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Abstract

Using the Cayley-Hamilton theorem and unique solubility of scalar Volterra
convolution equations of the second kind, the inverse problem of determining
the four time-dependent susceptibility dyadics of a linear, homogeneous, bi-
anisotropic slab from generic scattering data at oblique incidence is shown to
be well posed. An explicit formula for the crucial step is given.

1 Introduction

All materials are characterized by temporal dispersion, which is generally anomalous
in the absorption bands [11, 21]. This means that electromagnetic pulses pulses
propagate under distortion in non-vacuous regions of space. The most well known
transient fields in dispersive media are known as the Sommerfeld and Brillouin
precursors or forerunners [1, 4, 13, 21].

For linear, causal, and time-invariant materials, temporal dispersion is modeled
by time convolution in the constitutive relations [12]. Since there is generally a
coupling between the electric field and the magnetic field in the constitutive relations,
the most general bi-anisotropic medium is described by as many as 36 temporal
susceptibility kernels [19].

Time-domain direct and inverse scattering problems for bi-anisotropic slabs lo-
cated in free space have been in focus during the 1990’s [3, 5–9, 16–18, 22–24]. Gen-
erally the exciting fields have been known normally or obliquely incident fields of
both polarizations1, possibly several ones impinging on the slab under different an-
gles of incidence or different azimuth angles of incidence. The direct problem is then
to determine the scattered fields, i.e., the reflected and transmitted fields, given the
susceptibility kernels of the medium in the slab. The inverse problem is to determine
the unknown susceptibility kernels of the medium, given measured scattered fields
obtained at one or several experiments. Usually either the imbedding approach or
the Green function technique has been used, both for the direct and the inverse
problem. Both methods depend on vacuum wave splitting. Good numerical results
of numerical calculations were reported in the references, indicating that the inverse
problem basically is well posed, i.e., that the results depend continuously on data.
This was, however, not proved.

In [25], using dispersive splitting and referring to unique solubility of Volterra
convolution equations of the second kind, the inverse problem for the bi-isotropic
(four kernels) slab at normal incidence was shown to be well posed. Moreover,
in [6], one of the natural steps in solving the inverse problem for the anisotropic
(18 susceptibility kernels) slab at oblique incidence was proved to be well posed. In
the present paper, it is shown that the generic2 inverse problem for the general bi-
anisotropic slab under oblique incidence indeed is well posed. The Cayley-Hamilton
theorem and wellposedness of scalar Volterra convolution equations of the second

1Transverse electric (TE) fields and transverse magnetic (TM) fields are intended.
2This excludes the illposedness of obtaining scattering kernels by deconvolution of scattered

fields.
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kind are referred to, and it is conjectured, that a constructive algorithm of solving
the inverse problem can be based on the proof. Pertinent background material is
presented systematically and developed for intended purposes in the introductory
section 1. The solution of the inverse problem, presented in section 2, turns out to
be simple consequence of these facts.

1.1 Notation

A dyadic notation [20] combined with standard block-matrix notation is used. Scalars
are typed in italic letters, vectors in italic boldface style, and dyadics in roman bold-
face style. Thus, three-dimensional vectors are written as

V = x̂Vx + ŷVy + ẑVz,

whereas three-dimensional dyadics are written in the form

D =x̂x̂Dxx + x̂ŷDxy + x̂ẑDxz

+ŷx̂Dyx + ŷŷDyy + ŷẑDyz

+ẑx̂Dzx + ẑŷDzy + ẑẑDzz,

where x̂, ŷ, and ẑ are the Cartesian basis vectors. Special notation is used for the
radius vector, r = x̂x + ŷy + ẑz, and standard notation is used for the gradient,
∇ = x̂∂x + ŷ∂y + ẑ∂z. The identity dyadic I = x̂x̂ + ŷŷ + ẑẑ has the properties
that I · V = V · I = V for each vector V and I ·D = D · I = D for each dyadic D.

For the purpose of analyzing pulse propagation in a preferred direction, ẑ, in
space, it is appropriate to decompose the unit dyadic as I = I⊥⊥ + ẑẑ, where
I⊥⊥ = x̂x̂+ ŷŷ is the identity dyadic in the x-y plane.

Three-dimensional vectors are decomposed uniquely as

V = V ⊥ + ẑVz,

where V ⊥ = I⊥⊥ · V = V · I⊥⊥ = x̂Vx + ŷVy is the projection of V on the x-y
plane. The zero vector 0 is decomposed as 0 = 0⊥+ ẑ0. Three-dimensional dyadics
are partitioned uniquely as

D = D⊥⊥ +D⊥ zẑ + ẑDz⊥ + ẑDzzẑ, (1.1)

where {
D⊥⊥ = I⊥⊥ ·D · I⊥⊥,
Dz⊥ = ẑ ·D · I⊥⊥,

{
D⊥ z = I⊥⊥ ·D · ẑ,
Dzz = ẑ ·D · ẑ.

The dyadic D⊥⊥ is a two-dimensional dyadic in the x-y plane, and the vectors Dz⊥
andD⊥ z are two-dimensional vectors in this plane. The zero dyadic 0 is decomposed
as 0 = 0⊥⊥ + 0⊥ zẑ + ẑ0z⊥ + ẑ0ẑ.

The dyadic notation is often combined with a matrix notation. The pertinent
block-matrix representation of a dyadic D is(

D⊥⊥ D⊥ z
Dz⊥ Dzz

)
.



3

When using this notation, Dz⊥ is to be thought of as a two-dimensional row vec-
tor and D⊥ z as a two-dimensional column vector. Four our purposes, it is also
appropriate to form the four-block-matrices(

A B
C D

)
,

(
A⊥⊥ B⊥⊥
C⊥⊥ D⊥⊥

)
,

(
A⊥ z B⊥ z
C⊥ z D⊥ z

)
,

(
Az⊥ Bz⊥
Cz⊥ Dz⊥

)
, and

(
Azz Bzz
Czz Dzz

)
,

where A, B, C, and D are given three-dimensional dyadics and the other block-
matrix entries arise when A, B, C, and D are partitioned in accordance with (1.1).
These four-block-matrices are of types 6×6, 4×4, 4×2, 2×4, and 2×2, respectively.

The electric and magnetic fields are denoted by E = E(r, t) and H = H(r, t),
respectively, and the corresponding flux densities are written D = D(r, t) and
B = B(r, t), where t denotes time. In macroscopic media, the Maxwell equations{

∇×E = −∂tB,
∇×H = ∂tD,

model the dynamics of the fields. These equations can be written economically as(
0 ∇× I

−∇× I 0

)
·
(
E
η0H

)
= c−1

0 ∂t

(
c0η0D
c0B

)
,

where η0 =
√
µ0/ε0 and c0 = 1/

√
ε0µ0 are the intrinsic impedance of vacuum and

the speed of light in vacuum, respectively, and ε0 and µ0 are the permittivity and
permeability of vacuum, respectively. Temporal differentiation is denoted by ∂t and
temporal integration (anti-differentiation) by ∂−1

t =
∫ t

−∞ dt. At pulse propagation,
all fields are initially quiescent, and these operators commute.

The temporal Heaviside unit step and temporal delta function are denoted by
H = H(t) and δ = δ(t), respectively.

1.2 Bi-anisotropic media

The general homogeneous3 bi-anisotropic medium is a linear, complex material com-
prising 36 different scalar constitutive time-dependent parameters (functions) [19].
The constitutive relations are

D = ε0ε ·E +
1

c0
ξ ·H ,

B =
1

c0
ζ ·E + µ0µ ·H ,

(1.2)

or, in a compact form, (
c0η0D
c0B

)
=

(
ε ξ
ζ µ

)
·
(
E
η0H

)
.

3In this section medium parameters may, more generally, depend on position, i.e., χij =
χij(r, t), i, j ∈ {e,m}.
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The dyadic operators ε and µ in (1.2) are the permittivity and the permeability op-
erators of the medium, respectively, which for anisotropic materials are general, that
is, comprising nine parameters each. For isotropic media, ε and µ are proportional
to the identity dyadic I. In bi-isotropic media, which are the simplest complex ma-
terials that involve the cross-coupling terms ξ and ζ, all the constitutive dyadics are
proportional to the identity dyadic. One should bear in mind, that the partitioning
into isotropic, bi-isotropic, anisotropic, and bi-anisotropic materials, by definition,
is mutually exclusive. The dyadics ε, ξ, ζ, and µ are dimensionless. Introducing
the constitutive relations in the Maxwell equations gives(

0 ∇× I
−∇× I 0

)
·
(
E
η0H

)
= c−1

0 ∂t

(
ε ξ
ζ µ

)
·
(
E
η0H

)
. (1.3)

The relative permittivity and permeability operators of the medium are4{
ε = I + (χeeH)◦ = (Iδ + χeeH)◦,
µ = I + (χmmH)◦ = (Iδ + χmmH)◦,

whereas the relative cross-coupling operators are{
ξ = (χemH)◦,
ζ = (χmeH)◦,

where the circle (◦) denotes temporal convolution and the circle endowed with a dot
(�) denotes temporal convolution combined with the dyadic dot product (·):

[ε ·E] (r, t) = ((Iδ + χeeH)�E)(r, t) = E(r, t) +

∫ t

−∞
χee(t− t′) ·E(r, t′) dt′,

[ξ · η0H ] (r, t) = ((χemH)� η0H)(r, t) =

∫ t

−∞
χem(t− t′) · η0H(r, t′) dt′.

