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Abstract

Based on recent advances in control theory, we propose
the notion of jitter margin for periodic control tasks. The
jitter margin is defined as a function of the amount of
constant delay in the control loop, and it describes how
much additional time-varying delay can be tolerated before
the loop goes unstable. Combined with scheduling theory,
the jitter margin can be used to guarantee the stability
and performance of the controller in the target system.
It can also be used as a tool for assigning meaningful
deadlines to control tasks. We discuss the need for best-case
response-time analysis in this context, and propose a simple
lower bound under EDF scheduling. Finally, a control-
scheduling codesign procedure is given, where periods are
assigned iteratively to yield the same relative performance
degradation for each control task.

1. Introduction

1.1 Background and Motivation

In classical feedback control theory (e.g., [Franklin et al.,
2002]), notions such as phase margin and gain margin are
used to describe how sensitive a control loop is towards var-
ious uncertainties in the plant. Nonnegative margins are re-
quired to ensure the stability of the closed-loop system. The
margins are also used as practical stability measures, and
there are various rules of thumb associated with them. For
instance, it is typically recommended to have a phase mar-
gin of at least 30◦–45◦ to ensure some degree of robustness
and performance of the system.
When a controller is implemented as a task in a real-
time system, a new kind of uncertainty is introduced—an
implementation uncertainty. In this paper, we will focus
on the specific problem of output jitter. Variability in the
task execution time and preemption from other tasks can
cause the controller to experience a different amount of
input-output delay in each period. It is well known that

such a jitter can degrade the control performance and in
extreme cases even cause instability of the control loop
(e.g., [Törngren, 1998]). Although the present paper only
considers jitter due to CPU scheduling, some of the results
also carry over to networked control systems, where jitter
due to variable transmission times is a major issue.
The majority of previous work on jitter in real-time control
systems has focused on either scheduling theory or control
theory. In the few instances where an integrated approach
has been taken, the control analysis has been somewhat un-
derdeveloped. By contrast, our analysis yields hard results
and should hence be applicable to a wide range of systems,
including safety-critical applications.

1.2 Contributions

Recently, a new stability theorem for control loops with
time-varying input-output delays has been developed [Kao
and Lincoln, 2004]. Based on this theorem, we propose
the notion of jitter margin for control tasks. The jitter
margin can be combined with real-time scheduling theory
to guarantee the stability and performance of the controller
in the target system. The jitter margin can also be used as a
tool for assigning meaningful deadlines to control tasks.
It is noted that the jitter analysis can be improved if
best-case response times, as well as worst-case response
times, can be computed. For this purpose, we propose a
lower bound on the best-case response time under EDF
scheduling, where no such results are known to exist.
When designing a real-time control system, information
about the task timing is needed in the control design, and
information about the controller timing sensitivity is needed
in the real-time design. Based on this insight, we propose an
iterative control–scheduling codesign procedure, where the
jitter margin is used as a central tool.

1.3 Outline

This paper is outlined as follows. In Section 2, the assump-
tions are given, and the jitter margin is defined. Its proper-
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Figure 1 Computer-controlled system with continuous-time
plant P(s), periodic sampler Sh, discrete-time controller K(z),
zero-order hold, and time-varying delay ∆.

ties are discussed, and the problem of assigning control task
deadlines is treated. In Section 3, we discuss jitter analy-
sis under fixed-priority and EDF scheduling, and provide a
simple but efficient lower bound on the minimum response
time under EDF. In Section 4, a codesign procedure is pro-
posed, where the goal is to implement a set of controllers
such that they experience the same amount of performance
degradation in the target system. A design example is given,
in which the results under rate-monotonic and EDF schedul-
ing are compared. Section 5 provides an overview of related
work. Finally, in Section 6, the conclusions are given and
future work is discussed.

