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Abstract

Recombinant antibody microarrays have advanced into indispensable tools for large-scale, high-throughput multiplexed serum
proteomics. This thesis, based upon five original papers, deals with the development of an in-house designed antibody microarray
platform, and its applications for serum profiling of pancreatic disease.

Pancreatic cancer is the 4th deadliest cancer, with a 5-year survival rate of only 6%. In order to increase the survival of this deadly
disease, novel diagnostic biomarkers for earlier detection will be essential. In paper I and II of this thesis, we identified candidate
biomarker signatures for predicting pancreatic cancer among healthy controls and pancreatitis. Pancreatitis (pancreatic inflammation)
is symptomatically highly similar to pancreatic cancer, and biomarkers able to discriminate pancreatic cancer from pancreatitis would
be of great clinical value. Pancreatitis appears in mainly chronic, acute, and autoimmune manifestations, and like for pancreatic cancer,
there is a lack of high-performing biomarkers for diagnosis and stratification. In paper III, we applied antibody microarrays for
pancreatitis protein profiling, and presented tentative biomarker signatures for the three main subtypes of this disease.

In parallel to performing clinical applications of the antibody microarrays, technical efforts for improving and expanding the use of the
platform have also been conducted. In paper IV, we studied the impact of the antibody-surface interplay, and evaluated different solid
supports for antibody microarray production. We also took the first steps towards developing a user-friendly ELISA-like multiplexed
biomarker assay, by presenting the first plate-based recombinant array-in-well sec-up. In paper V, we designed protocols for an increased
utility of the antibody microarray platform, to comprise not only targeting of proteins, but also serum/plasma profiling of glycan and
carbonyl groups. Post-translational modification of proteins, like glycosylation and carbonylation (oxidation) is often altered in disease,
and biomarkers based on differentiated levels of these modifications may complement traditional protein biomarkers. Proof-of-concept
was demonstrated for preeclampsia, a common pregnancy disorder, for which the results indicated that particularly the level of
carbonylation could be used for diagnosis and stratification.

In conclusion, the work in this thesis has contributed to an improved and increased utility of the recombinant antibody microarray
technology, and demonstrated its use for serum proteomic profiling of pancreatic disease.
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1. Introduction

Antibodies are naturally evolved in immune responses, where they act as specific
binders for neutralizing invading pathogens. The human antibody repertoire is
tremendously diverse as a result of somatic recombination and mutation events
following infection, and high-affinity antibodies may be generated for essentially any
given antigen. The intrinsic ability for combinatorial diversity and specificity for
target antigens makes antibodies highly suitable for technical applications, where they
can be used as binders for detecting molecules of interest in complex samples.
Antibody microarrays are examples of one such application, and the work conducted
in this thesis revolves around the antibody microarray technology, its design and its
clinical applicability.

Antibody microarrays are highly multiplexed affinity proteomics assays, which
can be employed for high-throughput protein expression profiling in the search for
specific biomarker signatures (Borrebaeck & Wingren, 2007; Mustafa, Hoheisel, &
Alhamdani, 2011; Sanchez-Carbayo, 2011). During the last decade, our research
group have designed and optimized an antibody microarray platform based on human
recombinant antibodies (Ingvarsson et al., 2007; Wingren, Ingvarsson, Dexlin, Szul,
& Borrebaeck, 2007). The antibodies are selected from large scFv libraries (Soderlind
et al., 2000) to target a range of different serum analytes, of which the vast majority
are involved in immunoregulatory functions (Steinhauer, Wingren, Hager, &
Borrebaeck, 2002).

A main focus of this thesis has been the application of antibody microarrays for
identifying biomarker signatures for pancreatic cancer. Pancreatic cancer is the fourth
most common cancer-related cause of death, with a 5-year survival rate of only 6%
(Siegel, Naishadham, & Jemal, 2012). In fact, pancreatic cancer is one of the few
cancers for which the survival has not been significantly improved over the last 40
years (American cancer society, Cancer Facts & Figures 2013). The high mortality of
pancreatic cancer can be explained by late and vague presentation of symptoms and
lack of sensitive methods for diagnosis, resulting in that most pancreatic tumors are
detected at a late stage, where they have already metastasized and cannot be removed
by surgery (Hidalgo, 2010). There is thus a great unmet clinical need for biomarkers
for earlier diagnosis of this deadly disease. In papers I and II, we have presented
candidate biomarker signatures for pancreatic cancer diagnosis, derived by comparing



protein profiles of pancreatic cancer patients to those of both normal healthy controls,
as well as benign pancreatic conditions, such as pancreatitis.

Pancreatitis is an inflammatory state of the pancreas, which is symptomatically
highly similar to, and difficult to separate from pancreatic cancer. Pancreatitis may
appear as acute, chronic, or autoimmune manifestations, and as for pancreatic cancer,
there is a lack of high-performing biomarkers for these conditions (Lippi, Valentino,
& Cervellin, 2012; Lohr, 2007). In paper III, we have profiled the three different
forms of pancreatitis, and identified biomarker signatures for discriminating
pancreatitis from healthy controls, as well as stratifying acute, chronic and
autoimmune pancreatitis.

Apart from applying the antibody microarray platform for biomarker discovery,
I have also been involved in a number of technical evaluations of the platform, of
which two studies are included in this thesis. In paper 1V, different solid supporss for
antibody arrays have been assessed, and the first array-in-well set up has been
presented, showing that plate-based antibody microarrays may be an option for future
clinical implementations of the technology. In paper V, we have expanded the
conventional antibody microarray set-up to target not only proteins, but also glycan
and carbonyl groups. Post-translational modifications of proteins, like glycosylation
and carbonylation (i.e. oxidation), are frequently altered in disease (Chandler &
Goldman, 2013; Dalle-Donne, Giustarini, Colombo, Rossi, & Milzani, 2003), and
serum profiling of such modifications may be an important complement to
conventional protein biomarkers. The applicabilicy of this novel setc-up was
demonstrated for preeclampsia, a common pregnancy disorder for which novel
diagnostic and prognostic biomarkers would be of great clinical value (Forest et al.,
2012).

In summary, this thesis deals with advances of the antibody microarray
technology, recent efforts which have contributed both to expanding the utility of our
in-house designed platform, as well as bringing the technology closer to clinical
availability. In addition, the antibody microarrays have been applied for proteomic
profiling of pancreatic cancer and pancreatitis, resulting in identification of candidate
disease-specific biomarker signatures, which may in the long run lead to increased

survival for many patients.



2. Cancer biomarkers

A biomarker is practically any characteristic that can be used as an indicator of disease,
however in most cases it refers to biomolecules, such as genes or, as in our case, proteins,
that are mutated or have an altered expression pattern in disease compared to controls.
Biomarkers can be used not only for disease diagnosis, but also for e.g. prognosis of
severity, prediction of therapeutic efficacy, or stratification of disease. All these types
of biomarkers enable the use of personalized medicine, the molecular characterization
of patients in order to identify the most beneficial treatment for each individual
(Jorgensen, 2009; Langreth & Waldholz, 1999).

2.1 Clinically established cancer markers

Genomic technologies, including sequencing, gene microarrays and PCR, are well
established methods, facilitating both the discovery and measurement of gene
biomarkers. Examples of routinely measured gene markers are BRCAI and BRCA2,
which if mutated indicate a significantly increased risk for breast and ovarian cancer
in women (Miki et al., 1994; Wooster et al., 1995), and EGFR, which if mutated in
lung cancer is a biomarker for beneficial treatment with the EGFR inhibitor gefitinib
(Pao et al., 2004; Wakeling et al., 2002).

Gene marker analysis often provide simple, binary read-outs, such as mutated
versus not mutated, or gene product being present versus absent. In contrast, protein
biomarkers are generally more difficult to assess, as they rather have an altered level
in disease, such that a cut-off level needs to be pinpointed. Protein markers are
however beneficial considering that proteins are the actual functional molecules, and
thus may provide a more accurate measure of the disease state. Moreover, it has been
shown that the rranslational (protein) and transcriptional (mRNA) levels frequently
are uncorrelated (Gygi, Rochon, Franza, & Aebersold, 1999). Consequently, both
protein and gene markers are of value and may harbor complementary information.

To date, there are around twenty single protein cancer biomarkers that have
been approved by the US Food and Drug Administration (FDA) (Anderson, 2010;
Ludwig & Weinstein, 2005). The most recognized protein markers are perhaps

10



HER2, a breast cancer prognostic marker that indicate tumor aggressiveness and
potential benefit from trastuzumab therapy (Schechter et al., 1984), and PSA, which
is routinely used for prostate cancer screening (Carter et al., 1992; Thompson et al.,
2004). For pancreatic cancer, which will be described in further detail in Chapter 4,
the carbohydrate antigen CA19-9, has so far been the most prominent marker
(Pleskow et al., 1989). However, not unlike many other single biomarkers, CA19-9
suffers from poor predictive value, and is today recommended solely for monitoring
recurrence of CA19-9 positive tumors (Locker et al., 20006).

Biomarkers are often assessed by their sensitivity and specificity, where sensitivity
is the ability of the marker to identify sick individuals in a population (true positives),
and specificity the ability to identify non-sick individuals in a population (true
negatives) (Altman & Bland, 1994). A good biomarker needs to have both high
sensitivity and specificity, however there is always a trade-off between the two factors,
and a certain cut-off level needs to be selected for which the sensitivity and specificity
are reported. Alternatively, the performance of a biomarker may be illustrated by a
ROC-curve, an approach which have been exploited by us in all biomarker studies
included in this thesis. ROC-curves, generated by plotting sensitivity versus 1-
specificity, demonstrate the biomarker accuracy over all sensitivity and specificity
thresholds (Zweig & Campbell, 1993), and the area under the curve, or AUC, can be
used as a measure of marker performance. An AUC value of 0.5 represent poor
biomarker accuracy, “as good as guessing”, and in the other end, an AUC of 1.0
represent perfect discrimination of cases and controls, corresponding to 100%
sensitivity and specificity.

2.2 Multiplexed cancer biomarkers

Despite a tremendous number of discovery studies in which potential biomarkers
have been identified, only a handful of these have managed to reach clinical
implementation (Anderson, 2010; Issaq, Waybright, & Veenstra, 2011). These
discouraging results have in recent years opted the field to move from single to
multiplexed markers, for increased sensitivity and specificity (Brody, Gold, Lawn,
Walker, & Zichi, 2010; Rifai, Gillette, & Carr, 2006). Considering that the same
cellular mechanisms are involved in many different diseases, it is unlikely that a
change in concentration of one single protein can be used as a high-performing
marker for one specific type of cancer. Instead, multiplexed biomarker panels or
signatures may provide synergistic effects in that they enable relatively unspecific (i.e.
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deregulated in different types of cancers or related conditions) single-handed markers
to be combined for a more sensitive and specific molecular fingerprint of the disease.

