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Abstract

The performance of a low-pass screen designed to block electromagnetic waves

in a stop-band is shown to have an upper bound de�ned by the static electric

and magnetic polarizability per unit area of the screen. The bound is easy to

calculate for all angles of incidence and polarizations, and applies regardless of

how complicated the screen's microstructure is. For a homogeneous dielectric

sheet the bound for TM polarization is more restrictive than the bound for

TE, but this is not generally true for a screen with microstructure. The results

are veri�ed by measurements and simulations of oblique transmission through

an array of split ring resonators, printed on a dielectric substrate.

1 Introduction

In applications like radomes, spatial �lters, polarizers, energy saving windows etc it is
important to understand the transmission of electromagnetic waves through a planar
screen of �nite thickness, often having some microstructure. For normal incidence, it
was shown in [11] that the blockage in transmission for a given nonmagnetic screen,
integrated over all wavelengths, has an upper bound determined by the electric
polarizability per unit area of the screen. In this paper, we generalize this result to
include oblique incidence and magnetic materials, and investigate the dependence
on polarization and angle of incidence for the incident wave.

Similar physical bounds restricting the performance of passive structures have
been presented in several papers treating matching methods [5], �nite size scatter-
ers [10, 26�28], antennas [8, 9], absorbers [18], arti�cial magnetic ground planes [4],
and metamaterials [7, 25, 29]. A common factor for all these bounds, is that the inte-
grated electromagnetic interaction of the scatterer, antenna, or material, is bounded
by the static properties of the system. This result is a consequence of assuming the
system to be linear, causal, time translational invariant, and passive. Often, the
static properties (such as polarizability) can be directly associated with properties
such as the volume of the scatterer or similar. For instance, variational principles
can be used to show that the electric polarizability of a given body, with or without
inhomogeneous microstructure, is bounded above by the electric polarizability of a
circumscribed metal body [12, 21].

The scattering of electromagnetic waves by an isotropic slab is well known and
documented in many text books, see for instance [3, 17, 19]. The results have been
generalized to homogeneous slabs of arbitrary bianisotropic materials [14, 23], but
when the slab is inhomogeneous, for instance by loading it with metal inclusions, it
is often necessary to resort to numerical methods to calculate re�ection and trans-
mission. The low-frequency limit for arbitrary slabs has been derived in [21], where
it is seen that the low-frequency asymptotic is given by the electric and magnetic
polarizability per unit area of the screen.
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Figure 1: Geometry of the scattering problem.

2 Analyticity of the transmission coe�cient

We start by investigating the analyticity of the transmission coe�cient. A typical
geometry of the problem is depicted in Fig. 1, where a plane wave is incident on a
periodic structure with thickness d. The incident �eld has constant polarization E(i)

0

and unit propagation direction k̂, and can hence be written E(i)(r, t) = E
(i)
0 f(t −

c−1
0 k̂ · r), where the time dependence satis�es f(t) = 0 for t < 0. Due to causality,
the total �eld is zero until the plane wave has arrived, i.e.,

E(r, t) = 0 when t− c−1
0 k̂ · r < 0 (2.1)

Since the geometry is periodic, we also have the translational invariance

E(r + rn, t) = E(r, t− c−1
0 k̂ · rn) (2.2)

where rn = n1a1 + n2a2, n1 and n2 taking integer values. The vectors a1 and a2

are lattice vectors in the xy-plane, forming the sides of the unit cell U , which has
area A = |ẑ · (a1×a2)|. Using the causality property (2.1), we can write the Fourier
transform of the �eld as (where k = ω/c0 is the wave number in vacuum, c0 being
the speed of light in vacuum and ω the angular frequency)

E(r, k) =

∫ ∞
−∞
E(r, t)eikc0t dt =

∞∫
c−1
0 k̂·r

E(r, t)eikc0t dt

= eikk̂·r
∫ ∞

0

E(r, t+ c−1
0 k̂ · r)eikc0t dt︸ ︷︷ ︸

Ẽ(r,k)

(2.3)

The function E(r, t + c−1
0 k̂ · r) is periodic in r due to the translational invariance

(2.2). This property is inherited by Ẽ(r, k), which is also analytic in k for k in the
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upper complex plane due to the lower integration limit, and satis�es the symmetry
relation Ẽ(r, k∗) = Ẽ(r,−k)∗ since it is the Fourier transform of a real valued �eld.
To summarize, the Fourier transformed �eld can be written using a Floquet-Bloch
representation [2, 6, 20, 24]