2. The Jitter Margin

2.1 Preliminaries

Computer-controlled systems (e.g., [Åström and Witten-
mark, 1997]) are typically designed assuming periodic sam-
pling and either zero or a constant computational delay. A
real implementation, however, will introduce jitter at vari-
ous points in the control loop.
In this paper, for analysis purposes, we will assume that the
sampling is jitter-free, while the input-output delay may be
time-varying. Jitter-free sampling can be achieved by pro-
gramming the A-D converter to take samples periodically,
or by requesting the A-D conversion when the control task
is released.
The control loop assumed in this paper is shown in Figure 1.
The plant is described by the linear continuous-time system
P(s), and the plant output is sampled with the constant
interval h. The controller is described by the linear discrete-
time system K(z). Following the zero-order hold, there is a
time-varying delay ∆ before the control signal is applied to
the input of the plant.
Exact stability analysis of the closed-loop system is triv-
ial if the delay ∆ is either constant or varying according
to a known, periodic pattern. If the delay varies randomly
among a set of known delays, Lyapunov theory can be used
to verify the stability of the closed-loop system. For freely
time-varying delays, the analysis is considerably more diffi-
cult. The following theorem from [Kao and Lincoln, 2004]
is only sufficient, but it guarantees stability for any delays

Input Output
0

t
h

JL

Figure 2 The input-output delay can be divided into a constant
delay, L, and a jitter, J.

in a given interval, including constant, periodic, and random
delays:

THEOREM 1—STABILITY UNDER OUTPUT JITTER
The closed-loop system in Figure 1 is stable for any time-
varying delays ∆ ∈ [0, Nh], where N > 0 is a real number,
if
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Proof: See [Kao and Lincoln, 2004].

2.2 Definitions and Properties

We now consider a periodic control task with the period
T = h, executing in a real-time system. The plant is assumed
to be sampled when the task is released, and the control
signal is actuated when the task finishes.
The input-output delay experienced by the controller can be
divided into two parts: a constant part, L ≥ 0, and a time-
varying part (the jitter), J ≥ 0, see Figure 2. The minimum
possible delay is hence given by L, and the maximum
possible delay is given by L+ J.
We will first recall the definition of the classical delay
margin for the jitter-free case (J = 0):

DEFINITION 1—DELAY MARGIN
Given the system in Figure 1, the delay margin is defined
as the largest number Lm for which closed-loop stability is
guaranteed assuming a constant delay ∆ = Lm.

REMARK 1
For continuous-time control systems, the delay margin can
be computed as

Lm = ϕm/ωc, (3)
where ϕm is the phase margin and ωc is the crossover
frequency of the system. Due to aliasing effects, the exact
computation is more complicated for computer-controlled
systems (see [Åström and Wittenmark, 1997]).

In systems with jitter, the delay and the jitter will both
contribute to the destabilization of the system. Hence, we
give the following definition of the jitter margin:
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DEFINITION 2—JITTER MARGIN
Given the system in Figure 1, the jitter margin is defined as
the largest number Jm(L) for which closed-loop stability is
guaranteed for any time-varying delay ∆ ∈ [L, L+ Jm(L)].

REMARK 2
Since Theorem 1 is only sufficient, it can only be used to
compute a lower bound on the jitter margin. The theorem is
not very conservative, however. To apply the theorem, we
replace the plant P(s) by its time-delayed version P(s)e−sL

and let N = J/h.

The reason for defining the jitter margin as a function of
L is to make the stability test less conservative whenever
a lower bound on L is available. It is obvious that, if a
system is stable for any time-varying delay ∆ ∈ [0, J], it
must also be stable for any time-varying delay ∆ ∈ [L, J],
0< L ≤ J. Furthermore, in the latter case, the system might
also be stable for longer delays. Based on this argument, the
following properties of the jitter margin can be derived (the
proofs are omitted):

PROPERTY 1
Jm(L) = 0, L ≥ Lm.

PROPERTY 2
Jm(L) ≤ Lm, ∀L.

PROPERTY 3
Jm(L)+ L is an increasing function of L.

