LUND UNIVERSITY

Knowledge-Based Real-Time Control Systems

Arzén, Karl-Erik

Published in:
Proceedings of the SAIS'89 Workshop

1989

Link to publication

Citation for published version (APA):
Arzén, K.-E. (1989). Knowledge-Based Real-Time Control Systems. In Proceedings of the SAIS'89 Workshop

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/7058697c-4ef9-4102-a4f5-334a94af76e5

. - . .- . .
. - - - .. - - e

. .
... .

.

-
-

.
... _ . . _ @ @@ .
e . .
ﬁmww,emﬁm e
.
.
-

i " g . & i - -
> > = e e 7 iy S
-
- - .

- . -
- ...
- . .. -
- -

- -

- e
_ .- .

ABB
ASEA BROWN BOVERI sa“'conllro

Knowledge-Based
Real-Time Control Systems

IT4 Feasibility Study

Asea Brown Boveri AB
SattControl AB
TeleLOGIC AB

Department of Automatic Control
Lund Institute of Technology

1988

iH

Persons to contact:

Claes Rytoft

ABB Corporate Research
IDEON Research Park
223 70 Lund

Tel: +46 46 168522

Mats Peterson
TeleLOGIC Research
Baltzarsgatan 20

211 36 Malmo

Tel: +46 40 252109

Bérje Rosenberg
SattControl AB
Box 62

221 00 Lund

Tel: +46 46 105640

Karl-Erik Arzén

Department of Automatic Control
Lund Institute of Technology

Box 118

221 00 Lund

Tel: +46 46 108782

This document and parts thereof must not be reproduced or copied without the
Project Group’s (*) written permission, and the contents thereof must not be im-
parted to a third party nor be used for any unauthorized purpose. Contravention

will be prosecuted.

(©1988 by (*) The Project Group consisting of
Asea Brown Boveri AB, SattControl AB, Telelogic AB, and Televerket.

Published 1988
Printed in Sweden

Studentlitteratur

iii

Preface o000 0w e e e Vi
1. Introduction .1
1.1 Background o000 00 o e 1
1.2 Process Definition . . . - .2
1.3 Incentives for development of knowledge based control systems 3
1.4 Development situation . .4
1.5 The overall goal of the prOJect . 5
1.6 Areas of specific importance 6
1.7 Participators . . 6
1.8 Qutline of the study . . . 6
2. Handling of process knowledge today . . 8
2.1 The life-cycle of a process control system 8
2.2 Knowledge sources and knowledge sinks .9
2.2.1 Knowledgesources9
2.2.2 Knowledge sinks . . . 10
2.2.3 Summary . R 10

2.3 Knowledge about a process . 10
2.3.1 Functional knowledge 11
2.3.2 Economical knowledge e e e e e e 11
2.3.3 Physical knowledge 11
2.3.4 Operational Knowledge . 12
2.3.5 Historical Knowledge . 12
2.3.6 Summary 12

2.4 Knowledge used in the desxgn phase . . 13
2.4.1 Economic and Functional Specification . 13
2.4.2 Process Design 14
2.4.3 Process Equipment Des1gn 14
2.4.4 Instrumentation and Control Des1gn 15
2.4.5 Examples of design 15

2.5 Knowledge used during operation 16
2.5.1 Monitoring e e e e e e e 16
252 Control o . 17
2.5.3 Planning e e e e e e e e 17

2.6 Knowledge used for maintenance 17
2.6.1 Diagnose R 18
2.6.2 Repair e e e e e e e e 19
2.6.3 Preventive maintenance . 19
2.6.4 Documentation of changes in plant 19
2.6.5 Spare part handling 20
2.6.6 Feedback of knowledge . 20

2.7 Conclusions 20
3. Technical Survey 22

iv

3.1 Knowledge-based systems — An overview .
3.1.1 Implementation languages
3.1.2 Application categories Coe
3.2 Object-oriented knowledge representation
3.2.1 Frame systems .
3.2.2 Object-oriented programmmg . .
3.2.3 Multiple inheritance, composite obJects,
and multiple perspectives
3.3 Rule-based knowledge representation .
3.3.1 Forward chaining
3.3.2 Backward chaining . . .
3.4 Research issues and development trends
3.4.1 Dynamic environments .
3.4.2 Generic problem solving tasks .
3.4.3 Distributed Expert Systems .
3.4.4 Planning
3.4.5 Learning e
3.4.6 Software development
3.4.7 Hardware development
3.4.8 Summary
3.5 Real-time knowledge-based systems
3.5.1 Real-time Expert System Shells

3.5.2 Discussion .

3.6 Conventional technology .
3.6.1 Process and Control Systems De51gn .
3.6.2 Control system operation . .

3.6.3 Other relevant techniques . .

. Knowledge Based System Applications in Process Control

4.1 A Model of the Tasks, Tools and Roles in Process Control

4.2 Design
4.2.1 Process and control de51gn

4.3 Operation
4.3.1 Monitoring
4.3.2 Control . A
4.3.3 Planning

4.4 Maintenance . ..
4.4.1 Preventive Malntenance
4.4.2 Repair

4.5 Conclusions . .

. International and national research programmes

5.1 ESPRIT I
5.1.1 GRADIENT -
5.1.2 KRITIC

23
24
25
26
27
27

29
29
31
33
34
34
35
36
37
40
40
41
45
45
48
54
55
55
59
61

63
63
65
66
68
68
77
81
84
84
85
85

87
87
87
90

513 QUIC . v v v o e
5.1.4 Other related ESPRIT I projects
52ESPRITIL o v 0 v vt vt e e
5.3 The RACE programme v « . v v . ..
5.4 The EUREKA programme « . « v v . . .
55 ALVEY oo s
551 RESCU
552 COGSYS oo
5.6 Other programmes
561 DUP e e e
5.6.2 MDA
563 CACE o v v e e,
. A Suggested Concept00 L.
6.1 Overall demands on a knowledge-based control system
6.2 Knowledge representation in general
6.3 Knowledge representation in process control
6.3.1 Typeofknowledge
6.3.2 Depth of knowledge
6.3.3 Structural organization of knowledge
6.4 A Basic System Concept
6.4.1 Hierarchylevels
6.4.2 Multiple perspectives
6.4.3 The “central” model
6.5 Knowledgetools
6.5.1 Real-timeaspects
6.6 Conclusions
.Conclusions L. L0
. Travel Notes,
A.1 Visit to Denmark, 15/2-16/2
A.1.1 The Servolaboratory, DTH —15/2
A1.2 Soren T. Lyngs6-15/2
A.13 F.L.Schmidt — 16/2 v o oo
A2 Visit to USA, 22/2-4/3
A.2.1 G2 course at Gensym Corp., 22/2-26/2

A.2.2 Dep. of Chemical Engineering, MIT — 26/2
A.2.3 Foxboro Company —29/2
A.2.4 Artificial Intelligence Technologies —1/3
A.2.5 IBM, Thomas J. Watson Research Center — 2/3 . .
A.2.6 Dept. of Chemical Engineering, Columbia Univ. — 1/3 .
A27DuPont —2/3
A.2.8 Carnegie-Mellon University, 1/3 — 2/3
A.2.9 Systems Research Center, 3/3 — 4/3

vi

A3 Visit to the UK, 25/4 - 28/4 v v i . 118
A.3.1 Intelligent Automation Lab, Heriot-Watt Univ., 25/4 — 26/4 118

A.3.2 The Al Department, University of Edinburgh - 26/4 . . . 119

A.3.3 Applied Institute for Artificial Intelligence (AIAI) — 26/4 . 120

A.3.4 PA Computers and Telecommunications - 27/4 121

A 3.5 Cambridge Consultants Limited — 28/4 122

A3.6 SIRALd —28/4 123

A.4 Visit to CRI, Denmark, 4/5 124

B. Competence Profile 126
B.1 Asea-Brown Boveri AB — ABB e e e e e e e 126
B.2 SattControl AB oL 0oL 126
B.3 Televerket and Telelogic 127
B.4 Department of Automatic Control, Lund 127

C. Glossary« o v e e e e 129
References o000 o000 141

vil
Preface

Knowledge-based programming techniques give possibilities to develop automa-
tion systems with completely new functions. To do this, methods and principles
used in conventional control systems have to be integrated with the new tech-
nologies for knowledge processing.

A project aiming at this integration is proposed by Asea Brown Boveri AB,
SattControl AB and TeleLOGIC AB in cooperation with The Department of
Automatic Control, Lund Institute of Technology within the frame of the swedish
IT4 programme. This report is the result of a feasibility study which defines the
problem area and proposes a basic system concept for knowledge-based control
systems. A separate main project proposal has been written as a parallel and
complementary document.

The goals and incentives of the project are

e to define a new concept for real-time control systems where conventional tech-
niques are integrated in a uniform way with new knowledge-based methods
and principles,

e to demonstrate critical parts of the concept in two applications,

e to be a pre-competitive project for the participators and a base for final
development of products available on the market within 5 - 7 years,

e to combine the forces of the Swedish automation industry into a project that
would be difficult for any of the partners to perform individually,

e to strengthen the Swedish competitiveness not only with regard to automa-
tion systems but also for the Swedish industry as a whole where control and
automation systems are crucial parts both in the production process and in
the produced products,

e to rise the competence levels of the participators.

Key problems to be solved in the project are integration of new and traditional
technologies, integration of design knowledge and the real-time aspects.

The material which this report is based on has been written by the following
members of the project group: Claes Rytoft, Bo Johansson, and Anders Abverg
from ABB; Borje Rosenberg from SattControl, Mats Peterson and David Lund-
berg from TeleLOGIC; and Karl-Erik Arzén, Karl Johan Astrdm, and Sven Erik
Mattsson from the Department of Automatic Control, LTH. The material has
been compiled and edited by Karl-Erik Arzén.

Introduction

1.1 Background

Current industrial use of computers is essentially restricted to applications which
can be described formally. The type of information that can be handled efficiently
is restricted to quantitative entities expressed in numeric or alfa-numeric forms.
In a typical computer program for, e.g., accounting, material administration,
technical calculation or process control the computer only handles repetitive and
algorithmic functions such as arithmetics, logics and sequential operations such
as sorting or merging.

As a consequence, we have been forced to concentrate the use of computers on
well specifyable and repetitive processing of mainly numeric information. This
has resulted in a tremendous improvement in the handling of “quantifyable”
activities and assets in the industry.

However, the most important and valuable asset of an industrial company, the
knowledge capital represented by the expertise of different key-people, has not
been a possible target for computer representation and processing until recently.
"Knowledge” is mostly qualitative, abstract information which is hard to repre-
sent and process in traditional systems.

New programming technologies (e.g., object oriented programming, knowledge-
based system techniques, symbolic programming, functional and declarative pro-
gramming languages, applied artificial intelligence etc) will in the future make it
possible to represent and process knowledge.

2 Chapter 1 Introduction

The visionary and extremely important potential consequences of these new tech-
nologies are that the knowledge resources of a company will be subject to the
same far-reaching use of computers and increased efficiency as we have experi-
enced in areas suited for conventional computer techniques.

1.2 Process Definition

The topic of this project is real-time, knowledge-based process control. Process
control is the sum of the different tasks that interact with a specified process and
with the different users of the process. In the context of this paper a process is
the controlled flow of matter, energy, or information from generation (source), via
transport, storage, distribution, and change to consumption (sink) (DIN, 1985).
The flow may be continuous or discrete. The process control system is the system
that controls and supervises the operation of the process.

This definition of process includes the process industry, the manufacturing in-
dustry, and telecommunication systems. As pointed out by Dhaliwal (1985),
processes in these domains have a number of common features:

e The complexity of the systems is such that no single individual or small group.
of individuals can fully understand them.

e The operations and maintenance manuals may cover several tens of volumes.
Maintenance of the documentation is a particular problem. It is difficult to
access relevant and correct information speedily.

o Systems are continually changing and evolving since: the process and the
operating environment changes; shortcomings in the original specifications

come to light; bugs are discovered; and, technology advances.

e The rate of change means that old methods of training and retraining staff
are no longer adequate.

e Different users of the systems need markedly different styles of interaction
with the system.

e Speedy and accurate correction of faults is required. The hazards of slow or
incorrect treatment are:

- Faults not treated early enough may propagate catastrophically.

- Dormant faults undetected or left untreated may greatly affect the
overall reliability and maintainability of the system.

1.2 Process Definition 3

- The existing control system may itself be prone to failure and thus may
mask the true cause of misoperation.

- Wrongly identified faults and consequential repair actions may make
matters worse.

- The high reliability of the systems gives problems. Some failures are
so rare that it is difficult to ensure that maintenance staff are appro-
priately predisposed or equipped to handle them

1.3 Incentives for development of knowledge-based control
systems

Knowledge handling is of specific importance in production and process control
systems. Control systems are carriers of a collected but extracted knowledge
about the whole controlled process. A program for how to supervise, control and
activate the process is the final, concentrated result of a complex processing of
knowledge about

e the controlled process itself,

e the involved components and how they interact,
e the produced products and their properties,

e control theories,

e demands and conditions for service and maintenance etc.

Significant knowledge is accumulated in the process computer and among the
operating personnel when a process has been operated for a few years. This
knowledge is scattered and neither well represented nor well organized in con-
ventional systems. The reason for this is that todays control systems are not at
all suited for processing this type of knowledge. The main weaknesses are the
following.

o Incapability to express and implement knowledge-based control functions.

Control functions based on experience, heuristics, fragmentary knowledge,

qualitative knowledge, reasoning in a specific world of conception must today
be handled "manually”.

4 Chapter 1 Introduction

e Incapability to represent and communicate the underlying knowledge of dif-
ferent types of control functions.

Although there is a lot of knowledge involved in the analysis and design
phases which precede the final programming of the process control system,
only the final algorithmic representation and possibly some verbal explanation
of it is processed by the computer. The control system is a black box whose
content possibly can be explained by the programmers of the system but
often by nobody else. All expertise and underlying reasoning is documented
separately, in the worst case communicated verbally to the users who need it
in order to improve or extend the process.

o Incapability to visualize a complex process in a user and knowledge oriented
way

Processes, automation, and control systems become more and more complex.
This puts increased demands on operators and other users of the control
systems without giving them any new supporting tools. Today’s systems can
in an excellent way visualize the process based on process signals but cannot
transfer this to higher, more knowledge-oriented abstraction levels suited for
the various users of the system.

Control systems are of great importance to the whole industry and especially
to the export industry. This industry is very much oriented towards system-
oriented, knowledge intensive and highly automated production processes and
products. Effective control systems are of crucial importance both to production
and as integrated parts in the products. Knowledge-based control systems will
therefore be of great importance and will add a competitive edge to most exported
industrial products.

1.4 Development situation

The development and research on knowledge-based control systems are currently
very intense with many large international projects. The driving forces are three
different groups: user industries, AI companies, and control system suppliers.

Among the user industries, it is primarily the manufacturing industry, the chem-
ical industry including oil refineries, the paper and pulp industry, the power
systems industry, and the telecommunication industry that have started activi-
ties. As described in Chapter 4, many systems have been developed and a few
also flielded. In Sweden, the paper and pulp industry and the power suppliers
have started activities.

1.4 Development situation 5

Small AT consulting companies aimed at the process control market are currently
emerging. Initially started because of market needs, the companies help to main-
tain the interest and also to create new markets by giving courses and seminars.
Some of these companies also have expert system products aimed at the pro-
cess industries. Examples of such companies are Gensym Corp., and Carnegie
Group. Also conventional consulting companies such as Framentec, PA Consul-
tants, Cambridge Consultants, and Stone & Webster Engineering Corp. have
started activities in the AI — Process control area.

The interest is high among the conventional control system manufacturers. Com-
panies like Honeywell, Foxboro, and Combustion Engineering all have active AI
research groups and products on the way. The risk is large that Swedish manu-
facturers will be left long behind if no serious initiatives are taken now.

Several, large international as well as national research programmes concerning
knowledge-based control systems are going on at the moment. The most ambi-
tious effort is found in the European Community’s ESPRIT programme.

In analyzing on-going projects, we have found more or less the same approaches
in most of them. A knowledge-based system is placed as a front-end to, and sep-
arated from, a conventional control system. This leads to systems that are dif-
ficult to maintain and install with different operator consoles and man-machine
interfaces. In the long run and as a base for knowledge-based, real-time con-
trol systems this is not a suitable approach. The special real-time aspects of
knowledge-based systems are also mostly neglected.

1.5 The overall goal of the project

The goal of the project is to define and demonstrate a uniform concept for
knowledge-based real-time control systems that later on can be used as a base
for development of commercial products.

A guidance for the work is a visionary goal of a control system

e that can be programmed in a knowledge and problem oriented way in contrast
to today’s use of imperative and computer governed programming languages,
and

e with which you can have a conversation more or less in the same way as if you
had direct contact with the experts on the controlled process, the produced
products and the control system.

6 Chapter 1 Introduction

1.6 Areas of specific importance

As a result of the feasibility study, we have reached the conclusion that the solu-
tion to the following problems are of fundamental importance for the development
of knowledge-based control systems.

e Integration of conventional and new technologies in one uniform system.
e Integration of design knowledge into the operational control system.

e A practical solution of the real-time problem.

Some of these problem areas are identified to be important also in new ESPRIT
IT projects. This could facilitate a desirable cooperation.

1.7 Participators

The project is based on a unique constellation of participants consisting of

e Asea Brown Boveri AB and SattControl AB, the two leading supplier of
automation systems in Sweden,

o TeleLOGIC, a research company belonging to Televerket with experience from
many Al-projects and also involved in international cooperation projects, e.

g., within RACE and ESF,

o The Department of Automatic Control at LTH, engaged as a consultant, with
an international reputation in research on knowledge-based control systems
and with contacts with most of the important research institutions around
the world working with knowledge-based control systems.

1.8 Outline of the study

The feasibility study has the following organization.

Chapter 2 describes the handling of knowledge in processes of today. It is pointed
out how poorly the different kinds of knowledge is treated today and to what low
degree the knowledge is included in the on-line system. This is especially the case
for the design knowledge which is the basis for the operation and maintenance of
the process. It is suggested that knowledge-based techniques counld be a solution
to many of the problems.

1.8 Outline of the study 7

Chapter 3 contains an general overview of knowledge-based systems with an aim
to predict the development situation for the next 5 years. The chapter contains
a special treatment of real-time knowledge-based systems. The next generation
control systems will of course also be influenced by the technical development
within other areas. Therefore, an overview is also given of the development in
some of the importants conventional areas.

Chapter 4 contains an overview of proposed and implemented knowledge-based
applications in process control. The chapter is organized into a model of process
control that composed of tasks, tools, and roles. The chapter contains many
examples of different approaches and systems.

Chapter 5 gives an overview of related projects within international and national
reserach programmes. The major part of the chapter treats the on-going ESPRIT
projects.

Chapter 6 proposes a system concept for the integration of knowledge-based
techniques with conventjonal techniques. The concept is based upon a model that
represents the process components and the control system components. Multiple
perspectives are proposed to handle different types of knowledge in the model.
The central model is surrounded by a set of tools that implements the different
control functions in the system, both knowledge-based and conventional, and
builds up the different user interfaces needed. The chapter also discusses the
real-time aspects of the concept.

Finally, conclusions are given in Chapter 7.

Several visits to companies and universities with related projects have been made
during the feasibility study. Travel notes from the visits are included as an
appendix. Competence descriptions of the participators and a glossary are also
included as appendices.

Handling of process knowledge
today

This chapter gives an overview of what types of knowledge that exist about a
plant, the sources of the knowledge, and how it is used. At the end of the chapter,
conclusions are given about the knowledge handling problems in today’s systems.
AT techniques are suggested as a solution to the problems.

2.1 The life-cycle of a process control system

The life-cycle of a process control system can be split up in to three phases
according to Figure 2.1.

e Design Phase

The main goal here is to create possibilities for the production. This involves
design of the process and the control system.

e Operational Phase

The main goal during this phase is to run the process with maximum profit
within given specifications and constraints.

e Maintenance Phase

2.1 The life-cycle of a process control system 9

1 (Time scale) I

Figure 2.1 The life-cycle of a process control system.

The main goal during this phase is to keep the production facilities running
and to modify them according to new available technique and/or feedback
from operation.

Although the two last phases run in parallel, there is a clear difference between
them. Over the life time of a plant there is feedback loop from operation and
maintenance to redesign. It is possible to distinguish between users dealing with
design, operation and maintenance. The design personnel are mainly working in
an off-line environment and their main task is to provide knowledge that is used
to construct the plant. Operation and maintenance are on-line activities that to
a large degree depend on design knowledge to succeed.

In the following, we will try to describe the available knowledge and to evaluate
which users that depend on what knowledge. We also try to analyze how this
knowledge is handled today.

2.2 Knowledge sources and knowledge sinks

2.2.1 Knowledge sources

Most of the available knowledge origins from the design phase. In the design
phase there are a lot of different knowledge “sources” or designers involved. They
all describe the plant from their view. As an example, there is one mechanical

10 Chapter 2 Handling of process knowledge today

designer that designs the mechanical parts of the system. There is also an elec-
trical designer that designs and describes the power supply and how the power
should be connected to the mechanical devices. Common for these two designers
is that they both describe the same object, e.g., a pump, but one describes the
electrical view of the pump and the other describes the mechanical view of the
pump.

Of course there are knowledge that origin from other phases such as histori-
cal and heuristic knowledge that origin from the operational phase, and service
information about components that origins from the maintenance phase.

2.2.2 Knowledge sinks

The knowledge sinks are many and differ between the different phases. During
design, nearly all designers are dependent of knowledge from other designers. In
the operational phase, the operators are the main knowledge sinks, but there
are other departments that depend of production information etc. During the
maintenance phase, the service staff is the main knowledge sink.

2.2.3 Summary

It is easy to see that there are a lot of knowledge sinks and a lot of knowledge
sources and nearly all of them depend on each other. It is also obvious that
different sinks need different information about the same components.

Consider a telecommunication system. When a telecommunication line breaks
down, the operator who is respomnsible for the traffic needs to know that the
line is down in order to reroute the traffic. The repair personnel also need to
know that the line is down but they do also need information about physical
location, specifications, connection points etc. A third part is perhaps a statistics
department that needs to know that the line has been down and for how long.

2.3 Knowledge about a process

What do we mean by knowledge within the process control area? Knowledge can
be described in many different ways.

A distinction is often made between deep knowledge and shallow or heuristic
knowledge. Deep knowledge is based on a theoretical model of the function of
domain. Heuristic or shallow knowledge on the other hand consists of rules of
thumb and of other types of knowledge that are based on experience and difficult
to represent with conventional programming techniques.

Another distinction that can be made is between quantitative and qualitative
knowledge. Conventional control systems have so far only been concentrated

2.8 Knowledge about a process 11

on quantitative knowledge such as algorithms, procedures, functions, sequential
operations, numerical models etc. Qualitative knowledge such as lines of reason-
ing, qualitative judgements, decision rules, expertize, underlying assumptions,
explanations etc., is difficult to represent.

What type of knowledge is available for a process? One attempt to classify the
different types of knowledge involved in the life cycle of a plant is given here.
For each class of knowledge, examples are given together with a description of
on what media the knowledge is stored today.

2.3.1 Functional knowledge

Functional knowledge describes the function of the system and its subsystems
during different operating conditions (static, dynamic alert, emergency, start up
etc.). Some examples are: What is the goal with the plant?, What is the primary
function of a process part, Does it have any secondary function etc. Examples of
such documented knowledge are:

Type of documentation: Media:
Goals of operation Paper
Functional Block diagram Paper
Mass flow balance Paper
Flowchart (process & instrumentation) Paper (CAD)
- Functional description Paper
Design experience Brain
Common sense physics Brain
Advanced physics Simulation programs

2.3.2 Economical knowledge

Economical knowledge describes the basic economical constraints involved. It
consists of raw material, product value, quality aspects, maintenance, repair,
costs for unplanned stops etc. This type of knowledge often has a different source
than the other types, e.g, from the sales department.

Type of documentation: Media:
Order Information Paper
Economic calculation Paper
Optimization algorithms Computer

2.3.3 Physical knowledge

A physical description describes the basic components and how they are con-
nected to each other. Physical knowledge does also include the control system
and the program for the control system. All together, the physical knowledge

12 Chapter 2 Handling of process knowledge today

describes how the process is implemented. Physical knowledge is documented as
follows:

Type of documentation: Media:
Layout Paper (CAD)
Drawings of buildings Paper
Mechanical drawings Paper (CAD)
Instrumentation drawings Paper (CAD)
Electrical connection drawings Paper (CAD)
Control logic Computer
Equipment lists Paper (CAD)
Isometric drawings Paper (CAD)

2.3.4 Operational Knowledge

Operational knowledge includes information about operational characteristics of
the process during, operation, start-up, shut-down and emergency. Operational
knowledge is typically documented as follows:

Type of documentation: Media:
Operator instructions Paper
Equipment manuals Paper
Operator experience Brain
Maintenance experience Brain

2.8.5 Historical Knowledge

Historical knowledge mainly applies to plants in operation. It consists of stored
time histories of important process variables. The data is normally organized in
a systematic and consistent way. Examples of documentation are:

Type of documentation: Media:
Operational log Computer
Trend curves Computer
Feedback information from earlier plants Paper

2.3.6 Summary

As seen from the examples, most documentation are stored on paper. It is very
little that is included in the on-line control system. The documented knowledge
is also very shallow. The documents that exist are all based on large amounts of
experience and underlying assumption and lines of reasoning. This qualitative
knowledge is very seldom included in the documents.

2.8 Knowledge about a process 13

A simple example is a process flow chart. A process flow chart is very difficult
to read and understand for those who are not familiar with the process and the
control system. The reason for this is that the flowchart only describes things
as they are and not gives explanations and motivations for why this is the case.
Such qualitative, underlying knowledge is necessary in order to understand the
flow chart. In some rare cases, comments are given on the flow chart or references
are made to the flow chart from the instruction manuals. It is however not the
usual case.

