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Sven Nordebo, Börje Nilsson, Stefan Gustafsson
{sven.nordebo,borje.nilsson,stefan.h.gustafsson}@lnu.se

School of Computer Science, Physics and Mathematics
Linnaeus University
SE-351 95 Växjö
Sweden

Thomas Biro
thomas.biro@jth.hj.se

School of Engineering
Jönköping University
SE-551 11 Jönköping
Sweden

Gökhan Cinar
gokhan_cinar@yahoo.com

Electronics Engineering Department
Gebze Institute of Technology
414 00 Gebze, Kocaeli
Turkey

Mats Gustafsson, Anders Karlsson
{mats.gustafsson,anders.karlsson}@eit.lth.se

Department of Electrical and Information Technology
Electromagnetic Theory
Lund University
P.O. Box 118
SE-221 00 Lund
Sweden

Mats Sjöberg
mats.l.sjoberg@se.abb.com

ABB AB
SE-371 23 Karlskrona
Sweden

Editor: Gerhard Kristensson
c© Sven Nordebo et al., Lund, November 28, 2011



1

Abstract

This paper provides an exact asymptotic analysis regarding the low-frequency
dispersion characteristics of the multi-layered coaxial cable. A layer-recursive
description of the dispersion relation is derived and analyzed. It is shown
that if there is one isolating layer and a perfectly conducting outer shield, the
classical Weierstrass preparation theorem can be used to prove that the low-
frequency behavior of the propagation constant is governed by a square root of
the complex frequency, and an exact analytical expression for the dominating
term of the asymptotic expansion is derived. It is furthermore shown that
the same asymptotic expansion is valid to its lowest order even if the outer
shield has �nite conductivity and there is an in�nite exterior region with �-
nite non-zero conductivity. The proofs are based on asymptotic analysis, and
illustrated with numerical examples. As a practical application of the theory,
a High-Voltage Direct Current (HVDC) power cable is analyzed and a numer-
ical solution to the dispersion relation is validated by comparisons with the
asymptotic analysis. The comparison reveals that the low-frequency disper-
sion characteristics of the power cable is very complicated and a �rst order
asymptotic approximation is valid only at extremely low frequencies (below
1 Hz). Hence, for practical modeling purposes such as with fault localization
etc., an accurate numerical solution to the dispersion relation is of great value.

1 Introduction

The topic of this paper is to perform an exact asymptotic analysis regarding the low-
frequency dispersion characteristics of the multi-layered coaxial cable. Except for
the general physical insight and development of mathematical methods, this study is
motivated by the need to understand the precise behavior of the low-frequency wave
propagation characteristics of High-Voltage Direct Current (HVDC) power cables.
It is anticipated that accurate electromagnetic models will potentially be very useful
for future fault localization and diagnosis systems regarding the surveillance of very
long HVDC power cables [1, 2, 8, 10, 14, 16, 17, 19]. To this end, a low-frequency
approximation of the propagation constant can potentially be very useful as part
of an e�cient numerical method to solve the electromagnetic problem. On the
other hand, a numerical algorithm to solve the electromagnetic problem can also be
validated by comparisons with the correct asymptotics at low frequencies.

The HVDC power cables constitute good examples of a multi-layered coaxial
cable. The wave propagation characteristics of transmission lines and power cables
have been studied over many years, see e.g., [4, 5, 9, 13, 18]. Recent studies have
been devoted to measurements and modeling regarding the semiconducting layers of
a power cable and its e�ect on wave propagation characteristics [1, 2, 16]. It has been
shown, e.g., that the semiconducting layer contributes signi�cantly to the attenua-
tion for frequencies above 5-10 MHz [16]. However, in applications regarding fault
localization and surveillance of very long (10 km or more) HVDC power cables, the
relevant frequency range is rather in the low-frequency regime of about 0-100 kHz,
see [10].
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It is observed that many of the classical results such as in [1, 4] are based on
approximations and restrictions rather than general electromagnetic modeling and
accurate numerical solutions of the related dispersion relation. Hence, in [1, 4], low-
frequency approximations are incorporated where the longitudinal wave number is
partly neglected and the exact dispersion relation is avoided. These approximations
may not be accurate enough if a precise evaluation is required with respect to the
properties of a multi-layered coaxial power cable.

A layer-recursive description of the dispersion relation for the axial-symmetric
Transversal Magnetic TM0n modes is derived and analyzed in this paper. It will
be shown that when the cable has at least one isolating layer, the propagation
constant of the dominating TM01 mode tends to zero as the frequency tends to
zero, but it is not an analytic function in a neighborhood of the zero frequency.
By employing the classical Weierstrass preparation theorem (Theorem 7.5.1 in [6])
it is shown that if there is one isolating layer and a perfectly conducting outer
shield, the low-frequency behavior of the propagation constant γ of the dominating
mode is governed by a square root of the complex frequency γ ∼ A

√
iω/c0, and

an exact analytical expression for the dominating term of the asymptotic expansion
is derived. It is furthermore shown that the same asymptotic expansion is valid
to its lowest order even if the outer shield has �nite conductivity and there is an
in�nite exterior region with �nite non-zero conductivity. The proofs are based on
asymptotic analysis, and illustrated with numerical examples.

A HVDC power cable is analyzed and a numerical solution to the dispersion
relation is validated by comparisons with the asymptotic analysis. In this example
case, it is concluded that the low-frequency behavior of the propagation constant
is rather complicated and the �rst order asymptotic approximation is not accurate
enough to model the cable response over the relevant frequency range 0−100 kHz. An
accurate numerical solution to the dispersion relation is hence very useful, see [10].