The four dyadic integral kernels χij = χij(t), i, j ∈ {e,m}, are the susceptibility
functions of the medium. They are assumed to be bounded and smooth (infinitely
differentiable). Well-known examples, applicable to non-magnetic, isotropic materi-
als, are the Lorentz model (the resonance model)

χee(t) = I
ω2
p√

ω2
0 −

(
ν
2

)2
exp

(
−νt

2

)
sin

(√
ω2

0 −
(ν

2

)2

t

)

and the Drude model (set ω0 = 0 in the Lorentz model)

χee(t) = I
ω2
p

ν
(1− exp (−νt)) ,

4Causality implies that the integral kernels are identically zero for t < 0. This is modeled by
the Heaviside unit step: (χijH)(t) = χee(t)H(t), i, j ∈ {e,m}.
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where ωp is the plasma frequency, ω0 is the harmonic frequency, and ν is the colli-
sion frequency [15]. The former model applies to bound electrons in insulators and
the latter to free electrons in conductors. Other well-known models are the Debye
model for polar liquids and Ohm’s law; however, these models violate the condition
χee(0) = 0, which has been claimed to be “unphysical” in a major textbook con-
cerning electromagnetics [11]. Therefore, it is adequate to impose the more general
condition

χij(0) = 0 (i, j ∈ {e,m}) (1.4)

on the susceptibility kernels of the medium. Another motivation for (1.4) is that
the inverse problem to be studied in this paper is not generally uniquely solvable
if (1.4) is violated. In the short-wave-length limit, the constitutive relations reduce
to the ones in vacuum, D = ε0E and B = µ0H , provided that the susceptibility
kernels are absolutely integrable (the Riemann-Lebesgue lemma).

There is a profound difference between the operators ε and µ on one hand
and the operators ξ and ζ on the other5. For instance, if G = G(t) is a well-
behaved (e.g., causal, bounded, and smooth) temporal function, then the equation
ε · F = G is a linear Volterra convolution equation of the second kind with well-
behaved solution F = ε−1 ·G. Solving such equations are well posed problems [14].
In fact, generalizing the method of successive approximations presented in [26] gives

F (t) = G(t) +
∞∑
n=1

(−1)n (χeen �G) (t),

where the introduced kernels are given by

χeen =

{
χee(t)H(t) (n = 1),

(χeen−1 � χee1 )(t) (n > 1),

This series converges owing to the fact that the susceptibility kernel be bounded.
The equation ξ·F = G, however, is a linear Volterra convolution equation of the first
kind, and does not necessarily have this property. Nonetheless, Volterra convolution
equations of the first kind can sometimes be transformed to Volterra convolution
equations of the second kind by (first or repeated) differentiation [14]. For instance,
if d

dt
χem(0) is non-singular, then two-fold differentiation of both members of the

first-kind equation ξ · F = G gives the second-kind equation

F (t)+

∫ t

−∞

((
d

dt
χem(0)

)−1

· d
2

dt2
χem(t− t′)

)
·F (t′) dt′ =

(
d

dt
χem(0)

)−1

· d
2

dt2
G(t).

Thus, the solution of ξ · F = G can be written formally as F = (∂2
t ξ)
−1 · ∂2

tG,
provided d

dt
χem(0) is non-singular.

5Observe that the results presented here for the 3D case hold for the 2D and 1D cases.
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1.3 Fundamental equation at oblique incidence

At oblique incidence on a homogeneous6 bi-anisotropic slab |z| < d/2 embedded in
vacuum, the up-going and down-going incident electric and magnetic fields traveling
in the unit directions n̂± can be written in the forms{

E±i (r, t) = E±i0
(
t− n̂± · (r ± ẑd/2) /c0

)
H±i (r, t) = H±i0

(
t− n̂± · (r ± ẑd/2) /c0

) (±z < −d/2),

where E+
i0 (t− n⊥ · r⊥/c0) (H+

i0 (t− n⊥ · r⊥/c0)) is the incident electric (magnetic)
field at z = −d/2 and E−i0 (t− n⊥ · r⊥/c0) (H−i0 (t− n⊥ · r⊥/c0)) is the incident
electric (magnetic) field at z = d/2. The directions of propagation are assumed to
have the same transverse component, i.e., , they can be decomposed as (nz > 0)

n̂± = n⊥ ± ẑnz = n⊥ ± ẑ
√

1− n⊥ · n⊥,

where the common transverse direction of propagation n⊥ is fixed but arbitrary and
the positive square root is intended. Under these circumstances, the up-going and
down-going scattered electric and magnetic fields must satisfy{

E±s (r, t) = E±s0
(
t− n̂± · (r ∓ ẑd/2) /c0

)
H±s (r, t) = H±s0

(
t− n̂± · (r ∓ ẑd/2) /c0

) (±z > d/2),

where E+
s0 (t− n⊥ · r⊥/c0) (H+

s0 (t− n⊥ · r⊥/c0)) is the scattered electric (mag-
netic) field at z = d/2 and E−s0 (t− n⊥ · r⊥/c0) (H−s0 (t− n⊥ · r⊥/c0)) is the scat-
tered electric (magnetic) field at z = −d/2. Therefore, the appropriate Ansatz for
the total fields throughout space is{

E(r, t) = E (z, t− n⊥ · r⊥/c0)
H(r, t) = H (z, t− n⊥ · r⊥/c0)

(−∞ < z <∞).

Substituting ∇ for −n⊥c−1
0 ∂t + ẑ∂z into the Maxwell equations (1.3) gives

∂z

(
0 ẑ × I

−ẑ × I 0

)
·
(
E
η0H

)
= c−1

0 ∂t

(
ε ξ + n⊥ × I

ζ − n⊥ × I µ

)
·
(
E
η0H

)
, (1.5)

which is a integro partial differential equation (PDE) in z and t.
As in the time-harmonic case, the longitudinal components are uniquely deter-

mined by the transverse fields; specifically,(
εzz ξzz
ζzz µzz

) (
Ez
η0Hz

)
= −

(
εz⊥ ξz⊥ + ẑ × n⊥

ζz⊥ − ẑ × n⊥ µz⊥

)
·
(
E⊥
η0H⊥

)
, (1.6)

where (
εzz ξzz
ζzz µzz

)
=

(
1 0
0 1

)
+

(
χeezz(t) χemzz (t)
χmezz (t) χmmzz (t)

)
◦ . (1.7)

6In this section the medium may be plane-stratified, i.e., χij = χij(z, t), i, j ∈ {e,m}.
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In analogy with the results presented in section 1.2, the inverse of the operator (1.7)
exists, and (1.6) is a system of linear Volterra convolution equations of the second
kind in the longitudinal components in terms of the transverse fields. Applying(

0 ẑ × I
−ẑ × I 0

)
on both members of (1.5) gives

∂z

(
E⊥
η0H⊥

)
= c−1

0 ∂t

(
0⊥⊥ ẑ × I⊥⊥

−ẑ × I⊥⊥ 0⊥⊥

)
·
(
ε⊥⊥ ξ⊥⊥
ζ⊥⊥ µ⊥⊥

)
·
(
E⊥
η0H⊥

)
+ c−1

0 ∂t

(
0⊥⊥ ẑ × I⊥⊥

−ẑ × I⊥⊥ 0⊥⊥

)
·
(

ε⊥ z ξ⊥ z + n⊥ × ẑ
ζ⊥ z − n⊥ × ẑ µ⊥ z

) (
Ez
η0Hz

)
.

Eliminating the longitudinal components using (1.6) gives the fundamental equation
at oblique incidence, which relates the transverse electric and magnetic fields in the
complex slab to one another:

∂z

(
E⊥
η0H⊥

)
= c−1

0 ∂t

(
0⊥⊥ ẑ × I⊥⊥

−ẑ × I⊥⊥ 0⊥⊥

)
·
(
ε̃ ξ̃

ζ̃ µ̃

)
·
(
E⊥
η0H⊥

)
, (1.8)

where7(
ε̃ ξ̃

ζ̃ µ̃

)
=

(
ε⊥⊥ ξ⊥⊥
ζ⊥⊥ µ⊥⊥

)

−
(

ε⊥ z ξ⊥ z + n⊥ × ẑ
ζ⊥ z − n⊥ × ẑ µ⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
εz⊥ ξz⊥ + ẑ × n⊥

ζz⊥ − ẑ × n⊥ µz⊥

)
.

(1.9)
The medium operator defined by (1.9) depends on the transverse direction of prop-
agation, n⊥. Emphasizing this, (1.9) can be written as(

ε̃ ξ̃

ζ̃ µ̃

)
(n⊥) =

(
ε̃ ξ̃

ζ̃ µ̃

)
(0⊥)

−
(
ε⊥ z ξ⊥ z
ζ⊥ z µ⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
0z⊥ ẑ × n⊥

−ẑ × n⊥ 0z⊥

)
−

(
0⊥ z n⊥ × ẑ

−n⊥ × ẑ 0⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
εz⊥ ξz⊥
ζz⊥ µz⊥

)
−

(
0⊥ z n⊥ × ẑ

−n⊥ × ẑ 0⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
0z⊥ ẑ × n⊥

−ẑ × n⊥ 0z⊥

)
,

(1.10)
where the medium operator at normal incidence is(

ε̃ ξ̃

ζ̃ µ̃

)
(0⊥) =

(
ε⊥⊥ ξ⊥⊥
ζ⊥⊥ µ⊥⊥

)
−

(
ε⊥ z ξ⊥ z
ζ⊥ z µ⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
εz⊥ ξz⊥
ζz⊥ µz⊥

)
.