Knowledge is today mainly transferred by paper, through training courses and
from man to man. This way of knowledge transfer continuously causes problems.
The knowledge is seldom available when it is needed.

Since large amounts of knowledge never is documented, it will not be transfered
at all. This knowledge is mainly heuristic, e.g., design knowledge about why a
valve is placed before a pump instead of after etc. Lack of this type of knowledge
does also create a lot of problems during the control of the plant. The most
. obvious example is when a new operator is employed. It would be very useful if
‘tools existed that helped in transfering knowledge from experienced operators.

2.4 Knowledge used in the design phase

In the design phase, the main activities are:
e FEconomic and functional specification

e Process design

e Process equipment design

o Instrumentation and control design

Normally, the design phase involves many people. In most cases, the plant owner
is represented by consultants. The main contractor will use several suppliers and
consultants.

2.4.1 Economic and Functional Specification

The primary objective when constructing process plants is to make profit from
the investment. The main operational factors to be looked upon in a life cycle
perspective are:

e The income from the sale of the production

e The costs of raw products

14 Chapter 2 Handling of process knowledge today

e The operational costs

e The marketing costs

These factors may have a volume aspect as well as a quality aspect connected to
them. Simple investment calculations are always made, but this is not enought if
you want a detailed risk analysis about volume, quality and sale. Comparison of
different production techniques is another factor to be analyzed. Computer simu-
lation of trains running according to different time-tables and job-shop simulation
of work-shops are examples of a deep analysis of the production performance.

Even in these early design activities, there is knowledge created. The economical
knowledge is primarily used for decisions, but it could be used later on in the
design phase and in the operational phase. Today, this kind of information is
normally used only once and not reused at all.

2.4.2 Process Design

In the process design activity the main plant specifications are known in terms

of:

e Production rates

e Process principles

The design engineers will look on the details of the process flows through the
plant and on different operating conditions. As a result there will be functional
specifications of the process equipments, interconnection diagrams and specifica-
tions on auxiliary systems.

2.4.3 Process Equipment Design

Later on in the design phase, the designers calculate the dimensions and the
processing powers of the processing equipments. These activities involve several
types of designers like mechanical, electrical and chemical engineers. One difficult
task is to coordinate these people and their knowledge needs. The break down of
the project in subtasks is necessary, but this is to a certain extent contradictory
to the view of the plant as one unit. The output from the process equipment
design activity is detailed down to the level needed for the purchasing or the
manufacturing of the equipment.

2.4 Knowledge used in the design phase 15

2.4.4 Instrumentation and Control Design

Instrumentation and control systems are needed in the plant in order to coor-
dinate the different parts of the process and to make it possible to control the
plant. Some of the subactivities are identification and specifications of:

e The external load and the external resource characteristics
e The operational modes and their state transitions

e The production rates and the quality control strategies

e The strategy of order-bound state transitions

e The batch oriented strategies

¢ The mixture and the separation control strategies

e The stiffness control strategies of all resources

e The undependent resources to be kept uncoupled

e The balancing strategies of dependent resources

The monitoring, control and operational aspects of the plant are usually not
taken into account early enough in the design phase. In particular, this is true, if
the process hardware suppliers are different from those who do the control design.
Today, functional information is lost to a certain extent and has to be reinvented
by the control system designer in the control design activity (and by the process
operators every day).

2.4.5 Examples of design

The mechanical designer of a boiler will in his design of the superheaters cal-
culate the heat transfer rates, the type of steel material, the dimensions of the
superheaters and their cooling system, the mechanical stress and life time due to
temperature changes, the material wear due to particle erosion, the speed of the
flue gases, the speed of steam, the state of the steam, the material wear due to
water droplets, the overall efficiency variations due to the steam state etc.

Often, the control system designer will not have access to the knowledge of the
mechanical design engineer. In the control design of the steam temperature
control loop and the gliding pressure control, the control engineer will probably
use control system drawings from old installations instead of fresh knowledge
from the mechanical designer.

16 Chapter 2 Handling of process knowledge today

The next one who lacks information is the operator. The hazards, already thought
of by the mechanical designer, the operator has to learn about by experience. The
life-time effect and the efficiency effect of setpoint and alarm-limit changes of the
superheater temperature are often unknown.

The instrumentation technician is responsible for the tuning of the controllers,
but he has only a vague idea of the trade off between soft temperature control
and superheater heat-chocks at different levels of boiler operation.

In case of an emergency shutdown due to a failure in the valve of the superheater
cooling water, the repair personnel have to find the right valve and replace it.
Today, this mechanical design information is not available in an integrated and
easy way. Drawings are often changed, and not kept up to date.

2.5 Knowledge used during operation

During the operation phase of a plant the main tasks for the operator are:

e Monitoring
e Control

e Planning

All these activities requires a lot of knowledge about the process and the control
system.

2.5.1 Monitoring

Monitoring of a process is done continuously. The operator uses the result to
optimize the process. To be able to do this optimization, he must have good
knowledge about the process and how the process should be run. Some of this
knowledge is related to the design phase, and could be found in documents like
functional description and operator instructions. Today nearly all of the relevant
documentation is only available on paper, with the exception of the flow charts
that normally are shown on the screen of the supervisory system. There is no
way that the operator could get any information from the control system about
the functional knowledge.

On top of all this is the heuristic operator knowledge. An example of a piece of
knowledge of this kind is that valve 5 normally gets inoperable after 5 hours of
continuous production unless it is flipped every 2 hours. In the systems of today,
this type of knowledge is transferred from man to man, or in the best case, it
is written down in the operator instruction book and then put in the control

2.5 Knowledge used during operation 17

system in the next redesign. Also here there is no way that the process control
system could help the operator with this type of information. The operator has
to consult the documentation where he seldom finds it.

2.5.2 Control

Control of a process is a delicious task which requires a lot of knowledge. Alarms
and new production orders call for control actions. To carry out these actions,
the operator needs functional knowledge about the control system and heuristic
knowledge about the plant. When an alarm occurs is it up to the operator to
identify the alarm and to know how to make the right control actions to correct
it or to minimize the damage caused by the fault. If the operator should have
any chance to react correctly on the alarms and the trend curves he first of all
depends on that the control logic is correct, and secondly that he has or could
get knowledge about the correct function of the process.

2.5.3 Planning

When the operator deals with planning tasks he partly depends on information
(or knowledge) from the production planning system. This type of knowledge is
of a different nature from the above mentioned knowledge, but still it normally
appears on paper or perhaps on the screen of another computer system.

To be able to calculate how the process should run the operator needs knowledge
about capacities of the plant etc. This knowledge is today not available in the
control system. Ideally, the operator should be able to reason with the system
about things like capacities etc. Another very interesting function to include in a
control system is possibilities for simulation, so that the operator could simulate
his actions in advance.

2.6 Knowledge used for maintenance

Maintenance includes among other things the following activities:

e Diagnose

e Repair

e Preventive maintenance

e Documentation of changes
e Spare part handling

e Feedback to désign and operation

18 Chapter 2 Handling of process knowledge today

2.6.1 Diagnose

The diagnose starts with a problem report describing the symptoms of the process
disturbance. The purpose of the diagnose is to find the reason why the process
does not work satisfactorily. The cause of a problem can be a faulty component,
bad raw material, bad design etc.

To find the origin of the symptoms there are mainly two methods of working:
heuristically or hierarchically. Normally you start with the first and if not suc-
cessful, the second method is used.

Heuristic diagnose

In heuristic diagnose, knowledge about faults and symptoms that occur and what
causes them is used. The probability of different malfunctions is also taken into
account. To do this mapping from symptoms to errors you need a lot of experience
from the actual plant or from similar plants. By using heuristic diagnose it is
impossible to handle unexpected problems.

The knowledge needed for this type of diagnose is a description of (the most
common) symptoms and their causes.

Hierarchical diagnose

Hierarchical diagnose is based on a functional or structural decomposition of
the process. The search for the cause of the problem starts from the top. The
function of the subparts is investigated. The failing subpart is then the target
for the continued search. The search is done recursively until the cause of the
problem is found.

To see if a part on a certain level is working correctly, its current function must
be compared with the expected one. There must be a number of test points by
which the function can be monitored. By comparing the result from the test
point with the expected situation, the faulty part can be localized.

To be able to do a hierarchical error search the documentation must support it.
The documentation must be hierarchical and function or structural oriented. It
is important that the test points and the normal relation between the status of
them are explicitly shown.

Difficult situation: The diagnose is much more complex in the case of combina-
tions of more than one fault or intermittent errors. To handle the last one there
must be some function to record the course of events.

2.6 Knowledge used for maintenance 19

2.6.2 Repair

Normally it takes some time to replace a faulty component. In the mean time,
the production may be kept up by using an alternative production way.

The faulty components is replaced by an equal one. If no suitable component is
available, a redesign using available components must be done.

The knowledge needed to find a alternative way for production is indications of
the different possibilities to run the process. To be able to replace a compo-
nent there must be information about suppliers and their identification of the
component. For redesign, dimensioning parameters are needed.

2.6.3 Preventive maintenance

The goal of preventive maintenance is to repair a component just before it breaks
down or causes production problems.

The problem is to detect errors before they occur. To select the time for the
repair you can use a number of strategics:

e Elapsed time
o Elapsed operation time
e Load, i.e., elapsed operation time weighted with a load dependent factor

e Status of components. Estimating the status of a component by using obser-
vations and measured values.

The knowledge needed is the duty cycle of the components, the wear of the
components as a function of load, how to estimate the condition of a component
from observations.

2.6.4 Documentation of changes in plant

The changes done to a plant must be documented in order to keep the plant
documentation up to date. It is also important to document replacement or work
that has been done, since it is quite common that changes create new problems.
This information is valuable for the heuristic diagnose.

Software bookkeeping

A special problem is the book keeping of all the software modules used in a .
process.

20 Chapter 2 Handling of process knowledge today

2.6.5 Spare part/handling

A problem is to optimize the stock of spare parts. A big stock of spare parts
costs capital and a small stock may cause loss in production.

To optimize the number of parts kept in stock you need among others the fol-
lowing information:

e Number of used parts in the plant
e Probability for a fault in a part
e Price

e Cost if the part is not available

Apart from this information, qualitative experiential knowledge is needed. Exam-
ples of this could be the reliability of different spare part suppliers, preferences
between different suppliers, seasonal fluctuations in the fault propabilities for
different parts etc.

2.6.6 Feedback of knowledge

During the maintenance work, a lot of experience is gained. The knowledge
should be transferred to the design phase, operation phase, and within the main-
tenance phase for later use.

Design: The design of new and the revamping of old plants can be improved if
the knowledged gained during maintenance can be fed back.

Operation: The operation people can benefit from knowledge on how to avoid
problems.

Maintenance: By collecting information in a ordered way during the mainte-
nance work, the heuristic knowledge for diagnose can be extended. This will
improve later diagnoses.

2.7 Conclusions

As could be seen from the examples above, large amounts of knowledge is never
used during operation and maintenance. What is the reason for this situation?
One reason is that much of the knowledge is stored in such a way that it is very
difficult or even impossible to use. It could, e.g, be stored in a file somewhere,

2.7 Conclusions 21

perhaps in the plant managers office. Normally, there is no tools available that
assist in finding the knowledge needed fast and easy. This is also true even
when some of the information is stored in CAD-systems. Furthermore, heuristic
knowledge is not stored at all today, mainly because there is no way to store it.
In future process control systems, these problems have to be taken care of.

Knowledge-based system (KBS) techniques are focussed on the handling and pro-
cessing of knowledge. Several knowledge-based systems have been proposed and
implemented in process control for different applications. Many of the applica-
tions deal with the problems described in this chapter. An extensive overview of
different applications is given in Chapter 4.

Technical Survey

The possibilities for artificial, machine intelligence have long attracted interest.
Since the late 1950s, the area has evolved into a separate, now and then, heavily
discussed and questioned, research discipline.

One definition of Artificial Intelligence (AI) is the following taken from Rich
(1983)

“Artificial Intelligence is the study of how to make
computers do things at which, at the moment, people
are better.”

Al contains many different research directions. One direction is focussed on
the human perception system. This direction contains areas such as robotics,
computer vision, speech recognition, and natural langnage. The goal here is to
emulate the human sensory and motory capacities.

Another area concentrates on the human problem solving capacity. This direction
includes areas such as knowledge-based systems, automatic theorem proving, and
game playing.

The goal of both these directions is to build intelligent machines or computers.
The cognitive research directions in AI instead uses Al formalisms as tools to
better understand the behavior of the human brain.

Characteristic for Al is that it is an evolving science. What was once considered
as belonging to Alis now standard techniques. Examples of this are multiple-user
operating systems and windowing systems.

FaYs)

23

Knowledge-based systems or expert systems is an area within AI that relates
to many of the current problems in process control systems. An overview of
knowledge-based systems is given in Section 3.1. Object-oriented and rule-
based knowledge representation are the two most used techniques for representing
knowledge in current knowledge-based systems. An overview of these are given
in Sections 3.2 and 3.3. Section 3.4 is devoted to development trends important
for knowledge-based control. Real-time knowledge-based systems are treated in
Section 3.5. Finally, Section 3.6 discusses development and trends in conven-
tional control systems which will be important for the next generation of control
systems.

3.1 Knowledge-based systems — An overview

Knowledge-based systems or expert systems is an area of AI that has grown
rapidly during the last few years. The basic definition of the term ezpert system
is a program that solves problems within a specific, limited domain that normally
would require human expertise. This is a2 wide and vague definition that also
covers many traditional computer programs. A clear definition of an expert
system is difficult to state. The situation instead is that an expert system more
or less fulfills a number of different characteristics.

The most significant characteristic is the expert problem solving capacity within
limited application domains and fer problems where conventional programming
techniques have not been successful. The reason why conventional techniques do
not work is mainly that the problem lacks a clear analytical and/or algorithmical
solution or that the existing algorithm is computationally intractable. The expert
system instead tries to emulate the problem solving behavior of the human expert.
This means that the system tries to represent and execute the expert’s knowledge
and reasoning strategy.

Another very common characteristic is that the domain knowledge is represented
explicitly in an identifiable, separate part of the program. This so called knowl-
edge base is separated from the control strategy or inference engine that actually
runs the program by operating on the knowledge. A system of this type is re-
ferred to as a knowledge-based system. The explicit knowledge representation
gives an expert system a declarative nature in contrast to traditional procedu-
ral programming languages such as Pascal or Fortran where domain knowledge
is expressed in the form of program statements. Knowledge representation, i.e.
how individual facts are represented and how representations of individual facts
are combined to a representation of the complete problem state, is a key issue
in expert systems. Rules and object-oriented representation are often used tech-
niques which are discussed in more detail in the following sections. Propositional
logic or predicate logic, scripts, and procedures are other techniques.

24 Chapter 3 Technical Survey

Well-developed explanation facilities are another expert system characteristic.
It is necessary that an expert system can explain its reasoning in order to be
accepted by the user. It is usually possible to get an explanation for why the
system asks a certain question to the user and how a certain conclusion has been
reached.

The possibility to reason with uncertainty is another feature that might be
present. Knowledge might be uncertain in certain applications and expert sys-
tems can then support the representation of, and reasoning with, this uncertainty.
This is often implemented in the form of probability measures that reflect the
reliability of the knowledge and which are propagated through the reasoning.

Another expert system aspect is the modularity that is provided through the
explicit knowledge representation. The knowledge base is built incrementally and
can relatively easily be expanded with, e.g., new rules. This makes exploratory
programming possible, where prototypes rapidly can be developed and later be
used as a part of the final implementation. This is perhaps the main reason why
expert systems have the reputation of allowing implementation of very complex
systems.

The first step in an expert system application is the knowledge elicitation. Formal
techniques for this do not exist. Interviews of human expert is one method
used. This is done by knowledge engineers. The next important step is the
conceptualization where the domain knowledge is structured into basic concepts
which represent the important features of the application. The concepts are then
transformed into a suitable knowledge representation.

3.1.1 Implementation languages

Most existing expert systems are implemented in a symbolical languages such
as Lisp (Winston and Horn 1984; Steele 1984) or Prolog (Clocksin and Mellish
1984) or in some language implemented on top of those.

Lisp

Lisp is the traditional Al programming language and one of the oldest high-level
languages still available. The original, pure Lisp was a functional language. The
current Lisp dialects combine functional programming with imperative program-
ming. Lisp has a strong emphasize on function applications and recursion. Lisp
has a very simple and uniform syntax. The primary data structure is the list.
Lisp code is also represented as lists. This makes it easy to write programs that
generate other programs.

The Lisp language is basically interactive and interpretative although compiled
versions are standard. This makes it easy to programme in an explorative style
where program ideas rapidly can be tested. Lisp systems are well-known for

3.1 Knowledge-based systems — An overview 25

their powerful programming environment with integrated editors, debuggers, and
graphics systems.

Prolog

“PROgramming in LOGic” is a logic programming language based on a subset
of predicate calculus. It came in the beginning of the 1970s and has mainly been
developed in Europe. That is one of the reasons why Prolog is very popular in
Europe.

A Prolog program consists of facts and rules which are unified against questions
posed by the user. Prolog is very natural for problems that involve search. For
general programming tasks, many programmers feel that Prolog is too special.
Prolog is often available as an add-on to Lisp systems.

Expert system shells

The separation between the knowledge base and the inference engine has led to
the development of ezpert system shells or frameworks. A framework is an empty
expert system without any domain knowledge. It provides an inference engine
and a knowledge representation structure that can be used as a programming
tool for implementation of expert systems in different application areas.

3.1.2 Application categories

The applications where expert systems have been used are usually divided into
the following groups:

Diagnosis: to conclude the cause of a given set of symptoms.
Design: to generate a design according to given requirements.
Planning: to build up a plan of actions to obtain some given goal.
Monitoring: to detect unnormal situations.

Interpretation: to interpret noisy or uncertain signals.

Expert systems have been built for, e.g., medical diagnosis (Shortliffe, 1976),
computer hardware fault detection (Milliken et al, 1986), interpretation of seis-
mic measurements (Duda et al, 1977) and computer system configuration (Mc-
Dermott, 1980).

Several conditions should be fulfilled in order for an application to be suitable
for an expert system solution. The following are examples of such conditions.

e The problem should be limited and traditional solution methods should be
unknown or intractable.

26 Chapter § Technical Survey

a-kind-of
a-kind-of

Linear

Non-linear
ine system

system

Low-pass
Butterworth

cut-off freq.

Figure 3.1 Semantic network example

¢ The problem should be solvable for available experts.
e The goal should be well-defined.

o Domain specific knowledge should dominate over common-sense knowledge.

Most existing system are consultative, i.e., they are meant to be used by a non-
expert in a question-answer dialogue to derive a solution to some problem. Au-
tonomous systems that solve problems without human assistance are more in-
teresting at least in process control, but much more uncommon. The existing
systems are often hybrid systems in the sense that they contain both symbolic
expert system components and numerical components. An example of this kind
could be a system that interprets disturbed signals with a combination of numer-
ical and symbolical methods for, e.g., speech recognition or signal processing.

3.2 Object-oriented knowledge representation

To represent knowledge as objects with associated attributes is common in ex-
isting expert systems. The basis is the semantic network, (Quillan, 1966), which
represents knowledge as a network of nodes. A node could represent the con-
cept of objects, events, ideas, etc. Associative links represent relations among
nodes. An example of a semantic network is shown in Fig. 3.1. A survey is

3.2 Object-oriented knowledge representalion 27

given in Brachman (1979). Semantic networks represent the combination of a
superclass-subclass hierarchy and the description of properties (attribute - value
pairs). Another well-known aspect of the network formalism is the instance rela-
tion that associates a particular individual with a class of which it is a member.
This is often represented with the is-a link.

3.2.1 Frame systems

The idea of frame systems, a variation of the semantic networks, was introduced
by Minsky (1975). A frame system consists of three different building blocks:
frames (sometimes called units), slots and facets. A frame is the equivalent to a
node in a semantic network, i.e., it represents concepts of objects, events, ideas,
etc. With some abuse of language, frames are often referred to as objects. The
slots describe the properties or attributes of a certain frame. In the same way,
facets describe the different slots. One of the facets is the actual value of the
slot. Others facets could be used to specify which type the slot value may take,
default value for the slot or to give an additional description of the slot.

Frames are often divided into two types: those which describe classes and those
which describe individual instances. An important concept of semantic networks
and frame systems is the inheritance of properties. Inheritance allows class frames
which can pass their slots along to subclass frames and to instance frames. Mul-
tiple inheritance, i.e., that a frame is a subclass of more than one superclass is
common. A simple frame system example is shown in Fig. 3.2.

Procedures can be attached to frames by associating the procedures with slots.
These procedures are called demons and they provide for so called access-oriented
programming. Demons are for example used to compute the value of a slot when
a reference is made to it and no previous value exists. Another possibility is to
have demons that are executed each time a slot is given a new value or each time
a frame is created or deleted.

Several frame based knowledge representation languages exist. Some examples
are KRL (Bobrow and Winograd, 1977), Units (Nilsson, 1982), PAUL (Hein,
1983), KEE (Intellicorp, 1984), and Epitool from Epitec AB.

3.2.2 Object-oriented programming

At the same time as the frame based knowledge representation languages were
developed, a very similar development took place in the area of object-oriented
programming, (Stefik and Bobrow, 1986). This area has its historical background
in the work on SIMULA (Dahl and Nygaard, 1966) and has its most extreme
representative in the programming language SMALLTALK-80 (Goldberg and
Robson, 1983). The basic entity of object-oriented programming is the object
which has a local state and a behavior. Objects are asked to perform operations
by sending appropriate messages to them. Objects have associated procedures

28 Chapter 8 Technical Survey

‘ slso-controuer| ‘ Discrete conlrolleﬁ

Slots: Slots:
input sampling-time
output

reference

(Discrele PID

A-kind-of:
Siso-controller,
Discrete controller|

Slots:

K
Ti
_Td J

fPID-7)

Is-a: Discrete PID
input: AD1

output: DA1
reference: AD2
sampling-time: 1

K: 5
Ti: 10
u‘d: 10)

Figure 3.2 Frame system example

called methods that respond to the messages. Message passing supports data
abstraction and generic algorithms. A protocol, i.e., a set of messages is defined,
which specifies the external behavior of the object. The internal implementation
of the object can thus easily be changed without affecting the calling programs.

In the same way as in frame systems, objects are divided into classes and instances
of classes. The classes builds up a superclass - subclass hierarchy with inheritance.
The inheritance is more focused on inheritance of behavior, i.e., of methods, than
on inheritance of properties as is the case in the frame systems. The analogue of
the slots in frame systems are the variables. Variables are often divided in two
types: instance variables that are inherited by the instances and class variables
that are attached to a specific class and common to all the instances of this class.

Several different object-oriented add-ons to Lisp exist. Some examples are Flavors
(Cannon, 1982), Common-Loops (Bobrow et al, 1986) and Object Lisp (Drescher,
1985). The programming language C is undergoing a similar development with
the add-ons Objective-C (Cox, 1986) and C++ (Stroustrup, 1985). Although
very similar in spirit to frame systems the main purpose of the object-oriented
systems is to use the objects for data abstraction in computer programming.
The frame systems are instead focussed on using similar facilities for knowledge
representation.

3.2 Object-oriented knowledge representation 29

3.2.3 Multiple inheritance, composite objects, and multiple perspec-
tives

Inheritance from more than one superclass, i.e., multiple inheritance, is used
for two reasons. The first reason is to describe objects that naturally, at the
same time, can be viewed as instances of more than one class. Through multiple
inheritance, their behavior is described as the combined behavior of all the super
classes. The second reason is for structuring purposes. Behavior and attributes
that are common to many different classes but which can not be naturally seen
as a class that can be instantiated can be grouped together to a miz-in class.
Mix-in classes are never instantiated and are only used to add a specific behavior
to other classes.

Multiple perspectives is used for the case when a single object, at every time, can
be seen as the instance of one out of a set of classes. This can be seen as a special
case of multiple inheritance where the behavior and attributes from the inherited
classes are kept separated in the object instead of being combined. The behavior
and attributes of the object is different depending on from which perspective or
view the object is looked upon.

The name composite object is used for an object whose attribute values are other
objects. Composite objects is one way to achieve hierarchical object structures
where a subobject of an object represents a more detailed description of a part
of the object.

There is an interesting interplay between multiple inheritance, multiple perspec-
tives, and composite objects. An object with multiple perspectives can, e.g., be
described as a composite object where each subobject represent one perspective.

3.3 Rule-based knowledge representation

Rules are the main knowledge representation method used in existing expert
systems. This is reflected by the use of the name rule-based system synonymously
to expert system. Another name that is used is production systems where a

production is the equivalent of a rule. The primary reference for production
systems is Newell and Simon (1972). Rules often look like

if <antecedents> then <consequents>

or like

if <conditions> then <actions>

30 Chapter 3 Technical Survey

The antecedent or condition part of a rule is also called the left hand side (LHS)
of the rule. In the same way the consequent or action part is called the right

hand side (RHS).

The main parts of a rule-based expert systems are

1. Database or working memory
2. Rulebase
3. Inference engine

4. TUser interface

The first two parts are commonly referred to as the knowledge base. The database
is used to represent facts about the application domain. The data structures in
the database vary between different systems. The simplest form is a collection of
variables that can take different values. Another quite common data structure is
the list. Lists are used in OPS4 (Forgy, 1979) and YAPS (Allen, 1983). Object-
oriented data structures are very common. The EMYCIN (van Melle, 1981) class
of systems usually use object-attribute-value triplets. Basically the same is used
in the OPS5 (Forgy, 1981) system. Other systems use more elaborate frame
based systems with inheritance and procedural attachment. Examples of those
are KEE (Intellicorp, 1984) and ART (Inference Corp., 1984).