Microarray technologies are highly suitable for both the discovery and
implementation of multiplexed biomarker panels. The first diagnostic microarray test
to be FDA approved in 2007 was the MammaPrint, a signature of 70 genes that
predicts the risk of recurrence in lymph node negative breast cancer (van 't Veer et
al., 2002). Numerous multiplexed protein signatures have also been reported for
various cancers (examples of pancreatic cancer protein signatures will be covered in
Chapter 4). To the best of my knowledge, only one of these has so far been approved
by the FDA, a 5-plex panel of ApoA1, B2-microglobulin, CA125-II, prealbumin, and
transferrin for evaluating an ovarian mass for cancer prior to a planned surgery (Fung,
2010).

2.3 Biomarker discovery in serum

Apart from sensitive and specific, biomarker assays should preferably be non-invasive.
Although biomarkers have been sought after and identified in different non-invasive
sample specimens, such as urine, saliva, and sputum (Good et al., 2007; Hassanein et
al., 2012; Sanchez-Carbayo, 2006; Truong, Yang, & Jarrard, 2013), serum and plasma
are by far the most common sample formats for non-invasive biomarker analysis.
Apart from being readily available, blood-derived samples are considered to be the
most complete, containing both the entire blood proteome as well as secretion and
leakage proteins from tissues, and (if present) tumors (Anderson & Anderson, 2002).
Serum and plasma differ in that serum is depleted of both red blood cells and
coagulation factors, while plasma still contains coagulation factors but is prevented
from clotting by adding an anti-coagulant (e.g. EDTA). Which of the two formats
that is to be preferred has been much debated, and seems to depend on the technique
at hand (Haab et al., 2005). There are, however, significant differences between the
two (Liu et al., 2010; Schwenk et al., 2010), and thus biomarkers that have been
discovered in e.g. serum, cannot not necessarily be validated in plasma. For the
analysis of pancreatic disease (papers I-11I) we have exclusively used serum, and for
the case of simplicity I will refer to serum proteins for all blood-derived proteins.
Albeit beneficial in its non-invasiveness, availability and high protein content,
the use of serum is also associated with several challenges. The serum proteome is
highly complex, due to high concentration and heterogeneity. Serum proteins are
generally present in many different forms due to e.g. precursors, degradation
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products, splice variants, and different patterns of glycosylation and other post-
translational modifications (Anderson & Anderson, 2002). A majority of the proteins
are also assumed to be complex-bound to other proteins. In addition, the quantitative
dynamic range of serum proteins spans over ten orders of magnitude (Fig. 1), with
concentrations ranging from 35-50 mg/mL for albumin down to a few pg/mL for
some cytokines (Anderson & Anderson, 2002; Hanash, Pitteri, & Faca, 2008). In
fact, 99% of the protein mass in serum is made up of approximately 20 different
proteins (Tirumalai et al., 2003), which consequently will mask the more low-
abundant analytes, such as tissue leakage proteins and cytokines. Considering that
potential biomarkers are most likely found among these more low-concentrated
proteins (Haab et al., 2005; Surinova et al., 2011), highly sensitive technologies are
required for their detection.
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Figure 1. Dynamic range of blood proteins. Abundance is shown for selected
proteins measured on our antibody microarrays. Albumin is plotted as a
reference. Values are obtained from the plasma proteome institute, and the plot is adoptea
from Anderson & Anderson (2002).
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2.4 Proteomics technologies for biomarker discovery

The large scale study of proteins, proteomics, began with the advent of two-dimensional
electrophoresis (2-DE) (O'Farrell, 1975), which rapidly increased the protein coverage
from single protein analysis. The 2-DE technology became the cornerstone for
biomarker discovery, until advancements of mass spectrometry (MS), such as the
introduction of MALDI (matrix-assisted laser desorption/ionization) (Karas &
Hillenkamp, 1988), made MS the method of choice for large scale proteomic analysis.
Despite tremendous additional development over the last decades, including the
arrival of the orbitrap technology (Makarov, 2000), MS still suffers from relatively
poor sensitivity in complex samples such as serum. Although the sensitivity may be
increased by targeted approaches, such as multiple reaction monitoring (MRM)
(Keshishian, Addona, Burgess, Kuhn, & Carr, 2007), highly sensitive MS-based
methods are still not adapted for large-scale high-throughput biomarker discovery.

The sensitivity needed for identification of the most low-abundant serum
proteins can so far only be achieved by the use of affinizy reagents, such as antibodies.
Immunoassays have been extensively used since the introduction of the
radicimmunoassay (RIA), based on radioisotope labeling (Yalow & Berson, 1959),
and later the enzyme-linked immunosorbent assay (ELISA) (Engvall & Perlmann,
1971), which still today is one of the most common diagnostic assays. Monoclonal
antibodies were introduced a couple of years later (Kohler & Milstein, 1975), enabling
the isolation of analytes from more complex mixtures, such as serum.

Successful combinations of MS and immunoassays have also been
demonstrated. For example, SISCAPA (stable isotope standard capture with
antipeptide antibodies), which couples antibody peptide enrichment for increased
sensitivity to an MS-based read-out (Anderson et al., 2004). Another example is the
elegant attempt to approach global proteome coverage presented by Olsson et al
(Olsson, James, Borrebaeck, & Wingren, 2012; Olsson et al., 2011). In their GPS
(global proteome survey) platform, antibodies directed against short (4-6 amino acids)
N-terminal sequence motifs, where each motif may be shared by up to hundreds of
proteins, are used for peptide capture and combined with MS-based detection and
quantification. A similar approach, using 3-4 amino acid sequence motifs, has also
been demonstrated (Poetz, Hoeppe, Templin, Stoll, & Joos, 2009).

The first actempts to multiplex immunoassays began in the mid 1980’s with the
microspot assay developed by Ekins and Chu (Ekins, Chu, & Biggart, 1990; Ekins &
Chu, 1991). Since then, the field of affinity proteomics has rapidly advanced with
numerous highly multiplexed microarray platforms. Apart from antibody
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microarrays, antigen arrays and reverse-phase protein arrays have also been extensively
utilized. Antigen arrays (Bussow et al., 1998; MacBeath & Schreiber, 2000) are
generated by printing purified proteins or peptides onto solid supports, and are
commonly deployed for profiling the autoantibody response in autoimmune diseases
or cancer (Hudson, Pozdnyakova, Haines, Mor, & Snyder, 2007; Orenes-Pinero et
al., 2010; Zhang, 2004). Commercial antigen arrays have also frequently been
exploited, for example the ProtoArray (Schweitzer, Meng, Mattoon, & Rai, 2010),
which in its current version constains over 9000 unique human proteins
(www lifetechnologies.com).

Instead of pure antigens, reverse-phase protein arrays (Paweletz et al., 2001) are
composed of arrayed patient samples, which are probed with antibodies targeting
proteins or proteins modifications such as phosphorylation, enabling the analysis of
signaling networks in cancer (Silvestri et al., 2010; Wulfkuhle et al., 2003). Serum is
however rarely used for reverse-phase arrays, as the technology does not support
detection of low-abundant proteins in such complex sample format. Instead, tissue or
cell lysates are the most frequently used sample specimens. While antigen and reverse-
phase arrays are suitable for autoantibody profiling and functional studies using a
relatively small amount of samples, antibody microarrays, which will be covered in
chapter 3, have frequently been the affinity proteomics method of choice for large-
scale protein biomarker discovery.

Like any technology, however, affinity proteomics also suffers from drawbacks.
The main limitation compared to MS based proteomics has been the availability of
antibodies, as commercial, well characterized, high-affinity binders may be hard to
acquire. To this end, the use of recombinant antibody libraries, from which binders
can be selected by display technologies, is an efficient way of generating antibodies
against selected targets, and will be further described in the next chapter. Recently,
there have been several initiatives for generating large sets of high quality affinity
reagents at high throughput and low cost, including the Affinomics, ProtomeBinders,
and AffinityProteome projects in the EU, as well as the NITH (National Institute of
Health) Common Fund’s Protein Capture Reagents Program and the Human Antibody
Initiative in the US (Stoevesandt & Taussig, 2012). These projects, together with
technical advances, such as the global proteome survey mentioned above, and efforts
within the nanoarray technology which will be briefly described in Chapter 5, have
the potential for increasing the protein coverage within affinity proteomics
tremendously.
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2.5 From discovery to clinical implementation

Although an overwhelming number of proteomics studies are being published each
year, relatively few protein biomarkers are used in clinical practice, and the rate of
clinical implementation of novel markers is actually decreasing (Rifai et al., 20006).
This disappointing outcome can partly be explained by the long and costly process of
biomarker assay development.

The protein biomarker pipeline has been described to consist of six separate
phases (Rifai et al., 2006). First, proteins of interest are identified in a limited set of
well-defined samples (discovery). Second, the identity and presence of candidate
markers are confirmed by the use of alternative technologies (qualification), followed
by validation of the markers in a larger number (hundreds) of samples with a broader
range of controls (verification). Next, the assay characteristics, such as the linear range
and reference interval for each analyte, is determined and made sure to meet the
regulatory requirements (assay optimization), before the assay can be tested in
thousands of samples that fully reflect the intended target population (validation),
and finally refined to meet the regulatory standards for clinical tests
(commercialization).

The majority of clinically approved protein biomarkers are measured using
immunoassays, and for biomarkers discovered using MS, the technical transfer to an
affinity reagent platform somewhere along this line, is also likely required (Hanash et
al., 2008). In addition, MS discovery studies are frequently based on either pre-
fractionated serum or plasma, or less complex sample formats, such as proximal fluids
(e.g. pancreatic juice) or cell line models (Hanash et al., 2008). In contrast, affinity
reagents can target low-abundant analytes in crude serum without the need for pre-
fractionation, thus enabling discovery studies to be conducted using both the sample
specimen and the technology intended for the final assay, potentially saving time and
money spent on candidate markers, that otherwise may not withstand the platform
transfer likely needed at a later stage of the biomarker development.
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3. Antibody microarrays

Antibody microarrays have over the last couple of decades evolved into indispensable
tools for affinity proteomics. Owing to their ability for highly sensitive, multiplexed
protein analysis in complex samples, as well as the capacity for high sample
throughput, they have been widely applied for large-scale protein expression profiling
in the search for disease-specific biomarkers.

3.1 The antibody microarray platform

The work in this thesis has been conducted using an in-house developed recombinant
antibody microarray platform, designed and optimized for profiling of complex
proteomes. (Ingvarsson et al., 2007; Steinhauer et al., 2002; Wingren et al., 2007).
The platform set-up is illustrated in Fig. 2. In brief, the microarrays are produced by
non-contact printing, using a robotic piezoelectric spotter equipped with glass
capillaries dispensing approximately 300 pL droplets of purified, recombinant
antibody solution onto a slide surface. The antibody droplets dry out immediately,
forming spots with a diameter of ~120 pUm on the solid support. Currently, the
discovery arrays are composed of close to 300 antibodies, targeting around 100
different serum analytes.

