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Chapter 1

Introduction

The aim of the whole field of computer vision is to make computers see. In the early years
of computers, leading researchers believed this to be suitable task for a summer project;
see [69]. Perhaps they looked at the ease with which a child can solve complicated vision
tasks and failed to realize the complexity of human vision and the multitude of different
techniques that the human eyes and brain use to interpret an image.

This thesis is concerned with the geometrical part of vision, or more specifically with
the three-dimensional aspects. The ability of humans to perceive the three-dimensional
world from the two-dimensional projections on the retinae is fascinating. This ability is
partly dependent on perspective effects, that is, the fact that three-dimensional objects
look different from different view points. In human vision our two eyes have slightly
different perspectives, but perhaps even more important are perspective changes due to
movement. It should also be noted that occlusion, size and other effects are very impor-
tant for our own three-dimensional perception.

1.1 The Camera

If light falls through a small hole into an otherwise dark room it will create an image
on the wall. This dark room is the camera obscura, the veiled chamber, from which
the modern camera has borrowed its name. The first mention of this principle belongs
to the Chinese philosopher Mozi around 400 BC. Through history, it fascinated many
scientists, e.g. the Greek philosopher Aristotle, but it was the Arab mathematician Ibn
al-Haytham who started to understand the geometry of the camera.

Figure 1.1 illustrates the principle. Light from different points in space passes through
a small hole at C and projects an inverted image on the image plane π. For obvious
reasons cameras of this type are called pinhole cameras. The point C is the so called
focal point or camera centre and the distance between C and the image plane is the focal
length, f .

In the beginning of the 19th century, techniques to chemically capture the projected
image were developed. Although the pinhole was soon replaced with a lens, allowing for
more light to enter the camera, the geometrical properties changed only slightly, and in
computer vision, the pinhole camera model is still widely used.

1



CHAPTER 1. INTRODUCTION

π

X1

x1
X2

x2
C

Figure 1.1: Geometry of a pinhole camera. Each Xi is a point in three-dimensional space and xi
is the corresponding image point. C is the focal point, also referred to as the camera centre and π
is the image plane. The distance from the focal point to the image plane is the focal length.

As in the camera obscura, the projection in a modern digital camera is inverted. Be-
fore storing the image however, it is inverted again to fit our perception of the world.
Geometrically, we get the same effect by placing the image plane in front of the focal
point, being the standard model of a pinhole camera.

We will now derive the equations of the pinhole camera model. Consider a coordi-
nate system with origin at the focal point and z-axis perpendicular to the image plane.
This axis is the focal axis of the camera. Let X be the position of a 3D point given in
this coordinate system. We want to determine the projected image point. The line of
projection is

v = kX . (1.1)

To find the coordinates of the image point, we compute the intersection of this line with
the image plane, vz = f . The resulting relation between image coordinates x and 3D
coordinates X is often written

λx = X , (1.2)

where λ is chosen such that xz = f .
If the 3D points are not described in the camera coordinate system, with origin at

the camera centre, we need to transform the coordinates to this coordinate system before
performing the projection. If R is the rotation of the camera and C is the position of the
camera centre this can be written

λx = R (X − C) . (1.3)

Note that any x satisfying this equation with λ > 0, could be used to represent the
projected image point. Often we will use unit vectors. Geometrically, this corresponds to
projections on an image sphere rather than an image plane.

2



1.2. GEOMETRY FROM IMAGES

1.1.1 Camera Calibration

If image coordinates and 3D coordinates satisfy (1.3) and the focal length, f = 1, we
are dealing with a calibrated camera. In practice however, image coordinates are normally
measured in pixels, the origin (0, 0) lies in a corner of the image rather than on the focal
axis and the focal length is unknown. Conversion between calibrated coordinates and
pixel coordinates is a linear transformation, x → Kx, where K is called the calibration
matrix. In the simplest case K scales and translates the coordinates,

K =




f 0 px
0 f py
0 0 1


 . (1.4)

Including the calibration matrix in (1.3) yields λx = KR (X−C). For some cameras it
is useful to introduce more parameters into the calibration matrix. The aspect ratio, γ, is
used to model non-square pixels, and the skew, s is useful if the pixel coordinate system is
not orthogonal. If all these parameters are unknown, we are dealing with an uncalibrated
camera with calibration matrix,

K =




f s px
0 γf py
0 0 1


 . (1.5)

To accurately model a camera the linear transformation of a calibration matrix is not
fully sufficient. The photographic lens also gives rise to a radial distortion depending on
the distance to the focal axis. For the work in this thesis it is mainly sufficient to note
that if the radial distortion and the calibration matrix are both known, the image can be
transformed to fit the calibrated camera model of (1.3).

1.2 Geometry from Images

A central problem in computer vision, and in this thesis, is how to estimate the geometry
of a scene from a set of images. The scene can be a face or a building or anything else
that we want to model. Let us first define what we mean by the geometry of a scene.
This thesis deals mainly with discrete point sets. Thus the geometry of a scene is a set
of points having position and appearance. This might seem very restricted. Not only
is the visible world built of continuous shapes of varying texture and color, but more so
these shapes move and deform with time. Still, because of their simplicity, point models
can be used as tools or building blocks for almost any type of geometric models. For
one thing, points provide a simple and robust way to estimate camera positions, which
are required to estimate more complex geometric models. Moreover, knowing a large
number of points on a surface is often a sufficient model of the surface and in other cases
it gives means to estimate a continuous representation.

3



CHAPTER 1. INTRODUCTION

Fundamental in this context is the notion of point-to-point correspondences. Points
in different views are corresponding points if they are projections of the same point in
three dimensions. Similarly, a point in an image corresponds to a three-dimensional
point if it is the projection of this point.

We have two basic tools to determine correct correspondences, appearance and geom-
etry. To establish correct correspondences between two images it is generally important
to consider both the local appearance of points and their position relative to the other
points and the camera. Often a large set of hypothetical correspondences are generated
based on appearance. Then robust methods are used to remove correspondences which
are not geometrically consistent.

A method for appearance-based matching typically consists of three steps. The first
step determines a set of interest points in each image. Ideally the same points should
be singled out in both views. A classic approach to this is to detect corner points in
both images [38]. An alternative is to detect blobs in the images by looking for scale-
space extrema in the response from a difference of Gaussians filter [58] or looking for
particularly stable regions [63].

Having detected a suitable set of interest points the next step uses a feature descriptor
to capture the appearance of these points. A feature descriptor that received a lot of
attention is SIFT [58]. It considers a small neighbourhood of the interest point, describing
it using histograms of image gradients. Similar ideas are implemented in SURF [5], but
the design is modified to get a faster algorithm.

The last step of the appearance-based matching is to generate the actual correspon-
dences. For each interest point the nearest neighbour with respect to the feature vectors
is computed. To reduce the amount of incorrect matchings, called outliers, some way to
discard spurious correspondences is required. The following is a simple and remarkably
efficient way to do this. For a given interest point let dk be the distance to the kth closest
match in the other image. If d1/d2 is small then the match has high probability of being
correct.

For the following discussion, let us assume that we have a set hypothetical correspon-
dences and that we want to determine the geometry. Estimating point geometry from a
set of images is called structure from motion estimation or sometimes simultaneous local-
ization and mapping, SLAM. The most common way to approach structure from motion
estimation is by solving a series of basic subproblems. A few of the most important ones
are listed below.

- Given corresponding points in two images, estimation of the orientation and posi-
tion of one camera relative to the other. This will be referred to as relative orienta-
tion estimation.

- If positions and orientations of set of cameras is known and some point is visible
in at least two of these cameras, then triangulation is the process of estimating the
3D coordinates of that point.

4



1.2. GEOMETRY FROM IMAGES

- Given 3D points Xi and corresponding image points xi, estimation of the camera
position and orientation is called camera pose estimation.

If all correspondences are correct and exact, then these problems can be tackled by
setting up and solving a system of polynomial equations. In practice though, there will
be noise as well as outliers so proper handling of these uncertainties is crucial to obtain
accurate estimates.

To illustrate we look at the estimation of a relative orientation. The noise depends
mainly on the uncertainty in detecting feature points, so it is reasonable to expect similar
errors, measured in pixels, for the two cameras and for different points. Thus, it is widely
accepted that one should minimize the deviation of the reprojected 3D points from the
measured image coordinates. These deviations are the so called reprojection errors. Take,
for example, the reprojection error of a 3D point X and the corresponding image point
x, given a rotation R and a camera centre C,

e =

∣∣∣∣∣

∣∣∣∣∣

(
r1(X − C1), r2(X − C2)

)

r3(X − C3)
− x
∣∣∣∣∣

∣∣∣∣∣
2

(1.6)

where rk is the kth row of R. Sometimes we will use angular reprojection errors instead.
If we let ∠(x, y) denote the angle between vectors x and y we can write the angular
reprojection error as

ε = ∠ (x,R(X − C)) . (1.7)

For correct correspondences one often assumes that the reprojection errors are inde-
pendent and follow a Gaussian distribution. If this is true we can compute maximum
likelihood estimates by minimizing the L2 norm of the reprojection errors. This can be
achieved using local optimization, so called bundle adjustment [42]. However, a good
initial guess is required and all outliers must be removed.

1.2.1 Estimation with Outliers

Geometric estimation in presence of outliers is a central problem in vision and it has been
studied extensively. It should be safe to say that the field is still dominated by RANSAC-
type methods. RANSAC, which stands for random sample consensus, was introduced in
1981 by Fischler and Bolles [30] to handle erroneous correspondences. A subset of the
correspondences is randomly picked and used to estimate a transformation. Then all
points are transformed and the reprojection errors are measured. Correspondences with a
reprojection error below some predefined threshold are considered inliers to the candidate
solution. This procedure is repeated a large number of times and the solution having the
largest number of inliers is chosen.

During the thirty years since since Fischler and Bolles wrote their paper, many vari-
ants of RANSAC have been developed; see e.g., [83, 20]. From a combinatorial viewpoint,

5



CHAPTER 1. INTRODUCTION

the RANSAC-type algorithms are best used with a so called minimal solver. A minimal
solver uses a minimal number of correspondences to estimate some desired geometry. For
example, a minimal solver for computing the relative orientation requires five correspon-
dences.

The standard method to solve geometric vision problems is to use the solution ob-
tained by RANSAC as a starting guess for a local optimization minimizing the L2 norm of
the reprojection errors [42]. Statistically, the hidden assumption here is that those corre-
spondences having a reprojection error less than our threshold have normal distribution
with a common variance. This is not unreasonable. One could imagine that there are
two types of correspondences, correct ones having small normally distributed reprojec-
tion errors and incorrect ones with large reprojection errors. The RANSAC step removes
practically all incorrect correspondences such that the remaining correspondences satisfy
the normal distribution assumption.

Still, there are problems with this approach and the first half this thesis is concerned
with exploring alternatives. Of course, one drawback of RANSAC is that is does not guar-
antee an optimal choice of correspondences. Moreover algorithmic complexity increases
rapidly with the amount of outliers. For the relative orientation it is inversely proportional
to the rate of inliers to the power of five!

1.2.2 Estimation from Multiple Views

The previous section discussed briefly, how some of the basic subproblems of geometric
vision can be solved, but the overall aim was to reconstruct a scene from several images.
So how do we combine the basic solvers to handle multiple images? Of course there are
many answers to this question, some of which will be discussed in Chapter 6.

One popular method starts from a single pair of views and then adds the others
incrementally. Consequently, we will refer to it as sequential structure from motion. In
the first stage of this estimation the relative orientation of the starting pair is estimated.
Then all points visible in those two views are reconstructed using triangulation. Often
this is followed by bundle adjustment [42] to improve the quality both of the relative
orientation and the 3D points. Having done this the sequential part of the algorithm
starts. A new camera having many correspondences among the estimated 3D points is
added to the model by computing its camera pose. After this any new points being
visible in two views are reconstructed and then a new camera is posed in. To stabilize the
estimation bundle adjustment is normally performed a number of times, sometimes for
every new camera that is added.

Sequential structure from motion has been made to work for very large data sets,
producing impressive reconstructions. But as we will see in Chapter 6 there are severe
stability issues. Estimation from multiple views is the subject of the second part of this
thesis.

6



1.3. SOME USEFUL THEORY

1.3 Some Useful Theory

This section presents some elementary theory that is important in the thesis. The first
section discusses convexity and how it can be used to find optimal solutions to some
problems from multiple view geometry. Subsequent sections go through some elementary
theory of graphs, rotations, quaternions and spherical geometry. Readers who are familiar
with these subjects can jump directly to Section 1.4.

1.3.1 Convexity and L∞ Optimization

A subset S of a real vector space is convex if,

x, y ∈ S ⇒ x+ t(y − x) ∈ S, for all t ∈ [0, 1], (1.8)

i.e., if the line segment between two points in the set is contained in the set. A function
f : S → R is a convex function if the epigraph of f ,

epif = {(x, y) : x ∈ S, y ≥ f(x)} (1.9)

is convex. Hence the minimum of a convex function can be formulated

min
(x,y)∈epif

y. (1.10)

This explains the large interest in minimizing linear functions over convex sets. In fact,
these problems can be solved in polynomial time, meaning that the computation time is
bounded by a polynomial in the size of the problem. A family of algorithms capable of
this are called interior point methods or barrier methods [12].

One interesting property of convex functions is that their sublevel sets,

{x : f(x) ≤ α}, (1.11)

are convex. A function with this property is called quasiconvex. Hence any convex
function is quasiconvex, whereas a quasiconvex function is not necessarily convex.

A nice property of a quasiconvex function, f , is that for fixed α, checking whether
there exists an x such that f(x) ≤ α is a convex feasibility problem that can be solved
using interior-point methods. As a consequence quasiconvex functions can be minimized
using bisection: Suppose we have bounds m and M such that m ≤ minx f(x) ≤ M .
Then the following bisection algorithm will converge to minx f(x).

1. α = (m+M)/2.

2. If there exists x fulfilling f(x) ≤ α, set M = α, otherwise m = α.

7



CHAPTER 1. INTRODUCTION

L∞ Optimization. Many geometric problems in computer vision can be formulated
as optimization problems. The deviation between measured coordinates and the exact
coordinates, the measurement error, is often assumed to follow Gaussian distribution. If
so, the statistically optimal solution is given by minimizing the L2 norm of the repro-
jection errors. Unfortunately it is very hard to find this solution. Existing techniques
rely on a good initialization followed by local optimization and cannot guarantee global
optimality. To handle this problem L∞ optimization was introduced in [41]. Using the
L∞ norm of the reprojection errors instead of the L2 norm, makes it possible to find and
verify the global optimum. The reason is that a number of L∞ optimization problems
in geometric vision are quasiconvex; see [49, 50]. More precisely, the maximum norm of
the reprojection error is a quasiconvex function for a number of geometric problems.

This owes to the fact that quasiconvexity is preserved under the maximum operation.
More precisely, if f1, . . . , fn are quasiconvex functions, then so is the function f defined
by

f(x) = max{f1(x), . . . , fn(x)}. (1.12)

The proof is short: A sublevel set for f is the intersection of n sublevel sets for f1 to fn,
and the intersection of convex sets is convex.

Now let us return to formula for a reprojection error, e, that we saw in (1.6). Recall
that X is a 3D point and x its projection in a camera with orientation R and position C.
We can rewrite (1.6) as

e =
||(r1(X − C1), r2(X − C2))− x(r3(X − C3))||2

r3(X − C3)
. (1.13)

To see when this is a quasiconvex function, we consider the sublevel sets. We set e ≤ ε
and multiply both sides with r3(X − C3). This yields

||(r1(X − C1), r2(X − C2))− x(r3(X − C3))||2 ≤ ε(r3(X − C3)). (1.14)

If theR, x and ε are known, then this is a convex set, more precisely a second-order cone.
Consequently, the reprojection error is a quasiconvex function of X and C. Moreover,
if we consider any number of 3D points and their projections in any number of views,
then the maximum reprojection error is still a quasiconvex function of the variables. This
problem is known as structure from motion with known rotations and will be important
in Chapter 6.

To handle outliers in this framework [24] suggests using auxiliary variables, which
results in

||(r1(X − C1), r2(X − C2))− x(r3(X − C3))||2 ≤ ε(r3(X − C3)) + s, (1.15)

where there is one s ≥ 0 for every image point. The extra variables will allow reprojection
errors to be larger than the prescribed threshold ε. Ideally, one would like to minimize
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the number of non-zero si but this is difficult so [24] use the L1 relaxation and minimize∑
i si subject to si ≥ 0 for all i. This allows us to handle outliers but note that there is

no longer any guarantee of finding an optimal solution.
For other examples of quasiconvex vision problems, see [41, 50, 49]. Moreover, [40]

shows that by combining quasiconvex optimization with a parameter search, optimal
solutions for calibrated camera pose and relative orientation can also be obtained.

1.3.2 Graphs

Graphs have turned out to be a powerful tool for computer vision. This section presents
some elementary theory that will be used later in the thesis.

A graph is an abstract object consisting of a set of vertices V and a set of edges E,
where each edge is an unordered pair of vertices. Figure 1.2 shows how a graph can be
depicted with a dot for each vertex and lines representing the edges. SometimesE is taken
to be a multiset rather than a set, meaning that there can be multiple edges connecting
the same vertices. To distinguish these two kinds of graphs one talks of simple graphs
and multigraphs. Another generalization is allowing edges that start and end in the same
vertex. Such edges are called loops.

A path is a sequence of vertices such that for each vertex there is an edge to the next
one. If there is a path between any pair of vertices, then the graph is connected. A tree is a
connected graph that contains no cycles. Alternatively, a tree is a graph such that for any
pair of vertices there is exactly one simple path connecting them.

A vertex cover for a graph is a subset S of the vertices such that every edge has at least
one endpoint in S. In Chapter 2 we will use graphs to analyze correspondence problems.
Each point-to-point correspondence is encoded with a vertex in the graph and edges are
added between inconsistent correspondences. To get a consistent set of correspondences,
we need to find a vertex cover for this graph and remove those correspondences.

If S is a vertex cover then V \S is an independent set, meaning that no edge has both
endpoints in V \ S. Hence finding a minimum vertex cover is just as hard as finding
a maximum independent set. There is a similar connection to the problem of finding a
largest complete subgraph. To see the connection, we consider a complete graph such
that each edge is either red or blue. Now, if S is an independent set for the red graph,
then clearly it is a complete subgraph of the blue graph. Hence an efficient algorithm for
one of these problems could also solve the other two.

Given a graph G and a natural number k, is there a vertex cover of size k? This is
the decision version of the vertex cover problem and it belongs to a class of problems
called NP-complete. NP is a term from computational complexity theory that stands for
non-deterministic polynomial time. That a decision problem is NP can be defined as
follows. An instance of the problem for which the answer is yes has a proof that can be
verified in polynomial time. For the vertex cover problem this proof simply consists of a
vertex cover of size k and the time it takes to verify that this is indeed a vertex cover is

9
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Figure 1.2: Example graph.

linear in the number of edges of the graph. Hence the decision variant of vertex cover is
in NP. Moreover, the vertex cover problem is NP-hard. This means that any problem in
NP can be formulated as a vertex cover problem. The term is motivated by the fact that
an NP-hard problem must be at least as difficult as any problem in NP. A problem that is
both NP and NP-hard is NP-complete.

So far no one has found a polynomial-time algorithm to solve NP-hard problems.
Hence the term is often used to indicate that a problem is computationally heavy. Still it
is possible to attack this type of problems. One way is to use approximation algorithms.
In general these will not solve the original problem but can often produce a good ap-
proximation. For example, there is a simple linear-time approximation for the minimum
vertex cover problem. It is obtained by repeatedly picking a random edge in the graph
and then placing both its endpoints in the covering. Take for example the graph in Fig-
ure 1.2. We start by picking the edge between vertices a and b, add these vertices to our
solution set and remove them from the graph. In the next step we pick the edge between
d and e and remove these two vertices. We have found a vertex cover {a, b, d, e} and it
can be shown that the size of this vertex cover is at most twice as large as the minimum
vertex cover. Hence in the example we have obtained a lower bound of 2 on the size of
the minimum vertex cover. In this case the bound happens to be tight; see Algorithm 1.

Algorithm 1 Factor-2 approximation

Produces a vertex cover S at most twice as big as the minimum vertex cover.

Initialize S = ∅.
Repeat until no edges remain:

Pick a random edge e from the graph.
Add the two vertices connected to e to S.
Remove the two vertices and all connecting edges from the graph.

Since the vertex cover will be useful later on we also consider an exact algorithm which
is based on the following observation. Given a vertex v having at least one edge we can
split the problem in the following way. Either v belongs to the minimum vertex cover or
any vertex with an edge to v must lie in the minimum vertex cover.

10
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Algorithm 2 uses this type of splitting iteratively until the solution is found. Each
splitting creates new branches which can either be discarded using bounding techniques
or are in turn splitted again. Figure 1.3 shows an example of branching.

d

a

e

b

f

c

d

a

e

b

f

c

Figure 1.3: The two subproblems created by branching on the b node of the graph in Figure 1.2.
Red nodes are those assumed to belong to the vertex cover and the red dashed lines are the covered
edges.

Algorithm 2 Exact Algorithm

Let K be an upper bound for the size of the minimum vertex cover.
Initialize the queue with S = ∅.
Iterate until the queue is empty:

Let S denote the vertex set currently at the top of the queue.
If S is a vertex cover and |S| < K:

Set K = |S| and save Sbest = S.
Else:

Find a lower bound for the size of the smallest vertex cover containing S.
If this bound < K:

Pick a vertex v with at least one edge which is not
covered by S and add the following sets to the end of the queue.
(i) S

⋃ {v}
(ii) S

⋃ {all vertices having an edge to v}
Remove S from the queue.

To compute the lower bounds required in Algorithm 2, we first remove all vertices
in S and all edges to any of these vertices. This leaves a smaller graph and clearly, if V
is a vertex cover for this reduced graph S

⋃
V is a vertex cover for the original graph.

Similarly, if B is a lower bound on the size of any vertex cover for the reduced graph,
|S| + B is the required lower bound for any vertex cover containing S. The factor-2
approximation of Algorithm 1 can be used to provide such a bound, B.

Weighted Graphs. We get a weighted graph from a graph by associating a real number
with each edge. We will use this number to encode how reliable different links in the
camera graph is.

11
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A subgraph of a graph (V,E) is a spanning tree if it is a tree that contains all vertices
in V . It is easy to prove that every connected graph has a spanning tree. A minimum
spanning tree is a spanning tree such that the sum of edge weights minimized. Compared
to the vertex cover problem, it is easy to find a minimum spanning tree. It can be done
in polynomial time using a greedy algorithm; see [11].

Hypergraphs. The notion of hypergraphs generalizes graphs by allowing an edge to
connect any number of vertices. Hence an edge in a hypergraph is an arbitrary subset of
the vertices.

Many of the basic concepts defined for graphs are naturally generalizable to hyper-
graphs. Thus a vertex cover for a hypergraph G = (V,E) is a subset S ⊂ V such that
every generalized edge has at least one vertex in S.

Again there is a number of ways to state essentially the same problem and it turns out
that vertex cover for hypergraphs is equivalent to the more well-known set cover problem.
Consider a set U and family F of subsets of U . A set cover is a subfamily S ⊂ F such
that its union is the equal to U .

1.3.3 Rotations and Quaternions

Later on some knowledge of the characteristics of the group of three-dimensional rota-
tions, often referred to as SO(3). The usual metric on SO(3) can be defined by the
following equation,

d(R,S) = max
x∈R3\{0}

∠(x, STRx), (1.16)

where ∠(x, y) denotes the angle between vectors x and y taking values in [0, π]. From
this definition it is easy to derive that if α ∈ [−π, π] and R is a rotation an angle α about
some axis then d(R, I) = |α|.

Of course, the standard representation of a rotation is as an orthogonal 3× 3 matrix
with determinant 1. Another useful representation is quaternions. Quaternions generalize
complex numbers to four-dimensional numbers

q = a+ bi+ cj + dk, (1.17)

where (a, b, c, d) ∈ R4 and

i2 = j2 = k2 = ijk = −1. (1.18)

Like with complex numbers we define the conjugate of a quaternion by switching sign
for the complex parts

q′ = a− bi− cj − dk. (1.19)

Three-dimensional vectors can be described as quaternions with zero real part, often
called pure imaginary quaternions. Let r and v be vectors written on this form. It is
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straightforward to derive that quaternion multiplication of r and v yields

rv = −〈r, v〉+ r × v, (1.20)

where 〈r, v〉 is the ordinary scalar product and r × v is the ordinary cross product but
represented with a quaternion. In fact, quaternion multiplication is the origin of scalar
products and cross products.

The following theorem shows how quaternions can be used to represent rotations.

Theorem 1. Let r be a unit length pure imaginary quaternion and

q = cos
α

2
+ r sin

α

2
. (1.21)

If u is another pure imaginary quaternion representing a vector, then quq′ is u rotated an
angle α around the axis r.

Proof. We start by writing as u = ar + bv, where v is a unit vector that is perpendicular
to r and a, b ∈ R. Since

quq′ = a(qrq′) + b(qvq′), (1.22)

it is sufficient to consider qrq′ and qvq′. Using (1.20) we get

qrq′ = (r cos
α

2
+ sin

α

2
)(cos

α

2
− r sin

α

2
) =

r cos2
α

2
− cos

α

2
sin

α

2
+ sin

α

2
cos

α

2
+ r sin2 α

2
= r (1.23)

so the part parallel to r will not be changed. Moreover,

qvq′ = (v cos
α

2
+ r × v sin

α

2
)q′ = v cos2

α

2
+ r × v sin

α

2
cos

α

2

− v × r cos
α

2
sin

α

2
− v sin2 α

2
= v cosα+ r × v sinα, (1.24)

so the part perpendicular to r is indeed rotated an angle α.

Remark. One consequence of this theorem is that if q is a rotation quaternion then −q
represents the same rotation. We will se in Chapter 6 that this ambiguity can pose a significant
problem.

The quaternion representation also provides a convenient way to compute the stan-
dard metric. Let 〈x, y〉 denote scalar multiplication with quaternions seen as 4-vectors.
If 〈p, q〉 ≥ 0 we have

d(Rp, Rq) = d(RpR
T
q , I) = d(Rpq′ , I), (1.25)
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but this is just the rotation angle of the Rpq′ and we know from (1.21) that the real part
of pq′ is the cosine of half the rotation angle. Hence

d(Rp, Rq) = 2 arccos Re(pq′) (1.26)

and by (1.20), Re(pq′) = 〈p, q〉. Thus,

d(Rp, Rq) = 2 arccos 〈p, q〉. (1.27)

1.3.4 Spherical Trigonometry

In Chapter 4, we will use some simple results from spherical geometry. Since this subject
is not quite mainstream mathematics, this section presents the required theorems. At least
here, spherical geometry refers to the geometry of S2 being the set of unit 3-vectors or
the set of points on the unit sphere. If two points are given by unit vectors u, v then the
distance along the sphere between these points is equal to ∠(u, v).

1.3. SOME USEFUL THEORY

1.3.4 Spherical Trigonometry

In Chapter 5, we will use some simple results from spherical geometry. Since
this subject is not quite mainstream mathematics, this section presents the
required theorems.

At least here, spherical geometry refers to the geometry of S2 being the
set of unit 3-vectors. Lines in planar geometry corresponds to great circles
in spherical geometry. Let u, v and w be pure imaginary quaternions. The
following formula will be useful,

vw̄ = vūuw̄ = −(uv)(uw) = (〈u, v〉 + u × v)(〈u, w〉 − u × w)

= 〈u, v〉〈u, w〉 + 〈u × v, u × w〉
− 〈u, v〉u × w + 〈u, w〉u × v − (u × v) × (u × w). (1.27)

Theorem 2. Consider a spherical triangle on the unit sphere S2 with corners
in u, v and w. Let a = ∠(u, v), b = ∠(u, w), c = ∠(v, w) and so on.

Proof. Let u, v and w be quaternions representing the three corners of the
triangle. By (1.27) we have

cos c = 〈v, w〉 = Re(vw̄) = 〈u, v〉〈u, w〉 + 〈u × v, u × w〉

= cos a cos b + sin a sin b cos C.

