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In this paper, we present application of graph constraints combined with finite domain constraints
for embedded system optimization problems. In particular, we present methods for identification
and selection of computational patterns as well as application scheduling with these patterns
that has direct application in ASIP processor design. In this work we use connected component,
(sub)graph isomorphism and clique constraints. Our experimental results show that these methods
work for relatively large examples and provide much better results than previous heuristic based
approaches.

Categories and Subject Descriptors: D3.3 [Programming Languages]: Language Constructs
and Features—constraints

Additional Key Words and Phrases: constraint programming, reconfigurable architectures, re-
source assignment, scheduling, system-level synthesis

1. INTRODUCTION

Embedded systems are designed carefully to optimize different design parameters
such as cost, performance and power consumption. Tools used for these kind of
optimisations use different models. Most popular models are graph based. Anno-
tated graphs are used to represent basic features of embedded systems and then
design tools work on these models to carry out different kind of optimizations.
They use different properties of graphs and solve different graph problems, such
as (sub)graph isomorphism, simple path, clique and connected components. Most
of these problems are NP-complete or NP-hard and heuristic ad-hoc solutions are
usually used.

In this paper, we use graph constraints for modeling and solving a problem of
extending standard processors with specialized instructions to improve their per-
formance for selected applications. This problem can be defined as finding com-
putational patterns, implemented as special instructions, that provide performance
improvement. These patterns can be in turn defined as subgraphs of an application
graph. We are interested in subgraphs that provide more efficient implementation
than decomposition to a sequence of instructions and subgraphs that are present
in many different parts of an application graph. Moreover, other technological con-
straints may apply. We propose to use graph constraints combined with other finite
domain constraints to define and solve this problem. For this purpose we use JaCoP
constraint solver [Kuchcinski 2003] extended with graph constraint library.

Design of application specific processors (ASIPs) or processor extensions involves
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identification of new instructions and their implementation as computational cells.
This process can be defined using graphs and graph operations. An application is
represented as a graph and new instructions as subgraphs of this graph. In our
case, we use Hierarchical Conditional Dependency Graphs (HCDGs) [Kountouris
and Wolinski 2002] but other representations are also possible. Using this represen-
tation, subgraph isomorphism and connected components constraints together with
constraint programming are used to identify and select patterns as well as schedule
applications [Wolinski and Kuchcinski 2008]. The result is a set of instructions de-
fined as subgraphs, often called computational patterns. Direct implementation of
all these patterns is area inefficient and therefore they need to be merged to form a
reconfigurable cell. In this paper, we define and solve this problem using constraint
programming. We use clique constraint combined with other constraint that define
architectural requirements for merged patterns.

Related work in this area uses usually heuristic approaches for identification of
computational patterns. Iterative heuristics (e.g., [Galuzzi et al. 2007]) progres-
sively generate a set of patterns that fulfill certain constraints, such as number of
inputs/outputs or connectivity. Other approaches [Dinh et al. 2008] combine simple
patterns with more complex ones. Recent research [Bonzini and Pozzi 2008a] uses
a method that performs an exhaustive exploration of patterns with input/output
constraints.

Incremental algorithms are also used for pattern selection. Guo et al. [2003]
proposes an iterative algorithm based on a conflict graph. Bonzini and Pozzi [2008b]
proposes a toolchain that first determines the best pattern to cover a graph and then
computes a schedule. Other approaches deal with the pattern selection problem
globally. For example, Clark et al. [2005] defines a method based on dynamic
programming to select the best occurrences under area constraints.

