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Abstract—We show that recent robust adaptive beamformers, where R = E {x,xX} and a denote the data covariance
based on reconstructing either the noise-plus-interference or matrix and theassumed known SOl ASV. The well-known

the data covariance matrices, are sensitive to the noise-plus- Capon or MPDR solution is given by (see, e.g., [1], [2])
interference structure and degrade in the typical case when

interferer steering vector mismatch exists, often performing mwah . R 'a 3
worse than common diagonally loaded sample covariance matrix w= afR-13 (3)
based approaches, even when signal-of-interest steering vecto . . o )
mismatch is absent. As R is typically unknown, it is generally replaced with the

sample covariance matrix (SCM) estimate

. INTRODUCTION - 1 &
_ _ ' Rsem = > xnx)! (4)
Adaptive beamforming can be used in radar and sonar n=1
applications, e.g., for source localization, power estioma

and improving detection (see, e.g., [1], [2]). Given the mlod where IV observations of the snapshot vectey, for &k =

1,...,N, are assumed available. It is well-known that the
SCM-based Capon beamformer is sensitive to SOl ASV and
SCM estimation errors and, therefore, a wealth of robusp-ada
wherex,,, s,,, ag, andn,, denote theuth array snapshot vector, tive beamforming methods have been proposed (see, e.g., [1]
the nth signal-of-interest (SOI) complex waveform sample, [2]). Diagonal loading of the SCM is often used to address
the true SOI array steering vector (ASV), and thtf noise- ~ sensitivity issues [1], [2], [4]-[6], and recently also wbrase
plus-interference (NPI) snapshot, such works are based deerformance optimization-based or equivalently robugtdda
the forming of data-adaptive beamformers striving to pass t beamformer (RCB) techniques [4]-[6], which assume that the
SOl from some assumed generic direction undistorted whil&Ol ASV belongs to an ellipsoidal uncertainty set and find
attempting to minimize the influence of the noise and interfe the optimal diagonal loading that satisfies this assumpttas
ence, including signals from other directions. In practitee ~ Worth noting, however, that the SCM-based Capon beamformer
assumed SOl ASV is subject to various types of mismatchl,s not sensitive to the structure Of the NPl, F_JIS none Is _anume
e.g., due to pointing and/or array calibration errors, smhe Recently, there has also been interest in instead using a NP
which are well modeled as an arbitrary mismatch [2], [3]. Thecovariance matrix reconstruction [7]. The rationale foisth
NPI is often assumed to comprise far-field point interferersapproach is that the minimum variance distortionless nespo
embedded in full-rank noise with a covariance matrix of the(MVDR) beamformer, formulated using the NPI covariance
form Q = B {n,n/'} = "% o2a,all + N, wherea;, 02, d  Matrix Q instead ofR in (2), with solution (cf. (3))

Xp = Spag + Ny (1)

andN denote theth interferer ASV, theith interferer power, Q'a
the (typically unknown) number of interferers, and the -full W= (5)
rank noise covariance matrix. The interferer ASVs are sibje a’Q™'a

to the same errors as the SOI and will therefore, likely alsds less sensitive than the Capon approach to SOl ASV er-
have an arbitrary mismatch component. Further, the interfe ror [1]. In passive sensing, when SOl-free samples, are
ence ASVs can deviate significantly from those due to farunavailable, a SCM estimate 6§ cannot be obtained. In [7],
field point sources if, for instance, there are near-fielde®al  Q is instead reconstructed by integrating the spatial resgon
or directional platform noises. Thus, it is beneficial for anover a range of angles, selected such that the SOI is absen
adaptive beamformer to be insensitive to the NPI strucilite.  The results reported in [7] indicate that the resulting MV\DR
classical Capon, or minimum power distortionless responsé/pe beamformer allows for preferable performance in thseca
(MPDR), beamformer, whosé/-dimensional filter, sayw,  of SOI ASV errors. However, the analysis did not account for
being focused at a given direction, is constructed suchtlteat typically present interference ASV errors or arbitrary @V
power at the filter output is minimized, while being consteal  errors. ASV errors for potential interference sources walf-
to pass the given spatial frequency of interest undistoited  rupt the NPI covariance reconstruction based estimate;hyhi
.5 " as is illustrated in this work, will lead to poor interferenc
w=argmnw’Rw st wra=1 (2)  nulling, often resulting in worse performance than diadigna



loaded SCM-based methods such as the RCB. Next, we brieftgconstruction can be formed usify i.e., as
review some robust beamformers, including the recenttitera Oak (6
adaptive approach (IAA) algorithm [8], which itself is a dat f{Capon = Q+ / Md&
covariance matrix reconstruction approach, also intriodyc o af (9)Rgiyald)
novel covariance reconstruction based beamformers. Tihen, N\F NAH(p.

