of this thesis. Here we address two topics both related to nanoscale transport
of either particles or heat. The first topic concerns quantum entanglement and quantum
correlations, or more specifically, how to generate, separate and detect entangled electrons
in solid-state systems. The second topic concerns quantum thermodynamics and temperat-
ure fluctuations, in particular single-particle heat transport and how to utilize temperature
fluctuations for nanoscale quantum calorimetry.

Common for all the systems considered in this thesis is that they are weakly coupled to their
environment (consisting of one or several reservoirs). This allows us to employ a formalism
based on density matrices and master equations, important concepts of this thesis which are
to be introduced in Ch. 2. Master equations may incorporate both quantum effects, such
as coherences, and interactions with the environment, such as decoherence and relaxation.

Below we give a brief overview of the two main topics of this thesis; a more extensive
introduction is found in the following chapters.



1.1 Quantum entanglement and quantum correlations

The first topic of this thesis deals with entanglement and quantum correlations. Entan-
glement is a phenomenon that arises when two or more particles are correlated in such a
way that their individual quantum states cannot be described independently. Displaying
so-called quantum correlations that classical physics cannot account for, entanglement was
originally highlighted in 1935 for its violation of the classical notion of local realism [4, s].
Einstein, Podolsky and Rosen questioned [4] whether entanglement was a real physical
effect, sparking a decades-long debate on the matter only to be settled by Bell [s] in the
1960s. By contrast, Schrodinger described it as not just one — but #he — characteristic trait
of quantum mechanics [6]. Even so, it was not until the 1980s and 1990s, with the advent
of quantum information theory, that the real power of entanglement was fully understood.
Entanglement then came to emerge as an indispensable resource for many quantum inform-
ation and quantum computing applications [2]. For instance, several quantum information
protocols, such as superdense coding [7], quantum teleportation [8] and quantum crypto-
graphy [9], were developed entirely relying on the properties of entangled states. Further-
more, it was realized that entanglement allows for any quantum gate to be implemented
using only single qubit gates [10]. In other words, entanglement is today considered as not
only a peculiar quantum phenomenon, but an indispensable resource for quantum inform-
ation processing. It is thus highly desirable to be able to generate, manipulate and detect
entangled states in a controllable way.

Despite an enormous amount of research over the last decades, the development of quantum
computing is yet in its infancy. In particular, there is still no concensus about what degree(s)
of freedom to use for encoding quantum information in quantum computers. Polarized en-
tangled photons have been widely used in quantum optics to demonstrate various quantum
information protocols [2]. They are easy to separate coherently over long distances, mak-
ing them particularly suitable for quantum communication [11, 12]. However, they are
difficult to entangle and do not provide scalable qubits. For quantum computing, other
kinds of degrees of freedom have therefore been developed or proposed, including ion traps
[13], superconducting qubits [14] and topological qubits [15]. A single electron is in many
regards the ultimate qubit due to its smallness and the prospects of scalability and com-
patibility with conventional electronics. Today’s electronics already provides good ways of
controlling, manipulating and detecting electrons [2]. The electronic degree of freedom
includes both the spin degree of freedom [16, 17] — a natural two-level system — and orbital
degrees of freedom [18, 19], for instance charge states in quantum dots [20—23] and edge
channels [24—26] in quantum Hall systems.

Unfortunately, electronic entanglement is impaired by its own challenges and in this thesis
we will address two of them. The first one is the strong interactions with the environment
that lead to short decoherence times, swiftly killing any entanglement. This is a particularly



pronounced effect for orbitally entangled electrons, whose decoherence times, due to severe
susceptibility to environment-induced charge noise, are typically of the order of merely a
few nanoseconds [27-30]. This difficulty may, however, be coped with if the entanglement
can be generated and detected on an even shorter time scale; in Paper I we propose such a
setup utilizing cotunneling electrons in quantum dots on the picosecond time scale.

The second main challenge addressed in this thesis is related to the detection of electronic
entanglement. Entanglement detection is highly challenging as it is difficult, in a solid-
state environment, to read out the state of single electrons along an arbitrary measurement
axis, especially for spin entanglement. Using so-called entanglement witnesses [31-34], we
show in Paper II that the number of measurements required for solid-state entanglement
detection may be substantially reduced compared to conventional methods, paving the way
for experimentally more feasible entanglement detection schemes for solid-state systems.
The theory underpinning Papers I and II is further discussed in Ch. 3.

1.2 Quantum thermodynamics and temperature fluctuations

The second topic of this thesis deals with quantum thermodynamics. More specifically, we
consider heat transport and temperature fluctuations in nanoscale systems.

Classical thermodynamics is the field of physics dealing with heat and other forms of en-
ergy in typically large, macroscopic close-to-equilibrium systems, where fluctuations and
quantum effects do not play an important role [35]. Its underlying, often astonishingly
simple, statistical arguments, make it a surprisingly universal and elegant theory, describ-
ing everything from everyday-life applications like engines and refrigerators to fundamental
phenomena like black-body radiation and thermal states. One of the most fascinating and
famous thermodynamical principles is the second law; that the entropy — the disorder — of
an isolated system can never decrease over time.

However, when system dimensions are scaled down, fluctuations and quantum effects be-
come increasingly important. For instance, although rare, single microscopic processes
may, by chance, give rise to a decrease in the entropy; the second law as defined above
only holds on average. The need to fully account for the effect of fluctuations, and also
of quantum phenomena, has spurred the development of stochastic and quantum ther-
modynamics. At first sight, it might not be intuitive that it is possible to apply statistical
arguments, as used for the macroscopic systems in classical thermodynamics, on systems
containing only one or a few particles. However, as illustrated by, e.g., the Jarzynski equal-
ity [36, 37] and the Crooks fluctuation theorem [38], small, microscopic systems may be
described statistically if one considers all the individual trajectories that a system may evolve
along over time. One may then consider the probabilities for a small system to dissipate a



certain amount of heat or to perform a certain amount of work, leading to various kinds
of fluctuation relations, that are valid even arbitrarily far away from equilibrium. These
relations relate the probabilities of, e.g., extracting or performing certain amounts of work
to the associated entropy production.

In this thesis, we consider heat transport in a small metallic island coupled to an environ-
ment, consisting of one or several leads. Such an island may be fabricated using, e.g., elec-
tron beam lithography and evaporation techniques [39]. The island may be large enough
to prevent quanization effects, but small enough to have its temperature sensitive to the
absorption (or emission) of individual particles, such as photons or electrons. Importantly,
the temperature is only well-defined if the island has a very short internal thermalization
time, so that the electrons may be described by a Fermi—Dirac distribution at any instant
of time. This is typically the case in real experiments [40]. In Paper III, we consider how
electrons tunneling between a metallic island and a lead give rise to temperature fluctu-
ations in such an island, even in equilibrium. A build-up of fluctuations is possible at low
temperatures where the heat exchange with the environment, in this case phonons, can be
made much slower than the time scale on which electrons tunnel in and out of the island.
In particular, we investigate the influence of charging effects on both the heat transport
and the temperature fluctuations. Thanks to recent advances in fast and ultrasensitive ther-
mometry [41—43], it is possible to investigate not only the average temperature but also the
noise of the temperature fluctuations. The temperature read-out is typically based on very
sensitive measurements of temperature-dependent currents flowing through the system.

The advances in nanoscale thermometry has in turn spurred the interest for nanoscale
quantum calorimetry. Quantum calorimetry is a method for inferring the energy of a
single particle from a measurement on the temperature change it causes when depositing
its energy in an absorber [44], such as a metallic island. In Paper IV, we investigate nano-
scale quantum calorimetry based on a metallic island coupled to a superconducting injector
of tunneling electrons. We show that our setup works as a versatile calorimeter, where the
rate and the energies of the injected electrons may be controlled externally with a voltage
source. Besides allowing for the detection of single electrons, the long-term goal is to fa-
cilitate the development of better single microwave photon detectors. That would pave
the way for new experiments on, e.g., single photon emissions from a microwave cavity, as
addressed in Paper V. There we investigate a cavity coupled to one or several heat baths —
a conceptually simple system that is surprisingly rich in physics. It allows us to study both
the statistics of photon emissions and of heat transport. The main findings of Papers I[II-V
and the underlying theory are all further discussed in Ch. 4.



1.3 Scope of this thesis

The outline of the thesis is as follows. In the first part we give an introduction to the field,
starting with quantum transport (Ch. 2) and then proceeding to entanglement (Ch. 3) and
quantum thermodynamics (Ch. 4). The purpose of Ch. 2 is to introduce basic transport
theory, including master equations, full counting statistics and waiting time distributions.
We exemplify these concepts using a single resonance level, bosonic or fermionic, coupled
to a reservoir. The bosonic version is identical to the microwave cavity in Paper V, and
many of the examples thus summarize the key findings of Paper V.

In Ch. 3, we continue by introducing entanglement, briefly explaining the historical back-
ground that led to its discovery, and, most importantly, describing how entangled electrons
may be generated and detected in nanoscale systems. We present the main findings of Pa-
pers I and II. In Ch. 4, we address quantum thermodynamics and temperature fluctuations,
and present the theory and main findings of Papers III and IV, as well as parts of Paper V.
Finally, in Ch. 5 we give a conclusion and outlook to the whole thesis.

In the second part of the thesis, the research papers are found in their entirety. The first
two papers are related to the first main topic of the thesis and the other three to the second
main topic. As a complement to the first part of the thesis, we also provide two appendices
in the third part of the thesis that contain technical derivations of some of the equations of
the theoretical background.






Chapter 2

Quantum transport

Quantum transport is the field of quantum physics dealing with transport in nanoscale
systems [45]. It provides the theory for describing and investigating the physical phenomena
considered in this thesis. Here, in this chapter, we will outline some of the most important
concepts used in the remainder of the thesis.

Transport theory, whether it is quantum or classical, is inherently a theory of open systems
(1], where particles, heat or other physical quantities may be exchanged with an environ-
ment. The aim of such a theory is to describe how this exchange depends on various physical
properties, such as the internal structure of the system or its coupling to the environment,
and how it responds to perturbations, such as temperature gradients or voltage biases. For
large, macroscopic systems, it is normally sufficient to only describe the average currents to
obtain a complete picture of the transport physics, as any relative deviations are negligible
[35]. By contrast, for small systems, such as nanoscale systems, fluctuations may play a
crucial role. In fact, in many cases the noise — the typical magnitude of the fluctuations —
is the actual signal of interest in nanoscale systems [46]; we will see several examples of this
in the following chapters. To properly describe transport in nanoscale systems, quantum
transport theory must thus provide a statistical description that fully accounts for fluctu-
ations.

The aim of this chapter is to introduce such a statistical description. To this end, we proceed
in three steps. First, we define the concepts of pure and mixed states. The latter is vital to
describe open quantum systems as statistical ensembles of pure quantum states. These
definitions are also of great importance for the subsequent discussion on entanglement in
Ch. 3. Second, we consider the time evolution of open quantum systems weakly coupled
to an environment (Sec. 2.2). More specifically, we introduce the Lindblad equation and
investigate some of its fundamental properties. Third and most importantly, we discuss
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Figure 2.1: (a) A generic nanoscale system (yellow) coupled to a number of terminals (gray, here three) via coupling strengths
~1, 72 and s, respectively. The terminals consist of particle reservoirs with well-defined temperatures 71, 75> and 73
and chemical potentials #,, x, and z,. The aim of quantum transport is to characterize the transfer of particles, heat
o other physical quantities through the system. (b) A single resonance level (fermionic or bosonic) coupled, with a
coupling strength ~, to a reservoir, with temperature 7"and mean occupation number 7z = (exple/ (k7)) £1)7",
with + (—) for fermions (bosons) and e the resonance energy. This system is used as an example system throughout
the thesis to illustrate various concepts. Typical examples of Monte Carlo-simulated time traces of the particle
emission statistics for (c) fermionic particles and (d) bosonic particles for z = 0.5. Every particle emission event is
indicated by a spike.

a number of different concepts to characterize transport statistics, and show how these
may be extracted from the Lindblad equation (Sec. 2.3). In particular, we consider full
counting statistics in the long-time limit, where zero-frequency noise measurements form
an indispensable tool for investigating both quantum correlations (Ch. 3) and temperature
fluctuations (Ch. 4) in nanoscale systems. Such measurements constitute an integral part

of all five papers of this thesis.

We will throughout the chapter consider a generic nanoscale system [see Fig. 2.1 (a)] coupled
to one or several reservoirs. While the overall goal is to introduce tools to describe the
emission, absorption or net currents of particles or heat flowing between the system and
one or several of the reservoirs, the main focus will be on particle emission. Most concepts
and results may easily be generalized to other transport quantities. To provide as simple and
concrete examples as possible of various concepts, we will consider particle emissions from
an example system consisting of a single non-degenerate resonance level, either fermionic
or bosonic, weakly coupled, with a rate v, to a single reservoir [see Fig. 2.1 (b)—(d)]. In
the fermionic case, this could be a quantum dot operating in the strong Coulomb blockade
regime, while in the bosonic case it could be a microwave photon cavity, identical to the one
in Paper V. Besides illustrating some of the key concepts of this chapter (and of Paper V),
the example system also allows us to highlight some of the fundamental differences between
bosonic and fermionic transport.

2.1 States and observables

A key concept, not only of transport theory, but also of classical physics, thermodynamics
and quantum mechanics, is that of a szate [47]. In a broad sense, a state aims at describing
the physical reality of a system, i.e., the physical quantities which have predetermined and
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well-defined values, whether we measure them or not. More precisely, the state of a sys-
tem allows us, at least to some extent, to predict the outcome of measurements of certain
physical quantities — observables — of that system. However, although they provide a com-
plete description of the physical reality, quantum states are highly restricted compared to
their classical analogs as they are, even in principle, incapable of predicting the outcome of
every possible measurement with certainty. According to quantum mechanics, this is not
a result of the theory being incomplete, but rather an inherent property of our world, in
which it is impossible for all physical observables to form part of one and the same reality
simultaneously [48].

The remainder of this section focuses on introducing two important kinds of states. The
first kind of states, pure states, provides a complete quantum mechanical description of all
the microscopic degrees of freedom of a physical system, and corresponds to a microstate
in statistical physics [1]. However, as we will see, such states are typically insufficient to
describe open quantum systems. This motivates us to introduce the second kind of states
— mixed states. Analogous to macrostates in statistical physics [1], they describe a system
statistically in terms of ensembles of pure states.

2.1.1  Pure states (microstates)

In the Schrédinger picture of quantum mechanics, pure states are represented by normal-
ized time-dependent state vectors |U(¢)), with (U (#)|¥(z)) = 1, that belong to a Hilbert
space [49]. Observables are represented by hermitian operators A acting on these states; for
simplicity we here assume that they do not have any explicit time dependence. While a
pure state supposedly provides a complete description of the reality of a quantum system,
it may only predict with certainty the outcome 2y of a single measurement if |W(#)) is an
eigenstate of A with A|U(2)) = ag|¥(#). For any other state, for which we say that A
lacks reality, the measurement outcomes fluctuate and quantum mechanics only provides
the average value of such measurements, the expectation value

() = (L) A (2) = c{ A T())(T (1)} (2.1)

The magnitude of the fluctuations — the quantum uncertainties — is

oa(t) = (BA2), = /() — (a2, A=A (a), (2.2)

Importantly, for so-called incompatible observables A and B, for which [A, B] = AB— BA #
0, there are no common eigenstates; these observables thus always lack simultaneous reality.
This is the essence of the Heisenberg uncertainty principle [49]

oa(t)os(z) = SI([4, B))., (2.3)



which lies at the heart of quantum mechanics. The prime examples of incompatible observ-
ables are the momentum and position of a particle or the projection of a spin along different
axes. The question whether the Heisenberg uncertainty principle is an inherent property
of our physical reality or a result of quantum mechanics being an incomplete theory will

be further discussed in Ch. 3.

By finding the largest set of compatible observables, a so-called complete set, one can con-
struct an orthonormal basis of eigenstates |®;) that fully predict the outcomes of the largest
possible set of measurements. Here @, represents the whole set of the corresponding eigen-
values; these are known as guantum numbers. Any other state may be written as

U(@) =) aldl®), ) = (2]L(), (2.4)
where p;(#) = |ci(2) |? is the probability of obtaining the measurement outcome ag, when
the observable 4 is measured, for which A|®;) = ag,|®;).

Due to the indistinguishability of identical particles in quantum mechanics, a great deal
of care has to be taken in many-particle systems. One way of doing this is to use the
occupation number representation [50] with a basis consisting of the so-called Fock states

|q),> = ‘nlﬂz...ﬂm>, (25)

where only the number of particles 7; in every accessible single-particle state | ;) is specified,
i.e., no reference to the identities of single particles is being made. More formally, these
many-particle states belong to a Fock space 7 = @77 ) S+ H®” that is a direct sum over all
tensor powers of the single-particle Hilbert space H [s50]. Here S} is the antisymmetrizing
operator for fermions and S_ the symmetrizing operator for bosons.

To every single-particle state |¢;), we introduce creation operators ZZ}L and annihilation op-
erators 4;, which increase and decrease, respectively, the particle number in that state [49]

&j’nl...ni...nm> =V +1ncn; 1o ny), alm..n...n,) = /nin..n; —1...1,).(2.6)

We note that 7; = ZZ}LZZZ- may be interpreted as number operators whose eigenvalues are 7;;
these operators form the complete set of compatible eigenoperators of the Fock states. The
symmetry properties of fermionic and bosonic states are naturally incorporated into the
(anti-)commutation properties of the creation and annihilation operators

(] = 05, lana]s = [a], 2]+ =0, (27)
where [A, Bl = AB 4 BA denotes the anticommutator (+) for fermions and the com-
mutator (—) for bosons. Furthermore, 5,»]» denotes the Kronecker delta. Importantly, for
fermions we obtain the Pauli principle [s1]

alal = aa = 0. (2.8)
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For the fermionic version of our example system, this means that the resonance level can
be occupied by at most one particle at a time. In that case, using the states |0) and |1) with
zero and one particles as a basis, the creation and annihilation operators may be represented
in terms of the hermitian Pauli matrices (with eigenvalues £-1)

. 0 1 . 0 —i . 1 0
Ox = (1 0)7 0y = <l 0>a Oz = <0 _1>a (29)

A= % (&x + i&},) =4, and a=

as

(&x — z'&y) =0_. (2.10)

Most importantly, any other operator may be expressed in terms of the annihilation and
creation operators. For example, the Hamiltonian, describing the energy of a system, may
for our example system be expressed as (up to an arbitrary constant)

H=cila+ Y edlbi+ " (ndlh+1la) (2.10)

where 2 acts on the single mode of the system (bosonic or fermionic), ZZ- acts on mode 7 in
the reservoir and # is the tunneling amplitude from mode 7 in the reservoir to the single
mode in the system. Here Hs = €414 is the Hamiltonian for the system, Hr = 3, E,»Z:-r b;
is the Hamiltonian of the environment and Hiy, = > (tiZZT Zi + [;}LZZ) is the interaction
Hamiltonian, to be used later. In the bosonic case, this Hamiltonian is exactly the same
as the one used in Paper V to describe a microwave cavity. In the fermionic case, the
Hamiltonian to some extent resembles the one in Paper I, however, in the latter case we
have six different nearest-neighbour coupled quantum dots, each one also coupled to a
reservoir, which produces a somewhat more complicated Hamiltonian, to be discussed in

Ch. 3.

As we will see in the next section, the full Hamiltonian provides the time evolution of the
system and its environment. However, since the environment may contain infinitely many
degrees of freedom it is desirable to find an effective description of the dynamics of the
system alone by integrating out the degrees of freedom belonging to the environment. This
is one of the aims of the theory of open quantum systems.

2.1.2  Mixed states (macrostates)

When dealing with open quantum systems, the state vector description introduced above
turns out to be insufficient. To see this, we first note, based on Eq. (2.1), that for any
state vector there is a density matrix p(¢) = |¥(#))(U(z)| describing the same state by a
projection operator. Now, supposing that p(#) describes a composite system, consisting of
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an open system § and its environment £, we may also want to consider the density matrix
ps(2) of the open system S alone. To extract this density matrix we integrate out the degrees
of freedom belonging to the environment, thus obtaining

ps(2) = we{p(s)} = Z(sﬂilq’(f))(‘l’(f)lsoi% (2.12)

where trz denotes the partial trace over the environmental degrees of freedom and |¢;) is
any orthonormal basis for the Hilbert space of the environment. Most importantly, ps(z)
cannot in general be expressed as a projection operator. We thus conclude that an open
system may not always be described by a pure state.