The rest of the paper is organized as follows: In section 2 is given the basic
electromagnetic model and in section 3 the asymptotic analysis. In section 4 is
given the numerical examples and in section 5 the summary and conclusions.

2 The electromagnetic model

2.1 Basic de�nitions and boundary conditions

Let µ0, ε0, η0 and c0 denote the permeability, the permittivity, the wave impedance
and the speed of light in free space, respectively, and where η0 =

√
µ0/ε0 and c0 =

1/
√
µ0ε0. The wave number of free space is given by k = ω/c0 where ω = 2πf is the

angular frequency and f the frequency. It follows that ωµ0 = kη0 and ωε0 = k/η0.
The cylindrical coordinates are denoted by (ρ, φ, z), the corresponding unit vectors
(ρ̂, φ̂, ẑ) and the transversal coordinate vector ρ = ρρ̂. The time convention is
de�ned by the factor eiωt.

Consider the eigenvalue problem based on Maxwell's equations for a multi-layered
circularly symmetrical coaxial cable. The wave propagation along the z-direction
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of the coaxial cable is given by the exponential factor e−γz where γ is the propa-
gation constant corresponding to a particular mode [7, 15]. With the electric and
magnetic �elds denoted by E = E(ρ, γ)e−γz and H = H(ρ, γ)e−γz, respectively,
the eigenvalue problem to be solved is given by

{
∇2

t + k2ε+ γ2
}{ E(ρ, γ)

H(ρ, γ)

}
=

{
0
0

}
, (2.1)

together with the appropriate boundary conditions, and where ∇2
t is the transversal

part of the Laplace operator and γ2 the eigenvalue [7, 15]. It should be noted that
the eigenvalue problem (2.1) in general has a continuous spectrum if an exterior
in�nite domain is included. This complication is also manifested by the presence of
a branch-cut in the complex γ-plane related to the dispersion function which will
be derived below.

Consider the multi-layered circularly symmetrical coaxial cable as depicted in
Figure 1. Here, there are N+1 material boundaries with radius ρi for i = 0, 1, . . . , N
de�ning an inner region for 0 ≤ ρ ≤ ρ0 with permittivity ε0, N intermediate layers
for ρi−1 ≤ ρ ≤ ρi with permittivity εi for i = 1, . . . , N and an outer region for
ρ ≥ ρN with permittivity εN+1.!

ρi
ρi−1

ρ0

εi+1εiεi−1ε0

Figure 1: The multi-layered circularly symmetrical coaxial cable with geometrical
and material de�nitions.

The complex valued permittivity in each of the N + 2 regions are de�ned by

εi = εri − iσiη0/k, i = 0, 1, . . . , N + 1, (2.2)

where εri is the real, relative permittivity and σi the conductivity of the material.
Further, let

κi =
√
k2εi + γ2, i = 0, 1, . . . , N + 1, (2.3)

be the corresponding radial wave number for material region i where the square
root1 is chosen such that Im{κi} ≤ 0, see also [3, 10].

The present study is concerned with the Transversal Magnetic (TM) modes of
order m = 0 denoted TM0n, as the Transversal Electric (TE) modes of order m = 0,

1To make the square root unique, its phase angle is chosen as −π < arg κi ≤ 0.
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TE0n, and all the higher order modes2 with m 6= 0 will essentially be cut-o� in the
low-frequency regime. The electric and magnetic �eld components are given by an
expansion in cylindrical vector waves as de�ned in e.g., [10], see also [3, 7, 15]. Here,
the Ez and Hφ �eld components of the TM0n modes are expressed in each layer by

Ez =
1

2πi

κ

k

[
aψ

(1)
0 (κρ) + bψ

(2)
0 (κρ)

]
e−γz, (2.4)

Hφ =
1

2πη0

ε
[
aψ

(1)
1 (κρ) + bψ

(2)
1 (κρ)

]
e−γz, (2.5)

where a and b are complex valued expansion coe�cients, and ψ
(j)
m (·) a Bessel function

or a Hankel function of the �rst kind (j = 1) and the second kind (j = 2), and order
m = 0, 1. Note that the expansion coe�cients a and b have the same dimension as
the electric �eld (V/m).

For the intersection between two materials with �nite conductivity3 the appro-
priate boundary conditions are given by the continuity of the tangential electric and
magnetic �elds [7]. For the TM0n modes these boundary conditions can be formu-
lated using (2.4) and (2.5) as follows. Let a0, ai and bi for i = 1, . . . , N and bN+1

denote the expansion coe�cients corresponding to the N + 2 regions de�ned above.
The boundary conditions related to the �rst boundary at radius ρ0 are given by

−a0κ0J0(κ0ρ0) + a1κ1H
(1)
0 (κ1ρ0) + b1κ1H

(2)
0 (κ1ρ0) = 0,

−a0κ0
kε0
κ0

J1(κ0ρ0) + a1kε1H
(1)
1 (κ1ρ0) + b1kε1H

(2)
1 (κ1ρ0) = 0,

(2.6)

where Jm(·) denotes the Bessel function of the �rst kind and H
(1)
m (·) and H

(2)
m (·) the

Hankel functions of the �rst and second kind, respectively, see [12]. Note that a0κ0

together with a1 and b1 are regarded to be the unknown coe�cients in (2.6). The
boundary conditions related to the boundary at radius ρi−1 are similarly given by

−ai−1κi−1H
(1)
0 (κi−1ρi−1)− bi−1κi−1H

(2)
0 (κi−1ρi−1)

+aiκiH
(1)
0 (κiρi−1) + biκiH

(2)
0 (κiρi−1) = 0,

−ai−1kεi−1H
(1)
1 (κi−1ρi−1)− bi−1kεi−1H

(2)
1 (κi−1ρi−1)

+aikεiH
(1)
1 (κiρi−1) + bikεiH

(2)
1 (κiρi−1) = 0,

(2.7)

where i = 2, . . . , N . The boundary conditions related to the last boundary at radius
ρN are �nally given by

−aNκNH
(1)
0 (κNρN)− bNκNH

(2)
0 (κNρN)

+bN+1κN+1H
(2)
0 (κN+1ρN) = 0,

−aNkεNH
(1)
1 (κNρN)− bNkεNH

(2)
1 (κNρN)

+bN+1kεN+1H
(2)
1 (κN+1ρN) = 0.