7Notice that this matrix operator is of type 4× 4.
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The fundamental equation at pulse propagation in a preferred direction in an un-
bounded medium is also obtained by setting n⊥ = 0⊥.

For given incident electric fields, E±i0, at the boundaries z = ∓d/2, the direct
problem (1.8) has a unique solution. This is a consequence of the vacuum wave
splitting, which transforms the scattering problem defined by (1.8) into (1.27) sub-
ject to the boundary relations (1.26), for which there is a theory available [22]. The
solution of (1.8) can be written in the form8(

E⊥
η0H⊥

)
(z) =

(
Πee Πem

Πme Πmm

)
(z, z′) ·

(
E⊥
η0H⊥

)
(z′),

where a temporal convolution operator referred to as the wave propagator for the
transverse electric and magnetic fields in the medium has been introduced. This
operator, which takes the transverse fields at point z′ to point z, satisfies

∂z

(
Πee Πem

Πme Πmm

)
(z, z′) = c−1

0 ∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
(z) ·

(
Πee Πem

Πme Πmm

)
(z, z′),

where the possibility that the medium be stratified has been stressed and(
Πee Πem

Πme Πmm

)
(z′, z′) =

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
.

It should be pointed out that also the direct problem defined by these matrix equa-
tions is uniquely solvable [22].

1.4 Reflections on the inverse problem

The inverse problem is to obtain the dyadics ε, ξ, ζ, and µ from scattering data.
Suppose, that, for fixed but arbitrary non-trivial vector n⊥, the material dyadics(

ε̃ ξ̃

ζ̃ µ̃

)
(±n⊥),

(
ε̃ ξ̃

ζ̃ µ̃

)
(±ẑ × n⊥),

defined by (1.10) can be determined from a series of inverse experiments. These
matrices correspond to a fixed angle of incidence (θ = arcsin(|n⊥|)) and four different
azimuth angles of incidence (φ = π/2∓ π/2 and φ = ±π/2, respectively). Then(

ε̃ ξ̃

ζ̃ µ̃

)+

(n⊥) : =

(
ε̃ ξ̃

ζ̃ µ̃

)
(n⊥) +

(
ε̃ ξ̃

ζ̃ µ̃

)
(−n⊥)− 2

(
ε̃ ξ̃

ζ̃ µ̃

)
(0⊥)(

ε̃ ξ̃

ζ̃ µ̃

)−
(n⊥) : =

(
ε̃ ξ̃

ζ̃ µ̃

)
(n⊥)−

(
ε̃ ξ̃

ζ̃ µ̃

)
(−n⊥)

8The dependence on the parameter s = t− n⊥ · r⊥/c0 is relaxed since it is not essential here.



9

and analogously (
ε̃ ξ̃

ζ̃ µ̃

)+

(ẑ × n⊥),

(
ε̃ ξ̃

ζ̃ µ̃

)−
(ẑ × n⊥)

can be formed and the inverse problem can be solved easily step by step. For
anisotropic materials this was demonstrated in [6], wherein this part of the inverse
problem was referred to as Retrieval of Internal Parameters (RIP).

To show this in the general homogeneous9 bi-anisotropic case, one forms(
ε̃ ξ̃

ζ̃ µ̃

)+

(n⊥)−
(
ε̃ ξ̃

ζ̃ µ̃

)+

(ẑ × n⊥)

=− 2

(
0⊥ z n⊥ × ẑ

−n⊥ × ẑ 0⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
0z⊥ ẑ × n⊥

−ẑ × n⊥ 0z⊥

)
+ 2

(
0⊥ z n⊥
−n⊥ 0⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
0z⊥ −n⊥
n⊥ 0z⊥

)
and (

ε̃ ξ̃

ζ̃ µ̃

)−
(n⊥) =− 2

(
ε⊥ z ξ⊥ z
ζ⊥ z µ⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
0z⊥ ẑ × n⊥

−ẑ × n⊥ 0z⊥

)

− 2

(
0⊥ z n⊥ × ẑ

−n⊥ × ẑ 0⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
εz⊥ ξz⊥
ζz⊥ µz⊥

)
and (

ε̃ ξ̃

ζ̃ µ̃

)−
(ẑ × n⊥) =− 2

(
ε⊥ z ξ⊥ z
ζ⊥ z µ⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
0z⊥ −n⊥
n⊥ 0z⊥

)

− 2

(
0⊥ z n⊥
−n⊥ 0⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
εz⊥ ξz⊥
ζz⊥ µz⊥

)
,

where the left members are known. Using orthogonality in the first equation gives(
εzz ξzz
ζzz µzz

)−1

=
1

2

(
0z⊥ − n⊥

n⊥·n⊥
n⊥

n⊥·n⊥ 0z⊥

)

·
((

ε̃ ξ̃

ζ̃ µ̃

)+

(n⊥)−
(
ε̃ ξ̃

ζ̃ µ̃

)+

(ẑ × n⊥)

)
·
(

0⊥ z
n⊥

n⊥·n⊥
− n⊥
n⊥·n⊥ 0⊥ z

)
and combining the two latter equations using orthogonality and the identity (1.22)

9The medium may be plane-stratified in the z-direction.
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yields(
ε⊥ z ξ⊥ z
ζ⊥ z µ⊥ z

) (
εzz ξzz
ζzz µzz

)−1

=− 1

2

( n⊥n⊥
n⊥·n⊥ 0⊥⊥
0⊥⊥

n⊥n⊥
n⊥·n⊥

)
·
(
ε̃ ξ̃

ζ̃ µ̃

)−
(n⊥) ·

(
0⊥ z

n⊥×ẑ
n⊥·n⊥

− n⊥×ẑ
n⊥·n⊥ 0⊥ z

)

− 1

2

(
(ẑ×n⊥)(ẑ×n⊥)

n⊥·n⊥ 0⊥⊥

0⊥⊥
(ẑ×n⊥)(ẑ×n⊥)

n⊥·n⊥

)
·
(
ε̃ ξ̃

ζ̃ µ̃

)−
(ẑ × n⊥) ·

(
0⊥ z

n⊥
n⊥·n⊥

− n⊥
n⊥·n⊥ 0⊥ z

)
and(

εzz ξzz
ζzz µzz

)−1 (
εz⊥ ξz⊥
ζz⊥ µz⊥

)
=− 1

2

(
0z⊥

ẑ×n⊥
n⊥·n⊥

− ẑ×n⊥
n⊥·n⊥ 0z⊥

)
·
(
ε̃ ξ̃

ζ̃ µ̃

)−
(n⊥) ·

( n⊥n⊥
n⊥·n⊥ 0⊥⊥
0⊥⊥

n⊥n⊥
n⊥·n⊥

)

− 1

2

(
0z⊥ − n⊥

n⊥·n⊥
n⊥

n⊥·n⊥ 0z⊥

)
·
(
ε̃ ξ̃

ζ̃ µ̃

)−
(ẑ × n⊥) ·

(
(ẑ×n⊥)(ẑ×n⊥)

n⊥·n⊥ 0⊥⊥

0⊥⊥
(ẑ×n⊥)(ẑ×n⊥)

n⊥·n⊥

)
.

These Volterra convolution equations of the second kind determine the operators(
εzz ξzz
ζzz µzz

)
,

(
ε⊥ z ξ⊥ z
ζ⊥ z µ⊥ z

)
,

(
εz⊥ ξz⊥
ζz⊥ µz⊥

)
.

Finally, by definition,(
ε⊥⊥ ξ⊥⊥
ζ⊥⊥ µ⊥⊥

)
=

(
ε̃ ξ̃

ζ̃ µ̃

)
(0⊥) +

(
ε⊥ z ξ⊥ z
ζ⊥ z µ⊥ z

) (
εzz ξzz
ζzz µzz

)−1 (
εz⊥ ξz⊥
ζz⊥ µz⊥

)
,

where the first term in the right member can be computed using (1.10).
As a consequence of the analysis, one can concentrate on obtaining the operator(

ε̃ ξ̃

ζ̃ µ̃

)
(n⊥) (1.11)

for one single transverse directional vector n⊥ (i.e., one fixed angle of incidence and
one fixed azimuth angle of incidence) from scattering data. This quantity comprises
16 parameters. The general idea of obtaining these parameters is almost obvious:
for each one of the four types of excitations — up-going and down-going TE and TM
pulses — four scattering parameters are measured, namely the scattered up-going
and down-going TE and TM pulses.



11

1.5 Wave propagator for the homogeneous slab

For a homogeneous, bi-anisotropic layer, the wave propagator is translation invari-
ant, i.e., the pair of arguments (z, z′) can be replaced by the single argument (z−z′).
Thus, the propagator satisfies the integro PDE

∂z

(
Πee Πem

Πme Πmm

)
(z) = c−1

0 ∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
(

Πee Πem

Πme Πmm

)
(z), (1.12)

where (
Πee Πem

Πme Πmm

)
(0) =

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
.