The rulebase contains the rules of the system. It is sometimes partitioned into
different rule-groups according to different contexts. The left hand side of the
rules typically consists either of patterns that should match the contents of the
database or of predicates on the database that should be fulfilled. Most systems
allow rules to use pattern matching variables. This makes it possible to write
generic rules that can be used by the system for many different facts. The right
hand side of the rule either modifies the database in some way or performs some
external input or output.

The inference engine applies the rules to the database according to some strategy.
The dominating strategies are forward chaining and backward chaining. In some
systems these are combined. Since the inference strategy is the real core of the
system, these two strategies will be explained in detail later.

The rule-based programming style is especially well suited for certain problems.
Suitable problems as well as advantages and disadvantages of rule-based systems
are described in, e.g., Brownston et al (1985). The power of the rule-based sys-
tems is most evident for complex, ill-structured applications that lack eflicient
algorithmical solutions. The decomposition of the system into a number of rela-
tively loosely coupled rules makes it suitable for problems that are decomposable
into subproblems which have no fixed or apparent order. The rule-based ap-

3.8 Rule-based knowledge representation 31

proach supports parallel lines of reasoning as opposed to the primarily sequential
execution of conventional languages.

3.3.1 Forward chaining

In a forward chaining system, the left hand sides of the rules are examined to
see whether or not they are fulfilled. If so, the modifications to the database in
the right hand side of the rules are executed and then the system examines the
rules again. Forward chaining systems are sometimes called data-driven systems.
A survey of forward chaining expert systems is Brownston et al (1985). Most
forward chaining systems use pattern matching to express when rules are appli-
cable. The LHS of the rules contain patterns that must match the contents of
the database for the rule to be fulfilled. An example could look like

if (father -x -y)
(father -y -z)
then
(add (grand-father -x -2z)).

In this notation, =-x,-y and -z are matching variables that can match arbi-
trary symbols. When the same matching variable occurs at more than one place
it must match against the same symbol at all occurrences.

The reasoning is performed in what is called a recognize-act cycle that has three
states. During the match state all rules that are fulfilled are collected into the
conflict set together with the corresponding database elements. If rules with
pattern matching variables are allowed, the same rule can appear in the conflict
set several times with different matching database elements. During the select
phase, one rule is chosen for execution. If the conflict set contains more than one
element, the conflict is resolved according to some conflict resolution strategy.
During the act state the right hand side of the selected rule is executed.

The conflict resolution strategy is crucial for how the rule execution proceeds.
Conflict resolution strategies can be divided into two groups. The first group
consists of strategies that order the rules in a predetermined way. Examples of
this are strategies that select rules according to the order in which the rules were
created or according to a priority associated with each rule. Another example is
strategies that favor more complex rules, e.g., rules with many condition elements,
before simpler rules. The other group contains strategies where the choice of a
particular rule depends on the state of database. An example of this are strategies
that select rules on the basis of the recency of the matched database elements.
Rules matched by more recent added information are usually favored.

Matching each rule against the contents of the database every recognize-act cycle
is time consuming. It can be avoided by saving matching information between

32 Chapter 3 Technical Survey

the cycles and by matching only the database elements that are changed at each
cycle. This is efficient because typically the database changes very little between
the cycles. The most well-known matching algorithm of this type is the RETE
algorithm (Forgy, 1982) used in the OPS family. Matching algorithms of this kind
usually also allows negated left hand side conditions, i.e., patterns that must not
match against the contents of the database.

An effect of the network based rule interpreters is that the recognize-act cycle
now has a different ordering. The cycle starts with the select state where a
fulfilled rule is selected. During the act state the right hand side of the selected
rule is executed. This causes database elements to be added or removed and it is
during these database alterations that the actual matching occurs. The network
approach to pattern matching affects the addition of new rules to the system in
a serious way. Since the rules build up the network used in the matching, this
network must exist before database elements are added or removed. This means
that a new rule which is added during rule execution will only recognize database
elements that has been altered after the rule was entered. In order for the new
rule to operate on the total database, the database elements already added to
the database have to be refreshed, i.e., removed and added anew.

Another implication of network based systems is the effect they have on the use of
predicates in the left hand sides of the rules. The intended use of LHS predicates
is to further specialize the rules beyond what is possible through pure pattern
matching. An example of this is the trivial rule

if (number -n)

predicate
(>= -n 1000)
then

(add (large-number -n))

that simply marks a number as being large if it exceeds 1000. Predicates are
tested as soon as enough partial matching information is available for the pred-
icate arguments to have values. The reason for this is the wish to prune the
network, and thus the search space, as early as possible. This works well as
long as the LHS predicates act only on the database contents. It is, however,
sometimes desirable to have predicates that act upon information outside the
database, e.g., predicates that test if some measured signal exceeds a certain
threshold or if a certain global variable takes a given value. In this case, the
predicate evaluation may cause problems. The main reason for this is that the
network, which in a way contains the state of system, can only be changed by
database alterations and not by external events.

3.8 Rule-based knowledge representation 33

3.3.2 Backward chaining

Backward chaining systems are sometimes called goal-directed systems. A back-
ward chainer tries to achieve a goal, or alternatively stated, to verify a hypothesis
by trying to prove rules that confirm this hypothesis. A goal could, e.g., be ex-
pressed as the need to compute the value of a certain object attribute in the
database, and a hypothesis could be expressed, e.g., as a certain value for an ob-
ject attribute that needs to be verified. If the goal is not immediately available
in the database, the backward chainer tries to find the rules with consequents
that deduce the goal. A rule is selected and the antecedents of this rule become
new goals that must be fulfilled. This causes new rules with these goals in their
consequents to be selected and so on. The user is usually asked when a goal can-
not be directly proven and no rules are found with the goal in their consequents,
If a goal cannot be fulfilled the system backtracks and chooses another rule. The
way in which the rules are selected and in which order the subgoals are analyzed
determines the search strategy. During depth-first search the first applicable
rule is chosen and its first antecedent immediately becomes the new subgoal. In
a breath-first scheme all the antecedents of the chosen rule are checked before
eventually a subgoal is selected. In a best-first scheme the rule most likely to
succeed, e.g., with fewest antecedents, is selected first.

Backward chaining systems are often used for classification problems, see Short-
liffe (1976) or Weiss and Kulikowski (1981). In these applications, the number
of possible outcomes, i.e., the values of the goal attribute, is typically small. A
feature of many backward chaining systems is the possibility to reason with un-
certainty. Database elements have associated numerical certainty factors that
reflect the amount of belief or disbelief in a certain fact. Rules also have cer-
tainty factors denoting to which degree a certain inference can be trusted. The
inference engine propagates the certainty factors during the rule execution. The
uncertainty feature is often combined with the possibility to let object attributes
simultaneously take different values with different amount of certainty.

Backward chaining systems have traditionally well-developed explanation facil-
ities. The explanation facilities are built into the inference engine and the ex-
planations are generated automatically. The two standard types of explanation
facilities are the “How?” and the “Why?” questions. When the system has drawn
a conclusion the user may ask how the conclusion was reached. This typically
results in a trace of the rules that were used in the reasoning. If the system
asks the user for additional information, the “Why?” question explains why this
information is needed. The user has sometimes the possibility to investigate the
outcome of different answers with a “Whatif?” question.

34 Chapter 3 Technical Survey

3.4 TResearch issues and development trends

The “expert system boom” during the last years is more based on improved and
commercialized hardware and software than on recent research progress. The
main ideas behind current expert systems date from the late seventies. Although
expert system solutions have been proposed for a huge amount of applications, it
is only for few applications that the research community has reached a consensus
on how they should be tackled. Among these are classification problems and
configuration problems. This section will point towards some problem areas that
remain unsolved and where much research is done.

3.4.1 Dynamic environments

The over-whelming majority of existing expert systems are static. The human
user provides the expert system with some amount of initial information which
possibly is completed later on during the consultation. Ina dynamic environment,
the situation is different. The process state varies with time, faults occur that
change the behavior of the process, and humans interacts with the process.

The logical background for most existing system are a standard logic, i.e., propo-
sitional logic or first order predicate calculus, together with the modus ponens
rule. This simply says that whenever a fact A is known to be true and there is
arule If A then B, itis permitted to conclude that B is true. Standard logic
systems are all monotonic. If the logical statement A can be proved from a set
of initial axioms, additional axioms or information must not cause the negation
of A to be provable. If this was the case, the logical system would be inconsis-
tent. Due to the monotonicity property, the belief of the expert system, i.e., the
contents of the database, are considered to be true and the system monotonically
draws new conclusions from the existing ones. Unfortunately, monotonic systems
cannot handle three kinds of situations that often arise in real problem domains:
incomplete information, changing situations, and the generation of assumptions
during the problem solving process. The monotonicity shows up for example in
classification systems where the user rarely has any possibilities to later change
some of the information he has provided. A true on-line expert system must
provide some way of non-monotonic reasoning. In real life we are often faced
with the need to draw conclusions based on incomplete or uncertain information.
Later, as new information comes in, the basis for the drawn conclusions may turn
out to be wrong. The system then must be able to retract these conclusions.

The approaches to non-monotonic reasoning can be divided in two groups. The
first group contains solutions where the logic is extended in several ways. The
second approach is to include the logical system in a meta-system that handles
the non-monotonic issues. Examples of extensions to the logic system are, €.g.,
the work on circumscription, (McCarthy, 1980), default reasoning (Reiter, 1980),
the UNLESS operator (Sandewall, 1972) and the non-monotonic modal logic of

3.4 Research issues and development trends 35

McDermott and Doyle (1980). A compilation of non-standard logics is found in
Turner (1984).

Truth maintenance systems (TMS) (e.g., Doyle (1979); de Kleer (1986), Goodwin
(1987)) are examples of the meta-system approach. The overall system consists
of an ordinary inference system and a TMS that serves as a sort of intelligent
database. The task of the TMS system is to determine which data that are to be
believed when a new inference has been made and to ensure that the database
is consistent. When an inconsistency is detected, it uses dependency-directed
backtracking to resolve the inconsistency by altering a minimal set of beliefs.

These theoretical approaches to non-monotonic reasoning have not yet matured.
Many problems are unsolved and the techniques have so far only been used in
micro-world examples. TMS techniques also require the storage of large amounts
of information.

Truth maintenance techniques are becoming available in the larger existing expert
system shells. KEE contains an Assumption-based TMS that allows the user to
set up dependencies, called justifications, between facts. TMS techniques are
in KEE also used to implement multiple worlds. Worlds represent alternative
states of knowledge. Worlds are proposed for applications that involve planning,
configuring, or testing out different alternatives. They allow the reasoning process
to set up hypothetical assumptions which automatically are withdrawn when
worlds are deleted. ART contains similar features called multiple viewpoints.

3.4.2 Generic problem solving tasks

The structure and knowledge representation formalism used in many of today’s
expert system projects are to a large extent governed by available expert system
shells. Ideally, the situation should be the opposite. The structure of the domain
knowledge should decide which knowledge representation technique to be used.

Chandrasekaran (1986; 1987) and others (Gomez and Chandrasekaran, 1981;
Marcus and McDermott, 1987; Clancey, 1985) argue that the abstraction level of
current knowledge-based systems is too low. Instead of the level of rules-logic-
frames-networks, they advocate the level of generic problem solving tasks. Each
generic task uses the knowledge organization and control strategy most natural
to the task. Chandrasekaran has looked at the problems of diagnosis, design and
planning and identified such generic tasks as hierarchical classification, abductive
assemnbly, object synthesis using plan selection and refinement, etc.

The approach is a critique of the uniform and low level architectures of conven-
tional knowledge-based systems which lack expressiveness for higher level tasks
and create artifactual control issues which often is mis-interpreted as issues having
to do with control at the task level. An example of the latter is the need for dif-
ferent conflict resolution methods. Instead a higher-level, multiform architecture

36 Chapter 3 Technical Survey

is proposed. The approach is based on the view that knowledge representation
and use cannot be separated (Gomez and Chandrasekaran, 1981).

This line of research coincides with the aim for application dependent expert
system shells which will be discussed later. It also relates to the current focus on
deep model-based knowledge which also will be discussed later. It is likely that
task specific tools will play a major role in the future.

3.4.3 Distributed Expert Systems

Distributed artificial intelligence (DAI), (Decker, 1987), is concerned with solving
problems by applying both artificial intelligence techniques and multiple problem
solving agents. The distributed approach is motivated by the traditional positive
aspects of distributed processing systems as well as from the cognitive viewpoint
that “All real systems are distributed” (Hayes, 1980). DAI approaches reaches
from fine grained (connectionist) to coarse grained (distributed expert systems).
The connectionist approach will be described in the section on hardware devel-
opment.

Distributed expert systems have two major dimensions: how control is distributed
among the agents and how the agents communicate with one another. The
control issue involves the amount of cooperation between agents, how the agents
are organized and how coherent problem-solving behavior is obtained among
the agents. The communication issue can be delineated into three areas: the
communication paradigm, the semantic content of the exchanged information
and the protocols used to handle the limited bandwidth.

The two major communication paradigms are shared global memory and message
passing. Both have advantages and disadvantages. The most used model for
shared memory communication is the blackboard model (Nii, 1986a; 1986b).

A blackboard system consists of a shared memory, the blackboard, and a set
of logically independent agents or knowledge sources. The knowledge sources
operate on and respond to changes on the blackboard. The knowledge sources
contain the domain knowledge for a certain part of the problem solving. Knowl-
edge could be expressed either as rules together with an appropriate inference
strategy or as ordinary procedures. The choice of which knowledge source that
should be executed is determined dynamically depending of the contents of the
blackboard. The blackboard is usually organized into hierarchical levels. The
relations between the objects are expressed through named links. A control
module monitors the changes on the blackboard and decides what action to take,
i.e., which knowledge source to activate. Knowledge sources that may be acti-
vated are contained in an agenda. The blackboard paradigm is a special case of a
oppurtunistic reasoning system, where the most appropriate reasoning strategy,
e.g., forward chaining or backward chaining, is chosen at every time.

In the HASP/SIAP project, (Nii et al, 1982), a blackboard system was used for

3.4 Research issues and development trends 37

interpreting sonar signals collected by hydrophone arrays in some area of the
ocean. This project is interesting since the system was used autonomously, in
real time. The system was however only passively recording incoming information
and thus had no feedback element. Blackboard based expert system shells are
beginning to emerge. One example is the SOPE system from Advanced Decision
Systems. The work by Chandrasekaran on generic problem-solving tasks has also
been organized as a blackboard system (Gomez and Chandrasekaran, 1981)

A disadvantage with the shared memory is the bottleneck possibility. A more
abstract means of communication is offered by message passing. In the Actors
formalism, (Hewitt and Kornfeld, 1980; Clinger, 1981), object-like actors with
actions and acquaintances reside in parallel with each other.

One of the most studied protocols for distributed problem-solving is Davis and
Smith’s contract net protocol (1983). Agents are organized into classes with
general problem-solving goals. Proposers propose possible solutions. Proponents
collect and present evidence in favor of a proposal. Skeptics collect and present
evidence to disprove a proposal. Evaluators examine proposals and balance the
work load of the system.

Theoretical work in distributed problem solving is sparse. Rosenschein and Gene-
sereth (1984) have studied communication strategies. Halpern (1986) has written
an introduction to the topic of reasoning about knowledge and belief. It is noted
that most models are based on possible worlds. An agent is said to know a fact if
it is true in all worlds that he thinks are possible. Situations are described using
some modal propositional logic together with Kripke structures which contain a
set of worlds, the truth values for the primitive elements in each world, and an
equivalence relation for each agent that groups together the possible worlds for
that agent.

3.4.4 Planning

The origin of the work on planning in Al is the General Problem Solver (GPS),
e.g., (Newell et al, 1960). This was the first problem solving program that sep-
arated general problem-solving methods from task-specific knowledge. A task
was described as a triple of an initial object (state), a goal object (state) and a
set of operators. Operators were chosen on the basis of how much the difference
between the initial object and the goal object was reduced. No information was
assumed to automatically carry through from one state to the succeeding state.
This means that the operator was responsible for generating all information in
a succeeding state. The representation format of the states and operators were
not predetermined and varied from one domain to another.,

Much of the work in state-based planning is based on situation calculus, (Mec-
Carthy and Hayes, 1969). The representation format is usually first-order predi-
cate calculus or some extension of it. Resolution is used as the problem solving

38 Chapter 3 Technical Survey

method. The domain under consideration is assumed to always be in a cerfain
state. A state is described by means of predicates. For example, the fact that an
object is at a certain position in certain state can be expressed with the {following
predicate.

at(objectl,positions, state7)

Events, or actions, are represented as functions that takes a situation, including
a state, and returns the resulting state. An axiom that describes that objectl
can be pushed from position6 to position7 looks as follows.

(vs) [at(objecti, position6,s) D
at(objectl,position? ,push(objectl,positions, position7,s))]

The function push returns the resulting state. An example of a planning system
along these lines is described in Green (1969).

A general problem in planning is the problem of which relations that are affected
by an action and which are not. This is referred to as “the frame problem”,
(Hayes, 1973). Frame here means the frame of reference in which a relation
is true. In resolution-based planning systems and also GPS, it is necessary to
explicitly state all relations that are left unaltered for each and every actions.
For example, in the above scenario with objects at different positions it is, e.g.,
necessary to have axioms that says pushing an object from one position to another
doesn’t, hopefully, change the position of other objects. Since most actions have
local affect, this leads to numerous trivial so called “frame axioms”.

The perhaps most well-known planning system is STRIPS (Fikes and Nilsson,
1971). In STRIPS, each operator has associated a set of preconditions, an add
list of clauses, and a delete list of clauses. Applying an operator results in the
deletion from the model of all the clauses in the delete list and the addition to the
model of all the clauses in the add list. All clauses which are not contained in the
add or delete lists are assumed to be unaffected by the operator. This is called
“the STRIPS assumption”. STRIPS is an example of a nonhierarchical planner.
This means that the plan developments consists of one level. The individual
pieces of the plan are generated one after another starting at the beginning.

Hierarchical planners generates a hierarchy of plans with different degrees of
details. The highest degree is an abstraction of the plan and the lowest degree
is the full detailed plan. An example of a hierarchical planner is ABSTRIPS
(Sacerdoti, 1974). Another example is the NOAH system, (Sacerdoti, 1975).
NOAH uses procedural nets to represent plans. The procedural nets incorporate
both procedural and declarative knowledge.

Problems with interacting subproblems can occur when a problem has conjunc-

3.4 Research issues and development trends 39

tive goals. The order in which the goals are fulfilled are perhaps not specified,
but can be critical for a plan to be found. A different problem arise when the
conjunctive goals must be fulfilled simultaneously. The majority of the work in
planning concerns sequential planning. Planning of parallel activities is a much
more difficult problem. The STRIPS assumption also cause problems for plan-
ning problems in dynamic environments. The presumption that the world only
is changed by the planning agent’s actions makes it difficult to handle externally
generated events.

Several planning systems have tried to extend the possible class of planning prob-
lem beyond what is allowed in a “STRIPS planner”. The SIPE system, (Wilkins,
1984), can handle plans with concurrent actions. A plan consists of partially or-
dered actions. Actions without ordering are considered to be concurrent. Actions
that do not share the same resource can be executed in parallel. The DEVISER
system, (Vere, 1983), also allows plans with concurrent actions. External events
which are known to occur at a certain future time are allowed. Duration times
express how long time actions take. Time windows may be specified for goals,
e.g., that a goal should hold between two time points. Deviser models time as
nonnegative real numbers where time zero is the time of planning.

An related area is the work on theories of action, i.e., on what constitutes an
action. Allen (1984) has developed a temporal logic for reasoning about ac-
tions. The driving force behind this works has mainly been problems concerning
the meaning of action sentences in natural-language understanding. The tem-
poral logic is based on time intervals rather than time points. The logic is a
typed first-order predicate calculus where the types could, e.g., be time inter-
vals, propositions that can hold or not hold during a particular interval, and
objects in the domain. Dynamic aspects of the world are captured by the term
occurrences. Occurrences are divided into processes, which describes activities
not involving a culmination, and events which describes activities that involve a

resulting outcome. A similar temporal logic has been developed by McDermott
(1982).

The temporal logic of Allen has been extended with two modalities that can
be used to support planning problems by Pelavin and Allen (1986). The first
modality is the INEV operator. The statement (INEV i P) means that at time
interval i, statement P is inevitable, i.e., regardless of what happens after i, P
will be true. Using this operator, the possibility operator, POS, can be defined.
The second modality is the IFTRIED operator. The statement (IFTRIED pi
P) means that if plan instance pi was to be executed then P would be true.
The resulting planning system can handle concurrent activities and externally
generated events. The frame problem is basically solved through frame axioms.
Although this logic system provides a general framework for expressing planning
problems it is not obvious how it should be used effectively for practical problems.

A formalism for action structures with partially ordered actions that may occur

40 Chapter 3 Technical Survey

in parallel has been developed by Sandewall, (Sandewall and Ronnquist, 1986).
In this work actions are described with preconditions, postconditions, and prevail
conditions. The pre- and postconditions correspond to the delete and add lists of
STRIPS. The prevail conditions describe the conditions of the world that must
remain while the action is executed.

A more procedural approach to reasoning about actions and planning is taken
in the work by Georgeff, (Georgeff and Lansky, 1986). In this work, actions
are described by processes that have both a declarative semantics and an opera-
tional semantics. The use of processes is motivated by the fact that much expert
knowledge is procedural in nature and thus is better represented procedurally
than with action sequences.

3.4.5 Learning

An important aspect of human intelligence is the ability to learn. This is also an
important research area in AL Several learning paradigms exist.

In inductive learning, (Quinlan, 1979), a decision tree or a set of production rules
is learned from a set of positive and negative examples. The inductive system tries
to generalize from the positive examples without including the negative examples.
Tnductive expert system shells such as SuperExpert and Extran exist on the
market. The inductive approach is specially suited for complex classification
problems where the classification rules can be difficult to formulate but there
exist a wide range of classified examples.

When the problem is to learn a plan of action in some domain, the possibility may
exist for the learning program to attempt to execute the plans, observing how
they fail. Learning from failures of expectation is called failure-driven learning.

Discovery is the restricted form of learning in which a learning system acquires
knowledge without help from anyone. Two important programs have been built
which have proved capable of learning by ezploration in new domains. AM and
Eurisko (Lenat, 1982; 1983) work for example in the domain of 3D VLSI circuits
and the design of battle fleets for a space warfare game.

Learning has for long been considered one of the hard problems of AL Recently,
the interest has increased and this interest will probably remain in the future.
Neural networks has interesting learning capacities which will be described in the
section on hardware development.

3.4.6 Software development

The development of commercial expert system shells goes along two lines: gen-
eral, hybrid systems and application-speciﬁc systems.

Hybrid systems consists of a flexible, integrated development environment that
allows a variety of different knowledge representation techniques or program-

3.4 Research issues and development trends 41

ming paradigms. Rule-based systems, frame representation, and object-oriented
programming are usually supported. The environment often contains graphical
interfaces, editors, browsers, and natural language based interfaces. The systems
usually allows for separate development systems and run-time systems. The de-
velopment is intended to take place on personal workstations and the run-time
systems runs on less expensive PCs.

The prime examples are KEE, (Knowledge Engineering Environment) from Intel-
licorp and ART (Automated Reasoning Tool) from Inference Corporation. These
systems also support multiple worlds and truth maintenance. Qther examples are
Knowledge Craft and the Swedish Epitool. Smaller and less expensive PC-based
hybrid systems begin to emerge. Examples are Goldworks and Nexpert Object.

Application-specific systems are aimed at a certain type of application. The
Escort system from PA Consultants is a dedicated system for real-time diagnosis.
G2 from Gensym Corp. lies somewhere in between. It is general, hybrid system
but with special focus on real-time applications.

Integration with conventional software is currently a strong trend. Many expert
systems have interfaces to commercial software such as database programs and
spreadsheet programs. The reason for the integration trend is the problems that
have aroused when expert systems have been fielded. This trend will continue.
Conventional software will in the future also include features which today are
associated with expert systems.

3.4.7 Hardware development

Many AI applications are extremely processing intensive. To overcome the bot-
tleneck caused by current computers, the research on special Al-machines is ex-
tensive. This section will describe both the development of uni-processor work-
stations and the work on parallel architectures. Animportant example of parallel
Al architectures is the connectivist approach.

In Hwang et al (1987), AI computer architectures are classified into three groups:
language-based machines, knowledge-based machines, and intelligent interface
machines. Language-based machines are tailored for a specific Al language.
Knowledge-based machines are tailored to execute a certain knowledge repre-
sentation technique and intelligent interface machines are tailored to execute a
certain Al problem.

Language-based machines for LISP

The nature of LISP poses certain requirements on the underlying computer ar-
chitecture. The applicative and recursive nature requires an architecture that
efficiently supports stack computations and function calling. The use of dynamic
data structures makes an automatic storage allocation mechanism with efficient

42 Chapter 3 Technical Survey

garbage collection vital. The run-time type checking requires tagged architec-
tures with efficient tag checking.

Lisp machines are personal workstations with special hardware for executing
LISP. They have been on the market since the beginning of the 1980s. The most
notable systems are the Symbolics 3600 serie and TI Explorer. These are unipro-
cessor architectures with hardware optimized for LISP and powerful, integrated
programming environments. They are, however, also to a large degree research
computers which have proved difficult to integrate with existing industrial com-
puter systems.

The development of faster conventional microprocessors such as the Motorola
68020 and the Intel 80386 has made it possible to use conventional workstations
such as Sun to execute Lisp almost as efficient as the Lisp machines especially for
smaller programs that are not so dependent on efficient garbage collection and
paging. The disadvantage is the need to have much memory (> 16 Mbytes) and a
reasonably large local secondary storage disc. The programming environment is
also still much inferior to what is available on the Lisp machines. With new and
faster processors and improved Lisp programming environments, conventional
workstations will become well suited for Al applications in the soon future.

