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Abstract

This paper analyzes and solves an integral and its inde�nite Fourier trans-

form of importance in multiple scattering problems of randomly distributed

scatterers. The integrand contains a radiating spherical wave, and the two-

dimensional domain of integration excludes a circular region of varying size. A

solution of the integral in terms of radiating spherical waves is demonstrated.

The method employs the Erdélyi operators, which leads to a recursion rela-

tion. This recursion relation is solved in terms of a �nite sum of radiating

spherical waves. The solution of the inde�nite Fourier transform of the inte-

gral contains the inde�nite Fourier transforms of the Legendre polynomials,

which are solved by a closed formula.

1 Introduction

In recent years, the electromagnetic scattering problem by randomly distributed
objects has been successfully formulated and solved. Some important contributions
in the �eld are found in e.g., [3�8, 10, 11, 13, 16�19, 21�25]. These references refer
to various aspects of the topic, and more references can be found in these papers.
The topic is also treated in several textbooks, see e.g., [12, 14, 20], which can be
consulted for a comprehensive treatment of the various multiple scattering theories.

Of critical importance for the solution of a speci�c scattering problem with hole-
corrections (HC) is an integral of the form [9, 18, 20]

Il(z) =
k2

2π

∫∫
R2

H(r − a)h(1)l (kr)Pl(cos θ) dx dy, z ∈ R (1.1)

where H(x) denotes the Heaviside function, h
(1)
l (kr) the spherical Hankel function,

and Pl(x) the Legendre polynomial of order l, respectively. We have also adopted
the spherical coordinates, r =

√
x2 + y2 + z2 and θ (cos θ = z/r), and the wave

number k. The domain of integration is the plane z = constant, excluding the
sphere of radius a > 0 at the center, see Figure 1. For a given value of |z| ≤ a, the
radius of the excluded circle is

√
a2 − z2. For |z| ≥ a the integration is the entire

x-y plane. This integral, for a given a > 0, is a non-trivial function of z ∈ R. To
ensure convergence of the integral at in�nity, we assume the wave number k has an
arbitrarily small imaginary part. The explicit solution of this integral, as a function
of z and the index l = 0, 1, 2, . . ., is the aim of this paper, and the goal is to express
the solutions in a form that is attractive from a numerical computation point of
view.

The solution of the integral Il(z) is developed in Sections 2 and 3. The inde�nite
Fourier transform of Il(z) is also essential for a successful solution of the multiple
scattering problem with hole-corrections, and this analysis is found in Sections 4
and 5. The paper is concluded with a short summary in Section 6.



2

a

z = 0

z

z

Figure 1: The geometry of the integration domain � the plane z = constant
(dotted line), and the exclusion volume � the sphere of radius a located at the
origin (in gray).

2 The integral Il(z)

Rewrite the integral Il(z) in (1.1) in cylindrical coordinates and perform the inte-
gration in the azimuthal angle. We get from (1.1)

Il(z) = k2
∫ ∞
h(z)

h
(1)
l

(
k
√
ρ2 + z2

)
Pl

(
z/
√
ρ2 + z2

)
ρ dρ, z ∈ R (2.1)

where

h(z) =

{√
a2 − z2, −a ≤ z ≤ a

0, |z| > a

From the parity of the Legendre polynomials, Pl(−x) = (−1)lPl(x), we see that
also Il(−z) = (−1)lIl(z). Thus, it su�ces to evaluate the integral for z > 0. In
particular, Il(0) = 0, if l is an odd integer. From (2.1) we also easily compute the
integral for l = 0, viz.,

I0(z) =


e−ikz, z ≤ −a
ikah

(1)
0 (ka) = eika, −a ≤ z ≤ a

eikz, z ≥ a

2.1 Solution outside the interval [−a, a]
In the interval z > a, the integral is evaluated with the use of the transformation
of the outgoing scalar spherical wave in terms of planar waves [2, p. 180], i.e., for a
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general value of z 6= 0

h
(1)
l

(
k
√
ρ2 + z2

)
Pl

(
±|z|/

√
ρ2 + z2

)
=

i−l

2π

∫∫
R2

Pl (±kz/k) eikt·ρ+ikz |z| k

kz

dkx dky
k2

, z ≷ 0

where ρ = xx̂+ yŷ, kt = kxx̂+ kyŷ, kt = |kt|, and kz is de�ned by

kz =
(
k2 − k2t

)1/2
=

{√
k2 − k2t for kt < k

i
√
k2t − k2 for kt > k

For z > a, we get from (1.1)

Il(z) =
k2

2π

∫∫
R2

i−l

2π

∫∫
R2

Pl (kz/k) e
ikt·ρ+ikz |z| k

kz

dkx dky
k2

 dx dy

= i−l
∫∫
R2

Pl (kz/k) e
ikz |z|δ(kt)

k

kz
dkx dky = i−leikz

by orthogonality or completeness of the planar waves.1 This implies that the integral
for z > a is

Il(z) = i−leikz, z > a

and consequently, by parity, or analogous calculations

Il(z) = ile−ikz, z < −a

We observe that the integral outside the interval [−a, a] is not singular as a → 0.
In fact, the module is constant 1.