(2.8)

2Note that the TE and TM �eld components are generally coupled via the boundary conditions,
but are always decoupled for the axial symmetric TM0n and TE0n modes.

3It is assumed that at least one of the layers have non-zero conductivity so that there are no
surface currents.
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Note that the inner region is represented solely by the Bessel function Jm(κ0ρ)
(regular wave) in (2.6) and the outer region is represented solely by the Hankel

function H
(2)
m (κN+1ρ) (outgoing wave) in (2.8), see also [3, 7, 10, 15].

The row scaling of the boundary conditions in (2.6) through (2.8) using the free
space wave number k as well as the de�nition of the coe�cient a0κ0 in (2.6) has been
chosen in order to obtain the desired analytical properties of the dispersion function
in the subsequent asymptotic analysis. Hence, let the unknown coe�cients be a0κ0,
together with the coe�cients ai and bi for i = 1, . . . , N , and bN+1. The boundary
conditions in (2.6) through (2.8) are then assembled into a square (2N+2)×(2N+2)
matrix A(γ2, k), and the corresponding dispersion relation is given by

hN+1(γ2, k) = detA(γ2, k) = 0, (2.9)

which is the condition for the existence of a mode [7, 15].

2.2 The layer-recursive dispersion relation

A layer-recursive representation of the dispersion function hN+1(γ2, k) = detA(γ2, k)
de�ned in (2.9) is obtained as follows.

De�ne the following auxiliary functions based on certain combinations of the
Hankel functions

ai(κi) = H
(1)
1 (κiρi−1)H

(2)
0 (κiρi)− H

(2)
1 (κiρi−1)H

(1)
0 (κiρi),

bi(κi) = H
(2)
0 (κiρi−1)H

(1)
0 (κiρi)− H

(1)
0 (κiρi−1)H

(2)
0 (κiρi),

ci(κi) = H
(1)
1 (κiρi−1)H

(2)
1 (κiρi)− H

(2)
1 (κiρi−1)H

(1)
1 (κiρi),

di(κi) = H
(2)
0 (κiρi−1)H

(1)
1 (κiρi)− H

(1)
0 (κiρi−1)H

(2)
1 (κiρi),

(2.10)

where i ≥ 1.
Based on the boundary conditions (2.6) through (2.8), the following determinants

are now de�ned. The zero-order determinants are given by
f0(γ2, k) = −J0(κ0ρ0),

g0(γ2, k) = −kε0
κ0

J1(κ0ρ0).
(2.11)

The �rst order determinants are given by

f1(γ2, k) =

∣∣∣∣∣∣∣∣
−J0(κ0ρ0) κ1H

(1)
0 (κ1ρ0) κ1H

(2)
0 (κ1ρ0)

−kε0
κ0

J1(κ0ρ0) kε1H
(1)
1 (κ1ρ0) kε1H

(2)
1 (κ1ρ0)

0 −κ1H
(1)
0 (κ1ρ1) −κ1H

(2)
0 (κ1ρ1)

∣∣∣∣∣∣∣∣ , (2.12)

and

g1(γ2, k) =

∣∣∣∣∣∣∣∣
−J0(κ0ρ0) κ1H

(1)
0 (κ1ρ0) κ1H

(2)
0 (κ1ρ0)

−kε0
κ0

J1(κ0ρ0) kε1H
(1)
1 (κ1ρ0) kε1H

(2)
1 (κ1ρ0)

0 −kε1H
(1)
1 (κ1ρ1) −kε1H

(2)
1 (κ1ρ1)

∣∣∣∣∣∣∣∣ . (2.13)
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By evaluating the determinants (2.12) and (2.13) above along its last row, it is found
that {

f1(γ2, k) = −kε1κ1a1(κ1)f0(γ2, k)− κ2
1b1(κ1)g0(γ2, k),

g1(γ2, k) = −k2ε21c1(κ1)f0(γ2, k)− kε1κ1d1(κ1)g0(γ2, k),
(2.14)

where the de�nitions in (2.10) have been employed (for i = 1), as well as (2.11).
In order to formulate the general determinants, the following simpli�ed notation

is introduced {
x

(1)
i,j = κiH

(1)
0 (κiρj)

y
(1)
i,j = kεiH

(1)
1 (κiρj)

,

{
x

(2)
i,j = κiH

(2)
0 (κiρj)

y
(2)
i,j = kεiH

(2)
1 (κiρj)

, (2.15)

where i ≥ 1 and j = i− 1, i. The ith order determinants are now given by

fi(γ
2, k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 x
(1)
1,0 x

(2)
1,0

g0 y
(1)
1,0 y

(2)
1,0

. . . . . .