Typically, the arrays are printed on day one, and used for sample analysis the
following day. In the current set-up, up to ten slides are printed per day, with up to
14 subarrays per slide, thus enabling over a hundred samples to be analyzed per day
and workstation. The slides are mounted in incubation gaskets with silicon
superstructures that create individual subarray compartments. After the arrays have
been blocked and washed, clinical samples (most often serum), which have been pre-
labeled with biotin, are added and incubated to allow for protein binding to the
arrayed antibodies. When the samples have been washed off, fluorophore-coupled
streptavidin is applied, which binds to the biotin on the antibody-captured proteins.
The arrays are then washed and dried, and slides are scanned in a confocal laser
microarray scanner, creating high resolution images of the subarrays. The fluorescence

intensity of each antibody spot is then quantified and used as a measure of the relative
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level of the bound protein. This way, a protein binding profile is generated for each

clinical sample, and by comparing sample groups of cases and controls, disease specific

protein signatures may be identified.

m 1. Antibodies (scFvs) are printed onto a solid

support in array patterns. Each array spot
contains one unique antibody clone.

2. Serum samples that have been pre-labled
with biotin are thawed on ice. Microarray slides
are mounted in hybridization gaskets and
blocked.

3. Blocking buffer is washed off and one serum
sample is added to each array. The samples
are incubated to allow the antibodies to bind
their cognate proteins.

4. Unbound proteins are washed off and
streptavidin-coupled fluorophore is added and
incubated to allow the streptavidin to bind to
the biotin on the captured proteins.

5. Unbound streptavidin is washed off. The
slides are dried and scanned in a confocal
laser microarray scanner. The fluorescence
signal from each antibody spot is quantified
and used as a measure of the relative
abundance of protein in the sample.

Figure 2. Overview of the recombinant antibody microarray platform.
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3.2 Immunosignaturing

Different strategies can be applied when deciding what antigens to target by an
antibody microarray. Compared to MS-based discovery studies, which are largely
untargeted, microarray analysis is by definition a targeted approach, in that the affinity
reagents, and hence the proteins to be measured, have been selected in advance.
Indeed, many microarrays consist of probes targeting disease associated antigens, such
as tumor leakage proteins, known oncogene protein products, and previously reported
cancer biomarkers (Sanchez-Carbayo, Socci, Lozano, Haab, & Cordon-Cardo, 2006;
Schroder et al., 2010).

In this context, our approach has been to select antibodies that target proteins
involved mainly in immunoregulatory functons, such as cytokines, chemokines,
growth factors, adhesion molecules, and complement components (although more
recent array expansions (paper II) also include e.g. enzymes and signaling molecules).
The association between tumors and the immune system has long been recognized.
Inflammation and immune response have been established as hallmarks of cancer
(Hanahan & Weinberg, 2011), and it has been shown that inflammatory mediators
may both promote and be promoted by tumors (Coussens & Werb, 2002; Lippitz,
2013).

Considering that the immune system is highly affected in any condition, the
proteins targeted on our arrays are however not expected to show single-handed
specificity towards a certain disease. Instead, it was postulated that immunosignatures
could be identified and used as sensitive and specific fingerprints for individual
diseases. Since then, such diagnostic and/or prognostic signatures have been
delineated for a range of indications, including H. pylori-induced gastric cancer
(Ellmark et al., 2006), pancreatic cancer (Ingvarsson et al., 2008), metastatic breast
cancer (Carlsson et al., 2008; Carlsson, Wingren, et al., 2011), glioblastoma (Carlsson
etal., 2010), as well as autoimmune diseases (Carlsson, Wuttge, et al., 2011). In paper
[-I11, this strategy has been further exploited for pancreatic cancer and pancreatitis.

3.3 Platform design — key parameters

Apart from the choice of what antigens to target, several technical key features need
to be assessed and optimized in the design of a microarray platform (Borrebaeck &
Wingren, 2009). As illustrated in Fig. 3, these include the choice of affinity probes and
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solid support, both of which will influence the choice of probe immobilization
technique. In parallel, the sample labeling approach should be selected and optimized.
With these parameters in place, the assay protocol can be developed, including array
processing (i.e. blocking, washing and sample buffers, incubation time, temperature,
etc.), choice of detection system, and, finally, methods for data preprocessing (e.g. quality
control and normalization), and data analysis. Some of these parameters will be
described in further detail in this chapter.

Affinity

bi
[ Probe
) immaobilization
Solid Array Data Data

support T processing peles preprocessing analysis

labeling

Figure 3. Key parameters in the design of an affinity proteomics microarray platform.

3.3.1 Affinity probes

Although different types of affinity reagents, including aptamers (Cho, Collett,
Szafranska, & Ellington, 2006; Gold et al., 2010) and affibodies (Renberg, Shiroyama,
Engfeldt, Nygren, & Karlstrom, 2005), may been used for antigen capture, antibodies
are undoubtedly the most frequent choice of affinity probe. Both polyclonal and
monoclonal antibodies have been employed in array applications (Borrebaeck &
Wingren, 2011; Stoevesandt & Taussig, 2007). Polyclonal antibodies, produced by
immunization of animals, can be generated in high amounts at a relatively low cost.
Nevertheless, monoclonal antibodies are generally preferred in array applications, as
they are both renewable and specific for unique epitopes. Monoclonal antibodies have
traditionally been produced using hybridoma technology, however advances in
display methods have promoted the generation of recombinant antibodies.

One of the most frequently used system for generating and screening
recombinant antibodies is phage display (McCafferty, Griffiths, Winter, 8 Chiswell,
1990), which also has been our method of choice. In phage display, fragments of full
length andbodies, Fab (fragment antigen binding) or (as in our case) scFv (single-
chain fragment variable), are displayed on phages in large antibody libraries. The
library that has been the predominant source for our antibodies contains over 10"
unique antibody clones, which are all based on the same polypeptide framework, and
differ only in the complementary determining region (CDR) loops that form the
antigen binding site (Soderlind et al., 2000).
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Using recombinant antibodies based on a fixed antibody structure is likely to
contribute to a more homogenous on-chip behavior, compared to the use of protein
probes of different sizes and charges. In addition, frameworks that demonstrate high
stability in array applications may be selected (Dubel, Stoevesandt, Taussig, & Hust,
2010). The affinities of recombinant antibodies are typically in the nanomolar range
and thus comparable to natural antibodies, but may be further increased by affinity
maturation (Dubel et al., 2010). Recombinant antibodies can also be readily mutated
for desired on-chip characteristics, such as increased stability (Nordstréom et al,
manuscript in preparation), or by introducing functional groups for e.g. surface
coupling (Steinhauer et al., 2006).

Following selection by phage display, the antibody genes are cloned into E. coli
and can be produced and purified from either the periplasm or the cell supernatant.
While antibody production used to be a tedious and time-consuming step, recent
advances have dramatically increased the throughput, enabling the generation of
hundreds of antibodies in less than a week by the use of robotics (Hust et al., 2009).

3.3.2 Solid support and antibody immobilization

Antibody arrays are of two main types, planar arrays, in which antibodies are printed
on slides (Belov, de la Vega, dos Remedios, Mulligan, & Christopherson, 2001;
Knezevic et al., 2001; Miller et al., 2003; Sanchez-Carbayo et al., 2006; Schroder et
al., 2010), and suspension arrays, in which antibodies are immobilized on color-coded
beads (Fulton, McDade, Smith, Kienker, & Kettman, 1997; Morgan et al., 2004;
Schwenk et al., 2010). Bead-based arrays allow for highly automated analysis, using
liquid handling systems, however, the level of multiplexing is limited to the number
of colors that can be resolved in the detection system, which usually is based on flow
cytometry. Moreover, it has been shown that bead based assays are more prone to
cross reactivity, and have a narrower dynamic range than planar arrays (Ellington,
Kullo, Bailey, & Klee, 2010).

The surface properties of the solid support will directly impact the assay
performance, and the antibody-surface interplay has also been a focus of this thesis
(paper IV). Solid supports should have a high binding capacity, preserve antibody
activity and resist non-specific binding. Antibodies may be immobilized onto the
solid support by adsorption, affinity-coupling, or by covalent binding to functional
groups on the surfaces, in either a random or directed manner (Seurynck-Servoss et
al., 2008; Steinhauer et al., 2005). In our set-up, a black polymer slide to which the
antibodies are immobilized by adsorption, has been the surface of choice (Wingren et

21



al., 2007). Different solid supports for planar arrays, and their impact on the assay
functionality will be discussed in further detail in Chapter 5.

Planar antibody arrays may be produced by cither contact or non-contact
printing. When antibodies are printed onto a surface, high reproducibility is a
prerequisite, as well as high precision, considering that the spot-to-spot distance is
usually only around 200 [m or less. Contact printers, equipped with solid metal pins,
are often considered to be more rapid and easily cleaned than non-contact printers
(Austin & Holway, 2011). Non-contact piezoelectric printing, which has been used
for the production of our arrays, is however more reproducible, more easily
controlled, allows for antibody recovery, and is often stated to be more biocompatible,
i.e. not causing denaturation of the printed proteins (Delehanty, 2004).

Alternatives to antibody printing are demonstrated by DNA-directed
immobilization, in which DNA is printed, allowing for antibodies tagged with
complementary oligonucleotides to be directed to their corresponding array position
(Wacker, Schroder, & Niemeyer, 2004), and self-assembly arrays, in which the
antibodies are produced on-chip by the use of printed protein-encoding DNA and a
cell-free expression system (Stoevesandt et al., 2011). These are appealing approaches
in which the antibody purification step could potentially be circumvented, and work
along this line is on-going also in our group (Wingren et al, unpublished
observations).

3.3.3 Sample labeling and detection

Although the work in this thesis has been conducted using solely blood derived
samples, including both serum (paper I-IV) and plasma (paper V), a range of different
sample formats have been analyzed using antibody microarrays. For example, assay
protocols for targeting urine (Kristensson et al., 2012), intact cells (Dexlin,
Ingvarsson, Frendeus, Borrebaeck, & Wingren, 2008), tissue extracts and cell lysates
(Dexlin-Mellby et al., 2011), and formalin-fixed paraffin-embedded (FFPE) tissue
(Pauly et al., 2013), have been developed for our platform. For each type of sample,
protocols regarding e.g. sample dilution, sample buffer, washing buffer, and labeling
have been optimized.

Historically, different types of labeling reagents have been wused for
immunoassays, including radioisotypes, enzymes, and chemiluminescence. Today,
most detection systems are however based on fluorescence, which is sensitive, safe, easy
to use and offers stable signaling (Schaferling & Nagl, 2006). Dual-color approaches,
in which two samples are labeled with two different fluorophores, e.g. Cy3 and CyS5,
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and analyzed on the same microarray, was frequently applied in the early years of
antibody microarray development, and are still not uncommon (Haab, Dunham, &
Brown, 2001; Schroder et al., 2010). Dual-color labeling has also been assessed by
our group, but was abandoned due to significant differences in labeling efficiencies of
the different dyes tested (Wingren & Borrebaeck, 2008; Wingren et al., 2007).