Theorem 3. The angles in a spherical triangle satisfy,

sin A

sin a
=

sin B

sin b
=

sinC

sin c
. (1.28)

Proof. From(1.27) we get

Re(uvw) = 〈u, (u × v) × (u × w)〉 = sin a sin b sinC (1.29)

but furthermore

Re(uvw) = 〈u, v × w〉 = Re(vwu) = Re(wuv). (1.30)
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Figure 1.4: Left: Two great circles form two pairs of similar angles at their intersection. Right: We
use lower case letters for side lengths and upper case letters for the opposing corner angle.

We define a great circle as the intersection of S2 and a plane through the origin.
When two great circles intersect they form two pairs angles as shown in Figure 1.4. These
angles can be computed as the angle between the planes defining the great circles.

The results that will be used later on concern spherical triangles. A spherical triangle
is formed by three great circles. We will refer to the side lengths of the triangle using lower
case letters and the corner angles using upper case letters; see Figure 1.4 for an example.

Let u, v and w be pure imaginary quaternions representing the corners of a spherical
triangle. The following formula will be useful,

vw̄ = vūuw̄ = −(uv)(uw) = (〈u, v〉+ u× v)(〈u,w〉 − u× w)

= 〈u, v〉〈u,w〉+ 〈u× v, u× w〉
− 〈u, v〉u× w + 〈u,w〉u× v − (u× v)× (u× w). (1.28)
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Theorem 2. Consider a spherical triangle on the unit sphere S2 with corners in u, v and w.
Let a = ∠(u, v), b = ∠(u,w), c = ∠(v, w) be the sides of the triangle and A, B, C be
the corner angles. Then,

cos c = cos a cos b+ sin a sin b cosC. (1.29)

Proof. Let u, v and w be quaternions representing the three corners of the triangle. By
(1.28) we have

cos c = 〈v, w〉 = Re(vw̄) = 〈u, v〉〈u,w〉+ 〈u× v, u× w〉

= cos a cos b+ sin a sin b cosC.

Theorem 3. The angles in a spherical triangle satisfy,

sinA

sin a
=

sinB

sin b
=

sinC

sin c
. (1.30)

Proof. Note that (1.20) implies,

Re(uvw) = −Re(uwv) = Re(wuv) = −Re(wvu) = Re(vwu). (1.31)

But if we use (1.28) on vw we get

Re(uvw) = 〈u, (u× v)× (u× w)〉 = sin a sin b sinC (1.32)

and similarly for Re(wuv) and Re(vwu). Hence

sin a sin b sinC = sin a sinB sin c = sinA sin b sin c. (1.33)

1.4 This Thesis

This section gives a brief overview of this thesis. To comply with the rules for a doctoral
thesis my own contributions to the different chapters are also described.

Chapter 2 shows how some geometric problems can be attacked using graph tech-
niques. Constraints on pairs of correspondences are used to set up a vertex cover problem.
By solving one or a sequence of such vertex cover problems it is possible to minimize the
number of outliers. The idea of using vertex cover to solve geometric problems is not new
to computer vision, but it has not been shown before how these techniques can be com-
bined with parameter search to find optimal solutions, in terms of the number of outliers.
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My own contributions were both the idea and the theorems concerning sufficiency and
convergence.

Chapter 3 shows how the ideas from Chapter 2 can be used in practice. Results for
registration as well as camera pose estimation are presented. The coding and experiments
was joint work with Klas Josephson. The results show how hard bounds on the optimal
solutions can be produced even when the residual functions are non-convex. For registra-
tion the proposed algorithm represents a significant speed-up compared to earlier optimal
methods. In the case of calibrated camera pose estimation the proposed method is, to the
best of my knowledge, the first published method that can produce guaranteed optimal
solutions with respect to the number of outliers.

Chapter 4 is concerned with relative orientation estimation in presence of outliers.
Two new methods are presented. The first one is based on parameter search and is guar-
anteed to minimize the number of outliers. As far as I know, this is the first published
algorithm that is guaranteed to find the optimal relative orientation with respect to the
number of outliers. The other method is a brute-force algorithm with complexity that is
independent of the outlier rate. Both algorithms were originally my ideas and I also did
the theoretic derivations and the basic coding. The motion segmentation algorithm was
developed together with Fredrik Kahl and Fangyuan Jiang worked on the spatial regular-
ization and implemented the brute-force algorithm for a graphics card.

Chapter 5 discusses outlier problems in cases where the residual functions are quasi-
convex. There are mainly two contributions. We provide an algorithm with time com-
plexity that is polynomial in the number of correspondences. Using the same principles,
we also show how to verify that a given solution is the global optimum. or find a better
solution. My contributions was the verification scheme and Theorem 21.

In Chapter 6 a complete system for structure from motion estimation is proposed.
Often this problem has been solved in a sequential manner, but recently there has been
large interest in non-sequential structure from motion. The results in this thesis show
the advantages of a non-sequential approach based on graph methods as well as convex
optimization. In this case the main algorithm was developed together with Fredrik Kahl
and Carl Olsson. The results concerning estimations with short baseline was joint work
with Carl Olsson whereas the results on cycles and consistency was mainly my work.

Chapter 7 is also concerned with the geometry of multiple views, but for a special type
of imaging devices called 1D cameras. It is shown how reconstruction problems in 1D
vision can be solved optimally with respect to the L∞ norm of the reprojection errors. I
worked on some of the proofs and did about half of the experiments. Moreover, I worked
out how to find initial constraints on the orientations.
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Estimation with Outliers
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Chapter 2

Outliers and Vertex Cover

The following two chapters deal with geometric estimation in presence of outliers. This
problem is addressed as an optimization task, seeking a transformation that minimizes
the number of outliers. In this chapter, it is shown how constraints on pairs of corre-
spondences induces a graph problem, which is solved in order to find the optimal corre-
spondences. The ideas are general enough for a wide range of application problem but
the focus lies on calibrated camera pose estimation and 3D-3D registration. The second
chapter shows how these techniques can be applied to 3D-3D registration and camera
pose estimation.

2.1 Introduction

Establishing point-to-point correspondences between images or point sets is a common
problem in both computer vision and photogrammetry, for example, in object recogni-
tion, 3D reconstructions, image-based localization or medical image alignment. Natu-
rally, due to its importance, many different solutions have been proposed. Most methods
build on some type of appearance-based feature matching; see Section 1.2. However
matching local features based on appearance only is difficult and errors are frequent.
Therefore it is generally necessary to use geometry to remove incorrect matches. On this
point prior work is mainly based on heuristic methods such as RANSAC or EM-like al-
gorithms to solve this task and hence there is a risk of getting trapped in a poor, local
solution.

We will focus on two important problems from multiple view geometry being cali-
brated camera pose estimation and 3D-3D registration. The key idea is to consider point
correspondences and check whether pairs of such correspondences are consistent or not.
Seeking a large set of pairwise consistent correspondences leads us to the vertex cover
problem of graph theory; cf. Section 1.3.2. The bad news is that this problem is known
to be NP-hard. The good news is that we can still solve instances of the problem for quite
large data sets using a combination of branch-and-bound and approximation algorithms.

The chapter is structured as follows. In the next section, we review related work and
compare to our approach. In Section 2.3, a mathematical problem formulation is given
together with an introduction to the use of pairwise constraints. We first apply the frame-
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work to a simple example, being the estimation of planar rotations, in Section 2.4. In the
following section, the slightly more advanced problem of estimating 3D rotations is ana-
lyzed. Finally, the framework is generalized to incorporate more general transformations,
in particular camera pose estimation.

2.2 Related Work

Graph matching. The idea of using pairwise constraints in combination with vertex
cover for finding mutually consistent correspondences is not new in the vision literature.
The earliest work we have found is [10] where it is used for 2D part location. Pairwise
constraints are also discussed in [36]. In [86], an association graph is built for 2D match-
ing which results in a maximum clique problem. Similarly, the stereo correspondence
problem was formulated as a maximum clique problem in [43]. This is an alternative
formulation of the same graph problem as ours. In [53], the registration problem was
formulated in a graph setting, but solved using a non-optimal spectral technique. Other
graph matching formulations include [16, 84, 93] where the objective is to match corre-
spondences such that pairwise distances within the two point sets are similar. This leads
to a purely combinatorial problem equivalent to the quadratic assignment problem. A
similar approach is pursued in [60]. One advantage (besides being purely combinato-
rial) is that such approaches can be used for solving both rigid and non-rigid registration
problems. However, the underlying transformation mapping one point set to the other is
ignored.

Camera pose estimation. Camera pose estimation is a well studied problem in both
computer vision and photogrammetry [3, 42] and one of the earliest references on the
topic dates back to 1841 [37]. There are several heuristic methods with no guarantee
of optimality such as [25, 44, 67] where RANSAC is perhaps the most popular one [30].
In multiple view geometry, the camera pose problem is often solved with DLT [42], but
the method optimizes an algebraic cost function and cannot handle outliers among the
correspondences. Another class of methods is based on subdividing transformation space
and aiming for global solutions such as [46] using an affine camera model. The problem
is important on its own as a core problem within the field of multiple view geometry,
and moreover, it appears as a subproblem for many other vision applications, like motion
segmentation [67], object recognition [17, 44, 46], and more generally model matching
and fitting problems, see [14, 17, 25, 44, 46, 47, 67]. Yet, previous approaches for
solving the camera pose problem have not been able to solve the problem in the presence
of outliers with a guarantee of global optimality.

The first globally optimal algorithm for this problem using a geometric error norm
was presented in [68]. They also investigate the problem of local minima for the pose
problem and show that this is indeed a real problem for small numbers of correspon-
dences. For larger numbers of correspondence pairs or small noise levels, the risk of
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getting trapped in a local minimum is small. This is our experience as well. In their
work the L2 norm of the reprojection errors is used, but the algorithm converges rather
slowly. In [40], the authors choose to work with the L∞ norm instead and present a
more efficient algorithm that finds the optimum by searching in the space of rotations
and solving a series of second order cone programs. The reported execution times for
both these algorithms are in the order of several minutes, while the proposed algorithm
performs the same task within a few seconds. More importantly, the new algorithm can
handle outliers. If some correspondences are incorrect, then fitting a solution to all data
will give very bad results.

3D-3D registration. Given correct correspondences, it is straightforward to estimate
the transformation; see [42]. On the other hand, given an estimate of the transformation,
it is easy to determine likely correspondences. So, a natural idea is to use an alternating
minimization procedure, and there are many such algorithms in the literature (e.g., [33]),
the most famous one being Iterative closest point,ICP, [8]. However, these approaches
require a good initial estimate of the transformation and still there is no guarantee of
getting a reasonable solution, especially when there are lots of outliers. Other non-optimal
approaches include the Hough transform, geometric hashing and hypothesize-and-test
algorithms like RANSAC [30]. Recently, in [56], the problem was solved globally using
branch and bound in rotation space. The method requires that all points are matched and
that the translation component is given, which are severe limitations so this is effectively
not solving the complete problem. Even though, we have compared our algorithm to this
method in the experimental section.

In [14], a branch-and-bound algorithm over rigid transformations in the 2D plane is
proposed. This works well as the transformations have only three degrees of freedom, but
the approach becomes computationally infeasible for rigid transformations in 3D space
(which have six degress of freedom).

Outliers. A method for detecting outliers for L∞ solutions was given in [74] but it
only applies to quasiconvex problems. The uncalibrated pose problem is quasiconvex,
but the calibrated pose problem is not. Further, the strategy in [74] for removing outliers
is rather crude - all measurements that are in the support set are discarded. Hence, inlier
correspondences may also be removed. Possible solutions to this problem are given in
[54] and in Chapter 5, but they are restricted to quasiconvex problems. Another well-
known approach for estimating camera pose in cases where it is hard to find correct
correspondences is to apply RANSAC-type algorithms [30]. Such algorithms leave no
guarantees of optimality.

Our work is also related to the rich body of literature on matching problems; see
[14, 17, 22, 25, 44, 46, 47, 60, 61, 67]. Many of these algorithms are quite sophisticated
and have been an inspiration to our work. However, some do not guarantee any kind
of optimality [22, 25, 67], while others use simplified camera models like affine approxi-
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mations [14, 44, 46, 47, 61]. Other drawbacks of these methods include simplified cost
functions not based on reprojection errors.

Unlike many of the above mentioned methods, the proposed framework makes it
possible to generate multiple correspondence hypotheses for a single point, but in the final
solution, it is guaranteed that no conflicting hypotheses are included. Another advantage
is that it is possible to use extra information from the feature extractor, for example, the
orientation.

2.3 Preliminaries

2.3.1 Formulation

The different geometric problems that we consider in this chapter have much in common.
Given two point sets, we are looking for a transformation mapping one set to the other.
To find this transformation we somehow need to determine the correct point-to-point
correspondences between the sets. A correspondence is an ordered pair (m,µ) of natural
numbers connecting themth point of the first point set with the µth point of the second.
We begin with a set of hypothetical correspondences. Often, these have been generated
by some appearance-based point matching algorithm, but we can also choose to consider
all possible correspondences. Whatever the case, it is likely that a large portion of these
correspondences are incorrect.

We say that a set of correspondences is one-to-one if the same point does not occur
in more than one correspondence. The following definition will also be useful.

Definition 1. Consider two point sets, {xi} and {yj}, a set of correspondences S and a
transformation T . If S is one-to-one and

d(T (xm), yµ) ≤ ε, (2.1)

for all (m,µ) ∈ S, we say that S is ε-consistent with T .

To be more concrete, for 3D-3D registration, T is a rigid transformation and d is the
euclidean distance. For camera pose, T is a rigid transformation followed by a perspective
mapping and d is the angular reprojection error, that is, the angular difference between
the measured image point and the reprojected 3D point.

Having many hypothetical correspondences, pure chance can lead to small sets being
consistent with some transformation, but large consistent sets are extremely unlikely to
appear by chance, so they are somehow reflecting the geometry of the problem. Hence
it is natural to seek large consistent sets or equivalently, try to minimize the number of
outliers.

Problem 1. Given two point sets and a set, H , of hypothetical correspondences between the
point sets, find a subset I ⊂ H minimizing |H \ I| subject to I being ε-consistent with some
transformation T of the specified class.
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This way of formulating the problem was chosen to fit with the minimum vertex cover
problem. Correspondences in I will be referred to as inliers and correspondences inH \I
as outliers.

Note that the popular RANSAC method [30] is one way of attacking Problem 1, but
even with exhaustive testing of all minimal subsets, the method will not necessarily obtain
the optimal solution.

Pairwise Constraints and Vertex Cover. To approach Problem 1 we first consider a
pair of correspondences. Our aim is to determine whether these two correspondences
can both belong to the solution of Problem 1. We know that this cannot be the case
if they match the same point, but it can also be clear from the geometry. Consider for
example 3D-3D registration with fixed scale. Assume that a pair of correspondences
matches two close points to two distant ones. Clearly these two correspondences cannot
be consistent with one rigid transformation: They are geometrically inconsistent. To
find the inlier set I of Problem 1 we have to remove correspondences until no pairwise
inconsistencies remain. For optimality, we want to remove as few correspondences as
possible. This is equivalent to finding a minimum vertex cover of a graph having all
hypothetical correspondences as vertices, and edges connecting inconsistent ones.

2.4 Example: Planar Rotations

To introduce the approach of pairwise constraints, we first look at the rather elementary
problem of estimating a rotation between points on the unit circle. The problem is
presented merely as an example, but it does have practical interest when working with
one-dimensional cameras; see Chapter 7.

To avoid ambiguities, we use unit-length complex numbers to represent the points.
This way, a rotation can be performed as multiplication with a unit-length complex num-
ber r.

Problem 2. Assume that we are given two sets of unit complex numbers, {xi} and {yi}, and
a set of hypothetical correspondences H . Find a subset I ⊂ H minimizing |H \ I| subject to
I being ε-consistent with some rotation r.

Consistency here is with respect to distances along the unit circle. Using complex
numbers this can be computed as

d(rxm, yµ) = | arg (r̄x̄myµ)|, (2.2)

where the bar implies complex conjugation and the arg function takes values in (−π, π].
Now assume that we have found a set of correspondences, that is consistent in the

sense of Definition 1 and let (m,µ) and (n, ν) be two of these correspondences. Accord-
ing to the definition and (2.2) these correspondences satisfy

d(x̄myµ, x̄nyν) = | arg (xmȳµx̄nyν)| = | arg (rxmȳµr̄x̄nyν)| (2.3)
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≤ | arg (rxmȳµ)|+ | arg (r̄x̄nyν)| = d(rxm, yµ) + d(rxn, yν) < 2ε. (2.4)

This means that we have found a necessary constraint for a pair of correspondences. It
turns out that this constraint is sufficient in the following sense.

Theorem 4. If 0 < ε < π/3 and S be a set of correspondences such that

d(x̄myµ, x̄nyν) ≤ 2ε (2.5)

is satisfied for every pair of correspondences in S. Then there exists a complex number r such
that

d(rxm, yµ) ≤ ε (2.6)

for any (m,µ) ∈ S.

Proof. First note that (2.6) can be rewritten as

d(r, x̄myµ) ≤ ε (2.7)

and that it restricts r to an interval on the unit circle. Our first claim is that an arbitrary
pair of such intervals have a non-empty intersection. To see this consider two intervals
generated by correspondences (m,µ) and (n, ν). Let ρ be the midpoint between x̄myµ
and x̄nyν . By (2.5) this point clearly satisfies

d(ρ, x̄myµ) = d(ρ, x̄nyν) ≤ 2ε/2 = ε, (2.8)

so (2.7) is satisfied for these two correspondences. Thus ρ lies in both intervals. To
complete the proof, we need the following lemma.

Lemma 5. Consider a set of intervals Ik on the unit circle such that |Ik| < 2π/3 for all k.
If the intersection Ij

⋂
Ik is non-empty for any pair (j, k), then

⋂
k Ik is non-empty as well.

Proof. Pick any interval Ik and let p be the midpoint of this interval. Note that the
distance between Ik and the point p + π is larger than 2π/3 and thus p + π lies in no
interval. Thus we can cut the unit circle at p + π and map it to the real line R. The
theorem now follows from Helly’s theorem [26].

Since ε < π/3, it follows that |Ik| < 2π/3. This completes the proof of the theorem.

Theorem 4 implies that we can solve Problem 2 by finding the largest set of cor-
respondences that is one-to-one and such that each pair satisfies (2.5). To do this we
consider a graph having a vertex for every node and an edge between two vertices if

(i) The correspondences have the first or second index in common.

(ii) The correspondences does not satisfy (2.5).
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Problem 2 is now equivalent to the minimum vertex cover problem for this graph. An
exact algorithm for this problem was given in Section 1.3.2; see Algorithm 2. It is worth
to point out that we should not compute the full graph and then find a minimum vertex
cover. Instead edges are determined when they are required by the vertex cover algorithm.
More tricks for speeding up Algorithm 2 will be discussed in Chapter 3.

2.5 3D Rotations

Things get more complicated when we want estimate a 3D rotation between points on the
unit sphere in R3. This problem has its own application when stitching images together
to panoramas, but it will also be important when we discuss camera pose estimation.
Problem 3 gives a more precise description. Note that this time ε-consistency is with
respect to distances along the sphere.

Problem 3. Given two sets of unit 3-vectors, {xi} and {yj}, and a set of hypothetical
correspondences H , find a subset I ⊂ H minimizing the number of outliers, |H \ I|, subject
to I being ε-consistent with some orthogonal transformation R.

An orthogonal tranformation on R3 is either a rotation, a reflection or a rotation-
reflection; see [4]. Hence we will detect reflections as well as rotations. Since orthogonal
transformations preserve angles any correspondences (m,µ) and (n, ν) in the inlier set I
will satisfy ∣∣∠(xm, xn)− ∠(yµ, yν)

∣∣ ≤ 2ε. (2.9)

These are the constraints that we will use to set up the vertex cover problem. Unfortu-
nately, a set of correpondences can be consistent with respect to these pairwise constraints
without being ε-consistent with any rotation. The next sections will be concerned with
this problem and how to get around it, but first we look at these constraints in the exact
case.

Theorem 6. Consider two sets of unit 3-vectors ordered such that xi corresponds to yi. If
for all (i, j) the scalar products satisfy 〈xi, xj〉 = 〈yi, yj〉, then there exists an orthogonal
transformation R such that

Rxi = yi for all i. (2.10)

Proof. Assume that {x1, x2, x3} is a basis for R3. The special case when no such triplet
exists can be handled similarly. Let R be a linear mapping such that Rxi = yi for
i = 1, 2, 3. Then for j = 1, 2, 3

xTi xj = yTi yj = (Rxi)
TRxj = xTi (RTR)xj for i = 1, 2, 3 (2.11)

so RTRxj = xj . Since this holds for j = 1, 2, 3 and {x1, x2, x3} is a basis, we can
conclude that RTR = I so R is an orthogonal mapping. Moreover

(Rxi − yi)T yk = (Rxi)
T (Rxk)− yTi yk = xTi xk − yTi yk = 0 (2.12)
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for k = 1, 2, 3. Since {y1, y2, y3} is a basis this implies Rxi = yi so (2.10) holds.

2.5.1 Splitting Correspondences

As mentioned the constraints in (2.9) are generally not sufficient. This means that finding
a minimum vertex cover does not guarantee finding a solution to the original problem.
To remedy this, we can split correspondences to refine our search.

We note that a correspondence (m,µ) is in a way the hypothesis that for the sought
rotation R the rotated point Rxm lies in the set B = {p : ∠(p, yµ) < ε}. To make
this clearer, we write a correspondence as a triplet (m,µ,B). Splitting the set B into
smaller sets B =

⋃
Bk, allows us to generate new correspondences (m,µ,Bk) that can

be handled just like the original ones; see Figure 2.1. Algorithm 3 shows how this splitting
technique can be used. For each repetition of this algorithm, we get an updated set of
hypothetical correspondences.

Definition 2. A set of correspondences S is consistent with a transformation T if S is one-to-
one and for each (m,µ,B) ∈ S it holds that Txm ∈ B.

xi

va r blev ja g t i l l

va d ¨a r det ja g fö rlor a t

va d ¨a r det som f̈ott denna s a k n a d

denna l ¨a n g t a n t i l l i n g e n s t a n s

1

Thursday, March 25, 2010

F igure 4: T he images show a par t of t he uni t sphere. O riginally x̃ i is const rained
to t he green circle around x i shown on t he left . In t he refinement step t his circle
is divided as shown on t he right , genera t ing new, more precise hypot heses.
Working wi t h spherical t riangles simplifies subsequent division steps.

Proof.
 (Rxm , yµ ) ≤  (Rxm , ỹµ ) +  (ỹµ , yµ ) ≤ 0 + ε (16)

which proves t he if par t . For t he converse just choose ỹµ = Rxm .

T his lemma opens for a new way to look a t correspondences. A correspon-
dence (m, µ) is t he hypot hesis t ha t for t he sought rot a t ion R t he rot a ted point
Rxm = ỹµ lies in t he set B = {p :  (p, yµ ) < ε}.

Definition 3. A correspondence is an ordered triplet (m, µ,B) where m and
µ are indices and B is a part of the unit sphere. The diameter of B is the
correspondence uncertainty.

Definition 4. A set of correspondences S is consistent with a transformation
T if S is one-to-one and for each (m, µ,B) ∈ S it holds that Txm ∈ B.

T he advant age of t his interpret a t ion is t ha t i t allows us to spli t correspon-
dences. T he set B in t he new defini t ion can be divided B =

⋃
Bk , see F igure 4,

and t his allows us to genera te new correspondences (m, µ,Bk ) t ha t can be han-
dled just like t he original ones. Most impor t ant ly t he const raint in (9) can
be sharpened, since t he correspondence uncer t aint ies are decreased. T he new
const raint for correspondences (m, µ,M ) and (n, ν,N ) is

min
p∈M ,q∈N

|  (p, q) −  (xm , xn )| = 0. (17)

A lgori t hm 4 shows how t his spli t t ing technique can be used. For each repe-
t i t ion of t his algori t hm, we get an up da ted set of hypot het ical correspondences.
L et Hk denote t he correspondences ob t ained after k spli ts and let Gk be t he
consistency graph for t hese correspondence. Now consider a solu t ion to t he
original problem, t ha t is a par t i t ion of t he original correspondences H = I

⋃
O

such t ha t I is consistent wi t hin ε wi t h a rot a t ion R. For each correspondence
in (m, µ) ∈ I , t here is a correspondence in (m, µ, S) ∈ Hk such t ha t Rxm ∈ S .
L et Ik denote t his set of correspondences. C learly Ik is consistent according
to D efini t ion 4. Consequent ly, Ok = Hk \ Ik is a ver tex cover for Gk . T his
also means t ha t a minimum ver tex cover for Gk produces a lower bound for t he
number of ou t liers of in t he original problem. We will now show t ha t after a
fini te number of spli ts t his bound is t ight .

11

Saturday, September 25, 2010

Figure 2.1: The images show a part of the unit sphere. Originally Rxm is constrained to the
green circle around yµ shown on the left. In the refinement step this circle is divided as shown
on the right, generating new, more precise hypotheses. Working with spherical triangles simplifies
subsequent division steps.

Algorithm 3 Splitting correspondences

Given a set of hypothetical correspondences Hk.
Split all correspondences in Hk as described in the text.
Let Hk+1 be the new correspondences obtained.
Set up a new consistency graph, Gk+1.
Compute a minimum vertex cover for this graph.
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Most importantly this splitting technique allows us to sharpen the constraint in (2.9).
The new constraint for correspondences (m,µ,M) and (n, ν,N) is

min
p∈M,q∈N

|∠(p, q)− ∠(xm, xn)| = 0. (2.13)

We define the correspondence uncertainty σc as

σc = max
p∈M,q∈N

|∠(p, q)− ∠(xm, xn)|, (2.14)

given that (2.13) holds. Clearly, this is bounded by

σc ≤ max
p∈M,q∈N

∠(p, q)− min
p∈M,q∈N

∠(p, q) ≤ diam(M) + diam(N). (2.15)

In fact it will not be necessary to evaluate (2.13) exactly as long as the correspondence
uncertainty σc → 0 when diam(M) + diam(N)→ 0.

Let Hk denote the correspondences obtained after k splits and let Gk be the graph
for these correspondences. Now consider a solution to Problem 3, that is a subset I of
the original correspondences H such that I is ε-consistent with an orthogonal transfor-
mation R and |H \ I| is minimal. For each correspondence (m,µ) ∈ I , there is a
correspondence in (m,µ,M) ∈ Hk such that Rxm ∈ M . Let Ik denote the set of
these correspondences. Clearly Ik is consistent according to Definition 2. Consequently,
Hk \ Ik is a vertex cover for Gk and thus a minimum vertex cover for Gk produces a
lower bound on the number of outliers of in the original problem. We will soon see that
after a finite number of splits this bound is tight.

Definition 3. If a correspondence a ∈ Hk was created by splitting of b ∈ H , then b is an
ancestor of a and a is a descendant of b.

Theorem 7. After a finite number of repetitions of Algorithm 3, every minimum vertex cover
corresponds to a solution to Problem 3, or more precisely: There exists a natural number K,
such that if S is a vertex cover for GK and I ⊂ H is the set of ancestors to HK \ S. Then I
is an optimal solution to Problem 3.

Proof. Let κ be the (unknown) size of a correspondence set solving Problem 3. Consider
all subsets of H having size at least κ, which are not ε-consistent with any orthogonal
transformation. Let A1, A2, . . . denote these sets.

Lemma 8. Consider a set Ai ⊂ H that is not ε-consistent with any orthogonal transforma-
tion R. Then there exists a natural number Ki such that after Ki repetitions of Algorithm 3,
there is no set of |Ai| descendants of Ai that is pairwise consistent.

Proof. To simplify the notation we assume that yi corresponds to xi. Consider the func-
tion

h(p1, p2, . . .) = max
i,j
|∠(xi, xj)− ∠(pi, pj)| (2.16)
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on the set {(p1, p2, . . .) : ∠(pk, yk) ≤ ε ,∀ k}. This is a continuous function, defined
on a compact set. Thus it takes a minimum value δ ≥ 0 in this set.