−x(1)
i−1,i−1 −x

(2)
i−1,i−1 x

(1)
i,i−1 x

(2)
i,i−1

−y(1)
i−1,i−1 −y(2)

i−1,i−1 y
(1)
i,i−1 y

(2)
i,i−1

−x(1)
i,i −x

(2)
i,i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.16)

and

gi(γ
2, k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 x
(1)
1,0 x

(2)
1,0

g0 y
(1)
1,0 y

(2)
1,0

. . . . . .

−x(1)
i−1,i−1 −x

(2)
i−1,i−1 x

(1)
i,i−1 x

(2)
i,i−1

−y(1)
i−1,i−1 −y(2)

i−1,i−1 y
(1)
i,i−1 y

(2)
i,i−1

−y(1)
i,i −y(2)

i,i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.17)

where i ≥ 2. By evaluating the determinants (2.16) and (2.17) above along its last
row, the following layer-recursive relation is now obtained{

fi = −kεiκiai(κi)fi−1 − κ2
i bi(κi)gi−1,

gi = −k2ε2i ci(κi)fi−1 − kεiκidi(κi)gi−1,
(2.18)

where the de�nitions in (2.10) have been employed as well as (2.16) and (2.17),
and where the arguments (γ2, k) have been suppresed for simplicity. Note that the
recursive relation (2.18) is valid for 1 ≤ i ≤ N .

The dispersion relation for a multi-layered coaxial cable where the last boundary
at radius ρN is a Perfectly Electrically Conducting (PEC) surface, is given by

fN(γ2, k) = 0. (2.19)
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The corresponding condition gN(γ2, k) = 0 can be interpreted similarly as the dis-
persion relation associated with a Perfectly Magnetically Conducting (PMC) surface
at radius ρN . Here, we are interested mainly in the dispersion relation including the
exterior domain, as de�ned in (2.9) above. Hence, the complete determinant based
on all of the boundary conditions in (2.6) through (2.8) can �nally be expressed as

hN+1 = kεN+1H
(2)
1 (κN+1ρN)fN − κN+1H

(2)
0 (κN+1ρN)gN , (2.20)

where fN and gN can be computed recursively by using (2.11) and (2.18).

3 Asymptotic analysis

3.1 The Weierstrass preparation theorem

The following theorem by Weierstrass provides important insight into the derivation
of the asymptotic behavior of the propagation constant, cf., Theorem 7.5.1 in [6].
In particular, the theorem will be used to establish the low-frequency behavior of
the two functions fN and gN de�ned in (2.18) above.

Theorem 3.1. (The Weierstrass preparation theorem)
Let f(w, z) be an analytic function of (w, z) ∈ C×C in a neighborhood of (0, 0) such
that 

f =
∂f

∂w
= . . . =

∂n−1f

∂wn−1
= 0,

∂nf

∂wn
6= 0,

(3.1)

at (0, 0). Then there is a unique factorization

f(w, z) = a(w, z)
(
wn + bn−1(z)wn−1 + . . .+ b0(z)

)
, (3.2)

where bj(z) and a(w, z) are analytic in a neighborhood of 0 and (0, 0), respectively,
a(0, 0) 6= 0 and bj(0) = 0.

In the present context, the Theorem 3.1 will be used as follows. Let (w, z) =
(γ2, k) and suppose that f(γ2, k) is analytic in a neighborhood of (0, 0). Suppose
further that the following relations have been established

f = 0,

∂f

∂γ2
6= 0,

(3.3)

at (γ2, k) = (0, 0). It follows then from Theorem 3.1 that

f(γ2, k) = a(γ2, k)
(
γ2 + b0(k)

)
, (3.4)

where a(0, 0) 6= 0. Hence, a zero γ2(k) of f which is analytic in a neighborhood of
k = 0, is uniquely given by

γ2(k) = −b0(k), (3.5)

where b0(0) = 0.
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3.2 Basic asymptotics

To analyze the low-frequency asymptotic properties of (2.20), it is important to
separate the logarithmic singularities of the Hankel functions in the de�nition of
the auxiliary functions (2.10). The following de�nitions and asymptotic expansions
for small arguments (as z → 0) will be used throughout the analysis, see [12]. The
Bessel functions of the �rst kind and order m = 0, 1 are given by

J0(z) = 1− 1

4
z2 +O{z4}, (3.6)

J1(z) =
1

2
z +O{z3}, (3.7)

where J1(z) = −J′0(z), and where the big ordo notation O{·} is de�ned as in [11, 12].
The Bessel function of the second kind and order m = 0 is given by

Y0(z) =
2

π

(
ln
z

2
+ γ̃
)

J0(z) + A(z), (3.8)

where γ̃ is Euler's constant and A(z) the analytic function given by

A(z) =
2

π

∞∑
k=1

(−1)k+1(z2/4)k

(k!)2

k∑
l=1

1

l
=

1

2π
z2 +O{z4}. (3.9)

The function Y0(z) can hence also be expressed as

Y0(z) =
2

π
ln
z

2
J0(z) +B(z), (3.10)

where B(z) is the analytic function

B(z) =
2

π
γ̃J0(z) + A(z) =

2

π
γ̃ +

1− γ̃
2π

z2 +O{z4}. (3.11)

The Bessel function of the second kind and order m = 1 is given by

Y1(z) =
2

π
ln
z

2
J1(z) + C(z), (3.12)

where Y1(z) = −Y′0(z) has been used, and where C(z) is the meromorphic function

C(z) = − 2

π

1

z
J0(z)−B′(z) = − 2

π

1

z
+

2γ̃ − 1

2π
z +O{z3}. (3.13)

The Hankel functions of the �rst and second kind are de�ned by H
(1)
m (z) = Jm(z) +

iYm(z) and H
(2)
m (z) = Jm(z)− iYm(z), respectively. From the de�nitions (3.10) and