2. GRAPH CONSTRAINTS

Graph constraints work on graphs that can define different types of graphs used in
embedded system design. In our work. we have defined an annotated graphs for
this purpose. Graph G = (N, E) contains nodes N and edges E = (ni, nj), where
ni, nj ∈ V . Each node has an assigned label that basically defines a type of a node.
It can represent an operation of a node (e.g., +, – or *). A node has also assigned
connectors that are used to connect this node to other nodes or define its connection
structure. Each connector can be connected to at most one other connector. The
connectors are also labeled defining types of connections. Therefore, we can define
directed graphs by specifying in and out connectors or non-directed graphs where
all connectors have the same type. This also makes it possible to distinguish non-
symmetrical operations, such as “–” or “/”. They will have two different labels for
their input connectors to distinguish them. Similarly, we can define a node that
has two data inputs and one control input. Fan-out connections must be defined as
special fan-out nodes. This graph definition makes it possible to represent HCDG
graphs using our graph representation and then use graph constraints to compute
different properties of these graphs.

The constraints defined for our labeled graphs define for each node a finite domain
variable. These variables represent valid solutions for the constraints. For exam-
ACM Transactions on Computational Logic, Vol. V, No. N, May 2010.
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DIPS ← ∅
for each ns ∈ N

TPS ← ∅
CPS ← FindAllPatterns(G, ns)
for each p ∈ CPS

if ∀pattern∈T P S p 6≡ pattern
TPS ← TPS ∪ {p},
NMPp ← | FindAllMatches(G, p) |

NMPns ← | FindAllMatches(G, ns) |
for each p ∈ TPS

if coef ·NMPns ≤ NMPp

DIPS ← DIPS ∪ {p}
return DIPS

Fig. 1. Pattern identification algorithm.
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Fig. 2. Pattern example.

ple, a connected component constraint assigns a 0/1 variable to each node. This
variable is 1 if a node belongs to a connected component and 0 otherwise. Having
finite domain variables assigned to graph nodes makes it possible to combine these
variables with other finite domain variables of the model. This approach is different
than [Dooms et al. 2005] where a separate graph domain is introduced but fits well
our purpose since we mix finite domain constraints and graph constraints.

3. CONNECTED COMPONENTS

Connected components constraint is a basic mechanism used for identification of
computational patterns. Pattern identification is defined, in our approach, for an
acyclic application graph G = (N, E) where N is a set of nodes and E is a set
of edges. A pattern is a subgraph P = (Np, Ep) of graph G where Np ⊆ N and
Ep ⊆ E. In our approach, pattern P is a connected sub-component of graph G. It
is also subgraph isomorphic to graph G.

The pattern identification algorithm is depicted in Figure 1. It finds first all
patterns in the graph around seed node ns ∈ N . This is achieved by finding con-
nected components in a non-directed graph satisfying additional constraints (func-
tion FindAllPatterns(G, n)). We examine all nodes as seed nodes but more selec-
tive approaches can also be used. The found patterns can be identical (subgraph
isomorphic) with already identified patterns and therefore our algorithm checks this
using graph isomorphism constraint discussed in the next section. Finally, we use
a heuristic to accept only patterns whose numbers of matches in the application
graph is high enough. The number of matches in the application graph is also
obtained by finding all subgraphs isomorphic to patterns in the application graph.

Additional constraints that are used together with the connected component
constraint can be of different kind. First, we always define constraints that limit
number of inputs and outputs of the patterns. This is defined by an architecture
and need to be followed by identified patterns. We also have possibility to add
constraints that will limit the length of the critical path of a newly created pattern
and thus influence the timing of the extensions.

Figure 2 depicts an example computational pattern identified around seed node
Ns with constraints that number of inputs cannot be greater than three and number
of outputs cannot exceed two.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2010.
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4. (SUB)GRAPH ISOMORPHISM

Subgraph and graph isomorphism are defined in our CP framework as a GraphMatch
constraint. This constraint takes as arguments two graphs, target graph Gt and
pattern graph Gp, and establishes (sub)graph isomorphism using a matching func-
tion f : Nt → Np. Moreover, we assign finite domain variable vari to each node
ni ∈ Nt of the target graph. The domain of this variable is denoted as D(ni) and
defines matching f , i.e., if variable vari contains in its domain value p then pattern
graph node numbered p possibly matches target node i. Since we use finite domain
variable it has initially all nodes in its domain. The domain of this variable is then
pruned by our consistency algorithm and will contain only compatible nodes.