3 Solution of the integral Il(η), −a ≤ z ≤ a

We have already obtained a solution of the integral in the interval |z| > a, and we
now concentrate on �nding a solution of the integral in the interval −a ≤ z ≤ a.

The Erdélyi operators Ymn in Ref. 12 are instrumental in �nding a closed formula
for the integral Il(z). From [12, Th. 3.13], we have the following very useful result:

D
(
h
(1)
l (kr)Pl(cos θ)

)
=

l + 1

2l + 1
h
(1)
l+1(kr)Pl+1(cos θ)−

l

2l + 1
h
(1)
l−1(kr)Pl−1(cos θ)

where D = −k−1(∂/∂z). The D operator and the Erdélyi operators are related by

Y0
1 =

√
3
4π
D0

1 =
√

3
4π
D.

1To ensure convergence of the integral at in�nity, assume the wave number k has an arbitrary

small, positive imaginary part.
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Apply the di�erential operator D to the integral Il(z) in (2.1), and use the
relation above. We obtain, since h′(z)h(z) = −z, the following recursion relation:2

DIl(z) = −kzh(1)l (ka)Pl(z/a) +
l + 1

2l + 1
Il+1(z)−

l

2l + 1
Il−1(z), −a ≤ z ≤ a

with initial condition I0(z) = ikah
(1)
0 (ka).

In the dimensionless variables η = kz and ξ = ka > 0, this leads to the recursion
relation, l = 0, 1, 2, . . . (note the mild change in notation)

Il+1(η) =
2l + 1

l + 1
ξh

(1)
l (ξ)

η

ξ
Pl(η/ξ)−

2l + 1

l + 1

d

dη
Il(η) +

l

l + 1
Il−1(η), −ξ ≤ η ≤ ξ

The recursion relation is conveniently put in a more generic form by introducing the
variable x = η/ξ ∈ [−1, 1]. The dependent variable is now x, and ξ is a parameter.
Retaining the same notation for the integral, but with a change of the independent
variable, we get

Il+1(x) =
2l + 1

l + 1
ξh

(1)
l (ξ)xPl(x)−

2l + 1

ξ(l + 1)
I ′l(x) +

l

l + 1
Il−1(x), −1 ≤ x ≤ 1

The following proposition states the surprisingly simple and elegant solution of this
recursion relation.

Proposition 3.1. The recursion relation

Il+1(x) =
2l + 1

l + 1
ξh

(1)
l (ξ)xPl(x)−

2l + 1

ξ(l + 1)
I ′l(x)+

l

l + 1
Il−1(x), l = 0, 1, 2, . . . (3.1)

with initial condition
I0(z) = iξh

(1)
0 (ξ)

has the solution

Il(x) = −ξh(1)l+1(ξ)Pl(x)

+

[l/2]∑
k=0

(−1)k
(
ξh

(1)
l+1−2k(ξ) + ξh

(1)
l−1−2k(ξ)

)
Pl−2k(x), l = 0, 1, 2, . . .

(3.2)

2Outside the interval z ∈ [−a, a] the recursion relation reads

Il+1(z) =
2l + 1

l + 1
DIl(z) +

l

l + 1
Il−1(z), I0(z) = eikz z ≥ a

which is easily solved by induction over the integer l. The result is

Il(z) = i−leikz, z ≥ a

in agreement with the result above.
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Proof. We prove the proposition by induction over the integer l. The recursion
relation (3.2) is true for l = 0, due to the properties of the spherical Hankel func-
tions [15, 10.16.1]. We have from (3.2)

I0(x) = ξh
(1)
−1(ξ) = ξ

(
π

2ξ

)1/2

H
(1)
−1/2(ξ) = iξ

(
π

2ξ

)1/2

H
(1)
1/2(ξ) = iξh

(1)
0 (ξ)

Now assume the solution (3.2) holds for all integers less than or equal to l, and
we want to prove that it holds for l + 1. We have from (3.1) and the induction
assumption

Il+1(x) =
2l + 1

l + 1
ξh

(1)
l (ξ)xPl(x)−

2l + 1

ξ(l + 1)
I ′l(x) +

l

l + 1
Il−1(x)

= ξh
(1)
l (ξ)Pl+1(x) +

2l + 1

ξ(l + 1)
ξh

(1)
l+1(ξ)P

′
l (x)