(3.12) follows that

H
(1)
0 (z) = J0(z) + iB(z) + i

2

π
ln
z

2
J0(z), (3.14)

H
(2)
0 (z) = J0(z)− iB(z)− i

2

π
ln
z

2
J0(z), (3.15)

H
(1)
1 (z) = J1(z) + iC(z) + i

2

π
ln
z

2
J1(z), (3.16)

H
(2)
1 (z) = J1(z)− iC(z)− i

2

π
ln
z

2
J1(z). (3.17)
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By inserting (3.14) through (3.17) into the expressions for the auxiliary functions
de�ned in (2.10), it follows that

ai(κi) = i 4
π
J0(κiρi)J1(κiρi−1) ln(ρi−1/ρi)

−i2B(κiρi)J1(κiρi−1) + i2C(κiρi−1)J0(κiρi),
(3.18)

bi(κi) = i 4
π
J0(κiρi−1)J0(κiρi) ln(ρi/ρi−1)

+i2B(κiρi)J0(κiρi−1)− i2B(κiρi−1)J0(κiρi),
(3.19)

ci(κi) = i 4
π
J1(κiρi−1)J1(κiρi) ln(ρi−1/ρi)

−i2C(κiρi)J1(κiρi−1) + i2C(κiρi−1)J1(κiρi),
(3.20)

and
di(κi) = i 4

π
J0(κiρi−1)J1(κiρi) ln(ρi/ρi−1)

−i2B(κiρi−1)J1(κiρi) + i2C(κiρi)J0(κiρi−1).
(3.21)

Note that the logarithmic singularities of the Hankel functions used in (2.10) vanish,
and the auxiliary functions which are given by (3.18) through (3.21) are meromorphic
in a neighborhood of κi = 0.

Based on (3.6), (3.7), (3.11) and (3.13), the following asymptotic expansions of
the auxiliary functions de�ned in (2.10) can now be derived

ai(κi) =
1

κi

(
−i

4

π

1

ρi−1

)
+O{κi}, (3.22)

bi(κi) = i
4

π
ln

ρi
ρi−1

+O{κ2
i }, (3.23)

ci(κi) = i
2

π

(
ρi−1

ρi
− ρi
ρi−1

)
+O{κ2

i }, (3.24)

di(κi) =
1

κi

(
−i

4

π

1

ρi

)
+O{κi}. (3.25)

3.3 Asymptotic analysis for the subdeterminants

An asymptotic analysis based on Theorem 3.1 is given below regarding the subde-
terminants fi(γ

2, k) and gi(γ
2, k) de�ned in (2.11) and (2.18) for all inner regions

i = 0, 1, . . . , N . Throughout the analysis, it will be assumed that there is one iso-
lating layer with σj = 0 for 2 ≤ j ≤ N − 1. All other layers are conducting,
semiconducting or poorly isolating with σi 6= 0 if i 6= j and i = 0, . . . , N .

The following frequency dependent parameters will be used based on (2.2) and
(2.3)

kεi = kεri − iσiη0, (3.26)

κ2
i = k2εri − iσiη0k + γ2, (3.27)

and it is seen immediately that κi = 0 when (γ2, k) = (0, 0).
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By observing that f0 and g0 de�ned in (2.11) are even analytic functions of κ0,
and that the functions κiai(κi), bi(κi), ci(κi) and κidi(κi) given by (3.22) through
(3.25) are all even analytic functions of κi (and hence analytic functions of κ2

i ), it is
concluded that the functions fi and gi de�ned recursively in (2.18), are all analytic
functions in a neighborhood of (γ2, k) = (0, 0) for i = 1, . . . , N . The values of fi
and gi at (γ2, k) = (0, 0) are denoted fi(0) and gi(0), respectively.

Based on (3.22) through (3.25), the following asymptotic expressions are now
obtained for (2.11) and (2.18)

f0 = −1 +O{κ2
0}, (3.28)

g0 = − (kεr0 − iσ0η0)

(
1

2
ρ0 +O{κ2

0}
)
, (3.29)

and

fi = − (kεri − iσiη0)

(
− i4

π

1

ρi−1

+O{κ2
i }
)
fi−1

−
(
κ2
i

i4

π
ln

ρi
ρi−1

+O{κ4
i }
)
gi−1, (3.30)

gi = − (kεri − iσiη0)2

(
i2

π

(
ρi−1

ρi
− ρi
ρi−1

)
+O{κ2

i }
)
fi−1

− (kεri − iσiη0)

(
− i4

π

1

ρi
+O{κ2

i }
)
gi−1, (3.31)

where 1 ≤ i ≤ N .
From (3.28) and (3.29) follows that

f0(0) = −1, (3.32)

g0(0) = iσ0η0
1

2
ρ0, (3.33)

and from (3.30) and (3.31)

fi(0) = σiη0
4

π

1

ρi−1

fi−1(0), (3.34)

gi(0) = iσ2
i η

2
0

2

π

(
ρi−1

ρi
− ρi
ρi−1

)
fi−1(0) + σiη0

4

π

1

ρi
gi−1(0), (3.35)

where 1 ≤ i ≤ j− 1. By using the recursion above it can be shown that fi(0) is real
with fi(0) < 0 and gi(0) is imaginary with Im{gi(0)} > 0 for i = 0, 1, . . . , j − 1.