The biotin and streptavidin reagents used by us are widely exploited in many
different applications, owing to the high affinity binding of biotin to streptavidin (or
avidin), and the minimal sample impact caused by the small biotin molecule. Sample
proteins are tagged with biotin through N-hydroxysuccinimide (NHS)-coupling to
primary amines, i.e. lysins and arginines. Each biotin molecule then captures one of
the four binding sites on a streptavidin molecule, which in turn has been pre-coupled
to a fluorophore. In paper V, we extended the use of our microarray platform by
introducing labeling of glycans and carbonyls, which will be covered in Chapter 5.

Alternatively to direct labeling using fluorophore or biotin, a second, labeled
antibody may be used for detection. Such sandwich antibody microarrays are often
stated to be more specific than their single-capture counterparts, considering that the
capture of two independent antibodies are required for signaling (Nielsen &
Gelerstanger, 2004). Moreover, the sample labeling step, which always involves a
certain risk of affecting the sample, for instance by epitope masking, is circumvented
in the sandwich approach. On the other hand, acquiring two antibodies targeting
different epitopes of the same protein may be problematic, and in addition, sandwich
arrays are limited to 30-50 different targets, as increased multiplexing have shown to
introduce cross-reactivity of detection antibodies (Haab, 2005).

Sandwich microarrays have also been generated using lectins, carbohydrate
binding proteins, as either capture or detection probes (or both), often in
combination with protein specific antibodies (Haab & Yue, 2011; Heimburg-
Molinaro, Song, Smith, & Cummings, 2011). Such lectin-antibody arrays may be
applied for differential profiling of glycosylation in disease, as has been exemplified
for pancreatic cancer (Yue et al., 2009; Yue et al., 2011). Highly informative, disease
associated changes of both protein abundance and glycan alterations can be derived
from these arrays. The drawbacks are the need for masking carbohydrates on the
arrayed antibodies, the large amount of sample needed (one array per lectin is
required), as well as the low affinity and cross reactivity frequently displayed by
lectins. Moreover, the analysis and interpretation of the abundance of data generated
from such set-ups, may be highly complex.
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3.3.4 Data preprocessing

Unlike gene array analysis, there are yet no standardized way in how protein
microarray data should be preprocessed. Instead, each research group has developed
their own approach to data handling, based on experience and the nature of the
dataset, i.e. the number of analytes and samples, and the scientific question at hand.
Data preprocessing should however include a data distribution analysis, which will
determine what statistical tools that can be applied in the downstream data analysis,
as well as the exclusion of potential outliers. In addition, some sort of normalization
of the data is more or less always required in order to reduce or eliminate non-
biological sample variations. Commonly used normalization strategies include the use
of spike-in antigens, reference methods (e.g. ELISA), and global normalization
(Hamelinck et al., 2005; Park et al., 2003; Quackenbush, 2001). After thorough
revision of several of these strategies, we have chosen a semi-global normalization
approach, in which a subset of the analytes (15-20%) that show the smallest overall
variation across all samples is used to calculate a scaling factor for each array
(Ingvarsson et al., 2008). This method has been used in all studies in this thesis. The
study in paper II was, however, conducted after an extensive platform update, which
among other things, involved major changes in the array design. This resulted in that
over 100 samples could be analyzed per day, compared to 10 samples in the previous
set-up, and led to the observation of day-to-day variations, which could be eliminated
by using a frequently applied subtract group mean strategy, in which the average signal
of samples analyzed on the same day was calculated for each antibody and subtracted
from the individual values. This was followed by an array-to-array normalization,
using the semi-global approach described above.

3.4 Microarray data analysis

Traditionally, proteomics data analysis has been conducted in a univariate mode, i.c.
evaluating one protein at a time. The differences in protein levels between cases and
controls have been assessed using t-tests, and analytes with p-values below a certain
threshold have been reported as significantly differendally expressed, and as having a
potential discriminative power as a biomarker. Recently, it has however been
increasingly recognized that more sophisticated statistical tools, able to interpret
multivariate data such as that generated from antibody microarrays, may be a missing
link for increasing the rate of biomarker panels being approved for clinical use
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(Anderson, 2010). Considering that a certain level of correlation of discase-related
protein expression is likely to be present, particularly when targeting highly
interconnected immunoregulatory proteins, univariate analysis of variation may
indeed not be the most appropriate option for identifying the optimal combination
of analytes to include in a disease-specific immunosignature (Quackenbush, 2001).
Instead, different multivariate models, which may be broadly divided into two
categories based on unsupervised and supervised classification (Fig. 4), can be applied.

3.4.1 Approaches for sample classification

Unsupervised classification methods identify underlying patterns in the data and use
these to cluster samples and/or variables without any prior knowledge of the true
sample annotation (or antibody specificities). For example, hierarchical clustering
creates branched trees of samples and/or antibodies based on the unbiased similarities
in the array data (Eisen, Spellman, Brown, & Botstein, 1998). One should be aware,
however, that branches will be generated even in completely random data; hence
clusters do not necessarily reflect true biological patterns, and need to be carefully
validated. Another unsupervised method, applied in papers 11, III and V, is principal
component analysis (PCA), which transforms multidimensional data into a limited set
of orthogonal (uncorrelated) variables called components, where each component
contains maximum data variability.

Unsupervised methods are suited for initial analysis and overview of datasets,
and, as demonstrated in paper V for preeclampsia, for stratifying samples and
identifying novel subgroups. They may also be deployed for quality control of array
data. If unsupervised classification separates clinical samples according to their initial
diagnosis, it implies that the array analysis was able to extract relevant information
from the samples (provided that no technical bias has been introduced in the analysis).

In contrast, supervised classification is based on a priori information on sample
annotation, and is applied to generate prediction models for distinguishing cases and
controls. Supervised classification methods include regression analyses, random
forests, and artificial neural networks, to mention a few (Cammann, Jung, Meyer, &
Stephan, 2011; Kim et al., 2009). In papers I, II, III and V, we have applied a
supervised learning method called suppors vector machine (SVM).
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3.4.2 Support vector machine analysis

A support vector machine creates a Ayperplane to separate two sample groups in a
multidimensional space made up of the variable data, which in our case is composed
of the antibody signals. New samples are predicted to belong to either cases or controls
depending on what side of the hyperplane they are positioned in the space. In other
words, the model is constructed by training on a representative dataset, before its
predictive power can be evaluated in novel samples. The microarray data thus needs
to be divided into training ser and test set, and for accurate analysis it is imperative that
the samples used to validate the model (test set) has not been involved in its
construction (training set).

The separation of samples into training sets and test sets can be done in a
number of ways. In paper I, we used two different approaches. First, we compared
pancreatic cancer and healthy controls. Considering that the number of samples were
relatively small (n=64), we reasoned that there was not enough data to perform
adequate training and validation in two different datasets. Instead, we applied a leave-
one-out cross validation, excluding one sample at a time from the dataset, and using
the remaining samples to train the data. When the excluded sample was put back into
the space, it was given a decision value, which corresponds to its distance to the
hyperplane and was either negative or positive depending on what side of the plane it
is positioned. This process was repeated until all samples have been given a decision
value, after which the model performance could be evaluated. Second, we compared
pancreatic cancer to the combined group of both healthy controls and pancreatitis.
Here, we estimated that the number of samples (n=103) was sufficient to randomly
subdivide the data into one training set and one test set. This approach is considered
to be more stringent, since training is done only once, in comparison to the leave-
one-out approach, in which a new hyperplane is created each time a sample is
excluded, which may increase the risk for overtraining or overfitting the model.

3.4.3 Identification of biomarker signatures

Support vector machine models can be constructed using the endire dataset, i.e.
information from all antibodies included on the array. Using hundreds of antibodies
for disease classification will however not be optimal in a clinical assay setting, which
is why condensed (£30-plex), candidate biomarker signatures have been derived from
the array data. In order to identify the combination of proteins that has the highest
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classification power, we have taken on a backward elimination approach (Carlsson,
Wingren, et al., 2011), and applied this in papers I and IL.

The backward elimination algorithm excludes one antibody at the time from
the data set, and performs leave-one-out cross validation of the samples using the
remaining antibodies, with the subsequent generation of ROC-curves. The process is
continued until all antibodies have been excluded once. The antibody that was
excluded when the classification was performed with the highest accuracy (or rather
the smallest error), is considered to be the least important feature, and is removed
from the dataset. This procedure is then repeated until only a single antibody remains.

The order of eliminated antibodies can then be used to identify signatures of an
appropriate number of proteins. The predictive value for each signature “length”, as
recorded from the elimination process, function as an estimate of the optimal number
of analytes needed for high-performing classification. For example, the backward
elimination performed in paper 1I showed that pancreatic cancer was readily
discriminated from normal controls using only 4-10 antibodies, while much larger
signatures, based on in average 67 antibodies, were needed for optimal classification
of pancreatic cancer and pancreatitis, as these sample groups were much harder to
separate.
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Figure 4. Overview of data analysis methods applied in this thesis.
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4. Applications on pancreatic disease

The main purpose of this thesis has been applications of the antibody microarray
technology for protein expression profiling of pancreatic disease. In paper I and II,
we have applied antibody microarrays to analyze serum samples from patients with
pancreatic cancer, pancreatitis, and healthy controls. By comparing protein patterns
in these sample groups, biomarker signatures for classification of pancreatic cancer
have been identified. In paper 111, a similar approach was undertaken, but with a focus
only on pancreatitis. Here, the array data was used to stratify chronic, acute and
autoimmune pancreatitis, and to pinpoint potential biomarkers and biomarker
signatures for each of these pancreatitis subtypes.

4.1 Pancreatic cancer

Pancreatic cancer affects approximately 1 in 10 000 in the US, making it the 12¢h
most common type of cancer (Shaib, Davila, & El-Serag, 2006; Siegel et al., 2012).
In Sweden, around 900 individuals are diagnosed with pancreatic cancer every year
(www.cancerfonden.se). Even though it is not among the most frequent types of
cancer, the median survival is only 6 months, and the 5-year survival rate is 6%
(Michaud, 2004). Consequently, a close to equal number of deaths as new cases are
reported each year, and pancreatic cancer is currently the 4th most common cancer
related cause of death, surpassed only by lung, breast, and colon cancer (Siegel et al.,
2012).

Surgery remains the only curative option for pancreatic cancer, although less
than 15% of patients have surgically resectable disease at the time of diagnosis. The
tumors are potentially resectable only in stage I and II pancreatic cancer (localized
tumors), however when detected, the cancer has in most cases reached stage Il or IV,
with a tumor that has grown inoperable, and in about 50% of cases has formed distant
metastases (stage [V) (Pannala, Basu, Petersen, & Chari, 2009).

The late detection is partly due to vague and late presented symptoms,
including abdominal pain, jaundice, weight loss, and type II diabetes, symptoms of
which many may be caused by other disorders than pancreatic cancer, including
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pancreatitis. In addition, there is a lack of sensitive diagnostic methods and high-
performing biomarkers that can detect pancreatic cancer at an early stage, and
discriminate it from benign pancreatic conditions. Today, pancreatic cancer is
diagnosed using mainly computed tomography (CT), endoscopic ultrasonography
(EUS), endoscopic retrograde cholangiopancreatography (ERCP), and magnetic
resonance imaging (MRI) (Cote, Smith, Sherman, & Kelly, 2013). These imaging
methods are however both costly and rarely sensitive enough to detect premalignant
lesions, e.g. pancreatic intraepithelial neoplasias, or early stage tumors that are still
small and can be removed by surgery (Chu, Kohlmann, & Adler, 2010).