E(r, k) = eikk̂·rẼ(r, k) = eikzzeikt·rẼ(r, k) (2.4)

where Ẽ(r, k) is periodic in the plane, and we split the incident wave vector in a
transverse and longitudinal part, kk̂ = kt +kzẑ. The Floquet modes of the �eld are
de�ned as the Fourier series expansion of the periodic �eld at z > d, where d is the
thickness of the structure:

Ẽ(r, k) =
∑

n

En(k)eikn·reikz,nze−ikzz (2.5)

where kn = n1b1 + n2b2 and the longitudinal wave numbers are given by the re-
lation k2

z,n = k2 − |kt + kn|2. Note that kz,n is imaginary for su�ciently large n,
indicating exponential damping. These are the evanescent modes, which hold purely
reactive power and do not contribute to power transfer. The extra factor of e−ikzz

is necessary to cancel the corresponding factor multiplying Ẽ(r, k) in (2.4). The
vectors b1,2 are the reciprocal lattice vectors satisfying am · bn = 2πδmn [13]. If we
had made the expansion at z < 0, the waves would be propagating in the nega-
tive z direction instead. The z component of the mode En(k) can be computed
from the xy components since En(k) must be orthogonal to the total wave vector
kt + kn + kz,nẑ. Thus, it is su�cient to consider only the transverse components of
the modes in order to discuss the transmission. The 2× 2 transmission matrix T(k)
is then de�ned by the transverse components of the zeroth mode as

E0,t(k) = T(k) ·E(i)
0,t (2.6)

Since Ẽ(r, k) is analytic in k for all r, then so is

E0,t(k) =
1

|U |

∫
U

Ẽt(r, k) dS (2.7)

and hence also T(k). In the following, we discuss the implications of the analyticity
of the diagonal element T (k) = E

(i)
0,t · T(k) · E(i)

0,t/|E
(i)
0,t|2, corresponding to the co-

polarized transmitted �eld.

3 Physical bound

Following [11], we take into account that the transmission coe�cient is a transfer
function, and hence may have some zeros {kn}Nn=1 in the upper half plane. To obtain
a function where all poles and zeros are in the lower half plane, we multiply T (k) by
a Blaschke product and take the logarithm, which produces the Herglotz function
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(analytic mapping of the upper half plane to itself, satisfying h(k) = −h∗(−k∗) [1,
16])

h(k) = −i ln

(
T (k)

N∏
n=1

k∗n − k
kn − k

)
(3.1)

The Blaschke product multiplying T (k) in the expression above has unit amplitude
on the real line Im(k) = 0, and serves the purpose of shifting all possible zeros
kn of T (k) in the upper plane to zeros k∗n in the lower plane, thereby making h(k)
equivalent to a minimum phase function. In [1], it is shown that the function h(k)/k2

satis�es the following sum rule (with additional assumptions this can also be shown
using Cauchy integrals as in [16, 26�28])

2

π

∫ ∞
0

Imh(k)

k2
dk = lim

k→0

T (k)− 1

ik
− lim

k→∞
Im

ln(T (k))

k
+ 2

N∑
n=1

Im
1

kn
(3.2)

The imaginary part of 1/kn is negative for all n = 1, . . . , N . The high frequency limit
corresponds to the asymptotic phase delay, and can be represented by introducing
the high frequency refractive index n∞ as

Im
ln(T (k))

k
→
√
k2n2

∞ − |kt|2 −
√
k2 − |kt|2

k
d

=

(√
n2
∞ − sin2 θ − cos θ

)
d, k →∞ (3.3)

The low frequency limit of the transmission coe�cient for a low-pass screen can be
written [21]

T = 1 +
ik

2

{
η−1

0 Z0 ·
[
γett

A
+
k′tk

′
t

k2

γmzz

A

]
+

[
−ẑ × γmtt

A
· ẑ ×+

ktkt

k2

γezz

A

]
· Z−1

0 η0

+ Z0 ·
[
k′t
k

γmz

A
− γet

A

k′t
k

]
· ẑ × Z−1

0 + ẑ ×
[
k′t
k

γez

A
− γmt

A

k′t
k

]}
+ o(k) (3.4)

where kt is the transverse wave number, and the wave impedance dyadic in the
surrounding free space is