Section Ill, we examine the performance of the beamformers A(GQ)PCap?r(Oe)A (0%) *

in the presence of interference ASV errors and arbitrary SOI + A(0o)Pcapoffe)A™ (06)

ASV errors. Finally, we conclude the work in Section IV. A(0)Pcapo0) A (6) (10)

wherefg denotes a vector aNg angles uniformly sampling
©. We remark that thé{ = Ng + Ng angles inf contain the

To reduce sensitivity to SOI ASV errors and to SCM angles infg andg. When usingRcaponin (3), the resulting
estimation errors, several robust versions of the Capombea peamformer is termed the MPDR-R-Capon beamformer. The
former have been developed; one of the more well-known igjata covariance matriR may instead be reconstructed using

Q

II. ROBUST BEAMFORMERS

the RCB, which constructs the beamformer as [5] the IAA-framework, i.e., as the solution obtained by itieiy
. Hp-1 t CAVHCO(n _ a) < soIVIng a Welght.ed least squares amplltu<_je estimate fdn eac
mna R7a st (a-a)"C(a-a)<1 (6 consu_alered spa_ltlal freque_ncy, a_nd then using these to foem t
where C is some (known) positive definite matrix describing 'eSUlting covariance matrix estimate, iterating
the uncertainty ellipsoid axes. This estimator has beendou Rian = A(0)15|AA(9)AH(0) (11)
to yield notable robustness to ASV and SCM errors, and has I A
been extended in various forms. In the following, using the dp(n) = a (‘gk)ARIAAXn ., n=1,...,N (12
SCM estimate (4) in (6) to obtain an estimated SOI ASV and afl (0;,)Rpa(0k)
then using the estimates in (3) is denoted the RCB. 1
_ 5 2 _

An alternative recent approach is to instead use a NPI co- By = N Z Be)l% k=1, K (13)

variance matrix reconstruction with the MVDR equation (&) t n=1

form a beamformer that suppresses the SOI-free measuremenintil practical convergence, whesg() € CM*K contains the
as well as possible. There are several options for recanstgu K steering vectors sampling the entire space at the direction
Q. In [7], SCM-based Capon estimates are exploited to fornyefined in9 ¢ REX1, PIAA(G) e RE*K s a diagonal
Q. Let © and © denote disjoint sets of angles denoting thematrix containing the IAA power estimates),, along the
region containing the SOI and the region where it is assumegiagonal, wherea(6,,) denotes the presumed steering vector
not to reside, respectively. Then, the NPI covariance matriat direction 65, and 3x(n) the nth complex amplitude at

may be reconstructed from the observed data as [7] directiond,, [8]. At initialization, one typically set®Rjaa = I.

. a(0)afl () We will denote the MPDR-style beamformer resulting from

Q= / &Capow)a(e)aff(e)de :/ HA—dde (7)  using (3) withRyaa, as obtained using (11), after letting the
© 6 a (f)Rgcpal(f) IAA algorithm converge, MPDR-R-IAA. Comparing (10) and

wherea(0) is the assumed ASV at angle andé2,,(6) the (11), we observe that the only diﬁgrence in the MPDR-R-1AA
Capon-based spatial spectrum at angjle etting 3‘(’;’ denote and MPDR-R-Capon approaches is that Capon or IAA power

a vector of N angles that uniformly sampl®, (7) may be estimates are used to reconstAruct the data covariRnce
approximated using a summation over the ASVs formed at Clearly, one may also usRjaa to form an estimate of
each of theNg angles, that is, as [7] Q, such that instead of exploiting the Capon spatial spectrum
a(0)a” (0) estimator in (7), one cpuld exploit the IAA-spectrum estiona
Q~Y - 2 A(05)Pcapo05)A™ (65) to reconstructQ, yielding
o5 a(0)"Rgcpa(f) .
_(8) Qnua = [ 6.3\A (9)3(‘9)3H(0)d‘9
where A (65) € CM*Ne contains the ASVs sampling and 0 R =
Pcapo,{aé) € RMe*Ns s a diagonal matrix containing the Rian — A(0e)Pian(00)A7 (00)  (14)
associated Capon estimatég,,,{¢), along the main diago- whereA (6) denotes the matrix of presumed ASVs for a set
nal. We denote the beamformer resulting from using the soof directions that uniformly sample the set of angi&swhich
obtained estimat€) in (5) the MVDR-Q-Capon beamformer. are assumed to contain the SOI, and whBiga (o) is a
In [7], to further allow for SOl ASV mismatch, the SOl ASV diagonal matrix containing the associated power estimiates
is updated according ta = a+ e, wheree, is found from  these directions. When usit@aa in (5), we term the resulting
. A, algorithm the MVDR-Q-IAA beamformer. The MVDR-Q-IAA
Igin(aJr e)"Q M (@+ey) angd MPDR-R-Capor:g beamformers are novel andQ are in-
~H - HA(= =HAa cluded as they relate the existing MVDR-Q-Capon [7] and
stafer =0, (at+e)"Qlate)=aQa ) Yorp piaa %/IAA) 8] approacheg. Q-capon 7]

Q

Usinga andQ in (5) yields the Recon-Est beamformer, which
we include here for completeness. 1.  NUMERICAL EXAMPLES