EXAMPLE 1—JITTER MARGIN
Figure 3 reports the jitter margin as computed by Theo-
rem 1 for the plant P(s) = 1000/(s(s+1)) and two different
controllers. Both controllers are designed with the sampling
interval h = 10 [ms]. In (a), a PID controller is used. The
delay margin is Lm = 7.8, and the jitter margin has the max-
imum value Jm(0) = 3.7. In (b), an LQG controller designed
for a constant delay L = 5 is used. Here, the delay margin
is Lm = 15.5, and the jitter margin has the maximum value
Jm(4.8) = 7.1. It can be seen that the jitter-margin function
can have different shapes for different controllers, but the
maximum total delay, Jm(L) + L, is always an increasing
function.

2.3 Verifying Stability and Performance

If we know the constant delay L and the jitter J of a control
task, stability of the closed-loop system is guaranteed if

Jm(L) > J. (4)

Often, it is not enough to just guarantee stability—there
must also be some margins that guarantee performance. In
classical control theory, the phase margin is sometimes used
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Figure 3 Example of jitter margins Jm(L): (a) PID controller
with h = 10, (b) LQG controller with h = 10, designed for the
delay L = 5. (All units are in ms.)

as a performance and robustness measure. Unfortunately,
the phase margin is only defined for systems without jitter.
It is, however, possible to generalize the concept via an
extended definition of the delay margin. Hence, we start by
defining a delay margin for systems with delay and jitter:

DEFINITION 3—DELAY MARGIN FOR SYSTEMS WITH
DELAY AND JITTER
Given the system in Figure 1, assuming some constant
delay L and jitter J, the delay margin is defined as the largest
number Lm for which closed-loop stability is guaranteed for
any time-varying delay ∆ ∈ [L+ Lm, L+ Lm + J].

REMARK 3
For systems without jitter, this definition is equivalent to
Definition 1.

Expressed in terms of the jitter-margin function Jm(L), the
delay margin is given by the smallest Lm that solves

Jm(L+ Lm) = J. (5)

For the control designer, it is often more convenient to think
in terms of phase margin, since that measure is independent
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of time. For systems without jitter, the relationship between
phase margin and delay margin is approximately given by
(3). Based on this observation, we propose the notion of
apparent phase margin:

DEFINITION 4—APPARENT PHASE MARGIN
Given the system in Figure 1, assuming the constant delay

L and the jitter J, the apparent phase margin is defined as
the largest number ϕ̂m for which closed-loop stability is
guaranteed for any time-varying delay ∆ ∈ [L+ ϕ̂m/ωc, L+
ϕ̂m/ωc + J], where ωc is the crossover frequency of the
system if assuming only the constant delay L.

Similar to above, expressed in terms of the jitter-margin
function Jm(L), the apparent phase margin is given by the
smallest ϕ̂m that solves

Jm(L+ ϕ̂m/ωc) = J. (6)

A system with the apparent phase margin ϕ̂m ≤ 0◦ can be
interpreted as a system for which stability cannot be guar-
anteed, while any ϕ̂m > 0◦ can be interpreted as a perfor-
mance guarantee. For systems without jitter, the apparent
phase margin is equal to the classical phase margin.

2.4 Deadline Assignment

In the real-time literature, task deadlines are often consid-
ered as given parameters. Using the jitter margin, we can
derive real hard deadlines that guarantee closed-loop stabil-
ity. For instance, given that we have a lower bound on the
constant delay L in the target system, we can guarantee sta-
bility by assigning the relative deadline

D = L+ Jm(L). (7)

(It is of course also required that all deadlines are really met
during run-time.) Note that, if no estimate of L is available,
assuming L = 0 yields a more conservative deadline.
Similarly, we can assign deadlines that guarantee a certain
apparent phase margin in the target system. Given a lower
bound on the constant delay L in the target system and a
desirable apparent phase margin ϕ̂m < ωc(Lm −L), we can
guarantee a level of performance by assigning the deadline

D = L+ Jm(L+ ϕ̂m/ωc). (8)

EXAMPLE 2—DEADLINE ASSIGNMENT
Consider the LQG controller in Example 1, whose jitter
margin is shown in Figure 3(b). Without jitter, assuming
L = 5, the phase margin is ϕm = 34.9◦ and the crossover
frequency is ωc = 57.9 rad/s. Suppose that we require an
apparent phase margin of ϕ̂m = 20◦. The allowable jitter is
then given by

Jm(5+20◦/57.9 rad) = Jm(11.0) = 1.4,

and we should hence assign the relative deadline

D = L+ Jm(11.0) = 6.4.