Instead, we introduce a more general class of states, mixed states, consisting of a statistical
mixture of pure states |¥(#)) with weights g; > 0. They may be represented [2] by density
matrices of the form

p(e) = Z 7i V(1)) (Wi(2)], Z q: =1 (2.13)

A straightforward generalization of the expression in Eq. (2.1) yields the expectation values

)= 3 gl W) A1) = er{A4p(1)} (214

For a certain basis, the diagonal elements of the density matrix are called populations as they
describe the probabilities of finding the system in a certain basis state. The off-diagonal
elements are called coherences and describe superpositions; these are particularly important
for entangled states. Equation (2.13) brings two defining properties of density matrices:
tr{p(#)} = 1and p(#) > 0 (i.e., p(#) is a positive operator). These conditions ensure that,
in any basis, the populations are non-negative and sum up to 1.

A concrete and important example of a density matrix is that of a qubit [2]
1
L1+ ¢al- o). )

where I is the identity operator, a(#) is a unit vector (which may change over time), o =
(O, Gy, G2) is the Pauli vector and 0 < ((#) < 1 is a parameter determining the mixedness
of the qubit state. We will see in Ch. 3 that this kind of structure also appears when we

p(1)

consider entanglement witnesses for nanoscale systems. Another important class of states

are steady states, for which d’igt) = 0, i.e., we may write them as p(#) = p,. To find the

steady state of a system, we have to consider its time evolution, which we discuss in the
next section. However, we already now note that for our example system, the steady state
should (in accordance with statistical physics) be the thermal state

o B(Hs—pi'2)

s — z ) 16
8 tr{e—B(Hs—pila)} (2.16)
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with 8 = 1/(kpT) the inverse temperature and y the chemical potential of the system
(compared to the reservoir). The average occupation number is then

o n 1
n= tr{afapj} = P (2.17)
yielding the Fermi—Dirac distribution for fermions (4) and the Bose—Einstein distribution
for bosons (—) (with # = 0 for non-conserved particles like photons). Note that0 < 7 <1
for fermions and 0 < 7 < oo for bosons. From now on we will use the sign convention
that the upper signs in £ and F, respectively, always refer to the fermionic case and the
lower signs refer to the bosonic case, unless otherwise stated.

Mixedness — Purity and entropy

We have already noted that any pure state may be described by a density matrix, but the
opposite does not hold true. More precisely, a density matrix represents a pure state if and
only if it has only one single non-zero eigenvalue (that is equal to 1). How mixed the state
represented by a density matrix is may be quantified by its purity [2]

»=ru{p(9)?}, (2.18)

with p = 1 for pure states and p < 1 for mixed states. For a finite system of dimension 4,
the maximally mixed state p = I/d gives the minimal purity p = 1. For the qubsit state in
Eq. (2.15), we have p = LZ\CIZ

As an alternative, one may characterize the mixedness by the von Neumann entropy [2]

S(t) = —u{p(#) log p(#)}, (2.19)

which is the quantum analog of the Boltzmann entropy § = —kg ) -, p, 10g p,, with p,, the
probability of being in a microstate 7. The entropy is a measure of the average information
obtained when one measures the exact microstate of a macrostate. For a pure state, the
entropy is zero. The more mixed the state is, the larger entropy. As we will see in Ch. 3, the
von Neumann entropy may be used to identify whether a pure state is entangled or not; if
the overall state has zero entropy but the reduced density matrices have non-zero entropy,
the state is entangled.

2.2 Time evolution

We now move on to consider the time evolution of quantum systems. For a closed system
with Hamiltonian Hs(#) (where an explicit time dependence may describe work performed
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via externally controllable degrees of freedom), the time evolution is obtained from the
Schrodinger equation [49]

d A
ih;t|\1’(t)> = Hs(2)| ¥ (), (2.20)
or, in terms of density matrices, by the Liouville~von Neumann equation

dps(t) _ i

dt  h

[H5(2), ps(2))- (2.21)

Alternatively, the time evolution may be represented by the time evolution operator

Ult, 1) = Tge_% Ja HS({)dt/, (2.22)

where T;_ is the time-ordering operator, ensuring a correct ordering of Hs(#) when it does
not commute with itself at different times. This allows us to write |V (£)) = U(t, %) |V (%))
or ps(2) = Ult, 1) ps(0) Ul (1, 10) = D, ,,p(1), where ®,,, is a so-called quantum opera-

tion or quantum dynamical map defining the time evolution of the density matrices [52].

The quantum operation originating from the Schrédinger equation displays several import-
ant properties ensuring that it maps physical states (density matrices) onto other physical
states as time goes by; it is (i) linear, (ii) trace preserving and (iii) completely positive. The
latter condition means that if the closed system, with Hilbert space s, is extended with a
generic n-level system, with Hilbert space C”, the time evolution ®, ,; ® 7, acting on the
combined Hilbert space Hs & C” still preserves the positivity of the state. We will take the
three properties (i)—(iii) as a definition of a quantum operation.

In addition to these criteria, the Schrodinger quantum operation also displays several prop-
erties that are characteristic for closed systems. For instance, the time evolution is unitary
and preserves the von Neumann entropy of the system. This is connected to the fact that
there is no heat exchange with the environment for a closed system. To account for heat
(and particle) exchange we instead need to consider the time evolution of open systems.

2.2.1  Quantum operations

For an open quantum system, the equation of motion may become much more complic-
ated than the Liouville—von Neumann equation [Eq. (2.21)]. However, under two quite
general assumptions, we may still describe the time evolution within the framework of the
quantum operations defined in the previous subsection. To this end, we consider a generic
system coupled to an environment as shown in Fig. 2.2 (a). The first assumption is that the
system together with its environment forms a closed system, i.e., the time evolution of the
combined system is still described by the Lioville—von Neumann equation. The evolution
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Figure 2.2: (a) An open system (blue), with Hamiltonian Hg and density matrix ps(z), coupled to an environment (yellow), with
Hamiltonian A and density matrix z(¢), that together constitute a closed system, described by the total Hamiltonian
H and density matrix 5(z). The Hamiltonian A, describes the interaction between the system and its environment.
(b) By considering the dynamics of the composite, closed system and then tracing out the environmental degrees of
freedom one may derive a quantum dynamical map &, ,, that describes the time evolution of the reduced density
matrix ps(z) only.
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of the system density matrix ps(#) alone is then obtained by tracing out [c.f. Eq. (2.12)] the
environmental degrees of freedom [52], yielding

ps() = tee{p(0)} = e { Ut 10) ps(t0) @ (W) (W U (2,10)} = @y ps(to),  (2:23)

where we have made use of the second assumption, that there are no correlations between
the system and the environment at the initial time, i.e., p(%) = ps(ty) @ |Ve)(Vg|. We
note here that U (z, ) now is the time evolution operator acting on the combined, closed
system. The map @, , defined by Eq. (2.23) describes the effective time evolution of the
system from time #y to # [see Fig. 2.23 (b)] and fulfills all the properties of a quantum
operation [52]. We thus conclude that under very general assumptions the time evolution
of an open system is described by quantum operations.

Introducing the Kraus operators Ki(t) = (p;|U(t,0)|VE), where |¢;) is an orthonormal
basis of the environment Hilbert space, we note that any quantum operation may be ex-
pressed as

ps(e) = Y Kipsw)Kl (), D KI(Ki(H) = 1. (2.24)

However, the quantum operations, or equivalently, the Kraus representations, can in gen-
eral be very complicated; they may depend on the system, the environment and their mu-
tual coupling. In general, they also depend on the initial time. For practical purposes
they are thus not always the most convenient tools to describe the time evolution of open
systems. We will therefore make another few assumptions to arrive at a simpler class of
quantum operations used in Papers I, IIl and V called master equations.

2.2.2  Master equations

The idea behind master equations is to cast back the quantum operations into (time-local)
first-order differential equations like the Liouville~von Neumann equation. In fact, all
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divisible quantum operations, for which the inverse ®, ! exists for all times # > #), lead to
time-local master equations [52] of the form

dps(2)
dt

where L, is the generator of the master equation. An important class of divisible quantum
operations are those fulfilling the semigroup property, ®, @, ,, = P14 4, for which
the generator is time-independent, £, = L. According to the Gorini—Kossakowski—
Sudarshan—Lindblad theorem [53, 54] these generators have to take a very particular form
(at least for finite-dimensional Hilbert spaces) described by the Lindblad equation

-
pjft) = Lps(r) = )] + ZP [ ps(8)L] — ,{L Lips}| . (226)

= L.ps(2), (2.25)

Here, the first term on the right-hand side resembles the Liouville~von Neumann equation
and describes the coherent time evolution of the system. However, H is not necessarily
the same as the system Hamiltonian Hy of the system as it may also contain a Lamb shift
(due to the effect of the environment on the energies of the system). Furthermore, the
so-called jump operators Z; describe incoherent interactions (with rates I';) between the
system and the environment, e.g., transfer of heat and particles. The operators D;ps(2) =

I; {Lpﬂg(t)i:j — %{]:IIZ,, ps(2) }] are sometimes called dissipators. Time evolution under

the Lindblad equation may be non-unitary and lead to a change of the von Neumann
entropy of the system, a characteristic property of open systems.

The Lindblad equation — or the classical Pauli master equation where no coherences are
present — is used extensively in both Papers I, III and V, and forms a cornerstone for all
transport theory discussed in the remainder of this chapter. Importantly, this equation may
be microscopically derived for example under the so-called Born—-Markov approximation,
where the coupling between the system and its environment is treated perturbatively to
second order and the correlation times of the environment are assumed to be much shorter
than the typical time scales of the system dynamics, see App. A for further details of the
microscopic derivation of master equations.

The formal solution to the Lindblad equation may be written as
ps() = ¢“ps(0), (2.27)

where pg(0) is the initial density matrix. The eigenvalues A, (which must be nonpositive
to yield a physical solution) of the matrix representation of the Lindbladian £ determines
the time scales on which various transients die out. The trace preservation of the Lindblad
equation ensures that there is always at least one steady-state solution p; obtained from

Lp,=0. (2.28)
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Provided that there is a unique steady-state, the system will approach this state after a
sufficiently long time. When we consider transport statistics, we will typically assume that
the system is starting in (i.e., has already reached) its steady state.

2.2.3 Jump operators and current operators

To use the Lindblad equation for practical purposes, one needs to identify the jump op-
erators L; describing the interaction of the system with its environment. These operators
depend on the microscopic physics of the system and its coupling to the environment. In
this thesis, we deal with two kinds of jump operators. The first one, used in Paper I, is

I —ia  T,=7@, (2.29)

I3

and represents pure decoherence with a decoherence time 1/I'9). Tt suppresses any coher-
ences of the density matrix on the time scale set by the decoherence time, unless there is
another mechanism continuously creating new coherences.

In Papers I and V, we also use jump operators to describe emission and absorption of
particles to a reservoir, with average occupation number 7, for which the jump operators
are

L =4z, I‘l(.e) =T(1+5n) (2.302)
1@ = A, ' — 1z (2.30b)

z

In this case, we note that we may interpret
Tops(t) = (1 £ a)aps(Da',  Tups() = vad ps(2)a, (2.31)

as emission and absorption current superoperators, respectively. Furthermore, we note that
the emission and absorption rates fulfill detailed balance

I‘ge) = eﬂaf‘l(.ﬂ), (2.32)
where € is the energy of the quanta that is being transferred.

As a concrete example of a Lindlbad equation, we note that for our example system we

obtain
dp(t 2T N PV I . I DU SO
PO _ L et ) (1 F 7) |ap()a — Sata, 5} |+ |atplaa— aat, 5}
dt h 2 2
(2.33)

where we for brevity from now on have dropped the subindex § for the density matrix.
Since the coherences decouple from the populations, we may, in this particular case, write
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Figure 2.3: An illustration of a probability distribution P(#, ¢) (blue, solid) with a Gaussian fit (black, dashed). The first three
central moments describe the mean, the variance and the skewness of the distribution.

the Lindblad equation as a classical Pauli equation for the populations only. For instance,
in the fermionic case we get

é P()(t) - —n 1—n P()(l’) (2 )
a\r(n) "\ a —1+a)\20) 34
where Py(z) = (0]|p(#)|0) and P;(#) = (1|p(#)|1) are the populations of the density mat-
rix. Note that the steady state solution to this equation indeed yields the thermal state in
Eq. (2.16) as previously claimed. In Paper III, we use another two-dimensional Pauli master

equation to describe the probabilities of having zero or one excess electrons in a metallic
island, where charging effects are present. This is further discussed in Ch. 4.

2.3 Transport statistics

Having introduced the important concepts of states, observables and time evolution, we
are now in a position to consider what lies at the heart of this chapter: transport statistics.
Considering the generic system in Fig. 2.1 (a), our aim is to describe transport between a
quantum system and one or several reservoirs to which the system is coupled. Our focus
will be on particle emission, however, all concepts may be generalized to absorption or net
currents. Our aim is to not only find the average currents, but the full counting statistics in
terms of the probability distribution P(#, ¢) that 7 particles are emitted to a certain reservoir
during a measurement time 7 see Fig. 2.3. One may also consider joint probability distri-
butions of various orders, such as P(7;, 7, #), describing the probability that 7; particles are
emitted to the ith reservoir and 7; particles are emitted to the jth reservoir during a meas-
urement. Importantly, assuming that the system is in a steady state, these distributions
only depend on the duration of the measurement and not the initial time.

As an alternative to the probability distributions themselves, one may consider the Laplace
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transformed quantities, the so-called characteristic functions

M(s, 1) = (), = ZP (n, t)¢ (2.35)

where s, often called a counting field, is the conjugate variable to 7. This formula may easily
be generalized to a multidimensional Laplace transform in the case of joint distributions.
We note that by changing the counting field s to 7x (yielding a Fourier transform instead
of a Laplace transform), one instead obtains the moment generating function (MGF). The
difference between the MGF and the characteristic function is a subtle mathematical tech-
nicality and we will use them interchangeably in the following chapters.

The characteristic function contains exactly the same information as the probability dis-
tribution, but, as we will see, is typically easier to access theoretically. In addition, the
characteristic function (or the MGF) yields the moments (#”), of the probability distribu-
tion from its derivatives

” 0" M (s,
(n"), = 3’5’ ) ) (2.36)
s s=0
" : ")t
terize the full probability distribution. For instance, (7), gives the average number of emit-

ted particles, ((Az)?) = (#?) — (n)? gives the variance and ((An)®) = (#*) — 3(n) (n*) +
2<n>3 is related to the skewness, see Fig. 2.3. For the MGE, the derivatives are carried out

which form the cofficients in the expansion M(s,2) = > . The moments charac-

with respect to 7y instead of s.

From the characteristic function, we may also extract other transport quantities, including
waiting time distributions, correlation functions and long-time statistics, which may more
clearly illustrate various transport characteristics, such as bunching and anti-bunching,.

Full counting statistics extracted from the Lindblad equation

To extract the full counting statistics, i.e., the characteristic function, from the Lindblad
equation, we first introduce the projector I1(7, £), which projects out the conditional part
p(n, t) of a density matrix that describes the system provided that 7 particles have been

emitted
Zﬂnt HTnt ant (2.37)

In particular, we have tr{p(n, t)} = P(n, t), where p(n, t) is the number-resolved density
matrix that describes the system under the condition that 7 particles have been emitted
during a time # From the Lindblad equation, we then obtain the number-resolved master

equation
dp(n, )
dt

= (L =T)p(n, 1) + Tep(n+ 1,1), (2.38)
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where 7, is the emission current superoperator defined in Eq. (2.31). Using a Laplace
transformation, we obtain

dp(s, t . . s A

P8 L6pls. 1) = (£~ T)p(s ) + €5.005.9), 239)
where p(s,£) = > p(n, t)e” is the Laplace transformed density matrix. The formal solu-
tion to this equation is

pls. 1) = EEOH(0). (2.40)

Here we choose p(0) = p; to consider steady-state transport. From this solution, we obtain
the characteristic function as

M(s,t) = u{p(s,2) }. (2.41)

In general, it may be challenging to compute the matrix exponential of the Lindbladian
and various methods, including perturbative ones, have been developed for this purpose.
In some cases, however, one may solve it analytically, such as for our example system. In
that case, we obtain (see Paper V for further details about the derivation in the non-trivial
bosonic case)

T1
2§€'yt/2

2€ cosh [%} 4 (1 + €2)sinh [%w] (2.42)

M(s,t) =

with € = /1 £ 4(¢' — 1)2(1 F ). In the bosonic case, this is one of the main findings
of Paper V. It allows us to extract a number of other important transport quantities, such
as the long-time statistics, the noise spectrum, the second-order degree of coherence and
the waiting time distributions.

2.3.1 Long-time statistics

The solution to Eq. (2.40) is often difficult to find, and even more difficult to measure
experimentally. It requires detectors with wide bandwidths, that can resolve fast processes
on all relevant time scales where the Lindblad equation is valid. Unfortunately, in real
experiments the bandwidths of current detectors are usually very limited, which means that
only the characteristic function for very long times is accessible. One may therefore instead
consider the long-time statistics, i.e., the statistics of the particle emissions in the limit of
a very long measurement time. Such measurements yield surprisingly much information
about the transport statistics and form a cornerstone of this thesis. In Ch. 3 and 4 we will
see how long-time statistics can be used for both entanglement detection and quantum
calorimetry.
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In the long-time limit, we find from Egs. (2.40) and (2.41)

M(s,) = (s, )} = wfeEp(0)} = X {p(0)), (.43

where A(s) is the largest eigenvalue of £ (closest to 0 since £ only has non-positive ei-
genvalues). We note that the characteristic function is proportional to )" in this limit.
Introducing the so-called cumulant generating function (CGF), we then obtain

) g g

Fls,1) = log[M(s, 9] = 1A(5), c.4)
to exponential accuracy. The different derivatives of this function yield the cumulants

0" F(s
o= 528 .49

()

which form the cofficients in the expansion F(s, ) = ) =" These are particularly
m.

favorable to analyze any deviations from Gaussian statistics, for which ((»”)), = 0 for

m > 2. The first cumulant is the same as the first moment, while the second and third

cumulants equal the corresponding central moments

(mhe=(m)e (2= ((An)*)r, and (@), = ((An)*).. (2.46)

For higher-order central moments and cumulants, the relation becomes more complicated,
although there is still a linear transformation between the two.

A concrete, and important, example of a cumulant generating function is the one describing
Poissonian statistics of particle emissions

F(s, 1) = yt(e — 1), (2.47)

where 7 is the emission rate. In this case, all the cumulants are identical. This is character-
istic for the statistics of uncorrelated events.

The most important measurable quantity introduced in this chapter is the zero-frequency
noise

S(0) = lim ~((n2).. (2.48)

t—00 t
This noise (or the cross correlated version) is used both for entanglement detection in Papers
Iand II as well as to describe temperature fluctuations in Papers III and IV and heat trans-
port in Paper V. It is, together with average currents, the typical quantity that is accessible
in nanoscale transport measurements.

For our example system, we obtain

Fls,1) = %(;11\/&4(@— 1)74(1;71)). (2.49)
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The average emission current is (7)), = (1 F 7) and the noise is (#2)), = ym(1 F
7)[#* + (1 F 7)?]. Comparing with Eq. (2.47), we see that in this specific case the statistics
is Poissonian (uncorrelated) if and only if # < 1. Using the Poissonian limit as a reference,
we may define the Fano factor F [ss, 56] as the ratio between the zero-frequency noise and
the average current in the long-time limit

=" + (1 F »)*. (2.50)

For F < 1, we say that the statistics is sub-Poissonian, while for 7 > 1, we say that
it is super-Poissonian. In some cases, these concepts are directly related to bunching and
anti-bunching, however, not in general [57]. We see that the bosonic mode yields super-
Poissonian statistics and the fermionic mode yields sub-Poissonian statistics, see Fig. 2.4 (a).

Saddle-point approximation
To regain the probability distribution P(n, ) = - [ dse (¢~ from the cumulant gen-
erating function we may use the saddle-point approximation [58]

log P(n,t) =~ F(s*,t) — s*n, (2.51)
with 5" () the solution to the saddle-point equation

OF(s, t)
Os

(2.52)

s=s*

Here we stress that both 7 and F(s, ¢) are large numbers in the long-time limit, thus making
the saddle-point approximation valid. For our example system, in the limit 7 < 1, we
obtain the Poissonian distribution

st ([ 21) -

t

with (n) = n7yt the average number of emitted particles during the measurement time.

2.3.2  Noise spectrum S(w)

For detectors with finite bandwidths, or systems displaying slow processes, it is possible
to investigate time-resolved phenomena. One way of characterizing the transport statistics

then is to use the correlation function C = ({AJ,(¢), AT.(0)}), with AT, = T, — (T.)

the current fluctuation operator, or its Fourier transform, yielding the noise spectrum

Sw) = 5 / A (AT(0), AT0)}), (.50
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where {4, B} = AB + BA denotes the anti-commutator. From now on the expectation
values are evaluated with respect to the steady state if nothing else is stated. For charge
current correlations a prefactor ¢?, stemming from the charge of the transferred quanta,
is typically included. The noise spectrum tells us the frequencies of the fluctuations. For
w = 0, this expression yields the zero-frequency noise consistent with the second cumulant
of the long-time statistics in Eq. (2.48). One may also consider cross-correlations between
emissions to different reservoirs  and (:

1 .
$0w) = 5 [ AT 0,720, @59
where A (#) denotes the current fluctuation operator of reservoir , 3. This quantity

plays a central role in the next chapter to detect entanglement.