The pancreas is an abdominal gland with both endocrine function in the
production of insulin and other hormones, and exocrine function in the secretion of
digestive enzymes into the pancreatic juice for transportation to the small intestine.
The pancreas consists of head, body and tail, with the head to the left, located in cavity
of the duodenum, the body behind the stomach, and the tail protruding to the right
towards the spleen (Fig. 5). Cancer may arise in all parts of the pancreas, including
the endocrine compartment of the pancreatic islet cells. These neuroendocrine tumors
are however rare and clinically distinct from other pancreatic cancers and has not been
covered in this thesis.

The vast majority (95%) of pancreatic cancers are exocrine adenocarcinomas
that arise in the pancreatic duct, a branched vessel that runs through the pancreas,
and that carries the pancreatic juice to the common bile duct (Fig. 5). Most of the
ductal cancers (80%) are located in the head of pancreas, and can sometimes be
resected by the so called Whipple operation, unless the mesenteric blood vessels
surrounding the pancreatic head also have been invaded. Tumors located in the body
or tail of the pancreas may be removed by a procedure called distal pancreatectomy.

Gall bladder

5

Common bile duct

Pyloric sphincter J»

Figure 5. Anatomy of the pancreas.
Reproduced with permission from Nature Publishing Group
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The body and tail tumors are however often more aggressive than those of the head,
and have frequently metastasized at the time of diagnosis. Only cases with no evidence
of metastasis or cancer invasion of the celiac artery, are considered for surgery
(Hidalgo, 2010).

The causes of pancreatic cancer are largely unknown. The only factor that has
been statistically established as causative is smoking, which increases the risk for
pancreatic cancer 2-3 times (Hassan et al., 2007). Also, about 5-10% of pancreatic
cancer patients have a family history of the disease, although the genetic
predisposition behind familial pancreatic cancer has not fully been characterized. In
general, pancreatic cancers are highly heterogeneous, and aberrantly mutated, with an
average of over 60 genetic abnormalities per tumor (Hidalgo, 2010). Up to 90% of
cases have mutations in K-RAS, an oncogene which if mutated produce persistently
active Ras protein. Despite the high frequency, K-RAS is of limited use as a biomarker
for pancreatic cancer, as its mutated form also is found in many other cancers
including colorectal and lung cancer, as well as in pancreatitis and in up to 30% of
other non-cancer controls (Parsons & Meng, 2009).

In fact, the only biomarker for pancreatic cancer that so far has been FDA
approved for clinical use is carbohydrate antigen 19-9 (CA19-9). CA19-9, or sialy!
Lewis a, was first discovered over 30 years ago, as an elevated serum marker in colon
and pancreatic cancer patients (Koprowski, Herlyn, Steplewski, & Sears, 1981).
However, CA19-9 suffers from dismal predictive power and specificity for pancreatic
cancer (Ballehaninna & Chamberlain, 2012), and is moreover completely absent in
about 10% of the population (Lewis a and b negative individuals). Today, the use of
CA19-9 is recommended solely for monitoring recurrence of CA19-9 positive tumors
(Locker et al., 2006).

Many other markers have been suggested for pancreatic cancer, including
CA242, CA125, CEA, CEACAM-1, CRP, DU-PAN2, GDF-15, haptoglobin,
IGFBP-1, M2 pyruvate kinase, platelet factor 4, and serum amyloid A, to mention a
few (Ballehaninna & Chamberlain, 2013; Duffy et al., 2010; Fry, Monkemuller, &
Malfertheiner, 2008; Koopmann et al., 2006). Despite the low accuracy of CA19-9,
it has not yet been outperformed by other markers in validated studies. There is thus
a significant unmet clinical need for novel biomarkers for pancreatic cancer,

preferably for early detection.
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4.2 Biomarker panels for pancreatic cancer

Numerous multiplexed biomarker panels have also been identified for pancreatic
cancer, including signatures based on transcripts, micro-RNAs, metabolites and
autoantibodies (Ballehaninna & Chamberlain, 2013; Winter, Yeo, & Brody, 2013).
The studies briefly reviewed here are restricted to those based on serum antigen
panels, identified by the use of credible study design and multivariate analysis, with
pre-validation in independent sample cohorts, or by cross-validation procedures.

Using focused, commercial bead-based arrays, Brand et al. recently identified a
panel of CA19-9, ICAM-1 and OPG for discrimination of pancreatic cancer and
healthy controls in large serum sample cohorts, but were unable to find a panel that
improved the sensitivity of CA19-9 for discriminating pancreatic cancer from benign
pancreatic conditions (Brand et al., 2011). Faca et al. used an appealing MS-based
approach of identifying proteins of interest in a mouse model, with the subsequent
validation of selected panels in human serum (Faca et al., 2008). A panel of LCN2,
TIMP1, REGIA, REG3 and IGFBP4 was combined with CA19-9 for discrimination
of early stage pancreatic cancer and controls (AUC 0.91) in a small sample set. In
another MS-based study, Xue et al. found that the combination of CA19-9, ApoC1
and ApoA2 improved the diagnostic power over CA19-9 alone in pancreatic cancer
when compared to both healthy (AUC 0.96) and disease controls (AUC 0.90) in
small validation sets (Xue et al., 2010). Furthermore, Makawita et al. recently
confirmed previously identified candidate biomarkers in two large serum sample
cohorts using ELISA (Makawita et al., 2013). They found that a combination of
CA19-9, SYCN and REGI1B could distinguish early stage pancreatic cancer from
disease free controls with an AUC of 0.87 and 0.90 in the two sample sets.

In an effort of profiling cytokine patterns of pancreatic cancer, Zeh et al. used a
bead-based immunoassay and a cross-validation approach to identify multivariate
cytokine panels for discriminating pancreatic cancer and healthy controls, as well as
chronic pancreatitis with sensitivities and specificities in the range of 86-96% (Zeh et
al., 2005). In another early effort of multivariate analysis, the group of Haab applied
antibody microarrays and different classification models, with varying results
(Orchekowski et al., 2005). This group has later changed focus from core protein
biomarkers to the analysis of glycan epitope alterations in pancreatic cancer, using
antibody-lectin sandwich microarrays, as was described in Chapter 3 (Haab et al.,
2010; Yue et al., 2009).

The majority of reported multiplexed biomarker panels thus consist of 2-5
proteins, frequently medium to high abundant analytes, and often in combination
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with CA19-9. In contrast, the candidate biomarker signatures identified by us in
papers I and II have included up to 25 different proteins, with emphasis on low- to
medium-abundant immunoregulatory serum proteins, thus representing key
differences from most other multiplexed biomarker efforts. In paper I, we first
identified an 18-plex protein signature for predicting pancreatic cancer samples from
healthy controls. For pre-validation, we used a preexisting dataset from antibody
microarray analysis of an independent serum sample cohort set (Ingvarsson et al.,
2008), in which our signature demonstrated an AUC of 0.95. Second, we used a
training set to identify a 25-plex signature for differentiating pancreatic cancer from
the combined group of healthy and pancreatitis controls. This signature was pre-
validated in a separate test set, in which it generated an AUC of 0.88.

In paper II, we undertook a similar approach, but in a significantly larger serum
sample cohort, and using microarrays based on more than twice as many antibodies
as in paper 1. Here, ten different, randomly generated pairs of training and test sets
were applied, and in each training set the most predictive 25-plex signature was
identified, and evaluated in the corresponding test set. The ROC curves generated
had an average AUC of 0.98 for the pancreatic cancer versus healthy controls
signatures, and 0.67 for the pancreatic cancer versus benign controls (mainly chronic
pancreatitis) signatures. The backward elimination analysis showed that 4-10
antibodies would be sufficient for close to perfect discrimination of cancer and healthy
controls. However, further analysis showed that a much larger number of antibodies
(average 67) was required for maximum separation of cancer and benign controls,
indicating that small immuonosignatures (<10-plex) would likely not be highly
specific for pancreatic cancer. Moreover, principal component analysis demonstrated
that the serum samples in part could be separated based on the tumor location in the
pancreas (head versus body/tail), which to the best of my knowledge has not
previously been shown with proteomics. In summary, the signatures for predicting
pancreatic cancer from normal controls that were derived by us (AUC 0.95-0.98) are
among the best-performing pre-validated candidate biomarker panels that have been
presented to date.
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4.3 Study design

Sample cohorts used for biomarker discovery should ideally contain age- and gender-
matched cases and controls, preferably collected in comparable numbers. The samples
should be identically handled prior to analysis, be decoded in a way so that sample
class is blind to the operator, and be applied on arrays in a random order, all to avoid
introducing any technical biases (Ostroff et al., 2010; Ransohoff, 2005). As already
has been emphasized, biomarker accuracy (e.g. sensitivity, specificity, AUC) should
be evaluated in independent samples, by applying separate training and test sets.

In several biomarker studies, including those presented in this thesis, sensitivities
and specificities (or AUC values) well above those achieved for CA19-9, have been
reported for pancreatic cancer versus healthy controls. However, prior to conducting
such biomarker discovery study, the purpose of any putative biomarkers should be
clarified, and control groups should be applied accordingly. In line with this, we have
used pancreatitis as one of the control groups for pancreatic cancer. Considering that
pancreatic cancer and pancreatitis present with close to identical symptoms,
diagnostic biomarkers that can separate these two conditions would indeed be of high
clinical value.

If the biomarkers should be used for pancreatic cancer screening in the general
population, healthy individuals would be the appropriate control group, and our
results indicate that highly sensitive biomarker signatures for identifying pancreatic
cancer from healthy controls can be derived from antibody microarray data. Because
of the low prevalence of pancreatic cancer, a general screening test is however not
likely to be cost effective (Larghi, Verna, Lecca, & Costamagna, 2009; Pannala et al.,
2009). On the other hand, a recent study has demonstrated the cost-effectiveness of
screening high-risk groups for pancreatic cancer, based on the sensitivity and
specificity reported by us in paper 1 (Ghatnekar et al., 2013). Risk factors for
pancreatic cancer are both hereditary, including a family history of disease, genetic
predisposition (e.g. BRCAI and BRCA2 mutations), Peutz-Jeghers syndrome, and
hereditary pancreatitis, as well as non-hereditary, such as chronic pancreatitis, newly
onset diabetes, Helicobacter pylori infection, smoking, obesity, and high age
(Konstantinou, Syrigos, & Saif, 2013; Larghi et al., 2009). The prevalence of
pancreatic cancer among smokers or elderly is still too low to justify screening in these
population, however individuals with one or more of the other mentioned risk factors
may be eligible for screening. The next step will thus be to explore the ability of our
immunosignatures for predicting pancreatic cancer in high-risk groups. In particular
individuals with a demonstrated hereditary predisposition, accounting for more than
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10% of pancreatic cancer patients (Tersmette et al., 2001), and patients with new-
onset diabetes, as recent data have shown that up to 80% of pancreatic cancer patients
are either hyperglycaemic or diabetic (Pannala et al., 2009), may be considered as
appropriate controls.