− 2l + 1

ξ(l + 1)

[l/2]∑
k=0

(−1)k
(
ξh

(1)
l+1−2k(ξ) + ξh

(1)
l−1−2k(ξ)

)
P ′l−2k(x)

+
l

l + 1

[(l−1)/2]∑
k=0

(−1)k
(
ξh

(1)
l−2k(ξ) + ξh

(1)
l−2−2k(ξ)

)
Pl−1−2k(x)

where we used the following recursion relation for the Legendre polynomials:

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x)

We conclude that Il+1(x) is a polynomial in x of the order l + 1, and therefore can
be expanded in a series of Legendre polynomials. The form is

Il+1(x) =

[(l+1)/2]∑
n=0

anPl+1−2n(x)

where an depends on l and ξ. The coe�cients an are determined by orthogonality
of the Legendre polynomials.

an =
2l + 3− 4n

2

∫ 1

−1
Il+1(x)Pl+1−2n(x) dx

The �rst coe�cient is special.

a0 = ξh
(1)
l (ξ) = −ξh(1)l+2(ξ) +

(
ξh

(1)
l+2(ξ) + ξh

(1)
l (ξ)

)
Proceed in the same way with the remaining coe�cients, n = 1, 2, . . . , [(l + 1)/2].

an =
2l + 1

l + 1

2l + 3− 4n

2
h
(1)
l+1(ξ)Il,l+1−2n

− 2l + 1

l + 1

2l + 3− 4n

2

[l/2]∑
k=0

(−1)k
(
h
(1)
l+1−2k(ξ) + h

(1)
l−1−2k(ξ)

)
Il−2k,l+1−2n

+
l

l + 1

[(l−1)/2]∑
k=0

(−1)k
(
ξh

(1)
l−2k(ξ) + ξh

(1)
l−2−2k(ξ)

)
δk,n−1
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where we used the notion

Ik,n =

∫ 1

−1
P ′k(x)Pn(x) dx =

{
0, 0 ≤ k ≤ n

1− (−1)k+n, 0 ≤ n < k

Use this result, and the following recursion relation for the spherical Hankel func-
tions:

(2l + 1)h
(1)
l (ξ) = ξh

(1)
l+1(ξ) + ξh

(1)
l−1(ξ) (3.3)

We get

an =
2l + 1

l + 1
(2l + 3− 4n)

(
h
(1)
l+1(ξ)−

n−1∑
k=0

(−1)k
(
h
(1)
l+1−2k(ξ) + h

(1)
l−1−2k(ξ)

)
︸ ︷︷ ︸

=h
(1)
l+1(ξ)+(−1)n−1h

(1)
l+1−2n(ξ)

)

+
l

l + 1
(−1)n−1

(
ξh

(1)
l+2−2n(ξ) + ξh

(1)
l−2n(ξ)

)
=

2l + 1

l + 1
(−1)n(2l + 3− 4n)h

(1)
l+1−2n(ξ)−

l

l + 1
(−1)n

(
ξh

(1)
l+2−2n(ξ) + ξh

(1)
l−2n(ξ)

)
= (−1)n

(
ξh

(1)
l+2−2n(ξ) + ξh

(1)
l−2n(ξ)

)
Collecting the results gives

Il+1(x) =

[(l+1)/2]∑
n=0

anPl+1−2n(x)

= −ξh(1)l+2(ξ)Pl+1(x) +

[(l+1)/2]∑
n=0

(−1)n
(
ξh

(1)
l+2−2n(ξ) + ξh

(1)
l−2n(ξ)

)
Pl+1−2n(x)

which is the statement (3.2) for l + 1, and the proposition is proved.

Alternative expressions of the integral I(z) in the interval z ∈ [−a, a] can be
found. The following corollary shows some.

Corollary 3.1. The integral I(z) in Proposition 3.1 has the following alternative
expressions:

Il(x) = −ξh(1)l+1(ξ)Pl(x) +

[l/2]∑
k=0

(−1)k(2l − 4k + 1)h
(1)
l−2k(ξ)Pl−2k(x), l = 0, 1, 2, . . .

(3.4)
and

Il(x) = i1−lξh
(1)
0 (ξ)Pl−2[l/2](x)

+

[l/2]−1∑
k=0

(−1)kξh(1)l−2k−1(ξ) (Pl−2k(x)− Pl−2k−2(x)) , l = 0, 1, 2, . . . (3.5)
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and

Il(x) = i1−lξh
(1)
0 (ξ)Pl−2[l/2](x)

−
[l/2]−1∑
k=0

(−1)kξh(1)l−2k−1(ξ)
2l − 4k − 1

(l − 2k − 1)(l − 2k)
P ′l−2k−1(x), l = 0, 1, 2, . . . (3.6)

where the two last sums are zero for l = 0, 1.