Lisp architectures have up to now been built from discrete components. Last
year, Texas Instruments released the first Lisp cpu on a single chip. This chip
outperforms discrete architectures by a factor of approximately 5 and the Ex-
plorer 1T is currently the fastest Lisp workstation. TI are also collaborating with
Apple and they have recently released the p-Explorer which is a Macintosh II
computer with an add-on, chip-based Lisp board. This solution is very prize-
performance competitive and will simplify the integration of Lisp architectures
with conventional computers. Symbolics have recently also announced their Lisp
chip and there are rumours of similar add-on boards to conventional computers
also based on this chip.

Within the next few years it will be possible to buy a personal computer or work-
station that contains different dedicated add-on boards such as a LISP board, a
signal processor board, a graphics processor board and so on. Already now, the
80386 based Hummingboard gives IBM AT powerful Lisp performance.

Language-based machines for other languages

Al computers are also being developed for Prolog-like languages and for pure
functional languages. Most of this work is still pure research. Prolog machines
usually try to exploit the various kinds of parallelism in Prolog. And-parallelism
refers to the simultaneous execution of logically AND-ed clauses. Variables
which are common to several AND clauses must be taken care of specially. Oz-
parallelism refers to the concurrent search for alternative solution paths. This
parallelism is non-deterministic and can give multiple solutions. Unification par-
allelism refers to the parallel matching of clauses in the Prolog database with

3.4 Research issues and development trends 43

the goal clause and to the parallel instantiation of variables to constant vari-
ables. The Japanese 5’th Generation programme has led to the construction of

the Parallel Inference Machine (PIM) and of Parallel Inference Engine (PIE).

AT machines for functional languages use computational models, such as the
dataflow model and the reduction model, which have asynchronous and dis-
tributed control. Therefore they can exploit a greater degree of parallelism than
von Neumann computers using control-flow. Examples of functional program-
ming machines are ALICE (Darlington and Reeve, 1983) and the FFP reduction
machine (Vegdahl, 1987).

Knowledge-based machines

Knowledge-based AI machines are governed by models for representation and
manipulation of knowledge. Research is for example performed on machines
for forward chaining production systems, e.g. (Stolfo and Miranker, 1986), for
object-based systems, (Anderson et al, 1987), and for marker propagation in
semantic networks, (Fahlman and Hinton, 1983).

Attempts at modeling the brain have inspired massively parallel computers that
use thousands of processors, each having limited hardware and a small local
storage capability, functioning as extremely reduced instruction set computers
(RISC). These are called connectionist architectures and the related research
discipline is called connectionism.

Connectionism

Much of the work in Al can be viewed as ways of figuring out the symbols that
the mind uses in its reasoning and rules for how the symbols are manipulated.
It is assumed that once the symbols and rules are known human intelligence can
be modelled. This was stated as a hypothesis by Newell and Simon (1976):

The Physical Symbol System Hypothesis. A physical
symbol system has the necessary and sufficient means
for general intelligent action.

This assumption is now challenged. AI can match the best human experts on
certain narrow technical problems, but it cannot even begin to approach the com-
mon sense and sensory abilities of a five-year-old child. In many cases, humans
seem to handle information in some form other than the symbolic assertions of
traditional AIL. The use of massively parallel architectures is now explored in an
attempt to get around the limitations of conventional symbol processing. Many
of these architectures are connectionist. The system’s collection of permanent
knowledge is stored as patterns of connections or connection strengths among
the processing elements. The knowledge then directly determines how the pro-
cessing elements interact rather than passively being stored in a CPU. Both

44 Chapter 3 Technical Survey

formal, symbolic schemes and analog approaches exist. The analog approaches
are often called neural networks due to the possible similarity in function between
these networks and the neural network of the human brain.

A connectionist system uses a very large number of small processing elements or
units each connected to some other units in the system. The only information
stored locally in the units are a few marker bits or a single scalar activity level.
Long-term storage is acquired by altering the connection patterns. The simplest
way to represent things in a massively parallel network is to use local representa-
tions, i.e. each concept is represented by a specific part of the network. There is
neurological evidence that the human brain also use distributed representations,
i.e., a concept is represented by patterns of activity among several neurons.

The Connection Machine (CM) (Hillis, 1985; Waltz, 1987) is a commercial prod-
ucts that uses local representation. It consists of a conventional workstation
together with a network of between 16K and 64K small processor-memory units.
All units can communicate with any or all other units. The CM is programmed
from the front-end workstation in either extensions to C or Lisp. The CM uses
data-level parallelism. Each element of data for a problem is stored and one ele-
ment is stored per processor. The front-end computer executes a serial program
where each step may involve computations in all of the processor units. For ex-
ample, instead of using loops for computations on array elements all operations
can be performed simultaneously. The computing rate of the machine is on the
order of 64000 MIPS for single-bit operations and 2000 MIPS for 32-bit adds.
One application for the machine is memory-based reasoning systems where large
amounts of specific examples are stored instead of general rules. The systems
classifies input examples by finding the example most similar among the already
stored ones.

Distributed representation can be acquired in a value-passing system where each
connection has an associated scalar weight. A unit computes its output as a
weighted sum of its input which is passed through a nonlinear function. Value-
passing units are layered. Each observable feature is represented by an input
unit. Bach of the possible hypothesis that should be evaluated is represented
by an output unit. Units in intervening layers represent higher-order features.
The Perceptron (Rosenblatt, 1961) was an early example of a two layer network.
For two-layer networks, learning schemes exist which automatically adjusts the
weights. For networks with more layers, the learning problem is worse. Back
propagation is one technique used which is based on gradient descent.

Typical neural network applications concerns recognizing patterns of various
kinds. Examples are speech processing, image recognition and processing of
imperfect and inexact knowledge. In process control, smart sensors and control
of robotic equipment are some examples.

3.4 Research issues and development trends 45

Intelligent interface machines

This group contains architectures that have been proposed or constructed for e.g.
speech-processing, image recognition, and chess-playing.

3.4.8 Summary

Prediction of the future development is difficult. This section has tried to pin-
point some areas where research is being performed that is relevant to using AI
system for real-time process control. Theoretical attempts to tackle reason main-
tenance in dynamic environment is important for true intelligent real-time behav-
ior. Application-specific tools and generic problem-solving tasks are important
in order to reach above the rules-frames-object level. Modern control systems
are distributed. Therefore the expertise should also be distributed. Learning
has many applications in process control. The research oriented hardware de-
velopment will probably go towards parallel architectures. For commercial use,
conventional workstations will provide a good vehicle for AI applications.

3.5 Real-time knowledge-based systems

Real-time expert system applications also exist outside process control. Some
areas were the technique have been tried are satellite control, and data analy-
sis; the Pilot’s Associate; autonomous vehicles; battle management; aerospace
systems; robotics and vision systems; financial advise (for example, a market
monitor, adviser, or trader); and medicine (patient monitoring).

Real-time applications contains a set of very complex problems. The following
examples are taken mainly from Laffey et ol (1988).

Nonmonotonicity

Incoming sensor data, as well as inferred facts, do not remain static during the
execution of the program. The data are either not durable and decay in validity
with time, or they cease to be valid because events have changed the state of the
system.

If resources were unlimited, this problem could be solved by sampling at a high
enough frequency and by recomputing all inferred facts at every sampling time.
This is however not the case. One approached which is used in the PICON and
G2 systems which will be described later is to attach currency intervals and time
stamps to indicate if a sensor reading is still valid or must be refreshed. The
currency intervals and time stamps are also propagated to inferred facts. This
technique can only represent that a fact has become unvalid due to passed time.
It cannot represent that a fact becomes unvalid due to an occurred event. To do

46 Chapter 3 Technical Survey

this Truth Maintenance techniques as described in the previous section must be
used. These are however very resource intensive.

Continuous operation

Many real-time systems continue to operate until they are stopped by an operator
or by some catastrophic event. Consequently, a real-time system monitor or
controller must be capable of continuous operation.

Asynchronous events

A real-time system must be capable of being interrupted to accept input from
an unscheduled or asynchronous event. Additionally, events can vary in impor-
tance. A real-time system must also be capable of processing input according to
importance, even if the processing of less important input must be interrupted
or rescheduled.

Scheduling is one way to achieve responsiveness to asynchronous events. In the
MUSE system, interruptable knowledge sources are controlled by a scheduler.
This also allows concurrent execution of knowledge sources.

Real-time constructs

A real-time expert system must allow a natural expression of real-time constructs
such as interrupting the reasoning for a certain time of until a certain event
occurs. Furthermore, the reasoning process can often be structured into separate
parallel reasoning activities. It is an advantage if they are mirrored in the system.

Interface to external environment

A real-time system needs to gather its data from a set of sensors. Traditionally,
expert systems have asked the operator for input.

Uncertain or missing data

Data can lose validity or have questionable validity due to degradation in sensor
performance. Thus, a real-time system must be able to recognize and appropri-
ately process data of uncertain or diminished validity.

High performance

For certain applications, high performance is a key issue. This is a bottleneck
for many Al systems. In telecom applications, high performance is especially
important.

3.5 Real-time knowledge-based systems 47

Temporal reasoning

Time is an important variable in real-time systems. Typically, a real-time system
needs the ability to reason about past, present, and future events, as well as the
sequence in which the events occur.

Reasoning about previous sensor values and inferred facts requires that time
histories are stored. Reasoning about future events and explicit reasoning with
time is a difficult area. Allen’s work on temporal logic for reasoning about actions
(1984) is one approach.

Focus of attention

When a significant event occurs, it is important that the real-time system is able
to focus its resources on important tasks. This is usually related to a systems
possibilities to respond to asynchronous events.

Reasoning under time constraints

Reasoning under time constraints covers the problem where a reasoning system
must be able to come up with a solution in time when the solution is needed.
Furthermore, the best possible solution within a given deadline is desired. This
situation is frequently occurring in process control diagnosis systems. The di-
agnosis system goal is to detect error symptoms, determine their cause, and
propose or carry-out counteractions. The available time before a counteraction
must be performed is by large determined by the nature of the error symptoms
and the part of the plant where they occur. A time constraint for the solution
can be determined by predicting the time before a catastrophic, irreversible situ-
ation evolves using the known dynamics of the system. In some situation, direct
counter-measures must be taken prior to any diagnosis.

Reasoning under time constraints poses certain demands on the reasoning system.
The system must be able to estimate the time needed for its internal reasoning
activities and the solutions they might come up with. A measure of goodness
on the solutions is also needed. This can be expressed in terms of completeness,
precision, and certainty. The reasoning system must also be able to reason at
different approximation levels where reasoning at the various levels give differ-
ent degrees of goodness of the solution and require different amounts of time.
Examples of such levels are compiled knowledge versus deep-model knowledge,
and deep models at different hierarchical abstraction levels. Reasoning at a high
abstraction level may give a quick answer to what part of the plant the symptoms
origin from whereas reasoning at a deeper level can pinpoint the exact physical
component which have failed.

Reasoning under time constraints is an area were very little has been done. The
existing real-time shells have no means to cope with this.

48 Chapter 3 Technical Survey

Integration with conventional software

A real-time expert system must typically be integrated with conventional real-
time software. The conventional software will performs tasks such as signal pro-
cessing, feature extraction, and application specific /0.

Application-speciﬁc reasoning strategies

An issue which is often overlooked is how application—speciﬁc reasoning strategies,
e.g., a fault diagnosis strategy, should operate in a real-time environment. How
should information that arrives from the process in the middle of a reasoning
chain be handled. This information could perhaps give a better explanation to
the current error symptoms. The situation is analogous to how a human can “wait
and see” before making up his mind. It is also necessary to consider the potential
hazards caused by not acting immediately. In a real-time process environment,
the expert system also has the possibility to increase its amount of knowledge
about the process through active experiments. This could for instance be used
to determine if process components are working properly or not.

3.5.1 Real-time Expert System Shells

This section will contain a overvisw of existing expert system shells aimed at
process control applications. The real-time applications that have been imple-
mented are either written directly in some Al language or implemented in some
tool. Control system manufacturers who wish to provide their systems with Al
capabilities have two directions to go in: to develop an inhouse system or pro-
vide interfaces to third-party expert system shells. The latter approach is taken
by The Foxboro Co. who intend to sell their new Intelligent Automation (1A)

control system serie together with the shell Personal Consultant Plus.

The available real-time shells are either extensions to conventional tools or ded-
icated to real-time operation. The only real examples of the latter type are

PICON and G2.

G2 and PICON

G2 from Gensym Corp. and PICON from Lisp Machines Inc. (LMI) are both
expert system shells aimed at real-time, process industry applications. Gensym
Corporation was founded by the group from LMI who previously had developed
PICON. Therefore, there is a strong resemblance between G2 and PICON. Both
of them are intended to be used on top of a conventional control system and

mainly for operator support. Due to the similarities only G2 will be described
here.

The G2 knowledge-base: G2 represents the current state-of-the-art in real-time
expert system shells. The main parts of G2 are: the knowledge base, a real-
time inference engine, the development environment, a simulator, and optional

3.5 Real-time knowledge-based systems 49

et i i
Operator Logbook 7/18/88 Page 1
#1810 am. Done loading
AL ST b ”
CONT-2 4
V-2
M1
CONT-1
B O =
V-1
4/
»
-
=
REACTOR-DISPLAY FLASHDISPLAY
B T MR e P oty

Runt+ CWRIST nats{a) n-tnit. e 628

Figure 3.8 G2 process schematic

data servers. The knowledge base consists of three different forms of knowledge:
Objects, rules, and dynamic models. Objects are used to represent the different
concepts of the application. Attributes describe the properties of a certain ob-
ject. The attributes may be constants or variables. Object classes with single
inheritance are supported. Objects are represented by icons on a schematic as
in Figure 3.3. Relations between objects are represented by connection objects.
Usually, objects are used to represent the physical components in an application
with the connections representing physical connections such as pipes or wires. It
is however also possible to have objects that represent abstract concepts and con-
nections that represent general relations between objects. Variables are a special
type of objects that represent entities whose values vary over time. Variables
have validity intervals indicating the length of time the value remains valid after
having received a new value. Other variable attributes determine where the vari-
able receives its value from (e.g., the simulator, a formula, or a data server), and
whether a history should be kept for the variable or not. Measurement sensors
are represented by variables.

Rules are used to encapsulate an experts knowledge of what to conclude from
conditions and how to respond to them. All rules have an antecedent that lists
the conditions and a consequent that tells what to conclude and how to respond.
The conditions contains references to the objects and their attributes in a natural
language influenced syntax. The major type of rule is the if - then - rule. G2
supports generic rules that apply to all instances of a certain class.

50 Chapter 3 Technical Survey

Dynamic models are used to simulate the values of variables. The models are in
the form of first-order difference and differential equations.

The G2 real-time inference engine: The real-time inference engine initiates ac-
tivity based on the knowledge contained in the knowledge base, simulated values,
and values received from sensors or other external sources. Apart from backward
and forward chaining, rules can be invoked explicitly in several ways. First, a rule
can be scanned regularly. Second, by a focus statement all rules associated with a
certain focal object or focal class can be invoked. Third, by an invoke statement
all rules belonging to a user defined category, like safety or startup, can be in-
voked. The possibility to associate rules with several focal objects, focal classes,
and categories gives a flexible way of partitioning the rule-base. The scanning of
a few vital rules in combination with focusing of attention is meant to represent
the way human operators monitor a plant. It is also an important way to reduce
the computational burden on the system. Regular scanning of rules and thus
updating of information in combination with variables with time-limited validity
gives a partial solution to the problem of non-monotonic, time-dependent rea-
soning. The inference engine automatically sends out request for sensor variables
that have become unvalid and waits for new values without halting the system.

G2 has a built-in simulator which can provide simulated values for variables.
The simulator is intended to be used both during development for testing the
knowledge base, and in parallel during on-line operation. In the latter case, the
simulator could be used for estimation of signals that are not measured. The
current simulator has however severe limitations. Bach first-order differential
equation is integrated individually with individual and user-defined step-sizes.
This can easily cause problems. The numeric integration algorithm used is a
simple Euler method with constant step-size. Further, the simulator interprets
the simulation equations which is very time-consuming and thus slows down the
system.

The G2 environment: G2 has a nice graphics-based development environment
with windows (called workspaces), popup menus, and mouse interaction. Input of
rules and other textual information is performed through a structured grammar
editor. Facilities for browsing through the knowledge-base exist. The end-user
interface is however still severely under-developed. The facilities that exist are
primitive graphs, meters, and gauges that can be connected to variables in the
application.

The dataservers are the interfaces to either conventional control systems or other
signal sources such as e.g. databases. G2 runs on workstations and the com-
munication with the process is done via Ethernet. A future goal of Gensym is
to provide standard, off-the-shelf interfaces to the major manufacturers’ control
systems. In the mean-time, a generic interface exists which the user can modify.

G2 is implemented in Common Lisp and runs currently on Sun, Dec Vaxstation,

3.5 Real-time knowledge-based systems 51

TI Explorer, Symbolics, and Mac II. For portability reasons, G2 uses their own
window system and object-oriented system. To avoid garbage collection, care
is taken for G2 not to generate any garbage. The current G2 system is still a
beta release and under development. Many features are lacking. Among those
are a proper operator interface, hierarchical objects, program generated objects,
procedures, and explanation facilities. Gensym claims that they are working on
these issues and that they will be available within a year. The procedure concept
of G2 will be based on a Grafcet inspired, graphical, flow-chart representation.

G2 is intended for general real-time applications such as monitoring, diagnosis,
and planning. It must, however, be remembered that G2 in itself does not give
explicit support for any kind of application. G2 is an expert system shell on the
rules-objects-attributes abstraction level. It does not provide any higher-level
generic problem solving tasks.

G2 is currently installed at 20 sites with applications in process control, robotics,
manufacturing, and simulation prototyping. The PICON system has been sold
to around 50 sites with similar applications. One site is SCA in Sundsvall who
are working with the system on the

flistrand pulp plant.

MUSE

MUSE from Cambridge Consultants is a toolkit for the development of medium-
scale applications in the area of real-time, embedded systems where the ability
to deliver systems on inexpensive hardware is important. The origin of MUSE
is a project funded by the Royal Aircraft Establishment, Farnborough, aimed at
delivering real-time knowledge-based solutions to embedded avionics systems.

MUSE consists of an integrated package of languages for knowledge representa-
tion which all share the same set of database and object structures. The central
component of the package is the PopTalk language. PopTalk which is imple-
mented in C is derived from the Pop series of languages and has been extended
to support object-oriented programming. It is a stack-based language that com-
bines a strong list-processing element with a block-structured syntax. On top of
the basic object language, a Frame system is built that includes multiple inheri-
tance and demons.

A major part of MUSE is a set of architectural support facilities that allow a
complex application to be split-up into modules. The modules includes knowledge
sources and notice boards. A knowledge source contains one or more rule sets
and a local storage to hold the data it is reasoning with. A notice board is a
special case of knowledge source that only is used for storing data. The knowledge
sources allow architectures that range from a single knowledge source containing
a single rule set, at one extreme, to a multi-knowledge source system with many
notice boards holding data at different levels, i.e. a blackboard architecture at the
other extreme. The control of the knowledge sources is handled by the agenda.

52 Chapter 3 Technical Survey

The agenda is an ordered list of things to execute, typically but not necessarily
knowledge sources. The system allows interrupts among the knowledge sources.
When the agenda is empty, a scavenger function spreads notifications of changes
around to the knowledge sources. This may then cause knowledge sources to be
scheduled to run anew.

MUSE contains two rule-based languages that both operate on the same data
structures, namely MUSE objects. The FPS system is a forward chaining pro-
duction rule system based on a modification of the RETE algorithm. The rules
may contain arbitrary PopTalk code both in the condition parts and in the ac-
tions. The BCS system is Prolog-type backward chaining rule system that sup-
ports depth-first backtracking, unification of logical variables on standard MUSE
objects, and flow control via ‘cut’ and ‘fail’.

MUSE is interfaced to the external world through data channels. The physical
implementation of the data channels depends on the underlying hardware and
software. For example, on a UNIX system the data channels are UNIX sockets.
The data channels provide filter functions that only allow through the particular
pieces of information that the applications decide are needed. These filters are
user-definable and on the lowest level implemented in C.

MUSE is currently running on Sun machines. The system has however the pos-
sibility to download applications on simpler board computers for use in an em-
bedded environment.

Personal Consultant Online

Personal Consultant (PC) Online is an add-on package that extends PC Plus
from Texas Instruments and gives it certain real-time facilities.

PC Plus is a rule-based shell in the Emycin tradition. The basic way of represent-
ing facts is in the form of parameters. Parameters correspond to variables that
describe different aspects of objects and problems in an application. Parameters
are grouped into frames, which are used to structure and control the problem
solving. The frame concept of PC Plus should not be confused with the use of
frames in Frame systems. The rules in PC Plus are standard if-then-rules with-
out any pattern matching capability. Rules and parameters may have certainty
factors. Backward chaining is the major inferencing strategy but limited forward
chaining is available in the form of antecedent rules.

PC Online consists primarily of functions that provide access to data external
to the knowledge base for use as parameter values and for frame instantiation
control. It adds the ability for a consultation to continue without interrupts for
user interaction, alerting an operator only when necessary; and in the form of
The PC Online Scheduler and the Knowledge Services includes the examination
of time dependencies into PC Plus.

3.5 Real-time knowledge-based systems 53

The PC Online Scheduler consists of a schedule list where each entry is a direc-
tive to instantiate a specified frame or subframe at a specified time. The entries
may not have priorities and the execution of a certain frame can not be inter-
rupted. The Knowledge Services provides the following four types of services:
Storage, Trend Analysis, Time Stamps, and Counters. The Storage service per-
mits a more controlled form of storage management than what is provided by the
parameters. The Trend Analysis service manages statistical operations on time
series of numerical data. The information that can be retrieved are mean value,
dispersion, rate of change, past values, and predicted values. The Time stamps
service stores time values associated with data used in the consultation. Finally,
the Counter service supports simple counting functions.

Nexpert Object

Nexpert Object from Neuron Data Inc. Palo Alto CA is a hybrid system that
combines object-oriented and rule-based representation. The object-oriented sys-
tem supports multiple inheritance and demons. The rule system integrates for-
ward and backward chaining using a single rule format and rule-based modifica-
tion of the inferencing. The system also supports non-monotonic truth mainte-
nance.

The reason why Nexpert Object can be seen as a real-time system is that it
supports interfaces to external programs. The right-hand-side of the rules can
call and run external functions or programs. Background processes can launch
the inference engine either by suggesting one or more hypothesis to be verified
or by volunteering data and thereby start the forward chaining, or modify the
system’s focus of attention.

The possibility to access external programs is nothing unique to Nexpert Object.
Many systems provide similar constructs and therefore, at least in principle, have
the possibility to be used for on-line, real-time operation.

Umecorp’s Expert Controller

The Expert Controller from Umecorp, Larkspur CA, is a basically rule-based
system delivered on a CMOS parallel processing microcomputer. The system is
intended for diagnostics, advisory and real-time supervisory and adaptive control.
The system is claimed to have a inferencing speed of 8000 rules/sec and to be the
fastest expert system product available for many types of real-time automation
applications. The system is claimed to contain object-orientation, blackboards,
demons, meta-control, backward and forward chaining, hypothetical reasoning,
and uncertainty management. The system is compatible with a wide range of
conventional control systems. Umecorp’s system have been sold to GM.

54 Chapter 3 Technical Survey

ONSPEC Superintendent

ONSPEC Superintendent from Heuristics Inc., Sacramento CA, is a rule-based
expert system in the ONSPEC product family that also contains control soft-
ware, I/O interfaces, statistical quality control software, automatic PID controller
tuning software, ladder logic, modelling and simulation kit, and historical data
analyzer. ONSPEC runs on IBM AT and PS/2 and compatibles. The system
consists of rules which are entered interactively in a knowledge base builder that
resembles a spreadsheet. The system is modular and each module may contain
a rule set, procedural actions, calculation blocks, and menus.

3.5.2 Discussion

Real-time expert system applications contains a set of very complex problems.
The solution to these problems influence the architecture and functions of the
expert system. This is not always understood. Many projects take conventional
expert system shells intended for consultative off-line applications and tries to
use them for on-line purposes. That is not the correct approach.

The four systems described constitute examples of real-time expert system shells
at various degrees of refinement. Neither of them fulfills all of the demands pre-
viously stated on real-time expert systems. The systems that come closest to it
and represent the current state-of-the-art are PICON and G2. Not even these
systems, however, solve the problem of reasoning under time constraints. In G2
and Picon, the real-time requirements are reflected in the inference engine. In-
dividual rules can have associated scanning intervals and each data item has a
validity interval. The MUSE system is an example were conventional, modular-
ized rule-sets are embedded in an environment where the real-time aspects are
taken care of by a separate scheduler. A similar approach has been taken by
Arzén (1987), where a real-time, blackboard based expert system shell has been
jmplemented. Personal Consultant Online and Nexpert Object finally represent
conventional expert system shells which are extended to permit limited real-time
behavior.

The implementation languages for these systems are different. G2 and PICON
are both written in LISP. The motivation for this is based on development issues.
The interactive, symbolical nature of LISP, and the recognized, high productiv-
ity of an experienced LISP programmer makes LISP an good implementation
language for the software development companies. The user, on the other hand,
is not allowed to write any LISP code. One reason for this is the need to avoid
garbage collection. Muse is written in PopTalk which in turn is written in C.
The Poptalk code is compiled to an intermediary format which is compiled. Per-
sonal Consultant exists in versions written both in Scheme, a Lisp dialect, and
(. Finally, Nexpert Object is written in C. The wide range of languages used in
commercial products indicate that there is no straight-forward answer to which
language is best suited for real-time expert system applications.

3.5 Real-time knowledge-based systems 55

The products from Umecorp and Heuristics Inc. are difficult to judge. The
specifications of the systems are in very broad terms.

