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Abstract—We show that recent robust adaptive beamformers,
based on reconstructing either the noise-plus-interference or
the data covariance matrices, are sensitive to the noise-plus-
interference structure and degrade in the typical case when
interferer steering vector mismatch exists, often performing much
worse than common diagonally loaded sample covariance matrix
based approaches, even when signal-of-interest steering vector
mismatch is absent.

I. I NTRODUCTION

Adaptive beamforming can be used in radar and sonar
applications, e.g., for source localization, power estimation,
and improving detection (see, e.g., [1], [2]). Given the model

xn = sna0 + nn (1)

wherexn, sn, a0, andnn denote thenth array snapshot vector,
the nth signal-of-interest (SOI) complex waveform sample,
the true SOI array steering vector (ASV), and thenth noise-
plus-interference (NPI) snapshot, such works are based on
the forming of data-adaptive beamformers striving to pass the
SOI from some assumed generic direction undistorted while
attempting to minimize the influence of the noise and interfer-
ence, including signals from other directions. In practice, the
assumed SOI ASV is subject to various types of mismatch,
e.g., due to pointing and/or array calibration errors, someof
which are well modeled as an arbitrary mismatch [2], [3]. The
NPI is often assumed to comprise far-field point interferers
embedded in full-rank noise with a covariance matrix of the
form Q = E

{

nnn
H
n

}

=
∑d

i=1
σ2
i aia

H
i +N, whereai, σ2

i , d
andN denote theith interferer ASV, theith interferer power,
the (typically unknown) number of interferers, and the full-
rank noise covariance matrix. The interferer ASVs are subject
to the same errors as the SOI and will therefore, likely also
have an arbitrary mismatch component. Further, the interfer-
ence ASVs can deviate significantly from those due to far-
field point sources if, for instance, there are near-field sources
or directional platform noises. Thus, it is beneficial for an
adaptive beamformer to be insensitive to the NPI structure.The
classical Capon, or minimum power distortionless response
(MPDR), beamformer, whoseM -dimensional filter, sayw,
being focused at a given direction, is constructed such thatthe
power at the filter output is minimized, while being constrained
to pass the given spatial frequency of interest undistorted, i.e.,

w = argmin
w

wHRw s.t. wH ā = 1 (2)

where R = E
{

xnx
H
n

}

and ā denote the data covariance
matrix and theassumed known SOI ASV. The well-known
Capon or MPDR solution is given by (see, e.g., [1], [2])

w =
R−1ā

āHR−1ā
(3)

As R is typically unknown, it is generally replaced with the
sample covariance matrix (SCM) estimate

R̂SCM =
1

N

N
∑

n=1

xnx
H
n (4)

where N observations of the snapshot vectorxk, for k =
1, . . . , N , are assumed available. It is well-known that the
SCM-based Capon beamformer is sensitive to SOI ASV and
SCM estimation errors and, therefore, a wealth of robust adap-
tive beamforming methods have been proposed (see, e.g., [1],
[2]). Diagonal loading of the SCM is often used to address
sensitivity issues [1], [2], [4]–[6], and recently also worst-case
performance optimization-based or equivalently robust Capon
beamformer (RCB) techniques [4]–[6], which assume that the
SOI ASV belongs to an ellipsoidal uncertainty set and find
the optimal diagonal loading that satisfies this assumption. It is
worth noting, however, that the SCM-based Capon beamformer
is not sensitive to the structure of the NPI, as none is assumed.
Recently, there has also been interest in instead using a NPI
covariance matrix reconstruction [7]. The rationale for this
approach is that the minimum variance distortionless response
(MVDR) beamformer, formulated using the NPI covariance
matrix Q instead ofR in (2), with solution (cf. (3))

w =
Q−1ā

āHQ−1ā
(5)

is less sensitive than the Capon approach to SOI ASV er-
ror [1]. In passive sensing, when SOI-free samples,nn, are
unavailable, a SCM estimate ofQ cannot be obtained. In [7],
Q is instead reconstructed by integrating the spatial response
over a range of angles, selected such that the SOI is absent.
The results reported in [7] indicate that the resulting MVDR-
type beamformer allows for preferable performance in the case
of SOI ASV errors. However, the analysis did not account for
typically present interference ASV errors or arbitrary SOIASV
errors. ASV errors for potential interference sources willcor-
rupt the NPI covariance reconstruction based estimate, which,
as is illustrated in this work, will lead to poor interference
nulling, often resulting in worse performance than diagonally



loaded SCM-based methods such as the RCB. Next, we briefly
review some robust beamformers, including the recent iterative
adaptive approach (IAA) algorithm [8], which itself is a data
covariance matrix reconstruction approach, also introducing
novel covariance reconstruction based beamformers. Then,in
Section III, we examine the performance of the beamformers
in the presence of interference ASV errors and arbitrary SOI
ASV errors. Finally, we conclude the work in Section IV.