Moreover, pancreatic tumors should preferably be detected at an early and still
resectable stage, which poses a major challenge on biomarker discovery studies, as
early pancreatic cancer (stage 1 and II) clinical samples for obvious reasons rarely are
available in large numbers. Instead, tentative biomarkers are generally reported in
stage I1I and IV pancreatic cancer, with the supposition that many signature proteins
would be deregulated already at an earlier cancer stage. In a current effort of
identifying truly early stage markers, a set of serum samples collected one month up
to five years prior to diagnosis of pancreatic cancer have been drawn from a
prospective, population based sample cohort (Manjer et al., 2001). These samples
have recently been analyzed on our antibody microarrays, together with healthy and
chronic pancreatitis controls from the same cohort (Dexlin-Mellby and Wingren, on-
going studies), and we are currently awaiting the results from this study.

Another attractive option would be to analyze multiple samples from the same
patient. Several studies have demonstrated that there are large biological variations in
serum protein abundances between different individuals (Cava, Gonzalez, Pascual,
Navajo, & Gonzalez-Buitrago, 2000; Tuxen, Soletormos, Petersen, Schioler, &
Dombernowsky, 1999), which suggests that each patient is his or her own best
control. By comparing samples drawn at different time points, base-line levels could
thus be pinpointed for each patient, enabling disease-associated changes in protein
abundance to be monitored over time in a truly personalized manner. This approach
has yet not been pursued by us for pancreatic cancer, but hopefully such samples will
be acquired for future studies.

4.4 Validation of biomarker signatures

An intelligent study design with proper pre-validation is a prerequisite for further
verification studies of tentative biomarkers. As described in Chapter 2, the path from
discovery study to clinical implementation of biomarkers is however long and tedious,
involving thorough validation of both the technology and the proposed biomarkers
in large independent sample cohorts. This process is even more complex when the
technology is still evolving in parallel to that biomarker discovery studies are being
performed, which often is the case. For instance, our platform has been applied in
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numerous clinical studies, in parallel to which technical efforts aiming for further
optimizing, improving, or expanding the microarray technology have been conducted
(Borrebaeck & Wingren, 2009; Wingren & Borrebaeck, 2006).

The studies on pancreatic cancer profiling (papers I and II), were performed
with a four year interval, over which the microarray platform went through a number
of critical changes. For example, paper I was based on analysis using 121 antibodies,
while in paper I, several new binders had been added to the repertoire, resulting in a
total of 293 different antibodies. The arrays were also produced using different
printers, and processed using highly different protocols. While the arrays used in
paper [ were printed one per slide, and processed in a semi-automated manner using
a liquid handling system, a so called protein array workstation (PAW) which enabled
12 arrays to be processed each day, paper 11 was performed following several technical
advances, including more rapid array printing, which contributed to a significantly
increased throughput. Here, 13 arrays were printed on each slide and over hundred
samples could be processed per workstation and day. One of the very first studies
conducted on our antibody microarrays was also based on pancreatic cancer profiling
(Ingvarsson et al., 2008), using yet another protocol differing from those applied in
papers I and II. In addition, the data analysis strategies have been upgraded from
simple differential expression analysis, to more advanced methods, such as the
supervised classification approaches described in chapter 3.

However, in order to validate a biomarker signature in a novel sample cohort,
the antibodies used and the protocol employed needs to be close to identical in the
validation study as in the discovery study, or else the classification model will not be
readily applicable in the new sample cohort. Moreover, thousands of samples may be
required for true validation of clinical udility (Rifai et al., 2006). Particularly for
multiplex biomarker panels, for which the disease associated changes in abundance of
individual proteins may be relatively small, large sample cohorts are needed to achieve
sufficient statistical power (Alonzo, Pepe, & Moskowitz, 2002). Hence, during the
time needed to collect a sufficiently large, prospective serum cohort, particularly for
early stage pancreatic cancer, the technology is likely to have changed, and the
“validation” study may no longer be strictly comparable to the discovery study. Thus
instead of taking on a conventional path of discovery followed by validation studies,
we have conducted several consecutive studies on pancreatic cancer, each time in an
improved technical setting, and with a larger, or more relevant sample cohort. This
iterative discovery/validation process so far involves three analyzed (Ingvarsson et al
2008, paper I and II), one currently evaluated, and at least two more sample cohorts
that are waiting in the pipeline, each adding a piece of the puzzle to the proteomic
fingerprint of this complex disease.
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Despite the technical and biological (sample based) differences, several of the
same candidate biomarkers were identified both in paper I and II. For example, C1
inhibitor, C5, GM-CSF, IL-3, IL-4, MCP-1, and TGF-B1 appeared in the backward
elimination signatures derived for pancreatic cancer versus pancreatitis in both these
studies. In addition, the signatures in paper I and II also significantly overlapped with
the profile presented by Ingvarsson et al. (Ingvarsson et al., 2008), with C1 inhibitor,
C3, C5, CD40, Eotaxin, IL-4, MCP-1, TNF-f, and VEGF included in protein
signatures from all three sample cohorts. However, several antibodies that were novel
in paper 1I, including those targeting ApoAl, ApoA4, GAK, HADH2, MAPKI,
TNFRSF3, and UPF3B, also showed potential for pancreatic cancer classification,
replacing features of the signatures identified in the previous studies, and with a need
for verification in an additional sample cohort. In the future, these immunosignatures
will be further refined and validated, tested for presence in early stage pancreatic
cancer, and evaluated for diagnostic potential in larger sample cohorts including the
appropriate risk groups.

4.5 Proteomic profiling of pancreatitis

Pancreatitis is inflammation of the pancreas, believed to be caused by premature
activation of pancreatic enzymes, which results in pancreatic cellular injury and
inflammation (Vonlaufen, Wilson, & Apte, 2008). Pancreatitis may occur as acute,
chronic, or autoimmune disease. Acute pancreatitis, which initially cause reversible
pancreatic damage, may be triggered by obstruction of the pancreatic duct, often by
gallstones or, in rare cases, by tumors. Approximately 10% of acute pancreatitis cases
are classified as severe, with an intense inflammatory response that may even be lechal
(Vonlaufen et al., 2008).

Chronic pancreatitis, in which the inflammatory state has become irreversible,
may arise from recurrent episodes of acute attacks (Braganza, Lee, McCloy, &
McMahon, 2011). Chronic pancreatitis has also often been associated with excessive
alcohol use, although a significant part of the chronic pancreatitis cases appear for no
apparent reason (idiopathic disease). In fact, the pancreatitis incidence even among
heavy drinkers is low (<3%), and the alcohol intake need to be substantial (>5 drinks
per day) to be associated with an increased risk of pancreatitis (Yadav et al., 2009).
Consequently, it has been suggested that alcohol (often in combination with
smoking) is merely a strong modifier of disease, and not the cause of susceptibility.
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Moreover, the genetic predisposition for pancreatitis is becoming increasingly
unraveled (Whitcomb, 2013).

In addition to the characterized genetic and environmental causes, pancreatitis
may also have an autoimmune etiology. Autoimmune pancreatitis is a chronic disease
that presents with the same symptoms as other forms of pancreatitis or pancreatic
cancer, but that may be distinguished by increased levels of immunoglobulins and
specific autoantibodies, as well as a response to steroid treatment. It has become
increasingly clear that autoimmune pancreatitis may be subdivided into two types.
Type 1 is more common worldwide, and appears to be the only subtype affecting the
Asian population. It is characterized as a multi-organ disease with high IgG4 levels,
while type 2 is restricted to the pancreas and diagnosed by a histological pattern of
granulocyte epithelial lesions (Sah & Chari, 2012).

In general, there are several unmet clinical needs within the management of
pancreatitis, including increased molecular understanding of disease, means of early
diagnosis, as well as markers for predicting e.g. disease severity and the onset of
chronic disease from recurrent acute pancreatitis (Whitcomb, 2013). Today,
pancreatitis is diagnosed by the same imaging techniques (e.g. CT and MRI) used for
pancreatic cancer, which suffer from insensitivity and high cost, as already been
described. As for pancreatic cancer, there are currently no high-performing
biomarkers in routine clinical use. Although the presence of elastase 1, pancreatic
lipase, and amylase may indicate pancreatitis, these pancreatic enzymes are rarely
detected at an early stage disease (Lohr, 2007). Serum IgG4 and autoantibodies are
commonly measured for the diagnosis of autoimmune pancreatitis, however type 2
autoimmune pancreatitis can currently only be confirmed by histology. Pancreatitis
biomarkers would thus be of great clinical value, both for diagnosis, and for stratifying
the individual manifestations.

In paper III, we set out to meet these clinical needs by proteomic profiling of all
three forms of pancreatitis and healthy controls, using our antibody microarray
platform. First, it was demonstrated that pancreatitis could be readily discriminated
from healthy controls by applying support vector machine classification in a leave-
one-out cross validation manner (as described in Chapter 3). For each type of
pancreatitis, signatures of significantly differentially expressed immunoregulatory
analytes could also be derived. Next, the approach of support vector machine
prediction, followed by protein signature identification was repeated, first for each
subgroup versus all other samples (i.e. both other forms of pancreatitis and healthy
controls), and second for comparing the individual subgroups to each other.

This extensive analysis generated a comprehensive depiction of the similarities
and discrepancies of the three different forms of pancreatitis, based on the
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immunoregulatory proteins measured on the antibody microarrays. It was shown that
acute and autoimmune pancreatitis could be readily discriminated, while, as could be
expected, chronic disease shared many features of both of these forms. Multiple
tentative biomarkers could be suggested for each of the different subtypes. For
example, the signatures for acute pancreatitis involved several complement proteins,
while the signatures specific for chronic pancreatitis mostly contained cytokines. The
analysis of autoimmune pancreatitis confirmed the notion of a highly heterogeneous
disease. With a few exceptions, a significant part of the proteins showed decreased
serum levels in the autoimmune condition compared to healthy controls or other
pancreatitis. Unfortunately, no clinical data on type 1 or 2 autoimmunity was
available, and thus these subtypes could not be stratified.

We concluded that profiling of the immunoregulatory proteome by the use of
antibody microarrays showed high potential both for biomarker discovery and for
stratification of pancreatitis. Although further validation in independent samples is
needed, the protein signatures presented in paper III could prove useful as markers
for pancreatitis, and may add to an improved understanding of the underlying
molecular patterns of the disease(s), which potentially could provide a basis for
personalized management of pancreatitis.
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5. Technical advances of the antibody
microarray assay

Apart from the clinical applications on pancreatic disease, the work in this thesis has
also involved technical developments of the antibody microarray platform. In paper
1V, different solid supports for antibody microarrays have been evaluated, including
both source plates, planar slides and 96-well plates. In paper V, we have introduced
an additional biotin reagent for detection of glycan and carbonyl groups in clinical
samples, and demonstrated the applicability of this approach in a plasma sample
cohort with preeclamptic patients and healthy pregnant controls. In addition to these
efforts, several other on-going projects, of which a few will be mentioned in this
chapter, show great potential for advancing the antibody microarray technology into
a leading tool for biomarker discovery, and for bringing proteomics into the clinics.