3.6 Conventional technology

The previous sections have given a technical overview of knowledge-based sys-
tems. One of the goal of this project is the integration of knowledge-based tech-
niques with conventional techniques. Therefore it is important to assess the tech-
nical development within conventional systems. As this task is even wider than
the previous one, a complete survey is impossible. The topics that are discussed
here should rather be considered as indications of areas where the technolog-
ical development will be of importance for the integration of knowledge-based
techniques with conventional control systems.

3.6.1 Process and Control Systems Design

Tools for process and control system design are an important area where much
development is being done with conventional techniques. The difference between
the development directions is often large for different types of industries. For
example, the situation in the telecommunications industry is very different from
the process industry.

CAD, CAM, and CIM

An important area with applications mainly in the manufacturing industry and
the electronic industry is CAD packages. Examples are systems for mechanical
design and electronical design. These systems are undergoing a development
from simple drawing tools towards systems integrated with the overall production
system. With the trend towards CAM and CIM, the development of integrated
design tools with high functionality will increase. The development of, e.g.,
systems that combine the design of mechanical components with planning of the
manufacturing operations that are needed is a necessary component of CIM.

The use of expert systems as front-ends to CAD packages is an area where much
work is being done. Examples are CAD packages for electronic systems and VLSI
design.

Control system design

Interactive computer packages for identification, analysis, design, and simulation
of control systems is a large area where much research is, and has been, done
and where commercial products such as Pro-Matlab, Ctrl-C, and Matrix-X exist.

56 Chapter 3 Technical Survey

All these systems are interactive, command driven programs for matrix manip-
ulations where the user easily can add new functions to the system. Toolboxes
with special functions for identification, control design etc. can be added to
Pro-Matlab.

Many simulation packages exist both for continuous and discrete simulation. Sim-
non from the Department of Automatic Control in Lund is a simulator for non-
linear systems on state space forms. ACSL is another system of the same type.
Numerous systems exist for discrete event simulation.

Several research programmes are currently running that investigate the next
generation of Computer Aided Control Engineering (CACE) programmes. The
CACE project is a Swedish national project which is funded by the Swedish
National Board for Technical Development (STU) and which is being carried
out at the Department of Automatic Control in Lund. The aim of the project
is to investigate how new hardware and software technology will influence the
next generation of CACE software. Within the project, several feasibility studies
have performed concerning such topics as the use of expert systems as intelli-
gent frontends, graphical based man-machine interaction, and symbolic formula
manipulation. The project is now concentrating on the development of tools for
modelling and simulation. The project is based on a hierarchical, object-oriented
model of the process that allows multiple representations and reuse of models.
The models are expressed in the form of symbolic equations which will be used to
generate efficient simulation code, linearize non-linear systems, generate control
code etc. A related research programme is the British Ecstasy project.

The work on CACE tools very seldom has connections to current distributed con-
trol systems. The development there is primarily focussed on graphical front-ends
for control system configuration. Graphical function block editors are emerging
for specifying the control system components and their connections. These sys-
tem typically allow for function block classes that can be instantiated and con-
nected with mouse interaction in a Macintosh style. Function blocks are mainly
used to represent continuous control functions. For binary logic other graphical
representations exist. One example is relay ladder diagrams. Ladder diagrams
and function blocks are good for combinational logic control where outputs or
actions are directly dependent on the states of inputs or conditions. For sequen-
tial control problems where the control actions are sequential or time dependent,
relay ladder diagram and function blocks can be cumbersome, difficult to design
and to troubleshoot.

Grafcet

Grafcet, also known as Sequential Function Chart, is a graphic method for design-
ing and representing sequential logic control applications. Grafcet is originally a
French national standard that has been adopted as a IEC standard.

Grafcet charts consist of steps, actions, transitions, and directed links. Individ-

3.6 Conventional technology 57

ual sequential steps are represented by numbered squares. The initial step is
represented by a square drawn with double lines. Actions associated with the
steps are described inside one or more rectangles to the right of each step. Tran-
sitions from one step to the next one are represented by short horizontal lines.
Conditions associated with transitions are written to the right of them.

The sequential operation of the control system is indicated by the sequential
progression of the active steps. Every step is followed by a transition and every
transition is followed by a step. Actions associated with each step are only active
while the step is active. Provision for parallel, simultaneous sequences is an
important feature of Grafcet. Another one is the possibility for hierarchical flow
charts in the form of Macro-steps.

Grafcet can be used for many purposes. One is for specification and design. Sev-
eral commercial systems use Grafcet like languages as a graphical programming
language which internally is compiled into PLC code. Grafcet also allows for
formal methods for validation and analysis. An example of this is automatic
detection of deadlocks. A flowchart representation has also interesting possibili-
ties as an operator interface for monitoring and troubleshooting. Highlighting of
active step and transition conditions is one possibility for thi~ (Lloyd, 1985).

Grafcet has been included in Telemecanique’s PLC serie. Siemens uses simi-
lar ideas in their systems. APT (for Applications Productivity Tool) is part of
Texas Instruments’s Tlstar control system. The APT system provides a Grafcet
inspired, graphical language called SFC (Sequential Function Chart) for sequen-
tial control problems and a graphical function block language, CFC (Continuous
Function Charts) for continuous control problems (Jeffreys, 1987). The APT is
also claimed to contain expert system knowledge bases that automatically can
generate parts of the control logic. Savoir, Oakland CA, has developed Flexis, a
system for design of cell automation control systems that combine Grafcet and
object-oriented programming (Morris, 1987). The Flexis system also includes an
interface to MAP.

Specification languages

The origin of Grafcet is the Petri net theory (Peterson, 1981) that dates from
the beginning of the 1960s. The basic building blocks of Petri nets are places
and transitions. The data flow in the net is symbolized by tokens that marks
whether a place is active or not. In some networks multiple tokens are allowed
in the same step. The distribution of tokens in a network is called a marking.

Petri nets can be used to model parallelism, synchronization, rendez-vous, and
resource sharing. Several specializations and generalizations to Petri nets have
been developed. State machines allow only one input place and one output place
to be connected to each transition. Colored Petri nets allow different colors or
classes of tokens. Petri nets with inhibitor allow testing if place is free of tokens.
Timed Petri nets associates firing durations to each transition.

58 Chapter 3 Technical Survey

Much of the current high interest in network theory among the control community
is due to its graphical features. Developments in graphical hardware and software
have generated a need for graphical representation languages. Petri nets have
long been used in telecommunication systems. In telecommunication systems,
the situation is somewhat different than in the process industry with respect
to the nature of the automation systems used. The automation systems are
based either directly on standard high-level languages such as Ada or on special
purpose high-level languages dedicated to telecommunication applications. One
such example is PLEX from Ericsson.

The dramatical increase in the number and quality of functions performed by the
new computer controlled telecommunication systems has made formal specifica-
tion tools or FDT’s (Formal Description Technique) necessary. General require-
ments on specification languages include sufficient power of expression, a formal
definition, abstraction mechanisms, and means for structuring. Three examples
of such specification languages are SDL, LOTOS, and Estelle. A comparison
between SDL, LOTOS and Estelle can be found in (Gelli, 1987). Other specifi-
cation languages which emphasize abstract data type definition formalisms are

CLEAR (Burstall, 1980) and OBJ (Goguen et al, 1985).

SDL

SDL (Specification and Description Language) is a language for the specifica-
tion and description of systems. It has been developed and standardized by
CCITT (The International Telegraph and Telephone Consultative Committee).
Although originally developed for the telecommunication field, SDL is applicable
for general applications involving real time, communicating, interactive systems.
It has been designed for the specification and description of the behavior of such
systems. It is also intended for the description of the internal structure of the
system. SDL covers different levels of abstraction from a broad overview down to
detailed design issues. It is not intended as an implementation language. Instead,
translation tools to language like Ada have been developed.

The behavior of a system is described by the behavior of the processes in the
system. A process is an extended finite state machine that works autonomously
and in parallel with other processes. The communication between processes is
asynchronous in the form of discrete messages called signals. Processes are con-
tained in blocks that are connected with each other by channels. A hierarchical
decomposition of blocks into subblocks and channels is allowed.

SDL provides a formalism for Abstract Data Type definition where an abstract
data type is described in terms of its set of values, a set of operations on these
values, and a set of axioms defining the operations. The primitive concepts of SDL
are defined by an abstract syntax. Based on the abstract syntax, SDL contains
one graphical representation, SDL/GR, and one textual phrase representation,

SDL/PR.

3.6 Conventional technology 59

LOTOS

LOTOS (Language of Temporal Ordering Specification) is a formal description
technique that has been developed for the formal specification of open distributed
systems, specifically those related to the Open Systems Interconnection (OSI)
standards. The basic idea behind LOTOS is that systems can be specified by
defining the temporal relations between the interactions that constitute the ex-
ternally observable behavior of the system. LOTOS is based on process algebraic
methods inspired by Milner’s work, (1980), on CCS (Calculus of Communicating
Systems) and Hoare’s work, (1985), on CSP (Communicating Sequential Pro-
cesses). As SDL, LOTOS contains a formalism for defining abstract data types.

Processes are described by ordering the units of their observable behavior. These
units, called events, are atomic instances of synchronized interaction between
two or more processes. LOTOS expressions that define the ordering of events are
called behavior expressions. Behavior expressions are combined to new behavior
expressions by the use of operators. Another feature of LOTOS are transforma-
tion rules that transform one behavior expression to others that express the same
observable behavior.

Several tools for syntax-directed editing, syntax checking, semantics analysis,
graphical interface etc. are being developed for LOTOS.

Estelle

Estelle is built on top of Pascal and therefore very close to an implementation
language. The goal of Estelle is to raise Pascal up to a specification language for
telecommunications systems. The power of Estelle is its compatibility with later
stages of implementation, and the development environment adapted from the
Pascal environment. ~

3.6.2 Control system operation

An important development field concerning control systems operation is infor-
mation presentation systems. The development of enhanced control algorithms
and statistical process control are other important fields.

Information presentation systems

Modern control systems are in general good at presenting information at the
signal level. Various presentations, e.g., trend curves or bar graphs, can be chosen
and dynamically updated process schematics are standard. A good example of
state-of-the-art systems is SattGraph 1000 from SattControl.

SattGraph 1000: Sattgraph 1000 is a modern operator interface built upon com-
puter graphics techniques such as high-resolution displays, windows, menus, an-
imation, and mouse interaction. A hierarchical window concept combined with

60 Chapter 3 Technical Survey

information zooming allow the operator to move around in the process schematic
at various levels of detail. A Macintosh style graphical editor is used for creating
graphical objects and drawing process diagrams. The coordinates and colors of
graphical objects can be connected to process variables and thus easily provide
for animation.

Graphics software and hardware: The development in computer graphics is cur-
rently very fast. Graphics standards is an important issue. There is today only
one generally accepted graphics standard: GKS (Enderle et al, 1984; Hopgood
et al, 1983) adopted by ISO. An extended and improved standard, PHIGS (SIS,
1086; Shuey et al, 1986), supported strongly by IBM is coming. GKS is rather
low-level and today’s implementations are unacceptably slow. PHIGS has high-
level features such as hierarchical structures for graphics.

An important part of a graphics system is the window system. Here the standard
situation is very difficult. Several systems exist on the market, e.g., Macintosh,
SunViews, X-Windows etc. It seems as if X-Windows will become the de facto
standard.

The development in graphics hardware is even more difficult to judge. The devel-
opment goes towards very high resolution display monitors combined with spe-
cial purpose graphics processors. One of the leading manufacturers of graphics
workstations is Silicon Graphics. Their IRIS 4D/70 superworkstation combines
a RISC processor with a VLSI based graphics subsystem that handles object
rotation, translation and scaling, six-plane clipping, and scaling to screen coordi-
nates at a rate of 149.000 3D coordinates per second. This is displayed on 1280
x 1024 high resolution display. Texas Instr. ‘and DEC are other manufacturers
of graphics processors.

Statistical Process Control

Much attention is today being paid to what is called Statistical Process Con-
trol (SPC) and the integration of this into distributed control systems. SPC
stands for the use of statistical analysis tools and techniques such as display of
mean values and standard deviations, correlation methods, spectral analysis, hy-
pothesis testing etc. The main use of the technique is to increase the operator
understanding of the process and dependencies among its variables.

Adaptive controllers

Improvements of conventional controllers and specially adaptive controllers are
continuing. Most manufacturers have some kind of adaptive controller in their
product range either as a stand-alone controller or as a part of a distributed con-
trol system. The most advanced standard adaptive controllers of today probably
Firstloop from First Control Systems AB and Novatune from ABB. Novatune

8.6 Conventional technology 61

uses a minimum variance control strategy. Firstloop is based on pole-placement
and can handle varying time delays.

3.6.3 Other relevant techniques

This section contains an overview of other hardware and software fields where
the development will be important for the next generation of control systems.

Hypertext

The most general knowledge representation is by natural language sentences or
text. From an expert system approach, text is far too less formalized to be
useful. For other purposes, such as information storage and retrieval, efficient
representation of textual information is an important issue.

The term ‘hypertext’ has been used quite loosely during the past 20 years for
many different collections of features (Conklin, 1987). Another name for the topic
is nonlinear tezt. The information stored in a file system hierarchy is linear. In
many cases this organization is sufficient but for more and more applications a
linear organization is inadequate. Techniques that extend the traditional notion
of “flat” text files by allowing more complex organizations of the material have
emerged. Mechanisms are being devised that allow direct machine-supported
links from one textual chunk to another; new interactive interface techniques al-
low the user to directly interact with these chunks and to establish new relation-
ships between them. With the new videodisc technology the concept hypermedia
has been defined in which the chunks linked together can include graphics, time
series signals, digitized speech, audio recordings, pictures, and animation.

Several implementations of Hypertext ideas have been done. The NoteCards
system from Xerox Parc is one well-known implementation (Halasz et al, 1987).
The HyperCard system from Apple is now being delivered together with Mac-
intosh II. Symbolics’ Document Examiner is another example. Here, the entire
documentation of the Symbolics 3600 Lispmachines is stored on-line and easily
accessible to the user.

Hypertext ideas are probably also very useful in a process control context. They
could provide the basis for knowledge transfer between the different users of the
system. Provided with efficient browsing tools and means for the user to enter
different kinds of information in a structured way, the technique could fulfill many
of the desired goals.

Micro-processors

New generations of micro-processors are developed at an ever increasing speed.
The competition between Intel, Motorola, National and similar companies is high
and results in new processors such as the Intel 80486 and the Motorola 68040. The

62 Chapter 3 Technical Survey

high speed and large virtual memory of these systems make them a reasonable
alternative also for Al applications.

In a longer perspective the RISC (Reduced Instruction Set Computer) processors
are emerging. An early example of this is the IBM RT. Sun has developed the
SPARC architecture for its Sun-4 series of workstations. This architecture is
now being adopted by other manufacturers as well. The SPARC architecture has
been designed to support the C programming language and UNIX, numerical
applications, and Al and expert system applications using Lisp and Prolog.

Computer Memory

Knowledge-based programming techniques are ill-reputed for requiring much pri-
mary and secondary storage. With technology progress this is becoming less and
less of a problem. Primary memory 4 Mb DRAM chips are already here and 16
Mb chips are expected within a few years. For secondary storage, the optical
disk technology is emerging. Erasable magneto-optic disks are expected that al-
low the storage of 600 Mbytes on a 5-1/4 inch disk. This is about six times as
much per square inch as the most advanced Winchester disks.

Database systems

Database techniques are of growing importance in modern control systems and
will be an essential part of a future knowledge-based control system. Relational
databases begin to include object-oriented representation. They are also extended
to allow on-line processing. SQL is emerging as a standard for database interfaces.
Special purpose database architectures are also developed.

Knowledge Based System
Applications in Process Control

This chapter gives an overview of knowledge-based applications in process control.
Many applications have been proposed and implemented. In Section 4.1, a model
of the tasks, tools, and roles involved in process control is presented. The rest
of the chapter identifies different knowledge-based tasks and tools. Definitions
and presentations of the problems are given within each task together with an
identification of possible knowledge-based tools. Examples and approaches from
implemented projects are also given for each task.

4.1 A Model of the Tasks, Tools and Roles in Process Con-
trol

One way to model a process control domain is to look at it as a collection of tasks,
tools and roles, interacting with each other. The lowest level contains tasks to
be performed in order to assure proper function of the controlled process. To
handle these tasks in an efficient way, different tools are built. On the highest
level are roles interacting with the tools trying to solve the tasks. Some roles
could be identified as single persons, but other roles could be carried out by
a group of persons or a whole organization. A single person could also have
different roles depending on what he is doing with the process. An operator
could e.g. sometimes work with maintenance. He is then acting in a different
role than the operator role and perhaps working with other tools. Tools could

63

64 Chapter { Knowledge Based System Applications in Process Control

Tasks Tools Roles

(O

L J—C5

Figure 4.1 The tasks, tools, and roles model

either be autonomous or assist the different user roles. The same tool may be
used to fulfill different tasks and to assist different user roles. Figure 4.1 shows
the decomposition into tasks, tools, and roles

The interface between the roles and the tools in Figure 4.1 is an area not to for-
get. The man-machine interface is much more than just the graphics presented
to the users. The interface must reflect the task the user is working with and
make it possible for the user to focus on the problems rather than the data he is
working with. One may also think of knowledge-based components in this inter-
face. The system must be able to adapt to different users with different skill and
experience. This could mean extensive help to some and short recommendations
to other users. A man-machine interface capable of this must contain some sort
of user modelling, where the behaviour of different users is taken into account.

Knowledge based systems is one way to implement such intelligent man-machine
interfaces.

The different tasks within process control, discussed in this chapter are divided
into the following groups.

e Design

— Process and control system design
e Operation

— Monitoring

— Control

4.1 A Model of the Tasks, Tools and Roles in Process Control 65

— Planning
e Maintenance
— Preventive maintenance

— Repair

This decomposition matches the three steps in the life-cycle of a system defined
in Chapter 2 and shown in Figure 2.1.

Complexity criteria

Implemented knowledge-based systems within the different tasks can also be
described according to their scope and nature. This description is also a measure
of the complexity of the tasks. The following three criteria are used.

Single loop — plant-wide
Off-line operation — on-line operation

Operator assistance — closed loop operation

The cases in each pair above should be regarded as extreme cases and an actual
system usually falls somewhere in between. The first criterion states if the system
is intended for the global, plant-wide level or if it is used on the single loop level.
The second criterion states if the system is used in off-line mode, e.g., in an
analysis or design phase, or if it is used for on-line operation. The last criterion
tells whether the system is used mainly for information and advice presentation
to the operator or if itself actually carries out the control actions. This criterion
is only applicable for on-line systems. The technically most difficult applications
are those that are plant-wide, on-line, and used in closed loop.

4.2 Design

Tasks within this area are slightly different from other tasks. They are not
connected directly to the operational environment. Knowledge about the con-
figuration of the process and different functions implemented in the system are
generated by the different design groups. This knowledge is used by many users
and tools working with the process after delivery. One way to look at the design
tasks is to picture them as knowledge sources, distributing knowledge to users
and tools throughout the process.

66 Chapter 4 Knowledge Based System Applications in Process Control

4.2.1 Process and control design

Problem description

As described in Chapter 2, design knowledge is not used as efficient as possible in
the process control systems of today. Knowledge is often stored only as separate
documents and files which are difficult to access for the persons in need of the
knowledge.

Design knowledge and documentation support tools

The use of knowledge based systems for capturing design knowledge and sup-
porting the system documentation are important in order to store and distribute
the design knowledge to other users groups. These tools could make it possible
for the designer to produce the system documentation in a formalized way. A
knowledge based system supporting designers must be able to store and handle a
variety of both quantitative and qualitative process knowledge such as e.g., design
decisions, drawings of the process, and descriptions of process function. All this
knowledge could be represented using several knowledge representation methods
like semantic networks, scripts and heuristics. Transformations and refinement
of this knowledge may be necessary before presenting it to, e.g., operators and
maintenance staff. Powerful browsing and retrieval functions must be included
in the tools.

These tools are not limited to the design phase. They will be used during all
phases of a process and by many different user groups.

Design assistant tools

Design assistant tools are important both in process design and control system
design. The goal is to capture and encode expert designers’ knowledge and expe-
rience and make it available to other designers. The system could automatically
generate parts of a design from specifications. The systems could also be used to
give critique on design suggestion provided by the designer.

A special case of control design is control system configuration. Here, a design
tool could assist in the configuration and installation of the control system.
Approaches and examples

The majority of the work that has been done concerns knowledge-based design
assistants. A knowledge-based system for process design in the case of factory
design is described in Fisher (1986).

4.2 Design 67

For control design at the plant-wide level, expert systems have been proposed
for selecting appropriate input-output pairings given process configuration and
control specifications (Niida and Umeda, 1986).

The University of Maryland in collaboration with du Pont has developed DI-
CODE, an expert system for distillation control design, (Birky et al, 1988). DI-
CODE is implemented in the KES shell, primarily using backward-chaining rules.
The underlying knowledge model is based on the Goal tree — Success tree concept
borrowed from Modarres, which will be described later. The design knowledge is
extracted from P. Buckley at du Pont. The system uses a standard question and
answer dialogue with graphical presentation of the final control system.

The Foxboro Co. has a similar system for distillation control design based on
the experience of Foxboro’s chief application consultant, Greg Shinskey (1986).
Foxboro also has the Batch Reactor Consultant for design of different types of
batch reactors (Blickley, 1987). The system consists of a conventional question
and answer type of expert system together with graphical presentation and sim-
ulation facilities. Both Foxboro’s systems are used for customer support on a
consultative basis.

Expert systems for control design also apply to the design of single loop con-
trollers. The Tunex system is an internal du Pont system for parameter tuning
of PID controllers for various types of loops. The system is implemented in
Personal Consultant Plus.

Another use of expert systems is as an intelligent interface to existing computer
aided control design packages. The aim is to capture knowledge about differ-
ent control design techniques such as SISO lead/lag compensation (James et al,
1985), multivariable design using linear quadratic theory (Birdwell et al, 1985),
multivariable frequency domain design (Pang and McFarlane, 1987), state feed-
back and estimation (Trankle et al, 1986). The degree of automatization in design
varies between the systems. In Larsson and Persson (1987), the expert system
plays the role of an intelligent help system (THS) for system identification. The
help system spies on the user in order to find out his goal and gives guidance
about which commands that are relevant to reach this goal. Scripts are used to
represent meaningful command sequences.

Configuration of computer systems is a well-defined expert system application
with examples such as DEC’s R1-XCON system. Honeywell Inc’s Customer Ser-
vice Division has developed a configuration system called the Intelligent Software
Configurator to assist field personnel in installing DPS 6 computers more rapidly.
The Foxboro company has similar plans for its IA serie of control systems.

68 Chapter 4 Knowledge Based System Applications in Process Control

4.3 Operation

The second phase in the system life-cycle, shown in figure 2.1, is operation. This
phase includes monitoring, control and planning.

4.3.1 Monitoring

Problem Description

To utilize the process in an optimal way, it is necessary to overview all process
data available and come to fast decisions on which control actions to take. These
decisions are based on real-time data collected by the process control system.
Process alarms and failure situations must be handled fast to keep the quality at
an acceptable level. In order to optimize the quality, a global view of the process
and centralized decision making are crucial factors. To perform the right control
actions, the control engineer is forced to search through and analyse a multitude
of information. These tasks are becoming more and more difficult. Processes
have increased in complexity. For example, future oil platform control rooms
are being planned that will make available up to 20.000 signals for just two or
three operators (Sachs et al, 1986). Processes are also dependent on automatic
control systems to a higher degree than before. Much effort has been put on
gathering and displaying process information, while very little has been done to
aid operators in better understanding the overall process state.

Operators, engineers and others responsible for process operation must be able
to focus on problem solving rather than searching through a large amount of
process data in order to find the causes of alarm situations or quality losses.

A knowledge based system with knowledge of the process (e.g. configuration,
optimization strategies and heuristics), could handle failure and alarm situations
and determine the nature of the problems. It could also detect changing pat-
terns in process data and produce early warnings, avoid serious failures and loss
of quality. The system could either invoke automatic control actions or give
suggestions to the operators.

Intelligent monitoring tools

An intelligent monitoring tool is a possible knowledge based system, dealing with
real-time data. This tool could support the user choosing the right information
to get a good overview of the process status. The user could tell what he wants
to know or what he wants to focus on and a knowledge based tool could collect
relevant information to the operator.

These monitoring systems must contain knowledge of how the process is designed
and knowledge of how to optimize the quality. The users of these tools are the
operators responsible for safe operation of the process.

4.8 Operation 69

Intelligent alarm handling tools

Alarm handling is an area in process control where knowledge based systems
have been applied with good results. The alarms generated in a process which
are presented to the operators are often on a low descriptive level, e.g., of the type
too low or too high, and only give rudimentary information about the problem.
A primary alarm is often followed by secondary alarms which obscure the cause
of the original alarm. Therefore, the alarms must be analysed before the real
problem can be revealed. The task of analysing the causes of alarms requires
knowledge about configuration and function of the process.

In the telecommunication domain, serious cable failures could cause many alarms
to be sent to the operator. A situation like this where the operator is working
under time pressure is especially difficult to manage. A knowledge based system
could help the operator in finding the cause of the alarms and give suggestions
how to avoid too lengthy service losses. The system could, e.g., give suggestions
on alternative routing possibilities and how to manage different faults.

There are several examples of knowledge-based systems for alarm handling. Two
different approaches exist. One approach is to use low level alarms from the
process and analyse them to find the cause of the problem. The other approach
uses measurements from the process and produces descriptive alarms based on
facts about how the process behaves in different situations. This approach makes
it possible to produce early warnings of evolving faults. A typical alarm system
contains rules which describe causal relations between measurements or low level
alarms and their possible causes, and causal relations between different alarms.