II. ROBUST BEAMFORMERS

To reduce sensitivity to SOI ASV errors and to SCM
estimation errors, several robust versions of the Capon beam-
former have been developed; one of the more well-known is
the RCB, which constructs the beamformer as [5]

min
a

aHR−1a s.t. (a− ā)HC−1(a− ā) ≤ 1 (6)

whereC is some (known) positive definite matrix describing
the uncertainty ellipsoid axes. This estimator has been found
to yield notable robustness to ASV and SCM errors, and has
been extended in various forms. In the following, using the
SCM estimate (4) in (6) to obtain an estimated SOI ASV and
then using the estimates in (3) is denoted the RCB.

An alternative recent approach is to instead use a NPI co-
variance matrix reconstruction with the MVDR equation (5) to
form a beamformer that suppresses the SOI-free measurements
as well as possible. There are several options for reconstructing
Q. In [7], SCM-based Capon estimates are exploited to form
Q̂. Let Θ and Θ̃ denote disjoint sets of angles denoting the
region containing the SOI and the region where it is assumed
not to reside, respectively. Then, the NPI covariance matrix
may be reconstructed from the observed data as [7]

Q̂ =

∫

Θ̃

σ̂2

Capon(θ)a(θ)a
H(θ)dθ =

∫

Θ̃

a(θ)aH(θ)

aH(θ)R̂−1

SCMa(θ)
dθ (7)

wherea(θ) is the assumed ASV at angleθ, andσ̂2

Capon(θ) the
Capon-based spatial spectrum at angleθ. Letting θ

Θ̃
denote

a vector ofN
Θ̃

angles that uniformly samplẽΘ, (7) may be
approximated using a summation over the ASVs formed at
each of theN

Θ̃
angles, that is, as [7]

Q̂ ≈
∑

θ
Θ̃

a(θ)aH(θ)

a(θ)HR̂−1

SCMa(θ)

△
= A(θ

Θ̃
)P̂Capon(θΘ̃

)AH(θ
Θ̃
)

(8)
whereA(θ

Θ̃
) ∈ C

M×N
Θ̃ contains the ASVs sampling̃Θ and

P̂Capon(θΘ̃
) ∈ R

N
Θ̃
×N

Θ̃ is a diagonal matrix containing the
associated Capon estimates,σ̂2

Capon(θ), along the main diago-
nal. We denote the beamformer resulting from using the so-
obtained estimatêQ in (5) the MVDR-Q-Capon beamformer.
In [7], to further allow for SOI ASV mismatch, the SOI ASV
is updated according tôa = ā+ e⊥, wheree⊥ is found from

min
e⊥

(ā+ e⊥)
HQ̂−1(ā+ e⊥)

s.t. āHe⊥ = 0, (ā+ e⊥)
HQ̂(ā+ e⊥) ≤ āHQ̂ā (9)

Using â andQ̂ in (5) yields the Recon-Est beamformer, which
we include here for completeness.

Alternatively, one could form the beamformer using (3)
with a reconstruction of the data covariance matrixR. Such a

reconstruction can be formed usinĝQ, i.e., as

R̂Capon = Q̂+

∫

Θ

a(θ)aH(θ)

aH(θ)R̂−1

SCMa(θ)
dθ

≈ A(θ
Θ̃
)P̂Capon(θΘ̃

)AH(θ
Θ̃
) +

+A(θΘ)P̂Capon(θΘ)A
H(θΘ)

= A(θ)P̂Capon(θ)A
H(θ) (10)

whereθΘ denotes a vector ofNΘ angles uniformly sampling
Θ. We remark that theK = NΘ+N

Θ̃
angles inθ contain the

angles inθΘ andθ
Θ̃

. When usingR̂Capon in (3), the resulting
beamformer is termed the MPDR-R-Capon beamformer. The
data covariance matrixR may instead be reconstructed using
the IAA-framework, i.e., as the solution obtained by iteratively
solving a weighted least squares amplitude estimate for each
considered spatial frequency, and then using these to form the
resulting covariance matrix estimate, iterating

R̂IAA = A(θ)P̂IAA (θ)A
H(θ) (11)

ŝk(n) =
aH(θk)R̂

−1

IAAxn

aH(θk)R̂
−1

IAAa(θk)
, n = 1, . . . , N (12)