Assume that δ = 0. Let (p1, p2, . . .) be the point where this minimum is obtained.
Then ∠(xi, xj) = ∠(pi, pj) for all pairs (i, j) and according to Theorem 2 there exists
an orthogonal transformation such that Rxi = pi, but then ∠(Rxi, yi) ≤ ε, which
contradicts the assumption, so δ > 0.

Now, assume that the correspondences have been split a number of times such that for
any correspondence (m,µ,M), diam(M) < δ/2. Consider an arbitrary set Di of |Ai|
correspondences being descendants ofAi. Again we number the points so xi corresponds
to yi. Thus Di = {(i, i,Mi), i = 1, 2, . . .}. For each correspondence we fix a point
ȳi ∈Mi and note that

h(ȳ1, ȳ2, . . .) ≥ δ. (2.17)

Let (I, J) be the index pair for which the maximum in the definition of h is obtained.
Thus

|∠(xI , xJ)− ∠(ȳI , ȳJ)| ≥ δ, (2.18)

but this is larger than the correspondence uncertainty,

σc ≤ diam(MI) + diam(MJ) < δ, (2.19)

so by definition, see (2.14),

min
p∈MI ,q∈MJ

|∠(xI , xJ)− ∠(p, q)| = 0. (2.20)

cannot be satisfied. This proves that a set of |Ai| descendants of Ai cannot be pairwise
consistent.

Now, let K = maxKi and consider a minimum vertex cover S for HK . Consider
the ancestors I ⊂ H of HK \ S. Clearly this I has size at least κ and clearly HK \ S
is a set of |I| descendants of I that is pairwise consistent. Hence we can deduce from
Lemma 8 that I is ε-consistent with some orthogonal transformation R.

2.5.2 Estimating Transformations

The previous section showed how to obtain better and better lower bounds on the so-
lution to Problem 3 and showed that eventually these bounds will be tight. However,
since the constant κ in Theorem 7 is unknown, we will not know that the lower bound is
tight unless we can produce an equally good upper bound. This can be done by actually
computing a transformation.

The basis for creating an upper bound will be a simple method to estimate a rotation
from two correspondences. Given two pairs of orthogonal vectors (e1, e2) and (f1, f2)
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there is a unique rotation mapping ei to fi, which can be found by simple matrix multi-
plication. Given two pairs of points on the sphere (x1, y1) and (x2, y2), simply set

e1 =
x1 + x2
||x1 + x2||

, e2 =
x1 − x2
||x1 − x2||

and f1 =
y1 + y2
||y1 + y2||

, f2 =
y1 − y2
||y1 − y2||

(2.21)

to get the orthogonal vectors. It is easy to see that this rotation is symmetric with regard
to the two point pairs and minimizes the angular errors.

Algorithm 4 Finding an upper bound

Pick two indices µ and ν as described in the text below.
For each correspondence (·, µ,M):

For each correspondence (·, ν,N) :
Pick points ȳµ ∈M and ȳν ∈ N
Compute a transformation1from (xm, ȳµ) and (xn, ȳν).
Apply the transformation and check the number of outliers.

To get guaranteed convergence, the indices in Algorithm 4 cannot be chosen arbi-
trarily. Given a minimum vertex cover for the current graph, we choose two correspon-
dences outside this vertex cover, say (m,µ,M) and (n, ν,N). We choose these such that
∠(xm, xn) is large - at least larger than 2ε. The first indices of these correspondences
are used. Assuming that we have passed the limit in Theorem 7, every vertex cover cor-
responds to a solution to the original problem. Thus the conditions of Theorem 9 are
satisfied.

Theorem 9. Consider two sets of three-dimensional unit vectors ordered such that xi corre-
sponds to yi. Assume that there exist a rotation R such that ∠(Rxi, yi) < ε for all i. After a
finite number of repetitions of Algorithm 3, Algorithm 4 will find such an R.

Proof. The conditions say that there exists an R such that ∠(Rxi, yi) < ε for all i. Let

e = max∠(Rxi, yi) < ε (2.22)

Let m and n be the indices selected by Algorithm 4 and consider ỹm = Rxm and
ỹn = Rxn. After each splitting step, there exist correspondences (m,m,Mk) and
(n, n,Nk) such that ỹm ∈ Mk and ỹn ∈ Nk. Let Rk be the rotation estimated from
these correspondences using Algorithm 4. It is clear from the construction of Rk that
d(Rk, R) → 0 when k → ∞ though we leave this without a formal proof. Thus even-
tually, d(Rk, R) < ε− e and then

∠(Rkxi, yi) < ∠(Rxi, yi) + (ε− e) < ε, (2.23)

which means that we have found an R.
1In cases when the optimal transformation might be a reflection, we need to find both a rotation and a

reflection.
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Remark. If there exists an R such that ∠(Rxi, yi) ≤ ε but not any R such that
∠(Rxi, yi) < ε, Theorem 9 does not give any guarantees. Theoretically, the proba-
bility of this event is zero and in practice, due to discrete number representation it is not
relevant. Still it indicates that if a correspondence has an optimal error very close to ε, it
will be difficult to determine whether this in an inlier or an outlier.

2.6 Camera Pose Estimation

Calibrated camera pose estimation is the problem of estimating the position and orienta-
tion of a camera given an image of a scene. Since the camera is calibrated we can choose to
represent the image as a sphere (rather than an image plane) and detected feature points
in the image as points on the sphere or unit 3-vectors. We restate Problem 1 for this new
case.

Problem 4. Given a set of unit 3-vectors, {xi}, a set of 3-vectors, {Xi}, and a set of
hypothetical correspondences H , find a subset I ⊂ H minimizing |H \ I| subject to I being
ε-consistent an orthogonal transformation R and a camera centre C.

In this case, ε-consistency means that for any (m,µ) ∈ I ,

∠
(
xm , R(Xµ − C)

)
< ε. (2.24)

To fit this problem into the framework, we need a way to determine pairwise incon-
sistency. We will combine the vertex cover techniques with a search algorithm over some
of the parameters.

Assume for a moment that our camera is ideal and noise-free. Given two 3D points,
X and Y , and corresponding image vectors x and y, it follows that

∠
(
X − C, Y − C

)
= ∠

(
x, y
)

= α. (2.25)

Here X and Y are part of the 3D model and the angle α on the right hand side can be
calculated from the measured image coordinates. Now, consider an optimal camera pose
(R,C) in the sense of Problem 4. Assume that X and Y are points that satisfy (2.24).
The triangle inequality for angles yields,

|∠
(
X − C, Y − C

)
− α| < 2ε. (2.26)

This means that again we can use pairwise angles to detect inconsistent correspondences.
But it only works if we know an approximate camera position, and therefore, we combine
this idea with a search over possible camera positions. Later on we will show how to
evaluate pairwise angles for a whole set of camera positions. Algorithm 5 gives an overview
of the approach.

For a given box in the parameter space, it is not necessary that we solve the complete
vertex cover problem. Thus it is beneficial to modify the branch-and-bound approach
described in Algorithm 2. Details will be given in Chapter 3.
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Algorithm 5 Camera pose estimation

Let B be an upper bound on the size of the outlier set for the optimal solution.
Initialize the queue with a bounded set in R3.
Iterate until desired precision is reached:

Pick a box from the queue.
Use vertex cover to discard the box or find a small vertex cover.
If the box cannot be discarded:

Starting from a small vertex cover use Algorithm 4 to update B.
Divide the box and update the queue.

Remove the box from the queue.

2.6.1 Sufficiency

In order for the splitting strategy discussed in Section 2.5.1 to be applicable, we need our
constraints to be sufficient as the correspondence uncertainty tends to zero.

Theorem 10. Consider 3D points Xi and image unit vectors xi ordered such that Xi corre-
sponds to xi. If for some camera centre C and all i, j

∠(Xi − C,Xj − C) = ∠(xi, xj), (2.27)

then there exists an orthogonal transformation R such that

∠(R(Xi − C), xi) = 0 (2.28)

for all i.

Proof. Let yi = (Xi − C)/|Xi − C|. Then, (2.27) implies ∠(yi, yj) = ∠(xi, xj) and
since both xi’s and yi’s are unit vectors 〈xi, xj〉 = 〈yi, yj〉. This means that Theorem 6
is applicable and that completes the proof.

Remark. If some 3D point X = C, then the angles in this proof are not well-defined.
Though this should never be a problem in practice, it may complicate the theoretic discussion.
We eliminate this complication by requiring inliers to have at least some distance dmin to the
camera.

For 3D rotations it was possible to prove convergence. The same is true for camera
pose, although the fact that we are performing a search over camera positions complicates
matters. Because we are considering multiple camera positions at once, we are not eval-
uating the left hand side of (2.27) exactly, but as we will show, the approximation errors
tends to zero. Consider a set of camera positions

S = {C : |C − Sc| < r} (2.29)
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To get a bound on the angular uncertainty of X − C given that C ∈ S, we consider a
cone with apex at X circumscribing S. If |X − Sc| > r, the opening angle of this cone
will be

γ = 2 arctan

(
r

|X − Sc|

)
. (2.30)

We define the parameter uncertainty σp to be the uncertainty introduced in (2.27) due
to the radius of S; cf. (2.14). Note that σp < 2γ. Thus, as the radius tends to zero, so
does this uncertainty, except in the case X = SC ; see comment above.

Theorem 11. There exists a real number e > 0, such that when the sum of the maximal
correspondence uncertainty and the approximation error in (2.30) is less than e, then every
minimum vertex cover S corresponds to a solution to Problem 4 in the following sense: Let I0
be the set of ancestors of the correspondences in HK \ S. Then I0 is a solution to Problem 4.

Proof. The proof is almost identical to that for Theorem 7. The biggest difference is the
lemma:

Lemma 12. Consider a set S of K hypothetical correspondences. Assume that there does not
exist an orthogonal transformation R and a camera position C such that

∠(xm, R(Xµ − C)) ≤ ε for all (m,µ) ∈ S (2.31)

There exists a real number e > 0, such that when the sum of the maximal correspondence
uncertainty and the approximation error in (2.30) is less than e, there will be no set of K
descendants of correspondences in S that is pairwise consistent.

Proof. We can follow closely, the proof of Lemma 3 but use the function

h(x̃1, . . . , x̃K , C) = max
i,j
|∠(x̃i, x̃j)− ∠(Xi − C,Xj − C)| (2.32)

on the set ∠(x̃i, xi) ≤ ε andC ∈ S. This is a continuous function, defined on a compact
set. Thus it takes a minimum value δ ≥ 0 in this set. If δ = 0 then there is a pair (R,C)
satisfying (2.31). Otherwise, when the sum of the correspondence uncertainty σc and
the parameter uncertainty σp is less than δ/2, then all sets of K descendants will be
inconsistent (see proof of Lemma 3 for more details).

See proof of Theorem 7.

2.6.2 Estimating a Transformation

As for the 3D rotations, we get lower bounds on the number of outliers by actually
estimating a transformation. We can do this in essentially the same way as for the 3D
rotations. First the camera centre is fixed to the centre of the current box in parameter
space and then 3D points are projected on the image sphere. This leaves the problem of
estimating a rotation, for which we use the method from Section 2.5.2.
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2.6.3 Evaluating the Constraints

Consider two world pointsX and Y and the corresponding image points x and y. Given
a bounded set, S, in parameter space, how can we determine if (2.26) holds for any
camera position C ∈ S?

First consider a plane throughX and Y . We know from elementary geometry that all
points on a circular arc through X and Y form the same angle XCY . Thus the points
C such that XCY equals α form two circular arcs in the plane. Moreover, if for another
C the angle XCY is larger than α, then C lies in the set enclosed by the two arcs.

In space the points C for which XCY = α form a surface, obtained by rotating the
circular arcs around the line through X and Y ; see Figure 2.2. For angles smaller then
π/2 this surface is pumpkin-shaped. Like in the planar case points inside this surface
form larger angles and points outside form smaller.

Figure 2.2: Sets XCY = α for α < π/2 (left) and α > π/2 (right).

We assume that set, S, in parameter space is a sphere. Other sets can always be
handled by inscribing them in a sphere. First we note that if either X or Y lies in the S,
then any angle XCY can be obtained, so (2.26) is satisfied. In the general case, we can
use the following geometric observation.

Lemma 13. The maximum and minimum for XCY are attained in the plane defined by
X , Y and the sphere centre Sc.

Proof. Let S2D be the intersection of the mentioned plane and the sphere S. Now,
it is clear that rotating C around the axis given by X and Y will not change the angle
XCY . Thus any point not in the mentioned plane can be rotated into this plane without
changing the problem. But any C ∈ S will be rotated into the S2D, which completes
the proof.

This means that we only need to consider the plane defined by X , Y and the sphere
centre Sc. But in this plane the pumpkin constraint is simply two circular arcs as shown
in Figure 2.2. Our problem is thus reduced to determining the intersection of the circle
S2d and these circular arcs.
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2.7 Applications to Other Problems

The techniques discussed in this chapter can be extended to other problems in computer
vision. We will look at one example here.

2.7.1 3D-3D Registration

In 3D-3D registration we are given two sets of 3D points that are related by a rigid
transformation, i.e., a rotation and a translation. Like before we say that a set of corre-
spondences is ε-consistent if it is one-to-one and errors are less than ε. In this case,

|xi −R(yj + t)| < ε. (2.33)

We want to solve the following problem.

Problem 5. Given two sets of 3D points, {xi} and {yi} and a set of hypothetical correspon-
dences H . Find a subset I ⊂ H minimizing |H \ I| subject to I being ε-consistent a rotation
R and a translation t.

This problem is very similar to estimating a 3D rotation and we can attack it in the
same way. Pairwise consistency is determined by the point-to-point distances. Hence two
correspondences, (m,µ) and (n, ν), are consistent if they satisfy

∣∣|xm − xn| − |yµ − yν |
∣∣ < 2ε. (2.34)

As in Section 2.5 a set of correspondences can be pairwise consistent even though
they are not consistent according to Definition 1. So to get guaranteed convergence we
need to use correspondence splitting and produce lower bounds by actually computing
transformations. This can be done in a similar fashion as for 3D rotations, using a simple
2-point solver.

With Scaling. By a parameter search over an unknown scaling factor, we can also han-
dle similarity transformations. In this case the consistency is defined by,

|xi − γR(yj + t)| < ε. (2.35)

That this definition is not symmetrical hardly matters as the difference is only a scaling.
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Chapter 3

Vertex Cover in Practice

The previous chapter provided a framework for computing optimal solutions to a variety
of vision problems. In this chapter we examine the performance of these methods in
experiments. The first section gives some experimental results for 3D-3D registration
but also some modifications to speed up the algorithm. In the subsequent section the
demand for guaranteed convergence is relaxed to get competitive methods for camera
pose estimation. The relaxation means that we still get upper and lower bounds on the
optimum, but there is no guarantee that these bounds will be tight. Still, the bounds tend
to be very good.

3.1 3D-3D Registration

As noted at the end of the previous chapter, estimation of a rigid transformation can
be handled similarly to the estimation of a rotation. In this case the aim was to handle
datasets very difficult data sets in terms of the outlier rates. For example datasets where
the correspondences are completely unknown. In such cases the number of hypothetical
correspondences that has to be considered are N2, where N is the number of points.

To be able to handle this type of problems efficiently, some new methods to handle
the vertex cover problem was introduced. The first addition is a crude approximation
algorithm. When the set of hypothetical correspondences is not one-to-one it can be
very efficient. The new algorithm makes use of the way that the vertex cover graph was
constructed. If there are multiple hypothetical correspondences matching the same point
only one of them can be true. For example, if there are five correspondences matching
the same point at least four of them must lie in the minimum vertex cover. Algorithm 6
shows how to use this fact to obtain a lower bound on the size of a vertex cover.

To eliminate correspondences, thereby reducing the complexity of the problem we
need a way to prove that a certain correspondence v is an outlier to the optimal solution.
To do so we use the same type of branching as in the exact algorithm in Chapter 1; see
Algorithm 2. Either v is an outlier to the optimal solution, or all vertices having an edge
to v are. If the latter hypothesis can be rejected, v must be an outlier; see Algorithm 7.

In the third step either Algorithm 1 or 6 or both can be used. The variant with
Algorithm 6 is the fastest, especially if it is implemented in the following way. Assume
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Algorithm 6 Fast approximation

Consider one of the point sets.
Let I be the set of point indices that we have considered.
Initialize I = ∅.
Initialize the lower bound B = 0.
Repeat for each vertex in the graph:

Let (i, j) be the correspondence represented by this vertex.
If i /∈ I :

Set B = B + 1.
Set I = I

⋃{i}.
B is now a lower bound for the size of the minimum vertex cover.

Algorithm 7 Proving that a correspondence, v, is an outlier.

Let K be an upper bound on the optimal solution.
Let S be the set of all vertices having an edge to v.
Compute a lower bound for any vertex cover containing S .
If this is > K, v is an outlier.

that v represents a correspondence (m,µ). Now compute the distance from point m to
every other point and place it in a list `1. Similarly create a list `2 for distances to µ.
Now by going through these lists once, we can single out those correspondences which
are consistent with v = (m,µ).

The implementation for rigid transformation relies heavily on Algorithm 7 for elimi-
nating the outliers one by one. First it is run once for every vertex with the sorting scheme
and then if required again but with both Algorithm 6 and 1, in that order. Algorithm 2
is only used if some outliers remain after these steps.

Finally, to get an upper bound on the number of outliers we need to actually compute
a transformation. First Algorithm 8 was used to find a small vertex cover. Then two
correspondences that was not in this vertex cover was picked and inputted to the method
in Section 2.5.2. To increase the probability of finding a good solution this was iterated a
few times.

Experiments. The algorithm was evaluated on a 500-point 3D model of the Stanford
bunny that was also used in [56]. To mimic the experiments from [56] a random rotation
and translation was computed. Then uniform noise of magnitude 0.1 was added to the
transformed points. The error threshold was set to 0.3, being approximately 1% of the
object size a lower bound of 450 inliers.

Note that this experiment the total number of hypothetical correspondences was
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Algorithm 8 Greedy vertex cover

Starting from a set S (possibly empty).
Remove all edges to vertices in S.
Repeat until no edges remain:

Find the vertex v with most edges. Add v to S.
Remove all edges connected to v.

When no edges remain S is a vertex cover for the graph.

250 000 and the rate of true correspondences 0.2%, since no correspondences were given
and hence all points were matched against all points. This means that a basic RANSAC

algorithm would have required on average 125 million iterations to converge. The pro-
posed method had a mean execution time of 0.77 seconds. Essential to get this low
average is that thanks to the sorting methods discussed above, we only have to consider a
fraction of the complete vertex cover graph.

The algorithm in [56] obtains similar results on this data set as our algorithm, but
they assume that the translation is known. They do not report any execution times for
this problem but for a smaller problems with only 200 points their execution times is
1100 s, i.e., around 20 minutes. Furthermore, it is reported that the ICP and SoftAssign
algorithms [8, 33] work only when the initial rotation is within an angle of less than 50
degrees of the correct solution for this data set.

3.2 Camera Pose Estimation

The algorithm that was implemented for camera pose was based on Algorithm 5 but to
increase its efficiency, the following alterations were made.

- Splitting of hypotheses was not used.
- Algorithm 9 was used for vertex cover

Moreover, instead of using a fixed pair of points to estimate a transformation, as described
in Section 2.5.2, a number of pairs was selected randomly, more precisely 10.

Initial bounds on the camera position are given as input parameters as well as some
bound on the number of outliers. Bounds on the camera position were used to generate
a first box for the parameter search. Each generated box was then attacked using the
angular constraints from Section 2.6.3 and the simplified vertex cover algorithm described
in Algorithm 9. To minimize computations, constraints are computed only when they
are required.

Algorithm 9 uses the fast vertex cover techniques described in the previous section to
compute lower bounds for the vertex cover problem. If this does not manage to discard
the box we need to decide whether it is more beneficial to divide the box and continue
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with the parameter search or to use branch and bound on the vertex cover problem. If
there is a lot of outliers branch and bound might be necessary, but for lower rates of
outliers this might slow down the execution. One way to handle this issue is to use
branch and bound only if the rate of outliers is high. This method was chosen for the
experiments using a threshold of 30%. To reduce the time spent on branch and bound, a
maximum search depth was also set.

Algorithm 9 Vertex Cover for Camera Pose

Let B be the size of the best solution so far.
Let G be the graph for the current box.
Compute a lower bound on the size of the minimum vertex cover for G.
If this bound is > B:

Discard the current box.
Else:

Repeat as long as vertices are removed:
For every vertex v:

Try to prove that v lies in the minimal vertex cover using Algorithm 7.
If this works:

Remove v and update the graph.
Get a new lower bound for the minimum vertex cover for G.
If this bound is > B:

Discard the current box
Else:

If the rate of outliers is greater than 0.3:
Use Algorithm 2 to find the minimum vertex cover for G.
If this has size > B:

Discard the current box.

Shopping Street Experiments. The camera pose algorithm was tested on a data set
consisting of 99 images of a shopping street covering approximately 100 meters. The
experiments were performed in a leave-one-out fashion. One image was removed and a
model consisting of 3D points and camera matrices were constructed from the remaining
views using Bundler [75]. A 1000-iteration RANSAC loop with a minimal 3-point solver
was used to find a plausible camera pose. To examine the quality of the RANSAC solution
the proposed method was set to seek the optimal solution starting from a cube with side
5 meters around the RANSAC solution. Figure 3.1 shows the upper and lower bounds
obtained in this fashion as well as the RANSAC solution.

To get some timing results, semisynthetic input data was generated. For each image
twenty inliers were selected randomly and 180 outliers were generated. The outliers were
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Figure 3.1: Results for the shopping street experiment. The blue line shows the number of inliers
from RANSAC. The green line shows the lower bound from the proposed method and the red
line is an upper bound for the optimal solution also obtained from the proposed solution. For
visualization, the data has been sorted according to the green line.

placed randomly according to a uniform distribution bounded with the same bounds as
the inliers. This way we got 99 examples with 90% outliers. The proposed method was
started from the RANSAC solution as before. Figure 3.2 shows upper and lower bounds
on the optimal solution as a function of time.
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Figure 3.2: Average upper and lower bounds as a function of time. Note that most of the 180
outliers could were discarded quickly, but often one or two outliers are difficult to discard. The
shown result is an average over all 99 images.

Restricted motions. One strength of the proposed approach is that it is easy to enforce
certain type of restrictions on the camera position. One simply changes the search space
of the algorithm. For example, we can constrain the camera to lie on any fixed surface
that is easy to describe, or on some curve. One example is given in Figure 3.3 where the
camera was constrained to a plane parallel with the ground plane. This figure also shows
how the proposed algorithm can be used to evaluate the certainty of an estimated camera
pose. The green points in Figure 3.3 are camera positions having as many inliers as the
RANSAC solution.
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Figure 3.3: An example from the shopping street experiment. Blue points are 3D points. At the
green points a solution having as many inliers as the RANSAC solution was detected. At the red
points there might be a solution as good as the RANSAC solution.

3.3 Discussion

In these two chapters we have seen how graph methods can be used find optimal trans-
formations to geometric problems in presence outliers. Even though vertex cover is an
NP-hard problem we have seen that for 3D-3D registration, it is possible to achieve com-
petitive results with use of approximation algorithms in combination with today’s fast
computers.

Combining the basic vertex cover approach with parameter search it is also possible
to solve problems such as camera pose estimation. The experiments have shown how this
algorithm can be used to evaluate the performance and uncertainty of standard methods
such as RANSAC. One conclusion from these experiments must be that in most cases
RANSAC works very well. This also explains why subsequent chapters are mainly con-
cerned with more difficult problems.
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Chapter 4

New Methods for Relative
Orientation

In this chapter we look at the relative orientation problem for two calibrated cameras with
outliers among the correspondences. Using an non-standard epipolar parameterization,
two new methods for estimating the relative orientation are derived. The first method,
which is based on branch and bound, is guaranteed to find the largest set of consistent
correspondences. The other method performs a brute-force search over a discretization of
the parameter space. By accepting a discretized parameter space, we get a robust method
that is well-suited for parallelization and can handle several cost functions, for example
maximizing the consensus set or robust norms like truncated least-squares. Furthermore,
this method can easily be modified for restricted motions, such as planar motion. Exper-
imental results are given for a variety of scenarios including scenes with very high rates of
outliers. In addition, the algorithm is applied to 3D motion segmentation outperforming
state-of-the-art on the well-known Hopkins-155 benchmark database.

4.1 Background

Already in 1981, Longuet-Higgins suggested a simple and yet elegant solution to the
problem of finding the relative orientation of two viewpoints [57]. The algorithm, known
as the eight-point algorithm, still plays a major role in computer vision [42]. In 1997,
Hartley [39] modified the eight-point algorithm to include normalization. Although nor-
malization made the algorithm more robust to measurement noise, there are still algorith-
mic degeneracies, e.g., if the scene is planar then the algorithm fails. Perhaps even more
serious is that the algorithm assumes that the correspondence problem is already solved.
Therefore, more robust approaches have been developed to cope with outliers. Here
RANSAC methods using minimal solvers are considered to be state-of-the-art [66, 19].
Still, the problem of algorithmic degeneracies remains for minimal solvers.

Another problem that has been recognized by several researchers is the importance of
optimizing a suitable cost function, where costs based on reprojection errors are prefer-
able to algebraic errors [42]. Bundle adjustment does optimize the statistically correct
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criterion (given that measurement errors are independent and normally distributed), but
the method is sensitive to initialization. Therefore global optimization algorithms have
been developed [49, 40, 18] which are not susceptible to local minima. However, all these
methods assume that the correct correspondences are known.

Looking back at 30 years of algorithmic development since the eight point algorithm
[57], a set of criteria has emerged that a good relative orientation algorithm should pos-
sess:

(i) Robustness to outliers,
(ii) No algorithmic degeneracies,

(iii) Cost function is based on reprojection errors,
(iv) Not dependent on a good initialization,
(v) Practical.

For example, RANSAC is designed to fulfil (i), requires no initialization (iv) and has been
successfully applied in many real systems (v), but the method does not meet objectives
(ii) and (iii). Similarly, recent global relative orientation methods [40] do meet criteria
(ii)-(iv), but cannot be considered to be practical (v) since it cannot handle outliers. In
practice, a heuristic combination of different algorithms is often used to overcome the
difficulties in fulfilling these objectives. For example, homographies are often used to
detect if the scene is planar or if the motion is a pure rotation. Another example of this
phenomena is that particular motions have been examined separately [88].

This chapter will go through two methods for relative orientation. The first of them,
extends the work on globally optimal methods by showing how to find an optimal solu-
tion in presence of outliers. To our knowledge, this algorithm is the first that solves this
problem. However, execution times tend to be high, especially if the baseline is short, so
although interesting from a theoretical viewpoint this method fails on point (v).

The second algorithm is based on exhaustive search and fulfils (i)-(iv) by design.
For example, provided that the discretization of the parameter space is fine enough, the
method is guaranteed to find the optimal solution. The key idea in order to make it
practical is that the expensive computations are done in lower dimensions, and only very
simple calculations are required in the high-dimensional search. The ultimate proof is of
course by showing that it works on real experiments - this is done in the experimental
section. In particular, when applied to 3D motion segmentation, our approach signifi-
cantly outperforms state-of-the-art methods on 104 video sequences in the Hopkins 155
database [85]. Note that the database contains a variety of relative motions and scenes
which are degenerate for several of the standard algorithms mentioned above.

4.2 Preliminaries

Consider two views of a scene. Let x be a unit vector representing an image point in the
first view, and x′ the corresponding image point in the second view. Our assumption is
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that these are both the projection of some 3D point X . If we choose a global coordinate
system such that the first camera lies at the origin and the second camera at t = (0, 0, 1)T ,
we get

λRx = X, λ′R′x′ = X − t. (4.1)

where R and R′ are 3 × 3 rotation matrices and λ and λ′ are positive real numbers. To
simplify the derivations, we assume that there are no points at infinity, but the method
works just as well with points at infinity.