Condition monitoring tools

A natural extension to a monitoring system is the ability to detect error situ-
ations before they occur. This type of prediction is done by the operator by
looking at trend curves. A condition monitoring tool could be seen as an on-line
diagnosis system, monitoring the process in order to reveal deviations from nor-
mal operation. Typical applications are finding worn-out components, changes
in external conditions, etc.

Diagnosis tools

Diagnostic tools could be used to tackle problems like intermittent failures and
failures not causing alarms. The systems could be used as an on-line support tool
for trouble shooting. It must contain basic design knowledge about the process
and heuristic knowledge from skilled operators and maintenance technicians. A
diagnosis system is more focussed on interaction with the user than an alarm han-
dling system. The knowledge and experience of both the user and the knowledge
based system are combined to be able to deal with difficult problems.

70 Chapter { Knowledge Based System Applications in Process Control

Memory-based monitoring and diagnosis tools

Modern control systems are strong on measuring process variables and storing
large amounts of data cheaply and efficiently. It is however difficult for the pro-
cess engineers to make use of this vast amount of raw data. Many multivariable
relationships cannot directly be seen by visually inspecting the raw data. System
cultivation or hypothesis feedback modelling (Moore, 1986) is an emerging re-
search area that makes use of reduced precision computation and concepts from
algebra to extract process attributes relevant to hypotheses of system operation,
and inference algorithms that can produce tests on process attributes to conclude
that a specific hypothesis is correct.

As data storage and retrieval techniques are improved, the possibility to make
further use of the control systems historical databases increases. One possibility
could be to store normal and unnormal operating conditions that have occurred
and to make use of them to guide the operators in prediction of the system state,
recognizing error situations that have occurred before, and to give suggestions
on control actions that may improve the situation.

Approaches and examples

Monitoring, diagnosis, and alarm handling are perhaps the most well-known ex-

pert system applications in process control. A large amount of applications exist
of which several have been fielded.

The expert system is usually used on top of a conventional control system. The
applications are typically plant-wide and the expert system is used more or less
on-line. Usually the expert system is used as an operator assistant.

First generation diagnosis systems

Diagnosis systems may operate from different principles. The first generation of
diagnosis systems are based on the operators heuristic knowledge about faults
that usually occur and what causes them. This knowledge is usually represented
as rules. Another name for this kind of knowledge is compiled knowledge where
compiled refers to the compilation of past experiences into rules.

One motivation for the approach is the widely recognized observation that prod-
uct quality and plant operation varies between different operator shifts. Certain
operators are more skilled in running the process. By capturing their knowledge,
spreading it out, and providing it on a 24-hour basis, productivity may increase.

The drawback with the approach is that the knowledge is process specific and

easily becomes out of date when the process is updated. It is also impossible to .

4.8 Operation 71

detect unanticipated faults for which the operators have no solutions. An advan-
tage which the approach is that is based on compiled knowledge and therefore
more efficient than deep, generic methods.

Second generation diagnosis systems

The second generation of diagnosis systems are based on deep-level or first-
principles knowledge. Deep-level knowledge stands for knowledge that is generic
and model-based. The knowledge can be represented in various ways. Possible
models are causal models, local fault models, etc. The first generation diagnosis
systems try to represent heuristic knowledge of the faults that might occur in
the plant and their causes. Deep knowledge systems instead model the correct,
intended behavior of the plant. During diagnosis, measurements from the plants
are compared against the plant model. Mismatches between the model and the
measurements are indications to faults.

The advantage with this approach is that the diagnosis system is generic and that
it, at least in theory, can detect all possible faults in a process. The drawback
is that evaluation of deep-model knowledge is slow compared to using compiled
knowledge.

Deep diagnosis systems are probably the largest research area in process con-
trol oriented expert systems. Unfortunately, there is no universally agreed upon
formalism for how knowledge should be represented.

Two different approaches exist. One is based on a functional decomposition of
the process and the other is based on a structural decomposition. A structural
decomposition divides the plant into subsystems on the basis of spatial relation-
ships or based on subsystems that can naturally be decoupled. A functional
decomposition divides the plants into subsystems depending on functionality.
Since a single equipment unit can have more than one functional task it can be
assigned to more than one subsystem. Often a sharp distinction cannot be made
between functional and structural decompositions. The functional approach is,
however, claimed to be more efficient.

The deep knowledge approach and the heuristic approach complement each other.
The experiential, heuristic knowledge cannot be excluded. It is however unwise
to depend solely on heuristic knowledge.

MODEX2: MODEX2 is a system developed by Venkatasubramanian (Venkata-
subramanian and Rich, 1987) at Columbia University. The system integrates
compiled knowledge with deep-level knowledge in a two-tier architecture. The
deep-level knowledge used falls into four categories: constraints derived from
material and energy balances, confluence equations representing the qualitative
influence of one variable on another variable, a library of local fault models of
different process units, and causal models of process units. The decomposition

72 Chapter 4 Knowledge Based System Applications in Process Control

Whole Ends
T Goals
Functions
Components —
Means Parts

Figure 4.2 MFM abstraction relations

used is mainly structural. When diagnosing a process upset, the system starts
by looking for heuristics concerning this symptom. If none is found, the system
starts a deep level diagnosis. Whenever a new signal symptom is evaluated, the
system start by looking for heuristics. The heuristic knowledge can be viewed as
shortcuts through the search space that speeds up execution. Work is also per-
formed investigating automated learning of heuristics (Rich and Venkatasubra-
manian, 1987). MODEX2 is implemented with a combination of object-oriented
programming and rules.

Maultilevel flow models: The Multilevel Flow Modelling (MFM) technique devel-
oped by Lind (1983; 1987) aims at a functional description of complex processes
with diagnosis as one application. Different types of abstraction are used in
MFM. Systems are described in terms of tree different types of entities: goals,
functions, and physical components. Each entity represents a particular view of
the system, i.e., a system can be described by the goals it should achieve, in terms
of the functions provided, and by its physical components. Two basic types of re-
lations exist among entities: the part—-whole relation and the means-ends relation.
The structure is described in Figure 4.2.

A basic feature of MFM is a set of primitive, icon-based, function concepts related
to the representation of flow of material, energy, and information. Examples of
these are the storage function, the balance function, the transport function, the
barrier function, the source function, and the sink function. MFM also contains
graphical representations for goals and control functions, for relations among
functions, and for networks of functions. The MFM technique has been used by
Soren T. Lyngso for diagnosis of power plants.

Goal trees — Success trees: The Goal tree-Success tree (GTST) method for
modelling deep knowledge has been developed by Modarres (Chung and Modar-
res, 1987; Kim and Modarres, 1987; Modarres and Cadman, 1986). The GTST
model is a top-down model. The objective or goal of the process is hierarchically
partitioned into subgoals which then are further partitioned. The partitioning is
continued until the description of the goals cannot be made without referring to

4.3 Operation 73

INTERPRETE
State / Target
IDENTIFY PLAN
Observations / - \ Tasks
OBSERVE N SCHEDULE
Short-cut ~~y !
Alert/ N \ Plan
MONITOR EXECUTE

Figure 4.3 Rasmussen’s decision model

plant hardware. This consists the goal tree. Looking upwards from any subgoal
towards the top goal defines why the specific subgoal must be satisfied. Looking
downwards from from any goal towards the bottom of the tree defines how the
goal is satisfied. The success tree is a logical model of the plant hardware from
which success paths can be determined. A success path shows various compo-
nents whose proper operation guarantees the successful operation of the system.
The GTST model have been used in a pilot system called CFWAVA (Expert
System for Condensate and Feedwater Availability Operation) for a lab-scale
pressurized water reactor.

Cognitive Operator Models

A large interdisciplinary research area concentrates on the role of the human op-
erator in complex information processing systems. Inspired by cognitive psychol-
ogy, attempts are made to model the behavior of human operators in situations
with high cognitive burdens. Much concern is put on the nature of the mental
models that human operator are claimed to have of the physical process that
they are controlling. Much of the work in this field is based on empirical studies.
A generally accepted model or even taxonomy does not exist yet.

Rasmussen (1986) has developed the decision model of Figure 4.3 that describes
the different tasks involved in systems control. In the figure, rectangles represent
decision tasks which require information processing for their solution whereas
the words in small letters indicate states of knowledge. The model describes the
sequence of tasks to be performed in a rational diagnosis and planning approach.
In reality, many operators make a shortcut from a set of observations to an action.

74 Chapter 4 Knowledge Based System Applications in Process Control

This can be dangerous in supervision of complex processes.

Rasmussen (Vicente and Rasmussen, 1987) also describes the activities associ-
ated with three levels of cognitive control: the skill-based level, the rule-based
level, and the knowledge-based level. Skill-based activity refers to behavior that
is readily available as well-learned, automatic reactions that can be executed
without requiring attention. Rule-based activity refers to behavior where the
person knows what to do, either from memory or from an external description.
Knowledge-based activity refers to behavior where the person does not know
what to do or where a suitable description cannot be found. He therefore has
to use his general knowledge to structure the situation and develop a suitable
strategy.

An issue that is coupled to the cognitive approach is the design of the user inter-
face. The process complexity apparent to the operator depends on the technology
and the structure of the user interface. Several projects study the user-interface
aspects. A major part of the ESPRIT I project GRADIENT described in Chap-
ter 5 concerns the user-interface. The IGE (Intelligent Graphical Editor) module
aims at providing the designer of graphical presentations with adequate decision
support throughout the design process. The project also concerns expert system
techniques for information selection and information presentation in different sit-
uations.

Qualitative simulation and analysis

Prediction and avoidance of future error situations sooner or later lead to simu-
lation. Simulation also requires process models. A large practical problem is the
fact that reliable quantitative models are difficult to extract and to keep up to
date. This is one of the motivations for qualitative simulation and analysis.

The recent interest in qualitative methods has its roots in the work in Naive
Physics (Bobrow, 1984). Naive Physics aims at describing and analysing the
behavior of physical systems in the qualitative terms that humans use. De Kleer
and Brown (1984) have developed a qualitative physics that associates qualitative
constraints with the components and connections that make up a system. For-
bus (1984) has developed a qualitative process theory that derives a constraint
model from the set of active processes identified in a physical situation. Kuipers
has developed the QSIM algorithm (1986) that predicts the possible qualitative
behaviors of a system. Qualitative abstractions of differential equations, so called
constraint models, form the basic representation.

A constraint model consists of symbols representing physical parameters and con-
straints of how the parameters interact. Some constraints specify mathematical
relationships such as derivate, sum, and product whereas others assert qualitative
functjonal relationships between parameters. Examples of such relationships are
monotonically increasing or decreasing relations. Parameter values are expressed

4.8 Operation 75

qualitatively in terms of their order relations with a set of landmark values which
always include zero and Fco. A minimal set of landmarks gives the qualitative
values positive and negative.

The outcome of a qualitative simulation is a graph of possible future states of
the system. This is called an envisionment. The possible behaviors of the system
are paths through the graph starting at the initial state.

A large problem with qualitative simulation is the difficulty to decide which
behavior that actually will take place. Systems with feedback will in general
give multiple behaviors. The technique also mainly treats the stationary case.
Current research tries to use quantitative, measured information to resolve the
ambiguities.

Industrial projects

Many industrial projects have been implemented within monitoring and diagno-
sis. A short overview of some of the most interesting will be given.

Westinghouse Corp. have developed GEN AID, a diagnostic expert system for
on-line generator diagnostic service (Osborne et al, 1985). GEN AID is running
in Westinghouse’s diagnostic center in Orlando, FL and is connected to eight
Westinghouse generators at different power plants. The system monitors 110
sensors at each generator and can identify 350 error conditions using over 8.500
rules. GEN AID is developed using a domain-specific tool called PDS (Procedural
Diagnostic System) developed by Westinghouse and Carnegie-Mellon University.
Westinghouse plans to field TURBINE AID for turbine diagnosis and CHEM
AID for steam-chemistry diagnosis in May, 1988.

The Alarm Filtering System (AFS) developed at Idaho National Engineering
Laboratory uses functional relationships between alarms to filter and rank alarms
allowing the operator to focus on the most important alarms (Corsberg, 1987).
A problem in many systems is nuisance alarms that stem from harmless process
states. Conventional systems usually have the possibility to assign priorities to
alarms. This ranking is however static and cannot adjust to different operating
modes. The basic problem is to determine an alarm’s importance relative to the
current state of the process. AFS uses knowledge about generic alarm relation-
ships and knowledge specific to a certain alarm or process state. Examples of
generic alarm relations are direct precursors that express that there is a causal re-
lation between two alarms and required actions that express how, given an active
alarm, the operators expect some system response or alarm within a specified
amount of time. AFS is implemented using object-oriented programming.

Honeywell has developed COOKER, a real-time process monitoring and opera-
tor advisory system for batch manufacturing processes (Allard and Kaemmerer,
1987). COOKER is implemented on a Symbolics and connected to a Honeywell

76 Chapter {4 Knowledge Based System Applications in Process Control

TDC 2000 Process Control system and to a programmable logic controller via
an IBM AT. COOKER provides the operator with continuous identification of
the current phase of the process, gives assistance in avoiding or recovering from
undesirable process conditions, gives advise on recovery actions to take, indicates
the degree of urgency of the actions, notifies the operator when the process condi-
tion is back to normal, and provides explanations of its rationale. Honeywell sees
three components as necessary for real-time batch process monitoring: phase
tracking, condition expectation monitoring, and event expectation monitoring.
During each phase in the batch the operators have expectations about conditions
that should hold over the process variables and expectations of events which
should occur within some time period. In an initial approach, a Problem/Cause
Tree approach was used represented mainly as rules in KEE. Several problems
became apparent. The rules tended to depend very much on the methodology
for handling information and problem solving used which caused much rewriting
of rules. The second approach used a Goal/Subgoal approach somewhat similar
to the Goal tree — Success tree approach by Modarres. By modelling the de-
sired, correct behavior of the plant instead of a set of problems and causes much
was gained. The single representation could be used both for monitoring and
diagnostics. The system is implemented using ob ject-oriented programming.

The FALCON (Fault Analysis Consultant) system has been developed by The
Foxboro Co., du Pont, and University of Delaware for fault detection and anal-
ysis at an adipic acid reactor at du Pont (Lamb et al 1986). The system is a
combination of a quantitative approach to diagnosis based on first principles, and
heuristics. All this knowledge is implemented as rules.

The YES/MVS system is an experimental expert system for the operation of large
IBM mainframe computers (Milliken et al, 1986). Several versions of the system
have been developed and evaluated with good results. The basic architecture
is a RETE-based forward chaining production system with real-lime extensions.
An offspring of this project is the YES/L1 expert system shell (Cruise et al,
1987) that has further been developed to the IBM product Knowledge Tool that
combines rule-based programming with PL /L

STOCHASM performs diagnosis for the lubrication oil subsystem in a a gas
turbine propulsion unit on a US NAVY ship. Campbell Soup Co. uses an expert
system for diagnosing soup cooker problems. The ESCORT system for process
diagnosis from PA (described in the travel notes) is based on causal relationships
between process variables. A large installation of the system will be done at
British Petroleum during 1988.

In the telecom area, SHOOTX (Koseki, 1987) is an example of a diagnosis system
finding failures in a packet switched network, where both design and heuristic
knowledge is used. In the LES (Laffey, 1986) system, a switching network is
represented in a frame structure to facilitate the reasoning process. Toast is an
example of an intelligent on-line assistant working in a power network (Sarosh,

4.3 Operation 7
1986).
4.3.2 Control

Problem Description

Knowledge-based systems can also be used for active control of a process. Tradi-
tionally, control systems are working with control of single signals in a process,
keeping the values at given set-points. Knowledge based control system could
work with more complex control tasks, like optimizing production or quality.
Faults and alarm situations may also be corrected automatically.

A knowledge based control system may give the opportunity to work on a higher
abstraction level when optimizing a process. Goals of operation could be de-
scribed in more general terms and the system itself could translate those goals to
basic control actions. A system like this must contain knowledge from a variety
of domains, e.g. control knowledge, process models, and heuristics.

,; An example in telecommunications would be a tool capable of performing in-

, telligent routing in a network. The tool must have knowledge about network
configuration and the traflic situation in order to make decisions on alternative
routing tables. It could also be able to simulate various decisions to make optimal
decisions. A control system like this could automatically avoid traffic congestion
and keep the service quality at a high level.

Manual control assistance tool

A first step towards closed loop control is to assist the operator in the manual
control. A manual control assistance tool could use simulation to give “What if”
support, i.e. to show what will happen in the process if the operator makes a
certain control action or changes a certain parameter.

Quality control tool

Quality control is often mentioned in connection with knowledge-based systems.
The aim here is to close the outermost control loop that determines the quality of
the end product. This loop is often characterized by control objectives that are
difficult to measure directly and thus exposed to the operators subjective judge-
ments. The knowledge used is the operators heuristics combined with theoretical
knowledge.

Plant-wide tuning tool

78 Chapter § Knowledge Based System Applications in Process Control

Plant-wide tuning is one possible application of knowledge-based systems. The
goal here is to, on a plant-wide basis, monitor and adjust the operation of the
control loops of the plant.

Direct exzpert control tools

In this tool the knowledge-based system is used directly for closed loop control.
Several different approaches exist. They have all only been applied to smaller
parts of a plant.

Approaches and Examples

The British RESCU project has focussed on the quality control problem. The
target plant was an ICI chemical batch process subject to unmeasurable control
variables, variations in feedstock, a wide range of specifications of the different
end products, and unreliable instrumentation. The knowledge-based system was
based on the standard procedures for running the plant, the operators expertise,
and theoretical, chemistry knowledge and consisted of about 600 rules.

The company Artificial Intelligence Technology has performed a feasibility study
on knowledge-based plant-wide tuning on the account of Combustion Engineer-
ing. The study has so far resulted in a demonstrator that can handle the tuning
of PID controllers, both in single and cascaded loops. The method that is used
is based on periodically introduced step changes in the control signal and mea-
surements of the reaction curves.

Fuzzy Control

Fuzzy control is one approach to direct expert control. The area has existed
since the beginning of the 1970s, far before the current expert system boom. In
fuzzy control, expert system techniques are used to mimic the human operators’
manual control strategy. It is expressed as qualitative, linguistic rules for how
the control signal should be chosen in different situations. These rules replace
the conventional controllers. The underlying logic is based on the fuzzy logic of
Zadeh (1965). The intended applications are control of complex processes for
which either appropriate models do not exist or are inadequate, but where the
human operators can manually control the process satisfactorially. The fuzzy
control approach can be used both for direct control and for set-point control of
conventional controllers.

The fuzzy control approach has been successful in certain applications. One
example is control of cement kilns. The British cement company Blue Circle
claim to have spent 100 man years trying to model and control cement kilns by
conventional techniques without success. Fuzzy controllers is today a standard
approach for control of cement kilns. The Danish cement company F.L. Schmidt

4.9 Operation 79

are developing and selling their own fuzzy controller, FCL. Sira Ltd in the U.K.
also have a system called Linkman.

The claimed advantage with the fuzzy control approach is mainly that it gives a
very good operator understanding. This makes it possible to in a intuitive way
control very tight coupled multi-variable systems, something which is difficult
with conventional techniques. Fuzzy controllers are also inherently non-linear
which is a desired property in many cases. It has been shown that a single loop
fuzzy controller which only uses the output and the rate of change of the output is
equivalent to a multi-level relay controller. Further it has been shown that, as the
quantification levels are made smaller, the controller approaches a conventional
Pl-controller. A second feature of fuzzy controllers is the possibility to let the
controller generate a control output only if the control error is large enough. This
“do-nothing-if-not-needed” effect is not achieved by linear controllers.

The fuzzy control approach is based on shallow knowledge where the experi-
ence of the operators is compiled into rules. The drawback with all shallow
approaches is that they have a limited justification and a narrow range. In the
work by Leitch (1987), it is argued that the standard decomposition into shallow
and deep knowledge is not sufficient. Rule-based control approaches can very
well be based on deep knowledge and vice versa. Instead he proposes a division
into empirical knowledge and ontological knowledge. The empirical knowledge is
based on experiential knowledge and may consist of both shallow empirical mod-
els and deep empirical models. The ontological knowledge is based on theoretical
knowledge which is analytic and derived from first principles. Artifact (Francis
and Leitch, 1985) is an example of a controller based on a deep empirical model
and implemented in Prolog.

Ezpert Control

Expert control is another approach to direct expert control. Expert control seeks
to extend the range of conventional control algorithms by encoding general control
knowledge and heuristics regarding auto-tuning and adaptation in a supervisory
expert system. The motivation for this is the observation that many control loops
are badly tuned or run in manual mode. This situation decreases the production
quality and increases the cognitive burden of the process operators. The reasons
for the poor control are many. One is that the control loop is badly tuned from
the beginning. Another is that the operating conditions have changed since the
initialization of the controller. The conventional solution to the problem is to use
some kind of adaptive controller. Although adaptive controllers are beginning
to emerge in industrial control practice they do have problems. One is that
they have many parameters which must be set explicitly. Examples are model
orders and prediction horizon. Such information can be difficult to obtain and
operators typically lack the intuitive understanding they have with conventional
PID controllers.

80 Chapter 4§ Knowledge Based System Applications in Process Control

The idea behind expert control is to provide the controller with enough general
control knowledge for it to be able to itself automatically extract the process
knowledge needed. The controller consists of an “intelligent” combination of
a knowledge-based system and a set of control, identification, and supervision
algorithms.

In the work by Arzen (1986; 1987; Astrom et al, 1986) relay autotuning is used
to build up process knowledge. In the work by Porter and Jones (Porter et al,
1987) a step response method is used.

The Exact controller from Foxboro (Bristol, 1977; Kraus and Myron, 1984) is
marketed as an expert controller. The Exact is a performance adaptive PID
controller based on pattern recognition. The controller monitors the control
error searching for signs of load disturbances. The ratio of the peaks of the
error signal at two consecutive peaks and the time period between the peaks are
used to adjust the PID parameters. The system contains a reasonable amount of
expertize about PID settings and can in that respect be considered as an expert
system. The implementation does however bear no signs of expert systems.
Performance adaptive or identification-free approaches to adaptive control have
also been reported by others.

Learning Control

The learning control area has its roots in the beginning of the 1960s when the
interest and optimism were high in artificial intelligence and cybernetics. Much
research concerned system modelled after the human brain. Systems such as
the Percpetron (Rosenblatt, 1961) and ADALINE (Widrow, 1962) belong here.
These ideas were also applied to control problems. Other names for this area are
intelligent control and self-organizing control,

In learning control systems, the controller should be able to estimate unknown
information during its operation and determine an optimal control action from
the estimated information. Different learning schemes have been proposed. Pat-
tern classification techniques, sometimes with adaptable decision thresholds, are
one class. Other examples are bayesian estimation and stochastic approxima-
tion. Much of the work in learning control systems could just as well fall into
the adaptive control area. Examples of work in the area are Fu (1970, 1971) and
Saridis (1977, 1983).

An inverted pendulum on a moving cart has been one of the benchmark control
problems were learning ideas have been tried out. The Boxes system (Michie
and Chambers, 1968) used a technique were the state space — the position and
velocity of the cart and of the pendulum — was quantized into 55 x3 %3 = 225
different compartments or boxes. During the learning phase, the system updates
the decision frequencies in the boxes for the move left and the move right decision
depending on the length of time the pendulum stayed upright and the mumber

4.3 Operation 81

of times the box was addressed during the run. Eventually, the system learned
to balance the pendulum for up to 25 minutes at a stretch. The same problem
have since then been studied by Anderson (1986) using a two-layer connectionist
network and by Connell and Utgoff (1987) who in their system CART do not
depend on a predefined quantization of the continuous state space.

An interesting aspect of learning control is the possibility to, by manual control,
learn the system how to control a plant. This may provide a new functionality
of the control system that is similar to the teach-in methods used in robotics.

4.3.3 Planning

Problem description

There are two aspects of planning in process control. The long term planning
involves extensions and reconfigurations of the process and the process control
system. There is also the short time planning of tasks that must be performed in
the near future to assure proper process and system function and to optimize the
process. Planning is based on a thorough investigation and evaluation of process
performance.

Analytical tools based on numerical techniques such as dynamic programming
and linear programming exist for planning tasks in many areas. These tools are
often not used to the intended extent. The reason for this is that the mathe-
matical modelling assumptions that the tools require do not match the actual
planning situation. Heuristic knowledge and qualitative preferences cannot be
included in the mathematical tools and thus make them less useful. Knowledge-
based planning can be seen as an alternative approach and as a complement to
analytical tools.

Production planning tools

Production planning is a task based on knowledge from several domains. A
tool capable of supporting planning in process industry or telecommunication
networks must be able to overview all data and knowledge needed to optimize
production or services. These kind of tools could have a various degree of user
interaction. Some times the user could propose production levels, routing tables
or other crucial process parameters and the planning system then present the
consequences of these actions. Another possibility is that the system itself both
proposes how to control the process and presents the expected results to the user.

Knowledge based systems have an important role in these kind of tools since many
planning decisions are based on process knowledge. To make a good production
plan it may be necessary to incorporate knowledge from the following domains:

82 Chapter 4 Knowledge Based Systern Applications in Process Control

o Physical knowledge
e Knowledge of process configuration

o Knowledge of planned actions like stops, repair and maintenance work, work
schedules, etc.

o Experience of how the process usually reacts in similar situations

o Statistical knowledge about uncertainties in process parameters and measure-
ments

This enumeration of essential knowledge stresses that knowledge based planning
systems must be integrated with knowledge bases containing all this useful knowl-
edge. A production planning system must contain simulation facilities in order
to foresee process behaviour. The users of this kind of tools is process operators
and process engineers, working with daily operation of the process.

Resource planning tools

Resource allocation of, e.g., staff or equipment, is another planning task. Schedul-
ing requires good overview of resources and knowledge about priority and cost of
the tasks to be performed and equipment to use. Some of this knowledge could
be stored in the process control system. Expert systems could be used to support
scheduling of staff and equipment making use of the resources as efficiently as
possible. Many knowledge based system are currently used to solve scheduling
tasks. These systems need a representation of the objects concerned, e.g. persons
in the staff, and knowledge of how to optimize the usage of these objects. They
must also be able to reason with time.