Pk =
1

N

N
∑

n=1

|ŝk(n)|
2, k = 1, . . . ,K (13)

until practical convergence, whereA(θ) ∈ C
M×K contains the

K steering vectors sampling the entire space at the directions
defined in θ ∈ R

K×1, P̂IAA (θ) ∈ R
K×K is a diagonal

matrix containing the IAA power estimates,Pk, along the
diagonal, wherea(θk) denotes the presumed steering vector
at direction θk, and ŝk(n) the nth complex amplitude at
directionθk [8]. At initialization, one typically setŝRIAA = I.
We will denote the MPDR-style beamformer resulting from
using (3) withR̂IAA , as obtained using (11), after letting the
IAA algorithm converge, MPDR-R-IAA. Comparing (10) and
(11), we observe that the only difference in the MPDR-R-IAA
and MPDR-R-Capon approaches is that Capon or IAA power
estimates are used to reconstruct the data covarianceR.

Clearly, one may also usêRIAA to form an estimate of
Q, such that instead of exploiting the Capon spatial spectrum
estimator in (7), one could exploit the IAA-spectrum estimator
to reconstructQ, yielding

Q̂IAA =

∫

Θ̃

σ̂2

IAA (θ)a(θ)a
H(θ)dθ

≈ R̂IAA −A(θΘ)P̂IAA (θΘ)A
H(θΘ) (14)

whereA(θΘ) denotes the matrix of presumed ASVs for a set
of directions that uniformly sample the set of anglesΘ, which
are assumed to contain the SOI, and whereP̂IAA (θΘ) is a
diagonal matrix containing the associated power estimatesin
these directions. When usinĝQIAA in (5), we term the resulting
algorithm the MVDR-Q-IAA beamformer. The MVDR-Q-IAA
and MPDR-R-Capon beamformers are novel and are in-
cluded as they relate the existing MVDR-Q-Capon [7] and
MPDR-R-IAA (IAA) [8] approaches.

III. N UMERICAL EXAMPLES

We proceed to examine the performance of the discussed
beamformers in the presence of interference ASV errors
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Fig. 1. ForN = 60 snapshots,σ2

0
= 40 dB andθ̄ = 90

◦ and (a)δθ = 0, σ2

e,0 = σ2
e = 0, (b) δθ = 1

◦, σ2

e,0 = σ2
e = 0 (c) δθ = −1.22◦, σ2

e,0 = σ2
e = 0,

(d) δθ = −1.22◦, σ2

e,0 = 0.25, σ2
e = 0, (e) δθ = −1.22◦, σ2

e,0 = 0, σ2
e = 0.25, and (f) δθ = −1.22◦, σ2

e,0 = 0.25, σ2
e = 0.25.



and arbitrary SOI ASV errors. We consider a simulated
M = 20 element half-wavelength spaced uniform linear
array, assuming that the NPI covariance has the formQ =
∑d

i=1
σ2
i s(θi)s

H(θi) + I, where σ2
i is the ith interference

power, ands(θi) = a(θi) + σeei, with ei denoting a zero-
mean complex circularly symmetric random vector with unit
norm. Thus, whenσe 6= 0, the interference ASVs(θi) will
be arbitrarily mismatched. Although this is often not taken
into account, it should be noted that the interference ASVs
will typically be subject to arbitrary mismatch in much the
same way as the SOI ASV is. Furthermore, the NPI may
include signals in the near-field and may not even be due
to point sources. Ideally, an adaptive beamformer should be
insensitive to the structure of the noise and interference.Here,
we assumed = 3 interferences nominally at21◦, 60◦, and
105◦ with powers of20, 30, and30 dB, and simulate the SOI
ASV as a0 = a(θ̄ + δθ) + σe,0e0, where θ̄ is the assumed
SOI AOA, δθ an angle mismatch,σe,0 the norm of the ASV
mismatch, ande0 is defined similarly toei. For the matrix
reconstructions, we consider a grid ofK = 180 angles, equally
spaced between1◦ and180◦. For all of the tested algorithms
we examine the spatial spectra, i.e.,wHR̂SCMw for each beam,
assuming that the beams are formed at∆ = 3◦ steps in the
interval [3◦, 177◦], so that there are 59 beam directions in total.
The nominal interference angles are each on one of theK
grid angles. In the following, we introduce interference AOA
mismatch, where each of the interference AOAs are drawn
from a uniform distribution whose limits are within±0.5∆
of the nominal AOA, so that they may not necessarily lie on
a grid point. For comparison purposes, we also evaluate the
MPDR-R-IAA (IAA) algorithm at all K = 180 grid angles,
terming this simply IAA. For beam direction̄θ, it is assumed
that the SOI can belong to the interval[θ̄ −∆/2, θ̄ +∆/2]◦.
This leads to values ofNΘ of between 6 and 7. Tight spherical
uncertainty sets were used with the RCB, whose steer-direction
dependent radii were calculated using the technique outlined
in [9], where a minimum value radius of 1 was imposed. For
a SOI nominally at̄θ = 90◦ with powerσ2