Z0 = η0 cos θ
ktkt

|kt|2
+

η0

cos θ

k′tk
′
t

|k′t|2
(3.5)

where k′t = ẑ × kt and sin θ = |kt|/k represents the angle of incidence, see Fig. 1.
The electric and magnetic polarizability matrices γe and γm give the total electric
and magnetic dipole moment per unit area induced in the screen when subjected
to homogeneous �elds E0 and H0 as p/A = ε0γe · E0/A and m/A = γm ·H0/A,
respectively. The matrices are decomposed as (where γett can be represented as a
2× 2 matrix, γet and γez are vectors in the xy plane, and γezz is a scalar)

γe ·E = (γett + γetẑ + ẑγez + γezzẑẑ) · (Et + ẑEz)

= γett ·Et + γetEz + ẑ(γez ·Et + γezzEz) (3.6)
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and similarly for γm. Let the plane of incidence coincide with the xz plane so
that kt = k sin θx̂, and assume for simplicity that the polarizability matrices are
diagonal in the xyz coordinate system in Fig. 1, i.e., γez = γet = γmz = γmt = 0,
γett = γexxx̂x̂+ γeyyŷŷ, and γmtt = γmxxx̂x̂+ γmyyŷŷ. The factor multiplying ik/2
in (3.4) then simpli�es considerably and we have

T = 1 +
ik

2A

{[
cos θγexx +

sin2 θ

cos θ
γezz +

γmyy

cos θ

]
x̂x̂

+

[
γeyy

cos θ
+ cos θγmxx +

sin2 θ

cos θ
γmzz

]
ŷŷ

}
+ o(k) (3.7)

Introducing the total polarizability

γ(θ) =

{
γexx cos2 θ + γezz sin2 θ + γmyy TM

γeyy + γmxx cos2 θ + γmzz sin2 θ TE
(3.8)

and using (3.3), (3.7), and that Im 1/kn < 0, the sum rule (3.2) can now be written
as the physical bound

2

π

∫ ∞
0

1

k2
ln

1

|T (k)|
dk =

1

π2

∫ ∞
0

ln
1

|T (λ)|
dλ

≤ γ(θ)

2A cos θ
−
(√

n2
∞ − sin2 θ − cos θ

)
d (3.9)

which is our main result. Here, λ = 2π/k is the wavelength, and we reuse the symbol
T for the transmission as a function of λ. To express this in terms of bandwidth
and transmission level, we estimate the integral as in [11] to �nd∫ ∞

0

ln
1

|T (λ)|
dλ ≥

∫ λ2

λ1

ln
1

|T (λ)|
dλ ≥ (λ2 − λ1) ln

1

T0

(3.10)

where T0 = maxλ∈[λ1,λ2] |T (λ)| is the maximum transmission in the stop band [λ1, λ2].
This implies

B ln
1

T0

≤ π2γ(θ)

2Aλ0 cos θ
−
(√

n2
∞ − sin2 θ − cos θ

)
π2d

λ0

(3.11)

where λ0 = (λ1 + λ2)/2 is the center wavelength, and B = (λ2 − λ1)/λ0 is the
fractional bandwidth.

4 Calculation of polarizabilities

The electric polarizability can be calculated from the solution of the static problem

∇×E = 0, ∇ ·D = 0, D(r) = ε0ε(r) ·E(r) (4.1)
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with periodic boundary conditions in the xy-plane, and the requirement E → E0

as z → ±∞. Since ε(r) is a matrix, this formulation includes anisotropic materials.
The polarizability is then given by

γe ·E0 =

∫
(ε(r)− 1) ·E(r) dV (4.2)

The same procedure applies to the magnetic polarizability γm, substituting ε with
µ. The di�erence between the two cases arises only for PEC structures, where the
electric boundary condition is n̂ ×E = 0, and the magnetic is n̂ ·B = 0. Further
information on the calculation of the polarizabilities can be found in [21]. Using
variational principles, the polarizabilities can be given upper and lower bounds [22].

5 Examples

We illustrate the bound (3.9) with two nonmagnetic examples, i.e., γm = 0 in
both cases. The �rst is theoretical transmission through a dielectric sheet, and the
second is measured and simulated transmission through a periodic array of split ring
resonators. In Figs. 2 and 6, the left and right hand sides of (3.9) are scaled by cos θ
to avoid the singularity at grazing incidence.