Function f can be partial and then f : Vt → Vp ∪{⊥}. This feature is used when
we do not want to establish full graph isomorphism. The isomorphism in this case is
restricted to parts of the target graph and a pattern graph and establishes subgraph
isomorphism. This is achieved by assigning value ⊥ for variables representing not
mapped parts in the target graph. This subgraph isomorphism is different than the
classical definition from graph theory where subgraph isomorphism means that a
found pattern can be connected arbitrarily to the rest of the target graph. For the
purpose of this paper this is more suitable definition but our constraints supports
also traditional subgraph isomorphism and monomorphism, if needed.

Our GraphMatch constraint is used during computational pattern identification,
as discussed in previous section, in several situations. First, we find whether a
newly identified pattern is isomorphic to already identified patterns. If this is the
case we do not store this pattern in our pattern set. Second, we find how many
isomorphic matches of a given pattern exist in a target graph and select patterns
that occur often in a target graph. This helps to find representative patterns and
reduces the number of “useful” patterns.

The subgraph isomorphism constraint can also be used for binding and schedul-
ing. In our early work [Fuentes Martínez and Kuchcinski 2007], we have used this
constraint together with ordinary scheduling constraints (precedence and resource
constraints) to select computational patterns, do binding and scheduling in a single
optimization step. Our experiments carried out on classical high-level synthesis
benchmarks showed good results. We have obtained (proved) optimal results for
all benchmarks for graphs of size up to 50 nodes. In this project, however, we use
slightly different formulation to handle larger and more complicated examples.

For pattern selection and application scheduling we use two step process. First,
using subgraph isomorphism constraint and search for all solutions, we determine all
possible matches of a given pattern in an application graph. A match is a subgraph
of an application graph that is isomorphic to a given pattern. After execution of
this step, each node n ∈ Nt has an associated set matchesn containing all matches
that can cover it. Obviously, in the final covering of graph G each node n ∈ N can
only be covered by one match since we do not allow overlapping matches.

In the second step we carry out actual pattern selection and scheduling. Our
methods support both sequential and parallel execution of matches by using slightly
different models. In sequential scheduling case, we model selection of a given match
in a final schedule using finite domain variable msel associated to each match m ∈
M , where M is a set of all matches. The value of variable msel = 1 if match m

ACM Transactions on Computational Logic, Vol. V, No. N, May 2010.
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Table I. Results obtained for sequential scheduling and parallel scheduling.

Sequential Parallel scheduling Parallel scheduling
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JPEG IDCT 200 254 6 195 1.3 18.9 28 22 13 78 8 11.55 14.2 28 34 5 7.47 10.2 64%
BF 330 340 9 163 2.09 0.1 7 81 3 152 4 4.2 13.2 7 98 4 3.47 0,01 82%
MESA invert matrix 278 334 7 148 2.26 3.8 9 25 38 134 8 13.36 0.6 9 78 4 4.28 0.5 32%
with mem. access ≤ 10 9 29 10 134 8 11.52 1.99

MCRYPT cast128 424 464 29 240 1.83 50.5 18 202 8 155 6 2.3 6.6 18 219 3 2.12 15.9 92%
GSMenc 387 433 8 117 3.7 0.1 9 16 15 132 8 27.06 6.0 9 68 2 6.37 7.2 23%
POLARSSL aes 1350 1658 12 316 2.28 6.2 15 280 27 739 8 5.92 20.2 10 482 5 3.44 43.6 58%
POLARSSL des3 398 530 15 295 1.76 5.2 26 95 6 156 5 5.58 23.9 25 109 4 4.86 24.8 87%
Maximal Speedup 3.7 27.06 7.47
Average Speedup 2.17 9.98 4.57

is selected or 0 otherwise. The schedule length for this case can be easily defined
as a sum of all execution times using equation (1). Minimization of variable Tseq

provides the fastest schedule with selected computational patterns. The selected
patterns define also most efficient patterns to obtain this schedule. In parallel
scheduling case, we minimize a different variable that defines schedule length for
this case. It is defined in equation (2), where mistart and midelay

define match start
time and its delay.