The noise spectrum may be computed from the time-dependent second cumulant obtained
from the characteristic function in Eq. (2.41) by using MacDonald’s formula [59—61]

S(w) = w/ dtsin(wt)é«nz»t. (2-56)
0 dt
For our example system, we get

S(w) = (T) F 25— (T2, (2.57)

,72_‘_&}2

which is shown in Fig. 2.4 (b). The single resonance level is here manifested as a Lorentzian.

2.3.3 Second-order degree of coherence ¢! (7) function

An alternative way of characterizing transport statistics is to consider the second-order de-
gree of coherence ¢ (7). The ¢?)(7) function is in this thesis mainly used in Paper I
to formulate a Bell inequality based on real-time measurements as well as in Paper V to
characterize the photon emissions from a cavity. It is defined as [57]

ffﬁt e
() = W (2.58)

i.e., it is the (normalized) correlation function for two emission processes. The advant-
age of the ¢?) (1) function is that it determines whether the transport statistics is bunched
(¢ (0) > ¢ (7)] or anti-bunched [¢?)(0) < ¢ (7)]. Bunching means that the emis-
sion events tend to cluster together, a property typical for non-interacting bosons. Anti-
bunching means the opposite and is typical for non-interacting fermions.
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Figure 2.4: Steady-state emission statistics of a bosonic (blue) and a fermionic (green) resonance level weakly coupled (with rate
~) to a reservoir. Poissonian statistics indicated by dashed lines. (a) The Fano factor F as a function of the mean
occupation number 7 (b) The noise spectrum S(w) for » = 0.5 as a function of the frequency w with (7,) the

average emission current. () The second-order degree of coherence ¢® (7) as a function of time 7 for # = 0.5.
(d) The waiting time distribution WW(7) for z = 0.5 as a function of time 7 with () the average waiting time.

We note that the ¢?) (7) function is related to the noise spectrum [57] via

o
Sw) = (7 + {702 [ drén (@) - 1), (2.59)
— 0o
Provided that we know the average current, they contain the same information about the
transport statistics.

For our simple example system, we obtain

g(z) (r)=1F eIl (2.60)

'This is plotted in Fig. 2.4 (c). Here we see the Pauli principle manifested as ¢?)(0) = 0 in
the fermionic case; there cannot be two subsequent emissions without the dot being refilled
in between. This implies that the emissions are anti-bunched [57]. In the bosonic case, the
emissions are instead bunched. In both cases, for long times 7 > 1/, we sce that the
emission events are uncorrelated and thus ¢! (7) — 1 for 7 — co. In Paper s, we discuss
the properties of bosonic emission statistics in further detail.

2.3.4 Waiting time distributions

Yet another way of characterizing transport statistics is to use waiting time distributions
(WTDs), one of the main concepts of Paper V. The WTD describes the probability distri-
bution of waiting times between successive emission events. It is for that reason sometimes
referred to as an exclusive probability as no other emission event is allowed in between
[62]. Besides a somewhat different normalization, it resembles to a large extent of g(z) (1);
however, for the ¢!?) (7) function emissions are allowed to take place in between. Math-

ematically, the WTD is defined as [57]

(T e T 7,)

%A (2.61)

W(r) =
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For steady states, as considered here, the WTD may be obtained from the characteristic
function in Eq. (2.41) as [63, 64]

W(r) = <Tl>0$x(—oo,7'), (2.62)

where (7) = [° W(7)7dr is the mean waiting time.
For our example systems, we find

sinh [QTW] e—’yt/z (263)

W(r) =41 - )=

in the fermionic case, and (see Paper V for the derivation)

—1 4 3a? + (1 + a?) cosh[ay] + 2a sinh[ay

i 1?2 (2.64)
(2acosh [*F*] + (1 + a?) sinh [“}] )3

W(T) = ya(a? — 1)

in the bosonic case, with v = lim,, o \/1 £ 4(e' — 1)2(1 F ) = |1 F 27| in both
cases. The WTDs are both plotted in Fig. 2.4 (d). As seen in the figure, the bunching
and anti-bunching behavior of bosons and fermions, respectively, are clearly manifested in
the WTD. For instance, we have W(0) = 0 in the fermionic case since two immediately
successive emissions cannot take place as the system needs to be refilled with a particle in
between. For the bosons, we instead have W(0) = 2ya(1 + 7), i.c., there is an enhance-
ment in the emission immediately after an emission event has taken place.

Renewal processes

In the fermionic case, we find the interesting relation

W(s)

@y W
&0 = T wa

(2.65)

between the Laplaced transformed ¢®) (1) and WTD. This is a general relation that holds
for any so-called renewal process where subsequent waiting times are uncorrelated [62].
However, in general no such relation exists between the WTD and the ¢®)(7) function.
The bosonic resonance level is an example of this; in that case subsequent waiting times are
correlated as the number of bosons is not reset to the same number after each emission.
No relation between the g?) (1) and WTD exists then, which is an important finding of
Paper V and an illustration of the fact that the two concepts, in general, contain different
information about the transport statistics.
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2.4 Summary and outlook

In this chapter, we have introduced a number of basic concepts to describe transport phe-
nomena in nanoscale systems. A substantial part of the chapter has been devoted to the
theory of open quantum systems, where the Lindblad equation plays a central role. This
equation, as well as its classical analog — the Pauli master equation — are widely used in this
thesis to describe everything from the generation of entangled electrons in quantum dot
systems (Paper I) to the emission of photons from a microwave cavity (Paper V). Some of
these examples will be discussed in further detail in the following chapters.

Among the concepts introduced to characterize transport statistics, the zero-frequency noise
constitutes the most important one for this thesis. The reason is that detectors of, e.g., cur-
rents or temperature in nanoscale systems typically have very limited bandwidths. This
prevents time-resolved detection of fast phenomena, which is necessary to obtain for in-
stance the waiting time distribution or the full noise spectrum. However, thanks to zero-
frequency noise measurements it is, even with a very limited bandwidth, possible to extract
a substantial amount of information of the transport characteristics. We will for example
see in the following chapters how zero-frequency noise measurements may be used to detect
both quantum correlations and temperature fluctuations.

That said, we also note that recent developments of single-electron [65—68] and single-
photon detectors [69—73] for nanoscale systems open up completely new possibilities to
investigate transport phenomena. As an example, we propose in Paper I a way of testing
a Bell inequality using ¢®)(7) functions measured for electrons in a quantum dot system.
Another example is found in Paper V, where we investigate theoretically single photon
emissions from a microwave cavity. Here single-photon detectors could make it possible to
investigate waiting time distributions of a non-renewal process.

Finally, we note that many of the concepts introduced in this chapter have been applied
to describe particle emission current statistics. However, one may extend these concepts to
more general situations, for instance to describe particle net currents or heat currents. It is
also possible to consider setups where currents are detected at different junctions, and to
introduce different counting fields to describe the statistics of each current. In this way, we
may extract current cross-correlations, which are essential for Papers I and II and will be
further discussed in the next chapter.
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Chapter 3

Quantum entanglement

In this chapter, we introduce one of the two main topics of this thesis: quantum entangle-
ment. Entangled states are composite states of particles whose individual quantum states
cannot be described independently of each other. At first sight, these states may seem
insignificant. However, as Einstein, Podolsky and Rosen (EPR) highlighted in 1935 [4],
entangled states may give rise to seemingly counterintuitive results, violating the classical
notion of local realism. EPR argued that this violation was a result of the absence of so-
called "hidden variables”, missing variables that would bring quantum mechanics back into
the realm of local realism and even determinism. This sparked a metaphysical debate on
whether quantum mechanics provides a complete description of reality, a debate which was
settled only in 1964. That year, Bell presented [s] an inequality to experimentally test the
validity of local realism, paving the way for a series of experiments [74—79], that turned out
to be in favour of quantum mechanics.

However, it was not until the 1980s, with the advent of quantum information theory, that
the real power of entanglement was fully understood. Entanglement then emerged as, not
only a peculiar feature of quantum mechanics, but an indispensable resource for quantum
information processing. Today, we know that entangled states constitute a key ingredi-
ent for many quantum information protocols, including superdense coding [7], quantum
teleportation [8] and quantum cryptography [9]. In addition, entangled qubits are crucial
to realizing universal quantum computing. The importance of entanglement as a compu-
tational resource has motivated a tremendous amount of research, including Papers I and
IT of this thesis, aiming to develop schemes for generating, manipulating and detecting
entangled states in controllable ways.

In this chapter, we present an overview of the theory underlying Papers I and II as well as a
summary of the main findings of these two papers. We start by considering the fundamental
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aspects of entanglement that originally led to its discovery (Sec. 3.1) and based on this
introduce the formal definition of entanglement (Sec. 3.2). We then consider the generation
of entangled electrons in nanoscale systems (Sec. 3.4), with a focus on the quantum dot
system proposed in Paper I, and briefly discuss how to quantify entanglement in terms
of entanglement measures (Sec. 3.4). Finally, we discuss entanglement detection schemes
based on zero-frequency current cross-correlation measurements (Sec. 3.5), both in terms of
Bell inequalities and entanglement witnesses. The latter includes an overview of the main
findings of Paper II. We end the chapter with a conclusion and outlook (Sec. 3.6).

3.1 EPR paradox and Bell tests

The peculiar features of entangled states were first highlighted by Einstein, Podolsky and
Rosen (EPR) in their famous paper [4] from 1935, where they presented a thought exper-
iment, now known as the EPR paradox, in an attempt to prove that quantum mechanics
is an incomplete theory. The thought experiment revolves around the Heisenberg uncer-
tainty relation [Eq. (2.3)] for two particles, A and B, that have previously been interacting
and then spatially separated. The interaction is assumed to have caused the states of the
particles to be correlated. In the original formulation of the paradox, EPR considered cor-
relations between the positions and momenta of the particles. Inspired by the formulation
of the EPR paradox by Bohm [80], we here instead consider electrons whose spins are
correlated, an example which is more relevant for the nanoscale systems discussed in this
thesis.

Given a certain projection axis, each electron has a spin that may point either up or down
along that axis. The EPR paradox is most clearly illustrated by assuming that the composite
state | U) of the spins, after having interacted, is described by a singlet state (with total spin
Z€ero)

1
V2
where the signs (+ and —) indicate the spin direction (parallel or anti-parallel, respect-
ively) of each particle along a certain projection axis. This composite state has the pecu-
liar property that, while we know the total spin with certainty, we know nothing about

W) = —= ([+)al =) — [=)al+)5) , (1)

the individual spins. More precisely, according to quantum mechanics, the spin of, say,
particle A along a direction a (where a is a unit vector), represented by the operator
A(a) = 64 = a - o, lacks reality. Only after measuring the spin along a, thus pro-
jecting its state onto one of the eigenstates of A(a), we may assign a certain state vector to
that particle. Importantly, the reality of the system after a measurement will depend on the
projection axis used; the measurement unavoidably affects the reality in accordance with
the Heisenberg uncertainty principle.
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Now, if we would instead measure both the spin of particle A (along a) and the spin of
particle B (along b), the correlation between these measurements would be

E(a,b) = (V|64 @ 68|T) = —a - b. (3.2)

Here we note that, for parallel projection axes at A and B, the measurement outcomes
would be perfectly anti-correlated. Thus, by measuring on particle 4 only, we obtain full
information about the state of not only particle A, but also particle B. We can thus assign
a state vector to particle B. However, the principle of local realism prescribes that a meas-
urement at A cannot instantaneously affect the reality of the spatially separated particle B.
This leads to the very startling result: Depending on the measurement axis chosen for the
measurement at 4, we may assign different state vectors to one and the same reality at B.
However, according to the Heisenberg uncertainty relation, it is impossible for states rep-
resenting definite values of different non-commuting variables to describe the same reality.
This leads to the contradiction that is now known as the EPR paradox.

Based on this seemingly contradictory result, EPR concluded that quantum mechanics
must be an incomplete theory in need of some additional, lacking elements, so-called hid-
den variables. These variables would, they believed, turn quantum mechanics into a com-
plete theory, with the ability to predict the outcome of any single measurement. This idea
was not new; de Broglie had already in 1927 [81] started to formulate such a theory based on
so-called pilot-waves, a work that was later completed by Bohm in 1952 [82, 83]. However,
this theory was highly non-local and inconsistent with the local realistic worldview of EPR.

For a long time, it was therefore unclear whether the claims by EPR — that it should be
possible to predict the outcome of single measurements with a local hidden variable theory
— was more than merely a philosophical question. However, in 1964, Bell showed [s] that
the claims by EPR could be tested experimentally, thus paving the way for settling an almost
30 year long debate. Assuming a local hidden variable theory, Bell introduced a variable
A that would, with certainty, determine the outcomes A(a, A), B(b, \) of measurements
along a and b on each respective particle. From now on we will call a and b for the
detector settings. Locality prescribes that the settings chosen at particle A do not influence
the outcome at particle B, and vice versa. Each emitted pair may be associated with a
certain value of the hidden variable \. Introducing p(\) as the probability that the state
of an emitted pair of particles is associated with A, the measured expectation value of the
correlations (with no knowledge about the actual hidden variables) would be

F(a,b) = / ANA(a, \)B(b, p(\). (5.3

Bell found that these expectation values have to fulfill certain inequalities [5], now known
as Bell inequalities. Here we will use such an inequality, the CHSH inequality, formulated
by Clauser—Horn—Shimony—Holt (CHSH) in 1969 [84]

B = |E(a,b) + E(a’,b) 4 E(a,b’) — E(a’,b’)| < 2, (3.4)
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where B is the so-called Bell parameter and a, a’, b, b’ denote different detector settings.
Quite surprisingly, the correlation functions given by quantum mechanics in Eq. (3.2) may
violate this inequality; in fact they may reach values of B as large as 2+/2. Thus, if quantum
mechanics is correct, it should be possible to violate the CHSH inequality in a real experi-
ment and reject local realism as a property of our world.

This insight spurred a series of so-called Bell experiments, with the aim of testing if the
Bell inequalities, such as the CHSH inequality, could be violated. The first experiments
took place already in the 1970s [74, 75], and utilized polarized entangled photons. The
polarization state of a photon may be read out by using polarizers, with two output channels
A= and B+, respectively. The measured value of the correlation coefficient is then obtained
from

E(a b) _ le—; _le—B_ _NAbZ;‘— +NZZ; (3_5)
Nig +Nig +Ngg + Nag

where Nj ét are the number of pairs of particles detected at each combination of output
ports at the A and B polarizers. While challenging to entangle, photons have the advantage
that they may be separated coherently — and thus keep the entanglement intact — over long
distances. The first experiments indicated that the CHSH inequality could be violated.
Later experiments, such as those by Aspect et al. [76, 85] in the 1980s and 1990s, tried
to address various so-called loopholes, possible ways of explaining Bell violations without
necessarily abandoning local realism. For instance, one needs to ensure that no information
may be exchanged between the detector systems during the measurements (the locality
assumption) [76, 86—88], that the settings are chosen independently of the emitted state
(the freedom-of-choice assumption) [89] and, for detectors with finite efficiencies, that the
detected particles constitute a statistically representative set of all emitted particles (the
fair-sampling assumption) [90]. It was not until 2015 that all these loopholes were closed
simultaneously in one and the same experiment [77—79]. Even later, additional experiments
have been carried out with the aim of improving the freedom-of-choice assumption, for
instance by using pulses obtained from quasars to randomly select the detector settings in
the Bell tests [91].

3.2 Separable and entangled states

The singlet state in Eq. (3.1) is just one of many examples of entangled states sharing the
startling features illustrated in the EPR paradox. We now give a proper definition of en-
tangled states and the complementary set of states, the separable states. We also present
some of the methods to determine mathematically whether a certain state vector or density
matrix is entangled or separable.

To define entanglement and separability, we first need to specify over what partition(s)
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Figure 3.1: (a) A bipartite system consisting of two particles (yellow discs), with a partition separating the two subsystems. (b)
For a multipartite system, consisting of more than two particles (here three), the states may be entangled either
with respect to only one partition (left figure) or several/all partitions (right figure). In this thesis, we mainly focus on
bipartite entanglement.

a state is entangled/separable, see Fig. 3.1. A state may be entangled with respect to one
partition, but not to another. Focusing on bipartite entanglement, Fig. 3.1 (a), we consider a
system partitioned into two subsystems A and B, with Hilbert spaces H 4 and H 5. We stress
that all definitions below can be easily generalized to multipartite entanglement, where
more than one partition is involved, see Fig. 3.1 (b).

3.2.1 DPure states

In the case of pure states, represented by state vectors |¥) € Hy ® Hp, a state is separable
if and only if it may be written in a product form

V) = |2)4 ® |Q)s, (3.6)

where |®)4 € H,4 and |Q)p € Hp are state vectors of subsystems 4 and B, respectively.
Any pure state which is not separable, and thus cannot be written as in Eq. (3.6), is an
entangled state.

Considering a measurement of an observable A, on subsystem A and another observable
By, on subsystem B, the expectation value for a combined measurement factorizes

E(a,b) = (V|4a ® By|¥) = (®]4a|©)4(Q|By|Q) 5, (3-7)

for separable states, i.c., local measurement outcomes are independent. Most importantly,
this is not the case for entangled states, for which correlations — quantum correlations —
between the subsystems do exist.
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Schmidt decomposition

To determine if a bipartite state may be expressed in a product form or not, one may employ
the Schmidt decomposition [2] of a state vector

d
= Z ai|P)a @ Q) B, ZOZ? =1, (3.8)
i—1 =

where {|®; >A} “, and {]Q; >B} % | form bases for H 4 and H p, with = min(dy, dp). Here
the Schmidt coefficients v; > 0 are positive numbers that fully characterize the separabil-
ity/entanglement of a bipartite system. In practice, the Schmidt decomposition is obtained
by writing the state vector in a matrix form and then applying a single value decomposition.

The number of nonzero Schmidt coefficients is called the Schmidt rank or the Schmidt
number. Whenever the Schmidt rank is larger than one, the state is entangled. Interest-
ingly, the Schmidt rank is related to the purity of the reduced density matrix of one of the
subsystems:

P(pa) =ty {(trgﬁ)z} = p(pB) = trg{ (trap) } Z aj < 1. (.9)

Equality holds if and only if the Schmidt rank is one; this means that a bipartite pure state
is entangled if and only if its reduced states are mixed.

Bell states

For a two qubit system, the four Bell states are defined as the entangled states

Vi) = —(+-)£[-+), [2x)=—7(+H*[--), (o

1 1
V2 V2
of which the singlet state in Eq. (3.1) corresponds to |¥_). Their reduced states, when in-
tegrating out the degrees of freedom of one of the subsystems, are maximally mixed. These
states are known as maximally entangled states. They form a key ingredient in superdense
coding [7], quantum teleportation [8] and quantum cryptography [9]. Thus, many entan-
glement generation schemes aim at creating this class of states.

3.2.2 Mixed states

The definition of entangled pure states in terms of correlations may be extended to all
mixed states. However, some care has to be taken since mixed states may also contain clas-
sical correlations, which are not owing to entanglement. We therefore has to distinguish
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between classical correlations and quantum correlations. Classical correlations are correla-
tions which can be produced from local operations and classical communication (LOCC).
This includes all operations that may be performed locally on each subsystem, either inde-
pendently or correlated, via classical communication, with the other subsystem. There is
no simple expression for parametrizing LOCC operations in general, but they may all be
written as a product of local operations

V= VA ® f/B, (3.11)

where ¥ and V3 act only on subsystem A and B, respectively. Surprisingly, the converse
is not true: not all products of local operations can be implemented as LOCC operations
[92]. An important class of LOCC operations are the local unitary operations

U= Uy Us, (3.12)

where Uy and U are both unitary operators acting on each subsystem. These correspond
to a change of basis at each subsystem, which do not change the amount of entanglement.

A bipartite mixed state which only contains classical correlations may be written as
p=Y_piby @by, D pi=1 G.13)

This corresponds to an incoherent mixture, where we with probability p; find subsystem A
in the state ,61(41) and subsystem B in the state ﬁg). Only if p; = 0 for all 7 except one, this
state reduces to a product state, for which no correlations between the subsystems exist at
all. It follows from Eq. (3.13) that the set of separable states is convex, a property that will

be particularly important when we discuss entanglement witnesses.

We note that the expectation value of two local measurements for a separable state is given

by
E(a,b) = (U|4a ® Bp|T) = Zpitr {}Iaﬁg)} tr {Ebﬁg)} . (3.14)
This expectation value can always be mimicked by one obtained from a local hidden variable

theory [see Eq. (3.3)].