Formally, the wave propagator can be written as(
Πee Πem

Πme Πmm

)
(z) = exp

(
zc−1

0 ∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)(

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
. (1.13)

A more explicit but not very useful expression is given by the Mclaurin series(
Πee Πem

Πme Πmm

)
(z) =

∞∑
m=0

(
zc−1

0 ∂t
)m

m!

((
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)m (

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
,

which is obtained by solving (1.12) using the method of successive approximations
starting with (

Πee Πem

Πme Πmm

)
(z) =

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
.

The propagator for the homogeneous layer can be decomposed using basically
pure algebraic concepts such as the Cayley-Hamilton theorem and the Lagrange-
Sylvester interpolation polynomials, see appendix A. After having decomposed the
wave propagator, solving a number of scalar integral equations remains; in particu-
lar, a number (at most four) of scalar wave propagators have to be calculated.

To apply the theory, one needs the eigenoperators λ of the matrix operator(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
obtained by solving the scalar Volterra convolution equation of the second kind

0 = det

(
λI⊥⊥ − ẑ × ζ̃ −ẑ × µ̃

ẑ × ε̃ λI⊥⊥ + ẑ × ξ̃

)
or10

0 = det((λI⊥⊥ − ẑ × ζ̃) · (λI⊥⊥ + ẑ × ξ̃)
+ (ẑ × µ̃) · (λI⊥⊥ + ẑ × ξ̃)−1 · (ẑ × ε̃) · (λI⊥⊥ + ẑ × ξ̃)).

(1.14)

10The determinant of a (square) matrix with square diagonal blocks is

det
(
A11 A12

A21 A22

)
= det (A11 ·A22 −A12 ·A−1

22 ·A21 ·A22),

provided that A22 is non-singular.
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Four eigenoperators of the form
λ−+ = nz + (N−+H)◦,
λ−− = nz + (N−−H)◦,
λ+

+ = −nz + (N+
+H)◦,

λ+
− = −nz + (N+

−H)◦,

(1.15)

where Nk
i = Nk

i (t), i, k ∈ {+,−}, are bounded and smooth scalar kernels, are thus
obtained. In vacuum, these kernels are all equal to zero. The superscript +(-) refers
to up-going (down-going) waves11. It can happen that λ−+ = λ−− or λ−+ = λ−− as in
vacuum, isotropic materials, and Tellegen materials [19], see section 1.5.3. This is
however the only possible degeneration for a general complex medium when nz > 0.

Consider the case when λ−1 �= λ−2 and λ+
+ �= λ+

−. This means that there is a least
integer degree of differentiation m+ ≥ 0 such that (N+

+ )(m+)(0) �= (N+
− )(m+)(0) and a

least integer degree of differentiation m− ≥ 0 such that (N−+ )(m−)(0) �= (N−− )(m−)(0).
Actually, m± are positive since

Nk
i (0) = 0 (i, k ∈ {+,−}) (1.16)

due to (1.4) and (1.14). In view of the results in appendix A, one has to define what
is meant by inverses of operators of the form λki − λlj, i, j, k, l,∈ {+,−}. This offers
no difficulty except in the two cases when the superscripts coincide, since λ±+−λ±− are
Volterra convolution operators of the first kind and all other operators are Volterra
convolution operators of the second kind. One can, however, apply the technique
of transforming a first-order equation to a second-order equation by differentiation
presented in section 1.2 and factor as

λ±+ − λ±− := ∂
(−m±−1)
t

(
∂

(m±+1)
t (λ±+ − λ±−)

)
,

where

∂
(m±+1)
t (λ±+ − λ±−) = N

(m±)
+ (0)−N (m±)

− (0) + (N
(m±+1)
+ −N (m±+1)

− )◦

is a second-kind operator. The inverses of these operators are now well defined:

(λ±+ − λ±−)−1 := ∂
(m±+1)
t

(
∂

(m±+1)
t (λ±+ − λ±−)

)−1

.

Similar considerations have to be made in the degenerate cases. The theory in
appendix A can now be fully adopted.

1.5.1 Non-degenerate case

If f is entire and λ−− �= λ−− and λ+
+ �= λ+

−, then

f

(
z

c0
∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)(

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
=

∑
i,k∈{+,−}

(
Wee Wem

Wme Wmm

)k

i

fki (z),

11The subscripts are not of the essence here; however, at fixed frequency, they represent right-
hand elliptically polarized waves and left-hand elliptically polarized waves.
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where the spectral projections are given by12

(
Wee Wem

Wme Wmm

)k

i

=
∏

j �=i,l �=k

((
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
−

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
λlj

)
(λki − λlj)−1

and the scalar convolution operators are given by

fki (z) = f(zc−1
0 ∂tλ

k
i ).

In particular, the wave propagator is(
Πee Πem

Πme Πmm

)
(z) =

∑
i,k∈{+,−}

(
Wee Wem

Wme Wmm

)k

i

Πk
i (z),

where the elementary propagators are

Πk
i (z) = exp (zc−1

0 ∂tλ
k
i ).

Moreover, by taking f(z) = 1 and f(z) = zm, m = 1, 2, 3, the useful identities

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
=

∑
i,k∈{+,−}

(
Wee Wem

Wme Wmm

)k

i

,

((
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)m (

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
=

∑
i,k∈{+,−}

(
Wee Wem

Wme Wmm

)k

i

(
λki

)m
are obtained. The spectral projections have the orthogonality property13(

Wee Wem

Wme Wmm

)k

i

·
(

Wee Wem

Wme Wmm

)l

j

=

(
Wee Wem

Wme Wmm

)k

i

δijδkl, (1.17)

where δkl denotes the Kronecker delta.
The elementary propagators

Πk
i (z) = exp (zc−1

0 ∂tλ
k
i ) =

∞∑
m=0

(
zc−1

0 ∂tλ
k
i

)m
m!

(1.18)

are easy to calculate [13]. The operators λki are given by (1.15). In view of

exp
(
∓znzc−1

0 ∂t
)
φ(t) =

∞∑
n=0

(
∓znzc−1

0

)n
n!

φ(n)(t) = φ(t∓ nzz/c0) (φ ∈ C∞0 (R)),

one obtains
exp

(
∓znzc−1

0 ∂t
)

= δ(t∓ nzz/c0)◦ = δ±tz◦,
12Observe that operators of the form zc−1

0 ∂t cancel.
13The case when k �= l is a direct consequence of the Cayley-Hamilton theorem. Using this result

and the first identity in (1.5.1) gives the desired result.



14

where
tz = nzz/c0,

and, consequently, using the characteristic property of the exponential,
Π−+(z) = Q−+(z)δ−tz ◦ exp (zc−1

0 (H∂tN
−
+ )◦)),

Π−−(z) = Q−−(z)δ−tz ◦ exp (zc−1
0 (H∂tN

−
− )◦)),

Π+
+(z) = Q−−(z)δtz ◦ exp (zc−1

0 (H∂tN
+
+ )◦)),

Π+
−(z) = Q+

−(z)δtz ◦ exp (zc−1
0 (H∂tN

+
− )◦)),

(1.19)

where
Qk
i (z) = exp (zc−1

0 N
k
i (0))

are damping factors. The operator

exp (zc−1
0 (H∂tN

k
i )◦)) =

∞∑
m=0

(
zc−1

0 (H∂tN
k
i )◦

)m
m!

can be written as

exp (zc−1
0 (H∂tN

k
i )(·)◦)) = 1 + P k

i (z, ·) ◦ .

The kernel P k
i = P k

i (z, t) is determined in terms of the kernel H∂tN
k
i = (H∂tN

k
i )(t)

by the Volterra temporal convolution equation of the second kind [13]

zc−1
0 M

k
i (t) + zc−1

0 (Mk
i (·) ◦ P k

i (z, ·))(t) = tP k
i (z, t), (1.20)

where Mk
i (t) = t(H∂tN

k
i )(t) = tH(t)∂tN

k
i (t). However, one deduces from (1.20),

that the kernel H∂tN
k
i = (H∂tN

k
i )(t) is also determined in terms of the kernel

P k
i = P k

i (z, t) by another the Volterra temporal convolution equation of the second
kind. This observation is importance for the inverse problem, since the kernel Nk

i (t)
can be determined by integration provided the value Nk

i (0) is known a priori. This
is, however, in view of (1.16), the case. Otherwise, there is an ambiguity arising
from the complex logarithm:

zc−1
0 N

k
i (0) = ln (Qk

i (z)).

Thus, the operator equation

Πk
i (z) = exp (zc−1

0 ∂tλ
k
i )

has a unique solution for a given left member Πk
i (z); the solution is written

zc−1
0 ∂tλ

k
i = ln (Πk

i (z)).

Actually, the solution is given by the series expansion

ln (Πk
i (z)) =

∞∑
m=1

(
1− Πk

i (z)
)m

m
, (1.21)

which easily can be checked by substitution into (1.18). Equation (1.20) is easy to
solve numerically both ways for a fixed but arbitrary penetration depth z [13].
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1.5.2 degenerate cases

The degenerate cases, which arise 1) when the eigenoperators λ+
± coincide, 2) when

the eigenoperators λ−± coincide, or 3) when λ+
± coincide and λ−± coincide, can be

found by applying the theory in appendix A. However, a limit procedure, based
on spectral projections used in the non-degenerate case, applies just as well [10].
The results and notation given below reflect the effects of such a procedure. It is
appropriate to make the following definition:(

Wee Wem

Wme Wmm

)±
:=

(
Wee Wem

Wme Wmm

)±
+

+

(
Wee Wem

Wme Wmm

)±
−
.