Tseq =
∑

m∈M

msel ·mdelay (1)

Tpar = max
1≤i≤N

(mistart + midelay
) (2)

Our methods make it possible to model two types of architectures for processor
extensions. One with local memories (model A) and one without them (model
B). When an extension does not have local memories (model B) all data transfers
are carried out to and from a processor. Obviously, model A can provide better
performance for the cost of additional registers.

We have carried out experiments with multimedia applications. Table I presents
results obtained for selected applications from MediaBench, MiBench and Crypto-
graphic Library benchmark sets. These applications are written in C and compiled
using our design flow for the ALTERA NIOS target processor.

The experiments were carried out for two architecture models. One with local
memories (model A) and one without local memories (model B). The number of
parallel memory accesses was not constrained to obtain the maximal speed-up. As
table I depicts, a significant speedup was obtained where local memories were used.
We also present, as an example, the results obtained for the “MESA invert matrix”
application when the number of parallel accesses was limited to 10.

5. CLIQUE

The selected computational patterns, represented as subgraphs of an application
graph, need to be implemented as processor extensions. Implementation of all

ACM Transactions on Computational Logic, Vol. V, No. N, May 2010.
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patterns will be expensive and inefficient and therefore we have developed a method
for merging the patterns into a single reconfigurable pattern.

The problem of merging computational patterns can be modeled using graphs.
Finding a suitable merge can be defined as finding the maximum common sub-graph
isomorphism (MCS). This is an optimization problem that is known to be NP-hard.
Formally, the problem, defined for two graphs (G1 and G2), is to find the largest
induced sub-graph of G1 isomorphic to a sub-graph of G2. One possible solution
for this problem is to build a modular product graph [Brandes and Erlebach 2005],
in which the largest clique represents a solution for the MCS problem. The other
method is to use a kind of backtracking algorithm that iteratively adds vertices
which does not violate the common sub-graph condition. We use the first method
and build first a compatibility graph between two patterns and then find a clique
that maximizes a given cost function.

Our method iteratively merges two computational patterns represented by graphs.
In each step, a pattern selected from a pattern set and a already partially merged
pattern are used to produce a new merged pattern. Compatibility graphs (CG)
are created for this purpose for pairs of computational patterns. The nodes of the
compatibility graph are created for shared nodes, shared connections and shared
paths with bypassed nodes. Shared nodes, for example, are nodes that have the
same type and the same number of inputs/outputs. Similar considerations are used
to define shared connections and paths. An edge in CG defines mapping compat-
ibility between two nodes. Mapping compatibly respects a number of conditions
between these nodes that are specified for all types of nodes. For instance, an edge
exists between between two shared nodes of CG if both nodes are not constructed
from the same nodes of pattern graphs. This removes possibility to map the same
nodes of pattern graphs more than once. Similar rules apply to shared connections
and shared path nodes. Finally, the clique partitioning with a given cost function
optimizing specific design features under architectural constraints is applied to a
compatibility graph.

A unique feature of our approach is that we can extend our model that contains
compatibility graph with other constraints. In this way we can search for solutions
that not only maximize sharing but also respect architectural constraints. This is
not possible in other approaches. Consider, for example two computational patterns
depicted in Figure 3. Traditional methods for pattern merging, such as [Moreano
et al. 2005] produce a solution depicted in Figure 4.a. The pattern from Figure 4.b,
was obtained with our method under conditions that the length of a critical path
is three, the number of multiplexers on the critical path is zero and the bypassed
nodes are allowed. Node “+1” in Figure 4.b is a bypassed node, which only passes
data without any processing for the second pattern from Figure 3. The quality
of the design has been significantly improved by applying additional architectural
constraints. Both the area and the critical path are optimized. This simple example
shows that the standard approach largely used in the past is not always efficient.