Whereas the standard parameterization for a relative orientation consists of a rotation
and a unit vector, (4.1) uses two rotations. Clearly this is an overparameterizaton, but this
will be dealt with later. First we look at the constraint on the relative orientation induced
by a pair of corresponding points.

Theorem 14. Let R and R′ be rotation matrices with row vectors r1, r2, r3 and r′1, r
′
2, r
′
3,

respectively and let x and x′ be corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (4.2)

r3x > r′3x
′, (4.3)

if and only if there exists a 3D point X satisfying (4.1).

Proof. Clearly

k =
||(r1x, r2x)||
||(r′1x′, r′2x′)||

=

√
1− (r3x)2

1− (r′3x
′)2

< 1. (4.4)

Let λ be the solution to

λr3x− 1 = λkr′3x
′, (4.5)

and put λ′ = λk. From k < 1 and r3x > r′3x
′ it is straightforward to show that λ > 0

and hence λ′ > 0. Now let X = λRx. To see that (4.1) is satisfied, consider

X − t = λRx− t =




λr1x
λr2x

λr3x− 1


 . (4.6)

By (4.2) and (4.5) this is equal to

(
λkr′1x

′ λkr′2x
′ λkr′3x

′ )T = λ′R′x′. (4.7)

This proves the if part, and the only if follows easily from (4.1).
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The description gets even simpler if we switch to spherical coordinates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 . (4.8)

Now the necessary and sufficient constraints are

ϕ = ϕ′ and θ < θ′. (4.9)

Remark. In this work angles are considered equal if they are equal modulo 2π but to
simplify the presentation this is not always written explicitly. For example ξ ∈ [α, β] if
ξ + 2πk does for some k ∈ Z.

The next step is to allow measurement errors. We say that corresponding points x,
x′ are consistent with a relative orientation if the angular reprojection errors are less than
some prescribed threshold, ε.

Definition 4. Given an error tolerance ε, a correspondence (x, x′) is said to be consistent
with a relative orientation given by R and R′, if there exists a 3D point X such that

∠(Rx,X) < ε and ∠(R′x′, X − t) < ε. (4.10)

Just as in Chapter 2 we seek the largest set of consistent correspondences. This task is
formulated in Problem 6.

Problem 6. Given two sets of image points {xi} and {x′j} with hypothetical correspondences
(xk, x

′
k), k = 1, . . . , N and a prescribed error threshold ε, compute the relative orientation

of the cameras which is consistent with as many correspondences as possible.

Theorem 15. Consider rotation matrices R and R′ and spherical coordinates as defined in
(4.8). Further define w in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (4.11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε− cos θ cos θ′

sin θ sin θ′

)
, (4.12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ ∈ [ϕ′ − w,ϕ′ + w], (4.13)

if and only if the angular reprojection errors are less than ε.
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Proof. Since it is always possible to change coordinates, we can assume thatR = R′ = I .
Furthermore, we note that if we can find points x̄ and x̄′ that satisfy the constraints in
Theorem 14 as well as

∠(x̄, x) < ε and ∠(x̄′, x′) < ε, (4.14)

then (by Theorem 14) we have also found our point X . This will prove useful. Let θ̄,
θ̄′, etc denote the spherical coordinates of these points as defined in (4.8). We assume
that x̄′ is fixed and examine what constraints we get on x̄. Recall the constraints from
Theorem 14,

θ̄ < θ̄′ (4.15)

ϕ̄ = ϕ̄′. (4.16)

From (4.14) we have that x̄′ must lie in a small circle around x′. Consequently, (4.16)
means that x̄ must lie in the spherical wedge shown on the left in Figure 4.1 and (4.15)
constrains it to the upper part of that wedge, as shown on the right in Figure 4.1.
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8.1. Outliers

8.2. Planar Motion

8.3. Motion Segmentation

In this subsection, we apply our 3D motion seg-
mentation algorithm for rigid scenes on the Hopkins
155 database [?]. Current state-of-the-art results are
reported in [?] and all the top performers are included
in our comparison. In each sequence, there are typi-
cally 20-30 frames and a few hundred 2D feature tracks
given. The number of motions in each sequence is also
given.

Some of the sequences contain articulated motions
and hence our framework does not apply. Therefore
we focus on the subset of checkerboard sequences: 26
sequences with 3 motions and 78 sequences with 2 mo-
tions, hence 104 out of the 155 sequences are consid-
ered. Based on [?], one can conclude that the checker-
board sequences are the most difficult ones as the classi-
fication errors are significantly lower for the remaining
ones.

All of the top performing algorithms are based on
the affine camera model. Hence they are not dependent
on the internal calibration of the cameras, where as we
assume calibrated cameras. To resolve this, we just set
the principal point to the middle of the image and use
a focal length of 700 pixels for images of size 480× 640.
This is the size for all sequences, but the last one, which
has frame size 240 × 320 and consequently we halve
the focal length for this case. Note that we do not know
the true focal length, we have just found this choice to
work well empirically1.

The thresholds σ1 = 0.0003 and σ2 = 0.0015 are the
same for all sequences. Parameters for spatial regu-
larization: XXXX and XXXX. These have been found
empirically and fixed for all sequences.

We compare with the following algorithms: General-
ized Principal Component Analysis (GPCA) [?], Local
Subspace Affinity (LSA) [?], RANSAC [?], Multi-Stage
Learning (MSL) [?], Agglomerative Lossy Compression
(ALC) [?] and two variants of Sparse Subspace Cluster-
ing (SSC) [?]. There are two versions of our Brute-Force
algorithm. The first one (BF) is implemented according
to the description in Section 6 and the second one is
with the addition of a spatial prior (BF-S) as described
in Section 6.1.

In Tables 1 and 2, the misclassification rates are pre-
sented. Our brute-force algorithm achieves very low
error rates, both in terms of mean and median error
rates. Note that even though we are only using three

1In the dataset, a 3 × 3 calibration matrix is provided, but this
calibration is clearly incorrect since it has an aspect ratio of 0.75.

frames (the first, the middle and the last) in each se-
quence, we are able to obtain state-of-the-art results.
Since we are actually recovering the 3D motion, it is
very simple to add spatial regularization to the results.
Still, even without such regularization, our approach
outperforms the competitors, and with regularization,
the error rates are significantly lower.

9. Conclusions

Using a brute-force algorithm for computing the
relative orientation of two projections may seem like
a step back considering the many sophisticated algo-
rithms that have been developed over the years. But
why is it that none of the best performing algorithms
for 3D motion segmentation does not use a pinhole
camera model? This paper shows that a pinhole model
is the correct choice and the lack of perspective meth-
ods that perform well on the Hopkins 155 benchmark
is likely due to algorithmic failure modes, for example,
the incapability of handling planar scenes.

The reported running times of the algorithm are well
within the limits of being a suitable choice for many
vision applications. Of course, the full search space
cannot be used for a real-time system, but restricting
the parameter space to small motions, the brute force
approach becomes a viable and robust alternative for
real-time visual odometry. Such an investigation is left
as an avenue of further research.

A. Proof of Theorem 2

Since it is always possible to change coordinates,
we can assume that R = R′ = I . Furthermore, we
note that if we can find points x̄ and x̄′ that satisfy the
constraints in Theorem 1 as well as

∠(x̄, x) < ε and ∠(x̄′, x′) < ε, (20)

then (by Theorem 1) we have also found our point X .
This will prove useful. Let θ̄, θ̄′, etc denote the spher-
ical coordinates of these points as defined in (8). We
assume that x̄′ is fixed and examine what constraints
we get on x̄. Recall the constraints from Theorem 1.

θ̄ < θ̄′ (21)

ϕ̄ = ϕ̄′ (22)

From (20) we have that x̄′ must lie in a small circle
aroundx′. Consequently, (22) means that x̄ must lie in
the spherical wedge shown on the left in Figure 5 and
(21) constrains it to the upper part of that wedge, as
shown on the right in Figure 5.
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8.1. Outliers

8.2. Planar Motion

8.3. Motion Segmentation

In this subsection, we apply our 3D motion seg-
mentation algorithm for rigid scenes on the Hopkins
155 database [?]. Current state-of-the-art results are
reported in [?] and all the top performers are included
in our comparison. In each sequence, there are typi-
cally 20-30 frames and a few hundred 2D feature tracks
given. The number of motions in each sequence is also
given.

Some of the sequences contain articulated motions
and hence our framework does not apply. Therefore
we focus on the subset of checkerboard sequences: 26
sequences with 3 motions and 78 sequences with 2 mo-
tions, hence 104 out of the 155 sequences are consid-
ered. Based on [?], one can conclude that the checker-
board sequences are the most difficult ones as the classi-
fication errors are significantly lower for the remaining
ones.

All of the top performing algorithms are based on
the affine camera model. Hence they are not dependent
on the internal calibration of the cameras, where as we
assume calibrated cameras. To resolve this, we just set
the principal point to the middle of the image and use
a focal length of 700 pixels for images of size 480× 640.
This is the size for all sequences, but the last one, which
has frame size 240 × 320 and consequently we halve
the focal length for this case. Note that we do not know
the true focal length, we have just found this choice to
work well empirically1.

The thresholds σ1 = 0.0003 and σ2 = 0.0015 are the
same for all sequences. Parameters for spatial regu-
larization: XXXX and XXXX. These have been found
empirically and fixed for all sequences.

We compare with the following algorithms: General-
ized Principal Component Analysis (GPCA) [?], Local
Subspace Affinity (LSA) [?], RANSAC [?], Multi-Stage
Learning (MSL) [?], Agglomerative Lossy Compression
(ALC) [?] and two variants of Sparse Subspace Cluster-
ing (SSC) [?]. There are two versions of our Brute-Force
algorithm. The first one (BF) is implemented according
to the description in Section 6 and the second one is
with the addition of a spatial prior (BF-S) as described
in Section 6.1.

In Tables 1 and 2, the misclassification rates are pre-
sented. Our brute-force algorithm achieves very low
error rates, both in terms of mean and median error
rates. Note that even though we are only using three

1In the dataset, a 3 × 3 calibration matrix is provided, but this
calibration is clearly incorrect since it has an aspect ratio of 0.75.

frames (the first, the middle and the last) in each se-
quence, we are able to obtain state-of-the-art results.
Since we are actually recovering the 3D motion, it is
very simple to add spatial regularization to the results.
Still, even without such regularization, our approach
outperforms the competitors, and with regularization,
the error rates are significantly lower.

9. Conclusions

Using a brute-force algorithm for computing the
relative orientation of two projections may seem like
a step back considering the many sophisticated algo-
rithms that have been developed over the years. But
why is it that none of the best performing algorithms
for 3D motion segmentation does not use a pinhole
camera model? This paper shows that a pinhole model
is the correct choice and the lack of perspective meth-
ods that perform well on the Hopkins 155 benchmark
is likely due to algorithmic failure modes, for example,
the incapability of handling planar scenes.

The reported running times of the algorithm are well
within the limits of being a suitable choice for many
vision applications. Of course, the full search space
cannot be used for a real-time system, but restricting
the parameter space to small motions, the brute force
approach becomes a viable and robust alternative for
real-time visual odometry. Such an investigation is left
as an avenue of further research.

A. Proof of Theorem 2

Since it is always possible to change coordinates,
we can assume that R = R′ = I . Furthermore, we
note that if we can find points x̄ and x̄′ that satisfy the
constraints in Theorem 1 as well as

∠(x̄, x) < ε and ∠(x̄′, x′) < ε, (20)

then (by Theorem 1) we have also found our point X .
This will prove useful. Let θ̄, θ̄′, etc denote the spher-
ical coordinates of these points as defined in (8). We
assume that x̄′ is fixed and examine what constraints
we get on x̄. Recall the constraints from Theorem 1.

θ̄ < θ̄′ (21)

ϕ̄ = ϕ̄′ (22)

From (20) we have that x̄′ must lie in a small circle
aroundx′. Consequently, (22) means that x̄ must lie in
the spherical wedge shown on the left in Figure 5 and
(21) constrains it to the upper part of that wedge, as
shown on the right in Figure 5.
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Figure 4.1: The constraints imposed on x̄ being the reprojection of the 3D point in first camera.
Equation (4.16) constrains x̄ to the spherical wedge (left) and (4.15) to the upper part of that wedge
(right).

But we also want ∠(x̄, x) < ε, which constrains x̄ to a small circle around x. This
means we must require the wedge from above to intersect this small circle. To complete
the proof we need to translate this constraint to a constraint in the spherical coordinates.
We get three cases.

Case 1: θ < θ′ Figure 4.2 shows the critical case. If the difference between ϕ and ϕ′

is larger than this, then the two sets have empty intersection. The limit can be computed
by considering two right-angled triangles, see Figure 4.2. Let v denote the blue angle in
that figure and v′ the yellow one. Using Theorem 3 yields,

sin v =
sin ε

sin θ
and sin v′ =

sin ε

sin θ′
. (4.17)

and if we define w = v + v′, we can write the constraint |ϕ − ϕ′| < w. Note that, if
either sin θ or sin θ′ is smaller than sin ε then w is not defined. In these cases one of the

45
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Figure 4.2: Case 1. Here the sphere from Figure 4.1 are viewed from above, i.e. the z-axis is
pointing out of the paper. The green areas show the constraints on x̄. For the two constraints to
intersect they must not be further apart than this. The left image shows the setup for computing
this limit angle.

triangles is degenerated and the intersection is non-empty regardless of the ϕ’s. One way
to describe this is to set w = π.

Case 2, θ′ < θ < θ′+2ε: Figure 4.3 illustrates the critical position. Using Theorem 2,
we can compute w,

cos θ cos θ′ + sin θ sin θ′ cosw = cos 2ε. (4.18)

θ

θ′ ) = cos 2ε

x

, x′
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Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 31.95 5.80 25.78 10.38 5.20 4.49 2.97 2.11 0.99

Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27 0.81 0.00

Table 1: Classification errors (%) for the 26 checkerboard sequences with 3 motions.

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.85 0.43

Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00 0.00

Table 2: Classification errors (%) for the 78 checkerboard sequences with 2 motions.
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ex peri mental section. In particu lar, w hen ap p lied to
3D motion segmentation, our ap proach signi ficantl y
outperfor ms state-of-the-art methods on 104 v i deo se-
quences in the H op k ins 155 d atabase [?]. N ote that
the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
of the abo v e stan d ard algorith ms.

2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
i mage point - represented by a u nit v ector - in the
fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
jj(r1x, r2x)jj

jj(r′1x′, r′2x
′)jj

=

√
1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the

2

Sunday, November 7, 2010

Figure 6: blabla
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#***

CVPR
#***

CVPR 2011 Submission #***. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ex peri mental section. In particu lar, w hen ap p lied to
3D motion segmentation, our ap proach signi ficantl y
outperfor ms state-of-the-art methods on 104 v i deo se-
quences in the H op k ins 155 d atabase [?]. N ote that
the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
of the abo v e stan d ard algorith ms.

2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
i mage point - represented by a u nit v ector - in the
fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
jj(r1x, r2x)jj

jj(r′1x′, r′2x
′)jj

=

√
1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the
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Figure 7: blabla

theorem.
Case 1. If θ < θ′ then we have the case in Figure ??.

The spherical law of sines yields

sin (ϕX − ϕ) =
sin ε

sin θ
. (21)

unless sin tha < sin ε in which case the constraint is
empty.

We get a similar constraint on ϕY − ϕ′ and if we
combine them with the triangular inequality we get,

|ϕ− ϕ′| < arcsin

(
sin ε

sin θ

)
+ arcsin

(
sin ε

sin θ′

)
. (22)

again if sin thb

Figure 8: Case 1.

Case 2. Figure ?? illustrates the case ε <θ ′ < θ <
θ′ + 2ε. Both X and Y have to lie in the intersection
of the circles. Using the spherical law of cosines, we
get an angular constraint for this intersection to be
non-empty,

cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) = cos 2ε. (23)

Figure 9: Case 2.

Case 3.
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Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 31.95 5.80 25.78 10.38 5.20 4.49 2.97 2.11 0.99

Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27 0.81 0.00

Table 1: Classification errors (%) for the 26 checkerboard sequences with 3 motions.

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.85 0.43

Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00 0.00

Table 2: Classification errors (%) for the 78 checkerboard sequences with 2 motions.
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ex peri mental section. In particu lar, w hen ap p lied to
3D motion segmentation, our ap proach signi ficantl y
outperfor ms state-of-the-art methods on 104 v i deo se-
quences in the H op k ins 155 d atabase [?]. N ote that
the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
of the abo v e stan d ard algorith ms.

2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
i mage point - represented by a u nit v ector - in the
fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
jj(r1x, r2x)jj

jj(r′1x′, r′2x
′)jj

=

√
1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the
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w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′
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su me that there are no points at in fi nit y, although the
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corresponding points. Then,
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′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
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X  ez = λRx  ez =
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


λkr′1x
′

λkr′2x
′

λkr′3x
′


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from (1) that (2) hol ds an d from F igure ?? that (3) does
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(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
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theorem.
Case 1. If θ < θ′ then we have the case in Figure ??.

The spherical law of sines yields

sin (ϕX − ϕ) =
sin ε

sin θ
. (21)

unless sin tha < sin ε in which case the constraint is
empty.

We get a similar constraint on ϕY − ϕ′ and if we
combine them with the triangular inequality we get,

|ϕ− ϕ′| < arcsin

(
sin ε

sin θ

)
+ arcsin

(
sin ε

sin θ′

)
. (22)

again if sin thb

Figure 8: Case 1.

Case 2. Figure ?? illustrates the case ε <θ ′ < θ <
θ′ + 2ε. Both X and Y have to lie in the intersection
of the circles. Using the spherical law of cosines, we
get an angular constraint for this intersection to be
non-empty,

cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) = cos 2ε. (23)

Figure 9: Case 2.

Case 3.
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Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 31.95 5.80 25.78 10.38 5.20 4.49 2.97 2.11 0.99

Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27 0.81 0.00

Table 1: Classification errors (%) for the 26 checkerboard sequences with 3 motions.

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.85 0.43

Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00 0.00

Table 2: Classification errors (%) for the 78 checkerboard sequences with 2 motions.
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ex peri mental section. In particu lar, w hen ap p lied to
3D motion segmentation, our ap proach signi ficantl y
outperfor ms state-of-the-art methods on 104 v i deo se-
quences in the H op k ins 155 d atabase [?]. N ote that
the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
of the abo v e stan d ard algorith ms.

2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
i mage point - represented by a u nit v ector - in the
fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
jj(r1x, r2x)jj

jj(r′1x′, r′2x
′)jj

=

√
1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the
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the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
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2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
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fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
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′)jj

=
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1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .
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T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
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theorem.
Case 1. If θ < θ′ then we have the case in Figure ??.

The spherical law of sines yields

sin (ϕX − ϕ) =
sin ε

sin θ
. (21)

unless sin tha < sin ε in which case the constraint is
empty.

We get a similar constraint on ϕY − ϕ′ and if we
combine them with the triangular inequality we get,

|ϕ− ϕ′| < arcsin

(
sin ε

sin θ

)
+ arcsin

(
sin ε

sin θ′

)
. (22)

again if sin thb

Figure 8: Case 1.

Case 2. Figure ?? illustrates the case ε <θ ′ < θ <
θ′ + 2ε. Both X and Y have to lie in the intersection
of the circles. Using the spherical law of cosines, we
get an angular constraint for this intersection to be
non-empty,

cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) = cos 2ε. (23)

Figure 9: Case 2.

Case 3.
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Figure 4.3: Case 2, see caption of Figure 4.2.

Case 3, θ ≥ θ′ + 2ε: In this case the intersection is empty, regardless of ϕ and ϕ′.

Theorem 15 gives us a relatively simple way to handle the constraints induced by
one point-to-point correspondence. This will be used by both methods presented in this
chapter. To get efficient methods we must not ignore that using two rotation matrices to
represent a relative orientation is an overparameterization. In fact if S is a rotation about
the z-axis, then (R,R′) and (SR, SR′) describe the same relative orientation. To see
this we assume that

λRx = X, λ′R′x′ = X − t, (4.19)

where t = (0, 0, 1) as prescribed. Now,

λSRx = SX, λ′SR′x′ = SX − St = SX − t, (4.20)
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shows that a rotation around the z axis just changes the global coordinate system. We
will soon see how to avoid this ambiguity.

To simplify the notation we introduce a function Γ that maps a given unit vector r to
a rotation matrix, Γr, having r as its third row. Of course there are many such functions
and any one of them will do. Now any relative orientation can be written as

R = SαΓr and R′ = Γr′ (4.21)

where Sα is a rotation by α about the z-axis. Hence a minimal set of parameters consists
of unit vectors, r and r′, together with an angle, α. It is worth to note that r and −r′ are
actually the epipoles of the two cameras.

Now consider the spherical coordinates in (4.8). Only ϕ depends on α. Let ϕ(r)
denote the value if α = 0. This changes the last constraint of Theorem 15 to

ϕ(r) + α ∈ [ϕ′(r′)− w,ϕ′(r′) + w]. (4.22)

4.3 An Optimal Algorithm

This section will present an algorithm for finding the largest consistent set of correspon-
dences. The algorithm is based on an explicit search for unit vectors r and r′ as defined in
the previous section. The angle α on the other hand is eliminated by considering pairs of
corresponding points. Let ϕk(r) and ϕ′k(r′) be the spherical coordinates of correspond-
ing image points and define

γjk(r) = ϕj(r)− ϕk(r). (4.23)

Then (4.22) implies that
|γjk − γ′jk| < wj + wk. (4.24)

Geometrically, γjk is the angle between two epipolar planes, see Figure 4.4. In the
noise-free case, γ′jk is exactly the same angle, so the difference should be small.

To see the connection between these pairwise constraints and Theorem 15, we need
the following lemma from Chapter 2. For the proof we refer to Lemma 5.

Lemma 16. Consider a set of intervals Ik on the unit circle such that |Ik| < 2π/3 for all
k. If the intersection Ij

⋂
Ik is non-empty for any pair (j, k) , then

⋂
k Ik is non-empty as

well.

If all pairwise correspondences fulfil (4.24) with uncertainty intervals less than 2π/3,
then Lemma 16 guarantees that there exists an angle α such that constraint (4.22) is
fulfilled for each correspondence. Together with Theorem 15 this proves the following
result.
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camera 1

r

camera 2

r’

γ

3D point

3D point

Figure 4.4: The angle between two epipolar planes.

Theorem 17. Consider two unit vectors r and r′. If all corresponding points satisfy

θi < θ′i + 2ε, (4.25)

and all pairs of correspondences satisfy constraint (4.24) with wj + wk < 2π/3, then all
correspondences are consistent with relative orientation (R,R′), whereR = SαΓr andR′ =
Γ′r. Again Sα is a rotation about the z-axis.

The additional hypothesis that the uncertainty intervals should have length at most
2π/3 is just an annoying technicality. Larger intervals would correspond to image points
very close to the epipole (within angles ε < θ < 2ε), and even if such points exist it is
very likely that the conclusion of the lemma still holds. To get around this problem one
could split long intervals and still get guaranteed convergence, but we have not found any
problem instance where this is necessary in practice.

The pairwise constraints of Theorem 17 can be analyzed using graph methods. Using
the techniques from Chapter 2 and 3 the maximum set of consistent correspondences can
be found by finding a minimum vertex cover.

4.3.1 Branch-and-Bound Search

To solve Problem 6 we will seek the optimal values for r and r′ using branch and bound.
This means that we need a method for branching, i.e. splitting a problem into subprob-
lems, as well as a method for bounding these subproblems.

Since the search space is the product space of two unit spheres, S2×S2, the branching
will be performed by dividing these spheres into smaller an smaller spherical triangles.
Figure 4.5 shows a spherical triangle, bounded by three great circles, and Figure 4.6 shows
how one triangle can be split into four smaller ones.
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Figure 4.5: A spherical triangle is a triangular
area on the sphere, bounded by great circles.

Figure 4.6: In the division step a triangle is
divided into four smaller ones by dividing its
sides at their midpoints.

For the bounding function, we will use the constraints of Theorem 17 together with
vertex cover techniques from Chapter 2 and 3 to get a bound on the number of corre-
spondences being consistent with a particular branch of the search tree. The tricky part
here is computing upper and lower bounds on the γjk’s. We need a method to answer
questions of the type: If r lies in this spherical triangle, what are the possible values of
γjk? A first observation is that it is sufficient to consider the boundaries of the spherical
triangle.

Theorem 18. Given two image points xj and xk and a spherical triangle, T , of possible
values for the epipole, r. If either ±xj , ±xk lie in the triangle then γjk can assume any
value. Otherwise the maximal and minimal values for γjk are obtained on the triangle
boundary.

To prove this claim we use an explicit formula for the angle γ (we temporarily drop
the subindex). We choose a special coordinate system such that the two image points have
coordinates (0,±a, b) and define r = (rx, ry, rz). We assume ex ≥ 0 implying γ ≥ 0.
Let us first compute the normals of the two epipolar planes,

r × xj =




bry − arz
−brx
arx


 , r × xk =




bry + arz
−brx
−arx


 . (4.26)

Then consider their scalar product,

b2r2y − a2r2z + b2r2x − a2r2x = cos γ

(√
(bry − arz)2 + r2x

√
(bry + arz)2 + r2x

)
.

(4.27)
The fact that r2x + r2y + r2z = 1 and some simple calculus yield

r2y − a2 + b2r2x = 2abrx cot γ. (4.28)
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Proof. We start with the case case rx > 0. We will show that γ as a function of the
epipole has no local extrema and hence minimal and maximal values of γ are attained on
the boundary. Since cotangent is a strictly monotone on (0, π) it is sufficient to show
that

g(rx, ry) = 2ab cot γ =
r2y − a2 + b2r2x

rx
(4.29)

has no local extrema in the set D = {r2x + r2y ≤ 1; rx > 0}. We first note that g′y = 0
only if ry = 0 and that g′x = 0 implies

0 =
2b2r2x − r2y + a2 − b2r2x

r2x
=
b2r2x + a2

r2x
, (4.30)

which is never satisfied. It remains to examine the boundary δD. If r2x + r2y = 1 we get

h(rx) = 2ab cot γ =
1− r2x − a2 + b2r2x

rx
=
b2 − a2r2x

rx
=
b2

rx
− a2rx (4.31)

h′(rx) = − b
2

r2x
− a2 (4.32)

which is never zero. Finally the end point rx = 1, while being a local minimum to h
is not an not an extremum to g. To see this note that h′(rx) is negative, whereas g′x is
positive.

This completes the proof for rx > 0 and rx < 0 can be handled with an almost
identical proof. It remains to consider the set rx = 0. This is a great circle through the
points xj and xk. Let ` be the part of this great circle that lies inside T . It is easy to see
that γ is either 0 or π on this great circle and that the value changes at ±xj and ±xk.
Thus if none of these points is in T , then γ is constant on ` so any value attained on ` is
also attained on δT ∪ `. This completes the proof.

Theorem 18 means that to find upper and lower bounds for γjk, it is sufficient to
consider the case when r lies on the boundary of a specific spherical triangle. Since the
boundary consists of great circle arcs, we need to be able to compute upper and lower
bounds for γjk when r moves on a great circle arc. Several techniques to do this has been
tested, mainly based on setting up a system of polynomial equations. As often, one of the
simplest turned out to be the most effective.

Consider a great circle parameterized by a single angle ξ. Let di be the angular dis-
tance from image point i to this great circle. We can compute γij by first computing
the angle relative to the great circle for each image point, see Figure 4.7, and take the
difference between these angles. Hence we first compute,

ϕj(ξ) = ± arccot (sin ξ cot dj), (4.33)
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ξ

d ϕ epipole

image point

Figure 4.7: We first compute angles to the great circle and then take pairwise differences to yield
the epipolar plane angles γij = ϕi − ϕj .

where the formula follows from Theorem 2 and 3 applied to the right-angled triangle in
Figure 4.7. The sign in (4.33) depends on which side of the great circle the image points
lies. By subtracting two such angles, we get

γjk(ξ) = ± arccot (sin ξ cot dj)± arccot (sin (ξ + βk) cot dk). (4.34)

Still at least two problems remain. First of all, finding the maximum and minimum values
of (4.34) generally require solving a sixth degree polynomial equation. Furthermore, the
number of functions to optimize is quadratic in the number of correspondences (since we
are considering all pairs). To address both these problems we compute simple under- and
overestimators for ϕi. These can then be used to produce under- and overestimators for
the γjk’s in the first image (and similarly for γ̄jk in the second image). This avoids the
difficult optimization of γjk and most work is performed on the ϕj ’s and is thus linear
in the number of image points.