5.1 Evaluation of solid supports

As briefly mentioned in Chapter 3, the solid support will have a tremendous impact
on the antibody microarray assay (Kusnezow & Hoheisel, 2003). An extensive
evaluation of the compatibility of different types of slides with our scFv antibodies
has previously been performed by our group (Wingren et al., 2007). However, several
years have elapsed since that study and similar scudies by others (Angenendt, Glokler,
Murphy, Lehrach, & Cahill, 2002; Angenendt, Glokler, Sobek, Lehrach, & Cabhill,
2003; Kusnezow & Hoheisel, 2003; Seurynck-Servoss, White, Baird, Rodland, &
Zangar, 2007), over which the availability of different surfaces and, in our case, both
the printing procedure and the array design have changed. In addition, we recently
observed high and inconsistent, non-specific protein binding to different antibody
source plates, the 384-well plates in which the antibodies are loaded prior to printing,
which in turn affected the printing performances. These factors, as well as an
emerging need for developing a user-friendly immunoassay for clinical
implementation of multiplexed biomarker signatures, motivated us to perform an

updated evaluation of solid supports for recombinant antibody microarrays.
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The use of recombinant antibodies offers several options for antibody
immobilization. For example, in early versions of our microarray platform the
antibodies were affinity coupled via histidine-tags to Ni**-nitriloacetic acid surfaces
(Steinhauer et al., 20006). Later work however demonstrated that superior assay
functionality (e.g. lower background and higher array density) was achieved when a
black polymer slide, to which the antibodies are immobilized by adsorption, was used
as solid support (Wingren et al., 2007).

In paper IV, we evaluated slides to which antibodies were immobilized either
covalently to NHS- and epoxy coated surfaces, or by adsorption to different supports.
Despite that the epoxy surfaces showed potential in means of high signals and
excellent spot morphology, none of the slides tested outperformed the currently used
black polymer surface, on which the assay demonstrated high reproducibility, low
limit-of-detection, and high dynamic range, compared to the other surfaces that were
assessed.

While the microarray solid support should have a high binding capacity, the
antibody source plates should ideally be completely non-binding to avoid that
precious antibody sample is adsorbed to the surface of the wells. The evaluation of
different 384-well source plates showed large variations in antibody binding. A black
polypropylene plate demonstrated high surface homogeneity and low protein binding
compared to the other plates tested, and has since then been used as antibody source
plate with good results.

Finally, we evaluated different flac-bottom 96-well plates for use as antibody
microarray support. Most biomarkers in clinical use today are measured with ELISA
assays, a standard technology that can be run in basically any clinical laboratory.
Producing condensed microarrays in the bottom of 96-well plates thus seemed like a
good option for developing a user-friendly, multiplexed biomarker assay. For this
purpose, our first array-in-well design was presented in paper IV. The best performing
set-up was based on clear polymer 96-well plates scanned in a confocal laser plate
scanner. Although the limit of detection does not yet match the slide-based assay, in
part due to the lack of sensitive, high-resolution plate scanners, as well as
biocompatible plate based solid supports, the array-in-well assay is an important step
towards the development of a biomarker signature test for clinical use.
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5.2 Protein, glycan and carbonyl profiling

To date, the biomarker signatures identified by us have been based on differences in
protein abundance between cases and controls. However, it has become increasingly
recognized that also the post-translational modifications, which are natural and
essential cellular processes for providing proteins with their final structure or
functional ability, are frequently altered in disease compared to healthy. Profiling
changes of the level and nature of post-translational modifications in disease thus may
enable the discovery of novel biomarkers, which can complement traditional protein
biomarkers. In paper V, we set out to target two of these modifications, namely
glycosylation and carbonylation, using antibody microarray analysis.

Glycosylation is the addition of carbohydrate groups to specific amino acids of
the protein polypeptide chain. The majority of human proteins are believed to be
glycosylated in some way, making glycosylation the most common form of post-
translational modification (Apweiler, Hermjakob, & Sharon, 1999). There are
numerous examples of altered glycosylation patterns being used as indicators of
disease (Chandler & Goldman, 2013), including increased levels of the CA19-9 (sialyl
Lewis a) structure in pancreatic cancer, as described in previous chapters.
Carbonylation is a less prevalent form of post-translational modification, in which the
protein side chains are oxidized. Protein carbonylation may occur as a natural cellular
process, or as a consequence of cellular stress caused by disease (Dalle-Donne et al.,
2003), and has been associated with a range of conditions, predominantly Alzheimer’s
disease (Sultana & Butterfield, 2013), buc also preeclampsia (Forest et al., 2012;
Zusterzeel, Rutten, Roelofs, Peters, & Steegers, 2001).

Protein glycan and carbonyl groups are often targeted using hydrazide reagents.
In the conventional microarray set-up, we label proteins with NHS-biotin targeting
primary amines, i.e. lysins and arginines, as was described in Chapter 3. In paper V,
a biotin-hydrazide reagent, which reacts with aldehydes and ketones (carbonyls), was
added to the labeling procedure. The carbonyls may be preexisting as a result of
disease or other oxidative effects on the clinical samples, or may be created by gentle
oxidation of glycans. We labeled each clinical sample in three parallel batches; one
using NHS-biotin (core protein biotinylation), and two using biotin-hydrazide, both
with and without pre-oxidation of proteins (targeting glycan and carbonyl groups,
respectively) (Fig. 6). Following sample labeling, the three preparations were applied
on identical antibody microarrays, and the protein, glycan, and carbonyl signaling

was assessed for each patient sample. First, we performed an evaluation and
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optimization of the biotin-hydrazide labeling procedure, and second, proof-of-
concept was demonstrated for plasma profiling of preeclampsia.

Preeclampsia is a pregnancy disorder that affects 3-8% of pregnancies worldwide,
and is the most common cause of fetal and maternal pregnancy related death
(Anderson, Olsson, Kristensen, Akerstrom, & Hansson, 2012). Preeclampsia is
characterized by hypertension and proteinuria, but biomarkers for early detection and
prediction are lacking. By deploying the novel labeling procedure, we analyzed
protein, glycan and carbonyl profiles of plasma samples from preeclamptic patients,
including late onset, early onset, and early onset with intra-uterine growth restriction
preeclampsia, as well as normotensive pregnant women.

The study showed that three very distinct protein profiles were generated from
the different labeling strategies. We used the glycan-to-protein and carbonyl-to-
protein ratios to stratify the samples, and could conclude that tentative markers based
on both glycan and carbonyl levels could be delineated for preeclampsia and its
subtypes. The results implied that particularly the carbonyl level is altered in
preeclampsia, and the carbonyl-to-protein ratios may potentially also be used to

identify novel subtypes of disease.

Unlabeled sample Protein labeleiing Carbonyl labeleling Glycan labeling

@Core protein %‘(ﬁ; Glycosylation ~ §i Carbonylation 3% Labeling reagent
A

Figure 6. Schematic overview of the sample labeling approaches applied in paper V. A) Unlabeled
glycosylated and carbonylated protein. B) Protein labeled with NHS-biotin, targeting primary
amines in the core protein amino acid structure. C) Protein labeled with biotin-hydrazide,
targeting carbonyl groups. D) Pre-oxidized protein labeled with biotin-hydrazide, targeting
oxidized glycan groups (and preexisting carbonyl groups)
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5.3 Current developments

Besides the technical advances that I have been involved in, including design of the
array-in-well set-up (paper IV), and glycan and carbonyl array profiling (paper V),
there are several more on-going projects for improving and expanding the antibody
microarray technology, of which only a couple will be mentioned below.

Since the start of the antibody microarray era, there has been a constant aim for
increasing the protein coverage. The level of multiplexing has gone from single-digit
to the current set-ups of hundreds of antibodies, and is now moving forwards towards
the measurement of thousands of proteins, thus slowly approaching a complete
proteome coverage. [n our group, this work has been performed on multiple levels.
For example, increasing array density by going from micro to nano scale have been
demonstrated by the first generation of nanoarrays (Wingren & Borrebaeck, 2007),
which have been produced using dip-pen nanolithography technology (Petersson et
al, submitted manuscript). In addition, the antibody repertoire is continually being
expanded, for example by generation of the context-independent motif-specific (CIMS)
antibodies used within the global proteome survey (GPS) briefly mentioned in
Chapter 2, but also by the recent design and development of novel recombinant
antibody libraries (Sdll and Persson, unpublished data), which already have
contributed to a significant increase of antibodies used in array applications. State-of-
the-art robotics and liquid handling systems have also greatly increased the rate of
selection and evaluation of novel binders from phage display libraries, as well as the
subsequent production and purification of antibodies. Recent work has also involved
the introduction of a non-natural amino acid to the antibodies for improved coupling
design (Petersson et al, manuscript in preparation). These antibodies are currently
used in a promising start-up project of analyzing arrays in solution coupled to a true
quantitative read-out method, which might enable an even higher sample throughput
combined with a highly robust detection system (Wingren et al, on-going studies).

In all, the above mentioned efforts for increased throughput and protein
coverage have the potential for making antibody microarrays the obvious method of
choice for proteomics discovery studies. In addition, the parallel clinical studies for
refining and validating already identified protein signatures, together with the efforts
of developing a highly user-friendly assay (e.g. the array-in-well set-up), show great
potential for bringing the antibody microarray technology to clinical utility.
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6. Concluding remarks

The field of proteomics has undergone tremendous technical advances during the last
decade, resulting in improved protein detection in complex proteomes such as serum.
Despite these technical efforts, few biomarkers are brought to the clinic, and most
tentative protein markers never make it beyond the discovery phase. The reasons for
this disappointing outcome are manifold. Proteomics technologies have suffered from
poor reproducibility and sensitivity, causing difficulties in both the identification and
verification of candidate markers. Moreover, the regulatory requirements on novel
biomarkers have sharpened, resulting in lengthy and expensive processes of validating
biomarkers for clinical utility.

In this aspect, recombinant antibody microarrays hold great potential for
breaking new grounds within biomarker discovery. It has long been recognized that
the use of affinity reagents offer superior sensitivity for capturing low-abundant serum
proteins. The high sensitivity and reproducibility of immunoassays, combined with
the increasing rate and decreasing cost with which new binders are generated, will
significantly expand the protein coverage. The work in this thesis, represented by five
original papers, revolves around this recombinant antibody microarray technology,
its technical advances and clinical applications within pancreatic disease.