We define any state which cannot be written in the form given by Eq. (3.13), thus contain-
ing quantum correlations, as entangled. Quite surprisingly, not all entangled mixed states
violate the principle of local realism. One example is the Werner states [93]

pw = AL/4+ (1= X)W )(T_|, (3.15)

which may model a singlet state that is exposed to noise. They are entangled for 0 < A <
2/3, but violates local realism only for 0 < X < 1/+/2.
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Peres—Horodecki criterion

Determining whether a mixed state is separable or entangled is an increasingly challenging
task as the dimensions of a Hilbert space increases. In general, there is no known efhcient
method to determine if a state is entangled. However, for two-qubit systems, which are
the relevant systems for Papers I and II, there is a simple and efficient method, known as
the Peres—Horodecki criterion [94]. This criterion prescribes that a state is separable if and
only its partial transpose

Ty

7 = [ S Hnalbstlalila | =S Hlivaly) s blail .16)

ikl ikl

isalso a physical state (i.e., a positive operator). This statement is clear from Eq. (3.13). Thus,
any state producing an unphysical state under the partial transpose must be entangled.
For systems with dimensions 2x2 or 2x3, the Peres—Horodecki criterion is a necessary and
sufficient condition for entanglement. However, for larger dimensions the criterion is only
a sufficient condition; in that case there are entangled states which may yield physical states
under the partial transpose [95].

3.3 Generation of entanglement in nanoscale systems

Having introduced the formal definition of entanglement, we now consider how to gener-
ate entangled states physically. Any degree of freedom, including photons, nuclear spins,
electron spins, ion traps and quantum dots, may in principle be utilized to produce en-
tangled states [2]. However, for practical purposes, it is important to choose a degree of
freedom that provides good conditions for quantum computing applications. The so-called
DiVincenczo criteria [96] prescribe that one needs degrees of freedom where well-defined
qubits may be initiated, manipulated and read-out, without losing the quantumness due
to decoherence. As a rule of thumb, there is a trade-off between good read-out control
and long decoherence times. A degree of freedom interacting more strongly with its envir-
onment is typically easier to read out, but is at the same time also more sensitive to noise
induced by the environment, leading to shorter decoherence times. One of the more ex-
treme examples in this regard is nuclear spins, which may retain their coherences over very
long times, even days, but are hard to control and manipulate, limiting their usefulness for
future quantum computers.

The prospects of scalability as well as integrability with conventional electronics make en-
tangled electrons in nanoscale systems particularly interesting [16, 17]. However, due to the
strong interaction of electrons with their environment, these systems are typically impaired
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by short decoherence times in the nano- to microsecond range [97], thus requiring fast co-
herent control of the systems. The spin degree of freedom of electrons [31, 98, 99] provides
a natural two-level system that may be used as a qubit [20, 100, 101]. Experiments with
one- and two-qubit systems have demonstrated the possibility of both controling the spins
coherently [102, 103] and entangling them [104, 105]. Measurements have shown that such
qubits can reach relatively long decoherence times, typically of the order of microseconds
[97]. A natural resource of singlet-entangled electrons is found in s-wave superconductors,
from which singlet states may be extracted via Cooper pair splitters [106-109].

Despite the prospects of all-electrical quantum state control and readout, much less atten-
tion has been devoted to orbital entanglement, where the charge degree of freedom is used
in, e.g., ballistic channels [18, 19, 2426, 33] or quantum dots [21, 22, 110, 111]. The main
reason is the short decoherence time, typically in the nanosecond range [27-30], stemming
from severe charge noise induced from the environment. While recent experiments have
demonstrated coherent manipulation of single-electron orbital qubits [112-114] on the pi-
cosecond time scale, no experiment up to date has provided an unambigious test of orbital
entanglement. This motivated the work in Paper I, where we propose a quantum dot-
based setup to generate and detect orbitally entangled electrons via cotunneling processes
that take place on a time scale much shorter than the decoherence time. This setup paves
the way for a proof-of-principle experiment on orbital entanglement between electrons. In
the following subsection we summarize the main idea and some of the main results of this
work.

3.3.1 Sub-decoherence time generation of orbital entanglement

The system considered in Paper I [see Fig. 3.2 (a)] consists of three pairs of nearest-neighbour
coupled quantum dots, with one pair forming an entangler (£) and the other two each form-
ing part of a detector system (4 and B, respectively). Henceforth, the dots will be indexed
by v = 1,2,4A4,A—, B+, B—, with v = 1, 2 for the entangler dots, v = A+,4A— = «
for the dots at the 4 side and v = B+, B— = {3 for the dots at the B side. Each dot is
also coupled to a reservoir, denoted by the same «y. Keeping the reservoirs in the middle
at finite bias and the other four grounded, electrons are injected into the entangler dots
and extracted from the detector dots. Each dot has only one resonance level €, within the
transport window, with strong on-site Coulomb interaction preventing two electrons from
occupying the same dot. Furthermore, the system is operated in the high-bias limit, i.e.,
the resonance levels are placed well inside the transport window, allowing us to effectively
put the temperature to zero.

The intended entanglement generation cycle is shown in Fig. 3.2 (b). First, the entangler
dots are filled with electrons from the reservoirs at rates I'; and I'y, respectively. Tuning the
single-particle energy levels €, of the dots off resonance, subsequent sequential tunneling
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Figure 3.2: (a) The proposed quantum dot based setup consisting of two entangler dots (£) and two pairs of detector dots (4
and B). Each dot is tunnel-coupled to nearest neighbors as well as to a reservoir. (b) The entanglement generation—
detection cycle with pairs of electrons injected through the two reservoirs in the middle (1), then transferred via
cotunneling to the detector dots (here showing one of four possible processes) (II) and finally extracted through any
of the four reservoirs on the sides. This figure is taken from Paper I.

to the detector dots is suppressed. Instead, tuning the two-particle cotunneling processes
on resonance,
€1+ € + Uy ®eq + €5 + Uyg, (3.17)

where U, is the inter-dot Coulomb repulsion between dot 7y and ~', the two electrons
will cotunnel, with one going to detector system A and the other to detector system B
(strong inter-dot interaction prevents the two from going to the same detector system). The
electrons may end up in the detector dots in four possible combinations: A+B+, A+B—,
A—B+ and A—B—, similar to the spin experiment in the EPR paradox. The electrons
eventually leave the dot system at rates I'y, I'g through any of the four reservoirs on the
sides. We are considering the regime where I'y, I'g > I'1, Iy >> #3421/h, for which the
electrons tunnel out of the system before new electrons tunnel into the entangler dots. In
this regime, back-tunneling of electrons from the detector dots to the entangler dots is also
negligible.

Most importantly, the cotunneling processes take place on the picosecond time scale, i.c.,
on a time scale much faster than the typical decoherence time, which is of the order of
nanoseconds [27-30]. The cotunneling time Az may be estimated from AEAz > h, where
AE is the energy of the intermediate state where one electron has tunneled to a detector
dot but not yet the other. For a typical energy of AE = 1 meV, we get Az ~ 1 ps. This
estimate shows that the cotunneling processes indeed take place on a much shorter time
scale than the decoherence from the environment.

Hamiltonian

As we show below, the cotunneling processes from the entangler dots to the detector dots
may be seen as the emission of an entangled state that is locally rotated (the tunnel couplings
effectively work as an electronic beam splitter) on the way to the detector dots. The emitted
state is orbitally entangled, with a superposition between the upper electron going to the
left and the lower going to the right and vice versa. Furthermore, by tuning the tunnel
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couplings with electrostatic side gates, different detector settings may be used in order to
perform, e.g., a Bell test.

We consider the Hamiltonian of the full system
H=H, + Hp+ Hr+ V, (3.18)

with the Hamiltonians for the leads and the dots, respectively,

H; = ZEVkakCVk’ Hp = Z 675126{7 + E Z Ufw/ jry,djydfydfy/, (3.19)
Tk gl gl
as well as the Hamiltonians for the lead—dot tunneling couplings and the dot—dot tunneling
couplings
R . ] .
Hr = Z tv/edgcv/e + H.c,, V= > Z t,wldsd,yl + H.c. (3.20)
vk 7Y

Here ¢ and ;{7 are annihilation operators acting on the leads and the dots, respectively.
Furthermore, £, denotes single-particle energies of the leads and z,; and z,,/ denote the
lead—dot and the dot—dot tunneling amplitudes. We note that the total Hamiltonian re-
sembles the one in Eq. (2.11), however, here we have six quantum dots instead of just one,
which also means that we have to take into account their mutual interactions.

Under the two-particle resonance condition, and with the the sequential tunneling off res-
onance, the sequential terms in V are eliminated using a Schrieffer—Wolf transformation
(see App. B for further details), yielding the cotunneling dynamics in terms of an effective
Hamiltonian

[:[eﬂ? = [:[L + [:[D + [:]T+ Z (tgam;{%;{&;é;ﬁ + H.C.) (3.21)
af

up to a renormalization of the dot energy levels. Here « = A+, A— and 8 = B+, B— as
before. The two-particle tunneling amplitudes #347; are given by

181ta2 o 11282
AEsq  AEng'

18021 = (3.22)

where 1/AEg, = (e1+62+ Unn—[e2+ep+Ung)) "' +(e1+e2+ Unn—[e1+ea+ Uta)) ™!
at two-particle resonance, and AE, 3 obtained by permuting o and 3 in the expression for
AEg,. We note that the two-particle tunneling amplitude may be interpreted as the sum

of the amplitudes of two different interfering electron paths, with the minus sign stemming
from the anti-symmetry property of fermionic wavefunctions.
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Figure 3.3: The entangler—detector transfer process. Electrons are emitted from the entangler through different “rails”, either to
the left or to the right. The entangled state emitted from the entangler dots is effectively locally rotated (depending
on the tunnel couplings) at both detector systems before the electrons end up in the detector dots. This figure is
taken from Paper I.

Emission from the entangler to the detectors

Starting with the initial state vector [¥);; = aﬂidg |0) = |21), where the two entangler dots
are occupied, we find that the state that leaks out to the detector systems is given by

’\Il>dot = (Heff - HO ’\I/ ini Z t,BaZld Z 1Ba21 ’CVB (3-23)

By parametrizing the tunnel amplitudes as 2411 = 241 cos 04, t4—1 = 241 cos Oy, etc., with
2 2 2 .
|ta1|* = |tas1|* + |£4—1]%, we may write

(3.24)

—sinf; cosb;

‘\Ij>dot = (SA X SB)|\II>emi, S, = < cos 6; sin 91‘)

where the state emitted from the entangler is given by (up to a normalization constant)

W) emi = 2112)4|1) 8 — c12]1)4]2) 5, (3.25)

with c1 = tgotp1 /AEgy and ¢1p = ta1tpy/AE4p. We thus conclude that the state |U) 4,
in the detector dots may be seen as the emitted state |¥)em; locally rotated at each detector
system, see Fig. 3.3. Most importantly, the emitted state |¥).n; is entangled in the orbital
degree of freedom, as desired, for any finite values of ¢21 and ¢j5.

So far we have considered an idealized situation, where we start with the entangler dots
occupied. However, to rigorously model the dynamics of the open quantum dot systems,
we use the Lindblad equation [c.f. Eq. (2.26)]

PO - iz LRSS (AP 0]+ (1= £)D,, [ 006])

D, 5] 620

where ji(#) is the reduced density matrix of the quantum dot system, D[L, p] = LpLT —
I{LTL, p} is the dissipator and £, is the Fermi function of lead 7. In the high-bias limit
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considered, we have £, = 1 for v = 1,2 (the leads coupled to the entangler dots) and
Jy = 0 for v = A+, B+ (the leads coupled to the detector dots). The Lindblad equation
fully takes into account the transport of particles in and out of the system as well as between
the quantum dots. We have also included dephasing, with a rate I' ;. We will return to this
equation later in the chapter, when we consider the detection of the entangled electrons.
But first we consider how to quantify the amount of entanglement contained in a quantum
state.

3.4 Entanglement measures

While the definition of entanglement in Sec. 3.2 specifies what entanglement s, it does
not specify how to quantify it. Different entangled states display quantum correlations of
various strengths and are of various use for quantum information applications. It is thus
desirable to introduce a measure that quantifies the amount of entanglement.

To make sense as a quantification of entanglement, an entanglement measure £(p) should
be a function that maps density matrices to real numbers under the following conditions
[115]

1. E(p) = 0 for any separable p,

2. E(p) > 0 for any entangled p, and

3. E(p) does not increase on average under LOCC operations.

The last criterion is motivated by the fact that LOCC operations cannot create quantum
correlations.

3.4.1 Measures for pure states

For pure bipartite states, any entanglement is fully characterized by the Schmidt coefficients
previously introduced. This means that any entanglement measure for pure bipartite states
has to be a function of these coefficients. The most common such entanglement measure
is the entropy of entanglement [116], which is defined as the von Neumann entropy of one
of the reduced states

E(p) = S(eralp}) = S(era{p}) = = ) aflog (a7) . (3.27)

where «; are the Schmidt coefficients. We see from this relation that the more mixed a
reduced state of a pure state is, the more entangled is the state. In a sense, entanglement in
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this case is about the lack of information of the individual subcomponents of a composite
system about which we have full information. For the spin singlet and the other Bell states,
the reduced states are maximally mixed and the entropy of entanglement attains its maximal
value; these states are maximally entangled.

3.4.2 Measures for mixed states

A disadvantage of the entropy of entanglement is that there is no unique generalization
to the mixed states. Instead there are several ways of extending it to the mixed states, in-
cluding entanglement of formation, distillable entanglement and entanglement cost. These
entanglement measures are normally difficult to compute. In this thesis, we therefore in-
stead use another measure, called concurrence. Similar to the entropy of entanglement, the
concurrence Cy(p) of a pure state p is defined in terms of the purity of its reduced states
pa

G )W) = y/2(1 = u{pz}). (3.28)
This quantity may be easily generalized to all mixed states by a so-called complex roof
construction, which means that we define the concurrence as

C(p) = Iﬁ}? Zpicp(|‘1’i><‘1’i\)a with  p = ZP:‘|‘I’1'><‘I’1'|~ (3.29)

Most importantly, Wootter’s formula [117, 118] allows us to easily compute this quantity for
a two qubit system as

C(p) = max(0,\; — Xy — A3 — \g), (3.30)

where J; is the ith eigenvalue (in decreasing order) of \/ V(o ® 0,)p*(0, ® 0,)v/p, with
* denoting the complex conjugate. We note that the concurrence is equal to 0 for separable
states and to 1 for maximally entangled states.

Applying the definition of concurrence on the emitted state in Eq. (3.25), we find

le12] - [e21]

C) ene(Vlent) = 2—F5——5.
(| >C t< ’C t) ‘6‘12‘24-‘621’2

(3.31)

A maximally entangled state may be generated if c;2 = 21, for which C(|¥)ene(Vlenc) = 1.
We also note that the emitted state is entangled for all ¢12, ¢2; # 0. Any concurrence may
be generated in the quantum dot system depending on the tunneling amplitudes. Thus,
the system constitutes a kind of testbed for producing orbital states with various amount
of entanglement.
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Figure 3.4: (a) A generic entangler—detector system for bipartite entangled electrons. Entangled electrons (here in the spin
degree of freedom) are emitted from an entangler (green) at a rate T and separated to two different detector
systems A and B. At each detector system the state of each electron is read out, e.g., with ferromagnetic leads. The
projection of the state of an electron onto the polarization axes a and b, respectively, determine the probabilities to
end up at the + and — leads. In addition, there is a probability 1 — {4, 5 to end up randomly at any lead, independent
of the state of the spins, where 0 < ¢4, 5 < 1 are the detector effiencies. Inset: For two measurements, the detector
settings can always be chosen such that the polarization axes are symmetric in the xz plane about the z axis. The
result only depends on the local relative angles 6,4 and 6. This figure is taken from Paper Il. (b) The current cross-

correlations are related to the annihilation (creation) operators ¢, ”m ?fjj 22,” 1) 3t the leads. These are in turn

related via scattering theory, described by scattering matrices SA and Sz, to the annihilation operators (creation

operators) at the entangler, Eﬂ) E/(J) , Eg' ), AI(;”

3.5 Entanglement detection in nanoscale systems

So far, we have seen how orbitally entangled electrons can be generated in a quantum dot
system. We have also seen how the entanglement may be quantified using entanglement
measures. However, to actually measure the entanglement experimentally is a completely
different story. We here address entanglement detection schemes — schemes aiming at un-
ambiguously verifying that a quantum state is entangled. Inspired by their equivalents in
quantum optics, Bell tests [19, 24, 25, 119, 120], full quantum state tomography [r21] and
entanglement witnesses [31—34] have been proposed for nanoscale systems over the last two
decades. However, in contrast to their equivalents in quantum optics, these schemes are
typically formulated in terms of current cross-correlations [19, 24, 25, 120, 122], and not
single-shot correlation measurements. The main reason is that current detectors normally
have a limited bandwidth that does not allow for time-resolved detection of single elec-
trons. That said, recent advances in single-electron detectors [65], for instance based on
quantum point contacts [66—68], may eventually open up the possibility of conducting
single-shot detection completely analogous to quantum optics experiments. This will be
further discussed at the end of this section.

Entanglement detection based on zero-frequency current cross-correlations

To investigate entanglement detection in nanoscale systems, we now consider the generic
entangler-detector setup shown in Fig. 3.4. An entangler, whose internal structure is of
less importance here, emits electrons, entangled either in the spin or the orbital degrees of
freedom, to two spatially separated detector systems, A and B, each consisting of two leads
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+ and —. The system is operated in the high-bias limit, with a large bias applied between
the entangler and the detector systems to drive a unidirectional flow of electrons from the
entangler to the detector leads, with the temperature effectively set to zero. In general, the
emitted state of the entangler is a full many-body state consisting of a superposition of states
with different particle numbers, whose effective two-particle density matrix may be probed
with cross-correlation measurements [121]. However, here we assume that the entangler is
operating in the tunneling regime, with single pairs of electrons emitted well-separated in
time at a rate I'. In that case, the emitted state pyp is a truly two-particle state.

On their way to the detector leads, each electron of a pair passes through an electronic
beam splitter. Using, e.g., electrostatic side gates one may modify the lengths between
the entangler and the detector leads, effectively inducing controllable phase shifts. The
beam splitters act as local unitary transformations (determining the detector settings) on
the emitted state before the electrons end up either at lead + or lead — depending on
their spin or orbital state. The aim of this section is to investigate how the entanglement
of the emitted state may be probed by measuring low-frequency current cross-correlations
between the detector leads.

The zero-frequency current cross-correlators are defined analogous to Eq. (2.54), but with
currents of different conductors cross-correlated and w set to zero, thus yielding

S =7 [ d{AT0. 0TmO}), 6

where AJ4q(2) is the current fluctuation operator at lead A« at time zand AJpg(0) is the
current fluctuation operator at lead Bf at time 0, with «, 5 = %. The average is taken
with respect to the steady-state density matrix describing the continous flow of electrons
from the entangler to the detector leads. The cross-correlators may be [121, 123] expressed
: PN PSRN :

in terms of the number operators 7§ = ¢, ¢4 and %§ = ¢p, Ca for each respective lead

as
SU = 28T [(aGah) — (05) (i5) | - (3-33)

Importantly, in the tunneling regime where the second term is negligible, we see that a
zero-frequency cross-correlation measurement naturally produces an ensemble average over
many realizations of single emissions from the entangler.

Using scattering theory, we may go “backwards” in the system and relate, via the elec-
tronic beam splitters, the creation/annihilation operators at the detector leads to the cre-
ation/annihilation operators of the degrees of freedom of the emitted state. In general, the
beam splitter at the A side may be described by the following scattering matrix

<§A+> _s, (§A1> 5, — ( NI NI > (5.3

CA2 \/TA/("OA1+¢A2) — RAgi(SDAl‘HOAS—(f)A)
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where Ry is the reflection coefficient, 74 = 1 — Ry is the transmission coefficient, ©4.,
~1 = 1,2, 3, are uncontrollable (but for one and the same measurement fixed) phases and
¢4 is the phase shift induced by, e.g., an electrostatic side gate. An analogous relation holds
for the beam splitter at the B side. Using these relations, we may, in the tunneling limit,
rewrite Eq. (3.33) as

S — 28 r (A"‘ ® BﬂﬁAB) (3.35)
where p4p still denotes the emitted state and
1 1
Aizi(Iﬂ:a'G) and Bi:E(I:I:b'O'), (3.36)

with a and b the polarization unit vectors of each detector system parametrizing the beam
splitters, I the identity operator and o the Pauli vector. We have thus obtained a relation
between the zero-frequency current cross-correlators and the emitted state of the entangler.

Non-ideal detectors

So far, we have assumed that the scattering process is perfect and neglected the influence of
the environment on the emitted state during its transfer from the entangler to the detector
leads. This influence may be modeled as polarization channels acting on each electron,
Eatrpl{papt = Catep{pas} + (1 — CA)% for the A side and similar for the B side. The effect
on the whole two-particle density matrix is

E(pag) = (€4 @ EB)pas, (3.37)

where (4 8 = pa.p(1 —n4,8) [124] are the effective detector efficiencies, with 0 < p4p < 1
the polarization of detector system A, B and 74,3 the spin-flip rate on the way from the
entangler to detector system A, B. Using the relation tr{ A*@B*E(pap)} = tr{E4(AT)@
Es(BT)pap} [32, 124], we obtain

AT )
S — o {(l+Ga- o) ® (T4 (b - o)pas}, (3.38)
in the case of non-ideal detector efficiencies. As expected, we see that for (4 = (3 =

0, we do not obtain any information about p4p from the zero-frequency current cross-
correlations.