1. λ+
± = λ+ and λ−+ �= λ−−:

f

(
z

c0
∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)(

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
=

f(zc−1
0 ∂tλ

−
+) lim

λ+
±→λ+

(
Wee Wem

Wme Wmm

)−
+

+ f(zc−1
0 ∂tλ

−
−) lim

λ+
±→λ+

(
Wee Wem

Wme Wmm

)−
−

+ f(zc−1
0 ∂tλ

+) lim
λ+
±→λ+

(
Wee Wem

Wme Wmm

)+

+ zc−1
0 ∂tf

′(zc−1
0 ∂tλ

+)

·
((

ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
−

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
λ+

)
· lim
λ+
±→λ+

(
Wee Wem

Wme Wmm

)+

.

2. λ−± = λ− and λ+
+ �= λ+

−:

f

(
z

c0
∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)(

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
=

f(zc−1
0 ∂tλ

+
+) lim

λ−±→λ−

(
Wee Wem

Wme Wmm

)+

+

+ f(zc−1
0 ∂tλ

+
−) lim

λ−±→λ−

(
Wee Wem

Wme Wmm

)+

−

+ f(zc−1
0 ∂tλ

−) lim
λ−±→λ−

(
Wee Wem

Wme Wmm

)−
+ zc−1

0 ∂tf
′(zc−1

0 ∂tλ
−)

·
((

ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
−

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
λ−

)
· lim
λ−±→λ−

(
Wee Wem

Wme Wmm

)−
.
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3. λ+
± = λ+ and λ−± = λ−:

f

(
z

c0
∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)(

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
= f(zc−1

0 ∂tλ
+) lim

λ±±→λ±

(
Wee Wem

Wme Wmm

)+

+ zc−1
0 ∂tf

′(zc−1
0 ∂tλ

+)

·
((

ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
−

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
λ+

)
· lim
λ±±→λ±

(
Wee Wem

Wme Wmm

)+

+ f(zc−1
0 ∂tλ

−) lim
λ±±→λ±

(
Wee Wem

Wme Wmm

)−
+ zc−1

0 ∂tf
′(zc−1

0 ∂tλ
−)

·
((

ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
−

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
λ−

)
· lim
λ±±→λ±

(
Wee Wem

Wme Wmm

)−
.

In all cases, the explicit values of the appearing limits of spectral projections can
be found in appendix A. They can also be computed by setting f = 1, f = z, and
f = z2 and solving the thus obtained system of linear equations. The orthogonality
properties of the spectral projections is preserved.

1.5.3 Wave propagator for a homogeneous, isotropic material

The homogeneous, isotropic material attracts interest from two reasons: it represents
the common situation, and it is degenerate implying that the spectral projections
concept cannot be applied in a straightforward manner.

In a homogeneous, isotropic material, where(
ε̃ ξ̃

ζ̃ µ̃

)
=

(
I⊥⊥ε+ ẑ × n⊥n⊥ × ẑµ−1 0⊥⊥

0⊥⊥ I⊥⊥µ+ ẑ × n⊥n⊥ × ẑε−1

)
,

the eigenoperator equation becomes

0 = det(λ2I⊥⊥ + (ẑ × I⊥⊥µ− n⊥n⊥ × ẑε−1) · (ẑ × I⊥⊥ε− n⊥n⊥ × ẑµ−1))

= det((λ2 − µε)I⊥⊥ − ẑ × n⊥n⊥ × ẑ + n⊥n⊥)

= det((λ2 − µε+ n⊥ · n⊥)I⊥⊥) = (λ2 − µε+ n⊥ · n⊥)2

owing to the identity

I⊥⊥ (n⊥ · n⊥) = n⊥n⊥ − ẑ × n⊥n⊥ × ẑ, (1.22)

which reflects the fact that the vectors n⊥ and ẑ × n⊥ constitute a linear basis for
vectors in the x-y plane. The eigenoperators are, where

λ−+ = λ−+ = −λ+
+ = −λ+

− := λ =
√
µε− n⊥ · n⊥ = nz + (HN) ◦ .
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The kernel N(t) satisfies the Volterra convolution equation of the second kind

2nzH(t)N(t) + ((HN) ◦ (HN))(t) = H(t)(χee(t) + χee(t)) + ((Hχee) ◦ (Hχmm))(t),

where χee = Iχee and χmm = Iχmm.
Obviously, the isotropic medium represents a degenerate case, and straightfor-

ward computations show that(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
=

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
λ2

Consequently, for any entire function f , using the result for this degenerate case
given in 1.5.2 (choose first f = z2) or in appendix A, one has

f

(
z

c0
∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
·
)

=

(
Wee Wem

Wme Wmm

)−
f(zc−1

0 ∂tλ)

+

(
Wee Wem

Wme Wmm

)+

f(−zc−1
0 ∂tλ),

(1.23)

where the introduced spectral projections14(
Wee Wem

Wme Wmm

)±
can be obtained by straightforward computation. However, it is somewhat easier to
apply the result (1.23) to f = 1 and to f = z and obtain the system of equations

(
Wee Wem

Wme Wmm

)+

+

(
Wee Wem

Wme Wmm

)−
=

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
,

− λ
(

Wee Wem

Wme Wmm

)+

+ λ

(
Wee Wem

Wme Wmm

)−
=

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
,

which can be solved giving(
Wee Wem

Wme Wmm

)∓
=

1

2

((
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
±

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
λ−1

)
,

i.e., (
Wee Wem

Wme Wmm

)∓
=

1

2

(
I⊥⊥ ±ẑ × Z⊥⊥

∓ẑ ×Y⊥⊥ I⊥⊥

)
,

where the relative impedance and admittance operators, respectively, are given by{
Z⊥⊥ =

(
I⊥⊥µ+ ẑ × n⊥n⊥ × ẑε−1

)
λ−1,

Y⊥⊥ =
(
I⊥⊥ε+ ẑ × n⊥n⊥ × ẑµ−1

)
λ−1.

14A simplified notation is adopted here.
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The orthogonality property, which is a reminiscent of (1.17)(
Wee Wem

Wme Wmm

)k

·
(

Wee Wem

Wme Wmm

)l

= δk,l (k, l ∈ {+,−})

justifies calling these operators spectral projections. In particular, the wave propa-
gator is (

Πee Πem

Πme Πmm

)
(z) =

(
Wee Wem

Wme Wmm

)−
exp

(
zc−1

0 ∂tλ
)

+

(
Wee Wem

Wme Wmm

)+

exp
(
−zc−1

0 ∂tλ
)
.

Using these properties of the spectral projections, the fundamental equation (1.8)
at oblique incidence for the isotropic slab becomes

∂z

(
E⊥
η0H⊥

)
= c−1

0 ∂t

{
λ

((
Wee Wem

Wme Wmm

)−
−

(
Wee Wem

Wme Wmm

)+
)
·
(
E⊥
η0H⊥

)}
.

Moreover,

∂z

(
E±⊥
η0H

±
⊥

)
= ∓c−1

0 ∂t

{
λ ·

(
E±⊥
η0H

±
⊥

)}
,

where (
E±⊥
η0H

±
⊥

)
=

(
Wee Wem

Wme Wmm

)±
·
(
E⊥
η0H⊥

)
and the + (-) sign represents the up-going (down-going) fields. Also,(

Wee Wem

Wme Wmm

)∓
·
(
E±⊥
η0H

±
⊥

)
=

(
0⊥
0⊥

)
.

In particular, E±⊥ =
1

2
(E⊥ ∓ ẑ × Z⊥⊥ · η0H⊥) ,

0⊥ = ∓ẑ ×Y⊥⊥ ·E±⊥ + η0H
±
⊥,

and, hence{
E⊥ = E+

⊥ +E−⊥,

η0H⊥ = η0H
+
⊥ + η0H

−
⊥ = ẑ ×Y⊥⊥ ·E+

⊥ − ẑ ×Y⊥⊥ ·E−⊥.

1.5.4 Wave propagator in vacuum

In the vacuum regions,(
ε̃ ξ̃

ζ̃ µ̃

)
=

(
I⊥⊥ + ẑ × n⊥n⊥ × ẑ 0⊥⊥

0⊥⊥ I⊥⊥ + ẑ × n⊥n⊥ × ẑ

)
.
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The wave propagator is(
Πee Πem

Πme Πmm

)
(z) =

(
Wee Wem

Wme Wmm

)−
δ

(
t+ nzz

c0

)
◦

+

(
Wee Wem

Wme Wmm

)+

δ

(
t− nzz
c0

)
◦,

where (
Wee Wem

Wme Wmm

)∓
=

1

2

(
I⊥⊥ ± ẑ×(I⊥⊥+ẑ×n⊥n⊥×ẑ)

nz

∓ ẑ×(I⊥⊥+ẑ×n⊥n⊥×ẑ)
nz

I⊥⊥

)
.