The users of this kind of tool are the administration and planning groups and
the users of various kind of equipment.

Process reconfiguration planning tools

This type of planning results in process redesign or reconfiguration. The planning
requires a multitude of knowledge. Experiences of the process behavior during the
past must be collected and treated. This knowledge is built on process statistics,
events of overload and failures, etc. All the data must be evaluated and an overall
picture of the situation in the process should be produced. This task could be
supported by an expert system, containing knowledge of how statistics should
be treated and knowledge of how the process is built and what services it could
offer. In the telecommunication domain, knowledge-based systems could be used

4.8 Operation 83

to analyse network and traffic data and make conclusions about, e.g., performance
and quality of service. This reasoning with statistics could be used for planning
purposes, to produce reports on network performance and quality of service and
to support the designers when making reconfigurations of the network. These
reports could include descriptions of, e.g., overload and failure causes.

The users of these tools are working with areas of process operation or planning
and design of extensions and modifications of the process. Other user groups are
economical staff, quality analysers and process managers.

Approaches and examples

Planning sequences of actions and the time scheduling of these actions is a prob-
lem that is found in most industries. In the discrete manufacturing industry, the
problem is frequent in the case of job shop or factory scheduling applications
(Smith et al, 1986). The process industry have similar applications specially for
batch processes but also for continuous processes during upstart, shutdown, and
production changes.

The factory scheduling problem concerns the allocation over time of a finite set
of resources to specific manufacturing operations such that the orders for parts
received by the factory are produced in a timely and cost-effective fashion. In
more detail the problem consists of the determination of an appropriate sequence
of operations, or process routing, for each order and the assignment of required
resources and time intervals to the operations. In order to do this the scheduler
must be able to predict shop behavior through the generation of schedules that
accurately reflect the full detail of the environment and the stated objectives
of the organization. The scheduler must also be able to reactively revise and
maintain the schedule in response to changing shop conditions.

The job shop scheduling problem is governed by a set of constraints. These
constraints can be grouped into scheduling restrictions that must be met and
sheduling preferences that provide a basis for selection among possible choices.
The scheduling restrictions includes causal restrictions that constrain the order-
ing of the operations, physical constraints, i.e., the operating conditions of a
certain machine, and resource unavailability. The sheduling preferences include
organizational goals, i.e., meeting due dates, maximizing resource utilization etc.,
and operational preferences reflecting the heuristic knowledge present in a given
scheduling situation.

The ISIS series of job shop scheduling systems (Fox et al, 1982; Fox, 1983) from
CMU were based on an order-based decomposition strategy. The ISIS-2 system
was demonstrated in a Westinghouse Turbine Components Plant in 1984. Based
on the experiences of this system the OPIS system has been developed (Ow and
Smith, 1986).

Power generation and distribution systems is an large area that early recognized

84 Chapter 4 Knowledge Based System Applications in Process Control

many potential expert system applications and where much work has been done
on planning (Sakaguchi et al, 1987).

Load flow planning and load forecasting have both traditionally been solved by
analytical methods. Expertise is however needed to select appropriate software
tools, set initial data, analyze output etc. The system ADAPOS (Fujiwara et
al, 1985) has succeeded in representing this kind of knowledge and is used on
a daily basis for load flow planning. In load forecasting, the analytical models
used are complex and result in a heavy computational burden. Knowledge based
load forecasting has been suggested as an alternative to analytical methods by
Rahman et al (1987).

The unit commitment problem, where generating units must be scheduled over
some time period taking into account power system requirements, is a task where
mathematical programming techniques traditionally have been used. It has how-
ever been observed that the output from these programs often are unacceptable
to the operators. Expert systems for unit commitment are under development

(Mokhtari et al, 1987).

4.4 Maintenance

Maintenance and process repair may affect the function and quality throughout
the whole process. To handle this situation it is important that the process
control system can distribute information about which services and functions that
will be affected and how long this will last. Putting together all the necessary
information in order to give an overall view of the situation is a task based on
knowledge of similar situations and knowledge of process topology. A knowledge
based tool to support this task could also be used to plan future maintenance
to affect the process as little as possible. Knowledge-based systems may also be
used by the maintenance and repair staff to get an overview of what work has
been done before on the process and how this will affect the present work.

Many of the tools mentioned under the operation phase can be used for mainte-
nance support as well.

4.4.1 Preventive Maintenance

Problem description

A problem with planned maintenance is that it disturbs the operation of several
user groups. A knowledge based system with knowledge of the maintenance need
and history of maintenance carried out, could use this knowledge to control and
plan the maintenance work that must be done. The system must have an overall
view of the process and access to information of how interferences in the process

4.4 Maintenance 85

will influence the process function. This information enables a knowledge based
system to give suggestions of how to do the preventive maintenance in the most
effective way. Another important aspect is that the system also could distribute
the information of actual on-going maintenance work to users which are affected.

Approaches and examples

Network maintenance scheduling is an important issue in power systems. The
operators have to make outage schedules that takes into account the service reli-
ability and the effect on the overall network. This task requires expert knowledge
and experience and consequently expert systems have been suggested (Uenishi et

al, 1987).
4.4.2 Repair

Problem description

Repair personnel have the same need for diagnosis and trouble shooting tools as
the operations personnel. A distinction is that the diagnosis tools more often are
of the traditional off-line type. Knowledge-based systems may also be used for
handling failure reports and feeding this information back to the process designer.
Another possible use is for assistance in the selection of correct spare parts.

4.5 Conclusions

As shown in this chapter, many knowledge-based tasks and tools exist in process
control. The enumeration that has been done it still not complete. An area that
not has been mentioned is training. Knowledge-based training simulators that
use both quantitative and qualitative models is an area where research is being
performed. Still more examples exist.

In many areas, substantial progress has been made with many implemented sys-
tems. The majority of the systems are, however, only looking upon a single task.
An attempt to an overall solution that encompasses different tasks is lacking.

The knowledge needed for the different tasks is of different nature and with differ-
ent representation forms. Therefore, a general knowledge-based control system
must allow for representation of several different types of knowledge.

The important issue for a control system manufacturer is not the tools them-
selves. What is important is the requirements that the different applications put
on the knowledge representation formalisms and the programming paradigms of
the underlying general control system. These requirements must be met by the
control system.

86 Chapter 4 Knowledge Based System Applications in Process Control

Much of the current research in both diagnosis and planning is based on deep
knowledge about the process. This requires that the knowledge-based control
system has the proper means for representing component models and models
of connections among components. The deep knowledge based strategies are
usually implemented with object-oriented programming techniques rather than
rule-based techniques.

It is however also very important to capture experiential knowledge of different
kinds in the system. This knowledge is usually represented as rules. A com-
bination of object-oriented and rule-based represented is therefore a minimal
requirement for a knowledge-based control system.

International and national research
programmes

Several, large international as well as national research programmes concerning
knowledge-based control systems are going on at the moment. The most ambi-
tious effort is the European Community’s ESPRIT programme.

51 ESPRIT 1

The ESPRIT 1 is a large research programme on information technology. The
programme started in 1984-85 and will last until 1989. At least five of the current
projects within ESPRIT I concern knowledge-based control in one way or another.
The projects are very large, typically 70 man years and 10 MECU (70 MSEK)
per project. The response we have had from Danish and British companies
involved in ESPRIT projects is that the projects are very important for the
companies and that the projects would have been impossible to carry out without
the international cooperation and support.

5.1.1 GRADIENT

GRADIENT (Graphics and Knowledge-based Dialogue for Dynamic Systems or
shortly Graphical Dialogue Environment) is an ESPRIT I project started in 1985.
The consortium consists of CRI, ABB, University of Kassel, and University of
Strathclyde with CRI as the prime contractor. The goal of the project is to
develop an operator environment that will ease the work of the operator and

~

) Chapter 5 International and national research programmes

Design Bass
Knowledge Pool
R e i

GRADIENT

intelligent .
Graphical }4:3

1y Dialog W
']Speciﬁcalionf.'ll
v Editor i

i Module

Suparvision

P T
Control b @— PS USER
k DIS]

Knowledge Pool J

Figure 5.1 The GRADIENT system architecture

increase his cognitive capacity. The operator should be able to concentrate on
problem solving rather than having to search among enormous amounts of raw

data. The subgoals of GRADIENT are:

o Designing an intelligent alarm system, supporting the operator in alarm anal-
ysis

o Reducing the human factor in process control

e Developing concepts and tools for storing process knowledge and experience
in the control system

o Giving the operator a more natural way to communicate with the control
system.

The GRADIENT system architecture is shown in Figure 5.1. GRADIENT con-
sists of five parts.

o An expert system for failure detection, alarm analysis, and diagnosis (QRES,
Quick Response Expert System).

o An expert system for identifying and correcting inconsistencies in operator
actions (RESQ, Operator Response Expert System).

5.1 ESPRIT I 89

e An expert system for the manipulation of the presented pictures according to
the process state (GES, Graphical Expert System).

o A (partly knowledge-based) dialogue module, which supervise the dialogue
between the user, the process and the rest of the expert systems (DIS, Di-
alogue System). One part of the dialogue system is an Intelligent Graphics
Editor (IGE).

o A support expert system (SES).

Several different knowledge bases are accessible for the different expert system
components. Examples are a system design KB and a failure state KB.

QRES is a rule based expert system for process diagnosis. It may contain generic
rules reasoning with objects on the class level. QRES is controlled by a scheduler
controlling the following modules: Input handler, Data handler, Listener, Anal-
yser, and Output handler. All modules are implemented in one single process.
QRES has some facilities to handle real time aspects in the reasoning. Time is
used by the Listener when testing for faults in the application. The scheduler
can handle non-monotonous reasoning in some situations.

The development of SES has just started. The intention is to develop a system
that contains procedural support, predictions of failure consequences, and state-
based diagnosis.

RESQ’s task is to monitor the operator’s activities and check the steps he is
taking to solve a problem. RESQ is divided into three parts: a plan recognizer,
an error handler, and a plan evaluator. The plan recognizer uses a plan library
to match the operator’s actions against. The plan library contains all possible
plans that the operator could use in different situations. When an actual plan
has been found, the operator actions are checked against this plan. The system
will be able to give suggestion on short cuts and warn the operator when he
diverges from the plan. RESQ is not yet implemented.

All parts of GRADIENT are implemented in KEE. The reason for this is the
need for a common rapid prototyping environment. It has been observed that
KEE is far from sufficient with respect to execution speed and real-time facilities.

The project will be demonstrated on two different processes. One packet switch-
ing data network and one power plant. A pre-prototype (MARGRET, Multifunc-
tional All-purpose Gradient Experimental Test Environment) has been developed
for the power plant demonstrator. The entire project will end in 1989.

90 Chapter 5 International and national research programmes

5.1.2 KRITIC

The KRITIC project is an ESPRIT I project that has stretched from 1985 to
1987. KRITIC stands for “Knowledge Representation and Inference Techniques
in Industrial Control”. The consortium consists of British Telecom, Framentec,
Krupp Atlas Elektronik, and Queen Mary College with Krupp as main contractor.
The goal of KRITIC is to develop environments for constructing expert systems
which would be capable of coping with high levels of complexity for applications
in demanding industrial environments.

Two demonstrators, the first for the control and diagnosis of advanced Telecom
switching systems, the second for the control of power distribution networks
have been completed. A basic set of tools have also been developed. These tools
include: a frame based knowledge representation language, AVALON; a rule-
based expert system shell, MIKIC; two graphical description languages, G-MOD
and V-GRAPH; a blackboard system, BBF; a planning system with dependency-
directed backtracking, CELL-PLAN; and a high-level environment for explicitly
specifying control flow, CELL-TISSUE.

MIKIC is an object-oriented, forward and backward chaining, rule based system.
MIKIC integrates a rule interpreter with the Flavors object oriented language
system so that rules are invoked by message passing in the same way as procedural
methods. MIKIC rulesets may form the knowledge sources associated with the
blackboard system BBF. A truth maintenance system has also been integrated
with MIKIC.

A layered blackboard approach is used in the diagnostic system where each layer
correspond to an step in the diagnostic problem solving strategy. The architecture
of the system is shown in Figure 5.2. The diagnostic system is described in more
detail in Williamson et al (1987).

5.1.3 QUIC
QUIC Toolkit is a short name for the ESPRIT I project “KBS Toolkit for Indus-

trial Applications” which started in 1986 and will last four years. The consortium
consists of the three domain companies, Aerospatialle, Ansaldo and F.L.Smidth,
two software companies, CAP Sogeti and Framentec, and two research organiza-
tions, CISE (prime contractor) and Heriot-Watt University.

The goals of the project are:

e to define a general architecture for KBS tools in industrial applications,
e to classify the different knowledge-based tasks involved,

e to provide a set of tools for different tasks,

5.1 ESPRITI 91

Blackboard Blackboard Knowledge
control sources

Hypothesis Hypothesis O
/ Controller

Overall Clustering Cluster
Controller Controller
\ Fault Reports implicated Objects O O

Controller

Fault Reports

/ I /]
Fault Report Knowledge
Generator Representation System

Figure 5.2 Overall architecture

e to integrate empiric and ontologic knowledge (concepts defined by Leitch at
Heriot-Watt University),

e to validate the ideas on industrial demonstrators,

The project has classified the tasks involved into:

e Interpretation — the transformation of observed data into the adopted state
representation

e Execution — the transformation of decisions into data suitable for action

e Prediction — the generation of future states from known or assumed current
states

e Identification — the determination of (unknown) past states from known or
assumed known current state

e Decision — the decision making process whereby the known or assumed com-
plete state is used to comstruct conclusions.

Different systems such as diagnostic systems, control systems, simulation sys-
tems, and monitoring systems are then constructed by combining tools for the
individual tasks. Tools for different tasks can also be either empirical, i.e., based
on experiential knowledge, or ontological, i.e., based on theoretical knowledge.

92 Chapter 5 International and national research programmes

Strategic Target KBS
Tactical System 1 System 2
APPLICATION A <
V/"\
KBS ~
Teleology ‘ Tool 1 —I [Tool 2 l
S pd
Functional Component 1 Component 2 Component 3

Object I Language l I Environment I

Figure 5.3 QUIC Toolkit architecture

The toolkit architecture used in QUIC is shown in Figure 5.3. The object level
consists of the programming languages and environments used. These are Com-
mon Lisp and KEE. The functional level consists of the components of the differ-
ent tools. Several components have been defined and partly implemented. One
component is a component based language that includes a constraint propagator,
a causal net generator, a truth maintenance system and a qualitative predictive
engine. Another component is a fuzzy rule-based language with a focusing mech-
anism. A third component is an event graph language based on Petri net theory.
The tools that have been defined are an ontological identification tool consisting
mainly of the component based language, an empirical decision tool based on the
rule-based component and a qualitative prediction tool.

The systems on the tactical level which have been defined are one ontological and
one empirical diagnosis system, one fuzzy and one sequential control system and
one ontological simulation system. The systems will be demonstrated on three
industrial applications. These are a power plant, a satellite control application
and a cement plant.

5.1.4 Other related ESPRIT I projects

Several other ESPRIT I projects have connections to knowledge-based control
systems. The EUROHELP project is looking specially on the role of the operator
in industrial systems and is aimed towards intelligent operator support systems.
One of the members in this project is CRI.

The goal of the “Expert System Builder” project is to develop general, application
independent expert system tools. An approach similar to KEE has been taken

5.1 ESPRIT I 93

with a strong emphasis on good object-oriented modelling facilities. The project
has resulted in the STELLA environment with the expert system tools ODIN and
TOR. This system has mainly been developed by Séren T. Lyngsé of Denmark.
Within this project, the expert system tools have been used to implement a
diagnostic expert system based on the Multilevel Flow Model concepts of Morten
Lind. This have been applied to a simulation of a small part of the Risd power
plant and will be applied in full-scale to the Svanemdllen power plant outside
Copenhagen.

Within the telecommunication area two ESPRIT I project have focussed on spec-
ification languages. In the PANGLOSS project, LOTOS has been used for the
design of a general-purpose internetting gateway. Within the SEDOS project,
several LOTOS tools have been developed.

5.2 ESPRIT II

The second phase of the ESPRIT programme will start during 1988. At this
stage (May 1988), it is not clear which proposals that have been accepted. In the
guidelines for ESPRIT II, however, several research topics concern the use of ex-
pert systems for industrial applications. One topic is Real-time Knowledge-based
Systems. A large consortium consisting among others of Thompson, GEC, and
Marconi has supplied a 200 man years project proposal for this topic. According
to our information, it is likely that it will be approved. Another topic is Coop-
erating Expert Systems with process control applications. Here, the consortium
behind the KRITIC project has made a new proposal. A third area is Temporal
Reasoning. This topic is likely to go to a consortium including Ferranti.

5.3 The RACE programme

The objectives of RACE (R&D in Advanced Communication in Europe) is to
develop the broadband communication techniques needed to build an European
IBCN (Integrated Broadband Communication Network). RACE is divided into
44 projects within broadband technology.The projects address a variety of sub-
jects from picture coding in HDTV to methods and tools in broadband software
development. The total budget of RACE is approximately 370 MECU which
means more than 4000 man-years. There are some project in RACE that address
tasks in real time control. These projects will develop a network management
system to handle IBC networks. AIP (Advanced Information Processing) tech-
niques, e.g. KBS techniques, are evaluated in these projects. This is a short
description of the most relevant RACE projects in this context:

ADVANCE: Evaluation of AIP techniques in network and customer adminis-
tration system for IBCN. The project is putting the effort on non real time

94 Chapter § International and national research programmes

applications. TeleLOGIC is a member in the ADVANCE project.
AIM: Standards for maintenance in IBCN.

NEMESYS: The role of AIP techniques for traflic and quality in service man-
agement for the IBCN.

5.4 The EUREKA programme

Another large European research programme is EUREKA. Main participants are
the EC and EFTA. It was initiated in 1985 and has a general scientific profile.
Standards are important and market orientation is stressed. The program has
currently about 70 projects under way. Funding comes from the individual par-
ticipants and amounts today to a total of about 3000 MECU. Two projects with
a bearing on the one under consideration is EAST (European Advanced Sottware
Technology) and ESF (Eureka Software Factory). TeleLOGIC is a participant of
ESF which is aimed at industrializing the software engineering process.

5.5 ALVEY

The British ALVEY programme also contains related projects. The most relevant
is the RESCU project which started in 1984 and was completed in 1986.

5.5.1 RESCU

The RESCU project was the first Alvey Community Club and consisted of 23
industrial companies and three universities. The prime contractor was Systems
Designers. The objectives of the club was to promote awareness and to validate
the new KBS technology.

The application in RESCU was quality control in a chemical batch process. The
actual plant chosen was a batch reactor from ICI. The process could produce
several different chemicals and the outermost quality control loop was distin-
guished by unmeasurable variables, large variations in feedstock, a wide range of
specifications on the different end products, and unreliable instrumentation.

The objectives of the system was to give advice to maintain product quality closer
to the desired specification than achieved by the operators themselves. This was
done by recommending recipes and by predicting product quality. Other goals
was to reduce the numbers of adjustments and to minimize the use of expensive
feedstock. The process was well instrumented and equipped with a Fox Control
system.

5.5 ALVEY 95

The knowledge-based system was implemented in a Poplog environment on a
4 Mb, VAX 11/730. The requirements of the system was the ability to reason
with time and over time, the ability to reason with uncertainty, and the pos-
sibility to reason with different sources of knowledge. Two different types of
knowledge sources were used. Procedural or active knowledge sources contained
procedural knowledge of how things should be done. These knowledge sources
included knowledge about process tracking, recipe recommendations, batch qual-
ity assessments, reconciliation of estimates, and updating of system parameters.
Declarative or passive knowledge sources contained knowledge about plant mod-
els, product specifications, relations between variables etc. Both active and pas-
sive knowledge sources were implemented in terms of rules. The whole system
contained 730 rules. The end performance achieved was better than standard
ICI procedures but slightly worse than expert operators.

5.5.2 COGSYS

The work in the RESCU project has been continued in the COGSYS project.
COGSYS is also an industrial club with Systems Designers as the main con-
tractor. The goal of COGSYS is to develop a real-time expert system shell for
process control. Object-oriented features will be added to the rule-based RESCU
system. ABB is one of the members of the industrial club.

5.6 Other programmes

There exist also other research programmes related to knowledge-based control
systems. One such example is the KUSIN/NORDFORSK programme were com-
panies and universities in the Nordic countries are allowed to join. A large project
within this programme is the ROTA project aimed at diagnostic systems for ro-
tating machinery. Swedish collaborators in this project are ABB STAL, ASE
Europe, and FFV Aerotech.

5.6.1 DUP

DUP (Development of user-friendly operation systems for the process industry) is
a Swedish research programme funded by the Swedish National Board for techni-
cal Development (STU). This programme is focussed on the end-users of modern
control systems. DUP is an interdisciplinary programme composed of Computer
Science, Automatic Control, Process Technology, Cognitive Psychology, and En-
vironmental Science. Important areas within DUP are knowledge-based system
for design support and for operator support. Three key industrial areas have been
selected for DUP. These are the chemical industry, the paper and pulp industry,
and the food manufacturing industry.

96 Chapter § International and national research programmes

The main difference between this project and DUP is that this project is driven
by the control system suppliers and not primarily by the user industries.

5.6.2 MDA

MDA (Méinniska — Datateknik — Arbetsliv) is another Swedish national pro-
gramme that looks upon the user situation in complex information systems. MDA
has a very strong direction towards cognitive psychology and environmental stud-
ies.

5.6.3 CACE

The Computer Aided Control Engineering (CACE) project is a Swedish national
project which is funded by the Swedish National Board for Technical Develop-
ment (STU) and which is being carried out at the Department of Automatic
Control in Lund. The aim of the project is to investigate how new hardware and
software technology will influence the next generation of CACE software. The
project concentrates on the development of tools for modelling and simulation.
The project is based on a hierarchical, object-oriented model of the process that
allows multiple representations and reuse of models. The models are expressed in
the form of symbolic equations which will be used to generate efficient simulation
code, linearize non-linear systems, generate control code etc.

A Suggested Concept

‘This chapter proposes a basic system concept for knowledge-based control system.
The kernel of the concept is a model of the process and the control system.
Different knowledge tools operate upon this model. A set of demands on the
concept is given. Before the actual concept is described, knowledge representation
in general and in process control is discussed.

6.1 Overall demands on a knowledge-based control system

Tools and structures for knowledge representation, as described in the previ-
ous chapters, are the new and important issue in a concept for knowledge-based
control systems. However, this extended functionality is less useful if not imple-
mented in a way that secures that the overall demands on a control system are
met. For the entire and complete concept it is of fundamental importance that
the following features are carefully considered.

e Integration of conventional and new technologies in one uniform system.

Future control system applications will require as much procedural functional-
ity as today’s systems. Efficient representation and execution of control algo-
rithms, sequence control and logic control still will be the main demand. The
new is that this main part of the system in a uniform way can be combined
with knowledge-oriented functionality. In the new concept the procedural
part has priority and must be handled as effective as in today’s systems.

Q7

98

Chapter 6 A Suggested Concept
Real-time support

The ability to secure real time aspects is crucial for control systems. In-
troduction of new techniques and conceptions as reasoning, object-oriented
programming, uncertainty, processing of qualitative data etc will also intro-
duce new very complex real-time problems. It is a necessity to find practical
solutions to these problems.

Incrementality

A production or process plant is a live system which is continuously changed
and updated. In a knowledge-based control system with its many types of
representation it will be still more difficult to decide how to change and to
survey consequences of a change. The new concept must support the user
with a step-wise, evolutionary way to extend and improve the control of the
process.

Ortogonality

In traditional control systems an introduced fact normally is a numeric or alfa-
numeric piece of information used in a straightforward algorithmic way. In
a knowledge-based system the same introduced or created fact or conception
can be used both in many different types of representation (procedures, rules,
objects) and for many purposes. To handle maintenance and up-dating of
the system it is a necessity to have a system where each specific piece of
information or fragment of knowledge is stored in only one place independent
of where and how it is used.

Transparency

All control and supervisory functions in a control system are based on un-
derlying knowledge. Expertize and underlying reasoning must normally be
documented separately and in the worst case it can not be documented at
all. New technologies will in a better way support explanation facilities where
underlying knowledge can be attached to control functions and made direct
available in the control system. As such improved transparency is of extreme
importance it has to be given a high priority when developing a new system
concept.

6.1 Querall demands on a knowledge-based control system 99

6.2 Knowledge representation in general

In the fields of computer science and artificial intelligence a variety of knowl-
edge representation formalisms are employed. Some examples are object oriented
representations, logical representations, procedures and rules. For a further dis-
cussion the reader is referred to Chapter 3. In general, knowledge representa-
tion formalisms exhibit the same power of expression in the sense that anything
expressed in any one formalism can be equally well expressed in any other for-
malism. However the knowledge representations formalisms vary greatly in the
amount of work needed to design, maintain or process (execute) a model.

An example is that object oriented formalisms in general are vastly superior to
procedural models in the design phase, but, as a rule, they are more tedious
to process. The modelling and maintenance advantages together with increased
hardware capacity have however led to a greatly increased popularity for object
models.

It is important to note that, in general, any knowledge representation formalism
can be employed to model a mass of knowledge. Decisions on what to use are
design decisions depending on cost-capability trade-offs. ‘

The same argument holds for the computer realization of the formalisms de-
scribed above. Consider as an example, an object oriented representation of
some knowledge. It can be realized in a variety of ways. Some examples are
as a relational database, as a hierarchical database, as a network database, as
lisp lists, as a set of prolog predicates etc. The choice of realization is, as the
choice of knowledge representation formalism, a design decision depending on
cost-capability trade-offs.