3.5.1 Bell test

Dating back to the original EPR paradox and the debate on violations of local realism, Bell
tests are the most conventional way of detecting entanglement. The aim of such a test is
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to violate a Bell inequality, derived from the condition that local realism has to hold, and
thereby demonstrating the presence of entanglement. We focus on the CHSH inequality
previously introduced in Sec. 3.1 [see Eq. (3.4)]

B = |E(a,b) + E(a,b’) — E(a’,b) 4+ E(a’,b")| < 2, (3-39)

where B is the so-called Bell parameter. Here £(a,b) = (65 ® 0p) are the correlation
functions for the measurement outcomes at detector system A and B for various detector
settings a and b. If a combination of two pairs of settings a, b and a’, b’ are found to lead
to a violation of Eq. (3.39), the measured state must be entangled. However, as previously
mentioned, the opposite is not true; there are entangled states that are not violating any

Bell inequality.

Using the expression in Eq. (3.38), we may express the correlation functions for the Bell test
as

Hab) = 318~ Sis —Su + 5 (5.40)
S S S+ Sy 340
AB AB AB AB

where we have assumed ideal detectors, (4 = (g = 1. Here we note that the correlation
functions may be obtained from the zero-frequency current cross-correlations. However,
we may also note that for each correlation function we need four different current cross-
correlation measurements, thus 16 in total for a complete Bell test.

Bell test for orbital entanglement in a quantum dot system

We now demonstrate how to extract the zero-frequency current cross-correlations from the
quantum dot system discussed in Paper I and use them to formulate a Bell inequality. To
this end, we first introduce counting fields ., that couple to the net particle current to
each lead 7, yielding the counting-field resolved Lindblad equation [c.f. Eq. (3.26)]

PO i, plo)] + > (APl 0]+ (1= £)D, [ 000])

T .
+7@DO [djydfy’ ﬁ(t)]:| ; (3.41)

where D, [L, p] = XIpLt — %{ﬁi, p} is the counting-field resolved dissipator.

Using Eq. (2.44), we obtain the cumulant generating function of the long-time statistics
from Eq. (3.41) by extracting the eigenvalue that goes to zero when the zero counting fields
g0 1o zero
Fy = Z(Ei(xa-ﬂ-x;s—Xl—Xz) —1)Pap (3.42)
aB
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to leading order in the tunneling amplitudes. Here « = A+, A— and 8 = B+, B— as
before. The transfer rates are given by
|t8021)*(Ta + T +Ty)

Pog = — ; (3.43)
BT +Ts+Ty,)2+ €08

with the energy difference €120 = €0 +€5+ Uag — (€1 +€2+ Ul2) from two-particle res-
onance. The expression in Eq. (3.42) corresponds to four different cotunneling processes,
where the two electrons in the entangler dots are transferred to the four different combin-
ations of detector dots. Each transfer process is Poissonian and takes place at a rate set by
Pn3. Pop may be interpreted as the (unnormalized) joint detection probabilities of having
one electron transferred to dot o and another to dot 3.

Most importantly, these quantities may be extracted from zero-frequency current cross-
correlations. This can be seen by calculating the cross-correlations as derivatives of (3.42)
with respect to different counting fields, yielding

O°F,

Sa = C’zpa = ezf .
B B 0(ixa)0(ixg) Xa=Xx3=0

(3.44)
From this expression, we can also obtain the correlation function in Eq. (3.40), where we
set (4 = (p = 1 since all charge transfer events are assumed to be perfectly detected for
the quantum dot setup.

We recall that the detector settings are determined by the tunneling couplings between the
entangler and the detector dots. By tuning them, with electrostatic side gates, one may
choose different settings to perform a Bell test. However, this tuning must be made in such
a way that the emitted state [see Eq. (3.25)] is not altered. To this end, we assume that the
tuning of the tunneling may be parametrized with an angle 6,4 as

tar1 = tq1 COS by, t4—2 = tgpcos by

ta—1 = tq1 siny, tara = —tap8inby, (3-45)
where £, = £, ,+£,_, is the total probability for an electron in the upper entangler dot to
tunnel to detector system A and £, = £, + #;_, is the corresponding probability for an
electron in the lower entangler dot. A similar parametrization is assumed to hold at detector
system B. Under this rotation of the tunneling rates, for which |t441/2t4—1| = [t4—2/ta+2]
and |tg41/tp—1| = |tp—2/tB+2|, the emitted state is the same. More specifically, the coef-
ficients defining the emitted state in Eq. (3.25) are given by 12 o #4125 and ¢1 o t422p1
[see Eq. (3.25)].

Inserting these parametrizations in Eq. (3.43) and using Eq. (3.39), we obtain the maximal
value of the Bell parameter that one can obtain for the emitted state

Biax = 2V 1 +sin? 6, (3.46)
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where § = 2 arctan(ci2/e21), —7 < 6 < x. This value of the Bell parameter is clearly
larger than 2 unless 15 or ¢ is zero. This demonstrates that the inequality in Eq. (3.39)
can be violated — at least in principle — whenever the emitted state is entangled. We have
thus showed how the emitted state can be detected using zero-frequency current cross-
correlations. That said, it is still experimentally highly challenging to perform a Bell test.
The main reason is that the tuning of the tunneling couplings have to be made in a very
controllable way. In reality, the control of the tunneling couplings may be very limited and
it can be challenging to tune, e.g., one of the couplings without affecting the others. One
would therefore instead like to use a detection scheme based on a smaller set of settings and
measurements, such as entanglement witnesses.

3.5.2 Entanglement witnesses

Although the above calculations show that a Bell test may — at least in principle — be per-
formed in our quantum dot system, realizing such a test still remains a big hurdle to over-
come. As already pointed out, a Bell test requires 16 different cross-correlation measure-
ments, in four different bases. Both for the tunneling couplings used in the quantum dot
system as well as for other nanoscale detection schemes, such as those based on ferromag-
netic leads for spin entanglement detection, it is challenging to fully control the detector
settings. This makes it difficult in practice to realize all the right settings that are needed for
a Bell test. It is therefore desirable to use alternative detection schemes where the required
number of measurements, in particular the number of settings, can be reduced.

One such kind of detection schemes is based on entanglement witnesses [95, 125], which
are the main objects of Paper I1. The idea behind witnesses is to use a7y observable which is
capable of distinguishing entangled states from the separable ones to detect entanglement.
More precisely, if an observable, for at least one entangled state, produces an expectation
value that no separable state can yield, it can be used as a witness for that entangled state.
Mathematically, we define a witness operator WV as any operator fulfilling

(W) = au{Wp} > maxu{Wp,} or (W) =u{Wp} <minu{Wp}  (.47)
ps ps

for at least one entangled state p, where the minimization/maximization is performed over
all separable states p,. The first condition we call the “upper limit condition” and the
second condition the "lower limit condition”. In the literature, these conditions are often
renormalized to

w{Wp} <0 and w{Wp} >0 Vp. (3.48)

However, here we will focus on the actual experimentally measured quantities and thus
stick to the conditions in Eq. (3.47).
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Figure 3.5: The set of all states (density matrices) is convex. This set is made up of the convex subset of separable states
(yellow) and the non-convex subset of entangled states (green). An entanglement witness may be represented as
a hyperplane, separating the entangled states that are detectable from the separable states. Here Wy is a witness
superior to the non-optimal Wj.

We note that the Bell parameter in Eq. (3.39) itself may be seen as a witness. It detects all
entangled states that yield a larger value than B = 2. Entanglement witnesses are thus a
more general class of detection schemes than the Bell tests. Another example of a witness
is W = 0, ® 0, + 0, ® 0,. The great benefit of entanglement witnesses compared to
Bell tests is indeed their generality. First, in contrast to Bell inequalities, there is a witness
for every entangled state [95] that can detect it. This fact is illustrated in Fig. 3.5; for every
entangled state there is a witness, represented by a hyperplane, that separates it from the
convex set of separable states. Second, witnesses allows for detection schemes that require
much fewer measurements [126—128] than conventional Bell tests. This holds true even for
multipartite entanglement [129].

Minimal entanglement witnesses based on zero-frequency cross-correlations

We now address how entanglement witnesses can be used to minimize the number of zero-
frequency current cross-correlations needed to detect entanglement, the topic of Paper II.
In previous works, entanglement witnesses have been formulated in terms of zero-frequency
cross-correlations with the aim of decreasing the number of measurements needed to wit-
ness entanglement in solid-state systems [31-34]. Here we will present the idea behind Paper
II, that is, how to find the minimal number of measurements needed to detect entangle-
ment.

Based on Eq. (3.35), we start by writing down an expression for an observable corresponding

to an arbitrary number /V current cross-correlations (up to uninmportant prefactor of %)
between lead A+ and lead B+

N
W= (1+Ca;-0) @ (1+(sb;- o). (3.49)

=1

Here a; and b; denote the polarization vectors used as the ith measurement setting at
detector A and B, respectively. We are assuming that the detector efficiencies (4 and (3
are the same throughout one and the same experiment. The work of Paper II focuses on
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investigating what the smallest possible number /V is that makes YV a witness and what
entangled states are detectable for that /V.

Witness conditions

To be a witness, the operator in Eq. (3.49) needs to fulfill the condition in Eq. (3.47) for
at least one entangled state p. First, we note that for V= 1, W is just a tensor product
of local operators. The expectation value of such an operator can always be mimicked by a
separable state. Thus, as expected, it is not possible to detect any entangled states with just
one single measurement.

However, we will now show that for V= 2, YW works as a witness. To see this, we first
reformulate the witness conditions in Eq. (3.47). To have a witness the largest/smallest
possible expectation value has to be produced only by entangled states. At the same time,
the largest/smallest expectation value is obtained from the eigenstates of WW. Thus, the
witness condition implies that the eigenstates with the largest/smallest eigenvalues have to
be entangled. In addition, the eigenvalues must be nondegenerate since one may otherwise
construct a separable state out of a linear combination of the two entangled degenerate
eigenstates that also maximizes/minimizes the expectation value. The witness condition
is therefore equivalent to having eigenstates with the largest/smallest eigenvalues that are
(i) entangled and (ii) unique.

To investigate these conditions, we first note that the expectation value tr{Wp} as well as
the amount of entanglement of the state p are invariant under local unitary transformations.
This means that, without loss of generality, we may consider a coordinate system where the
polarization vectors at each detector system lie symmetric about the z axis in the xz-plane.
The angle between the polarization vectors for the two different settings is denoted by 64
and 0p, respectively. The witness conditions then boil down to conditions only on these
angles and the efficiencies (4 and (3. To investigate condition (i), we use an eigenvalue
decomposition of W, yielding the eigenstates with the largest and the smallest eigenvalues

Y1) = sina|++) —cosal——),

[Ys) = cosal++) +sinal-—), (3.50)
in the local {|+ +), |+ —),|— +), | — —) }-basis with the angle 0 < @ < /4 obtained
from

tana = (\/(CA +cp)? + 5555 — (ca+ c3)> /545B- (.51

Here we have introduced ¢, = (4 c08(04/2), sa = (asin(fn/2), @ = A, B, with
cos(f4) = a; - a3 and cos(6p) = by - by. Importantly, both |1);) and |1)4) are entangled
for all a # 0, i.e., for all detector parameters except 04 = 0, 0p = 0, (4 = 0 or (3 = 0,
for which WA%) can be written as a product of local operators.
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Figure 3.6: Left panel: The maximal detection margin as a function of the concurrence C of an entangled pure state for a
symmetric setup, ¢ = ¢4 = ¢z and 0 = 04 = 0. The blue curve corresponds to the upper limit condition and
the green curve corresponds to the lower limit condition. Right panels: The optimal detector settings ¢ and 6 as a
function of C.

To investigate condition (ii), we consider the corresponding eigenvalues

)\,’ =2 <1 + CACB + \/(CA + L‘B)z + 51245129> 5 (3.52)

where the indices i = 1, 2, 3,4 correspond to an order of + as {+ — +},{— — —},{— +
—h{+ + +} with Ay < Ay < A3 < A4, We here see that both eigenvalues A1, A4 are
non-degenerate for all detector parameters, except 04 = 7, 03 = 7, (4 = 0 or (3 = 0, for
which A\; = A3 and A3 = A4 due to local rotation symmetries of the polarization vectors,
and (4 = (g = 1 for which A\ = X, due to a hidden, non-local symmetry [130, 131].

We thus conclude that for N = 2, we have a witness for all finite detector efficiencies
(€4, (g > 0) and non-collinear polarization vectors (04, 05 # 0, 7). This is one of the main
findings of Paper II. This result shows that our minimal entanglement witness allows us to
significantly reduce the number of required settings to detect entangled states compared to
a conventional Bell test.

Detectable states

Interestingly, the results in the previous subsection also answers what entangled pure states
are detectable since every entangled pure state may, under local unitary transformations, be
turned into an eigenstate of the form in Eq. (3.50) for some cv. This means that any pure
state may maximize/minimize the expectation value of W for some detector setting. Only
for the maximally entangled states, for which & = 1, W is not a witness. In all other cases,
W works as a witness that can detect the entangled pure state.

For the singlet state p*, we have 2(1 — (4(p) < tw{Wp*} < 2(1 + Cu(p), while for
separable states p;, min, tr{Wp,} < 2(1 — (4(p) and max; tr{Wp,} > 2(1 + C4(p).
In other words, the expectation value of the singlet state can always be reproduced by a
separable state. Since the singlet state is equivalent to all maximally entangled states under
the local unitary transformations, we conclude that none of them are detectable. We thus
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Figure 3.7: The detection margins for a symmetric setup with & = 64 = 0z and ¢ = {4 = (p for mixed states of the form
p=(1=XN)]U)(¥|+ A[/4,0 < X <1, with |¥) state with concurrence 0 < C < 1. This figure is taken from
Paper II.

conclude that all entangled pure states are detectable, except the maximally entangled. The
maximally entangled can, however, be detected with three measurements, which is still
much better than the 16 measurements required in a Bell test.

For a real experiment it is not only interesting to know which states can be detected, but
also how large the detection margin is. The detection margin is defined as the difference
between the expectation value of W with respect to a certain entangled state and the closest
expectation value obtained for any separable state

A/‘)V+ = (W) — max (W p,),

min er( WY p,) — (WA ). (3.53)

Ps

Wf
A,

Focusing on symmetric setups, we find the optimal settings shown in Fig. 3.6 as a function
of the concurrence of the pure state. As expected, we see that both separable (C = 0) and
maximally entangled states (C = 1) are undetectable, while all non-maximally entangled
states give finite detection margins. Interestingly, the hidden, non-local symmetry discussed
before makes non-ideal detectors better than ideal detectors for the lower limit condition.

Furthermore, we investigate which mixed states may be detected with just two measure-
ments. We find the maximal detection margin for mixed states of the form

b= /44 (1 - \)w)(], 6559
shown in Fig. 3.7. We sce there that some noise may be tolerated, but that the detection

margin decreases with increasing noise level and eventually becomes zero.

3.5.3 Short time detection

We end this section by considering a short-time detection based on the second-order degree
of coherence. Motivated by the advances in single-electron detectors [65—68], there is a
growing interest for performing a short-time formulation of a Bell inequality in solid-state
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systems, corresponding to the single-shot measurements in quantum optics. In Paper I, we
investigate how to formulate a Bell inequality in terms of the cross-correlated second-order
degree of coherence, which is defined as

(Jae™7 Ta) + (Tpe™" Ta)

)y _
£ap(7) 2T 559

similar to the ordinary ¢(®(7) function in Ch. 2. For the quantum dot system in Paper I,

we find

_p, Lals &
N aBFQ—FF/BZIQI/B

to leading order in the cotunneling amplitudes. We see here that P,4 may be extracted

gfg)(T ) (et 4+ tem), (3.56)

directly from this quantity if we know the tunneling rates Iy, I'g and the currents 7, and
Ig. We note that this expression is only valid for 7 < 1/I'y and 7 < 1/T'g; terms of
order unity are neglected.

Importantly, the zero-frequency current cross-correlators may also be obtained since
o0
Sap = eZPaﬁ = 2[a[5/ &l’ngﬂ)(T). (3.57)
0

Short-time detection in terms of ¢!?) () functions is thus equivalent to the zero-frequency
current cross-correlation measurements. In both cases, we may extract the (unnormalized)
joint detection probabilities 3.

3.6 Summary and outlook

In this chapter, we have introduced some of the most peculiar features of quantum mechan-
ics: entanglement and quantum correlations. These concepts constitute key ingredients for
many applications in the field of quantum information and quantum computing. Much
of this chapter has thus focused on how to generate and detect entangled states in a con-
trollable way. For instance, we have seen how the quantum dot system in Paper I allows
us to generate and detect orbitally entangled electrons on a sub-decoherence time scale.
This is possible by taking advantage of cotunneling processes that take place on a time scale
much faster than the decoherence time. The quantum correlations displayed by entangled
states may be detected from zero-frequency current cross-correlation measurements. One
of the advantages of such measurements is that they do not require detectors with wide
bandwidths that can resolve single-electron events.

While most proposals for entanglement detection in nanoscale systems so far are based
on zero-frequency cross-correlation measurements, new technological advances in single-
electron detection methods pave the way to single-shot coincidence measurements of in-
dividual electrons. The setup in Paper I would be very suitable for such an experiment,
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completely analogous to the ones in quantum optics, since the tunnel rates to the leads
can be made arbitrarily weak. The mean time between tunneling events may then be long
enough to allow for today’s single-electron detectors, with a bandwidth in the sub-MHz
range, to detect the electrons.

As shown in the last section of this chapter, entanglement witnesses provide a way of sub-
stantially reducing the number of measurements needed to detect entanglement. In Pa-
per II, we show that the number of measurements may be reduced from the 16 of a Bell
test to just two or three. Surprisingly, the maximally entangled states require three meas-
urements. However, it is not clear if the use of nonlinear entanglement witnesses could
reduce this number to two. In any case, two or three measurements is still much better
than 16. It reduces the experimental effort needed to detect entangled electrons signific-
antly and can hopefully contribute to making entanglement detection in solid-state system
experimentally more feasible.
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Chapter 4

Quantum thermodynamics

In this chapter, we introduce the second main topic of this thesis: quantum thermodynam-
ics or, more specifically, heat transport and temperature fluctuations in nanoscale systems.

Classical thermodynamics, dealing with energy, heat and work in large systems close to
equilibrium, was largely developed during the 19th and the beginning of 20th century.
Based on often fascinatingly simple arguments, this theory typically describes complex sys-
tems, consisting of an enormously large amount of degrees of freedom, with only a very few
parameters like temperature, volume and pressure. Despite this, or maybe because of this,
thermodynamics has been a surprisingly successful theory, laying the theoretical found-
ation for everything from daily-life applications such as heat engines and refrigerators to
fundamental concepts such as black-body radiation and thermal states.

However, when going to smaller systems, such as nanoscale systems, fluctuations play an
increasingly important role. It is not obvious that a thermodynamical treatment, based
on statistical arguments, of such small systems with one or only a few particles would be
possible. Only during the last decades, with the advent of the Jarzynski equality [36, 37]
and the Crooks fluctuation theorem [38], it was realized that thermodynamics may also be
applied to these systems, leading to the development of stochastic and quantum thermo-
dynamics. In the latter case, the influence of quantum effects may also be investigated.
However, despite a great amount of research recently, heat transport in nanoscale systems
is still much less explored than, e.g., charge transport, mainly owing to the lack of a thermal
counterpart to the ammeter.

Here, in this chapter, we will introduce some of the basic tools to describe and investigate
heat transport. We start by considering heat transport in nanoscale systems in terms of
long-time statistics (Sec. 4.1). We will consider the same example system as in Ch. 2 to
exemplify important concepts. Then we introduce the single electron box (Sec. 4.2) and
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present an overview of the main findings of Paper III, in particular how to extract the
temperature statistics and its relation to the heat transfer statistics. After that, we consider
the main topic of this chapter, namely quantum calorimetry in a metallic island coupled to
a superconducting injector (Sec. 4.4) with the aim to detect heat. We end the chapter with
a summary and outlook (Sec. 4.5).