5.1 Dielectric sheet

For a dielectric, nonmagnetic sheet with relative permittivity εr(k), the transmission
coe�cient is [3]

T (k) =
(1− r0(k)2)ei(β(k)−β0(k))d

1− r0(k)2ei2β(k)d
(5.1)

where the wave numbers in the material and in the surrounding free space are given
by β(k)2 = k2(εr(k) − sin2 θ) and β0(k) = k cos θ, respectively, and the interface
re�ection coe�cient is r0 = (Z − Z0)/(Z + Z0) with Z = η0k/β and Z0 = η0/ cos θ
for TE polarization, and Z = η0β/(εr(k)k) and Z0 = η0 cos θ for TM polarization.
The static polarizability factors are [21]

γexx = γeyy = Ad(εr(0)− 1), γezz = Ad(1− εr(0)−1) (5.2)

whereas the high frequency refractive index is n∞ =
√
ε∞, where ε∞ = limk→∞ εr(k)

is the high frequency limit of the relative permittivity. From (3.8) it is seen that
since 1− εr(0)−1 < εr(0)− 1, the polarizability factor for TM polarization is always
less than for TE, which demonstrates that the maximum transmission blockage is
always less for TM polarization.

In Fig. 2 we have computed the integral in the left hand side of (3.9) for a
0.3mm thick dielectric sheet with two di�erent relative permittivities: one frequency
independent εr = 4.35 (solid lines), and one frequency dependent εr(k) = 1+(4.35−
1)/(1− ik/kc) (dashed lines). The cuto� wavenumber was chosen as kc = 2π/1µm
so that εr(k) ≈ 4.35 when λ � 1µm, i.e., in the region where the sheet is in the
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Figure 2: The integrated transmission blockage and its bounds (left and right hand
side of (3.9) times cos θ) for a 0.3 mm dielectric sheet. Solid lines are for constant
(nondispersive) relative permittivity εr = 4.35, dashed lines are for frequency de-
pendent (dispersive) relative permittivity εr(k) = 1 + (4.35 − 1)/(1 − ik/kc), using
kc = 2π/(1µm). The bounds are exactly on top of the simulated transmission block-
age. Note the zero transmission blockage for nondispersive case in TM polarization
at 64◦, corresponding to the Brewster angle.

order of a few wavelengths, and the high frequency asymptote is n∞ = 1. In all
cases, the integrated transmission blockage is exactly on top of the bound.

For the nondispersive permittivity, the Brewster angle phenomenon is clearly
seen in Fig. 2: at the Brewster angle θB = arctan(

√
εr) = 64◦, the interface re�ection

coe�cient r0 for TM polarization is exactly zero, and the transmission coe�cient
has unit amplitude |T | = 1. With a frequency independent material, the Brewster
angle is the same for all frequencies and hence the total transmission blockage is
zero for TM polarization at this angle.

The Brewster angle e�ect disappears when considering the frequency dependent
material (dashed lines in Fig. 2), since this angle now varies with frequency. It is
further seen that the overall level of transmission blockage is increased for the disper-
sive material, particularly for normal incidence, and the TE result is independent of
the angle of incidence (except for the scaling with cos θ), due to the high frequency
response being tuned to vacuum.

It is interesting to note that we can lower the cuto� frequency kc to a value cor-
responding to wavelengths much longer than the sheet thickness d without changing
the dashed lines in Fig. 2 (not shown). Indeed, since |r0| < 1 for all frequencies it is
seen from (5.1) that T (k) does not have any zeros, and the bound (3.9) is actually
an equality for the dielectric sheet. This means the total transmission blockage is
determined exactly by the low- and high-frequency asymptotics on the right hand
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2.50 mm

2.22 mm

1.74 mm

0.27mm

0.75mm

1.20 mm

Copper

Copper

Dielectric substrate

Figure 3: Geometry of the metal split ring resonators on a 0.3mm thick FR4
substrate with εr = 4.35. The total sheet has 240 × 240 = 57 600 unit cells, and is
60 cm× 60 cm.

side of (3.9), which also explains why the simulations equal the bounds in Fig. 2.

5.2 Array of split ring resonators

Measurements were performed on the same sheet of printed metal split ring res-
onators on a thin FR4 substrate as in [11]. The unit cell geometry is depicted in
Fig. 3. The sheet was mounted in a cardboard frame to provide mechanical stability,
and the transmission through the sheet was measured for �ve angles of incidence:
0◦, 23◦, 34◦, 45◦, and 67◦.