Simple under- and overestimators for a C3 function ϕ(ξ) can be derived from the
standard Taylor expansion. If

m ≤ δ2ϕ

δξ2
≤M, (4.35)

then

ϕ(ξ) ≥ ϕ(ξ0) + (ξ − ξ0)
δϕ

δξ
(ξ0) +

(ξ − ξ0)2

2
m

ϕ(ξ) ≤ ϕ(ξ0) + (ξ − ξ0)
δϕ

δξ
(ξ0) +

(ξ − ξ0)2

2
M. (4.36)

For m and M we will use conservative bounds based on the characteristics of trigono-
metric functions; e.g. | sin(x)| ≤ 1. In many cases these will show that γjk is in fact
monotonic on the interval in question. In these cases it is sufficient to consider the end-
points (i.e. corners of the spherical triangle) and computations are very easy. Otherwise
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we use the upper and lower bounds given by (4.36). Note that the approximation error
decreases quadratically with the diameter of the triangles.

Algorithm 10 gives an overview of the approach. Let us quickly go through the dif-
ferent steps. To initiate the branch and bound search we divide the search space S2 × S2

into 64 starting blocks. A block here is a pair of spherical triangles indicating the posi-
tions of r and r′. We also need a bound on the optimal solution. This is a starting guess
for the number of outliers of the optimal solution and will be updated as the algorithm
progresses. If the starting guess is too low the algorithm is restarted with a higher value.

Algorithm 10 Optimal Relative Orientation

Iterate until desired precision is reached:
1. Pick a box from the queue.
2. Try to detect and remove outliers.
3. Try to discard the box.
4. If the box cannot be discarded:

- Divide the box and update the queue.
- Try improve the bound on the optimum.

5. Remove the box from the queue.

Finally a word on updating the bound on the optimum, that is, finding better and
better solutions. We do this by considering the centres of those boxes that could not be
discarded. For these points we compute the constraints exactly and count the number
of outliers. As the boxes get smaller and smaller, the optimal number of outliers will
eventually be found.

4.3.2 Experiments

The algorithm was implemented in C++. Running times are for a 3.0 GHz Intel Dual-
Core with 3 GB RAM.

The algorithm was evaluated on images from the Valbonne Church data set1. From
the 15 images all pairs were formed. SIFT features were extracted and matched. The
matching criterion of [58] was used with a threshold of 0.6; cf. Section 1.2.

The threshold was set to 0.0005 radians and the starting guess for the number of
outliers to 5. The algorithm was terminated if the gap between lower and upper bound
was less than 3 or if the average uncertainty of the epipole was less than 2 degrees.

The algorithm was also tested on the omnidirectional images used in [40]. Among
other things, execution times depended on the distance between the cameras. This is
natural since estimating the epipole - being the direction of translation - is difficult when
the length of the translation is very small; cf. Chapter 6.

1The Valbonne data set was provided by ROBOTVIS, INRIA.
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Figure 4.8: Example images from the Valbonne
Church data set.
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Figure 4.9: Execution times for the Valbonne data
set. Between 10 and 100 points in each experi-
ment (on average 64). Around 5% outliers.

For these experiments the error threshold was set to 0.002 radians and the starting
guess for the number of outliers was initiated to 5. If there was no solution for the current
threshold was increased with 5 until a solution could be found.
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Figure 4.10: Execution times for the ladybug data set. Between 20 and 100 points in each ex-
periment (on average 64). Around 10% outliers. Blue indicates camera pairs with a large camera
distance and red the more difficult short distance cases.

4.4 A Brute-Force Algorithm

In this section we will look at algorithm that works with a discretization of the parameter
space. First, we rewrite (4.22) as a constraint α ∈ [αlo, αup], where

αlo = ϕ′(r′)− ϕ(r)− w
αup = ϕ′(r′)− ϕ(r) + w. (4.37)

Each correspondence yields an interval of this kind. Sorting the lower and upper bounds
of all such intervals, makes it easy to find a point that lies in as many intervals as possible,
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see Algorithm 12.
The proposed algorithm is a brute force search over a discretized version of S2 × S2.

For every choice of (r, r′) ∈ S2 × S2, lower and upper bounds on α are computed
and sorted, allowing the maximal number of inliers to be found. Algorithm 11 gives an
overview of the different steps. The complexity will be O(k2m log(m)) where k is the
number of points in the discretization of S2 and m is the number of correspondences.

Remark. As it matters only rarely and complicates the description, we ignore case (4.12) of
Theorem 15 in the computation of w. Thus w can always be divided into

w = v + v′ (4.38)

where v does not depend on x′ and v′ does not depend on x.

Algorithm 11 Brute-Force Search

For a given level of discretization and error threshold ε, a relative orientation having the
maximal number of inliers nmax is computed.

Compute a discretization, D of S2.
For each r ∈ D

For each x
Compute ϕ(r), θ(r) and v(r).

For each x′

Compute ϕ′(r), θ′(r) and v′(r).
Put nmax = 0
For each pair (r, r′) ∈ D ×D

For each correspondence (x, x′)
If θ′(r′) + ε > θ(r)− ε

Compute w = v(r) + v′(r′).
A lower bound αlo = ϕ′(r′)− ϕ(r)− w.
An upper bound αup = ϕ′(r′)− ϕ(r) + w.

Find the max intersection n, using Algorithm 12.
If n > nmax

Store the current parameters.
Set nmax = n.

4.4.1 Parallel Implementation

Naturally, the biggest concern about a brute-force algorithm lies in its computational per-
formance. However, studying Algorithm 11 we note that the computations for different
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Algorithm 12 Maximal Intersection

Given lower bounds L and upper bounds U , a point is found that lies in as many intervals
as possible. Outputs the number of intersecting intervals, n and the point.

Sort L and U .
Initialize j = 1 and n = 0.
For i ∈ {1, . . . , |L|}

While Uj < Li
Increase j = j + 1.

If i− j > n
Store Li.
Set n = i− j.

pairs (r, r′) are independent, so we can easily parallelize the algorithm by a MapReduce
model: In the Map step, the lower and upper bounds are sorted simultaneously and then
intersections are computed simultaneously for all pairs (r, r′). In the Reduce step, the
pair (r, r′) that yields most inliers is picked out by reduction operations.

Nvidia’s parallel computing architecture, CUDA, was used for the parallel implemen-
tation. Algorithm 12, was implemented in a 2-dimensional grid with k by k blocks,
where k is again the number of points in the discretization. Each block executes the
computation for one pair of epipoles, (r, r′). Inside each block, a parallel bitonic sorting
algorithm with complexity O(n log(n)2) is implemented since it is especially suited for
sorting within a block using shared memory. To find the maximum intersection, each
thread goes through the upper bound list to find the maximal intersection for the current
lower bound. This is done using binary search.

In the end, the parallel implementation yields an up to 30 times speedup compared
with the serial implementation, making the performance of our algorithm quite practical.
To make sure global memory access coalescing, we pad the lower and upper bounds with
dummy values. Constant memory is used to store the epipoles during the computation
of spherical coordinates. This works to reduce global memory latency.

4.4.2 Experiments

For the testing we primarily used the GPU implementation. Timings are for 3GHz Core2
Duo with 8GB Memory with an NVidia Tesla 2050 with 3GB global memory.

To get some data on the execution times, synthetic data was generated. First 100
random 3D point were generated in a cube centered at the origin, having side 300. The
cameras were placed randomly at distance of approximately 1000. Gaussian noise with
standard deviation 0.0002 was added to the image points. Figure 4.11 shows angular
errors in rotation and translation when compared to the ground truth. The threshold
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ε = 0.005 was used with different degrees of discretization.
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Figure 4.11: The plot shows errors for different discretizations. The error in rotation is shown in
red and the error in translation is shown in blue.
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Figure 4.12: Execution times for different discretizations. Starting from below the curves were
generated using 700, 1258, 1976 and 2862 points in the discretization of the unit sphere, S2.

High rate of outliers. To test the proposed algorithm on data with a lot of outliers,
synthetic data was generated in the following way. First 50 random 3D point were gener-
ated in a cube centered at the origin, having side 100. The cameras were placed randomly
at distance of approximately 1000. Then 450 outliers were added to each image. They
were generated in the same way as the inliers but separately for the two images. Gaus-
sian noise with standard deviation 0.0002 was added to the image points. Figure 4.13
shows how many of the 50 inliers were found by the proposed algorithm. The threshold
ε = 0.0005 was used in the algorithm and the average computation time for the parallel
implementation was 6s.

The outlier rate in these experiments was 90%. This means that using standard
RANSAC and a five-point solver, the expected number of iterations before picking just
one single set with 5 inliers is 100 000 and using reprojection errors that also means
performing 50 million triangulations.
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Figure 4.13: The obtained number of inliers for the 50 outlier experiments. The list was sorted for
better visualization. In each example there were originally 50 inliers and 450 outliers. The error
threshold was ε = 0.0005 and 1976 points were used in the discretization of the sphere.

4.5 Restricted Motions

One advantage of the suggested brute-force approach to relative orientation estimation is
that restricted motions can be handled easily. In this section we present a few standard
restrictions and discuss how they can be enforced.

Planar motion. If the rotation axis is known and perpendicular to the translation, this
can be used in the following way. Let f be the rotation axis. We get the following
constraints,

rf = 0, r′f = 0 and α = 0. (4.39)

The first two constraints can easily be enforced in the discretization step. Only epipoles
in these planes are generated. The third constraint reduces the set of angles that has to be
considered in Algorithm 12.

Small motion. In tracking applications, the motion between consecutive frames is gen-
erally small. This can easily be enforced by adding constraints

∠(r3, r
′
3) < γmax and α < αmax. (4.40)

These constraints reduce the number of pairs that have to be considered in Algorithm 11.

Experiments. The performance on planar scenes was tested on 64 image pairs from
eniro.se. These are street-view images taken from a car so the motion is approximately
planar. Since the images are given with direction information we could compute the
deviation between the estimated rotation matrix and the ground truth. This deviation in
radians is given in Figure 4.14. The results were produced using 100 points to discretize
the unit circle and a threshold of 0.0005. The average execution time was 0.47 s for a
sequential java implementation.
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Figure 4.14: Angular error when comparing with the ground truth rotation. The data has been
sorted for visualization purposes.

4.6 Other Cost Functions

So far we have simply counted the number of inliers to assess the quality of a relative
orientation. Inliers are correspondences with the reprojection errors less than some pre-
scribed threshold, ε. This approach is simple and generally yields good results, but it does
have its limitations; see [42]. One problem is that the method might be sensitive to the
choice of ε, but also that the distribution of the inlier errors is not considered. In [9] a
more refined cost function is proposed. The assumption is that correct matchings have
a clock-shaped error distribution similar to the Gaussian distribution, whereas incorrect
matchings have approximately uniformly distributed errors. These assumptions lead to
the cost function

C(d) = − log
(
c+ exp (−d2)

)
(4.41)

where d is the reprojection error, see Figure 4.15. In the same book it is noted that an good
approximation of this cost function can be obtained by truncating the ordinary squared
error. A cost function of this kind cannot be handled directly by the proposed method,

0
0

Reprojection error

C
o

s
t

Figure 4.15: The robust cost function (red) suggested in [9], and a piecewise constant approxima-
tion of it (blue) which can be optimized using the proposed framework.
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but one can approximate the function to arbitrary precision. An example of such an
approximation is shown Figure 4.15. As the reprojection error increases it changes value
three times. This means that when computing w in Algorithm 11, we should do so for
three thresholds ε1, ε2, ε3. Consequently each correspondence will yield three intervals
I1 ⊂ I2 ⊂ I3 - one for each time the value of the cost function changes. The different
types of intervals also get a weight indicating how much the cost function changes when
entering this interval.

This means that in Algorithm 12 we get three lists of lower bounds L1, L2 and L3

and similarly for the upper bounds. The different lists are sorted separately and then gone
through like before. Passing a lower bound from Li, weight wi is subtracted from the
current cost, and passing an upper bound from Ui the same weight is added. The com-
putational cost will be approximately linear in the number of steps in the cost function.

To verify the possibility of using other cost functions we tried it on some random
data generated as described above. Using the appoximated truncated L2 norm in the way
described in Section 4.6 the rotational error decreased from the average 0.17 radians to an
average of 0.11 radians. This was using 1100 points in the discretization. The threshold
for the standard method was ε = 0.005 and the thresholds for the approximate truncated
L2 was set to ε/2, ε, 3ε/2 and 2ε.

4.7 Motion Segmentation

To examine how well the brute-force algorithm works in practice, it was tried in a simple
system for motion segmentation. Given a sequence of images of multiple moving objects,
the aim of motion segmentation is to estimate all these motions as well as the motion of
the camera. Moreover, each detected feature point should be classified as belonging to
one motion.

Algorithm 13 Multiple Motions

Given two views A and B with multiple moving objects and point tracks T , N hypo-
thetical motions are estimated. An extra view C is used to validate motions.

Repeat N times
SetH = T .
For the view pairs (A,B), (A,C), (B,C)

Estimate relative orientation usingH and threshold ε1.
Remove tracks with error larger than ε2 fromH.

Reestimate a relative orientation between A and B using
H and threshold ε1. Store this solution.
Set T = T \ H.
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Like much of the work in this field, we assume that the number of motions is known.
For the discussion let us assume that this number is three. A seemingly straightforward
approach to segmentation would be to keep track of the top three motions in our brute-
force search, but this turns out be difficult in practice. The peaks in the relative orienta-
tion space are rather flat and it is hard to distinguish different motions.

Therefore, we proceed in a sequential manner using Algorithm 3. The first step is
to estimate N hypothetical motions. This is done in a sequential manner, using Algo-
rithm 13. Typically, N is chosen significantly larger than the true number of motions not
to miss any motion. The next step is to choose three of these N motions to perform the
motion segmentation. We do this by going through all possible choices of three motions
and choosing choosing the ones that yield the lowest number of outliers. Just as in Al-
gorithm 13 outliers are tracks having an error larger than ε2. Having decided on three
motions we match each point track to that motion which yields the smallest errors.

The classification obtained in this manner can be refined by standard bundle adjust-
ment. Details are given in the experimental section.

4.7.1 Adding a Spatial Prior

To further improve the motion segmentation results, we tried using a spatial prior assum-
ing that close points probably belong to the same motion. We formulate the spatial prior
in an energy minimization framework with a data term and a smoothness term,

C(x) =
∑

p∈V
Cp(xp) + λ

∑

(p,q)∈E
Cpq(xp, xq). (4.42)

Here G = (V,E) is an undirected graph. The set of nodes V corresponds to the
point tracks and xp denotes the label of node p. The edgesE describes the neighborhood
relationship. We use the reprojection error of point p as data term Cp(xp) and define the
smoothness term as,

Cpq(xp, xq) =

{
0 if xp = xq
dmax−d(p,q)

dmax
if xp 6= xq

(4.43)

where d(p, q) denotes the Euclidean distance of point p and q and dmax is a threshold
to define the size of the neighborhood. If d(p, q) < dmax, then (p, q) ∈ E. This
smoothness term will penalize the case when two points lie close to each other but be-
long to different motions. The constant λ determines the balance between the data and
smoothness term. Energy minimization was performed using α-expansions; see [13].

4.7.2 Results for Hopkins 155

We will now look at the performance of this 3D motion segmentation algorithm for rigid
scenes from the Hopkins 155 database [85]. Current state-of-the-art results are reported
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Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S

Mean 31.95 5.80 25.78 10.38 5.20 4.49 2.97 2.11 0.99
Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27 0.81 0.00

Table 4.1: Classification errors (%) for the 26 checkerboard sequences with 3 motions.

in [27] and all the top performers are included in the comparison below. In each sequence,
there are typically 20-30 frames and a few hundred 2D feature tracks given. The number
of motions in each sequence is also specified.

Some of the sequences contain articulated motions to which the presented framework
does not apply. Therefore we focus on the subset of checkerboard sequences, 26 sequences
with 3 motions and 78 sequences with 2 motions, hence 104 out of the 155 sequences
are considered. Based on [27], one can conclude that the checkerboard sequences are
the most difficult ones as the classification errors are significantly lower for the remaining
ones.

All of the top performing algorithms are based on the affine camera model. Hence
they are not dependent on the internal calibration of the cameras, whereas we assume
calibrated cameras. To resolve this, the principal point is set to the middle of the image
and the focal length to 700 pixels for images of size 480 × 640. This is the size for all
sequences, but the last one, which has frame size 240 × 320 and consequently we halve
the focal length for this case. Note that the true focal length is unknown, so the chosen is
only empirically motivated2.

The thresholds ε1 = 0.0003 and ε2 = 0.0015 are the same for all sequences. Param-
eters for spatial regularization: λ = 1.66 × 10−4 and dmax = 0.04. These have been
found empirically and fixed for all sequences.

We compare with the following algorithms: Generalized Principal Component Anal-
ysis (GPCA) [89], Local Subspace Affinity (LSA) [90], RANSAC [30], Multi-Stage Learn-
ing (MSL) [77], Agglomerative Lossy Compression (ALC) [59] and two variants of Sparse
Subspace Clustering (SSC) [27]. There are two versions of our brute-force algorithm.
The first one (BF) is implemented according to the description in Section 4.7 and the
second one is with the addition of a spatial prior (BF-S) as described in Section 4.7.1.

In Tables 4.1 and 4.2, the misclassification rates are presented. Our brute-force algo-
rithm achieves very low error rates, both in terms of mean and median error rates. Note
that even though we are only using three frames (the first, the middle and the last) in
each sequence, we are able to obtain state-of-the-art results. Since we are actually recov-
ering the 3D motion, it is very simple to add spatial regularization to the results. Still,
even without such regularization, our approach outperforms the competitors, and with
regularization, the error rates are significantly lower.

2In the dataset, a 3× 3 calibration matrix is provided, but this calibration is clearly incorrect since it has an
aspect ratio of 0.75.
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Ground truth Brute force

Spatial prior

Figure 4.16: Example frame from one sequence with ground truth (left), brute-force (middle) and
brute-force with spatial prior (right). The colors of the feature points indicate which motion class
(blue, yellow, red). Feature points that are misclassified have been colored cyan (see middle figure).
Note that the spatial prior is able to correct for all the errors.

4.8 Discussion

Using a brute-force algorithm for computing the relative orientation of two projections
may seem like a step back considering the many sophisticated algorithms that have been
developed over the years. But why is it that none of the best performing algorithms

62



4.8. DISCUSSION

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S

Mean 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.85 0.43
Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00 0.00

Table 4.2: Classification errors (%) for the 78 checkerboard sequences with 2 motions.

for 3D motion segmentation uses a pinhole camera model? The results presented here
shows that a pinhole model is the correct choice and the lack of perspective methods that
perform well on the Hopkins 155 benchmark is likely due to algorithmic failure modes,
for example, the incapability of handling planar scenes.

The reported running times of this brute-force algorithm are well within the lim-
its of being a suitable choice for many vision applications. Of course, the full search
space cannot be used for a real-time system, but restricting the parameter space to small
motions, the brute force approach becomes a viable and robust alternative for real-time
applications.
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Chapter 5

Outliers and Quasiconvexity

In Chapter 1 we saw that a number of L∞ optimization problems in multiple view
geometry can be solved in polynomial time. But what happens if there are outliers among
the correspondences? How hard is it to find the optimal solution with respect to the
number of outliers? In this chapter we will see that in many cases the optimum can still be
found in polynomial time. Unfortunately, the degree of the polynomial is quite high, so
the polynomial-time algorithms are often too slow to use in practice. Still the result gives
valuable theoretical insights. It helps us to understand why RANSAC is so successful for
many applications. Also, it has given us guidelines for designing an alternative approach.
Given a candidate solution, we present a procedure to verify whether this solution is
optimal or not. This verification procedure can be seen as a guided search; either the
candidate is verified or a better solution can be found.

In summary, we will show that many registration and reconstruction problems can be
solved in polynomial time with a guarantee of global optimality. We derive practical al-
gorithms for simultaneously (i) computing the optimal transformation and (ii) separating
inliers from outliers. Still, there are some limitations to this framework. It is required that
the residual errors as functions of the unknown transformation variables are quasiconvex;
see Section 1.3.1. This is a weaker condition than convexity, but it does exclude most of
the problems discussed in Chapters 2-4. Another weakness is that the proposed approach
becomes computationally expensive when there is a large portion of outliers, say more
than 80%. Typically, solutions with more than 50% inliers are sought for, and if there are
no such solutions, then the method will report this.

5.1 Related Work

There is a large body of work on solving matching and registration problems [8, 6, 72,
87, 91]. For example, in [6, 51], the matching problem is formulated as an integer
program and then solved by non-optimal methods. In [60], the correspondence problem
is cast as an assignment problem and can thus be solved optimally. Matching problems
have also been solved using ideas based on the Hough transform and branch-and-bound
[67, 17, 46]. Perhaps the most popular paradigm is to use RANSAC [30] which has proven
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to be successful in many practical situations. Our approach leverages on this idea to
generate good candidates for global solutions. However, there are important differences.
First of all, RANSAC gives no guarantee of optimality. Another problem is that if RANSAC

returns an poor result, then it is unclear whether there is no better solution or whether
RANSAC was just unable to find it. With our scheme, we can provide a certificate that
there is no subset with, say, more than 50% inliers.

Recently, there has been a renewed interest in multiple view geometry problems aimed
at optimal algorithms; cf. Section 1.3.1. Using the max-norm, it has been shown that
many such problems can be efficiently solved using convex optimization. The problem of
outliers has also been addressed in this context. In [50], a heuristic, non-optimal method
is used to remove outliers. In [74], it is shown how to remove outliers but the method
tends to remove a lot of inliers as well.

The work that is most closely related to this is [54], which can be seen as a refinement
of [74] as actual outliers are detected and removed. This algorithm, can also be used
for computing optimal solutions in polynomial time. Still, the work differs in severals
aspects. For one thing, with the new approach the residual functions are not required to
be strictly quasiconvex but only quasiconvex; cf. [74]. Moreover, the method in [54] is
hardly practical except for very low number of outliers, whereas the verification scheme
presented in this chapter can handle up to 50% outliers.

In computational geometry, there is a long tradition of providing performance bounds
for different types of geometric optimization algorithms; see [1] for a survey. Some of the
terminology and ideas in this chapter is borrowed from that research community.

5.2 Problem Formulation

The problem formulation is the same as in Chapter 2, but repeated for the reader’s con-
venience.

Definition 5. Consider two point sets, {xi} and {yj}, a set of correspondences H and a
transformation T . If H is one-to-one and

d(T (xm), yµ) ≤ ε, (5.1)

for all (m,µ) ∈ I , we say that H is ε-consistent with T .

Here, d refers to an appropriate metric. The problem that we want to solve is the
following.

Problem 7. Given two point sets and a set, H , of hypothetical correspondences between the
point sets, find a subset I ⊂ H maximizing |I| subject to I being ε-consistent with some
transformation T of a specified class T .
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From now on we will assume that the transformation can be parameterized with a
vector t ∈ Rn. We also assume that the correspondence set is one-to-one and numbered
such that xi corresponds to yi. Then errors can be written as ri(t) = d(Tt(xi), yi).
Finally, we will assume that these residual functions are quasiconvex. This is true for
many problems in multiple view geometry; see Section 1.3.1 and [49]. We look at an
example that will fit with the framework.

Example: 2D similarity transformation. The source points xi are mapped to the target
points yi by a similarity transformation γRxi+c. This transformation can be parameterized
with four parameters,

γR =

(
r1 r2
−r2 r1

)
, c =

(
c1
c2

)
. (5.2)

As residual error we use the standard 2-norm d(γRxi + t, yi) = ||γRxi + c − yi||. It is
easy to prove that this is a convex function of r and c.

5.3 Preliminaries

Since each correspondence in Problem 7 is linked to a residual function, we might as well
consider sets of residual functions. The following definition will play an important role
in the analysis.

Definition 6. Given a set, S, of quasiconvex residual functions ri(t), we define

e(S) = min
t

max
ri∈S

ri(t). (5.3)

Since the residual functions are quasiconvex, this function can be computed effi-
ciently. Hence a brute-force solution to Problem 7, would be to perform an exhaustive
search over all subsets of H , compute e(S) for each subset and check whether it is less
than ε. However, the number of subsets is exponential so this approach normally not very
practical. The following definition comes from computational geometry; cf. [1].

Definition 7. Let S be a set of residual functions. A subset B ⊂ S is a basis set of S, if
e(B) = e(S) and for any proper subset B′ ⊂ B, we have e(B′) < e(B).

The combinatorial dimension of a set S is the maximum size of a basis of S. The
following theorem states that if the residual functions are quasiconvex, then the combi-
natorial dimension is always relatively small. Essentially the same proof can be found in
[54].

Theorem 19. Let S be a set of quasiconvex residual functions ri : Rn → R+. If |S| > n+1
then there exists B ⊂ S with |B| = n+ 1 and e(B) = e(S).
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Proof. Let B1, . . . , BK be an enumeration of all subsets of S with size n + 1. Assume,
for contradiction, that

α = max e(Bk) < e(S). (5.4)

By Definition 7, this implies that the following set is non-empty
⋂

ri∈Bk

{t : ri(t) ≤ α} (5.5)

for any k. Note that the intersecting sets are sublevel sets of quasiconvex functions, so
they are convex. Thus Helly’s theorem implies that

⋂

ri∈S
{t : ri(t) ≤ α}, (5.6)

is non-empty as well, but by Definition 7 this implies that α ≥ e(S), which contradicts
(5.4).

One implication of this theorem is that S cannot be a basis set, so the combinatorial
dimension for this type of problems is bounded by n+ 1.

5.4 A Polynomial-Time Algorithm

This section will show that the optimal solution to Problem 7 can be found in polynomial
time. Let S∗ be the set of residuals corresponding to the optimal set of correspondences
of Problem 7. Now consider the set of transformations that is ε-consistent with S∗. This
set can be written as an intersection of the sublevel sets of all functions in S∗,

⋂

ri∈S∗
{t : ri(t) ≤ ε}. (5.7)

Finding any transformation in this set would solve Problem 7. Since it does not matter
which one, we can add a goal function without changing the problem. This makes the
solution unique.

Lemma 20. Consider a set, S, of continuous quasiconvex residual functions, ri(t). Then
there is a unique point in ⋂

ri∈S
{t : ri(t) ≤ ε}. (5.8)

with minimal norm, |t|. We denote this point t∗(S).

Proof. It is well-known that in a closed convex set there is a unique point with minimal
norm; see e.g. [7]. Hence we need to prove that the set in (5.8) is closed and convex.
First we note that the ri’s are continuous functions so the sublevel sets in (5.8) are closed.
Moreover, the ri’s are quasiconvex, so the sublevel sets are convex. Finally, the intersection
of closed convex sets is closed and convex. This completes the proof.
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The next theorem shows that we can find t∗(S) for a large set by considering a rela-
tively small subset.

Theorem 21. Let S be a set of continuous quasiconvex residual functions defined on Rn. If
t∗(S) is defined, then there is a subset ofB ⊂ S with |B| ≤ n+1 such that t∗(B) = t∗(S).

Proof. Let B1, . . . , BK be all subsets of S with size n + 1. Assume, for contradiction,
that |t∗(Bk)| < |t∗(S)| for every Bk. Hence, assume that

a = max
k
|t∗(Bk)| < |t∗(S)|. (5.9)

This implies that for any k

{t : |t| ≤ a}
⋂( ⋂

ri∈Bk

{t : ri(t)}
)
6= ∅. (5.10)

Note that all the sets in (5.10) are convex and that (5.10) implies that any intersection of
n+ 1 of them is non-empty. Hence, Helly’s theorem implies that

{t : |t| ≤ a}
⋂( ⋂

ri∈S
{t : ri(t)}

)
6= ∅ (5.11)

as well, which means that |t∗(S)| ≤ a. This is a contradiction so the assumption in (5.9)
must be wrong. Thus we have proven that |t∗(S)| ≤ |t∗(B)| for some subset, B, with
|B| = n + 1. However, t∗(S) is feasible for any subset of S, so the unique minimizer
t∗(B) must be identical to t∗(S); cf. Lemma 20.