The electric and magnetic fields are{
E⊥ = E+

⊥ +E−⊥,

η0H⊥ = ẑ ×O−1 ·E+
⊥ − ẑ ×O−1 ·E−⊥,

where the impedance (and, in fact, admittance) operator in vacuum is (apply (1.22))

O−1 =
1

nz
(I⊥⊥ + ẑ × n⊥n⊥ × ẑ) =

1

nz

(
I⊥⊥n

2
z + n⊥n⊥

)
(1.24)

and the up- and down-going electric fields

E±⊥ =
1

2

(
E⊥ ∓ ẑ ×O−1 · η0H⊥

)
satisfy the PDEs

∂zE
±
⊥ = ∓nzc−1

0 ∂tE
±
⊥

with plane-wave solutions E±⊥(r, t) = E±⊥
(
t− n̂± · r/c0

)
as expected.

The above expressions can be manipulated using

O× ẑ = ẑ ×O−1

where (apply (1.22))

O =
1

nz
(I⊥⊥ − n⊥n⊥) = nz

(
I⊥⊥ −

1

n2
z

ẑ × n⊥n⊥ × ẑ
)

(1.25)

Other useful representations of the operators O−1 and O at oblique incidence are
O =

n⊥n⊥n
2
z − ẑ × n⊥n⊥ × ẑ
nzn⊥ · n⊥

O−1 =
n⊥n⊥ − ẑ × n⊥n⊥ × ẑn2

z

nzn⊥ · n⊥
At normal incidence, O = O−1 = I⊥⊥.
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1.6 Vacuum wave splitting

One way to organize efficiently the input to and the output from the homogeneous15

bi-anisotropic scatterer is to introduce a wave splitting. A wave splitting is a one-to-
one correspondence between the dependent vector field variables, i.e., the transverse
electric field and the transverse magnetic field, and two new so called split vector
field variables, commonly denoted by F+ and F−, that represent the up-going waves
and the down-going waves, respectively. Usually, F+ and F− are taken to be the
up-going and down-going transverse electric fields in the absence of the scatterer.

Using matrix notation, the vacuum wave splitting is(
F+

F−

)
=

1

2

(
I⊥⊥ −O× ẑ
I⊥⊥ O× ẑ

)
·
(
E⊥
η0H⊥

)
with inverse (

E⊥
η0H⊥

)
=

(
I⊥⊥ I⊥⊥

ẑ ×O−1 −ẑ ×O−1

)
·
(
F+

F−

)
where the two-dimensional dyadics O and O−1 are given by (1.25) and (1.24). Notice
that only the transverse field variables appear in these transformations and that(

F+

F−

)
(−d/2) =

(
E+
i0,⊥

E−s0,⊥

)
,

(
F+

F−

)
(d/2) =

(
E+
s0,⊥

E−i0,⊥

)
. (1.26)

The fundamental equation at oblique incidence (1.8) is transformed into

∂z

(
F+

F−

)
= nzc

−1
0 ∂t

(
−I⊥⊥ + (HN++)◦ (HN+−)◦

(HN−+)◦ I⊥⊥ + (HN−−)◦

)
·
(
F+

F−

)
(1.27)

where the temporal convolution operator

nz

(
−I⊥⊥ + (HN++)◦ (HN+−)◦

(HN−+)◦ I⊥⊥ + (HN−−)◦

)
=

1

2

(
−O ẑ × I⊥⊥
O ẑ × I⊥⊥

)
·
(
ε̃ ξ̃

ζ̃ µ̃

)
·
(

I⊥⊥ I⊥⊥
ẑ ×O−1 −ẑ ×O−1

)
and the kernels Nkl(t) are smooth.

The solution to the propagation problem for a sub-slab of the medium is(
F+

F−

)
(z) =

(
Π++ Π+−

Π−+ Π−−

)
(z, z′) ·

(
F+

F−

)
(z′)

where the wave propagator for the vacuum-split fields is related to the wave propa-
gator for the transverse electric and magnetic fields by (use same argument (z, z′))(

Πee Πem

Πme Πmm

)
=

(
I⊥⊥ I⊥⊥

ẑ ×O−1 −ẑ ×O−1

)
·
(
Π++ Π+−

Π−+ Π−−

)
· 1
2

(
I⊥⊥ −O× ẑ
I⊥⊥ O× ẑ

)
.

15The medium may be plane-stratified in the z-direction.
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The wave propagator satisfies

∂z

(
Π++ Π+−

Π−+ Π−−

)
(z, z′)

= nzc
−1
0 ∂t

(
−I⊥⊥ + N++◦ N+−◦

N−+◦ I⊥⊥ + N−−◦

)
(z) ·

(
Π++ Π+−

Π−+ Π−−

)
(z, z′)

subjected to (
Π++ Π+−

Π−+ Π−−

)
(z′, z′) =

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
.

For the homogeneous slab, the pair of argument (z, z′) can be replaced by the argu-
ment (z − z′) and the wave propagator can be written formally as(

Π++ Π+−

Π−+ Π−−

)
(z)· = exp

(
znz
c0
∂t

(
−I⊥⊥ + (HN++)◦ (HN+−)◦

(HN−+)◦ I⊥⊥ + (HN−−)◦

)
·
)
,

which can be calculated using the Cayley-Hamilton theorem.

1.7 Scattering operators

The scattering relation for the electric field at oblique incidence on a bi-anisotropic
slab, |z| < d/2, can be written as(

E+
s0,⊥

E−s0,⊥

)
=

(
δtd ◦ (Q+ + T+◦) R−◦

R+◦ δtd ◦ (Q− + T−◦)

)
·
(
E+
i0,⊥

E−i0,⊥

)
where the causal scattering kernels R±(t) and T±(t) lack direct terms. The wave-
front propagators, Q±, for up- and down-going fields, respectively, are, in view
of (1.4) or (1.16), equal to identity, i.e.,

Q± = I⊥⊥.

In the inverse scattering problem, by definition, these scattering operators are re-
garded as known; specifically, they have been obtained by deconvolution of scattered
fields at excitation with up-going and down-going incident TM and TE pulses.

In the inverse scattering problem, the wave propagator for the split fields for the
total slab can be obtained from scattering data as(

Π++ Π+−

Π−+ Π−−

)
(d) =

(
δtd ◦ (Q+ + T+◦) R−◦

0⊥⊥ I⊥⊥

)
·
(

I⊥⊥ 0⊥⊥
R+◦ δtd ◦ (Q− + T−◦)

)−1

(1.28)
or 

Π++(d) = δtd ◦ (Q+ + T+◦)− δ−td ◦R− �
(
Q− + T−◦

)−1 ·R+◦,
Π+−(d) = δ−td ◦R− �

(
Q− + T−◦

)−1
,

Π−+(d) = −δ−td ◦
(
Q− + T−◦

)−1 ·R+◦,
Π−−(d) = δ−td ◦

(
Q− + T−◦

)−1
.
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The eigenoperators Π(d) = Πk
i (d), i, k ∈ {+,−}, of (1.28), are, in view of (1.19),

given by (2.2), where Q−±(d) are the eigenvalues of Q− and Q+
±(d) are the eigenvalues

of Q+ and the kernels P−± (d, t) and P+
± (d, t) are causal. The kernels P k

i , i, k ∈
{+,−}, are obtained by solving the scalar, non-linear Volterra integral equation of
the second kind

0 = det((Π(d)I⊥⊥ −Π++(d)) · (Π(d)I⊥⊥ −Π−−(d))

−Π+−(d) · (Π(d)I⊥⊥ −Π−−(d))−1 ·Π−+(d) · (Π(d)I⊥⊥ −Π−−(d))).

From scattering data one can obtain(
Πee Πem

Πme Πmm

)
(d) =

(
I⊥⊥ I⊥⊥

ẑ ×O−1 −ẑ ×O−1

)
·
(
Π++ Π+−

Π−+ Π−−

)
(d)·1

2

(
I⊥⊥ −O× ẑ
I⊥⊥ O× ẑ

)
.

2 Solution of inverse scattering problem based

the Cayley-Hamilton theorem

Attention is now focused on the inverse problem for the homogeneous bi-anisotropic
slab at oblique incidence. In the non-degenerate case, the operator(

Πee Πem

Πme Πmm

)
(d) =

∑
i,k∈{+,−}

(
Wee Wem

Wme Wmm

)k

i

Πk
i (d) (2.1)

is known and the operator(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
=

∑
i,k∈{+,−}

(
Wee Wem

Wme Wmm

)k

i

λki

is sought. Clearly, these operators have the same spectral projections(
Wee Wem

Wme Wmm

)k

i

but different eigenoperators. The eigenoperators
Π−+(d) = δ−tdQ

−
+(d)(1 + P−+ (d, ·)◦),

Π−−(d) = δ−tdQ
−
−(d)(1 + P−− (d, ·)◦),

Π+
+(d) = δtdQ

+
+(d)(1 + P+

+ (d, ·)◦),
Π+
−(d) = δtdQ

+
−(d)(1 + P+

− (d, ·)◦),

(2.2)

of (2.1) are computed first as explained in Section 1.7, and the spectral projections
are then obtained as(

Wee Wem

Wme Wmm

)k

i

=
∏

j �=i,l �=k

((
Πee Πem

Πme Πee

)
(d)−

(
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
Πl
j(d)

)
(Πk

i (d)−Πl
j(d))

−1.
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It merely remains to compute the eigenoperators
dc−1

0 ∂tλ
−
+ = ln (Π−+(d)) = −dndc−1

0 ∂t + lnQ−+(d) + dc−1
0 (H∂tN

−
+ )◦,

dc−1
0 ∂tλ

−
− = ln (Π−−(d)) = −dndc−1

0 ∂t + lnQ−−(d) + dc−1
0 (H∂tN

−
− )◦,

dc−1
0 ∂tλ

+
+ = ln (Π+

+(d)) = dndc
−1
0 ∂t + lnQ−−(d) + dc−1

0 (H∂tN
+
+ )◦,

dc−1
0 ∂tλ

+
− = ln (Π+

−(d)) = dndc
−1
0 ∂t + lnQ+

−(d) + dc−1
0 (H∂tN

+
− )◦

by solving the Volterra integral equation of the second kind (1.20) for the kernels
Mk

i (t) = tH(t)∂tN
k
i (t). Recall that the wave front propagators Qk

i , i, k ∈ {+,−},
are equal to one by definition, see (1.4) and (1.16).