An interesting problem here is that, depending on the
scheduling policy, the constant delay might depend on the
deadline which we are trying to compute. For instance, un-
der deadline-monotonic scheduling, the assigned deadline
will affect the priority of the task, which might in turn af-
fect the constant delay. The problem could possibly be ad-
dressed using an iterative deadline assignment procedure,
but this is left as future work.

3. Output Jitter Analysis

In order to apply the stability and performance analysis of
the previous section, we need to be able to compute the
constant delay and the jitter for each control task in the
system. This can be done using response-time analysis. Let
Ri and Rb

i denote, respectively, the worst-case and best-case
response times of task i. The constant delay, Li, and the
jitter, Ji, are then given by

Li = Rb
i , (9)

Ji = Ri −Rb
i . (10)

Often, the true values of Ri and Rb
i cannot be obtained. First,

if the task phasing is unknown, one must assume worst-case
phasing when computing Ri and best-case phasing when
computing Rb

i . It is not certain that Ri and Rb
i can both occur

during the lifetime of the system. Second, depending on
the scheduling policy and the task set, exact analysis for
the worst-case and the best-case response times may not be
available.
From a stability perspective, it is always safe to overestimate
Ri and to underestimate Rb

i . This will make Li smaller and
Ji larger, causing the apparent phase margin to decrease.
Below, a brief outline of the available results in response-
time analysis under fixed-priority and EDF scheduling is
given. For EDF, a new lower bound on best-case response
times is proposed.

3.1 Worst-Case Response Time Analysis

Under fixed-priority scheduling, assuming Di ≤ Ti, the
worst-case response time of task i is given by the well-
known equation [Joseph and Pandya, 1986]

Ri = Ci + ∑
j∈hp(i)

⌈

Ri

Tj

⌉

C j. (11)

Exact analysis also exists for task sets with release offsets
as well as deadlines D > T [Audsley et al., 1993; Tindell
et al., 1994].
Under EDF scheduling, worst-case response-time analysis
is more complicated. Assuming Di ≤ Ti, the worst-case
response time of task i is given by [George et al., 1996;
Stankovic et al., 1998]

Ri =max
{

Ci, max
a≥0

{Li(a)−a}
}

, (12)
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where the busy interval Li(a) is given by the equation

Li(a) = Wi
(

a,Li(a)
)

+

(

1+

⌊

a
Ti

⌋)

Ci, (13)

and the higher-priority workloadWi(a,t) is given by

Wi(a,t) = ∑
j 6=i,D j≤a+Di

min
{⌈

t
Tj

⌉

, 1+

⌊

a + Di−D j

Tj

⌋}

C j.

(14)
It should be noted that only a finite number of values of
a must be checked when evaluating (12). The analysis has
also been generalized to arbitrary deadlines [George et al.,
1996].

3.2 Best-Case Response Time Analysis

Under fixed-priority scheduling, exact best-case analysis
has recently been developed for the case D ≤ T [Redell and
Sanfridson, 2002]. The best-case response time of task i is
given by the equation

Rb
i = Cb

i + ∑
j∈hp(i)

⌈

Rb
i

Tj
−1

⌉

Cb
j , (15)

whereCb
i denotes the best-case execution time of task i.