Since σj = 0, it follows directly from (3.30) and (3.31) that fi(0) = 0 and
gi(0) = 0 for i ≥ j. In particular, it is now concluded that fN(γ2, k) is an analytic
function in a neighborhood of (0, 0), and that

fN = 0, (3.36)

at (γ2, k) = (0, 0).
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The derivatives of fi with respect to γ2 are studied next. From (3.27) and (3.30)
follows that

∂fj
∂γ2

=

j∑
i=0

∂fj
∂κ2

i

= −i
4

π
ln

ρj
ρj−1

gj−1(0) 6= 0, (3.37)

evaluated at (γ2, k) = (0, 0). Further, by employing that fi(0) = 0 and gi(0) = 0 for
i ≥ j, it follows also from (3.30) that

∂fi
∂γ2

= σiη0
4

π

1

ρi−1

∂fi−1

∂γ2
6= 0, (3.38)

where j + 1 ≤ i ≤ N . Hence, it is �nally concluded that

∂fN
∂γ2

6= 0, (3.39)

at (γ2, k) = (0, 0), and the prerequisites of the Weierstrass preparation theorem are
ful�lled as stated in (3.3). It follows now from Theorem 3.1 that fN can be uniquely
factorized as

fN(γ2, k) = a(γ2, k)
(
γ2 + b0(k)

)
, (3.40)

where a(0, 0) 6= 0 and b0(k) is an analytic function where b0(0) = 0.
The implication of the factorization in (3.40) is that the function fN has a unique

zero γ2(k) = −b0(k) which is an analytic function in a neighborhood of k = 0, and
where γ2(k)→ 0 as k → 0. To �nd the exact asymptotic behavior of the zero γ2(k),
the following expansion is used

γ2(k) = iA2k +O{k2}, (3.41)

which is based on a Taylor series expansion of γ2(k) where γ2(0) = 0, and where
even coe�cients are real and odd coe�cients are imaginary. Here, A is the real (or
imaginary) constant to be determined. The low-frequency asymptotics of the radial
wave numbers under the assumption (3.41) are given by

κ2
i = k2εri − iσiη0k + γ2(k) = i(A2 − σiη0)k +O{k2}. (3.42)

The low-frequency asymptotics of the recursive relations (3.28) and (3.29), and
(3.30) and (3.31) become

f0 = −1 +O{k}, (3.43)

g0 = − (kεr0 − iσ0η0)

(
1

2
ρ0 +O{k}

)
, (3.44)

and

fi = − (kεri − iσiη0)

(
− i4

π

1

ρi−1

+O{k}
)
fi−1

−
((

i(A2 − σiη0)k +O{k2}
) i4

π
ln

ρi
ρi−1

+O{k2}
)
gi−1, (3.45)

gi = − (kεri − iσiη0)2

(
i2

π

(
ρi−1

ρi
− ρi
ρi−1

)
+O{k}

)
fi−1

− (kεri − iσiη0)

(
− i4

π

1

ρi
+O{k}

)
gi−1, (3.46)
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where 1 ≤ i ≤ N .
Let fi(k) = fi(γ

2(k), k) and gi(k) = gi(γ
2(k), k). Since σj = 0 for one isolating

layer j with 2 ≤ j ≤ N − 1 and σi 6= 0 if i 6= j and i = 0, . . . , N , it follows from
(3.43) through (3.46) above that{

fi(k) = O{1} 0 ≤ i ≤ j − 1,

gi(k) = O{1} 0 ≤ i ≤ j − 1,
(3.47)

and {
fi(k) = O{k} j ≤ i ≤ N,

gi(k) = O{k} j ≤ i ≤ N.
(3.48)

In particular, the �rst order term of fj(k) is given by

[k−1fj(k)]0 = iεrj
4

π

1

ρj−1

fj−1(0) + A2 4

π
ln

ρj
ρj−1

gj−1(0), (3.49)

where fj−1(0) and gj−1(0) are given recursively by (3.34) and (3.35). The �rst order
term of fi(k) for j + 1 ≤ i ≤ N (where σi 6= 0) is given by

[k−1fi(k)]0 = σiη0
4

π

1

ρi−1

[k−1fi−1(k)]0, (3.50)

and hence �nally

[k−1fN(k)]0 =
σj+1 · · ·σN
ρj · · · ρN−1

(
η0

4

π

)N−j
[k−1fj(k)]0. (3.51)

Since γ2(k) is assumed to be a zero of fN , it is concluded that the term [k−1fN(k)]0
as well as the term [k−1fj(k)]0 vanishes, and hence from (3.49)

A2 =
−iεrjfj−1(0)

ρj−1 ln
ρj
ρj−1

gj−1(0)
, (3.52)

where fj−1(0) and gj−1(0) are given by (3.34) and (3.35). It is observed that A2 is a
real and positive constant. Finally, the low frequency asymptotics of the propagation
constant γ(k) corresponding to the dispersion relation fN = 0, is given by

γ(k) = A
√

ik +O{k
√
k}, (3.53)

where A is the positive square root of (3.52).

3.4 Asymptotic analysis of the dispersion relation

The dispersion relation hN+1 = 0 de�ned by (2.20) will �nally be analyzed below.
As before, it will be assumed that there is one isolating layer with σj = 0 for
2 ≤ j ≤ N − 1. All other layers are conducting, semiconducting or poorly isolating
with σi 6= 0 if i 6= j and i = 0, . . . , N + 1.
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A dispersion function which is bounded in a neighborhood of (γ2, k) = (0, 0) is
de�ned as follows

h(γ2, k) = κN+1hN+1(γ2, k)

= kεN+1κN+1H
(2)
1 (κN+1ρN)fN − κ2

N+1H
(2)
0 (κN+1ρN)gN .