0 = 40 dB, Fig. 1(a)
illustrates the spatial spectra when there are no AOA or arbi-
trary errors in the SOI or interference ASVs. Fig. 1(b) shows
the spectra when the SOI is simulated withδθ = 1◦ AOA
mismatch, illustrating that MPDR-R-Capon, MPDR-R-IAA,
and MPDR-SCM will all undergo severe SOI cancellation,
whilst MVDR-Q-IAA, MVDR-Q-Capon and Recon-Est are
more robust, whereas the RCB yields the most robust estimate.
The IAA algorithm does not undergo signal cancellation as the
SOI AOA coincides with one of its steer directions. For the
other reconstruction-based algorithms, even though the SOI
AOA does not coincide with a beam steer direction, it does
coincide with one of theK grid points used in the covariance
matrix reconstruction. In Fig. 1(c), the spectra when the SOI
is simulated withδθ = −1.22◦ are illustrated, so that its AOA
no longer coincides with one of theK grid points, showing
that the noise floors for MVDR-Q-Capon, Recon-Est and
MPDR-R-Capon have increased significantly. The noise-floors
for MVDR-Q-IAA and MPDR-R-IAA are largely unchanged,
highlighting the benefits of using IAA power estimates instead
of Capon ones to reconstruct the covariance matrices. The
IAA algorithm does now exhibit SOI cancellation as the SOI
AOA no longer coincides with one of theK grid points. The
RCB exhibits the least SOI cancellation. Finally, in Figs. 1(d),

(e), and (f), we arbitrarily mismatch the SOI ASV only, the
interference ASVs only, and both the SOI and interference
ASVs, indicating a clear degradation of the noise floor for
all of the covariance reconstruction based methods, including
IAA. As can be noted from these figures, this degradation of
the noise floor will affect weak targets. We proceed to examine
the performance as a function of the SINR, here defined as
σ2
0 |w

Ha0|
2/wHQw, whereσ2

0 is the SOI power. Fig. 2(a)
illustrates the SINR as a function ofN when there is no
mismatch in any of the ASVs, illustrating that the covariance
matrix reconstruction approaches perform significantly better
than the SCM-based RCB and MPDR estimates. In Fig. 2(b),
interferer AOA mismatch is introduced and one may observe
a degradation in the algorithms that attempt to reconstruct
covariance matrices. The degradation is more pronounced for
the Capon-based reconstructions as compared with the IAA-
based ones. In Fig. 2(c), arbitrary mismatch is introduced to the
interference ASVs only, which leads to an extreme degradation
of the reconstruction-based algorithms. Similar results are
obtained in Figs. 2(d), when AOA and arbitrary errors are
introduced into the interferer ASVs only. In Fig. 2(e), AOA
errors are introduced into both SOI and interference ASVs,
whilst in Fig. 2(f) AOA and arbitrary errors are introduced into
both the SOI and interference ASVs. These results highlight
that the covariance matrix reconstruction based approaches are
highly sensitive to the structure of the interference and noise,
which is a significant deficiency in practice.

IV. CONCLUSIONS

The performances of algorithms based on covariance ma-
trix reconstruction can degrade significantly when the noise-
plus-interference is not well-modeled by the assumed covari-
ance structure, for instance when arbitrary array errors exist
and/or when the interferer directions of arrival do not lie on
the assumed grid. Whilst IAA-based reconstruction algorithms
can be used to mitigate the effect of the latter, they are still
sensitive to the former. The RCB is insensitive to such errors.
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Fig. 2. SINR vsN for a 0 dB SOI, with no SOI ASV error and interferers with (a) noASV errors, (b) AOA errors but no arbitrary error, (c) arbitrary error
(σ2

e = 0.25) but no AOA error, (d) with AOA and arbitrary errors (σ2
e = 0.25); (e) SOI and interferers with AOA error but no arbitrary errors, (f) SOI and

interferers with both AOA and arbitrary errors (σ2

e,0 = σ2
e = 0.25).