Remark. A similar result is given in [55] for pseudoconvex functions. However, they assume
that the minimizer of (5.3) is always unique. This is not true in general for pseudoconvex
functions. The same mistake was made in the conference version of this work.

Algorithm 14 Polynomial-Time Outlier Removal

Given a set, S, of continuous quasiconvex residual functions, defined on Rn, solve Problem 7.

For each subset, B ⊂ S of size n+ 1.
Compute t∗(B).
Compute all residuals ri(t∗(B)) and count the outliers.
If this is the lowest number of outliers so far, save t∗(B).

Theorem 21 means that we can use Algorithm 14 to solve Problem 7. Unlike the
brute-force solution, Algorithm 14 only considers subsets of size n + 1. There are
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O(|S|n+1) such sets. For each of them t∗ is computed, but this can be done efficiently us-
ing convex optimization. Then all residuals are computed which has complexity O(|S|).
Hence the algorithm has complexity O(|S|n+2), so it is polynomial in the number of
residuals, but exponential in the dimension of the parameter space. For the problems that
we are considering, that dimension is fixed, so it is natural to call it a polynomial-time
algorithm.

5.5 Verifying Optimality

Even though Algorithm 14 is polynomial it is hardly practical for real problems. Thus
we look at a dual approach. It turns out that it is possible to transform Problem 7 into a
purely combinatorial problem. To do so, let B1, . . . BK be all sets of exactly n + 1 cor-
respondences. For each Bk we determine if it is ε-consistent; see Definition 5. We then
create a hypergraph in the following way. Make a vertex in V for each correspondence
and create a edge for each Bk that was not ε-consistent. Theorem 19 tells us that a set
of correspondences is ε-consistent if all its n + 1-subsets are ε-consistent. Thus solving
Problem 7 is equivalent to finding a minimum vertex cover for the hypergraph that we
just constructed.

Clearly, this result is not very practical in itself. Not only is vertex cover for hyper-
graphs an NP-hard problem, but even setting up the graph requires solving O(mn+1)
convex feasibility problems. However, if we already have a strong solution, we can use
methods from graph theory to verify that this solution is in fact the global optimum, or
get a better solution.

To find candidate solutions, we use the popular RANSAC method; see Section 1.2.
Its wide use in a variety of applications tells us that the method is often effective in
finding a good solution. We use RANSAC to generate a first candidate solution I that is ε-
consistent with some transformation. Then we try adding correspondences fromH \I to
this set. When no more correspondences can be added without violating consistency, we
say that we have reached a local optimum. At this point we will be in one of the following
situations.

- The optimal solution has been found and it has a high rate of inliers.

- There is no candidate solution with a high rate of inliers.

- The optimum has a high rate of inliers but it has not been found yet.

This section will describe algorithms to verify that the solution we have found is in
fact the global optimum, if this is true, and show how the same algorithms can be used
in the case when no good solution has been found. The algorithms can be seen as crude
approximation algorithms for the vertex cover problem discussed above.

Starting from a set of hypothetical correspondences, H , assume that we have found
a local maximum, i.e., a set I0 ⊂ H that is ε-consistent. Since it is a local maximum,
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no more correspondences can be added to I0. We wish to prove that I0 is optimal in
the sense of (7) or find a better candidate set. To verify that we have found the global
optimum, we need to reject the hypothesis that there exists a set I∗ that is ε-consistent
with some transformation such that |I∗| > |I0|.

We say that a correspondence i is an I0-outlier if I0
⋃{i} is not ε-consistent. Our

strategy to prove the optimality of I0 is to show, for each I0-outlier, that it cannot lie
in I∗. Algorithm 15 shows the basic principle. Recall that n is the dimension of the
parameter space; cf. Theorem 19.

Algorithm 15 Discarding a correspondence.

Let i be an I0-outlier.
Let L be the number of detected inconsistencies.
Initialize L = 0.
Divide H \ {i} into disjoint Hk with |Hk| = n.
For each Hk

Perform a feasibility test for Hk ∪ {i}.
If the test fails set L = L+ 1.

If L > |H \ I0|
Set H = H \ {i}.

The last step can be motivated as follows. If a set Hk is not consistent with i, then
i ∈ I∗ implies that at least one correspondence from Hk is not in I∗. Since the Hk’s are
disjoint, the number of inconsistencies gives a lower bound on the number of I∗-outliers
given that i ∈ I∗. If this bound is higher than the number of I0-outliers, we can conclude
that i /∈ I∗.

Note the similarities between this algorithm and Algorithm 7 in Chapter 3. In that
case we were attacking the vertex cover problem for a normal graph, whereas in this case
we are dealing with a hypergraph.

Algorithm 15 is simple, but it only works for relatively small rates of outliers. We get
approximately |H|/n sets Hk, so we can verify I0 must have less than |H|/n outliers.
Naturally we would like to improve this performance without having to do an exhaustive
search. This can be done by choosing non-disjoint sets. In this way it is possible to gen-
erate more test sets. As the number of outliers grows the problem becomes more difficult
until eventually it requires testing all sets of size n + 1, in which case the polynomial
algorithm from the previous section is preferable.

A rather general approximation method is the following modification of Algorithm 15.
Divide H into disjoint sets Hk of size n+ d. For each Hk form all subsets of size n, de-
noted Hk,j . Now we check which of the sets Hk,j that are consistent with i. The results
tell us something about how many elements of Hk must be I∗-outliers provided that
i ∈ I∗.
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- If no subsets of Hk are consistent with i at least d + 1 elements of Hk must be
I∗-outliers provided i ∈ I∗.

- If less than
(
n+f
f

)
of the sets are consistent at least d+1-f of the elements of Hk

must be I∗-outliers provided i ∈ I∗.

Remark. It is not necessary to have a candidate solution to start off with. The same algo-
rithm can still be applied to prove a statement of the type |I∗| < γ|H| for some 0 < γ < 1.
In this case we pick points one by one and show that they cannot be part of any I with
|I| ≥ γ|H|.

5.6 Experiments

The verification approach has been tested on a number of problems from multiple view
geometry. For all the experiments, SIFT was used to find corresponding points in the
images; cf. Section 1.2. Then RANSAC was applied to generate a candidate solution I0.
If possible this was then verified as the global optimum, but in many cases, the initial
solution first had to be improved. To do so, we tried adding correspondences one at a
time and test if I0 ∪ {i} was still consistent.

If the optimum could still could not be verified we used the following scheme. For
each outlier that could not be discarded, we have a number of sets that are not consistent
with this outlier and a number of sets that are; cf. Algorithm 15. Hence to find a new
candidate solution, we pick an outlier that could not be discarded and a set of points that
were consistent with this outlier. We then use all these points to calculate a new candidate
solution.

For each of the experiments, results are compared to the performance of a standard
RANSAC procedure. In the few cases where possible (within reasonable time) we also
compare with the algorithm given in [54]. When this is not possible we give a worst case
bound on the number of bases from [64]. The results are summarized in Table 5.1. The
error tolerance ε was set to two pixels. The implementation was done in Matlab using
SeDuMi to perform the feasibility tests.

Homography. There are many vision applications involving homographies (see [42]),
for example, detecting a planar configuration viewed in two images. Given image corre-
spondences of 3D points lying in a plane, there is a homography between the two image
planes mapping corresponding points to each other. Other correspondences can be re-
garded as outliers. It was shown in [49] that the residual functions for a homography are
indeed quasiconvex.

We tested our algorithm on two stereo image pairs with different outlier rates (see
Table 5.1). Figure 5.1 shows the computed inliers and outliers for the first stereo pair. In
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Corr. Inliers Inliers Inlier Tests for Tests in [54]
|H| RANSAC optimal rate verification *worst case

Homography 513 430 432 0.84 5889 6.7 · 1015∗

(Office Wall) 101 57 64 0.63 9468 4.6 · 1013∗

3D Pose 353 264 270 0.76 10276 4.0 · 1021∗

(Teddy Bear) 121 104 105 0.87 420 9.3 · 1013∗

69 49 50 0.72 1171 5.6 · 1014∗

86 55 57 0.66 800 5.6 · 1014∗

150 114 116 0.77 834 6.5 · 1015∗

65 42 50 0.77 1228 4.8 · 1013∗

14 9 9 0.64 1001 2.7 · 105∗

105 87 87 0.83 418 3.2 · 1014∗

174 147 149 0.86 718 1.0 · 1016∗

263 244 245 0.93 187 3.2 · 1014∗

2D Pose 217 194 199 0.92 396 3.5 · 105∗

(Books) 67 56 59 0.88 102 4.9 · 105∗

76 70 71 0.93 20 574
74 66 66 0.89 42 11177
77 46 46 0.60 4563 2.8 · 106∗

146 43 < 73 < 0.50 18335 3.2 · 108∗

Table 5.1: Summary of experimental results. Correspondences |H| - the total number of hypothet-
ical correspondences obtained from the SIFT descriptors. Inliers - the number of inliers detected
by standard RANSAC and the local search method, respectively. Number of tests to verify optimum
- number of convex feasibility tests required for verifying that the local maximum (output of the
local method) is global. Number of tests in [54] - number of bisection programs required to dis-
card the same number of outliers as the local method using the method from [54]. When it is not
possible to run in practice a worst case bound from [64] is given. A bisection program consists of
approximately 10-15 feasibility tests. All solutions except 2D pose image id 6 were verified to be
optimal. In this case we verified that there was no solution with more than 50% inliers.

this case the number of inliers are 432 and the number of outliers are 81. The solution
was verified to be optimal; see Table 5.1.

Uncalibrated Camera Pose. In this experiment we try to determine the camera pose of
a 3D object from image data; see Figure 5.2. It was shown [49] that when the internal
camera parameters are unknown, then the camera pose problem is quasiconvex.

For the experiments, we used images from the publicly available database introduced
in [52]. The model, plotted in the left of Figure 5.2, was created from two stereo images
of the front of the Teddy bear. Using SIFT correspondences we then estimated the pose
in 10 test images where the Teddy is partly visible. In all cases the optimality of solution
could be verified; see Table 5.1.

73



CHAPTER 5. OUTLIERS AND QUASICONVEXITY

Figure 5.1: Inliers (green) and outliers (red) in a homography estimation. The solution is optimal.
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Figure 5.2: The uncalibrated camera pose problem. Left: The model obtained from two images.
Middle: Correspondences between the test image and one of the stereo images (green - outliers, red
- inliers). Right: The model points projected onto the test image under the optimal projection.

2D-2D Registration. In this experiment we took 6 images of books on a table, and
tried to find the optimal similarity transformation between pairs of images. In one case
we matched a model image with only one book to a more complex image with the same
book appearing several times. We also tried matching the more complex images to each
other. Interestingly, we were able to verify the optimal solution in cases where another
strong solution existed, and in cases where no strong solution existed, we were able to
prove this; see Figure 5.3 and Table 5.1.

Triangulation. We also tested our method on a triangulation example. We took 25
images of a painted vase and matched SIFT features from different views. The camera
positions were estimated using markers. Then we tried to verify the solutions obtained by
performing RANSAC on the correspondence data. There were 269 points that had been
matched to at least seven images. Of these, we successfully verified 190 solutions to be
optimal that had at least 50% inliers. In the remaining 79 cases we could verify that there
was no solution with 50% inliers or more.
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Figure 5.3: Images of books used for estimating similarity transformations. Green lines mark the
inlier correspondences of the globally optimal transformation and red lines mark outliers. The
middle images show that we can verify the optimal transformation despite the presence of another
strong transformation, and to the right we have an example of a case where we can verify that there
is no transformation with at least 50 % inliers.
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Figure 5.4: The triangulation problem. Two images with points used for calculating the reconstruc-
tion to the right. Green points (inliers) are used for the triangulation while red points are detected
as outliers.

5.7 Discussion

In contrast to most previous work dealing with outliers, this chapter presented a frame-
work for estimating globally optimal solutions. For a large number of applications, we
have seen both theoretically and experimentally that this is indeed a tractable problem.
Another conclusion that we can draw, is that in most cases RANSAC works rather well.
We have given both theoretical evidence and practical experiments which show that it is
a sound method. Hopefully the presented framework can be useful when benchmarking
other heuristic methods for dealing with outliers.
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Part II

Estimation from Multiple Views
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Chapter 6

Non-Sequential Structure from
Motion

We study structure from motion estimation from multiple calibrated views. Given a set of
images with known calibration data, we want to estimate scene structure as well as camera
positions. Although this problem has been studied extensively over the years, no fully
satisfactory solution exists. Among the things that make this problem so challenging, one
can mention the high dimension of the space of unknowns and the difficulty in correctly
matching features between views. Yet another challenge is the existence of repetitive or
planar structures, short baselines between views or moving objects in the scene. Unlike
ordinary mismatches that will cause random outliers in the data, repetitive structures can
cause locally consistent geometries that do not agree with the global geometry. This can
lead to two-view geometries supported by a large number of point correspondences, but
not reflecting the underlying true geometry; see Figure 6.1 for an example.

Figure 6.1: ROAD ROLLER. In this image pair, 28 seemingly correct correspondences (green lines)
are obtained in the estimation of the epipolar geometry. Even though the epipolar geometry is
plausible and perfectly valid, it does not correspond to the true geometry.
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6.1 Structure from Motion Approaches

Many methods for multi-view structure from motion start by estimating the geometry
of two views. Often, a minimal solver is applied in combination with RANSAC; see e.g.
[66]. The 3D geometry estimated from these two views is used to estimate the pose
of another camera which in turn improves the quality of the reconstruction. This way
more cameras are added incrementally. The reconstructions are often improved using
local optimization; see [78]. We will refer to this approach as sequential structure from
motion. One weakness of this approach is that the quality of the reconstruction might
depend heavily on the choice of the initial pair. This is addressed in [80] with a heuristic
approach based on the covariance of the structure and the CIRC criterion [82].

Another weak point of sequential methods is the iterative process of adding new cam-
eras. It might be that the quality of the final reconstruction depends on the order in
which cameras are added. Furthermore, due to their sequential nature these methods
suffer from drift (error build-up) [21], instead of distributing the error evenly through-
out the sequence. Recently an automated sequential system was presented [75], showing
impressive results of large-scale reconstructions. The system, known as BUNDLER, will
be compared to our work.

A different approach is taken by the methods based on factorization. In [81] a solu-
tion for the affine camera model is provided and [76] gives an extension to perspective
cameras. The missing data problem and sensitivity to outliers are major concerns in this
approach and it has been the object of study in subsequent papers, e.g., [79]. Hierarchical
methods [31, 65, 71, 32, 28] organize images in a hierarchical cluster tree, and do the
reconstruction from root to leafs.

In this chapter, a non-sequential method for estimating the geometry of multiple
views is suggested. The method consists roughly of three parts. First the orientations of
all cameras are estimated with a method being robust to low-level noise as well as large
errors from the matching. Then the robust L∞ method from Section 1.3.1 is used to
solve the structure and motion with known orientations and finally the reconstruction is
improved using bundle adjustment. Only the orientations are taken from the pairwise
estimations and as we will see, these are often quite accurately estimated.

This places our approach in the same category as [62], but they estimate camera ori-
entations using an over-parameterized linear least-squares formulation. As is well-known,
linear least squares estimation, can be very sensitive if there is a large amount of outliers
in the data. After that, various heuristics for identifying 4 inlier points are applied and
finally, these 4 points are fed to the convex optimization scheme to recover camera trans-
lations and the 3D coordinates of the 4 points. The requirement of identifying 4 correct
matches in multiple views makes this step of their algorithm sensitive to outliers. In con-
trast, we remove incorrect pairwise rotations before estimating camera orientations and
do not rely on identifying 4 good matches.

Our approach also has clear similarities to [92]. They use short cycles and a Bayesian
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model to predict which of the estimated rotations are correct. However, camera positions
and scene structure are estimated in a sequential manner. Another method to discard
erroneous rotation estimates is given in [35]. There a random sampling over spanning
trees is suggested.

In [73], cycles are also used as a means to estimate camera orientations. From a
spanning tree they generate a set of fundamental cycles in the camera graph. For each
of these cycles they compute its error, that is, the rotational deviation from the identity.
This error is distributed over the respective rotations in the cycle to form a consistent
cycle. Unlike our approach they cannot handle large errors (outliers) among the relative
rotations.

6.2 Overview

The following is an outline of the proposed approach.

1. Feature extraction using SIFT [58] and matching between pairs of views.

2. Estimation of the relative orientation for pairs of views. A standard 5-point solver
[66] is used in a RANSAC loop to get an initial solution, which is improved using
local optimization.

3. Detection and removal of large errors among the relative rotations.

4. Estimation of camera orientations using the remaining relative rotations.

5. 3D reconstruction using the estimated camera orientations. The reconstruction
is computed using L∞ optimization with auxiliary variables are used to handle
outliers; see Section 1.3.1.

6. Standard bundle adjustment to improve the 3D reconstruction.

The chapter is organized as follows. Section 6.3 shows that, in contrast to traditional
systems, our system does not suffer from geometries with short baselines. In fact, it is im-
portant to use these geometries since they give accurate estimations for camera rotations.
Section 6.4 gives some results concerning the cycles in the camera graph and rotational
consistency. In Section 6.5 we present a robust method of estimating camera rotations in
a non-sequential way. Combined with a robust method for simultaneous estimation of
camera positions and 3D structure, this gives us a reliable initial solution, that is fed into
the bundle adjustment routine. Section 6.6 presents comparisons with BUNDLER for a
number of data sets. After a short discussion, Section 6.8 presents some theoretic results
for fixed rotation axis.
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6.3 Estimation with Short Baseline

Geometries with short baseline are problematic for most approaches to multiple view
geometry. Reconstructing a scene from two views with short baseline will tend to give
high uncertainty. If the initial pair in sequential structure from motion has short baseline
the estimated structure will be poor and it will be hard to correctly estimate the pose of
the next camera. Hence, many methods that use a sequential approach for reconstruction
[15, 75], will try to find a view pair with a large baseline to start from. This is achieved by
picking a pair views which is poorly explained by a homography transformation, see e.g.
[75]. Still, short baseline can pose a problem at later stages as well. Estimating the pose
of a new camera, many of the 3D points used in this estimation might be reconstructed
from a short baseline and this is likely to cause a poor estimation.

Although the hierarchical methods are less sensitive to drift, degenerate geometries
still need to be avoided since the structure is used for reconstruction. As noted in [65]
the loss of feature points and the necessity of a reasonable baseline creates a trade off.
That is, there is a sweet spot in terms of view separation, where calculation of multi-view
geometries is best performed.

As the proposed approach prefer pairwise geometries having a lot of corresponding
points it is likely that short baseline view pairs will be used. The general view of these
geometries is that they are quite useless since the structure and translation cannot be well
estimated. In contrast, this section will show that the rotational part of the camera is well
defined even if the distance between the cameras is small or even zero. This is important
to motivate the proposed approach.

Let us first look at the estimation of the relative orientation of two cameras with the
same camera centre and no noise. It is easy to see that if we allow 3D points at infinity,
any translation direction will do. However, as the following theorem shows it is only in
some rare degenerate configurations that the rotation is not uniquely determined.

Before stating the theorem, we recall the definition of an essential matrix. Consider
two views of the same scene. Let x and y be the projections in the two images of a 3D
point X . By aligning the global coordinate system with the first camera, we can write the
equations

λx = X, λ > 0

γy = R(X − t), γ > 0, (6.1)

where R is the relative rotation and t is the translation; cf. Section 1.1. It should be clear
from this that x, RT y and t are coplanar. Consequently,

x · (t×RT y) = 0, (6.2)

which can be written in matrix form as

xT [t]×R
T y = 0. (6.3)
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Here [t]×RT is the so called essential matrix which relates corresponding image points in
the two views.

Theorem 22. Let xi and yi be unit vectors representing image points from a calibrated
camera. Assume that xi and yi are related by a pure rotation

yi = Qxi. (6.4)

Now consider an essential matrix [t]×R with t 6= 0 such that

yTi [t]×Rxi = 0 (6.5)

Then R = Q unless the image points yi lie on a quadratic surface yTi Ayi = 0, where A has
the eigenvalues λ1,λ2 and λ1 + λ2 with λ1λ2 ≤ 0 and A 6= 0.

Proof. We let E = [t]×RQT and note that

yTi Eyi = yTi [t]×RQ
T yi = yTi [t]×Rxi = 0. (6.6)

Consequently, yTi (E + ET )yi = 0 as well. Since E has the form of an essential matrix
it follows from a theorem in [48] that A = E+ET has eigenvalues λ1, λ2 and λ1 +λ2,
with λ1λ2 ≤ 0.

It remains to show that A 6= 0. To this end, let n be a rotation axis of S = RQT . If
A = 0 then

0 = An = (E + ET )n = [t]×Sn− ST [t]×n = t× n− ST t× n, (6.7)

and hence S has two orthogonal eigenvectors, n and t × n with eigenvalue 1. The
only rotation matrix with this property is the identity. Hence, I = S = RQT and
R = Q.

This theorem shows that in the noise-free case, the rotation can generally be deter-
mined even with zero camera distance. To see what happens when there is image noise a
simple synthetic experiment was performed. A set of 50 3D-points were randomly gen-
erated in the unit cube [−1, 1]3 and two calibrated cameras were placed in the points
(0, 0, 10) ± r where r are random vectors of different lengths. Gaussian noise with
standard deviation = 0.0001 was added to the image projections. Then the relative ori-
entation of the cameras was estimated using a minimal 5-point solver followed by bundle
adjustment. More precisely the minimal solver from [66] was used in a 50-iteration
RANSAC loop. The solution having most inliers was picked as a starting point for bun-
dle adjustment. This was repeated for different camera distances and the results were
averaged over 250 runs. Figure 6.2 shows an example of the geometry and comparisons
between the ground truth and the estimated relative rotations and translations. Note that
since the scale of the reconstruction is arbitrary we can only compare the translation di-
rection. Still the figures shows quite clearly that, as the camera distance decreases, the
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translation error increases drastically while the rotation remains stable. Figure 6.2 also
shows how the quality of the structure estimation depends on the baseline. By setting the
scale according to the ground truth camera distance we can measure the euclidean error
of each reconstructed 3D point. Since only a few points would be required to pose in
another camera, the minimum error over the 50 points was deemed to be most relevant.
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Figure 6.2: Stability of the rotation estimate. Left: An example of the geometry. Middle: Average
error in degrees for the translation estimation (red line) and the rotation estimation (green line) for
different camera distances. Right: Average minimum error for the structure estimation; see text for
details.

This experiment shows that there is no reason not to use view pairs with short baseline
in the rotation estimation. In fact, when the baseline is small the number of matchings
is generally large and hence the rotation estimate will often be more accurate than with a
larger baseline.

6.4 Cycles and Consistency

In this work we will use relative orientations, obtained from pairwise geometries, to esti-
mate the absolute orientations of the cameras. The relative orientations induces a camera
graph with edges where a relative orientation is available. Computing the product of rota-
tions along a cycle in this graph should give roughly the identity matrix. Large deviations,
inconsistencies, indicates an incorrectly estimated geometry.

Cycles have been used to detect inconsistency in camera graphs not only in this work
but also in e.g. [35, 92, 73]. This section presents some results concerning the connection
between cycles and consistency. First we provide a more precise definition of consistency.
Note that d refers to the standard metric in SO(3); see Section 1.3.3.

Definition 8. Given a camera graph G = (V,E) and error tolerance ε, we say that G is
consistent if there exist orientations R1, . . . , RN satisfying

d(Ri, R̃ijRj) ≤ ε for all (i, j) ∈ E. (6.8)

Our first result gives a necessary constraint on cycles for a graph to be consistent.
Essentially the same result can also be found in [73] but we present a shorter proof. Let
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us first recall that R̃ij is the estimated rotation between camera i and j and that each
estimated rotation corresponds to an edge in the camera graph.

Theorem 23. Consider a camera graphG that consists of a single simple cycle i1, i2, i3 . . . in, i1.
If the estimated rotations along this cycle satisfy

d(R̃i1i2R̃i2i3 . . . R̃ini1 , I) = ω, (6.9)

then ε = ω/n is the smallest ε such that G is consistent with Definition 8.

Proof. To prove that G is consistent with ε = ω/n, it is sufficient to find rotations
Rij such that d(Rij , R̃ij) < ω/n and R12R23 . . . Rn1 = I . To find R12, let D =

R̃12 . . . R̃n1. This is a rotation ω radians around some axis. Let Dω/n be a rotation
around the same axis but −ω/n radians and set R12 = Dω/nR̃12. Then

d(R12R̃23 . . . R̃n1, I) = ω − ω/n. (6.10)

By repeating this scheme with D = R̃23 . . . R̃n1R
T
12 we can compute R23 such that the

error decreases to (n− 2)ω/n and the result follows by induction.

Let C denote a cycle and |C| the length of this cycle. Theorem 23 shows that if the
error in some cycle is larger than |C|ε then the graph is not consistent. However, even
with smaller errors it is likely that the cycle contains outlier rotations. The following
experiment illustrates how the error in a cycle depends on the length of the cycle if there
are no outlier rotations. If the error in a cycle is significantly larger than this, then there
is probably at least one outlier rotation in that cycle.

Fifty pairs of views were generated in the exact same manner as in the experiment of
the previous section; see that section for details. For each pair a rotation was estimated
using RANSAC followed by bundle adjustment. This rotation was saved as well as the
ground truth. Let Ri be the ground truth rotation for the ith view pair and let R̃i be the
estimated rotation. For each k the error d(R1R2 . . . Rk, R̃1R̃2 . . . R̃k) was measured.
The error for different k’s is shown in Figure 6.3 averaged over 50 runs. As might be
expected, the error is approximately proportional to the square root of the cycle length.

6.5 Robust Estimation of Orientations

We will now describe how to robustly estimate the orientations of all views with respect
to a global coordinate system. This is done by considering relative rotations estimated
from pairs of views. We start with a set of point-to-point correspondences between pairs
of views. Any feature descriptor can be used to determine these, e.g. SIFT [58]. For each
pair with sufficiently many corresponding points, we estimate the relative orientation
using a RANSAC algorithm based on a minimal five-point solver [66]. The estimated
relative orientation is improved by standard local optimization, i.e. bundle adjustment.

85



CHAPTER 6. NON-SEQUENTIAL STRUCTURE FROM MOTION

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of rotations

E
rr

o
r 

(d
e
g

re
e
s
)

Figure 6.3: Synthetic experiments to show how the error in a cycle depends on the length of that
cycle. The red curve shows the average over 50 experiments and the blue dashed curve shows a
fitted function y = c

√
x.

Let R̃ij be the thus estimated rotation between camera i and j. We also save the number
of inliers from this estimation as a measure of certainty.

Ideally there would exist absolute orientations Ri such that

Ri = R̃ijRj for all (i, j) ∈ E. (6.11)

Due to uncertainty in the matching process and camera model, this will not be the case.
Instead we will have to deal with low-level noise as well as completely inconsistent rota-
tions.

6.5.1 Handling Low-Level Noise

To deal with low-level noise, we will use the method from [34], but with a small modi-
fication. This approach is based on the quaternion representation of rotations; see Sec-
tion 1.3.3. Let q̃ij be the quaternion representation of the estimated relative rotation
R̃ij . Rotation composition corresponds to quaternion multiplication, which is linear in
the quaternion coordinates. Thus (6.11) can be written linearly as

Q̃ijqj − qi = 0, (6.12)

where Q̃ij is a 4 × 4 matrix corresponding to quaternion multiplication by q̃ij . In [34]
it is suggested to solve these equations in a least squares sense.

min
q1,...,qN

∑

(i,j)∈E
|Q̃ijqj − qi|2. (6.13)

To motivate this, look at two unit quaternions p and q corresponding to rotationsRp and
Rq such that d(Rp, Rq) = α. Assuming that α is small, (1.25) yields,

|p− q|2 = 〈p− q, p− q〉 = 2− 2 cos (α/2) = 4 sin2 (α/4) ≈ α2/4. (6.14)
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Thus the sum in (6.13) is approximately proportional to the sum of squared angular
errors. However, optimizing (6.13) with the norm constraint, |qi| = 1 is difficult so [34]
suggests relaxing this constraint. The relaxation allows some constraints to be weighted
down, but experiments indicate that this is a minor problem.