(3.54)

Based on the de�nitions (3.15) and (3.17) and the asymptotics (3.6), (3.7), (3.11)
and (3.13), it is concluded that

κN+1H
(2)
1 (κN+1ρN) = i

2

π

1

ρN
+O{κN+1}, (3.55)

κ2
N+1H

(2)
0 (κN+1ρN) = O{κN+1}, (3.56)

where the following property of the logarithm has been used

O{zn} ln z = O{zn−1}, (3.57)

where n ≥ 1. The dispersion function (3.54) can therefore be written as

h(γ2, k) = (kεr(N+1) − iσN+1η0)

(
i
2

π

1

ρN
+O{κN+1}

)
fN +O{κN+1}gN . (3.58)

It is noted that h = 0 at (γ2, k) = (0, 0), but the branch-cut of the logarithm remains
and h is not a continuous function in a neighborhood of (γ2, k) = (0, 0).

It will be shown below that there exists a solution to the dispersion relation
h = 0, which can be uniquely expressed as

γ2(k) = iA2k + o{k}, (3.59)

or equivalently γ(k) = A
√

ik + o{
√
k}, where A2 is given by (3.52) and where the

little ordo notation o{·} is de�ned as in e.g., [11, 12]. The solution (3.59) is unique
in the sense that there is no other solution γ2(k) which converges faster towards
zero, as k → 0.

To prove (3.59), it is �rst assumed that

γ2(k) = ck + o{k}, (3.60)

where c is a constant. The transversal wave numbers are then given by

κ2
i = k2εri − iσiη0k + γ2(k) = O{k}. (3.61)

The low-frequency asymptotics of the recursive relations (3.28) and (3.29), and (3.30)
and (3.31) become

f0 = −1 +O{k}, (3.62)

g0 = − (kεr0 − iσ0η0)

(
1

2
ρ0 +O{k}

)
, (3.63)
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and

fi = − (kεri − iσiη0)

(
− i4

π

1

ρi−1

+O{k}
)
fi−1 +O{k}gi−1, (3.64)

gi = − (kεri − iσiη0)2

(
i2

π

(
ρi−1

ρi
− ρi
ρi−1

)
+O{k}

)
fi−1

− (kεri − iσiη0)

(
− i4

π

1

ρi
+O{k}

)
gi−1, (3.65)

where 1 ≤ i ≤ N .
As before, let fi(k) = fi(γ

2(k), k) and gi(k) = gi(γ
2(k), k). Since σj = 0 and

σi 6= 0 for i 6= j, it follows from (3.62) through (3.65) above that{
fi(k) = O{1} 0 ≤ i ≤ j − 1,

gi(k) = O{1} 0 ≤ i ≤ j − 1,
(3.66)

and {
fi(k) = O{k} j ≤ i ≤ N,

gi(k) = O{k} j ≤ i ≤ N.
(3.67)

The dispersion function (3.58) becomes

h(γ2, k) = (kεr(N+1) − iσN+1η0)

(
i
2

π

1

ρN
+O{k1/2}

)
a(γ2(k), k) (γ2 − iA2k +O{k2}) +O{k1/2}O{k},

(3.68)

where the factorization (3.40) based on Weierstrass preparation theorem has been
used and where a(0, 0) 6= 0, b0(k) = −iA2k +O{k2} and A2 is given by (3.52).

To establish the existence of the solution (3.59), it is assumed that γ2 = iA2k +
reiθk where r is an arbitrary positive constant and θ ∈ [0, 2π]. The dispersion
function (3.68) becomes

h(γ2, k) = k

(
σN+1η0

2

π

1

ρN
a(0, 0)reiθ +O{k1/2}

)
. (3.69)

Note that the wave numbers κi =
√
k2εri − iσiη0k + iA2k + reiθk converges to zero

uniformly over θ, as k → 0. From the asymptotic analysis above, it can therefore be
concluded that the expression O{k1/2} in (3.69) also converges uniformly to zero,
as k → 0. Hence, it follows from (3.69) that if k is su�ciently small, then the
argument variation of h is ∆ arg h = 2π for θ ∈ [0, 2π], and there exists a single zero
of h within the circle de�ned by γ2 = iA2k+ reiθk. This zero can now be written in
the form of (3.60).

To establish the uniqueness of the solution (3.59), it is assumed that γ2(k) =
ck + o{k} where c is a constant. The dispersion relation based on (3.68) can then
be written to its lowest order as

σN+1η0
2

π

1

ρN
a(0, 0)

(
c− iA2

)
k + o{k} = 0, (3.70)
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which shows that c = iA2. It is noted that the asymptotic expressions (3.68) and
(3.70) which are based on the assumption (3.60), are valid also when c = 0. Hence,
the assumption that c = 0 leads to a contradiction. In conclusion, there can be no
zeros of h of the form γ2(k) = o{k}, and (3.59) expresses the unique solution which
has the fastest convergence towards zero, as k → 0.

4 Numerical examples

The low-frequency asymptotic behavior derived in (3.59) is compared below with the
result of a numerical method. The numerical computation of the propagation con-
stant has been described in [10]. The numerical solution is stable at low frequencies,
and numerical problems due to the ill-conditioning of the boundary conditions arise
only at higher frequencies. As an example problem is considered the low-frequency
dispersion behavior of the TM01 mode of an extruded HVDC sea cable as depicted
in Figure 2 below.
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Figure 2: Cross-section of an extruded HVDC sea cable.