Proof. The solution in (3.4) is equivalent to (3.2), which is easily seen since the

spherical Hankel functions h
(1)
l (ξ) satisfy the recursion relation (3.3). The represen-

tation in (3.5) is simply a rearrangement of the sum in (3.2). We obtain from (3.2)
(l = 0, 1, 2, . . .)

Il(x) =

[l/2]−1∑
k=0

(−1)kξh(1)l−1−2k(ξ) (Pl−2k(x)− Pl−2−2k(x))

+ (−1)[l/2]ξh(1)l−1−2[l/2](ξ)Pl−2[l/2](x)

=

[l/2]−1∑
k=0

(−1)kξh(1)l−1−2k(ξ) (Pl−2k(x)− Pl−2−2k(x))

+ i1−lξh
(1)
0 (ξ)Pl−2[l/2](x)

where we used [15, 10.16.1]

h
(1)
−1(ξ) = ih

(1)
0 (ξ)

Finally, the relation (3.6) from (3.5) with the use of the recursion relation

l(l + 1) (Pl+1(x)− Pl−1(x)) = −(2l + 1)(1− x2)P ′l (x)

In the original variables z and a, we have

Il(z) = i1−lkah
(1)
0 (ka)Pl−2[l/2](z/a)

+

[l/2]−1∑
n=0

(−1)nkah(1)l−2n−1(ka) (Pl−2n(z/a)− Pl−2n−2(z/a)) , l = 0, 1, 2, . . .

or

Il(z) = −kah(1)l+1(ka)Pl(z/a)

+

[l/2]∑
k=0

(−1)k(2l − 4k + 1)h
(1)
l−2k(ka)Pl−2k(z/a), l = 0, 1, 2, . . .

and we see that the integral Il(z) can be written as a �nite sum of spherical waves
(except the �rst term). The most singular term in powers of ka is of the order (ka)1−l

(order O(1) if l = 0), which is most easily seen from the representation in (3.5).
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4 Fourier transform of Il(z)

The inde�nite Fourier transform of the function Il(z) has also importance in the
analysis of [9]. More speci�cally, our goal in this section is to compute

Î±l (z) = k

∫ z

z0

Il(t)e
±ikt dt, z ≥ z0, l = 0, 1, 2, . . . (4.1)

where z0 is a �xed number such that z0 < −a.
The function Il(t) has explicit forms in the three intervals [z0,−a], (−a, a), and

[a,∞). The explicit forms are:

Il(t) = ile−ikt, t ≤ −a

and in the interval t ∈ (−a, a) as a �nite sum of spherical waves

Il(t) = i1−lkah
(1)
0 (ka)Pl−2[l/2](t/a)

+

[l/2]−1∑
n=0

(−1)nkah(1)l−2n−1(ka) (Pl−2n(t/a)− Pl−2n−2(t/a))

In the interval t ≥ a
Il(t) = i−leikt

To compute the inde�nite Fourier transform we need to calculate the function

h±l (z) = k

∫ z

−a
Pl(t/a)e

±ikt dt = ka

∫ z/a

−1
Pl(t)e

±ikat dt, |z| ≤ a (4.2)

For z = a the integral is a spherical Bessel function, viz.,

h±l (a) = k

∫ a

−a
Pl(t/a)e

±ikt dt = ka

∫ 1

−1
Pl(t)e

±ikat dt = 2ka(±i)ljl(ka)

We divide the interval [z0, z] in three parts. In the interval z0 ≤ z < −a, we have

Î±l (z) = ilk

∫ z

z0

ei(±1−1)kt dt = il

{
k(z − z0)
1
2i

(
e−2ikz0 − e−2ikz

)
and in the interval −a < z < a, we have

Î±l (z) = il

{
k(−a− z0)
1
2i

(
e−2ikz0 − e2ika

) + i1−lkah
(1)
0 (ka)h±l−2[l/2](z)

+

[l/2]−1∑
n=0

(−1)nkah(1)l−2n−1(ka)
(
h±l−2n(z)− h

±
l−2n−2(z)

)
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and in the interval a < z, we have

Î±l (z) = il

{
k(−a− z0)
1
2i

(
e−2ikz0 − e2ika

) + i1−l2(ka)2h
(1)
0 (ka)(±i)l−2[l/2]jl−2[l/2](ka)

+ 2(ka)2(±i)l
[l/2]−1∑
n=0

h
(1)
l−2n−1(ka) (jl−2n(ka) + jl−2n−2(ka))

+ i−l

{
1
2i

(
e2ikz − e2ika

)
k(z − a)

5 Inde�nite integral of Legendre polynomials

It remains to �nd an e�ective method to compute the functions h±l (z) in (4.2). To
this end, de�ne

hl(η, ζ) =

∫ η

−1
Pl(t)e

iζt dt, |η| ≤ 1 (5.1)

We see that hl(1, ζ) = 2iljl(ζ). In terms of the functions hl(η, ζ), the functions h
±
l (z)

are
h±l (z) = kahl(z/a,±ka)

Our ambition in this section is to �nd an e�cient method to compute the integrals
in (5.1). We express the function hl(η, ζ) as a recursion relation.