It was noted in [23] that the quaternion ambiguity (q and −q represents the same
rotation) may cause this method to fail. Say for example that the camera has moved
around a building, while rotating an angle 2π. Let q1 = (1, 0, 0, 0). If we choose quater-
nion representation in the standard way, we will constrain the orientation quaternions qi
to move smoothly on the unit sphere of quaternions. But this means that when we are
back where we started the orientation has just moved halfway around the sphere of unit
quaternions. So for the linear equations to hold we have to represent q1 with (1, 0, 0, 0)
in some equations and (−1, 0, 0, 0) in others.

The approach presented in the next section to remove inconsistent relative rotations
will also provide estimates q̄i for the camera orientations. This gives us a way to resolve
the ambiguity problem:

For all (i, j) ∈ E:
1. Represent R̃ij with a quaternion q̃ij .
2. Compute Q̃ij as the matrix representation of q̃ij , see (6.13).
3. If |q̄i − Q̃ij q̄j | > |q̄i + Q̃ij q̄j |, set Q̃ij = −Q̃ij .

6.5.2 Handling Large Errors

Inconsistent feature matching can lead to large errors among the estimated rotations. A
typical example is given Figure 6.5, where the pairwise geometry has captured similar
structures on the different sides of a road roller. To handle this type of problems we need
some way to detect and remove large errors among the relative rotations.

If there are outliers among the estimated relative rotations, then the camera graph
will not be consistent with respect to Definition 8. In these cases we would like to find
a large consistent subgraph of the camera graph. Moreover it is natural to take into
account the reliability of each estimated rotation. Let pij be the probability that the
estimated relative rotation R̃ij is an outlier. In Section 6.3 we saw that the accuracy of the
estimated rotations did not depend directly on the camera distance. Thus it is reasonable
to model pij as a decreasing function of the number of inliers of that estimation, i.e.
wij . For simplicity, we choose to optimize the sum of wij ’s rather than trying to estimate
the probabilities. Hence, we seek those camera orientations which are supported by the
maximum number of point correspondences. However, the same approach can be used
when estimates of the probabilities exist.

Problem 8. Given a connected camera graph G = (V,E) and edge weights wij , we want
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To improve traffic safety it is important to evaluate the
safety of roads and intersections. Today this requires a
large amount of manual labor so an automated system us-
ing cameras would be very beneficial. We focus on the ge-
ometric part of the problem, that is, how to get accurate
three-dimensional data from images of a road or an inter-
section. This is essential in order to correctly identify differ-
ent events and incidents, for example to estimate when two
cars gets dangerously close to each other.

The proposed method uses a standard tracker to find cor-
responding points between frames. Then a RANSAC-type
algorithm detects points that are likely to belong to the same
vehicle. To fully exploit the fact that vehicles rotate and
translate only in the ground plane, the structure from motion
is estimated using an optimization approach based on the
L∞-norm. The same approach also allows for easy setup
of the system by estimating the camera orientation relative
to the ground plane. Promising results for real-world data
are presented.
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1. Introduction
To reduce the number of road traffic injuries it is im-

portant to know how safe certain roads and intersections
are. There are different ways to evaluate this. The clas-
sic method is to count the number of accidents that occurs.
Since accidents are rare it can take years to get a good as-
sessment of safety this way. A faster approach is to predict
the numbers of accidents that will happen by manually ob-
serving certain events, conflicts, during a much shorter time
period [5]. This is done by letting trained personnel study
video of the intersection. Naturally, this is very expensive
and time-consuming and an automated method would be
very beneficial.

In [8] a method for automated surveillance was pro-
posed. To calculate the position of a vehicle, the 2D im-
age of that vehicle was projected onto the road plane. If the

camera can be placed right above the intersection, this will
work fairly well. In most cases though, this is not possi-
ble. The projection of the vehicle gets stretched out and the
estimated position incorrect. A better way to estimate the
position would be to make a three-dimensional representa-
tion of the object and use this to calculate the position of the
vehicle. This is the approach considered in this paper.

There is much work in the vision literature regarding
traffic scenes. In [9] a system for tracking pedestrians
and cars was presented which is based on object detectors.
A system for making 3D shape reconstruction for traffic
surveillance with multiple cameras is presented in [10]. To
do this predefined 3D models of cars are used. In [2] vehi-
cles was tracked by tracking feature points on it. After the
features exit the tracking region, they are grouped into dis-
crete vehicles using a motion constraint. In [13] a system
for automatic calibration of a camera from traffic scenes
was proposed. If the height of the camera is known, both
intrinsic and extrinsic parameters can be found. A method
to rectify images is given in [1]. By tracking the motion of
two vehicles moving in constant speed an estimation of the
ground plane can be done.

The approach described in this paper differs from most
methods in at least one important aspect. Inspired by recent
research in optimal methods for computer vision, the repro-
jection errors are minimized with respect to the L∞-norm
rather than the more common L2-norm. This makes it pos-
sible to find the global optimum and it also makes it easier
to impose extra constraints, such as the fact that vehicles are
only moving in the ground plane.

1.1. Overview

We start with captured video from the intersection. For
the reconstruction we need to find corresponding points be-
tween different frames. This is achieved in the following
way. Every few frames we pick an image to use as a starting
image. In this image a corner detector is used to find strong
corner points. These points are then tracked a few frames
using a KLT tracker [12], to get corresponding image points
in a later frame.

To reduce the amount of outliers in the 3D reconstruc-
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1. Introduction
To reduce the number of road traffic injuries it is im-

portant to know how safe certain roads and intersections
are. There are different ways to evaluate this. The clas-
sic method is to count the number of accidents that occurs.
Since accidents are rare it can take years to get a good as-
sessment of safety this way. A faster approach is to predict
the numbers of accidents that will happen by manually ob-
serving certain events, conflicts, during a much shorter time
period [5]. This is done by letting trained personnel study
video of the intersection. Naturally, this is very expensive
and time-consuming and an automated method would be
very beneficial.

In [8] a method for automated surveillance was pro-
posed. To calculate the position of a vehicle, the 2D im-
age of that vehicle was projected onto the road plane. If the

camera can be placed right above the intersection, this will
work fairly well. In most cases though, this is not possi-
ble. The projection of the vehicle gets stretched out and the
estimated position incorrect. A better way to estimate the
position would be to make a three-dimensional representa-
tion of the object and use this to calculate the position of the
vehicle. This is the approach considered in this paper.

There is much work in the vision literature regarding
traffic scenes. In [9] a system for tracking pedestrians
and cars was presented which is based on object detectors.
A system for making 3D shape reconstruction for traffic
surveillance with multiple cameras is presented in [10]. To
do this predefined 3D models of cars are used. In [2] vehi-
cles was tracked by tracking feature points on it. After the
features exit the tracking region, they are grouped into dis-
crete vehicles using a motion constraint. In [13] a system
for automatic calibration of a camera from traffic scenes
was proposed. If the height of the camera is known, both
intrinsic and extrinsic parameters can be found. A method
to rectify images is given in [1]. By tracking the motion of
two vehicles moving in constant speed an estimation of the
ground plane can be done.

The approach described in this paper differs from most
methods in at least one important aspect. Inspired by recent
research in optimal methods for computer vision, the repro-
jection errors are minimized with respect to the L∞-norm
rather than the more common L2-norm. This makes it pos-
sible to find the global optimum and it also makes it easier
to impose extra constraints, such as the fact that vehicles are
only moving in the ground plane.

1.1. Overview

We start with captured video from the intersection. For
the reconstruction we need to find corresponding points be-
tween different frames. This is achieved in the following
way. Every few frames we pick an image to use as a starting
image. In this image a corner detector is used to find strong
corner points. These points are then tracked a few frames
using a KLT tracker [12], to get corresponding image points
in a later frame.

To reduce the amount of outliers in the 3D reconstruc-
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was proposed. If the height of the camera is known, both
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rather than the more common L2-norm. This makes it pos-
sible to find the global optimum and it also makes it easier
to impose extra constraints, such as the fact that vehicles are
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We start with captured video from the intersection. For
the reconstruction we need to find corresponding points be-
tween different frames. This is achieved in the following
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image. In this image a corner detector is used to find strong
corner points. These points are then tracked a few frames
using a KLT tracker [12], to get corresponding image points
in a later frame.
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Figure 6.4: Black edges lie in T and red dashed edges lie in P̃ . Removing e from the spanning tree
creates two components.

to find a consistent subgraph Gc = (V,Ec) that maximizes
∑

(i,j)∈Ec

wij . (6.15)

This formulation involves finding both the absolute rotations Ri and the set of con-
sistent rotations Ec. As we saw in Section 6.4 we can attack this problem by considering
cycles in the camera graph. We assume that the camera graph is connected, otherwise
we consider a subgraph. Considering all cycles in the graph is rarely feasible. To achieve
reliable orientation estimations, we start from a spanning tree; cf. Section 1.3.2. If there
are cycles in the graph there are also multiple ways to choose spanning trees. Govindu
[35] used a RANSAC-type algorithm, sampling over different spanning trees. Instead, we
look for a maximally reliable spanning tree and improve this by working directly with the
camera graph.

Following Problem 8, it seems natural to seek a maximum-weight spanning tree. Such
a tree is easily found using standard algorithms; see Section 1.3.2. Since a single outlier
rotation will ruin the whole estimation a reasonable alternative is to maximize the weakest
edge used for estimation. It turns out that the two formulations have the same solution;
see Theorem 24.

Theorem 24. If T is a maximum spanning tree and i and j are arbitrary nodes, then there
is a path P (i, j) between them such that R(P ) = min(i,j)∈P wij is maximal and P ⊆ T .

Proof. Consider two nodes i and j. Since T is a spanning tree it contains a path, P ,
between these nodes. Now assume for contradiction that there is a path P̃ 6⊆ T such that

R(P̃ ) > R(P ). (6.16)

Let e be the weakest edge in P . If we remove e from T it will divide the spanning tree
into (i) nodes connected with i and (ii) nodes connected with j, see Figure 6.4. Clearly P̃
contains some edge ẽ connecting these components and by (6.16), wẽ > we. But then,
replacing e with ẽ creates a spanning tree with higher total edge weight than T . Since T
is a maximum spanning tree, this is a contradiction.

Assuming that the generated spanning tree contains no outlier rotations, we now
have means to detect outliers among the other relative rotations. It easy to see that adding
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any edge to a spanning tree will generate a cycle. If multiplying the rotations along this
cycle yields a result far from the identity rotation, then the cycle must contain an outlier
rotation. Let C denote a cycle and let RC be the composition of all rotations along the
cycle. Motivated by the experiment in Section 6.4 a cycle is considered inconsistent if

d(RC , I) >
√
|C|ε, (6.17)

and in this case we will not use that relative rotation; see Algorithm 16. Note that the
spanning tree also enables us to get initial estimates for all the camera orientations, as
required by the scheme in Section 6.5.1.

Algorithm 16 Consistent orientations

Compute a maximum spanning tree, T .
Set Ec = T .
for each e ∈ E \ T

Let C be the cycle formed by e and T .
if the error in C is less than

√
|C|ε

Ec = Ec ∪ e
Estimate camera orientations from Ec using the algorithm in Section 6.5.1.

The absolute orientations yielded by this Algorithm 16 can be viewed as a new span-
ning tree, so we repeat steps 2 to 4 to yield a better solution to Problem 8. We also use
some other search heuristics:

- Add an outlier rotation and estimate new absolute rotations.

- Set the weight of an outlier rotation to a very high number, compute a new maxi-
mum spanning tree and re-estimate the orienatations.

As the experiments will show, these simple heuristics often work remarkably well. Since
the spanning tree will consist of those relative rotations that had the highest number of
inliers, large errors in the spanning tree are very unlikely.

6.6 Experiments

The developed approach was tested on a number of real image sequences. Figures 6.5,
6.6 and 6.7 show some screen shots. This section presents some performance statistics
and a comparison to the state-of-the-art software BUNDLER.
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Data. The set of image collections have been obtained (i) from the Internet, in partic-
ular, FLICKR and (ii) by taking photos with standard digital cameras. Image sizes vary
from a couple of hundred to up to 3000 pixels in width. The number of images in a
sequence ranges from 34 to a couple of hundreds. Only images where it has been possible
to extract the focal length from the EXIF tag has been processed. The principal point is
assumed to be in the middle of the image. The skew is set to zero and the aspect ratio to
one.

Figure 6.5: Castle. The top and left figures shows the 3D result from BUNDLER and on the right,
our result is given. By careful inspection, one can see that the top and bottom image rows of the
top figure display different facades of the castle. (A window is blocked by stairs in the top row.) This
confusion of facades yields an incomplete and false reconstruction. Using rotational consistency, a
complete trajectory is obtained.

Implementation details. For the feature extraction and matching, as for the extraction
of focal lengths, we use exactly the same setting as in BUNDLER. More precisely, the
matching stage is based on standard SIFT matching with default settings. Note that the
input to our system and BUNDLER is identical since the same software is used. For
the estimation of pairwise epipolar geometries, we allow 1000 RANSAC iterations. The
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threshold is set to 3 pixels for a point correspondences (measured from the epipolar line
in each image). If more than 10 point correspondences are obtained for an image pair, the
two-view geometry is kept for later processing. We always check for cheirality (positive
depths). When computing camera translation and 3D points, we allow a larger error,
namely 10 pixels, as the initial estimates of rotations may be slightly off.

All our algorithms have been implemented in MATLAB. Given estimated two-view
geometries, running times are typically between 5-10 minutes depending on the num-
ber of images, and the number of extracted feature points. For all sequences, the same
parameter settings has been used.

Closed loop sequences. For our first experiments we have chosen to use closed loop
sequences. For these datasets it is easy to detect if the method fails by investigating the
ability to close the loop. Note that since there is no independent system that is guaranteed
to give the true reconstruction it is very difficult to obtain the ground truth. The only
way that we really can determine the quality of the reconstruction is by visual inspection.
Note that, in our system, the ordering of the images is nowhere used. However, the images
are taken in order so this gives us a way to check if correct epipolar geometries have been
computed.

The closed loop sequences are the CASTLE (see Figure 6.5), ROAD ROLLER (see
Figure 6.1) and RAILROAD. In all of these three sequences there are repeated textures
introducing false two view geometries. Because of these false geometries BUNDLER fails
to reconstruct the loop. Figure 6.5 shows that the front and the back of the castle are
confused. Figure 6.6 shows the failed reconstructions for the other two datasets.

Figure 6.8 shows the two-view geometries that passed the RANSAC stage with at least
10 correct correspondences are plotted. An edge in the (circular) camera graph corre-
sponds to such a two-view geometry. As can be seen, there are many false edges occurring
for cameras far away from each other. By enforcing rotational consistency, hence comput-
ing a solution for Problem 8, the camera graph given in the second image of Figure 6.8 is
obtained.

Leave one out test. STREET. In our method, all images are handled in a uniform man-
ner. This is in contrast to BUNDLER which selects an initial epipolar geometry to base
the reconstruction on and then sequentially adds new images. To test this dependency,
we tried to reconstruct the same sequence with one image removed. This was repeated
for all 99 images. The reconstructions were validated by registering to the original recon-
struction. While our method is unaffected by removing one image in all cases, there are
two cases for which BUNDLER fails to reconstruct the whole scene (and in these cases,
only 45 and 57 cameras are reconstructed, respectively), see Figure 6.7.

Regular scenes. APARTMENT. In this two bedroom apartment, there are (natural)
weak geometry links between different rooms. It is difficult to detect any difference from
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the two apartment images in Figure 6.6. Both methods provide satisfactory results, and
the differences are minor, however it turns out that there are 6 images of the bathroom
that BUNDLER is not able to incorporate into the reconstruction. The final data set is
the Cathedral of Linköping. Both methods produces satisfactory results for this data set.

Figure 6.6: Reconstructions for the Road Roller, Railroad, Apartment and Cathedral data sets. To
the left is our reconstruction and to the right the reconstruction obtained using BUNDLER.
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Figure 6.7: Three solutions from the leave-one-out test. Top: all cameras. Bottom: two incomplete
reconstructions; see text for details.

Figure 6.8: The first two (and the last two) figures show camera graphs before and after removing
inconsistent rotations, respectively, for the ROAD ROLLER and CASTLE sequences. Each edge be-
tween two camera nodes corresponds to a valid epipolar geometry. For this illustration the cameras
have been placed on a circle using prior knowledge of the true geometry, but this prior knowledge
has not been used to detect the erroneous rotations.

6.7 Discussion

We have presented a system for large-scale 3D reconstruction for unordered images.
Compared to standard incremental approaches, we have shown that short baselines do
not cause any failures, on the contrary, they are reliable building blocks in our system,
since matching between such views is relatively simple. Further, in our non-sequential
system, we have demonstrated improvements with respect to state-of-the-art regarding
loop-closing, detecting repetitive structures and obtaining a good global solution without
depending in a specific base pair. These features have been supported both by theoretical
results as well as experimental comparisons on real data.
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A possible disadvantage is computational effort which may hinder the ability to scale
to several thousands of images. However, the bottleneck for our system as well as many
sequential systems is the pairwise image matchings. Another weakness is that repetitive
structures with consistent rotations, for example, two parallel billboards will not be de-
tected by rotational consistency and would have to be handled by the robust estimation
stage. We have not encountered such a failure case in practice and we leave it to future
work.

6.8 A Result for Fixed Rotation Axis

Quite frequently, e.g. when working with vehicle-mounted cameras, the rotation axis of
the cameras is known and fixed. In these cases, we can prove a significantly stronger result
than Theorem 23. This result is provided here as bonus material.

Theorem 25. Assume that the rotation axis is fixed and that Nε < π/3 where N is the
number of cameras, then the solution to Problem 8 is the maximum weight subgraphGc ⊂ G
such that any simple cycle i1, i2, i3, . . . , in, i1 in Gc satisfies

d(R̃i1i2R̃i2i3 . . . R̃ini1 , I) ≤ nε. (6.18)

Lemma 26. Given an ε > 0, rotations Rk and natural numbers nk ∈ N such that nk ε <
π/3 for all k and

d(Ri, Rj) ≤ (ni + nj) ε (6.19)

for any pair i, j, then there exists an R such that

d(Rk, R) ≤ nk ε for all k. (6.20)

Proof. We can represent R with a unit 2-vector q. For each k (6.20) restricts q to an
interval, Ik, on the unit circle. It should be clear from (6.19) that any pair of Ik’s have
non-empty intersection and then Theorem 16 implies that

⋂
k Ik is non-empty as well.

For the next part of the proof we will need the following relation for rotations Ri and
Si

d(R1R2, S1S2) = d(R1, S1S2R
T
2 ) ≤

d(R1, S1) + d(S1, S1S2R
T
2 ) = d(R1, S1) + d(R2, S2), (6.21)

where we used the triangular inequality for SO(3). Note that the relation generalizes to
longer sequences.
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Lemma 27. Assuming that prerequisites of Theorem 25 are satisfied, consider two simple
paths P and Q from node 1 to node k, having lengths nP and nQ respectively. Let R̃P

and R̃Q be the composition of all relative rotations along these paths. Then d(R̃P , R̃Q) ≤
(nP + nQ)ε.

Proof. If P andQ constitute one simple cycle, then the result is almost immediate. If not,
then we can divide P and Q into n parts such that each pair Pi, Qi make out a simple
cycle (or are identical). To see this we follow the path P until we reach a node which is
also in Q. This is the first division point. We remove these first parts from P and Q and
continue along P until we find the next node which is also in Q \ Q1. This procedure
will divide paths P andQ in the desired manner. Assuming such a partitioning and using
(6.21), we get

d(R̃P , R̃Q) ≤ d(R̃P1 , R̃Q1) + . . .+ d(R̃Pn , R̃Qn) (6.22)

and since these pairs make out simple cycles satisfying (6.18) and every edge in P or Q is
in exactly one of these cycles, the lemma follows.

Proof. (Theorem 25) It is clear that if Ec is the edge set solving Problem 8 then any cycle
in Ec satisfies (6.18). We need to prove that given an edge set Ec such that all cycles
satisfy (6.18), then there exists {R1, . . . , RN} satisfying (6.8).

Let R1 = I . Pick any node c. Each path Pk from node 1 to node c gives an estimate
of the absolute orientation Rc. We denote it R̃Pk

. According to Lemma 27 any pair
of such estimates satisfy d(R̃Pj

, R̃Pk
) ≤ (nj + nk)ε. Thus using Lemma 1, we can

introduce a new edge from node 1 to node c equipped with a rotation Rc such that all
cycles this generates, satisfy d(R̃i1i2 . . . R̃ini1 , I) ≤ (n−1) ε. If we repeat this procedure
for all nodes, we will get a graph such that any cycle satisfies

d(R̃i1i2 . . . R̃ini1 , I) ≤ (n− k)ε, (6.23)

where k is the number of new edges in the cycle. Specifically,

d(RTi R̃ijRj , I) ≤ (3− 2)ε = ε (6.24)

so (6.8) holds.

This theorem implies that we can obtain Gc in Problem 8 by solving a minimum
vertex cover problem for a hypergraph; see Section 1.3.2. The nodes of the hypergraph
are the estimated relative rotations R̃ij and each cycle in the camera graph that does
not satisfy (6.18) is represented by a edge in the hypergraph, connecting all the relative
rotations in that cycle. To get a consistent set of rotations while keeping as much data as
possible, we want to find a minimum vertex cover for this hypergraph.
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Chapter 7

Structure from Motion for 1D
Cameras

In the previous chapter, we used the fact that the structure from motion problem with
known rotations can be attacked by means of convex optimization; cf. Section 1.3.1. This
chapter shows similar results for one-dimensional (1D) cameras. It turns out that several
important problems in 1D vision can be solved using linear programming.

7.1 Introduction

One-dimensional cameras are used to provide inexpensive and reliable navigational sys-
tems for autonomous vehicles; see Figure 7.1. Strips of reflector tape are put on walls and
objects along the route of the vehicle; cf. [45]. A laser scanner measures the direction from
the vehicle to the different strips of tape, but not the distance. This is the 1D camera.
These angles can be used to determine the position of the vehicle.

The use of 1D cameras in navigation is the main motivation for our work. However,
an understanding of the one-dimensional case can be of use with ordinary cameras as well.
In the case of an ordinary camera moving and rotating in a plane, 1D vision can be used
as an efficient and accurate approximation; cf. [29]. The disadvantage of approximat-
ing is balanced against the possibility of obtaining globally optimal estimates, using the
techniques from this chapter. In [2], a similar approximation is used for autocalibration.

Another interesting application was given in [70], where it is shown that structure
from motion problems using line features and an affine camera model can be reduced to
the structure from motion problem in 1D vision.

Apart from all this there are theoretical insights to gain from the study of 1D vision
and it has already yielded several ideas on how to handle similar problems in higher
dimensions.

One of the key problems in 1D as well as in ordinary vision is the structure from
motion problem; cf. Section 1.2. In the case of autonomous vehicles, this is normally
done when the system is installed to create a map which can then be used for localization.
High accuracy is needed since the precision of the navigational system can never be higher
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Figure 7.1: Left: An autonomous guided vehicle that uses one-dimensional vision to navigate.
Right: Three example 1D images of 7 object points in the plane.

than that of the map.

This chapter presents a method for finding the globally optimal solution to this prob-
lem with respect to the L∞ norm of the reprojection errors. The approach can also
handle underdetermined problems, minimal cases, and missing data. Using the same
framework, we also show how to find optimal solutions to the triangulation and camera
pose problems.

As an illustration, Figure 7.1 shows 3 spherical images of 7 object points and Fig-
ure 7.2 shows the optimal geometry obtained with the proposed method.

Figure 7.2: The globally optimal solution in the L∞ sense to the structure from motion problem
for the images in Figure 7.1.

The chapter is organized as follows. Section 7.2 gives a brief introduction to the
geometry of the problem and Section 7.3 discusses the problems of triangulation and
camera pose showing that they can be solved efficiently. An optimization method for the
structure from motion problem is presented in Section 7.4 along with the required theo-
retic results. Finally, Section 7.5 presents some experiments illustrating the performance
of the optimization method.
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7.2 1D Retina Vision

We will now give a brief introduction to 1D vision as used in autonomous vehicle navi-
gation. A laser navigated vehicle is shown in Figure 7.1. Mounted on top of the vehicle
is a laser scanner. A vertical laser beam generated in the scanner is deflected by a rotating
mirror at the top of the scanner. When the laser beam hits a strip of retroreflective tape,
a beacon, a large part of the light is reflected back to the scanner. The reflected light is
processed to find sharp intensity changes. When this happens the bearing of the laser
beam relative to a fixed direction in the scanner is stored. Note that only the bearing and
not the distance to the beacon is measured.
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Figure 7.3: The measured bearing u (in a camera frame) as a function of scanner position C,
scanner orientation θ, and object position U .

Figure 7.3 shows the setup with one camera and one reflector. We introduce a world
coordinate frame which will be held fixed with respect to the scene. The position of the
camera in the world coordinate system is given by C ∈ R2 and the position of an object
point (a beacon) in the same coordinate frame is given by U . We choose to represent
the measured bearing of a beacon with a unit vector u. Note that this is given in a local
camera frame. The relationship between this local frame and the world coordinate frame
is given by a rotation matrix R parameterized by a single angle θ.

In some cases it is convenient to identify the pair (R,C) with a camera matrix

P =

(
a −b c
b a d

)
= k

(
R | −RC

)
, k > 0. (7.1)

Note that every camera matrix of this form where a 6= 0 or b 6= 0 is associated with
exactly one pair (R,C). If we also allow solutions with a = b = 0, which corresponds
to a camera position at infinity and will not yield any good solutions in practice, we can
identify the set of all camera matrices with R4 \ {0}. This will be useful when discussing
quasiconvexity. Note that we do not allow the degenerate case when all elements of P
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are zero. When working with camera matrices we will use homogenous coordinates for
the object (or scene) points, denoted by Ū . Image points are represented by unit vectors
u corresponding to the measured bearing. Note that the image vectors should not be
regarded as a homogeneous quantity.

If there had been no errors whatsoever, we would have

λ u = R (U − C) = PŪ, (7.2)

for some positive depth λ. Since we are mostly interested in overdetermined problems,
(7.2) cannot be satisfied exactly. Instead we are forced to solve an optimization problem.
Motivated by the previous section we choose to minimize the L∞ norm of the reprojec-
tion errors. The reprojection error ε is the angle between the measured bearing and the
modeled bearing. Let ∠(u, v) denote the angle between two vectors u and v, that is,
arccos(u · v). Then the reprojection error is given by

ε = ∠
(
u,R (U − C)

)
= ∠

(
u, P Ū

)
. (7.3)

7.3 Triangulation and Camera Pose Estimation

Before moving on to the general structure from motion problem, which is the main
subject of this chapter, we consider the simpler problems of triangulation and camera
pose estimation.

Consider a number of cameras seeing the same object. If the positions and orienta-
tions of the cameras are known, the goal is to determine the position of the object. This
is called the triangulation problem.

Problem 9. Given bearings u1, . . . um of a single object fromm different cameras P1, . . . , Pm ,
the L∞ triangulation problem is to reconstruct the point U while minimizing

fint(U) = max
i

∠
(
ui, PiŪ

)
. (7.4)

If instead the positions of a number of objects are known, then the goal is to determine
the position and orientation of the camera seeing these objects. This is the camera pose
problem.

Problem 10. Given n bearings u1, . . . , un and the corresponding object points U1, . . . , Un
the L∞ camera pose problem is to find the camera matrix P such that

fres(P ) = max
j

∠
(
uj , P Ūj

)
(7.5)

is minimized.