The urgent need for actionable results within pancreatic research has recently
been acknowledged, with the Recalcitrant Cancer Research Act, (formerly known as
the Pancreatic Cancer Research & Education Act) being signed into law in the US in
January 2013, calling on the American National Cancer Institute (NCI) to develop
frameworks for improving the survival of this deadly disease. To this end, earlier
detection will be essential, and there is thus an immense clinical need for biomarkers
for pancreatic cancer diagnosis. In paper I and II, we identified serum protein
signatures for classification of pancreatic cancer among both healthy controls and
pancreatitis (pancreatic inflammation). The pre-validation of the signatures in
separate sample test sets showed that pancreatic cancer could be readily distinguished
from healthy controls, with AUC values in the 0.95 to 0.98 range. The prediction of
pancreatic cancer versus benign controls (mainly pancreatitis) was more challenging,
resulting in AUC values up to 0.88. Even though the second study (paper II) was
based on a significantly larger dataset, including both more samples and antibodies,
and performed after an extensive technological assay update, the signatures identified
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largely overlapped in the two studies. Next, these candidate biomarker signatures will
be further refined and validated for early detection of pancreatic cancer in high-risk
groups. In paper III, we performed proteomic profiling of the different forms of
pancreatitis, to the best of my knowledge the first proteomic study of its kind. Here,
extensive analysis for comparison of chronic, acute and autoimmune pancreatitis
generated distinct protein signatures for the three individual manifestations. Although
further validation is needed, these profiles may provide a deeper insight in the
proteomic patterns behind these conditions, and may form the basis of biomarker
signatures for the stratification and prediction of pancreatitis.

The two last studies of this thesis were of a more technical nature, aiming for
developing and expanding the udility of the recombinant antibody microarray
platform. In paper 1V, we evaluated different surfaces for antibody microarray solid
support, and also assessed the impact of the antibody source plates on the microarray
production. We concluded that the hydrophilic black polymer surface that was
already in use still provided superior assay functionality compared to novel slides that
were assessed. Moreover, the first recombinant array-in-well design was presented, by
which we have taken the first steps towards developing a more user-friendly,
microarray-based biomarker immunoassay for clinical use. In paper V, we introduced
a novel labeling procedure targeting core proteins, glycan and carbonyl groups. By
profiling differential levels of both proteins and the post-translational modifications
of glycosylation and carbonylation in disease, we hypothesized that novel and
complementary biomarkers could be identified. The study included both the design
and optimization of the assay protocol, and a first pilot application on preeclampsia,
a common pregnancy disorder. The results demonstrated that different forms of
preeclampsia e.g. early and late onset disease, could be distinguished, and indicated
that particularly the level of oxidation (carbonylation) was altered in this disease.

In summary, this thesis demonstrates some of the advantages of using
recombinant antibody microarrays for biomarker discovery, and their potential for
clinical implementation of multiplexed biomarker assays. The technology has
advanced immensely during the last decade, and also over the time in which the work
in this thesis was conducted. My contribution to this progress has involved both
optimizations and expansion of the microarray platform, and applications of the
technology for biomarker discovery in pancreatic cancer and pancreatitis. Although
further validation is needed, this thesis has added key pieces to the puzzle of
proteomics in pancreatic diseases, and paved the way for future clinical utility of
biomarker signatures, that in the end may provide benefit for many thousands of
patients.
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Populirvetenskaplig sammanfattning

Antikroppar ir proteiner som ingdr i kroppens immunforsvar, dir de fungerar som
bindare for att neutralisera patogena mikroorganismer eller dmnen som infekterat
kroppen. Vid en infektion bérjar immunceller producera antikroppar genom att pd
ett smart sitt sitta ihop olika gener. Varje enskild immuncell anvinder en viss
kombination av gener och producerar dirmed antikroppar som har en sirskild
specificiter. Antikroppsgenerna kan kombineras pa ett nistan odndligt antal olika sitt,
vilket innebdr att kroppens immunceller kan generera bindare mot i princip vilken
molekyl som helst. Antikropparnas formaga att binda starkt och specifike till olika
molekyler ir unik, och kan med férdel utnytgas i olika tekniska applikationer. Ett
exempel pd en siddan teknik dr antikroppschip, antibody microarrays, och allt arbete i
den hir avhandlingen kretsar kring den tekniken. Min forskning har syftat bade tll
att anvinda antikroppschip inom sjukdomsdiagnostik, med fokus pd sjukdomar i
bukspottskérteln (artikel I-I1I), men dven att pa olika sitt vidareutveckla tekniken
(artikel IV och V).

De antikroppschip som under det senaste decenniet har utvecklats av var
forskningsgrupp, tillverkas genom att syntetiska antikroppar sitts ned av en robot i
mycket smé volymer, 3-10? 1, som smé prickar med en diameter av ca 0.1 mm, i ett
forutbestimt matrismonster, en s kallad array, pa en chipyta. Varje array innehaller
hundratals olika antikroppar, och varje chip kan innehalla flera likadana sidana
arrayer. Antikropparna har pa férhand tagits fram fran si kallade antikroppsbibliotek,
som har skapats genom att pa syntetisk vig hirma immuncellernas férmaga att
kombinera olika gener. Antikroppsbiblioteken innehaller flera miljarder unika
antikroppar som il stor del ser likadana ut, de ir baserade pd samma stomme, men
de skiljer sig 4t i de aminosyror som anvinds for att binda andra molekyler. Ur
antikroppsbiblioteket kan man plocka fram antikroppar som binder specifike till de
molekyler man vill undersoka. Antikropparna produceras direfter i bakterier, och
renas upp, innan de sitts pa chip.

Antikroppschipen anvinds f6r att analysera kliniska prover, vilka i mitt fall har
varit uteslutande blodprover, dven om tekniken dven fungerar fér andra provformat,
sdsom urin, celler eller vivnad. Varje patientprov analyseras pa en enskild array, vars
antikroppar fingar de proteiner i provet som de ir specifika for. Proteinerna i
patientproverna har p férhand mirkts in med en fluorescerande molekyl, ett system
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som gdr att man kan mita den relativa mingden protein som bundit till varje
antikroppsprick genom att lisa in chipet i en laserscanner. P4 sa sitt kan man for varje
patient skapa en unik proteinprofil. Undersoker man hela grupper av patienter med
en viss sjukdom, och jaimfor deras profiler mot exempelvis friska individer, kan man
identifiera proteinsignaturer, kombinationer av proteiner som har férindrade
blodnivier i den sjuka gruppen jimfére med kontrollgruppen. Proteinsignaturerna
kan d4 fungera som markdrer, likt fingeravtryck, f6r den specifika sjukdomen. Nir
sddana biomarkorer har identifierats méste de forst valideras i andra, oberoende prover,
innan de kan anvindas kliniske fér att exempelvis detektera, diagnosticera eller
prognosticera sjukdomen.

En sjukdom dir det finns ett stort behov av biomarkérer ir cancer i
bukspottskdrteln, pankreas. Pankreascancer dr en mycket aggressiv form av cancer,
och trots att den inte 4r si vanlig (den drabbar ca 900 svenskar per ar), dr det den
sjdtte vanligaste cancerrelaterade dédsorsaken, och endast ca 6% av patienterna
overlever 5 ar efter diagnos. Anledningen dill att s minga dér av pankreascancer 4r
att sjukdomen oftast uppticks i ett alltfér sent skede, nir tuméren har vuxit sig sa
stor, och ofta dven bildat metastaser, att den inte gir att operera bort. Den sena
detektionen beror dels pd att symptomen 4r vaga och litt kan forvixlas med andra
sjukdomar, dels p4 att det saknas biomarkérer £6r tidig diagnos av pankreascancer.

Pantkreatit, eller inflammation i bukspottskorteln, 4r just en sidan sjukdom som
pankreascancer ldtt kan forvixlas med. Dirfor dr det viktigt att biomarkérer for
pankreascancer inte bara kan sirskilja cancerpatienter fran friska individer, utan ven
frin patienter med pankreatit. 1 artikel I och II har vi identifierat sidana
proteinsignaturer, vilka potentiellt kan fungera som specifika biomarkorer for
pankreascancer. Aven for pankreatit, som kan vara bade av det akuta, kroniska, eller
autoimmuna slaget, saknas det kinsliga och specifika biomarkérer. I artikel III
anvinde vi vara antikroppschip for att ta fram proteinprofiler for de olika formerna
av pankreatit genom att jimfora olika provgrupper mot varandra, men ocksd mot
friska individer. De hir signaturerna kan dels utgdra potentiella biomarkérer for
diagnos av pankreatit, men kan ocksi ge insike i de molekylira processer som ir
involverade i de olika typerna av pankreatit.

Parallellt med att jag och andra har utfort kliniska studier med hjilp av vara
antikroppschip, har tekniken fortsatt att utvecklas. Jag har varit involverad i flera
sidana utvecklingsprojekt, varav tvd har resulterat i publikationer som presenteras i
den hir avhandlingen. I artikel IV analyserade vi bland annat chip producerade pé
olika ytor for atc utvardera vilken yta som limpade sig bist f6r vara antikroppar. Det
visade sig att en polymeryta, till vilken antikropparna binder genom enkel adsorption,
gav de bista resultaten, i form av hdg reproducerbarber (1ag mitvariation), kinslighet
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(lag detektionsgrins), och dynamisk range (stort mitomrade). Vi visade dven att vi
kunde tillverka antikroppsarrayer i botten pa brunnar i en 96-hélsplatta, ndgot som
kan underlitta teknikens anvindarvinlighet i en eventuell framtida klinisk
implementering.

I artikel V undersokte vi méjligheten att expandera arraytekniken for att utéver
proteiner dven analysera glykosylerings- och karbonyleringsminster. Glykosylering och
karbonylering dr exempel pa post-translationell modifiering, PTM, av proteiner. PTM
ir en naturlig process som innebdr att proteiner modifieras pd olika sitt efter det att
deras grundstruktur har skapats, det vill siga efter det att aminosyror har satts ihop
till proteiner enligt den genbaserade koden som finns i vart DNA. Glykosylering
innebir att kolhydratstrukiurer kopplas pa proteinet, och karbonylering ir en form av
oxidering av proteinerna. PTM idr viktig exempelvis for proteinstabilitet eller
signalering, men det har dven visat sig att modifieringarna kan paverkas i
sjukdomstillstind. P4 sd sitt kan férindrade nivaer eller monster av PTM fungera som
markérer for sjukdomar, och kan komplettera traditionella biomarkérer baserade pa
forandringar av proteinnivier. Genom att introducera en ny typ av reagens till var
analys visade vi att vi kunde mita bade nivder av glykosylering och karbonylering for
olika proteiner pd vira antikroppschip. Nir vi hade visat att tekniken fungerade gjorde
vi en forsta studie pd precklampsi, eller havandeskapsforgifining, och kunde di
identifiera bide glykosylerings- och karbonyleringssignaturer som kunde sirskilja
patienter med preeklampsi frin friska gravida kvinnor.

Sammanfattningsvis handlar den hir avhandlingen om tillimpning och
utveckling av en antikroppsbaserad microarrayteknik. Dels har min forskning syftat
tll att optimera och vidareutveckla tekniken, men frimst tll atc applicera
analysmetoden {or act leta biomarkdrer, med sirskilt fokus pd pankreascancer och
pankreatit. Férhoppningsvis kan mina resultat och fortsatta studier i forlingningen
leda dill att nya biomarkérer for bittre och tidigare diagnos kan introduceras till

sjukvarden.
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