Table II shows different results obtained for the set of patterns identified by our
system for DSP applications from the MediaBench test suite [Lee et al. 1997]. The
area reduction is specified in relation to the area of the set of patterns, and it is
expressed in the number of combinational atoms (denoted as CA in Table II) for
ACM Transactions on Computational Logic, Vol. V, No. N, May 2010.
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Fig. 4. Two cases of a merged pattern.

32 bits operators. We also specify the number of edges in the merged patterns.
For each application from the MediaBench test suite, five experiments with the
following options have been carried out. N- node sharing, E- edge sharing, P(n)-
path sharing; n- maximum number of bypassed nodes, CP- critical path cannot
increase and NM(n)- maximum of number of n multiplexers allowed.

Exp.1 N=Yes
Exp.2 N=Yes E=Yes P=2
Exp.3 N=Yes E=Yes NM=0
Exp.4 N=Yes E=Yes P=2 CP=Yes NM=0
Exp.5 N=Yes E=Yes P=2 CP=Yes NM=2

All weighted cliques found during pattern merging were proved optimal. The
runtime for all experiments, including the time for the optimality proof, for most
restrictive Exp.4 experiment was 0.3s and the average runtime is only 0.1s.

6. CONCLUSIONS

In this paper, we have presented our approach how to use graph constraints in
embedded system design. We have first presented the graphs used in our work and
indicated that they can represent a general design representation know as Hierar-
chical Conditional Dependency Graphs. In particular, we have shown application of
connected component, (sub)graph isomorphism and clique constraint for the prob-
lem of identification and selection of computational patterns as well as application
scheduling with these patterns. This problem is important for design of application
specific processor where processor accelerators can be automatically determined

Table II. Pattern merging results for pattern sets identified by our system for MediaBench test
suite.

Application Nb. Area reduction in % Area in CA for Altera Stratix2 EP2560 Number of Edges in merged pattern
patterns Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Auto Regression Filter 3 47 49 1 48 48 2180 2084 4168 2048 2048 20 14 24 14 14
Cosine 9 81 86 9 10 84 1476 1412 3164 2473 1473 35 36 67 48 44
Elliptic Wave Filter 8 80 80 72 73 78 1442 1442 2067 2003 1600 43 37 54 45 44
EPIC Collapse 7 67 68 13 23 67 1127 1059 2882 2576 1092 38 37 56 48 40
FIR 8 81 82 72 80 80 1378 1250 1971 1410 1378 35 24 41 35 35
JPEG IDCT 7 75 76 56 66 75 1379 1347 2469 1948 1379 36 32 47 42 37
JPEG Smooth Downsample 9 64 64 51 53 66 448 448 608 576 436 36 31 44 39 31
JPEG Write BMP Header 7 73 73 12 12 71 1073 1073 5548 4045 1137 26 26 64 62 32
MESA Feedback Points 5 50 54 38 40 54 1843 1715 2308 2212 1715 33 26 34 28 26
MESA Horner Bezier 5 59 60 35 48 60 1683 1619 2677 2148 1619 19 15 21 17 15
MESA Interpolate Aux 4 23 23 22 23 23 1684 1684 1716 1700 1684 19 19 22 20 19
MESA Matrix Multiplication 3 76 77 55 75 75 2340 2318 4520 2436 2436 35 32 56 41 40
MESA Smooth Triangle 9 78 79 66 66 75 2370 2278 3835 3770 2808 37 30 40 36 33
MPEG IDCT 6 63 63 51 61 63 1810 1804 2390 1861 1804 54 54 66 60 54
MPEG Motion Vector 7 81 81 63 79 80 1218 1218 2340 1314 1282 22 21 33 26 24

Average 66.53 67.67 41.07 50.47 66.6

ACM Transactions on Computational Logic, Vol. V, No. N, May 2010.
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and designed.
Other graph constraints can also be used for other applications. For example,

simple path constraint has been used by us to minimize area and reconfigura-
tion time of the communication network in regular 2D reconfigurable architectures
[Wolinski et al. 2008]. The constraint helps us to select routing for different paths
for different communications.
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