4.1 Heat transport in nanoscale systems

Just as in classical thermodynamics, heat constitutes, together with work, one of the most
important concepts in quantum thermodynamics. According to the first law of thermody-
namics, a closed system (i.e., a system which does not exchange mass with its environment)
may change its energy only through heat and work. Work is energy added through a change
of the macroscopic degrees of freedom that may be controlled externally, e.g., by an applied
bias or a volume change. Work may be described by a Hamiltonian that depends explicitly
on these macroscopic degrees of freedom, or implicitly through a time dependence. By
contrast, heat is energy added through the microscopic degrees of freedom that are usually
not accessible externally (by an experimentalist), for instance the motion of single particles.
The difference between heat and work for a quantum system is most clearly illustrated by
considering an infinitesimal change 4 of the expectation value of the Hamiltonian H(7)
(132]

dE = dir {]:](t)ﬁ(t)} =t {d]:](t)ﬁ(t)} Fur {ﬁ(t)dﬁ(t)} =AW+ dQ, (4.1

where p(#) is the reduced density matrix of the system. Here we see that an energy change
dE may be caused either by a change in the Hamiltonian (corresponding to the infinitesimal
work dW described by the first term) or by a change in the density matrix (corresponding
to the infinitesimal heat 4Q described by the second term). For a closed system whose time
evolution is described by the Liouville-von Neumann equation, the last term drops out as
there is no heat exchange with the environment. However, the second term may become
important for systems whose time evolution is described by master equations. Notably, for
systems exchanging particles, the second term may also contain a work contribution #dN,
where p is the chemical potential and @V is an infinitesimal change in the particle number.
If the Hamiltonian of the system is time-independent, this results in the heat expression

dQ = dE — udN. (4.2)

Much of this chapter will focus on heat transport and its connection to temperature fluc-
tuations in nanoscale systems. In this section, we introduce the basic concepts to describe
heat transport statistically using the tools from Ch. 2. Heat transport is of vital importance
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Figure 4.1: A single resonance level coupled, with coupling strenghts ~. and ~,, to two reservoirs, one with temperature 7, and
the other with temperature 7;,. The occupation numbers of the reservoirs are 7,,, = (exple/(ksT, )] £ 1) ".

for our following discussion on temperature fluctuations and quantum calorimetry. To ex-
emplify all concepts, we again consider the example system introduced in Ch. 2. However,
to make this system somewhat more interesting, we now consider a single resonance level
coupled to rwo reservoirs, one hot with occupation number 7, and one cold with occupa-
tion number 7, see Fig. 4.1. For simplicity, in the fermionic case, we assume that there is
no voltage bias applied between the reservoirs. We consider the net heat transferred from
the system to the cold reservoir, but all concepts may equally well be used to describe the
net heat transfer to the hot reservoir. In the bosonic case, this allows us to present some of
the key findings of the second part of Paper V.

4.1.1  Master equation approach

To extract the heat transfer statistics for a certain system, we proceed in the same way as we
did in Ch. 2 to obtain the particle emission statistics. The main difference is that we now
use a counting field s that couples to the transfer of hear instead of particles. Introducing
the density matrices p(E, #) describing the system state provided that a certain amount of
heat £ has been transferred to the cold reservoir during a measurement time # we obtain
the following energy-resolved master equation

PED (£ g TIPED + TpE+ 20 + TiE—), )
where J,/(¢) = 774 p(#)a is the absorption current superoperator and J,4(¢) = 7.(1 &
7.)ap(¢)a! is the emission current superoperator for adding and subtracting, respectively, an
amount of energy € in the system from/to the cold reservoir. The Lindbladian superoperator
L is, as before, obtained from Eq. (2.33).

Employing a Laplace transformation, p(s, 1) = [ dEp(E, t)e™, we obtain the counting-field
resolved master equation, which in the fermionic case of our example system is

é <P0(5, t)) — ( —Yelte — V7 ’Yc(l - ;’c)ea + ’Yh(l - nb)) (PO(S’ t)) (4 4)
dr \ " (Sa t) Vtﬁce_a + hy _’76(1 - 7_10) - /7/1(1 - ﬁ/a) Py (-‘-a t) ’ .

where Py(s,2) = (0]p(s,£)|0) and Pi(s,2) = (1]p(s,2)|1) are the populations of the
counting-field resolved density matrix. In the bosonic case, the system dimension is in-
finite and the matrix representation of the master equation becomes infinitely large, see
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Paper V for further details. However, due to the weak coupling limit, where only one
particle is exchanged with the environment at a time, this matrix representation has a sim-
plified tridiagonal structure.

4.1.2  Long time statistics

To characterize the heat current statistics, we extract the long-time cumulant generating
function. This is done completely analogous to the procedure described in Ch. 2 for emis-
sion currents, i.e., from the eigenvalue of the counting-field resolved Lindbladian that goes
to zero when the corresponding counting field goes to zero. This yields

F(s,8) e+ YeVh
= <:F1 + \/1 :|:4(%+%)2/£(5)> , (4-5)

where k(s) = (¢ — 1)(1 F n.)ny, + (7= — 1) (1 F 1y).

From the CGF we obtain all the cumulants that describe the heat transfer statistics. For
instance, the average heat current is

Je= () = 12000

t t  Os

o YeVh
e——(
s=0 ,.YC + PY;J

ny — ). (4.6)

We see that the average heat current depends on the difference in the occupation numbers;
if the difference goes to zero the net heat current goes to zero as well. The expression in

Eq. (4.6) may be understood as a number of particles 7, and 7, being transferred at a rate
YVh
Vet+p
terms of the occupation numbers, this expression is identical for both bosons and fermions.

in each direction, with each particle carrying an amount € of heat. Interestingly, in

The zero-frequency noise, on the other hand, does depend on the particle statistics, as
shown by

2 s
$0) = Ly = 120

s=0

2 YW <_ L _ N e 2
= e———— | n(1Fn) +n(1Fn)F2(n,—n) ) . (4.7)
Yo+ (Ve +1)?

One may easily consider higher-order cumulants by considering higher-order derivatives of

the CGE

4.1.3 Thermal conductance

The thermal conductance & is the analog quantity of electrical conductance for describ-
ing how well a junction sustains a heat current. Characterizing the linear response to a
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temperature gradient, it is defined [133] as the amount of average heat J flowing through

the junction per unit time when an infinitesimal temperature bias A7 is applied over the

junction

— lim ]—E
AT—0 AT

The thermal conductance is typically temperature dependent. For instance, for our example

system, we obtain

dJE e v
K= = ———n(1 F n), (4.9)
dT) T=T)=T. kpT? Ye + Y ( )

where we clearly see the manifestation of the Pauli principle in the fermionic case as a
blocking factor 72(1 — 7). Here 7 = n;, = 7, is the equilibrium occupation number. The
thermal conductance is suppressed at low temperatures for both bosons or fermions. At
high temperatures, the conductance increases and reaches a maximum for both bosons (for
which 7 — c0) and fermions (for which 7 — 1/2).

For metals, the thermal conductance at temperature 7 is typically linked to the electrical
conductance G via the Wiedemann—Franz law [134]

k= LoGT, (4.10)

with the Lorenz number £y = %zg As a side remark, we note that for thermoelectrical
applications it is desirable to reach a as high ratio of G7/k as possible to obtain a high value
of the figure of merit, Z7 = S? GT/k, with § the thermopower. With the Wiedemann—
Franz law setting a fixed value for this ratio, much research has focused on violating this
relationship between the thermal and the electrical conductance [135-143]. Such violations

typically occur where interactions are present that cause the single-particle theory to fail.

Here our interest in the thermal conductance instead lies in its crucial role for the relation
between heat and temperature fluctuations. As we will see later in this chapter, a high
thermal conductance to the environment suppresses temperature fluctuations as any excess
energy is more quickly dissipated to the environment.

4.1.4 Fluctuation—dissipation theorem

So far, we have seen several different ways of characterizing heat transport, for instance
in terms of average heat currents, zero-frequency noise and thermal conductances. While
the average current does not contain any information about the particle statistics, both the
zero-frequency noise and the thermal conductance do. Quite surprisingly, the two latter
quantities are interlinked. This is the essence of the fluctuation—dissipation theorem [144,

59



145], which relates fluctuations in equilibrium to the linear response to a small perturbation.
The theorem states that
Sy, = 2k Tk, (4.11)

which is also what we find by comparing Eqs. (4.7) and (4.9) for our example system.

Besides providing a deeper physical understanding for the relation between fluctuations
and dissipation, the fluctuation—dissipation theorem allows us to obtain the thermal con-
ductance from the noise, and vice versa.

4.1.5  Fluctuation relation

While the fluctuation—dissipation theorem provides us with the noise at equilibrium, it says
nothing about fluctuations far from equilibrium. However, even fluctuations arbitrarily far
away equilibrium do obey certain relations, as illustrated by the Crooks fluctuation relation
(38]. These fluctuation relations may be obtained directly from a symmetry property of our

CGE. Using that ¢=7/¢(1 F .)7), = (1 F )7, we find

F(_5 - Aﬁ) t) = F(jv t)) Aﬁ = (56 - /B/J)u (4-12)
which, by transforming back to the probability distributions, results in the fluctuation

1 PUE; t) .
7 In |:P(_]E,t):| = ABJE. (4.13)

Here we stress that /z is the average heat current measured over a long time 7. The fluctu-
ation relation describes the probability P(/E, ¢) of having a certain /¢ over a time ¢ relative to
the probability of having the same average current flowing in the opposite direction. This
relation is governed by the entropy production rate A3/ associated with the heat current
JE. The more entropy production associated with a certain current, the less likely it runs in

relation

the opposite ("wrong”) direction.

From the fluctuation relation, we may derive other important results, such as the second
law of thermodynamics for the average entropy production over a long time #

(S)e

| assrts. = s [ digers

mﬁ/ AP (1 — ) > 0, (414)
0

where P(S,2) = %PUE, t) is the probability that an amount of entropy § = fASJE is
produced over a time # In the third step, we have made use of the fluctuation relation from
Eq. (4.13).
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Figure 4.2: The single electron box consisting of a metallic island (green, circle) with a quasi-temperature 7,(z) tunnel-coupled
(gray connection) to a normal metallic lead (green, rectangular) with a tunnel resistance Ry and a capacitance C;.
The island is also coupled to a gate (yellow) with capacitance C, and an applied bias V.

4.2 Single electron box

We now consider the system discussed in Paper III and summerize some of the main find-
ings of that paper. The aim of the paper is to investigate heat transport in a somewhat
more complicated system than our example system — the so-called single electron box —
where charging effects are present. In particular, we want to investigate the temperature
fluctuations induced as heat is transferred back and forth between the system and its envir-
onment. This forms the basis for our later discussions on quantum calorimetry.

We first describe the system itself. The single electron box consists of a small metallic island
coupled, via a tunnel junction with resistance Ry > g, to a normal metallic lead with a
fixed temperature 77. The island contains an electron gas of about 10% electrons with a
very short internal thermalization time 7,_,, typically of the order of a few nanoseconds
or less [40]. The thermalization process normally takes place on a time scale much faster
than all other relevant processes, allowing us to describe the electron gas by a Fermi—Dirac
distribution with an effective temperature 7,(#) at any instant of time on these time scales.

In contrast to our example system, the Fermi wavelength in the single electron box is typic-
ally less than a nanometer [146] and thus much shorter than the dimensions of the island.
Quantization effects are therefore negligible. However, single-particle effects may still be
relevant due to charging effects if the unit of charging energy £, = %mt exceeds other
energy scales, such as the thermal energies k77 and kp7,(2) as well as the potential en-
ergy eV, Here Cio = Cp + G is the total capacitance to the environment, with C;
the capacitance to the lead and C, the capacitance to an electrostatic gate that has a fixed
potential V. The charging energy of the island is then given by E.(n) = E.(n — n,)?,
where 7 is the number of excess electrons on the island and 7, = V,C, is the gate-induced
charge on the island. The change in the charging energy when an electron is added is
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Figure 4.3: Monte Carlo simulations of the temperature fluctuations in a single electron box for (a) a much higher injection rate
than the electron-phonon relaxation rate (1/7z > 1/7,_ ) and (b) a much smaller injection rate than the electron—
phonon relaxation rate (1 /7 < 1/7,_,;), under ideal conditions (very low temperatures) for which phonon-induced
fluctuations are negligible.

A = E(1) — E(0) = E.(1 — 2n,). We assume that E, is large and that the gate is tuned
so that only zero or one excess electrons may occupy the island, thus motivating the name
”single electron box”.

Time scales

When electrons tunnel back and forth between the island and the lead, the energy of the
island changes, which induces fluctuations in its temperature. The dynamics of these fluc-
tuations depend on three important time scales. First, the internal thermalization time 7,_,
— the time it takes for the system to redistribute excess heat within the island to form a new
Fermi-Dirac distribution. As already mentioned, this time scale is only a few nanoseconds
or even shorter, which normally makes it the shorterst time scale. This is a precondition
for us to assign an effective temperature 7,(¢) to the electron gas at any instant of time
on the time scales for the interactions with the environment. The second time scale is the
electron—phonon thermalization time Te—ph» 1€, the time scale on which the electron gas
equilibrates with phonons in the system. The phonons are assumed to have a fixed bath
temperature 7. The third time scale is the typical time 7z between subsequent tunnel
events between the island and the lead.

At low temperatures, the electron—phonon coupling becomes very weak and the electrons
are effectively decoupled from the phonons. This allows us to consider the regime where
Tg < To—pp, where the metallic island does not have time to equilibrate with the phonons
in between subsequent tunneling events. The temperature of the metallic island may then
deviate substantially from the phonon bath temperature and develop a build-up of larger
fluctuations [see Fig. 4.3 (a)] that may act back on the tunneling rates. In this regime, the
effect of the phonons may be completely neglected.

In the opposite limit, with a very low tunneling rate relative to the electron—phonon thermal-
ization time, Tz 3> T, T.(#) will equilibrate with the phonon bath in between sub-
sequent tunneling events, as shown in Fig. 4.3 (b). This regime will be further discussed
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when we consider quantum calorimetry. For now, we focus on the regime where the phon-
ons are effectively decoupled from the electrons.

4.2.1  Heat transport fluctuations

Before going into the statistics of temperature fluctuations in the single electron box, we
consider the heat transport statistics. The weak coupling between the metallic island and
the connected lead allows us to employ a master equation. We assume that a high charging
energy prevents more than one excess electron from occupying the island. Analogous to
our treatment of heat transport in the example system, we use a Pauli master equation
to describe the time evolution of the probabilities to have an unoccupied or an occupied
island. One important difference is that an electron may now transfer various energies in a
finite interval, and not only one single energy. We introduce a counting field & that couples
to the net heat transferred between the lead and the island, and obtain the master equation

i(nien) -G ) (en)

Here Py (&, ¢) and Py (&, ) are the counting field-resolved probabilities of having zero and
one electron, respectively. The rates are given by

Th(6) = ezéT / dE[L = fIE, T)|flE+ A, Tp) e (4.16)

L) = o [dEAET) 1 -AE+ BT ()

where the absorption and emission of energies in a continous range are taken into account.

For brevity, we introduce I';; = I'i,(0) and I'yye = oy (0).

From the eigenvalues of Eq. (4.15), we obtain the cumulant generating function (CGF) for
the long-time statistics
HEr) 1

=20 (VT = T + 40T ®) T —Towe) . @19)
()

Note that F(0, #) = 0 as required from the normalization of the CGE Introducing I';”
9"Tin (§) and I‘(()”) — 9"Tou(§)

aig)" =0 ut = 9(—i)" £=0

, we may express the first two cumulants as

—_ @ rOr® _rOpb

S T T
O)(1)  0)R(1))?
C(E)  r@r@ s rOr@ oropy) (rhry - ri'rl)
57:(0) = PR @] @) -2 3 (4.19)
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63



To get a deeper understanding for these results, we consider an equilibrium situation where

T,=1j.

Equilibrium statistics

For equal temperatures, 7, = 77, we find the analytic expressions

. _ ! A _ 1 A A/ (ksTr)
Lin(§) = 2Ry AT — I/J(f)a Lowc(§) = 2Ry AT —1° h(—&)(4.20)
vih 2eky Ty sin(€A)2)
_ —ZEA/Z TRB 1 [ S1I1
h(g) ‘ ASinh(ﬂkBTLf) ' (4'21)
The cumulant generating function then becomes
F\ 1) kT « 12 zsin(Aa) \*
t  ERrsinha cosha \/Slnh ot (a sinh(z\) (422)

where o« = A/(2kpT;) and A = £kpT;. This CGF is no longer periodic in the counting
field as a result of the non-quantization of the transferred energy. The expression may be
seen as a composition of the statistics of the number of particles transferred, and the amount
of energy carried by each particle. To see this, we decompose the CGF into

F(>‘7 t) = G(X()\), t)v (4.23)

where

G(x,t)/t= ksl « [cosha — V/sinh? o + e"X} (4.24)

Ry sinh o

describes the statistical distribution of the number of particles transferred over a time #and

< / dEgz‘AE/(kgH);,(E)) ( / dEe “Bmp(E)

= MK = (’M)

asinh(z\

XN

(4.25)

describes the statistical distribution of the energies transferred by an electron during a single
in-and-out tunneling event.

Importantly, we have F(\,r) = F(—\, ¢), i.e., the probability distribution is symmetric
around /z = 0 and we obtain the trivial fluctuation relation

| 7020

P(—J5 8] 0 (4:26)
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as expected for an equilibrium setup (no entropy production). Furthermore, we find

Je=0, (4.27)

i.e., there is on average no net heat transport between the island and the lead if they have the
same temperatures. In fact, all odd cumulants are zero (since the CGF is an even function
of \). By contrast, the zero-frequency noise is obtained as

(kBTL)Z sz(/\, t) o 2(/€BTL)3 Oé(ﬂz + 012)
t d(iN)? |\_,  3¢Rr sinh(2a)

S (0) = (4.28)

Here we see that the noise gets exponentially suppressed for large cv. Furthermore, up to a

dG(x,t)

factor (kpT7)?, the noise expression is given by the average number of events

Aix) |y—o
kpTra . . . . dx(\\) _ 2(a?4A?) .
b R sinh(2a) during a measurement time ¢ times the noise 07 g = 3 in the

transferred energy of a single in-and-out tunneling event. The suppression of the noise for
large o thus arises as a result of the average number of events decreasing faster than the the
noise of the transferred energy of a single in-and-out tunneling event increases.

4.2.2  Temperature fluctuations

As energy is transferred back and forth, the temperature of the system will also change. If
a small amount of energy is added, the change of the temperature [147] is

2
ar=2L = Z BT (429)

Cc 3
where we have used the expression for the heat capacity of a non-interacting electron gas
with v the density of states at the Fermi level. What makes it challenging to describe the
induced temperature fluctuations is the feedback effect that arises as a temperature change
acts back on the tunneling rates. When the temperature changes, the distribution of the
injected energies also changes, resulting in a negative feedback loop that suppresses large

deviations from the average temperature.

To derive the temperature statistics, we employ a stochastic path integral. To this end, we
first consider a small time interval 7 during which the temperature is approximately kept
constant. The probability that the energy is changed by small amount £;9 = £} — £y may
be expressed as

1 .
P(Ey) = P /dfof_lgo(El_EoHTF(fO’Eo)- (430)

65



If we now consider subsequent time intervals of equal lengths, the probability that the
energy is changed by certain values £y, £3; etc. is obtained from

(2;)]\]/.../450...4&\,1

N-1
X exp (Z[ i€, (Ey1 — Ey,) + TF(@,EM) . (4.31)

n=0

P(E1o)P(Esy)..P(Eny—1)

The probability of transferring an energy Ey over the total time interval NT is obtained by
integrating over all intermediate energy changes

P(EN) :/.../dEl...dENIP(Elo)...P(ENNI). (4.32)

The corresponding probability that the temperature follows a certain time trace is

Pn(To, ... Tny—1) = / /ﬂ'El dEy,P(Ey)...P(Enn—1)

x T2V 8(T, — T(E,)). (4.33)
We then find
Pn(To, - Tn—1) = (271[)1\1/ /dCO A& Dm0 TGS (GoG) (4 3
with
Moo Cv1) - = (27[1)N) / / dEy...dEN_dEy...dEn,

N—1
X exp (Z[ i€n(Env1 — En) + TF(&n, En) + i7C, T ( n)])-(4-35)

n=0
Taking the continuum limit, we obtain

Sl — [ [ DEDE) expltite. £, (436)

where

He s = [ @ (~e0) 50 4 AL B+ KOTW) . G

Here DE(t) and DE(2) denote different paths in energy and counting field spaces. Equa-
tion (4.36) is one of the main findings of Paper III. It allows us to obtain the full temperature
statistics from the heat transfer statistics. However, in reality the stochastic path integral is
complicated to evaluate. In the long-time limit, however, we may employ the saddle-point
approximation to obtain the solution.

66



Long time limit — Saddle-point solution

In the limit of a long measurement time, we may evaluate Eq. (4.36) using the saddle-point
approximation [58]. This yields

S[C(e)] = H[S™ (1), E°(4)] , (438)
where £ () and E*(#) are saddle-point solutions to the saddle-point equations
OH[E E]/0§ =0,  SHIE E]/O0E=0. (4-39)
These may be written as [with 7% = 7 (£*)]
dT(z) _ OFE (1), T (2)

C(T™) pali 26 : (4.40a)
—2iCe(T*)d£;t(t) = 8F(§;(7t-)*,(7t;*(¢)) + iC(2) (4.40b)

where C,(T*) = vpn?k3T*(2)/3 is the heat capacity of the electron gas at temperature
T*.