Under EDF scheduling, no exact best-case analysis is
known to exist. A trivial lower bound Ri on the best-case
response time of task i is given by

Rb
i = Cb

i . (16)

This is actually a quite good bound for the shortest-period
tasks. The longest-period tasks can, however, have much
longer best-case response times, especially if the system
load is high.
A tighter lower bound on the best-case response time can
be obtained by interference analysis, see Appendix A. Our
proposed lower bound, Ri, is given by the equation

Rb
i = Cb

i + ∑
∀ j:D j<Rb

i

⌈

min
{

Rb
i , Di −D j

}

Tj
−1

⌉

Cb
j , (17)

which can be solved by recursion from above (cf. [Redell
and Sanfridson, 2002]).
The results obtained with the proposed bound have been
compared to results obtained by simulation, where the
shortest response time of each task was recorded. (Note
that the latter constitutes an upper bound on the real best-
case response time.) The bounds were evaluated for loads
ranging from U = 0.5 to U = 0.99. For each load case,
100 random task sets were generated. The number of tasks
in each set was integer-uniformly distributed between 2
and 10. The task periods were exponentially distributed
with mean 1, and the fraction of the execution time to the
period was uniformly distributed between 0 and 1. The
execution times were uniformly rescaled to give the task

0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

U

m
ea

n(
R

b n/C
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Upper bound (from simulation)
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Figure 4 Comparison of bounds on the best-case response time
under EDF. The results are shown for the longest-period task.

set the desired utilization. Throughout,Di = Ti andCb
i = Ci

were assumed.
For each task set, the system was simulated for 1000 s, and
the minimum response time of the longest-period task (task
n) was recorded. The result was compared with the bounds
(16) and (17). Figure 4 shows the mean of Rb

n/Cn over the
task sets for different bounds and different loads. It is seen
that the proposed bound performs quite well up to a load of
U = 0.95. The bound is not tight since it does not consider
initial interference, see Appendix A.

4. A Codesign Procedure

To illustrate how the jitter margin could be applied in the
design of real-time control systems, we describe an iterative
control–scheduling codesign procedure.
It is assumed that a set of independent controllers should
be implemented in the same processor. The controllers are
designed in continuous time, and should be discretized and
implemented as periodic tasks with different periods. The
goal of the codesign procedure is to choose sampling peri-
ods such that the controllers will experience the same rel-
ative performance degradation in the target system, taking
the jitter into account. The performance of the continuous-
time controller is measured by its original phase margin ϕm,
and the performance of the control task is measured by its
apparent phase margin ϕ̂m (see Section 2.3). The goal of the
procedure is to make the ratio ϕ̂m/ϕm as equal as possible
among the tasks.
The inputs to the codesign procedure are a set of n
continuous-time plants, P(s), a set of n continuous-time
controllers, K(s), estimates of the best-case and worst-case
execution times of the control algorithms, C and Cb, and a
scheduling policy where worst-case as well as best-case re-
sponse time analysis is available.
The procedure is outlined is the following steps:

1. Initialize by assigning initial (nominal) sampling pe-
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riods h for the controllers. (A common rule of thumb
[Åström andWittenmark, 1997] is to choose the sam-
pling period such that ωbh ∈ [0.2, 0.6], where ωb is
the bandwidth of the closed-loop continuous system.)

2. Rescale the periods linearly such that the task set be-
comes schedulable under the given scheduling policy.
(Here, a suitable sufficient schedulability test can be
used.)

3. Discretize the controllers using the assigned sampling
periods, yielding the set of discrete-time controllers
K(z).

4. For each task, compute worst-case and best-case
response times, R and Rb. (Here, the analysis in
Section 3 is applicable.)

5. For each task, compute the jitter margin using Theo-
rem 1 and the apparent phase margin ϕ̂mi from (6),
assuming the constant delay Li = Rb

i and the jitter
Ji = Ri −Rb

i .

6. For each task, compute the relative performance
degradation ri = ϕ̂mi/ϕmi. Also, compute their mean
value, r̄ = ∑ ri/n.

7. For each task, adjust the period according to

hi := hi + khi(ri − r̄)/r̄,

where k < 1 is a gain parameter.