The isotropic case is solved analogously and the other degenerate cases are solved
similarly. Appropriate formulae can be found in section 1.5.3 in the former case and
in section 1.5.2 in the latter cases.

3 Summary

Under the presumably not very severe restriction (1.4) on the susceptibility kernels,
the inverse problem for the homogeneous bi-anisotropic slab at oblique incidence
has been shown to be well posed. This has been surmised in earlier investigations
but never actually proved. The result follows from the wellposedness of solutions of
Volterra convolution equations of the second kind. Moreover, the proof is, to a large
extent, based on the elementary but extremely powerful Cayley-Hamilton theorem.
The proof consists of two steps, described in section 1.4 and in section 2. The unique
solution is basically given by the intriguing formula

dc−1
0 ∂t

(
ẑ × ζ̃ ẑ × µ̃
−ẑ × ε̃ −ẑ × ξ̃

)
= ln

(
Πee Πem

Πme Πmm

)
(d), (3.1)

where the logarithm is defined by the series expansion (cf. (1.21))

ln

(
Πee Πem

Πme Πmm

)
(z) =

∞∑
j=1

(((
I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
−

(
Πee Πem

Πme Πmm

)
(z)

)
·
)j (

I⊥⊥ 0⊥⊥
0⊥⊥ I⊥⊥

)
j

and can be computed using the Cayley-Hamilton theorem and by solving at most
four scalar Volterra integral equations of the second kind (namely equation (1.20)).
Formula (3.1) should be compared to formula (1.13), which applies to the direct
scattering problem. The steps used in the proof are conjectured to be effective ways
of resolving the inverse problem also in practical situations. In practise, owing to
non-accurate measurements and trivial or non-trivial deconvolution techniques, the
non-degenerate case is most likely to arise in any case, also when the sample is known
to be an isotropic material. The degenerate cases are therefore highly hypothetical
and have been discussed only for the sake of completeness.



24

Appendix A The Cayley-Hamilton theorem

Theorem A.1 (Cayley-Hamilton). A quadratic matrix A satisfies its own char-
acteristic equation:

If pA(λ) = det(λI−A), then pA(A) = 0.

From this theorem, one can prove the following important theorem.

Theorem A.2. Let λ1, . . . , λp be the different eigenvalues of the n × n matrix A,
and let n1, . . . , np be their multiplicity. If f(z) is an entire analytic function, then

f(A) = q(A),

where the uniquely defined polynomial q of degree ≤ n−1 is defined by the conditions

djq

dzj
(λk) =

djf

dzj
(λk), j = 0, . . . , nk − 1, k = 1, . . . , p.

The theorem holds for the case f(λ) is a complex function such that f (j)(λk)
exists for j = 0, · · · , nk − 1 and k = 1, · · · , p, see Gantmacher [10]. The polynomial
q(λ) is referred to as the Lagrange-Sylvester interpolation polynomial for f(λ) on
sp(A), see [10].

Recall that the spectrum of A is the point set sp(A) = {λ1, · · · , λp} and that
the characteristic polynomial of A is

pA(λ) = (λ− λ1)
n1 · · · (λ− λp)np (n1 + · · ·+ np = n).

We seek a general formula for q(λ). Fractional decomposition gives

q(λ)

pA(λ)
=

p∑
k=1

nk−1∑
j=0

akj
(λ− λk)nk−j

(λ �= λ1, · · · , λp).

We define the polynomial

pkA(λ) :=
pA(λ)

(λ− λk)nk
= (λ− λ1)

n1 · · · (λ− λk−1)
nk−1(λ− λk+1)

nk+1 · · · (λ− λp)np

and find by multiplication with (λ− λk)nk that

q(λ)

pkA(λ)
=

nk−1∑
j=0

akj(λ− λk)j + (λ− λk)nkrk(λ) (k = 1, · · · , p),

where rk(λ) is rational, defined for λ �= λ1, · · · , λk−1, λk+1, · · ·λp. Hence

akj =
1

j!

[
q(λ)

pkA(λ)

](j)

λ=λk

=
1

j!

[
f(λ)

pkA(λ)

](j)

λ=λk

(j = 0, · · · , nk − 1, k = 1, · · · , p).
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With these values of the coefficients akj one arrives at

q(λ) =

p∑
k=1

pkA(λ)

nk−1∑
j=0

akj(λ−λk)j =

p∑
k=1

pkA(λ)

nk−1∑
j=0

1

j!

[
f(λ)

pkA(λ)

](j)

λ=λk

(λ−λk)j. (A.1)

With the aid of the Leibniz formula, one gets

akj =
1

j!

j∑
i=0

(
j
i

)
f (j−i)(λk)

(
1

pkA(λk)

)(i)

(j = 0, · · · , nk − 1, k = 1, · · · , p),

where, for fixed k, the derivatives(
1

pkA(λk)

)(i)

=
di

dλi

(
1

pkA(λ)

)
(λk) (i = 0, · · · , nk − 1)

can be determined recursively:

1

pkA(λk)
=

p∏
l=1,l �=k

1

(λk − λl)nl
,

(
1

pkA(λk)

)′
= −

(
1

pkA(λk)

) (
p∑

l=1,l �=k

nl
λk − λl

)
,

and, consequently,(
1

pkA(λk)

)(i)

=
i−1∑
m=0

(
i− 1
m

) (
1

pkA(λk)

)(i−1−m)

(−1)m+1m!

(
p∑

l=1,l �=k

nl
(λk − λl)m+1

)
.

If f is the exponential function, then the Lagrange-Sylvester interpolation polyno-
mial is given by

q(λ) =

p∑
k=1

exp (λk)p
k
A(λ)

nk−1∑
j=0

(λ− λk)j
1

j!

j∑
i=0

(
j
i

)
di

dzi

(
1

pkA(z)

)
(λk).

If all the eigenvalues are are simple, that is, if sp(A) = {λ1, · · · , λn}, then the
Lagrange interpolation polynomial for f(λ) on sp(A) is

q(λ) =
n∑
k=1

pkA(λ)

pkA(λk)
f(λk). (A.2)

If sp(A) = {λ1}, then the Lagrange-Sylvester interpolation polynomial for f(λ)
on sp(A) equals the n first terms in the Taylor-expansion of f(λ) about λ1:

q(λ) =
n−1∑
j=0

1

j!
f (j)(λ1)(λ− λ1)

j. (A.3)
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If sp(A) = {λ1, λ2} and consequently pA(λ) = (λ − λ1)
n1(λ − λ2)

n2 , then the
Lagrange-Sylvester interpolation polynomial for f(λ) on sp(A) is

q(λ) =
2∑

k=1

(λ− λk̄)nk̄
nk−1∑
j=0

akj(λ− λk)j, (A.4)

where

akj =
1

j!

j∑
i=0

(
j
i

)
(−1)i

(nk̄ − 1 + i)!

(nk̄ − 1)!

f (j−i)(λk)

(λk − λk̄)nk̄+i
,

and k̄ is the index dual to k.16 If, particularly, n2 = 1, then

q(λ) = (λ− λ1)
n1a20 + (λ− λ2)

n1−1∑
j=0

a1j(λ− λ1)
j, (A.5)

where

a20 =
f(λ2)

(λ2 − λ1)n1
, a1j =

j∑
i=0

(−1)i

(j − i)!
f (j−i)(λ1)

(λ1 − λ2)1+i
.

The cases n = 2, n = 3, and n = 4, which are of special interest for many
applications in mathematical physics, are displayed below.

A.1 Case n = 2

From the formulae (A.2) and (A.3) follows that

q(λ) =

{
λ−λ2

λ1−λ2
f(λ1) + λ−λ1

λ2−λ1
f(λ2) (n1 = 1, n2 = 1) ,

f(λ1) + (λ− λ1)f
′(λ1) (n1 = 2, n2 = 0) .

If f is the exponential function, then one obtains

q(λ) =

{
λ−λ2

λ1−λ2
exp (λ1) + λ−λ1

λ2−λ1
exp (λ2) (n1 = 1, n2 = 1) ,

(1 + λ− λ1) exp (λ1) (n1 = 2, n2 = 0) .