The geometrical and electrical parameters of the model is given by Table 1 below.
Here, the permittivity of the insulation, the semi-conducting XLPE screens, the
inner sheat and the outer serving are modeled with εd = 2.3. The conductivity
of the semi-conducting XLPE screens [13, 16] are modeled with σs = 1 S/m. The
conductivity of the inner conductor, the lead sheat and the armour are modeled
with σCu = 5.8 · 107 S/m, σPb = 4.6 · 106 S/m and σFe = 1.1 · 106 S/m, respectively.
The conductivity of the isolating sheets for i = 5 and i = 7 are modeled either with
σis = 0 or σis = 10−12 S/m. Note that the insulating layer is considered to be a
perfect insulator with σ2 = 0. Hence, σj = 0 with j = 2 according to the notation
adopted previously in this paper. The conductivity of the exterior region is modeled
either with σext = 0 or σext = 0.1 S/m.

The numerical method has been validated using experimental data based on
time domain measurements as described in [10]. In Figure 3 is shown similarly a
comparison between measurements and modeling regarding the transmission of a
pulse along an 82 km long HVDC power cable that was rolled up on shore. These
results were obtained by numerical computation of the propagation constant and
the characteristic impedance of the cable at 8192 frequency points in the frequency
interval 0 − 100 kHz, taking into account the mismatch between the measurement
devices and the power cable, and �nally by performing an Inverse Fast Fourier
Transformation (IFFT), see [10].

In Figures 4 and 5 are shown the wave propagation characteristics of the mod-
eled cable over the low-frequency range 0 − 1000 Hz. Here, the conductivity of the
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Layer radius [mm] permittivity conductivity
Inner conductor ρ0 = 24.3 εr0 = 1 σ0 = σCu

Conductor screen ρ1 = 26.0 εr1 = εd σ1 = σs

Insulation ρ2 = 42.0 εr2 = εd σ2 = 0
Insulation screen ρ3 = 43.9 εr3 = εd σ3 = σs

Lead sheat ρ4 = 46.9 εr4 = 1 σ4 = σPb

Inner sheat ρ5 = 49.5 εr5 = εd σ5 = σis

Armour ρ6 = 53.5 εr6 = 1 σ6 = σFe

Outer serving ρ7 = 58.5 εr7 = εd σ7 = σis

Exterior region ρ8 =∞ εr8 = 1 σ8 = σext

Table 1: Modeling parameters.
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Figure 3: Comparison between measurements and modeling. In a) is shown the
initial pulse at the near-end and in b) the transmitted pulse at the far-end. The
solid lines show the measured pulses and in b) the dashed line shows the modeled
pulse. The conductivity of the isolating sheets (i = 5, 7) is σis = 0 and the exterior
conductivity is σext = 0.

isolating sheets (i = 5, 7) is σis = 0. The plots illustrate that the signi�cance of the
exterior conductivity σext is minor, and is noticeable only at the lower frequencies
below 200-300Hz.

In Figure 6 is shown the computed low-frequency behavior of the propagation
constant together with the dominating term A

√
ik of the low-frequency asymptotics

given by (3.59).
In Figure 7 is illustrated the low-frequency asymptotics of the propagation con-

stant as k → 0. In this plot, the propagation constant has been normalized with
γ̄ = γ/Re{γ0} where γ0 is the asymptotic solution γ0 = A

√
ik. According to the

asymptotic expression (3.59), γ̄ should approach 1+i as k → 0. This is in agreement
with the behavior of the numerical solution as illustrated in Figure 7.

In this example case regarding the HVDC power cable, it is concluded that the
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Figure 4: Low-frequency dispersion characteristics for the coaxial cable: a) Nor-
malized wave velocity c/c0 = k/Im{γ(k)}. b) Attenuation 2 · 106 log e · Re{γ} in
dB/100km. The solid lines show the modeled dispersion characteristics with exterior
conductivity σext = 0 and the dashed lines with σext = 0.1 S/m.

�rst order asymptotic expansion γ ∼ A
√

ik is accurate only for frequencies well
below 1Hz, and is hence not accurate enough to model time domain pulses which
are measured over the relevant frequency range of about 0− 100 kHz. An accurate
numerical solution to the dispersion relation is therefore very useful, see also [10].

5 Summary and conclusions

An exact asymptotic analysis regarding the low-frequency dispersion characteristics
of the multi-layered coaxial cable has been given in this paper. A layer-recursive
description of the dispersion relation has been derived and analyzed. It has been
shown that if there is one isolating layer and a perfectly conducting outer shield,
the classical Weierstrass preparation theorem can be used to prove that the low-
frequency behavior of the propagation constant is governed by a square root of the
complex frequency, and an exact analytical expression for the dominating term of
the asymptotic expansion has been derived. It has furthermore been shown that
the same asymptotic expansion is valid to its lowest order even if the outer shield
has �nite conductivity and there is an in�nite exterior region with �nite non-zero
conductivity. The proofs have been conducted on the basis of asymptotic analysis,
and illustrated with numerical examples.

As a practical application of the theory, a High-Voltage Direct Current (HVDC)
power cable has been analyzed and a numerical solution to the dispersion relation
has been validated by comparisons with the asymptotic analysis. The comparison
reveals that the low-frequency characteristics of the power cable is very complicated



18

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80
Characteristic impedance Z [Ω]

Re{Z} [Ω]

−Im{Z} [Ω]

f [Hz]

Figure 5: Low-frequency impedance characteristics for the coaxial cable. The blue
lines show Re{Z} and the red lines show −Im{Z}. The solid lines show the modeled
impedance characteristics with exterior conductivity σext = 0 and the dashed lines
with σext = 0.1 S/m.

and a �rst order asymptotic approximation is valid only at the lowest frequencies
below 1 Hz. Hence, for practical modeling purposes such as with fault localization
or cable length estimation, an accurate numerical solution to the dispersion relation
is of great value.
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