8. Repeat from 2 until no further improvement is given.
A suitable stop criterion is when sum of the perfor-
mance differences, ∑ |ri − r̄|, is no longer decreasing.

The period adjustment mechanism in step 7 is intended to
decrease the periods of controllers with bad performance,
and to increase the periods of controllers with good per-
formance. Choosing the gain parameter can be difficult. A
small k will give slow adaptation, while a large k can cause
instability.
The iterative procedure tries to solve a highly nonlin-
ear optimization problem. Hence, it is not certain that it
will converge to an optimal solution. For instance, under
rate-monotonic scheduling, a small period adjustment may
change the task priorities, and this can in turn have a huge
impact on the jitter. Neither is it certain that a completely
equal performance degradation can be achieved.

EXAMPLE 3—CODESIGN
We consider an example where three controllers should
be implemented in a single CPU. Both rate-monotonic and
EDF scheduling is considered. The execution times of the
control algorithms are assumed to be equal and constant and
are given by R = Rb = 0.15 [ms]. The plants to be controlled

Table 1 Bandwidths and phase margins of the original
continuous-time control loops

Loop ωb ϕm

P1(s),K1(s) 960 rad/s 74.1◦

P2(s),K2(s) 599 rad/s 49.5◦

P3(s),K3(s) 179 rad/s 69.7◦

0 0.02 0.04
−1

0

1

Time

O
ut

pu
t

Plant 1

0 0.02 0.04
−1

0

1

Time

Plant 2
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Figure 5 System responses of the original continuous-time
control loops.

are given by

P1(s) =
8·105

s(s+1000)
,

P2(s) =
4·104

(s−200)(s+200)
,

P3(s) =
5·107

s(s2 +100s+2.5·105)
,

(18)

and the continuous-time controllers are given by

K1(s) =
4.88·104(s+ 2·105)(s+1295)

(s+5000)(s2+7.325·104s+2.573·109)
,

K2(s) =
2.57·104(s+ 2·105)(s+259.1)

(s+3000)(s2+1.645·104s+1.35·108)
,

K3(s) =
478(s+2·105)(s2 +160.6s+1.655·105)

(s+2740)(s+1000)(s2+2494s+7.109·106)
.

(19)
Table 1 reports the bandwidth ωb and the original phase
marginϕm of each control loop. It is seen that the loops have
different bandwidths, which suggests that the controllers
would require different sampling intervals. The differences
in bandwidth are also visible in Figure 5, which shows the
system responses for the different continuous-time loops.
To initialize the procedure, nominal sampling periods are
chosen by the rule of thumb ωbh = 0.2. This results in a
CPU utilization of U = 1.30. Hence, slower sampling must
be used in the target system. For the controller discretiza-
tion, the Tustin method is used.
First, rate-monotonic scheduling is assumed. The target
utilization is chosen as U = 0.78. The adaptation gain is
chosen as k = 0.2. The results of the codesign procedure
after one and ten iterations are shown in Table 2. After
the initial iteration, where the nominal sampling periods
have been simply rescaled, loop 3 has a small negative
apparent phase margin. That means that stability cannot be
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Table 2 Codesign results under rate-monotonic scheduling: (a)
after one iteration, (b) after ten iterations.

(a)

Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.35 0.15 0.15 0 1.08 60.8◦ 0.82
2 0.56 0.30 0.15 0.15 1.17 27.9◦ 0.56
3 1.87 0.90 0.15 0.75 0.47 −4.8◦ −0.07

(b)

Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.56 0.15 0.15 0 0.96 56.5◦ 0.76
2 0.57 0.30 0.15 0.15 1.17 27.7◦ 0.56
3 0.60 0.45 0.15 0.30 1.18 27.9◦ 0.40
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Figure 6 Control system responses under rate-monotonic
scheduling: (a) after one iteration, (b) after ten iterations.