5.1 Solution by recursion

The following recursion relation of Legendre polynomials is useful:

Pl(t) =
1

2l + 1

(
P ′l+1(t)− P ′l−1(t)

)
Integration by parts then implies (Pl(−1) = (−1)l)

hl(η, ζ) =

∫ η

−1
Pl(t)e

iζt dt =
1

2l + 1

∫ η

−1

(
P ′l+1(t)− P ′l−1(t)

)
eiζt dt

=
1

2l + 1
(Pl+1(η)− Pl−1(η)) eiζη −

iζ

2l + 1
(hl+1(η, ζ)− hl−1(η, ζ))

or solving for hl+1(η, ζ)

hl+1(η, ζ) =
1

iζ
(Pl+1(η)− Pl−1(η)) eiζη −

2l + 1

iζ
hl(η, ζ) + hl−1(η, ζ), l = 1, 2, 3, . . .

The functions hl(η, ζ) can therefore be found by iteration with starting values

h0(η, ζ) =
1

iζ

(
eiζη − e−iζ

)
=

1

iζ
P0(η)e

iζη + h
(2)
0 (ζ) = ηh

(1)
0 (ζη) + h

(2)
0 (ζ)
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and

h1(η, ζ) =
1

iζ

(
ηeiζη + e−iζ

)
+

1

ζ2
(
eiζη − e−iζ

)
=

1

iζ

(
P1(η)−

1

iζ
P0(η)

)
eiζη + ih

(2)
1 (ζ) = iη2h

(1)
1 (ζη) + ih

(2)
1 (ζ)

To �nd the general solution to this recursion scheme, we start by solving the homo-
geneous di�erence equation.

Lemma 5.1. The solution to the homogeneous di�erence equation

al+1 +
2l + 1

iζ
al − al−1 = 0, l = 1, 2, 3, . . .

given the initial values a0 and a1 is

al = −
ζ2

2i

(
a0h

(2)
0

′
(ζ)− ia1h

(2)
0 (ζ)

)
ilh

(1)
l (ζ)

+
ζ2

2i

(
a0h

(1)
0

′
(ζ)− ia1h

(1)
0 (ζ)

)
ilh

(2)
l (ζ), l = 2, 3, 4, . . .

Proof. Two linearly independent solutions to the homogeneous di�erence equation
in the lemma are ilh

(1)
l (ζ) and ilh

(2)
l (ζ), which is easily proved by the recursion

relation fl+1(z) − (2l + 1)fl(z)/z + fl−1(z) = 0, where fl(z) is any spherical Bessel
or Hankel function. The general solution therefore is

al = c1i
lh

(1)
l (ζ) + c2i

lh
(2)
l (ζ), l = 2, 3, 4, . . .

where c1 and c2 are constants determined by the starting values a0 and a1. Explicitly,
we get {

c1h
(1)
0 (ζ) + c2h

(2)
0 (ζ) = a0

c1ih
(1)
1 (ζ) + c2ih

(2)
1 (ζ) = a1

with solution 
c1 = −

ζ2

2i

(
a0h

(2)
0

′
(ζ)− ia1h

(2)
0 (ζ)

)
c2 =

ζ2

2i

(
a0h

(1)
0

′
(ζ)− ia1h

(1)
0 (ζ)

)
where we used the Wronskian of the spherical Hankel functions.

h(2)n (z)h(1)n
′
(z)− h(2)n

′
(z)h(1)n (z) =

2i

z2

and h
(1,2)
0

′
(z) = −h(1,2)1 (z). This completes the proof of the lemma.

We are now ready for the solution to the inhomogeneous di�erence equation in
hl(η, ζ) above. We formulate this as a lemma.
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Lemma 5.2. De�ne an iteration scheme by

hl+1(η, ζ) =
1

iζ
(Pl+1(η)− Pl−1(η)) eiζη −

2l + 1

iζ
hl(η, ζ) + hl−1(η, ζ), l = 1, 2, 3, . . .

with starting values
h0(η, ζ) = ηh

(1)
0 (ζη) + h

(2)
0 (ζ)

and
h1(η, ζ) = i

(
η2h

(1)
1 (ζη) + h

(2)
1 (ζ)

)
The solution is

hl(η, ζ) = fl(η, ζ)e
iζη + ilh

(2)
l (ζ), l = 0, 1, 2, 3, . . .

where

fl(η, ζ) = ilh
(1)
l (ζ)

{
l∑

k=1

1

ζh
(1)
k−1(ζ)h

(1)
k (ζ)

(
−

k∑
n=0

i−n+1(2n+ 1)
h
(1)
n (ζ)

ζ
Pn(η)

+ i−k+2h
(1)
k (ζ)Pk−1(η) + i−k+1h

(1)
k+1(ζ)Pk(η)

)
− i

P0(η)

ζh
(1)
0 (ζ)

}
, l = 0, 1, 2, . . .