Using response theory, these saddle-point equations may be solved perturbatively in ((2),
see Paper I1I for further details. We find

() = —i% =T (4412
ny = S| e e .
(T()T7)) TR |y 20T : (4.41b)

with the zero-frequency noise F¢¢e = %% = 2kprT7 and the thermal con-

£=0,1,=Ty.

1 0%F(&,1)
FOE)OT: g 1,

ductance Kk = This is another main finding of Paper III.

The results shown in Eqgs. (4.41a) and (4.41b) are worth some commenting. The first equa-
tion confirms, as expected, that the average temperature of the electron gas is equal to the
temperature 77 of the lead. The 2-point correlation function also shows that the correla-
tions between two temperature measurements are decaying exponentially over time, with
a correlation time set by 7c = C/k.

The instantaneous noise is

22 7¢ = TC (4-42)

(T.()*) =
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while the long-time noise, the zero-frequency noise, is

Sr= / " (T ()T = T = 2T (443

K2 K

Comparing Egs. (4.42) and (4.43), we see that for short times, the noise is determined by
the internal properties of the system (the heat capacity), while for long times, the noise is
determined by the coupling of the system to its environment (the thermal conductance).

We note that higher-order cumulants may also be obtained. For instance, the third low-
frequency cumulant is given by

O _Fee 1 d (Fe(T)’
r K3 KFee dT, \ k(7))

(4-44)

_ 1 0PH(E, _ 10, _ 1 O*FE,
where Fege = 7 8(1'(6)3[) €=0,T,=T, Fee(T) = 8(1'(5);) €=0 and () = M(i&gatT)e €=0

Here we see that the temperature distribution may be skewed cither as a result of a skewed
heat transfer distribution and/or a temperature dependence of Fee(7,)/r(Te), i.e., fluctu-
ations above and below the average value are suppressed differently. For the single electron

box, the first effect is zero since all odd cumulants of the heat transfer statistics are zero.

In summary, we have in this section seen how the statistics of the temperature fluctuations
may be related to the heat transfer statistics. The temperature statistics may be interested by
itself, but it is also of interest for quantum calorimetry as a tool to infer the heat deposited
in an absorber, in this case the metallic island.

4.3 Thermometry

To actually be able to detect the fluctuations discussed in the previous section we need
a device that is sensitive to temperature. This is what we normally call a thermometer.
Over the last few decades, several different methods have been developed for nanoscale
thermometry [41], including NIS and SIS thermometers, proximity-effect thermometry,
Coulomb blockade thermometers (CBT) and shot-noise thermometers (SN'T). Much of
the research on nanoscale thermometry has been motivated by the prospects of developing
single-microwave photon detectors [69—73] as well as to study heat transport between elec-
trons and phonons [42, 148]. In general, any quantity which depends on the temperature
may be used for thermometry, however, it should also allow for high-speed and sensit-
ivite read out and be experimentally feasible to implement, with as little self-heating of
the probed system as possible. An important measure of the sensitivity of a thermometer
is the noise-equivalent temperature (NET), which is a measure of the input temperature
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signal needed to match the internal temperature noise of the thermometer to yield a unit
signal-to-noise ratio. The smaller NET, the more sensitive is the thermometer. Usually any
temperature dependent current through some kind of junction, e.g., a NIS junction [42],
a NIN junction [149, 150] or a SNS junction [151], may be used. Other alternatives include
quantum dots [148, 152, 153] and shot noise thermometry [154, 155]. Below we give a brief
overview of two of these thermometers: the NIS thermometer and a new method based on
the zero-bias anomaly of a superconducting junction [43].

4.3.1 NIS thermometry

ANIS thermometer is based on the temperature dependence of a current running through a
normal metal-insulator—superconductor (NIS) junction. The quasi-particle current through
such a junction is given by [41, 156]

=L / dEvS(E— V)RE— eV, T.) — fIE, T.), (449
€RT

where Ry is the tunnel resistance of the junction, vs(E) is the normalized density of states
of the superconductor and AE, T) = (exp[E/(kpT)]+ 1)~ is the Fermi function, with 7,
the temperature of the normal metal and 7; the temperature of the superconductor. Ideally,

the normalized density of states is given by vs(E) = \/%0( |E| —A), where O(|E| —A)

is the Heaviside step function suppressing the number of states within the superconducting
gap A. In reality, impurities and other imperfections may lead to the presence of sub-gap

states, which can be modelled as v5(E) = Re [(ET'Z;AZ], where 7 is the so-called
ry) —

Dynes parameter [157-160] measuring the number of in-gap states.

Most importantly, the quasi-particle current is strongly depending on 7,, while the de-
pendence on 7; is negligible, at least for temperatures far below the critical temperature of
the superconductor, where A takes on its zero-temperature value. In that case, for small

[ V2R (0o j(is),

2eRT

The strong dependence on 7, in contrast to a NIN junction, makes the NIS thermometer

bias, we have

(4.46)

an appealing choice for nanoscale thermometry. In addition, its sensing element can be
made very small, which allows for local temperature probing. The superconducting gap
suppresses heat conduction, thus limiting self-heating. NIS thermometry has the ability
to go all the way down to 1 mK [42]. Such low temperatures may be achieved with a
dilution refrigerator [161, 162]. By embedding the thermometer in a LC resonant circuit,
it is possible to achieve fast and ultrasensitive thermometry [163-165], with read out times
on sub-microsecond time scales. The sensitivity may reach well below a noise-equivalent
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temperature 100 #K/+/Hz [165]. As with all superconductor-based thermometers, one of
the drawbacks with a NIS thermometer is the high sensitivity to external magnetic fields.
Another drawback may be possible deviations in a real setup from the ideal model used
above and that self-heating is not completely negligible.

4.3.2  Zero-bias anomaly thermometry

A new kind of nanoscale thermometer based on the zero-bias anomaly (ZBA) in a Joseph-
son junction was recently developed [43]. Similar to a conventional NIS thermometer,
this thermometer operates with a superconductor tunnel-coupled to a normal conducting
metal. However, in this case, another, clean contacted superconductor is attached to the
normal conductor, such that the normal metallic region is proximized. The thermometry
is based on the probing of the zero-bias anomaly of the PIS junction, where P stands for
the proximized normal metal. The ZBA thermometer is dissipationless and sensitive also
at very low temperatures. It allows for sensitive temperature measurements down to 25 mK
and even below.

4.4 Quantum calorimetry

We now consider the main subject of this chapter — quantum calorimetry. The idea be-
hind quantum calorimetry is to infer the amount of heat transferred by a single particle by
measuring the resulting temperature change induced in an absorber where the energy is de-
posited. A generic calorimeter consists of an absorber, which is coupled to a thermometer
as well as to some kind of injector. The injector emits particles that deposit their energy in
the absorber.

Focusing on the nanoscale calorimeter proposed in Paper IV, we here consider calorimetric
detection of tunneling electrons. The calorimeter consists of a metallic island, containing
an electron gas that acts as the absorber, see Fig. 4.4. Just as for the single electron box, the
electron gas is assumed to have a very short relaxation time (on the order of nanoseconds),
much faster than any other relevant time scales. We may thus at any instant of time as-
sign an effective temperature to the absorber. The injector consists of a tunnel-coupled
superconducting lead, with gap A and temperature 7;. From the injector, (quasi-)electrons
tunnel with an energy A into the absorber. Each tunnel event gives rise to a change of the
energy in the absorber and thus also a change of the absorber temperature. The advantage
of using a superconducting injector instead of a normal metallic lead is twofold. First, every
particle transfers an amount of heat of at least A. Second, a superconductor better isolates
the island thermally, which improves the conditions for single-particle calorimetry.
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Figure 4.4: The quantum calorimeter proposed in Paper IV consisting of a metallic island (green) with quasi-temperature 7,(z)
as absorber, a superconducting injector with temperature 7; (left, blue), a potential regulor (right, blue) and a
thermometer (yellow). The gray connections indicate tunnel couplings. A bias V may be applied between the
injector and the regulator. Tunneling electrons are injected (or extracted) at a rate I';. The bath of phonons in the
sample has a fixed temperature 7.

So far, the calorimeter resembles the single electron box; only that the normal metallic lead
has been replaced by a superconductor. However, to be able to measure the temperature
fluctuations we assume that another superconductor is tunnel coupled to the island. Un-
der ideal conditions, the influence of this superconductor on the temperature statistics is
negligible. To allow for ZBA thermometry and to fix the potential of the absorber, a third
superconductor is also attached to the absorber. In contrast to the other two, this super-
conductor is clean contacted, so that an applied bias V' between it and the injector only falls
over the injector—absorber tunnel junction. At low temperatures, quasi-particle transport
over the direct contact is suppressed and since there is no voltage drop over this junction
the transfer of Cooper pairs do not carry any heat. This superconductor thus acts as both
a heat mirror and a potential regulator.

Last, but not least, we are now taking into account the interaction between the electrons
and the phonons. We will consider the regime where 7; ~ Te—phs 1-€., the energy exchange
with the injector takes place on the same time scale as with the phonons or even on a
longer time scale. For the so-called single-injection event regime, 7; > 7,_ ), the injection
events are well separated in time, allowing us to investigate the preconditions for quantum
calorimetry.

Below we first investigate the heat transfer statistics in the system and then connect this to
the temperature statistics. Finally, we discuss the experimental feasibility of implementing
single-particle detection calorimetry and possible non-idealities.
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4.4.1  Heat transfer statistics

Before analyzing the temperature statistics of our nanoscale calorimeter, we investigate the
statistics of the heat transfer between the normal metallic island, on the one hand, and the
superconducting injector and the phonon bath, on the other hand.

Superconducting injector

To fully describe the heat transfer statistics of the electrons tunneling between the super-
conducting injector and the normal metallic absorber, it is necessary to take into account
the various energies that a single electron may transfer. The spectral rates are the rates at
which a certain amount of energy is transferred by electrons tunneling into (4) or out of
(—) the absorber. For a tunneling barrier, these rates are given by [41, 156]

1

I'(E) = TRTVS(E_ VIRE — eV, T))[1 = AE, T.)], (4-472)
r(F) = ezfQTus(E— V1 = fiE— eV, T)IAE T.), (4.47b)

where R7 is the tunnel resistance between the injector and the absorber, vs(E) is the nor-

malized density of states in the superconductor and AE, 7) = (exp|E/(ksT)] + 1)1 is

the Fermi function. Just like in the section about thermometry, we will here assume that

the superconductor is ideal in the sense that its normalized density of states is given by
E)=6(H —a) 2.

In contrast to the single electron box, no charging effects are present in the metallic island

due to the potential regulator. For given temperatures 7, and 7, the tunneling processes at
different energies are independent of each other and each process is Poissonian, i.e., uncor-
related. The cumulant generating function for the heat transfer statistics is then obtained
as

Rg)/e= [ dE[LEEEE - )+ T BEH -], G

where we have introduced the counting field &; that couples to the net heat transfer between
the injector and the absorber.

In general, Eq. (4.48) cannot be solved analytically. However, for kg7, kg7, < A, it
describes the injection of particles with energies £A =+ ¢V (see the appendix of Paper IV
for further details). In the limits (i) V = 0, 7, > T,, (ii) V = 0, T, < T, and (iii)
T(1—e|V]/A) < T, < ¢|V|/kp, the energy distribution of the injected particles becomes
very focused at well-defined energies, €, = A, £;; = —A and €;; = eV — A, respectively, as
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Figure 4.5: (a) The energy distribution of the injected electrons from the superconductor for four different sets of
{ksT5 /A, kg Te /A, eV/A} = {0.02,0.02, 0} (dashed), {0.05,0.01, 0} (orange, solid), {0.01, 0.05, 0} (green, solid)
and {0.01,0.05,0.5} (blue, solid). Corresponding injector regimes (I), (Il) and (lll) shown (see main text). (b) The
energy distribution of the phonons absorbed and emitted from the environment for three different temperature
settings, 7,/ 7T, = 0.5 (blue), 7,/ T, = 1 (black, dashed) and 7,/7, = 2 (green).

shown in Fig. 4.5 (a). The corresponding CGF obtained from Eq. (4.48) is

(6, T2) = Var

Here ¢; = h(T5), cii = h(T,) and ¢;;; = h(T,) exple|V|/(kpT,)] /2 with

h(T) = \/kT/Aexp[—A/(ksT)]. (4.50)

We see that the heat transfer statistics becomes Poissonian in these limits, with rates that

(5 1), o = i, ii, ii. (4.49)
T

may be tuned with the applied voltage V. Our superconducting lead thus works as a versatile
injector of particles with tunable well-defined energies. This is one of the main findings of
Papers IV. We also note that the thermal conductance x; over the tunnel junction, at least
for small bias and temperature differences, is exponentially suppressed by A/ (kpT}).

We finally note that in a real experiment there are several imperfections that might change
the theoretical description above. First, impurities and other imperfections in the super-
conductor might lead to the presence of sub-gap states. This may be modeled by adjust-
ing the normalized density of states of the superconductor [157-160], as discussed in the
previous section on thermometry. However, this effect may be avoided in high-quality su-
perconductors. At very low temperatures, the transfer of quasi-particles gets expontentially
suppressed and the Andreev current plays an increasingly important role as the Thouless
energy E7;, = hD/L? may be of the same order of magnitude as the thermal energies,
kgT,, kpT;. Here D is the diffusivity of the absorber and L its length. Importantly, for
a biased junction, the Andreev current may carry heat [166]. Yet another imperfection
is possible overheating of the superconducting lead. If the heat generated by the current
flowing through the tunnel junction is not removed quickly enough, it could heat up the
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superconductor and thus change its temperature from 7;. For simplicity, we neglect these
effects here.

Phonon bath

The heat transfer between the absorber and the phonon bath differs from the injector—
absorber heat transfer in the sense that we are now dealing with two different kinds of
particles — fermionic electrons and bosonic phonons. Even so, in the weak-coupling limit,
which holds at low temperatures, one may employ Fermi’s golden rule and derive the fol-
lowing effective spectral rates (see the Appendix of Paper IV for further details) [167]

b = i n n I1a
F+(E) - 24/€%<(5)E3 (Ev Tb)[l + (E? Te)]a (4-5 )
. HY 1
I (E) 6 C(S)Eﬁ[l + n(E, T))|n(E, T,). (4.51b)

Here ¥ is a coupling constant, V' the volume of the electron gas, ((x) the Riemann zeta
function and #n(E, T})) = (exp|E/(ksT;)] —1)~! the Bose distribution. The spectral rates
may be interpreted in a similar way as the injector—absorber rates. For instance the emission
rate of phonons may be interpreted as the transfer of an energy £ at a rate proportional to
the number of phonons [E2x(E, T})] and the total number of electrons that may scatter
from an energy € to an energy ¢ — E (n(E, T,) = [ defe, T,)[1 — e — E, T,)]). The third
E comes from the energy dependence of the scalar deformation potential of the phonons,
see the Appendix of Paper IV for further details.

Analogous to the injector—absorber coupling, the CGF is directly obtained as

Refi= [dE [ @ -0+ BE -] )

The first two cumulants of the electron—phonon heat exchange are given by

—_(B) _XVC(4),.5 _ (B 5%Vks((6)
JE= T = C(s) (T? 72)7 S]E(O) = ; ~ C(S)

where the result for the first cumulant is exact and the result for the second cumulant is

(TE+1T5), (4.53)

accurate approximately, with a deviation < 2%. The energy distribution of the absorbed
and emitted photons is shown in Fig. 4.5 (b). Compared to the injected electrons, the
distribution is wider and smoother. The typical energy of the emitted or absorbed phonons
is of the order of k37, for T, ~ Tj. The full expression for the absorber-bath coupling is
another important main finding of Paper IV, and in good agreement with previous works
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Figure 4.6: (a)—-(b) The relative temperature deviation from the bath temperature (blue) and the injection rate (purple) for a pure
thermal bias (a) and a pure voltage bias (b). (c)~(d) The temperature noise normalized by s?) (0) = 2ky T} /K with
the phonon contribution (black, dashed), the injector contribution (black, solid) and the total contribution (green,
solid) for a pure thermal bias (c) and a pure voltage bias (d).

in the field [168, 169]. We also note that the thermal conductance in the linear response
regime is K, = 52V74b.

We finally note that at very low temperatures, around 30-40 mK and below, photonic heat
exchange with electromagnetic modes in the environment may also become important
[170, 171]. This heat exchange is typically proportional to 72, which means that at low
temperatures it may dominate over the phononic heat exchange.

4.4.2 Temperature statistics

Having obtained the full heat transfer statistics, we are now in a position to consider the
temperature statistics. We proceed in a similar way as for the single electron box. The
average temperature of the absorber is obtained from

JiT. V) = SV(T, —T)). (4-54)

For small temperature deviations, A7 = 7T, — T} < T}, we find

fE(Tbv V)

K

AT = (4-55)
where k = K;j + Ky is the total thermal conductance. Normally, at low temperatures and
small bias, the thermal conductance to the superconducting injector is negligible and we
get K & Ky. Using Eq. (4.43), we also obtain an expression for the temperature noise

S
Sr= %" (4.56)
K

Higher-order cumulants can be related in a similar way. Below we discuss the first two
cumulants and how these depend on an applied temperature or voltage bias between the
injector and the bath for our proposed nanoscale calorimeter.
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Thermal bias

We consider the regime 3 > In(7) > 1, where 8 = A/(k3T}) and r = 22G7A* /(P Tyk).

The average temperature of the absorber is then obtained from
T, = Ty[1 4 5rh(T,)]'/>. (4.57)

This function is shown in Fig. 4.6 (a) where a cross-over takes place at 7, ~ 77 =
A/[kg1n(7)] from constant (dominated by bath coupling) to exponentially increasing ¢~/ (5457
(dominated by injector coupling).

The noise is, in terms of the equilibrium phonon noise S(() ) = 2kpT% /K, obtained as

(2)

S 1+4° S -1

o= 284 Bl 5 ), (4.58)
S q 104

where ¢ = 7,/ T. The phonon noise decreases around 77, while the injected noise first
increases and peaks at 7; =~ 77. Importantly, the noise is suppressed for large temperature
biases, as the thermal conductance x(7,) = k4" to the environment increases strongly and
suppresses all temperature noise, see Fig. 4.6 (c).

We conclude that the most favorable operation point would be close to 77. To achieve
single-particle calorimetry and no back action from the absorber on the injection, we need

T, < T7. In that case, we have I';7 < 1.

Voltage bias

For a voltage bias, we obtain using a similar analysis, a cross-over in the average temperature
around V* = [A — In(r)kgT}] /e from a constant to close-to-linear decrease kg7, ~ (A —
¢V)/ 1n(r), see Fig. 4.6 (b). The noise is given by

, i

St _f 1P +50 ) o)

&2 G LR 459
0 7+§(1—4)]

with 5 = B(1 — ¢V/A). This expression is a sum of the noise stemming from the injector
(< 1 — ¢°) and from the bath (1 + qG). Similar to a thermal bias, the noise is dominated
by the phonons at small bias and then, around V*, gets dominated by the injector. Around
V*, the thermal conductance x(7,) = k(g* + B(1 — ¢°)/[54%]) starts to increase strongly,

suppressing all temperature noise, see Fig. 4.6 (d).
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4.4.3 Detection of single particles

We now consider the conditions for detecting energies of single particles, the aim of quantum
calorimetry. If ¢ denotes the energy of a particle, the induced temperature change in the

absorber is
AT=¢/C, (4.60)

provided that A7 < T, for which the heat capacity C of the system is approximately
constant. At close-to-zero temperature, the absorber relaxes back to the background tem-
perature that is set by the phonons (or photons) in the environment. This gives rise to a

temperature spike

AT(z) = %e_t/TC, (4.61)

where 7c = C/k is the relaxation time (at close-to-zero temperature it will be very long).
This temperature spike may be detected provided that high-speed and ultrasensitive ther-
mometry is available.

However, at finite temperature, things get more complicated. In that case, as we have
already seen, the environment also induces temperature fluctuations. Phonons are ex-
changed randomly with the environment, which gives rise to stochastic fluctuations on
top of the temperature spike(s) that we are interested in. If we consider the single-event
regime, where injection events are well-separated in time, the average absorber temper-
ature 7, will be very close to the bath temperature, 7, ~ 7}. We may then apply the
fluctuation—dissipation theorem, yielding the magnitude of the instantaneous noise

(@) =\ 22 ()

To be able to detect the single temperature spikes among all the fluctuations induced by the
energy exchange with the environment with a unit signal-to-noise ratio, we need to have

k
g/Cn~ \/ET,,. (4.63)

In the case of our proposed nanoscale calorimeter, we have A ~ 200 eV for an aluminum
injector. For C' = 1000kg, we get T}, ~ A/\/% ~ 6.25 peVikp = 7.2 mK. This is a
very low temperature. Although not impossible, this shows that single-shot calorimetry is
experimentally challenging.