guaranteed for that loop. After ten iterations, the periods
have been adjusted such that they are nearly equal, resulting
in a somewhat more equal performance degradation (as
measured by the ratio ϕ̂m/ϕm).
To verify the results of the procedure, the complete real-
time system (including plants, controllers, and scheduler)
was also simulated using the MATLAB/Simulink toolbox
TrueTime [Henriksson et al., 2002]. The actual control
system responses after one and ten design iterations are
shown in Figure 6.
It is seen that, after one iteration, loop 3 is close to unstable,
as predicted by the negative apparent phase margin. After
ten iterations, the performance degradation of loop 3 is
visibly smaller.
Next EDF scheduling is assumed. The target utilization is
chosen as U = 0.95. The results of the codesign procedure
after one and ten iterations are shown in Table 3. After the
initial iteration, task 3 has a large negative apparent phase
margin, implying that the control loop might be unstable.
After ten iterations, the performance degradation is quite
even among the controllers. Again, the results were also

Table 3 Codesign results under EDF scheduling: (a) after one
iteration, (b) after ten iterations.

(a)

Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.28 0.16 0.15 0.01 1.11 64.0◦ 0.86
2 0.46 0.34 0.15 0.19 1.21 33.4◦ 0.67
3 1.53 1.35 0.60 0.75 0.03 −18◦ −0.27

(b)

Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.40 0.31 0.15 0.16 1.04 43.1◦ 0.58
2 0.50 0.40 0.15 0.25 1.19 26.7◦ 0.54
3 0.54 0.45 0.15 0.30 1.20 29.8◦ 0.43
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Figure 7 Control system responses under EDF scheduling: (a)
after one iteration, (b) after ten iterations.

verified in simulations. Figure 7 shows the system response
after one and ten iterations.
The final design results under rate-monotonic scheduling
and EDF scheduling are quite similar. Under EDF, slightly
shorter periods could be used, due to the higher level of
schedulability of EDF. It can also be noted that, under
EDF, the jitter is more evenly distributed among the tasks.
This makes it possible to achieve a more even performance
degradation among the control loops.

5. Related Work

Several works have considered scheduling solutions to re-
duce output jitter in general. In [Locke, 1992] and [Klein
et al., 1993], it is suggested to use dedicated high-priority
output tasks to reduce the jitter. This has the disadvantages
of a more complex implementation and longer delays on av-
erage. [David et al., 2001] considers jitter reduction under
deadline-monotonic and EDF scheduling. Output jitter re-
duction under EDF is also the topic of [Baruah et al., 1999]
and [Kim et al., 2000]. It can be noted that, in these papers,
the jitter is defined between successive periods, rather than
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over the lifetime of the system (as in this paper).
There have also been some efforts to specifically minimize
jitter in control tasks. The papers [Crespo et al., 1999; Bal-
bastre et al., 2000] define the control action interval, which
is just another term for output jitter. The proposed solution
introduces high-priority tasks for the input and output ac-
tions. Again, this has the disadvantage of longer delays on
average. Also, the resulting control performance is not ana-
lyzed. [Cervin, 1999] proposes a subtask schedulingmethod
for control tasks, where the main part of the control algo-
rithm are scheduled at different priorities. The scheme at-
tempts to reduce both the delay and the jitter. The perfor-
mance improvements are verified by simulations.
Jitter compensation in control has been the subject of much
research. In [Nilsson, 1998], an optimal jitter-compensating
LQG controller is derived in the context of networked
control loops. The controller uses timestamps to track the
sensor-to-controller and controller-to-actuator delays. The
performance is measured by a quadratic cost function and
is evaluated by stochastic analysis. [Marti et al., 2001]
considers jitter compensation in state feedback controllers.
No specified scheduling algorithm is considered, but it is
assumed that the delays are known a-priori. Also, full state
information is assumed. The performance improvements are
verified by simulations. In [Lincoln, 2002] a more realistic
approach is taken, where the output jitter experienced in
one period is compensated for in the next period. The
resulting jitter-compensating controller can be viewed as a
generalization of the well-known Smith predictor.
In the area of control–scheduling codesign, [Shin et al.,
1985] studies computational delays in computer-controlled
systems. Hard constraints on the controlled variables (e.g.,
physical constraints) are used to derive maximum allow-
able control latencies in different regions of the statespace.
It is noted that the hard deadline may be a random vari-
able due to stochastic disturbances acting on the process.
The approach is extended in [Shin and Kim, 1992] where
the stability of the closed-loop system is also considered.
Sampling period selection for control tasks is the topic of
[Seto et al., 1996]. The performance of the control loops
are described using cost functions, and the period assign-
ment problem is formulated as an optimization problem.
The combined effect of period and delay on control per-
formance is studied in [Ryu et al., 1997], where simulations
are used to evaluate the performance. None of these papers
considers jitter, however.