Proof. We �rst subtract the part of the solution that contains the spherical Hankel
function of the second kind h

(2)
l (ζ) and the exponential function eiζη. To this end,

let hl(η, ζ) = fl(η, ζ)e
iζη+ilh

(2)
l (ζ). The recursion relation for fl(η, ζ) is easily found

by the use of the recursion relation h
(2)
l+1(z) = (2l+1)h

(2)
l (z)/z−h(2)l−1(z). We get the

new di�erence equation

fl+1(η, ζ) =
1

iζ
(Pl+1(η)− Pl−1(η))−

2l + 1

iζ
fl(η, ζ) + fl−1(η, ζ), l = 1, 2, 3, . . .

with starting values

f0(η, ζ) =
1

iζ
P0(η)

and

f1(η, ζ) =
1

iζ

(
P1(η)−

1

iζ
P0(η)

)
To simplify the notation, we put the di�erence equation in a standard form [1].

an+2 + p1(n)an+1 + p0(n)an = q(n), n = 1, 2, . . .

where 

an = fn−1(η, ζ)

p1(n) =
2n+ 1

iζ

p0(n) = −1

q(n) =
1

iζ
(Pn+1(η)− Pn−1(η))
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with initial values 
a1 =

1

iζ
P0(η)

a2 =
1

iζ

(
P1(η)−

1

iζ
P0(η)

)
A solution to the homogeneous di�erence equation is (see Lemma 5.1)

yl = il−1h
(1)
l−1(ζ)

The �nal solution then is [1], (n = 3, 4, . . .)

an =

n−1∑
k=1

k−1∏
j=1

p0(j)yj
yj+2

k−1∑
l=1

q(l)

yl+2

[
l∏

m=1

p0(m)ym
ym+2

]−1
+
a2
y2
− a1
y1

+
a1
y1

 yn

Insert the explicit values, and we obtain

fl(η, ζ) =

{
l∑

k=1

1

ζh
(1)
k−1(ζ)h

(1)
k (ζ)

(
−

k−1∑
n=1

h(1)n (ζ)
Pn+1(η)− Pn−1(η)

in
+ ih

(1)
1 (ζ)P0(η)

− h(1)0 (ζ)

(
P1(η) + i

1

ζ
P0(η)

))
− i

P0(η)

ζh
(1)
0 (ζ)

}
ilh

(1)
l (ζ), l = 2, 3, 4, . . .

This relation holds also for l = 0, 1, provided the sums with upper limit smaller than
the lower limit are interpreted as zero.

We now simplify the sum in this expression.

S = −
k−1∑
n=1

i−nh(1)n (ζ) (Pn+1(η)− Pn−1(η)) + ih
(1)
1 (ζ)P0(η)− h(1)0 (ζ)P1(η)

= ih
(1)
1 (ζ) (P2(η)− P0(η)) + h

(1)
2 (ζ) (P3(η)− P1(η))− ih

(1)
3 (ζ) (P4(η)− P2(η))

+ . . .− i−k+2h
(1)
k−2(ζ) (Pk−1(η)− Pk−3(η))− i−k+1h

(1)
k−1(ζ) (Pk(η)− Pk−2(η))

+ ih
(1)
1 (ζ)P0(η)− h(1)0 (ζ)P1(η)

= −
(
h
(1)
0 (ζ) + h

(1)
2 (ζ)

)
P1(η) + i

(
h
(1)
1 (ζ) + h

(1)
3 (ζ)

)
P2(η)

+
(
h
(1)
2 (ζ) + h

(1)
4 (ζ)

)
P3(η)− i

(
h
(1)
3 (ζ) + h

(1)
5 (ζ)

)
P4(η) + . . .

− i−k+2
(
h
(1)
k−2(ζ) + h

(1)
k (ζ)

)
Pk−1(η)− i−k+1

(
h
(1)
k−1(ζ) + h

(1)
k+1(ζ)

)
Pk(η)

+ i−k+2h
(1)
k (ζ)Pk−1(η) + i−k+1h

(1)
k+1(ζ)Pk(η)

The recursion relation h
(1)
l+1(z) + h

(1)
l−1(z) = (2l + 1)h

(1)
l (z)/z implies

S = −3h
(1)
1 (ζ)

ζ
P1(η) + 5i

h
(1)
2 (ζ)

ζ
P2(η) + 7

h
(1)
3 (ζ)

ζ
P3(η)− 9i

h
(1)
4 (ζ)

ζ
P4(η) + . . .