As an alternative, or intermediate step, to single-particle calorimetry, one could perform a
long-time measurement over many realizations. The advantage compared to a single-shot
measurement would be that the whole distribution of injected energies in priniciple could
be obtained. From the previous results, as shown in Fig. (4.6), it would be favorable to be
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as close as possible to 77 and V*, respectively, without leaving the regime where the time
between subsequent injection events is much longer than the relaxation time, which also
ensures that back-action effects of the injection events on the injector are avoided. By first
measuring the temperature fluctuations for a negligible injection rate, one can extract the
statistics of the fluctuations induced by the phonons. Then, activating the injector by, e.g.,
applying a temperature or voltage bias, one may extract the statistics of the temperature
fluctuations owing to the injector only. From this, it is possible to infer the statistics of the
heat transfer to the detector.

4.5 Summary and outlook

In this chapter, we have considered heat and temperature fluctuations and how to utilize
them for quantum calorimetry. We first considered heat transport in the example system
introduced in Ch. 2. In contrast to the average current, the bosonic and fermionic nature of
the particles are clearly manifested in the zero-frequency noise expressions. The fluctuation—
dissipation theorem relates the linear response of a perturbation, in this case the thermal
conductance, to the noise in equilibrium.

The single electron box is a key component in this chapter. The results of Paper III shows
how the temperature statistics is related to the heat transport statistics for such a setup,
where a metallic island is coupled to a normal metallic lead. This setup also forms the basis
for our quantum calorimetry, the main object of Paper IV. Although calorimetric detection
of single electrons (and photons) constitute a highly challenging task experimentally, recent
advances in the field of thermometry make the prospects of realizing such calorimetry in
the near future very promising.

To improve the calorimeter, one could aim for an absorber with an even smaller heat capa-
city. For instance, instead of using a three-dimensional normal metallic island, one could
use a two-dimensional material, for instance graphene, with a much smaller heat capacity.
In a real experiment, it is necessary to take into account various imperfections that we have
neglected in this chapter, including proximity effects from the potential regulator, Andreev
tunneling and possible imperfections in the injector, e.g., in terms of the Dynes model
[157-160].
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Chapter s

Conclusion and outlook

In this thesis we have addressed two different topics both related to nanoscale systems:
quantum correlations and temperature fluctuations. We have investigated these phenom-
ena motivated by both fundamental aspects and the prospects of future applications. The
importance of fluctuations and the presence of coherences in nanoscale systems open up
new possibilities that are not present in our daily world. In the case of entanglement,
our results contribute to a deepened understanding of entanglement in nanoscale systems.
For quantum calorimetry, the results of this thesis contributes to the development of new
single-particle detectors in nanoscale systems. This would in turn open up the possibilities
of investigating completely new phenomena in nanoscale systems related to heat transport.

In Paper I, we have investigated how a quantum dot system may be used to generate and de-
tect orbitally entangled electrons on the picosecond time scale. This is achieved by utilizing
cotunneling processes. Besides providing a proof-of-principle experiment of electronic or-
bital entanglement, the setup paves the way to single-shot correlation measurements based
on single-electron detectors. This could lead to a nanoscale experiment analogous to the Bell
tests performed with photons in quantum optics. We note that, to be useful for quantum
computational purposes, it would be necessary to perform manipulations on the emitted
entangled states, which could in principle be implemented by tuning the tunneling coup-
lings.

In Paper II, we considered how to simplify the detection of entanglement in nanoscale
systems. Using entanglement witnesses, we show that the number of zero-frequency cross-
correlations needed to detect bipartite entanglement may be reduced significantly compared
to what a conventional Bell tests require. All pure entangled states, except the maximally
entangled, may be detected with only two measurements. Surprisingly, the maximally en-
tangled states require three. Importantly, the three measurement axes may still be chosen
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to lie in the same plane, a great advantage from an experimental point of view.

In Paper III and IV, we investigated the relation between heat transfer statistics and tem-
perature fluctuations. In Paper III, we derived this relation for a metallic island, with high
charging energy, coupled to a normal metallic lead, the so-called single electron box. In
Paper IV, we proposed a nanoscale quantum calorimeter for detection of tunneling elec-
trons. The results show that quantum calorimetry is within experimental reach, albeit very
challenging. One of the main challenges here is to distinguish fluctuations induced by the
environment from the fluctuations induced by the injection events of interest. One way
of improving the sensitivity of the calorimeter would be to use absorbers with smaller heat
capacities, for instance lower dimensional systems, such as graphene. Another way could
be to go to even lower temperatures, however, this may be challenging experimentally.

In Paper V, we considered photon emissions from a microwave cavity. These results have
been illustrated throughout the thesis with the help of our example system. The results
illustrate some of the important difference between short-time and long-time transport
physics. It also illustrates the difference between, e.g., waiting time distribution and the
second-order degree of coherence. Furthermore, we have investigated heat transport in
this system. Importantly, new single-photon detectors based on calorimeters could pave
the way to experimentally investigate photon emissions from a single cavity.

It would be interesting to try to combine the two topics of this thesis, for instance by
investigating if new calorimetric methods could be utilized to detect coherences and en-
tanglement. That could open up completely new ways of studying entangled states, which
would be of great importance for future quantum information processing.
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Appendix A: Master equations

Here we give an example of how the Lindblad equation describing the reduced dynamics of
a system (henceforth called the principal system) weakly coupled to an environment may be
derived. The derivation follows along the lines of Refs. [172, 173]. We start by considering
the Hamiltonian of the total combined system

H= Hs+ Hg + Hin, (1)

where H is the part of the Hamiltonian acting only on the principal system, H is the
part of the Hamiltonian acting only on the environment and Hipe = D a Ao ® By, is the
part of the Hamiltonian describing the interaction between the principal system and the
environment. Here A, and B, are operators acting only on the principal system and the
environment, respectively.

Assuming that the principal system together with its environment form a closed system (we
may take this as a defining property of the environment), the time evolution of the density
matrix 6 (¢) of the total combined system is obtained from the Liouville~von Neumann

£0__t ]

where [A, B] = AB — BA denotes the commutator.

equation

To derive the Lindblad equation, we first switch to the interaction picture by transforming

i

all operators as A;(#) = i AsHH0 ()~ 7 (HsHHe) where Af(#) is the interaction-picture
version of an operator A(#). The Liouville—~von Neumann equation is then transformed
into the Schwinger—Tomonaga equation

d&](l‘) _ i [A
dt h

Hin(1),61(8)| = £(051(1), o)

which forms the starting point for the derivation of the Lindblad equation.
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Derivation of the Nakajima—Zwanzig equation

For completeness, we start by deriving the Nakajima—Zwanzig equation, which is an exact
reformulation of the Liouville-von Neumann equation as a master equation. From this
equation, we will then derive the Lindblad equation under a number of assumptions.

The idea behind the derivation of the Nakajima—Zwanzig equation is to use a projection
superoperator P that projects out the irrelevant parts of the total density matrix and only
keeps the relevant part, P (¢) = trp {5 (#) } ® pp, where pp is the stationary state (typically
a Gibbs state) of the bath, [HE, pg] = 0. In the following, we will let @ = /—P denote the
complementary projection superoperator. We note that both the projection superoperators
fulfill the characteristic idempotence property of projectors, P? = P and Q* = Q.

Applying the projection superoperators on the Schwinger—Tomonaga equation, together
with the identity I = P + Q, we obtain

2 Poi) = PLEPa() + PLEH), (42
2061(1) = QLYPAL() + QLK) Qo1(s). (4b)

The formal solution to the second equation is

Q61(1) = G(1,0)05:(0) + / BG(1, ) QL () Q1(s), )
0

t
where G(£,0) = T exp [ S dsQﬁ(:)} is a propagator. Plugging this back into Eq. (4a),
0

we obtain the Nakajima—Zwanzig equation

gt%](t) = PL()PE 1)+ PLHG(2,0)Q51(0)+ / AP LG5, ) QL(s)PE(s). (6)
0

We note that

PLWPo) =~ PlEn(s), an{6r()} @ p
= 2l wptor N {Buis} @ =0, @)



if we assume that tr {Ba(t) [)B} = 0 for the steady state. We then obtain the inhomogen-

eous Nakajima—Zwanzig equation

d

“Pai(s) = PL()G(5,0)Q01(0) / EPLOG(L)OLHPo). @)

We note that this equation holds even when initial correlations are present, i.e., it may
describe processes that are more general than quantum operations. In particular, @6,(0) =
(I—"P)&1(0) = 6/(0) — trp[6/(0)] @ pg is related to the amount of initial correlations
between the principal system and its environment. Under the assumption that there are no
initial correlations, 6(0) = p(0) ® pg, this term drops out. In a real experiment, this may
be achieved by measuring the actual state of the system at the initial time. Together with
the assumption that the principal system and its environment constitute a closed system,
this constitutes the two assumptions for employing the quantum operation formalism. We
then obtain the homogeneous Nakajima—Zwanzig equation

d

Z'PU[ /dflc ts PJ]( ) (9)

with the memory kernel K(z,5) = PL(£)G(,5)QL(s). This equation is exact, but is
typically as difficult to solve as the full Liouville—von Neumann equation. For practical
purposes, it is thus necessary to use a number of assumptions in order to get an equation
of motion that is useful.

Born approximation

The first approximation is the Born approximation. Here we assume that the coupling
is weak to the environment so that G(,0) ~ I. Then we find from the homogenous
Nakajima—Zwanzig equation

37301 /dsPﬁ 1) QL(s)Pa(s) /d:PE (5)Pa(s), (10)

where we have used that PL(#)P = 0. With p;(z) = trg {P5;(¢)}, we obtain after a few
steps of algebra

510 =5 [ e {0, 9. ) )} (o

0
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. . . . . t
which is the so-called Born master equation. A change of variables, 7 =t — s, i.e., [ ds =

— [2(—dr) = [} dr, yields

t
d . 1 . . . R
G010 = =5 [ dr o {{Bno), Bule= D)= @l ). @)
0
Using the original decomposition of the interaction Hamiltonian, ﬁim =>. A;la ® Aa,

the Born master equation may also be written as

~ ~ A~

2o =~ Y / ar g {[Aa(9) @ Bas), Pg(— 7) @ Ba(e = 7)., p(s = 7) @ ]}

=~ 2 [ dr [Aa0. [Ase= 7). 51ts = 7)] | Buas(r) + e )

Here we have introduced the bath correlation functions

~ ~

Bas(t.t =) = { Ba()Ba(e = 7)pn | = o { Ba(P)Bs(0)ps} = Bas(r) ()

where we in the second step have taken advantage of pp being a steady state. We have also

used that B, (7) = Bag(—7).

Markov approximation

The Born master equation still depends on the full history of the system state. To obtain
a Markovian equation it is necessary to also perform the Markov approximation. This
approximation is motivated if the self-correlation time 73 of the environment is much faster
than the relaxation time of the principal system, i.e., [Bag(7)| ~ ¢~ 7/™ decays much faster
than any change of p(#). We also assume that the interaction Hamiltonian is weak, i.e., the
exchange of energy and particles between the principal system and its environment takes
place on a time scale much slower than //75. Considering only times # >> 75, we may
then replace p;(# — 7) with p/(2), yielding

Zﬁl(t) - —% 3 / dr [Aa(r), [215(; — ), py(t)” Bas(r) + He., (15)
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which is also known as the Redfield equation. Since the correlation function quickly goes
to zero for long times, we may extend the upper time limit to infinity, yielding

jt’” hi Z / At Pa(f% [leﬁ(f— ), ﬁz(t)“ Bos(T) + Hec. (16)
af

This is the so-called Markovian quantum master equation, which is time-local as desired.

Derivation of the Lindblad equation

We note that there are several different ways of deriving the Lindblad equation from the
Markovian quantum master equation. Here we use one of the standard derivations where
we go over to the frequency domain and perform the rotating wave approximation, also
known as the secular approximation. To this end, we use the eigenbasis |¢,) to the system
Hamiltonian and write

Aa(t) =D e @ = e M ealdales) es] = Y Aalw)e ™, (17)

a,b

with the Bohr frequencies w = €3 — €,. Importantly, we have A, (w) = Al (—w). We
then get

[Aa0), [As( = 1), pr0)| | = 3 e [AL (), [Ap@), pua)] | )

ww’

Introducing the one-sided Fourier transform of the bath correlation function

w) E/ dTeinBaﬁ(T), (19)
0
we obtain

:z’itp[ ZZ o) { LW, Pﬂ(‘*’)?ﬁ[(t)” I'op(w) + H.c. (20)

af ww’

Rotating wave approximation

To obtain the Lindblad equation, we need to perform the rotating wave approximation,
where we throw away all terms for which w # w’. This approximation is motivated since
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terms with w # w’ oscillate fast if # > |w — w'|7!. Since # > 75 under the Markov
approximation, this is well motivated provided that the Bohr frequencies fulfill

min |w — &'| > 1/73. (21)
wH#w’

Introducing the Fourier transform of the bath correlation function

Yap(W) = / 4 Bog(7) = Tap(w) + o (w), (22)

we obtain, after a few steps of algebra,

O )
*jp el (A0 - 3 A st 10} ) 9

Here Hps = 3, Y05 Im [Tap(w)] AL (w)As(w) is the Lamb shifc Hamiltonian,

To transform back to the Schrodinger equation (note that [f-ls, HLS] = 0), we use that
%ﬁ](t) = Hst/h (%ﬁg(t) + %[[A—[g, ﬁg(t)]) ¢ Hst/h e thus get

2hste) = — 2 [Hs + His, o)
= Zﬂ: 2 %as() (ﬁlﬁ (@)ps() A ) — 5 { AL () A3(), ) }) )

which, after a diagonalization of the (positive) matrix with the matrix elements y,5(w),

yields the Lindblad equation.
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Appendix B: Schriefter—Wolft

transformation

We here briefly outline some details related to the Schrieffer—Wolff transformation. The
main idea is to apply a unitary transformation to eliminate a perturbation V to first order
in a Hamiltonian Hs = Hj + V, yielding an effective Hamiltonian

I:Ieﬂr = e_:gf-]seg. (25)

The Baker—Campbell-Hausdorff formula yields

A~ A

He - B+ [S,HH%[S,{S,MH...

1 - 1

= Hy4+ V+I[S, Hl + [S, VI + =[S, [S, Holl + =[S, [S I + ... (26)

o)

= o+ 55 1+007) e7)

if the generator S of the transformation fulfills the condition [174]
[3, HO} —_¥ (28)
In other words, it is possible to elimiAnaAte the perturbation V to first order, but it will
generate new terms, of which only 1[S, ] will be important if the perturbation is weak.

The main challenge with the Schrieffer—Wolff transformation is to find the generator S
from the condition above.

Quantum dot system

Here we outline how to obtain the generator and the effective Hamiltonian for the quantum
dot system considered in Paper I. For simplicity, we start by considering the quantum dot

163



system without the leads attached. In that case, we have Hy = ) €472, + Z:, T Uy gy

with single-particle dot levels €, the Coulomb repulsion U,.,» between different dots (v #

7') and 72y = 211;2{7 the number operator. Furthermore, V = Z/ %(twld d +2., d; d)
Y

is the tunnel couplings between the dots.

To find the generator §, we first introduce

N 1
A’W/:Z 67_67’+Z( y6! H%Hl—ﬂ(s (29)

B Uys)
) €B  §eB

for v # 7. We note that A,/ contains number operators acting only on the four dots (of
the in total six) which are not y, 7/. B denotes a configuration out of these four dots and

B denotes the complementary set. The sum in AT/ runs over all 16 possible configurations
in B.

Generator of the transformation

The generator may be expressed in terms of A as

~ 1~ NN . F
S= Z EAV’Y’(t’Y’Y'”Ede' — t’Y’Y/ ,Ty/d«,) (30)
gl
We note that [4 oty Hyl = 0 and that AAw is Hermitian and fulfills Avv’ = —Ay,.

Furthermore, we note that

[lew’;”iy;lv’aﬁo] = Avv’[gzi;"W”Ao]

= — Z Hn5 H ;l’,ty y = —;/Iy;lry’ (31)

B 0EB  §eB



where the sum on the second line is over all dots except v and +'. From this we find

Y

S ey i) = =
7Y

i.e., Sas defined in Eq. (30) is indeed a generator that fulfills the condition in Eq. (28).

Effective Hamiltonian

Having obtained the generator of the transformation, we may now compute the effective
Hamiltonian to leading order in V from [174]

N A 1.~ 4

Hegg = Ho + E[Sv W (33)
We evaluate the commutator between S and ¥ by first considering a single term of S and a
single term of V; which are of the form Asy (55 dydy —£55 dby ds) and ¢,y dydy +£ ' b,
respectively.

Depending on the relation between 7 and d as well as between 4 and ¢’, we may obtain
four different terms in the commutator. Below we consider the four different cases one by
one and take advantage of the fact that there can never be more than two electrons in the
quantum dot system at the same time.

()0 =n,0 =+
In this case, we obtain
1. v * gt - * 0 g ~ ~
Sy (byydidyy — By dh o).ty 4 Byl ) = [0 P Ay (i = ). (4)

Consisting of only number operators, this term may be included in the system Hamiltonian
by a renormalization of the single-particle energy levels and the interaction strengths

(i) 6 = 7,0 #~ and (iii)) 6 # v,0 =+
Now we obtain the commutator
[fawé’(tw’;jy;’%’ - tié';ljs/;iw)a fw";i;i'v’ +1 ’;ﬁ/‘}v]

1
2 7Y Py

1 ~ ~ * 7 * o
= —EA,Y(;/ [717/ —>n'y](t,y(;/t,wldi,dg/—l-t,y(;/tyyl :r;,d,y/) (35)
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with zA‘lM;/ [y — 71| denoting 12175/, with 7,/ replaced by 7. This part of the effective
Hamiltonian describes the tunneling of a single particle, from ¢’ to «y and then from v to
7/, or vice versa. Similar terms are obtained for § # v, &' = +'.

These processes are, however, always outcompeted by other processes. For instance, if an
electron is in one of the detector dots, it is more likely that it will leave to the connected lead
since the dot-lead coupling is much stronger than the tunneling process above. Likewise,
if only one entangler dot is occupied, it is more likely that the other will be occupied than
the tunneling process above taking place. Lastly, if both entangler dots are occupied the
dominant process will be cotunneling, the process to be discussed below.

() 6 # v,0" #

In this case, we obtain

1. iy * gf o 0
E[A(gg/(tg(;/d:gdg/ — t(;(;/dT,d(s), tfw/dsd,y/ + t,y,y/djry,dfy]
1 1 1

) <65 + U’Y5 — €5 — U’y5’ €5 + U,y/(g — €5 — U’y’5’>

X <t55/t%,/ gdgdydg/ + tg(;/t:ydgzdj/dvdg

iyt s + 13 t;y;/;;z;,%;@ 46

Importantly, these are the terms describing two-particle cotunneling processes. We note
that only terms describing cotunneling between the two entangler dots and two detector
dots v, 3 are of interest for our quantum dot system as the remaining cotunneling processes
are outcompeted by single-particle tunneling processes like the ones discussed in cases (ii)

and (iii).

We also note that the two-particle tunneling amplitudes #3421 describing the cotunneling
processes from the entangler to the detector dots are obtained by summing up all terms in
Sand V, yielding the important result

18102 L1282

t = .
B2l = oo DEag (37)
Here we have introduced for brevity
1 1 1
1/AEg, = = =
2\ e+ Un—€eg— Uy e+ Up—¢c — Uy
1 1
+ - (38)
€2+U12—EQ—UIQ €1+U1a—€5—Ua5
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and

UnEy — ) 1 1
) e+ Un—€e—Up e +Upg—e€e— Uy

1 1
- — : (39)
€1+ Uy — €q — Uhg €2+U2a_€B_Uaﬂ> ?

If we denote the initial, final and intermediate energies, respectively, of the system during
a cotunneling event by £;, Erand E,,, we find that 1/AEg,, 1/AE,ps may be expressed as
3 Em(ﬁ — ﬁ( ), with 7 running over the two intermediate states. For two-particle
resonance, we obtain Er=eateptUns = ateatUn = E, thus yielding the simplified
expression ) E,%Em’ which is consistent with standard second-order perturbation theory
[175].

With all the commutators explicitly computed, we may now summarize the expression for
the effective Hamiltonian as

Har = Hy+ 3 (ssomdl i + tson i) (40)
af

Here Hj, denotes the renormalized Hamiltonian H.

When adding the effect of the leads and the dot—lead couplings in [:]0, we note that this
will induce additional level-broadening terms in the denominator of 12177/. These terms are
proportional to the dot—lead rates I', and I'g. Importantly, the corresponding energies of
these rates are small compared to the differences between the single-particle energy levels
of the dots, making the level-broadening negligible. In addition, cotunneling processes
involving the leads are suppressed as the dot-lead couplings are weak compared to the
differences between the single-particle energy levels of the quantum dots. Therefore also
these effects may be neglected.
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