A.2 Case n = 3

From the formulae (A.2), (A.3) and (A.5) follows that

161̄ = 2 and 2̄ = 1.
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q(λ) =



λ−λ2

λ1−λ2

λ−λ3

λ1−λ3
f(λ1)

+ λ−λ3

λ2−λ3

λ−λ1

λ2−λ1
f(λ2)

+ λ−λ1

λ3−λ1

λ−λ2

λ3−λ2
f(λ3) (n1 = 1, n2 = 1, n3 = 1) ,

λ−λ2

λ1−λ2

(
1 + λ−λ1

λ2−λ1

)
f(λ1)

+ λ−λ2

λ1−λ2
(λ− λ1)f

′(λ1)

+ (λ−λ1)2

(λ2−λ1)2
f(λ2) (n1 = 2, n2 = 1, n3 = 0) ,

f(λ1)

+(λ− λ1)f
′(λ1)

+1
2
(λ− λ1)

2f ′′(λ1) (n1 = 3, n2 = 0, n3 = 0) .

If f is the exponential function, then

q(λ) =



λ−λ2

λ1−λ2

λ−λ3

λ1−λ3
exp (λ1)

+ λ−λ3

λ2−λ3

λ−λ1

λ2−λ1
exp (λ2)

+ λ−λ1

λ3−λ1

λ−λ2

λ3−λ2
exp (λ3) (n1 = 1, n2 = 1, n3 = 1) ,

λ−λ2

λ1−λ2

(
1 + λ− λ1 + λ−λ1

λ2−λ1

)
exp (λ1)

+ (λ−λ1)2

(λ2−λ1)2
exp (λ2) (n1 = 2, n2 = 1, n3 = 0) ,

(1 + λ− λ1 + 1
2
(λ− λ1)

2) exp (λ1) (n1 = 3, n2 = 0, n3 = 0) .

A.3 Case n = 4

Surmise that

pA(λ) = (λ− λ1)
2(λ− λ2)(λ− λ3) (λ1 �= λ2 �= λ3 �= λ1).

Then the coefficients in formula (A.1) are given by

a11 =
1∑
i=0

f (1−i)(λ1)

(
1

(λ1 − λ2)(λ1 − λ3)

)(i)

(λ1) = f ′(λ1)
1

(λ1 − λ2)(λ1 − λ3)

− f(λ1)

(
1

(λ1 − λ2)2(λ1 − λ3)
+

1

(λ1 − λ2)(λ1 − λ3)2

)
and

ak0 =
f(λk)

pkA(λk)
=


f(λ1)

(λ1−λ2)(λ1−λ3)
(k = 1),

f(λ2)
(λ2−λ1)2(λ2−λ3)

(k = 2),
f(λ3)

(λ3−λ1)2(λ3−λ2)
(k = 3),

and the Lagrange-Sylvester interpolation polynomial for f(λ) on sp(A) becomes

q(λ) =
3∑

k=1

pkA(λ)

nk−1∑
j=0

akj(λ− λk)j = (λ− λ2)(λ− λ3)(λ− λ1)a11

+ (λ− λ2)(λ− λ3)a10 + (λ− λ1)
2(λ− λ3)a20 + (λ− λ1)

2(λ− λ2)a30.
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Suppose that

pA(λ) = (λ− λ1)
2(λ− λ2)

2 (λ1 �= λ2).

Then the coefficients in formula (A.4) are

ak0 = f(λk)
1

(λk − λk̄)2
(k = 1, 2)

and

ak1 =
f ′(λk)

(λk − λk̄)2
− 2f(λk)

(λk − λk̄)3
(k = 1, 2),

and the Lagrange-Sylvester interpolation polynomial for f(λ) on sp(A) becomes

q(λ) =
2∑

k=1

(λ− λk̄)2 (ak0 + ak1(λ− λk)) = (λ− λ2)
2 (a10 + a11(λ− λ1))

+ (λ− λ1)
2 (a20 + a21(λ− λ2)) .

Assume that
pA(λ) = (λ− λ1)

3(λ− λ2) (λ1 �= λ2).

Then the coefficients in formula (A.5) are

a1j =
1

j!

j∑
i=0

(
j
i

)
(−1)ii!

f (j−i)(λ1)

(λ1 − λ2)
i+1 (j = 0, 1, 2)

and

a20 =
f(λ2)

(λ2 − λ1)3
,

and the Lagrange-Sylvester interpolation polynomial for f(λ) on sp(A) becomes

q(λ) = (λ− λ2)
2∑
j=0

a1j(λ− λ1)
j + (λ− λ1)

3a20.

The remaining cases are given by the formulae (A.2) and (A.3). Summary:
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q(λ) =



λ−λ2

λ1−λ2

λ−λ3

λ1−λ3

λ−λ4

λ1−λ4
f(λ1)

+ λ−λ3

λ2−λ3

λ−λ4

λ2−λ4

λ−λ1

λ2−λ1
f(λ2)

+ λ−λ4

λ3−λ4

λ−λ1

λ3−λ1

λ−λ2

λ3−λ2
f(λ3)

+ λ−λ1

λ4−λ1

λ−λ2

λ4−λ2

λ−λ3

λ4−λ3
f(λ4) (n1 = 1, n2 = 1, n3 = 1, n4 = 1) ,

λ−λ2

λ1−λ2

λ−λ3

λ1−λ3

(
1 + λ−λ1

λ2−λ1
+ λ−λ1

λ3−λ1

)
f(λ1)

+ λ−λ2

λ1−λ2

λ−λ3

λ1−λ3
(λ− λ1)f

′(λ1)

+ (λ−λ1)2

(λ2−λ1)2
λ−λ3

λ2−λ3
f(λ2)

+ (λ−λ1)2

(λ3−λ1)2
λ−λ2

λ3−λ2
f(λ3) (n1 = 2, n2 = 1, n3 = 1, n4 = 0) ,

(λ−λ2)2

(λ1−λ2)2

(
1 + 2 λ−λ1

λ2−λ1

)
f(λ1)

+ (λ−λ2)2

(λ1−λ2)2
(λ− λ1)f

′(λ1)

+ (λ−λ1)2

(λ2−λ1)2

(
1 + 2 λ−λ2

λ1−λ2

)
f(λ2)

+ (λ−λ1)2

(λ2−λ1)2
(λ− λ2)f

′(λ2) (n1 = 2, n2 = 2, n3 = 0, n4 = 0)

and

q(λ) =



λ−λ2

λ1−λ2

(
1 + λ−λ1

λ2−λ1
+ (λ−λ1)2

(λ2−λ1)2

)
f(λ1)

+ λ−λ2

λ1−λ2

(
1 + λ−λ1

λ2−λ1

)
(λ− λ1)f

′(λ1)

+ λ−λ2

λ1−λ2

1
2
(λ− λ1)

2f ′′(λ1)

+ (λ−λ1)3

(λ2−λ1)3
f(λ2) (n1 = 3, n2 = 1, n3 = 0, n4 = 0) ,

f(λ1)

+(λ− λ1)f
′(λ1)

+1
2
(λ− λ1)

2f ′′(λ1)

+1
6
(λ− λ1)

3f ′′′(λ1) (n1 = 4, n2 = 0, n3 = 0, n3 = 0) .

If f is the exponential function, then

q(λ) =



λ−λ2

λ1−λ2

λ−λ3

λ1−λ3

λ−λ4

λ1−λ4
exp (λ1)

+ λ−λ3

λ2−λ3

λ−λ4

λ2−λ4

λ−λ1

λ2−λ1
exp (λ2)

+ λ−λ4

λ3−λ4

λ−λ1

λ3−λ1

λ−λ2

λ3−λ2
exp (λ3)

+ λ−λ1

λ4−λ1

λ−λ2

λ4−λ2

λ−λ3

λ4−λ3
exp (λ4) (n1 = 1, n2 = 1, n3 = 1, n4 = 1) ,

λ−λ2

λ1−λ2

λ−λ3

λ1−λ3

·
(
1 + λ− λ1 + λ−λ1

λ2−λ1
+ λ−λ1

λ3−λ1

)
exp (λ1)

+ (λ−λ1)2

(λ2−λ1)2
λ−λ3

λ2−λ3
exp (λ2)

+ (λ−λ1)2

(λ3−λ1)2
λ−λ2

λ3−λ2
exp (λ3) (n1 = 2, n2 = 1, n3 = 1, n4 = 0) ,

(λ−λ2)2

(λ1−λ2)2

(
1 + λ− λ1 + 2 λ−λ1

λ2−λ1

)
exp (λ1)

+ (λ−λ1)2

(λ2−λ1)2

(
1 + λ− λ2 + 2 λ−λ2

λ1−λ2

)
exp (λ2) (n1 = 2, n2 = 2, n3 = 0, n4 = 0)
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and

q(λ) =


λ−λ2

λ1−λ2

(
1 + λ− λ1 + 1

2
(λ− λ1)

2 + (1 + λ− λ1)
λ−λ1

λ2−λ1
+ (λ−λ1)2

(λ2−λ1)2

)
exp (λ1)

+ (λ−λ1)3

(λ2−λ1)3
exp (λ2) (n1 = 3, n2 = 1, n3 = 0, n4 = 0) ,

(1 + λ− λ1 + 1
2
(λ− λ1)

2 + 1
6
(λ− λ1)

3)

· exp (λ1) (n1 = 4, n2 = 0, n3 = 0, n3 = 0) .
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