The measurements were made using pairs of wideband ridged horn antennas,
separated by 0.6m with the sheet in between, see Fig. 4. Keeping the sheet �xed, the
antennas were moved to obtain the di�erent polarizations and angles of incidence. To
cover a wide frequency range, two pairs of horns were used, one for [1, 22] GHz and
one for [16, 40] GHz. The sheet measurements were normalized by measurements
with the sheet absent, and a 2 ns time-gating was applied in the time-domain to
minimize the in�uence from the background, which reduces the useful frequency
range to [2, 38] GHz. The plane of incidence was horizontal, making the vertical-to-
vertical (VV) measurement correspond to TE polarization, and the horizontal-to-
horizontal (HH) measurement correspond to TM polarization.

The sheet was also simulated using the commercial program CST Microwave
Studio for the frequency range [0.2, 40] GHz for both polarizations and the same
angles of incidence as the measurements. The simulated results are compared with
measured results in Fig. 5 for θ = 23◦ and 67◦, and it is seen that the agreement is
very good.

In [11], the transverse polarizabilities of the sheet were computed to γexx/A =
7.2 mm and γeyy/A = 7.1 mm. The longitudinal polarizability can be estimated by
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Figure 4: Measurement setup for oblique incidence on an array of split ring res-
onators. The sheet was oriented with the gaps in the split rings along the vertical
direction.

frequency [GHz]

Figure 5: The real and imaginary parts of − lnT = − ln |T | − i arg T for θ = 23◦

(upper graph) and 67◦ (lower graph). Solid lines are measurements, dashed lines are
simulations.
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TM
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TM measurement

TE measurement

TM simulation

TE simulation

TM bound

TE bound

Figure 6: The integrated transmission blockage (left hand side of (3.9) times cos θ)
for measurements (dashed lines) and simulations (dotted lines) of the sheet in Fig. 3.
The bounds (right hand side of (3.9) times cos θ) are solid lines.

the polarizability of the substrate, γezz/A = (1 − ε−1
r )d = 0.23 mm. The measured

and simulated transmission coe�cients were then used to calculate the integral in
the left hand side of (3.9), and the result is depicted in Fig. 6, together with the
bounds in the right hand side of (3.9). It is seen that the measured and simulated
results for the TE polarization are below its corresponding bound, but exceeds the
bound of the TM polarization. The trends correspond well to the calculations for
a pure dielectric substrate in Fig. 2, but the amplitude of the computed integrals
and bounds are an order of magnitude larger. This can be explained by the added
polarizability of the metal split ring resonators.

In Fig. 6, the measured blockages are consistently lower than the simulated ones,
due to the slightly larger frequency interval obtained in the simulations. The only
exception is at 45◦, where the measured TE results exceed the simulations. This
indicates that the measurement setup was probably perturbed at this point, but the
results remain below the bound, and this observation does not change the conclusions
in this paper.

6 Conclusions

By generalizing results from [11] we have derived a bound on the all-spectrum trans-
mission blockage through a low-pass periodic screen for oblique incidence in (3.9).
The result is that the transmission blockage is bounded by the sum of the electric
and magnetic polarizabilities per unit area of the screen, with an angular depen-
dence corresponding to the transverse components of the incident �eld. The bounds
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were demonstrated theoretically and experimentally using nonmagnetic structures,
and it was seen that a composite structure with metal patterns like split ring res-
onators on a dielectric substrate can increase the transmission blockage by an order
of magnitude compared to the pure dielectric substrate.

For a nonmagnetic structure, the polarizability in (3.8) for TM polarization is
usually lower than the polarizability at high angles of incidence. This is due to
the longitudinal polarizability γezz usually being smaller than the transverse po-
larizability γett. The transverse electric polarizability can be associated with the
low-frequency shunt capacitance of the sheet [23]. Since the bounds are propor-
tional to this factor, we have presented a theoretical basis for the rule-of-thumb that
in order to construct a band-stop frequency selective screen with high bandwidth,
it is a good idea to use elements with high capacitive mutual coupling [15]. The
dependence on angle was shown to be more severe for TM polarization, which is also
observed in practice. For TM polarization the longitudinal polarizability γezz can
be associated with the low frequency series inductance of the sheet [23], implying
that further gain in bandwidth for TM polarization might be achieved by increasing
the equivalent series inductance of the sheet. This can be done both by increasing
γezz (for instance by loading the structure with metal pins in the z direction), and
by increasing γmtt (by using magnetic materials).

From the example of the dielectric sheet, it is seen that the high-frequency de-
lay can have a substantial in�uence on the bound. Since our measurements are
always band limited, this parameter can only be determined by extrapolating the
measurement data, or bounded below by zero.
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