− i−k+1(2k + 1)
h
(1)
k (ζ)

ζ
Pk(η) + i−k+2h

(1)
k (ζ)Pk−1(η) + i−k+1h

(1)
k+1(ζ)Pk(η)

= −
k∑

n=1

i−n+1(2n+ 1)
h
(1)
n (ζ)

ζ
Pn(η) + i−k+2h

(1)
k (ζ)Pk−1(η) + i−k+1h

(1)
k+1(ζ)Pk(η)
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which gives

fl(η, ζ) =

{
l∑

k=1

1

ζh
(1)
k−1(ζ)h

(1)
k (ζ)

(
−

k∑
n=1

i−n+1(2n+ 1)
h
(1)
n (ζ)

ζ
Pn(η)

+ i−k+2h
(1)
k (ζ)Pk−1(η) + i−k+1h

(1)
k+1(ζ)Pk(η)− i

h
(1)
0 (ζ)

ζ
P0(η)

)

− i
P0(η)

ζh
(1)
0 (ζ)

}
ilh

(1)
l (ζ)

or

fl(η, ζ) =

{
l∑

k=1

1

ζh
(1)
k−1(ζ)h

(1)
k (ζ)

(
−

k∑
n=0

i−n+1(2n+ 1)
h
(1)
n (ζ)

ζ
Pn(η)

+ i−k+2h
(1)
k (ζ)Pk−1(η) + i−k+1h

(1)
k+1(ζ)Pk(η)

)
− i

P0(η)

ζh
(1)
0 (ζ)

}
ilh

(1)
l (ζ)

This completes the lemma.

In conclusion, the functions h±l (z) de�ned in (4.2) can be expressed in the func-
tion h(η, ζ) in (5.1). Speci�cally, we have

h±l (z) = kahl(z/a,±ka)

6 Summary and explicit terms

This paper contains an evaluation of a non-trivial integral that occurs in the formu-
lation of scattering by randomly distributed obstacles.

To summarize, the integral Il(z) in (1.1) has been solved and the solution outside
the interval [−a, a] is a simple exponential function in kz, while inside the interval
[−a, a], the solution can be found in a �nite series of spherical waves. The �nite
sum of spherical waves depends on the two parameters kz and ka, or, more precisely,
the parameter ka and a polynomial of the order l in the parameter z/a. Several
equivalent solutions are presented in the paper, one of them is (l = 0, 1, 2, . . .)

Il(z) =



ile−ikz, z ≤ −a
i1−lkah

(1)
0 (ka)Pl−2[l/2](z/a)

+

[l/2]−1∑
n=0

(−1)nkah(1)l−2n−1(ka) (Pl−2n(z/a)− Pl−2n−2(z/a)) , z ∈ [−a, a]

i−leikz, z ≥ a

The �rst integrals, l = 0, 1, 2, are of interest for low-frequency expansions. For
l = 0 the integral is

I0(z) =


e−ikz, z ≤ −a
eika, z ∈ [−a, a]
eikz, z ≥ a
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and for l = 1 the result is

I1(z) =


ie−ikz, z ≤ −a
−ieika z

a
, z ∈ [−a, a]

−ieikz, z ≥ a

For l = 2 the result is

I2(z) =


−e−ikz, z ≤ −a

eika
(ka)2(3i + ka)− 3(i + ka)(kz)2

2(ka)3
, z ∈ [−a, a]

−eikz, z ≥ a

and we notice that the integral contains a polynomial in z/a of order l.
Moreover, the inde�nite Fourier transform of Il(z) has also been investigated.

More precisely, the integral, see (4.1)

Î±l (z) = k

∫ z

z0

Il(t)e
±ikt dt, z ≥ z0, l = 0, 1, 2, . . .

is shown to have a solution expressed in spherical waves.

Acknowledgement

The author is grateful to an anonymous reviewer for pointing out the possibility to
use the Erdélyi operators Ymn in Ref. 12 in the solution of the integral Il(z).These
operators systemized the solution considerably.

References

[1] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists
and Engineers. McGraw-Hill, New York, 1978.

[2] A. Boström, G. Kristensson, and S. Ström. Transformation properties of plane,
spherical and cylindrical scalar and vector wave functions. In V. V. Varadan,
A. Lakhtakia, and V. K. Varadan, editors, Field Representations and Intro-
duction to Scattering, Acoustic, Electromagnetic and Elastic Wave Scattering,
chapter 4, pages 165�210. Elsevier Science Publishers, Amsterdam, 1991.