6. Conclusion

This paper has proposed the notion of jitter margin and
showed how it can be applied in the design of real-time
control systems. The stability test is based on worst-case as-
sumptions about the jitter, and hence produces hard stability
results. We have also linked the control analysis to schedul-
ing analysis, showing how output jitter analysis can be used
together with the jitter margin. An extensive codesign ex-

(a)

(b)

Task j

Task j

Task i

Task i

0

0

t

t

Ri

Ri

Di

Di

Di−D j

Figure 8 Different cases where task j causes minimum inter-
ference for task i: (a) Di −D j > Ri, (b) Di −D j ≤ Ri.

ample has been presented, where many of the concepts in-
troduced in the paper have been applied.
This paper has only treated output jitter. In some applica-
tions, sampling jitter is also an issue. We are investigating
if the stability analysis can be extended to also handle this
case.
The topic of best-case response-time analysis needs to be
investigated further. For instance, exact best-case response-
time analysis under EDF could be developed. It would also
be interesting to consider jitter analysis where the same task
phasing is assumed for the best-case and the worst-case
response-time analysis.
The suggested codesign approach is only one of many pos-
sible. It would be interesting to also consider direct digital
design, where the controller is designed to compensate for
the constant delay. In this case, a quadratic cost function is
probably a better performance measure than the apparent
phase margin.

A. A Lower Bound on the Best-Case Response
Time under EDF

Consider a set of periodic tasks scheduled under EDF. Each
task i has a period Ti, a relative deadline Di ≤ Ti, and a best-
case execution time Cb

i . It is assumed that the task set is
schedulable. Let Ri be the response time of an instance of
task i that is released at time 0, and let task j be a potentially
interfering task. We will construct a lower bound on Ri

by shifting each task j such that minimum interference is
obtained.
First, consider a task j with D j ≥ Ri. It is obvious that the
task can be phased such that it does not interfere with task i.
For each task j with D j < Ri we must consider two different
cases, see Figure 8. In case (a), Di − D j > Ri, and each
instance of task j released within the interval [0, Ri] will
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have higher priority than task i. Minimum interference is
obtained when task j is phased such that one release occurs
at time Ri. The number of complete preemptions from task
j is hence given by dRi/Tj −1e.
In case (b), Di − D j ≤ Ri, and instances of task j will
only have higher priority if released within the interval
[0, Di −D j]. Minimum interference is obtained when task
j is phased such that one release occurs at time Di −D j.
The number of complete preemptions from task j is hence
given by d(Di −D j)/Tj −1e.
Each complete preemption from task j will contributeC j to
the response time. Combining the two cases above, a lower
bound, Rb

i , on the minimum response time of task i is given
by

Rb
i = Cb

i + ∑
∀ j:D j<Rb

i

⌈

min
{

Rb
i , Di −D j

}

Tj
−1

⌉

Cb
j

This expression provides only a lower bound, since it does
not take any initial (partial) interference from task j into
account (see for instance Figure 8(a)). It is possible to
improve the formula slightly by including some obvious
cases where initial interferencemust occur. It is conjectured,
however, that the expression for the exact best-case response
time is as complex as the formula for exact worst-case
response time under EDF.
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