Alternatively, one could form the beamformer using (3) We proceed to examine the performance of the discussec
with a reconstruction of the data covariance maRixSuch a beamformers in the presence of interference ASV errors
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Fig. 1. ForN = 60 snapshotsgj = 40 dB andf = 90° and (@)0p =0, 02, =02 =0, (b) g = 1°, 02 ) =02 =0 (¢) §yp = —1.22°, 02 ; = 02 =0,
2
e

(d) dp = —1.22°, 02 ; = 0.25, 02 = 0, () 6y = —1.22°, 02, = 0, 02 = 0.25, and (f)§p = —1.22°, 02 ; = 0.25, o2 = 0.25.
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and arbitrary SOl ASV errors. We consider a simulated(e), and (f), we arbitrarily mismatch the SOI ASV only, the
M = 20 element half-wavelength spaced uniform linearinterference ASVs only, and both the SOI and interference
array, assuming that the NPI covariance has the f@m=  ASVs, indicating a clear degradation of the noise floor for
Zle o2s(0;)s™(0;) + 1, where ¢? is the ith interference all of the covariance reconstruction based methods, imuud
power, ands(6;) = a(f;) + o.e;, with e; denoting a zero- IAA. As can be noted from these figures, this degradation of
mean complex circularly symmetric random vector with unitthe noise floor will affect weak targets. We proceed to examin
norm. Thus, whenr, # 0, the interference AS\(6;) will the performance as a function of the SINR, here defined as
be arbitrarily mismatched. Although this is often not takenod|wag|?/w Qw, whereo? is the SOI power. Fig. 2(a)
into account, it should be noted that the interference ASVdllustrates the SINR as a function ¥ when there is no
will typically be subject to arbitrary mismatch in much the mismatch in any of the ASVs, illustrating that the covarianc
same way as the SOI ASV is. Furthermore, the NPl maymatrix reconstruction approaches perform significantltelve
include signals in the near-field and may not even be du#an the SCM-based RCB and MPDR estimates. In Fig. 2(b),
to point sources. Ideally, an adaptive beamformer should b&terferer AOA mismatch is introduced and one may observe
insensitive to the structure of the noise and interferenieze, a degradation in the algorithms that attempt to reconstruct
we assumel = 3 interferences nominally a21°, 60°, and covariance matrices. The degradation is more pronounaed fo
105° with powers 0f20, 30, and30 dB, and simulate the SOI the Capon-based reconstructions as compared with the IAA-
ASV asag = a(f + &) + Te,0€0, where @ is the assumed based ones. In Fig. 2(c), arbitrary mismatch is introducatie

SOl AOA, §y an angle mismatchy, o the norm of the ASV interference ASVs only, which leads to an extreme degradati
mismatch, ande, is defined similarly toe;. For the matrix of the reconstruction-based algorithms. Similar results a
reconstructions, we consider a gridiéf= 180 angles, equally obtained in Figs. 2(d), when AOA and arbitrary errors are
spaced betweeh® and 180°. For all of the tested algorithms introduced into the interferer ASVs only. In Fig. 2(e), AOA
we examine the spatial spectra, i Rscyw for each beam, errors are introduced into both SOI and interference ASVs,
assuming that the beams are formedMat= 3° steps in the Whilstin Fig. 2(f) AOA and arbitrary errors are introduceda
interval [3°,177°], so that there are 59 beam directions in total.both the SOI and interference ASVs. These results highlight
The nominal interference angles are each on one ofithe that the covariance matrix reconstruction based appreaatee
grid angles. In the following, we introduce interference AO highly sensitive to the structure of the interference anidejo
mismatch, where each of the interference AOAs are drawivhich is a significant deficiency in practice.

from a uniform distribution whose limits are withift0.5A

of the nominal AOA, so that they may not necessarily lie on IV.. CONCLUSIONS

a grid point. For comparison purposes, we also evaluate the The performances of algorithms based on covariance ma-
MPDR-R-IAA (IAA) algorithm at all K* = 180 grid angles,  trix reconstruction can degrade significantly when the aois
terming this simply IAA. For beam directiof, it is assumed p|ys-interference is not well-modeled by the assumed ¢ovar
that the SOI can belong to the interval— A/2,6 + A/2]°. ance structure, for instance when arbitrary array erroist ex
This leads to values dWe of between 6 and 7. Tight spherical and/or when the interferer directions of arrival do not lie o
uncertainty sets were used with the RCB, whose steer-tirect the assumed grid. Whilst IAA-based reconstruction algatith
dependent radii were calculated using the technique @atlin can be used to mitigate the effect of the latter, they aré stil
in [9], where a minimum value radius of 1 was imposed. Forsensitive to the former. The RCB is insensitive to such stror

a SOl nominally a¥ = 90° with powerc? = 40 dB, Fig. 1(a)
illustrates the spatial spectra when there are no AOA or arbi
trary errors in the SOI or interference ASVs. Fig. 1(b) showsm
the spectra when the SOI is simulated with = 1° AOA
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