These two problems are in a sense easy to solve. We shall see that both of them can
be formulated as quasiconvex problems.
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Lemma 28. For any ∆ < π/2 the sets

{U | fint(U) < ∆} ⊂ R2 and {P | fres(P ) < ∆} ⊂ R4

are convex.

Proof. First note that if u · PŪ ≤ 0 then the angle between u and PŪ is at least π/2 or
P = 0. Thus we can assume u · PŪ > 0.

For a given U , P and corresponding u we have

∣∣∣∣
u× PŪ
u · PŪ

∣∣∣∣ = tan∠
(
u, P Ū

)
, (7.6)

where we define the cross-product for 2D vectors to be the scalar u× v = uxvy − vxuy .
Since u · PŪ > 0, checking whether ∠

(
u, P Ū

)
≤ ∆ is equivalent to

|u× PŪ | ≤ (u · PŪ) tan ∆. (7.7)

In the triangulation case, u andP are known and in camera pose case, u andU are known.
Hence these equations are linear in the unknowns, and thus the constraints correspond
to the intersection of half-planes and are convex. Note that in the camera pose case, these
sets do not include the degenerate P = 0.

Note that if we use the bisection algorithm, this result also tells us that the feasibility
problems can be put as linear programs.

7.4 Structure from Motion

In the next problem we will assume that neither the positions of the objects nor the posi-
tions and orientations of the cameras are known. We will assume that the correspondence
problem is solved, i.e., that it is known which measured bearings correspond to the same
object. If the problem is deduced from ordinary vision, this correspondence can be de-
cided using features in the two-dimensional image. In case of one-dimensional cameras
the correspondence can be estimated with a RANSAC-type algorithm [30].

To simplify notations we introduce bold-face letters, for example, R, which denotes
a set of rotation matrices R = (R1, . . . , Rm).

Problem 11. Consider n different points visible in m cameras. Given the bearings uij of
point j in camera i, the L∞ structure from motion problem is to find the cameras
(R,C) and the object positions U that minimizes the maximal reprojection error,

f
(
R,C,U

)
= max

i,j
∠
(
uij , Ri(Uj − Ci

))
. (7.8)
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Unfortunately this problem does not have the nice properties of the triangulation and
camera pose problems in the previous section. The reason is that when both P and U
are unknown (7.7) is normally not a convex condition. Nonetheless, quasiconvexity will
play an important role for this problem as well.

The basic idea of our optimization scheme is to first consider optimization with fixed
camera orientations, and then use branch and bound over the space of possible orien-
tations. A problem here is that, especially with many cameras, the manifold of possible
orientations is large. A method to reduce this manifold using linear conditions on the
orientations is presented in Section 7.4.3.

7.4.1 Optimization with Fixed Orientations

In this section we prove that if we fix orientations in the structure from motion problem,
we get a quasiconvex goal function.

Definition 9. We define the function

d(θ) = min
C,U

f
(
R(θ),C,U

)
(7.9)

where R(θ) are the rotation matrices corresponding to θ.

Lemma 29. For any ∆ < π/2 and a given θ, the problem of determining whether

d(θ) ≤ ∆ (7.10)

can be cast as a linear programming feasibility problem.

Proof. Since the orientations are fixed we can without loss of generality assume that ori-
entations have been corrected for and simply assume that Ri = I for all Ri ∈ R. Then,
for ε = ∠

(
u, P Ū

)
,

u× (U − C)

u · (U − C)
=
|u||(U − C)| sin ε
|u||(U − C)| cos ε

= tan ε.

The constraint that
ε ≤ ∆

is equivalent to
|u× (U − C)| ≤ tan ∆ (u · (U − C)),

which constitutes two linear inequality constraints in the unknowns U and C.

This means that we can use linear programming to determine if the minimal L∞
norm is less than some certain bound ∆. Moreover, using bisection we can get a good
estimate of the minimal L∞ norm.
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To get better convergence we modify the normal bisection algorithm slightly. The
idea is to seek a solution (C∗, U∗) to the problem in Lemma 29 that lies in the interior
of the feasible space. For such a solution the L∞ norm of the reprojection errors might
be smaller than the current ∆, say ∆?. Then one knows that the minimal L∞ norm,
d(θ) must be smaller than this ∆?. To find such an interior solution we introduce a new
variable k and try to maximize k under the constraints

|u× (U − C)|+ k ≤ (u · (U − C)) tan ∆.

We can now present an algorithm for finding the minimal L∞ norm for fixed orien-
tations θ.

1. Check if there is a feasible solution with all reprojected errors less than π/2. This
corresponds to tan ∆ =∞ in the equations above. This can be solved by a simpler
linear programming feasibility test. Use only (u · (U − C)) > 0. If this is feasible
then continue, otherwise return dmin > π/2.

2. Let ∆l = 0 and ∆h = π/2 be lower and upper bounds on the minimal L∞ error
norm.

3. Set ∆ = (∆h + ∆l)/2. Examine whether d(θ) ≤ ∆. If this is the case calculate
∆∗ = f(R(θ),C∗,U∗) for the feasible solution and set ∆h = ∆?. Otherwise
set ∆l = ∆.

4. Iterate step 3 until ∆h −∆l is below a predefined threshold.

An example on how d(θ) might look is shown in Figure 7.7.

7.4.2 Lipschitz Continuity

To get further, we need an idea of how d(θ) depends on the camera orientations in θ.
This is given by the following lemma.

Lemma 30. The function d satisfies

d(φ)− d(θ) ≤ max
j
|φj − θj | (7.11)

which implies that it is Lipschitz continuous with Lipschitz constant 1.

Proof. The value of d is calculated as the minimum of f(R(θ),C,U) over all C and
U. Let (C∗,U∗) be the minimizing camera positions and object coordinates for the
orientations θ. Since (7.11) is equivalent to

min
C,U

f(R(φ),C,U) ≤ min
C,U

f(R(θ),C,U) + max
j
|φj − θj |, (7.12)
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we see that, to prove (7.11) it is sufficient to find one pair (C,U) such that

f(R(φ),C,U) ≤ min
C,U

f(R(θ),C,U) + max
j
|φj − θj |,

since the minimun minC,U f(R(φ),C,U) is obviously smaller than the left-hand side.
We will now argue that (C∗,U∗) satisfies this condition.

Considering an arbitrary reprojection error for (C∗,U∗) but with orientations φ
instead of θ it is easy to see that

∠
(
uij , R(φi)(U

∗
j − C∗i )

)

= ∠
(
uij , (R(θi)−R(θi) +R(φi)) (U∗j − C∗i )

)

≤ ∠
(
uij , R(θi)(U

∗
j − C∗i )

)
+ ∠

(
R(φi)(U

∗
j − C∗i ), R(θi)(U

∗
j − C∗i )

)

≤ ∠
(
uij , R(θi)(U

∗
j − C∗i )

)
+ |φi − θi|. (7.13)

Thus the maximal reprojection error is bounded by

f(R(φ),C∗,U∗) ≤ d(θ) + max
i
|φi − θi|,

which proves inequality (7.11).

Using the fact that the function d(θ) can be evaluated and that it is Lipschitz con-
tinuous according to the above lemma, we will show how to solve globally for structure
from motion. The basic idea is to perform branch and bound over the space of rotations.
The Lipschitz property can be used to bound the function in the neighbourhood of a
considered point. Before giving the details of the branch and bound algorithm, we will
discuss how to limit the initial search space.

7.4.3 Initial Constraints on Orientations

When working with multiple views, the high dimension of the space of rotations can
pose a problem in the branch and bound setting. This section shows how to derive
simple constraints on the orientations, which can be used to limit the space we have to
examine using branch and bound.

Consider two cameras, one with orientation θ = 0 and position C and the other with
orientation θ′ = φ and position C ′. Let u and u′ be the measured bearings of an object
point in the two cameras. Then C ′ − C must lie in the cone shown in Figure 7.4. This
is stated in the following lemma.

Lemma 31. There exists a ≥ 0 and b ≥ 0 such that

C ′ − C = aR(0)Tu− bR(φ)Tu′. (7.14)
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Figure 7.4: For the beams to intersect the right camera has to lie in the green area.

Proof. Let U be the coordinates of the object point. Then, from the projection equa-
tion (7.2), we get

C + aR(0)Tu = U = C ′ + bR(φ)Tu′ a, b ≥ 0

and the result follows.

It is more efficient to work with angles rather than vectors. Hence, we define angles
α, α′ and c, such that

u =

(
cosα
sinα

)
and

C ′ − C
|C ′ − C| =

(
cos c
sin c

)
. (7.15)

Inserting in (7.14) and using the addition formulas for the sine and cosine we get
(

cos c
sin c

)
= a

(
cosα
sinα

)
− b

(
cos (α′ + φ)
sin (α′ + φ)

)
. (7.16)

Let us first assume that φ = 0 and α = 0. Then we get the simplified relation
(

cos c
sin c

)
= a

(
1
0

)
− b
(

cosα′

sinα′

)
= a

(
1
0

)
+ b

(
cos (α′ − π)
sin (α′ − π)

)
. (7.17)

We get two cases. If α′ can be chosen in [π, 2π] we get the case on the left in Figure 7.5.
The constraint that a and b be positive implies that

c ∈ [0, α′ − π]. (7.18)

If instead α′ can be chosen in [0, π] we get the case on the right Figure 7.5 and

c ∈ [α′ − π, 0]. (7.19)
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Figure 7.5: The two possible cases. Details are given in the text.

In the general case, when α and φ are not zero, the same argument leads to

c ∈ [α, α′ − π + φ] or (7.20)

c ∈ [α′ − π + φ, α]. (7.21)

Note that angle representations must be chosen such that interval lengths are positive but
less than π. Also an angle β lies in an interval if for some n ∈ Z, β + n · 2π does.

For each point which is visible in two cameras, we get a constraint either of type
(7.20) or (7.21). We introduce an index so that αk represents the bearing of point k
in the first camera and α′k the bearing of the same point in the second camera. For a
given φ to be feasible there must exist a c that satisfies (7.20) or (7.21) for every αk. The
following discussion will show how this can be used to produce bounds on φ.

First, note that (7.20) and (7.21) are linear in φ. Problems occur only when switching
between the two types of intervals, (7.20) and (7.21). This happens when

φ = αk − α′k or φ = αk − α′k − π. (7.22)

For each index k we get two such angles. Let

{φ(m)}, m = 1 . . .M (7.23)

be a sorted list of these angles. This divides the unit circle into M intervals. We will
consider these intervals one by one. If

φ ∈ [φ(m), φ(m+1)], (7.24)

then for each point we know if (7.20) or (7.21) is the relevant form of the constraint. Let
K1 be the set of the indices that generate constraints of type (7.20) and K2 contain the
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indices that generate constraints of type (7.21). To determine if there is an angle c that
satisfies all these constraints we need to check if the intersection

( ⋂

k∈K1

[αk, α
′
k − π + φ]

) ⋂ ( ⋂

k∈K2

[α′k − π + φ, αk]

)
, (7.25)

is non-empty. To make the problem cleaner we introduce variables `k for the lower
interval limits and hk for the upper limits. We get

( ⋂

k∈K1

[`k, hk + φ]

) ⋂ ( ⋂

k∈K2

[`k + φ, hk]

)
. (7.26)

Now, Algorithm 7.4.3 can be used to check for which φ this intersection is non-empty.
Naturally, only those φ’s that also satisfy (7.24) are relevant. We repeat the algorithm for
each of the M intervals defined by (7.23). Each interval yields different index sets K1

and K2 and thus different input to the algorithm.

1. Choose one interval [`0 + φ, h0].
2. Adjust all angle representations such that

h0 − 2π ≤ `k < h0 , `k < hk < `k + 2π.
3. Let La = maxk∈K2

lk, Lb = maxk∈K1
lk

Ha = mink∈K2
hk, Hb = mink∈K1

hk.
We have reduced the problem to

[La, Ha + φ]
⋂

[Lb + φ,Hb].
If La > Hb or Lb > Ha the problem is infeasible,
otherwise it is feasible for La −Ha < φ < Hb − Lb.

Modifying this algorithm to handle an error tolerance is simple. In step 3 each interval is
simply widened with the tolerance on each side. Note that when we have multiple views,
we can use this method for any pair of cameras.

7.4.4 Branch and Bound Algorithm

In this section we present a practical algorithm to solve for structure and motion with
one-dimensional cameras. The input to our algorithm is a set of m one-dimensional
images. Each image is a set of bearings of object points. We assume that correspondences
between the different images are known, but not that all object points are visible in all
cameras.

As a consequence of Lemma 29, structure from motion estimation for fixed orienta-
tions is a quasiconvex problem and can be solved efficiently. Thus we propose a branch
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and bound algorithm over the space of orientations. With m cameras the space of orien-
tations can be identified with [0, 2π]m−1 since the first camera can be set to R1 = I by
fixing the orientation of the world coordinate system. We represent the space of orienta-
tion with regions covering the whole set of feasible orientations.

To reduce this covering we first use the pairwise constraints of Section 7.4.3. Bounds
θi − θ1 ∈ Ii, where Ii is some interval, can be used to reduce the search space from
[0, 2π]m−1 to ΠiIi. With omnidirectional data, which is the normal case in one-dimensional
vision, this is often a considerable reduction.

After this initialization step we are left with a set of rectangular regions in the space of
orientations. To discard such regions we use the Lipschitz continuity of the goal function
(cf. Lemma 30) as follows. Assume that the best solution that we have found has L∞
norm error dbest and that the largest side of the region we are considering to be w.
Set the orientations to the centre of the region, denoted θc. Now assume that the goal
function fulfills

d(θc) > dbest +
w

2
. (7.27)

Then according to the lemma, no orientations θ within the region can have d(θ) ≤ dbest
and thus we can discard this region. According to Lemma 29, checking (7.27) is a linear
feasibility problem so it can be solved efficiently.

Finally we need a method to find better and better solutions and thus updating dbest.
One method is to seek among the centres of the feasible regions. That is, when a region
has passed (7.27) we also check whether d(θc) < dbest. If this is true then we have found
a better solution. The overall procedure is summarized in Algorithm 7.4.4.

Starting with an upper bound on the optimal solution dbest.
Iterate until desired precision is reached:

1. Pick a region from the queue.
2. Check feasibility using (7.27).
3. If the region cannot be discarded:

- Divide the region and update the queue.
- Try to update the lower bound on the optimum.

6. Remove the region from the queue.

In the initialization we only used a subset of the constraints discussed in Section 7.4.3,
namely those concerning θi − θ1 = θi. To further increase speed it is straightforward
to use general constraints on θi − θj . In step 2 of Algorithm 7.4.4, we simply check
feasibility using these bounds before using (7.27).
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7.5 Experiments

In this section the developed theory is experimentally validated and the practical aspects
of Algorithms 7.4.3 and 7.4.4 are investigated on both synthetic and real data. Further,
we give examples of multiple local minima under the L2 norm error function.

Our implementation is done in MATLAB using linprog for linear programming
(LP) feasibility problems. For all the below experimental setups, one LP problem took
around (or less) 0.05s to execute on a standard Pentium 2.8GHz processor.

7.5.1 Illustration of Typical Three View Problems: Synthetic Data

In a first example, study the problem of 3 views of 7 points with measured angles (in
radians)

α =




3.1 −1.9 −0.1 −1.9 −1.3 1.7 −0.4
−2.2 −1.3 −0.2 −1.3 −1 1.9 −0.4
2.6 −2.9 −1.4 −2.9 −2.6 1.4 −1.7


 , (7.28)

where rows represent different views and columns represent different points; see also
Figure 7.1 where the 3 images are plotted. The optimization problem consists of finding
the camera orientations and positions as well as the 7 object points. In the branch-and-
bound scheme, given by Algorithm 7.4.4, we can assume that the first camera orientation
θ1 is set to zero since we are free to choose the coordinate system.

Suppose that there exists a solution with dbest ≤ 0.05 radians, that is, a solution
with angular reprojection error no worse than 0.05 radians. We initialize the queue with
a square region with a centre point at (θ2, θ3) = (π, π) and width 2π, hence covering
all possible orientations. In the first iteration of Algorithm 7.4.4, this region (naturally)
passes the feasibility test for the bound 0.05 + π and consequently it is divided into
smaller ones. This splitting leads to a quadtree structure. In the next two iterations of the
algorithm there are 4 and 16 regions, respectively. None of these can be outruled. At the
next level, 60 out of 64 regions of width π/4 can be outruled.

In Table 7.1, we summarize the first 10 iterations of the algorithm by describing (i)
the number nsq of feasible regions there are left at each level and (ii) how much area A
out of the total area Atot = (2π)2 these regions represent. After 10 iterations of the
algorithm the optimal solution is bounded by 5.94 ≤ θ2 ≤ 5.98 and 0.74 ≤ θ3 ≤ 0.86.

iteration 1 2 3 4 5 6 7 8 9 10
nsq 4 16 4 8 20 28 40 68 104 92

log(A/Atot) 0.0 0.0 -1.2 -1.5 -1.7 -2.2 -2.6 -3.0 -3.4 -4.1

Table 7.1: Progress of the branch and bound algorithm for the synthetic example in (7.28). See
text for details.
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Figure 7.6 illustrates the progress of the algorithm. Note that the the method quickly
focuses in on the optimal solution of the problem and orientations far away from the
optimum are discarded early in the iterative process. A plot of the goal function d(θ) is
given in Figure 7.7. The optimal solution is plotted in Figure 7.2.
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Figure 7.6: The quadtree map of the goal
function. White regions are discarded early
in the branch and bound algorithm and
darker areas are kept longer.
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Figure 7.7: The figure shows the goal func-
tion d(θ) as a function of θ2 and θ3 for
the example with 3 views of 7 points in Sec-
tion 7.5.1. Notice that the function is peri-
odic.

See Figure 7.8 for illustrations of other typical random, synthetic three-view examples
with varying number of points. In certain cases there may be several local optima and even
in underconstrained cases (meaning less equations than unknowns) one can often locate
the global minimum to a small region of parameter space.
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Figure 7.8: Evolution of the quadtree map. See Figure 7.6 for explanation. Left: 4 points, 3 cameras
(underconstrained). Middle: 5 points, 3 cameras with two local optima. Right: 6 points, 3 cameras
(overconstrained). Note that even though the solution is underconstrained in the left example, one
can locate the global optimum to a small region of parameters space.

110



7.5. EXPERIMENTS

7.5.2 Omnidirectional Cameras: Real Data

In the standard setup for 1D vision, a rotating laser (as depicted in Figure 7.1) measures
the angles between strips of reflective tape. This is an omnidirectional camera as measure-
ments (or bearings) can be detected from a 360 degree field of view. All the experiments
in this section are performed with such a sensor.

Our data were collected in a series of four experiments with varying number of object
points and camera positions. The first three experiments were performed in a single room
with 5 reflective tapes on the walls of the room, with bearing measurements at 7, 8 and
21 different camera positions, respectively. In the fourth experiment, 14 reflective tapes
were placed inside an ice hockey rink and the camera captured bearings to these points
from 70 positions. The resolution of the angular meter is roughly 0.8 mrad.

There is no ground truth available for any of these experiments. However, as the same
set of 5 reflective tapes are measured in the first three independent runs of the laser truck,
the reconstruction of the scene geometry should be the same for all three experiments.
This will be used to validate that the reconstructions are plausible.

To measure the uncertainty of the solution space, we use ( VV0
)1/n, where V is the re-

maining volume of rotation space, V0 = (2π)n is the total volume and n the dimension.
Note that the measure is normalized with respect to dimension and it can be regarded as
the (normalized) geometric mean of the width of each dimension. In order to examine
the running times, random subsets of 3, 4 and 5 camera positions of the ice hockey rink
data were tested by measuring uncertainty as a function of the number of LP problems
solved. The result is graphed in Figure 7.9. Note that already after a few hundred pro-
grams, a large portion of the rotation space can be ruled out. Also note that the execution
times increase as the number of dimensions go up, as can be expected from a branch and
bound scheme. The overhead for setting up the LP problems is negligible.

Figure 7.9: The plot shows the uncertainty as a function of the number of linear programs for 3
views (green), 4 views (blue) and 5 views (red). The remaining volume is normalized with respect
to the dimension of the space of rotations, i.e., V 1/n is used as a measure of this uncertainty. The
data are averages over respectively 25, 15 and 9 experiments.

In the first (second) experiment of the single room setup, there are m = 7 (m = 8)
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camera positions involved which means that one needs to perform branch and bound
in n = 6 (n = 7) dimensions, respectively. The initial rotation constraints of Algo-
rithm 7.4.3 reduce the potential rotation volume considerably to ( VV0

)1/6 = 0.17 and

( VV0
)1/7 = 0.13, respectively. Still, the rotational uncertainty is as much as 0.7 (0.7)

radians for the most uncertain dimension.
After 5274 (6738) feasibility programs, there remain 2626 (4072) potential regions

in the branch and bound queue, with relative volume ( VV0
)1/6 = 0.11 and ( VV0

)1/6 =
0.10, respectively, and a maximum width of 0.13 (0.13) radians for the most uncertain
dimension of all rotation regions. The best solution found has an L∞ error of 1.1 (1.3)
mrad. Hence, even though solutions with low errors are obtained, it takes a long time to
reduce the rotational uncertainty for such high dimensional problems. This is about the
limit what is practically possible for branch and bound. The two computed solutions are
plotted in the left and middle of Figure 7.10.

For the remaining two experiments with 21 and 70 camera positions we will have
to modify our strategy to a more practical approach. By combining optimal structure
from motion with alternating camera pose estimation and triangulation, it is possible to
solve for many cameras and object points in an efficient manner. The guaranteed global
optimality is of course lost, but our experiments indicate that this strategy still gives very
precise results.

For the third experiment with 21 camera positions viewing 5 object points we use the
following two-step scheme:

1. We select the first 5 camera positions, and use Algorithm 7.4.3 for initialization
(which gives rotational uncertainty ( VV0

)1/4 = 0.18) followed by Algorithm 7.4.4

for computing a global solution (which results in rotational uncertainty ( VV0
)1/4 =

0.05 after 2620 LP programs). The L∞ error is 1.5 mrad for the partial structure
from motion solution.

2. Then, since all 5 object points are reconstructed, we can perform optimal resection
on the remaining 16 camera positions. The computed solution can be iteratively
improved by alternating optimal triangulation and optimal camera pose estimation.
This results in a solution with L∞ error 2.6 mrad. The iterative alternation scheme
(typically) convergences in just a few iterations.

The three structure from motion solutions of the single room experiment are plotted in
Figure 7.10. Note that the 2D object points have been identically reconstructed (modulo
a choice of coordinate system) in all three experiments.

As a final omnidirectional experiment, with measurements from an ice hockey rink
of 70 images of 14 points, we solve the structure from motion problem using the same
two-step procedure as above. The result is shown in Figure 7.11 and the solution has a
L∞ error of 5.2 mrad.
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Figure 7.10: Structure and motion solutions obtained from measurements of 5 points in 7 cameras
(left), 8 cameras (middle) and 21 cameras (right), respectively.
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Figure 7.11: Structure and motion for the ice hockey experiment calculated by solving a series of
camera pose and triangulation problems.

7.5.3 Cameras with Limited Field of View: Real Data

Pinhole cameras can only view objects in front of the camera and thus have a limited field
of view. For 1D cameras having a limited field of view, finding the optimal solution to
structure from motion turns out to be computationally much more demanding than for
omnidirectional cameras. The results in this section are based on real data measurements,
but we have also validated that similar conclusions can be drawn based on (random)
synthetic data with limited field of view.

The setup for the experiment is as follows. First we placed 10 black-and-white mark-
ers in the scene. Then a camera was mounted on a trolley and moved around to create a
planar motion. Figure 7.12 shows five of the captured images. The blue stars show the
detected markers in each image. Since the camera y-axis is not perfectly aligned with the
upward direction in the images we had to reestimate the coordinate system from objects
in the image that can be assumed to be aligned with the upward direction, such as the
door frame and other lines parallel to it. The green lines show the estimated coordinate
system and the red stars show the projections of the computed bearings. The field of view
is less than 45 degrees (that is, the angle difference between maximum and minimum
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measurements).

Figure 7.12: Setup for the experiment with planar moving cameras. The blue stars show the
location of the detected markers, the green lines show the estimates of the x and y axes and the red
stars show the calculated bearings of the markers. Note that not all markers are visible in all views.

In order to examine the execution times, similarly to what was done in the omnidi-
rectional case, random subsets of 3 cameras were selected and the rotation uncertainty
was studied as a function of LP problems solved. Figure 7.13 shows how Algorithm 7.4.4
typically works for one such example compared to a typical omnidirectional example. In
all examples we have encountered, the convergence of the branch and bound algorithm
is slow. Not surprisingly, Algorithm 7.4.3 fails to substantially reduce the initial rotaional
uncertainty. For example, applying Algorithm 7.4.3 to the 5 images of 10 points de-
scribed above yields ( VV0

)1/4 = 0.70. After 3050 LP programs, the uncertainty has

decreased to ( VV0
)1/4 = 0.57 for the same instance. The best solution found at this point

has L∞ error 309 mrad. Apparently the optimization takes a lot longer time. Alternating
optimal camera pose estimation and optimal triangulation improves the solution and a
local optimal solution is obtained. The L∞ error is 0.54 mrad.

To see if this difficulty is somehow inherent in the problem, we examined the slope of
the goal function. As the branch and bound algorithm fails to efficiently discard regions,
the goal function is flat around the optimal solution. Hence, there is a large neigh-
bourhood of solutions that give almost the same reprojection error. Figure 7.14 shows
two such solutions from one problem instance with 3 cameras viewing the 10 markers.
Though the two solutions are very different the L∞ errors are less than 2 mrad for both.
In fact there is a whole continuum of low error solutions between these two. This means
that the problem is very unstable. The behaviour is common in our data. Note especially
that this example is not close to the minimal problem of five points in three views. Adding
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Figure 7.13: Remaining uncertainty as a function of the number of linear programming problems
solved. The plot shows the average uncertainty per dimension as a fraction of the original uncer-
tainty. The blue curve relates to a typical omnidirectional example, whereas the red curve comes
from a camera having a limited field of view.

more views will reduce the ambiguity in determining the solution, but it is still present for
smaller number of views (less than 5). This observation explains the poor performance of
using narrow field of view cameras (cf. Figure 7.13).

Figure 7.14: The plots show two solutions for the same three view problem. Both solutions have a
L∞ error of less than 2 mrad.

Do local minima occur? We conclude with an experiment that shows that local min-
ima may occur, and in some cases even quite frequently.

Using MATLAB’s built in function fmincon we tried to minimize the L2 norm error
of the angles for the 5 images of 10 markers. We found 16 local minima in total from
random initializations. However many of them can easily be discarded since one or two
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markers are far away (towards infinity) which is unreasonable in this setting. Figure 7.15
shows five of the detected minima, and Table 7.2 shows the corresponding values of the
goal function. The first minimum is the one with lowest value out of the 16 cases. The
solution computed above with the L∞ approach yielded an error of 0.54 mrad, and
the reconstructed scene is almost identical (modulo coordinate system) to the best L2

solution, plotted in the top left of Figure 7.15.

local minima: 1 2 3 4 5
L2-error: 0.0013 0.0832 0.2270 0.1907 0.2145

Table 7.2: The L2 angular error (in radians) for the minima shown in Figure 7.15.
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Figure 7.15: Five detected local minima. Note that some of the reconstructions appear to have
negative depths. This is because not all of the markers are visible in all views.

7.6 Discussion

This chapter examined the problem of finding global minima to the structure from mo-
tion problem (SLAM, surveying) for 1D retina cameras using the L∞ norm on repro-
jected angular errors. We have seen how the problem of known camera orientations can
be reduced to a series of linear programming feasibility tests. We have also shown that
the L∞ goal function as a function of orientation variables has slope less than one. This
Lipschitz property gives a way to efficiently search the orientation space for the optimal
solution using branch and bound, resulting in a globally optimal algorithm with good
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empirical performance.
Apart from algorithmic developments for the 1D structure from motion problem,

we have also experimentally shown that the goal function is very flat for cameras with
small field of view. In particular, this means that there may exist many solutions with
similar reprojection errors. Hence, such problems are ill-posed and computationally hard
to solve.
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