[3] V. Bringi, T. Seliga, V. Varadan, and V. Varadan. Bulk propagation charac-
teristics of discrete random media. In Multiple scattering and waves in random
media; Proceedings of the Workshop, Blacksburg, VA, March 24-26, 1980.(A82-
27720 12-70) Amsterdam, North-Holland Publishing Co., volume 1, pages 43�
75, 1981.



15

[4] V. Bringi, V. Varadan, and V. Varadan. Coherent wave attenuation by a ran-
dom distribution of particles. Radio Science, 17(5), 946�952, 1982.

[5] W. C. Chew, J. A. Friedrich, and R. Geiger. A multiple scattering solution for
the e�ective permittivity of a sphere mixture. Geoscience and Remote Sensing,
IEEE Transactions on, 28(2), 207�214, 1990.

[6] K. Ding and L. Tsang. E�ective propagation constants in media with densely
distributed dielectric particles of multiple sizes and permittivities. Progress in
Electromagnetics Research, 1(3), 241�295, 1989.

[7] J. Fikioris and P. Waterman. Multiple scattering of waves. III. The electro-
magnetic case. J. Quant. Spectrosc. Radiat. Transfer, 123, 8�16, 2013.

[8] A. Ishimaru and Y. Kuga. Attenuation constant of a coherent �eld in a dense
distribution of particles. JOSA, 72(10), 1317�1320, 1982.

[9] G. Kristensson. Coherent scattering by a collection of randomly located ob-
stacles � An alternative integral equation formulation. J. Quant. Spectrosc.
Radiat. Transfer, 164(0), 97�108, 2015.

[10] P. Lloyd and M. Berry. Wave propagation through an assembly of spheres:
IV. Relations between di�erent multiple scattering theories. Proceedings of the
Physical Society, 91(3), 678, 1967.

[11] C. Mandt, Y. Kuga, L. Tsang, and A. Ishimaru. Microwave propagation and
scattering in a dense distribution of non-tenuous spheres: experiment and the-
ory. Waves in Random Media, 2(3), 225�234, 1992.

[12] P. A. Martin. Multiple Scattering: Interaction of Time-Harmonic Waves with
N Obstacles, volume 107 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, U.K., 2006.

[13] M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen. Multiple
scattering by random particulate media: exact 3D results. Opt. Express, 15(6),
2822�2836, 2007.

[14] M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Multiple scattering of light by
particles: radiative transfer and coherent backscattering. Cambridge University
Press, Cambridge, U.K., 2006.

[15] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook
of mathematical functions. Cambridge University Press, New York, 2010.

[16] B. Peterson and S. Ström. T-matrix for electromagnetic scattering from an
arbitrary number of scatterers and representations of E(3). Phys. Rev. D, 8,
3661�3678, 1973.

[17] W. Ren. Multiple-scattering formalism for general discrete random composites.
Phys. Rev. E, 49, 2362�2367, Mar 1994.



16

[18] V. Tishkovets, E. Petrova, and M. Mishchenko. Scattering of electromagnetic
waves by ensembles of particles and discrete random media. Journal of Quan-
titative Spectroscopy and Radiative Transfer, 112, 2095�2127, 2011.

[19] L. Tsang and J. Kong. E�ective propagation constants for coherent electromag-
netic wave propagation in media embedded with dielectric scatters. Journal of
Applied Physics, 53(11), 7162�7173, 1982.

[20] L. Tsang and J. A. Kong. Scattering of Electromagnetic Waves: Advanced
Topics. John Wiley & Sons, New York, 2001.

[21] V. Varadan, V. Bringi, and V. Varadan. Frequency dependent dielectric con-
stants of discrete random media. In R. Burridge, S. Childress, and G. Papan-
icolaou, editors, Macroscopic Properties of Disordered Media, volume 154 of
Lecture Notes in Physics, pages 272�284. Springer Berlin / Heidelberg, 1982.

[22] V. K. Varadan, V. N. Bringi, and V. V. Varadan. Coherent electromagnetic
wave propagation through randomly distributed dielectric scatterers. Phys.
Rev. D, 19(8), 2480�2489, April 1979.

[23] V. Varadan, V. Bringi, V. Varadan, and A. Ishimaru. Multiple scattering theory
for waves in discrete random media and comparison with experiments. Radio
science, 18(3), 321�327, 1983.

[24] V. Varadan, Y. Ma, and V. Varadan. Propagator model including multipole
�elds for discrete random media. JOSA A, 2(12), 2195�2201, 1985.

[25] R. West, D. Gibbs, L. Tsang, and A. Fung. Comparison of optical scattering
experiments and the quasi-crystalline approximation for dense media. JOSA
A, 11(6), 1854�1858, 1994.