6.3 Knowledge representation in process control

Three dimensions can in a simple model be regarded as spanning the knowledge
in a process control system. These dimensions are type, depth and structural
organization of knowledge.

6.3.1 Type of knowledge

Type of knowledge encompasses knowledge type either from an application point
of view, then encompassing the functional knowledge, physical knowledge, his-
torical knowledge, economical knowledge and operational knowledge and so on
defined in Chapter 2, or from an representation point of view, then encompassing
the various representational formalisms like logic, procedures or object-oriented
formalisms.

Physical knowledge could be modelled in an object knowledge base. The

100 Chapter 6 A Suggested Concept

attributes of the objects describe properties of the components and relations
between components. Both general knowledge about the control system and
about process components, and special knowledge about a specific plant and
control system installation can be modelled in this way. This is done by using
both class objects and instance objects. In this way a specific installation can
be seen as an instantiation of general class objects. The activity of designing the
process control system can in a simplified model be regarded as designing the
object structure representing the system.

Functional knowledge can be coupled to the physical knowledge through the
object structure. An interesting approach in this context is Multilevel Flow

Models.

Economical knowledge is weakly coupled to the the physical knowledge base.
This knowledge can for example be modelled as an order database together with
a knowledge base containing economic rules. Optimization algorithms can be
stored in a procedural knowledge base together with governing rules. This knowl-
edge could be used by knowledge-based production planning tools.

Operational knowledge is tightly coupled to the physical knowledge base.
Knowledge of this type can be represented as rules. These rules in general refer
to objects or sets of objects in the object structure describing the system or the
installation. If possible, rules should be stored in objects. This will increase the
structure and processing efficiency of the knowledge base.

Historical knowledge containing stored time histories of important process
variables can be stored in a conventional data base with references to and from
the object data base.

Pictures and text information from the knowledge bases described above can be
stored in picture and text data bases with references between the object base
and relevant parts of these data bases. Internal linkage in these data bases could
be accomplished through, e. g., a hyper-media approach. An example is that
a drawing or picture of some object e. g. a fan or operator console, is stored
in a pictorial data base, but is accessed through the object and regarded as a
property or view of that object.

6.3.2 Depth of knowledge

The knowledge depth dimension describes the expressional power of some amount
of knowledge. A model of, e.g., an object could be designed in a variety of ways.
For any object with some degree of complexity a complete model will be very
complex and, hence, very hard to manage and process. This problem could to
an extent be diminished through several models of the same object but with
varying complexity. A model should then have the properties of being simple
enough to solve the problem under hand in a reasonable amount of time and
have completeness enough to give a sufficiently correct answer.

6.3 Knowledge representation in process control 101

6.3.3 Structural organization of knowledge

The structural organization of knowledge describes the structuring primitives
for some amount of knowledge. For the special case of process control systems,
important structural concepts are the service views and the organizational views.

Service views or functional views

The service views or the functional views of the knowledge are the views related
to the activities, functions or services that the process control system is expected
to supply to the organizations employing it. There are a variety of functional
views, depending on the design of and the services demanded of the process
control system. As a rule, however, the functional views reflect the knowledge
base structure as described earlier, i. e., they consist of physical views, functional
views , operational views, economical views etc.

Organizational views or users views

The organizational views or user views are related to the different organizations
or user groups that interact with the process control system.

There are four user views groups:

e The design views. Show the system as seen from the system design organiza-
tion.

e The process view. Shows the system as seen from the process.

e The operations views. Show the system as seen from the process operations
organization.

o The maintenance views. Show the system as seen from the maintenance
organization.

Different users of the process control system needs different information and
different ways of interacting with the system. A process operator and and in-
strumentation technician has totally different information needs. The process
operator may want to see a dynamically updated process diagram together with
trend curves of important signals and an alarm logbook. He also needs presenta-
tions of condensed information about the overall process status, advice on which
control actions to take, explanations to process upsets etc. The instrumentation
technician on the other hand needs displays of wiring diagrams, electrical con-
nection drawings and geographical layouts. He needs to report to the system
that a certain component is out of order or has been exchanged. He also need

102 Chapter 6 A Suggested Concept

trouble-shooting assistance and advice about how the repair is performed. The
latter may include pictures of the components which, e.g., show how a component
should be unscrewed etc.

The different views can be seen as transformations of the basic functional views
into interfaces suitable to different user groups.

The design view: This view is what the system design organization sees of the
system. This view is very important in that all the other views are designed, at
least in part, in this view.

A very simple and fundamental model describing the overall activity of building
a plant could regard it as a three-phase activity.

1. The pre-design phase: Design of the system components.
9. The design phase: Composition the components into a system.

3. The realization phase: Instantiation and /ot transformation of the system into
an installation or plant.

The first phase, i.e. the one preceding the actual system design phase is normally
also considered as system design. It is however performed by other persoms.
This phase includes design of the individual plant components. This is often by
independent equipment supplier companies. The phase also includes the design
of the general system components in the control system. This task is done once
and for all when the general control system is developed by the control system
manufacturer and can only with difficulty be changed later.

The second phase, the phase of system design can in this simple model be re-
garded as selecting objects from an object knowledge base (a product structure,
which is delivered from the pre-design phase). These objects are the system
components, or building blocks, for the designer. Examples of such objects are
telephone exchanges, computers, servers and trunk lines. Examples from process
control are pumps, valves, heat exchangers and pipes. Examples from the in-
strumentation and control system are sensors, actuators, and controllers. These
objects are then composed into a system. This is performed through adapting
the components for the system task under hand, e.g. by programming and other
types of modifications. These components are then connected into an object
structure that describes the process control system.

The phase succeeding the system design is the realization of the system, i e,
installation or building of the plant. This entails instantiating or modifying the
object structure describing the process control system into a plant or installation.

6.3 Knowledge representation in process control 103

The process view: This view is the model of the knowledge base as seen in
the interface between the process and the system. It is especially complex to
design since real time demands on this model or view in general are very high.
The state-of-the-art approach is to design this view manually or to use very
powerful processing capabilities to directly execute the knowledge in the ”central”
knowledge base.

The operations view: This view is what personnel engaged in plant operations
sees of the system. In general real time demands are placed upon this view.

The maintenance view: This view is what the maintenance group sees of the
plant. In general, real time demands are not so harsh as they are on the operations
view.

All these four major views can then be further subdivided into subviews that are
specially suited for certain user groups.

6.4 A Basic System Concept

The basic concept consists of a model on which a set of “intelligent tools” oper-
ate. The tools provide the different user views of the process and performs the
knowledge-based functions of the system.

6.4.1 Hierarchy levels

The system concept is based on an object model. The basic entities which are
represented as objects in this model are the physical components in the plant,
i.e., pumps, valves, heat-exchangers, robots, manufacturing machines, queues,
multiplexers etc. and the control functions, i.e., sensors, controllers, PLC code,
etc. Attributes in the objects are used to represent the properties of the com-
ponents. The connections or links between the basic objects represent physical
connections such as electrical connections or flow connections.

Hierarchy levels are needed in order to represent the process at different degrees
of resolution. The highest level in the hierarchy represent the whole plant. The
lowest level represent the basic entities. With hierarchy levels, individual ob-
jects may be grouped together into one object at a higher level. For example,
a physical component together with sensors, actuators, and controllers can be
modelled as one object at a higher level with the individual objects as submod-
els. PLC sequences that involve the combined control of several components are
represented on a hierarchical level where all the components are included. One
may also think of a situation where connections among objects are hierarchical.
For example, on a high level in the hierarchy, several interconnected objects can
be seen as one high level connections with connections and objects as submodels.

104 Chapter 6 A Suggested Concept

The possibility to decompose objects into class objects and instance objects facil-
itates maintenance. In complex plants, a component may appear several times.
For example, a chemical plant may have several PID controllers or a telecom-
munication network consists of several nodes. Maintenance is simplified if all
appearances share a common description. Class objects are used to represent
general knowledge about the process and the control system. The hierarchical
structure must exist also among the class objects.

The basic object model is necessary in order to have a structured way of repre-
senting and storing various types of knowledge. With hierarchy levels, knowledge
and information can be stored at the most appropriate level.

6.4.2 Multiple perspectives

Up to this point the described model only contains physical knowledge, i.e.,
knowledge of the physical properties of the components of the plant and of their
connections. The hierarchical abstraction mechanism has only been used to group
together geographically and logically related components. This leads to a tree
structure where the root corresponds to the whole plant and the leaves correspond
to the basic components.

This simple structure is not enough. As shown earlier, several views of the
process are needed. These views are either user views or functional views. As de-
scribed earlier, different users or organizations need different information. Func-
tional views reflect the knowledge base structure as described earlier, i.e., physical
knowledge, functional knowledge, operational knowledge, economical knowledge
etc. These different kinds of knowledge must also be represented.

A possibility to represent the different functional views is to use objects with
multiple perspectives or views. An example of a part of the model is shown in
Figure 6.1. Some examples of perspectives needed are the physical perspective,
the functional perspective, and the behavioral perspective.

The physical perspective contains the physical parameters of the component. It
also contains the included submodels and their connections.

The behavioral perspective describes the internal behavior of the component.
For a physical component this may be a differential equation description of how
inputs and outputs relate to each other. It may also be rules that describe causal
relationships between inputs and outputs. For a PID-controller or some other
control block, the behavorial perspective simple describes the operation of the
control block, e.g., in the terms of a formula or as control rules. For a PLC
sequence, the behavorial perspective consists of the actual boolean equations.
The behavorial perspective of an object composed of submodels can be generated
from the behavorial perspectives of the submodels.

The functional perspective describes the function of the different components.

6.4 A Basic System Concept 105

Other views

[
HEEY) <
K ! }1\ N Y S
Y
/ ! AN NN \\ S
’ ! HERTENN [N AN R
’ { LR [SN ~.
! v
Wnlo/-lank : tjPl-32 % A Upstart-for-tank
0 1! T <
is-a: tank t 3 [is-a: pi-controller Y\ is-a: PLC-sequence
. 1 3 N
N
Behavioral: 1’ ‘, eahavinrajz\\ \ Behavioral:
I ! Ry By
(DL equ. 0o Control codey Sequence logics
trules) 1 \ ~
K h i [N
] AN >,
. .) ~
Functional: % Functional: ‘\ Functional: N
i I ~
) M N
Ao
t \ ~

Figure 6.1 Hierarchical, multi-perspective object model

Some examples are: “What is the primary function of a process part?”, “Does
it have any secondary function?”, “What is the control objective of certain con-
troller?”. On higher levels in hierarchy the functional view could for example be
described in terms of Multilevel Flow Model (MFM) models.

The combination of the physical, structural decomposition and a functional de-
composition usually destroys the tree structure of the hierarchy and turns it into
a directed, non-cyclic graph or even into a network. The reason for this is that a
single component usually has more than one purpose seen from a functional per-
spective. This is typically the case in process industry where several energy and
material flows take place at the same time and involving the same components.
An example could be an heat-exchanger that is involved in both a material flow
loop and an energy flow loop. This leads to situations where the same basic
component is contained in more than one functional higher order level.

The model may also contain other perspectives. Some examples are an econom-
ical perspective and an operational perspective. These perspective are typically
only used at higher hierarchical levels.

It is also desirable to be able to describe perspectives at various depths of knowl-
edge. This is typically the case for the behavioral perspective in the model of
physical components. The most detailed description could probably include a

106 Chapter 6 A Suggested Concept

complete quantitative model based on differential equations. It is however also
very natural to have models where only the dominating dynamics are included.
In an even less detailed description static relations or qualitative, causal rela-
tions could be used. Another possibility to describe behavior would be in terms
of rules. If several depth levels are used, it may be desirable to not necessarily
generate the behavior of a models from the submodels. Instead another less de-
tailed description of the behavior could be used on the higher level. This could
be used for reasoning at different levels of abstraction.

The basic model described is based on object orientation. This does, however, not
exclude other knowledge representation techniques such as rules or procedures.
These are instead used in the different perspectives at the different hierarchical
levels. Rules could be used to describe behavior both in loose terms for a physical
component and in the form of fuzzy rules for fuzzy controller. Heuristic knowledge
built up during operation by the operators could be stored in an operational
perspective on the hierarchical level most appropriate. Procedures are available
in terms of PLC sequences and control algorithms.

6.4.3 The “central” model

The proposed basic architecture is influenced by the belief that “knowledge rep-
resentation and use cannot be separated”. This leads to different perspectives
where the involved knowledge is represented in ways that simplifies the intended
use of it. This is contradictory to the desire to have a single knowledge represen-
tation where each piece of knowledge is stored in one place. Ideally, it would be
desirable to automatically transform knowledge between different perspectives.
If this is possible is an open question. In the proposed architecture, knowledge
involving the same object is at least stored close to each other.

Although a central model is advocated, the model is not physically implemented
in one place. On the contrary, the need to distribute the computational burden
to to many processors is even higher in knowledge-based control systems. The
basic philosophy is, however, that the model should be seen as one entity during
design, maintenance and operation.

6.5 Knowledge tools

The object model is the base of the concept. A set of tools operate on this model
as shown in Figure 6.2. One purpose of the tools is to provide the different
user views of the process. The operator interface should perhaps consist of a
dynamically updated process diagram together with curves of different signals.
He also needs presentations of condensed information about the overall process
status, advice on which control actions to take, explanations to process upsets
etc. This is provided by a tool that operate on the basic model and build up

6.5 Knowledge tools 107

Muin- .
tenance . Design

Figure 6.2 System concept

the user view from this. Another example is the control system maintenance
group that instead needs information about such things as in which physical the
different control blocks are implemented, how they are interconnected, what the
internal signal addresses are etc. They also need access to diagnostic tools for
trouble-shooting and repair assistance. This is provided by a special tool that
extracts the desired information from the central model.

One user view of this hierarchical model would naturally be in the form of in-
terconnected icons representing the different objects. Good possibilities to move
around in the object space is very important. Graphical techniques for mouse
interaction and windowing are natural to use. If MFM techniques are used to
model functional perspectives, more than one graphical language are needed.

A second purpose of the tools is fo implemented the different tasks that are
needed. One such tool is the control block and PLC-code interpreter. This tool
resembles what is available in conventional system today. For efficiency reasons,
this tool probably uses an internal, compiled representation of the control parts
of the model during execution.

There are many examples of other tools. One may think of a design support tool
that helps the designer in building the the basic model. This may include more
or less automatic generation of parts of the model.

Another tool is an monitoring and diagnosis tool. This could for instance make

108 Chapter 6 A Suggested Concept

Figure 6.3 Basic concept with model, components, and tools.

use of the functional perspectives of the model in combination with the empirical
rules stored in the operational perspectives. Still other tools are planning tools,
simulation tools etc.

The tools mainly operate on the knowledge in the basic model. They do however
themselves contain specific knowledge about their specific task. For instance, the
diagnosis tools needs general knowledge of diagnosis and the operator view tool
may need knowledge about the human cognitive behavior.

The internal implementation of the tools may be different. For some tools, con-
ventional techniques are most appropriate for other tools knowledge-based tech-
niques are best suited.

The tools are not independent of each other. The tools that provide the user
views uses the tools that implemented the different knowledge tasks. Several
tools may contain similar subpart. The subparts can be seen as components out
of which tools are constructed. This give the structure of Figure 6.3. Examples
of components are inference engines, truth maintenance systerns, simulators etc.

The blackboard analogy

The proposed concept can also be seen as a blackboard system. The central, hi-
erarchical model with its different perspectives constitutes the blackboard. The
knowledge tools can either be seen as individual knowledge sources or as com-
posed internally out of a set of knowledge sources.

6.5.1 Real-time aspects

The real-time aspects of the system are very important. The use of a separate tool
for the execution of the conventional control code ensures that the conventional
control performance not is slowed down.

6.5 Knowledge tools 109

The special real-time aspects of knowledge-based systems are most pronounced
for the real-time knowledge-based tools such as, e.g., an intelligent monitoring
and diagnosis tool.

The parameters and variables in the central model can be decomposed into those
that remain constant and those whose value changes with time. In order to reason
over time, histories must be stored of changing process variables.

In order to maintain an up-to-date and consistent picture of the dynamic en-
vironment, several techniques are possible. Since the knowledge-based part is
integrated with a conventional control system, there is no principal objective
against keeping the information up-to-date through fast sampling. In a purely,
knowledge-based system this would cause communication bottlenecks due to lim-
ited communication rates at the interface to the control system.

If fast sampling is not possible, the use of validity intervals and time stamps to
indicate if a sensor value is still valid is one possibility. With this technique, facts
inferred by the system are marked with a currency interval that tells how long
they are valid. This techniques is computationally relatively inexpensive. The
technique can however only represent that a fact becomes unvalid due to elapsed
time. It can not represent that a fact becomes unvalid due to an occurred event.

To do this, a Truth Maintenance System must be used, which records the de-
pendencies between inferred facts and sensor values. As long as the sensor data
is kept up-to-date, the TMS will ensure that the knowledge base is consistent.
This method is however very resource intensive.

An important feature of the knowledge-based tools is that they can handle asyn-
chronous events in a timely manner. This involves interrupting the current rea-
soning activity and concentrate on more important matters. Focusing of attention
is related to this. If the real-time knowledge-based tools are implemented as a
set of interruptable knowledge sources controlled by a real-time scheduler this
can be achieved.

6.6 Conclusions

A system concept has been proposed. This is by far not complete. Most of the
details remain to be specified. The concept is impossible to evaluate before it is
tried on a real application. This is the goal for the main project within the IT4
frame.

Hardware and software requirements have not been given. This is also task for
the main project.

Conclusions

Today’s control systems are very good at handling quantitative knowledge. This
is expressed as procedures, control logics, and sequential logics. Control systems
are however very poor at representing the underlying, functional knowledge which
always is present. This knowledge is mainly qualitative.

Of the knowledge preceeding involved in the analysis and design phase preced-
ing the final programming of the control system, it is only the final algorithmic
representation and possibly some verbal explanations of it that can be put in the
computer. This results in control systems that are “black boxes” which often
cannot be understood by anyone else than the original programmer. All exper-
tise and underlying reasoning must be documented separately or communicated
verbally to the end users. Much knowledge is not transferred at all.

'Phe situation is cumbersome since it complicates improvements and extensions to
the process. The process operation and maintenance are also highly dependent on
a correct understanding of the function of the controlled process to, e.g., correctly
find the causes of faults. The problems are amplified in the current trend towards
highly automated processes. This leads to increased requirements on the process
operators. In the same time, the operators are not given corresponding assisting
tools with increased functionality.

Many of the problems are caused by the fact that the underlying design knowl-
edge is not included in the operational control system. To do this requires that
qualitative, heuristic knowledge can be represented and utilized.

Knowledge-based systems is an area within AI that focuses on the representa-
tion and utilization of qualitative, expert knowledge. Many knowledge-based
applications have been proposed and implemented in process control. So far, all

?
,,,

S

:

.
%
.
|
.
:
:
.
.

111

knowledge-based applications have been implemented on top of and separated
from the conventional control system. In the long run this is not the correct
approach. Problems arise during the integration of the knowledge-based system
with conventional computer systems. Multiple operator consoles are needed with
different man-machine interfaces. Redundant information is stored in both sys-
tems. An integration is therefore needed between knowledge-based techniques
and conventional control systems.

Furthermore, a future knowledge-based control system must contain the neces-
sary knowledge representation formalisms and programming paradigms that are
needed by the knowledge-based application. These must be identified, intro-
duced, and combined with conventional methods. Most of the projects that have
been performed only look upon one specific application. A general knowledge-

based control system must contain means of expression that are suited for a
multitude of applications.

The feasibility study has identified knowledge-based tasks and tools within pro-
cess control and different approaches for solving them. The approaches have been
studied with respect to the requirements they put on the underlying knowledge
representation. A common feature among many applications is the need for a
model of the process components, including the control system, and their inter-
actions. An object-oriented model is the usual way to achieve this. A second
common feature is the need to represent heuristic, experiential knowledge. This is
usually done in terms of rules. Therefore, a combination of object-orientation and
rules is a minimal, identifiable requirement on knowledge-based control systems.

Process control contains many real-time expert system applications. As such
they contain several difficult problems. In many projects this is not fully under-
stood. Instead, conventional expert systems intended for consultative, off-line
operation are used in real-time. This is not the correct way to solve the problem.
The real-time demands have a strong influence on knowledge representation and
knowledge-based system architecture that must be taken care of from the start.

There is currently a very high interest in knowledge-based applications within
process control. Commercial products are beginning to emerge. To succeed the
technique must however be integrated with conventional control systems. The
integration can only be performed through initiatives from the control system
manufacturers. The feasibility study has shown that the technical prerequisites
for an integrated knowledge-based control system exist.

A basic system concept has been outlined. The kernel of this concept is an object-
oriented, multi-perspective model of the process components and the control
system. The model allows several hierarchical levels. The multiple perspectives
are used to represent the different types of knowledge about an object that are
needed. Although the model is basically object-oriented, it allows the inclusion
of other types of knowledge such as rules and procedures.

112 Chapter 7 Conclusions

The model is surrounded by a set of tools. The tools have two functions. They
build up the users interfaces that different user groups need. The interfaces carn
be seen as transformations of the underlying model. They also implement the
different functions of the system. The functions are either knowledge-based or
use conventional techniques.

Travel Notes

A.1 Visit to Denmark, 15/2 — 16/2

During February 15 - 16/2, a visit was made to Denmark. The places visited were
the Servolaboratium at DTH, Soren T. Lyngsé, and F.L. Schmidt. The group
consisted of Claes Rytoft and Kent Bladh from ASEA, Bérje Rosenberg from
SattControl, Mats Petterson from Telelogic and Karl Johan Astrém, Karl-Erik
Arzén and Per Persson from the Department of Automatic Control.

A.1.1 The Servolaboratory, DTH — 15/2

Professor Morten Lind gave a seminar about MFM (Multilevel Flow Modelling),
which is based on his earlier work at Ris6 National Laboratory, where he worked
under professor Jens Rasmussen. MFM is described in Chapter 4. Morten Lind
did also present other research projects at the department.

SIP is a joint project between the Servolaboratory, University of Copenhagen,
and School for Architects in the Academy of Arts. The first phase of the project
is described by Lind (1987). The report contains a description of how a process
operator’s working-tasks have changed and what demands these changes put on
the system description and the system presentation. The paper also contains
suggestions of a new abstraction model and of a new graphical symbol language.
The language is based on MFM and the so called “time glass” metaphor.

113

114 Appendiz A Travel Notes

A.1.2 Séren T. Lyngsd - 15/2

Soéren T. Lyngsd (STL) is a supplier of equipment and systems in the areas of
telecommunication, industrial automation and ship automation. We met Gunni
Fredrikssen (General Manager of the Al Division), Finn Jensen (Technical Coor-
dinator of Al activities in STL) and Kjell Larsen.

As a spin-off from participation in ESPRIT-projects (ESPRIT- project 96, The
Expert System Builder, and an ESPRIT-project on how to use expert systems
on ships) STL has developed two Al-products for process control; ODIN which is
a tool for structured knowledge programming in process control applications and
TOR which is a run-time environment for the programs developed by ODIN.

The systems are based on UNIX, Common Lisp with FLAVORS and X- Windows.
ODIN currently runs on Al-workstations. Macintosch 11 with TD’s Lisp processor
is contemplated as a future run-time system for TOR.

ODIN is a general tool for development of large expert systems in the same spirit
as KEE. It especially supports the knowledge engineering and modelling. It has
well-developed facilities for object-oriented modelling. To facilitate modular and
well structured systems it has different layers adapted to the needs of different
experts involved in building the system. ODIN has been used for an in-house
diagnosis application based on the Multilevel Flow Model techniques developed
by Morten Lind described in Chapter 4. The application used a simulation of a
part of the Ris6 power plant. A demonstration was given of this.

The current price for ODIN was DKK 200.000:- and for TOR DKK 5.000:-.

A.1.3 F.L. Schmidt — 16/2

F.L Schmidt is one of the world’s largest suppliers of cement plants and ma-
chinery. The group visited Mogen Levin at the Research Lab. The reason for
visisting F.L Schmidt is their work in fuzzy control. Control of cement kilns is
the major application where fuzzy control has been successful. The work begun
in the beginning in the 1970s with the first installations between 1972 and 1975.
Since the beginning of the 1980s, F.L. Schmidt has delivered fuzzy controller for
cement kilns on a large scale.

The fuzzy logic controller of F.L.Schmidt is delivered as an option to FDL-SDR
(Supervision, Dialogue, and Reporting System). FDL-SDR is a computer-based
control module for applications in the cement and related industries. An ordinary
kiln controller consists of about 50 fuzzy rules.

F.L.Schmidt is a partner of the ESPRIT I, QUIC project. An overview of the
QUIC project was given. This project is described in Chapter 5. The main
motivation for F.L.Schmidt to participate in the project is that it gives them
resources to develop the next generation of the fuzzy controller that would have
been difficult to get from other sources. A demonstration was given of the fuzzy

A.1 Visit to Denmark, 15/2 - 16/2 115

controller in the QUIC toolkit. A demonstration was also given of a training
simulator for a cement process.

A.2 Visit to USA, 22/2 — 4/3

During February 22 to March 4, Karl-Erik Arzén, Sven Erik Mattson, and Bernt
Nilsson from the Department of Automatic Control visited USA. The main pur-
pose of the visit was to attend a one-week course on G2 at Gensym Corp. in
Cambridge, MA. The second week was spent visiting several companies and uni-
versities with related projects.

A.2.1 G2 course at Gensym Corp., 22/2 — 26/2

The G2 course was held by Mark Allen, responsible for training courses and
documentation on G2. During the course, several of the employees at Gen-
sym participated and gave lectures. The course was attended by eight persons,
Stephen Woo and Ron Pho from Exxon in Canada, Mohan Bhalodia from Exxon
in U.S.A, Chuck Noren from Martin Marietta, Per-Olav Opdahl from Computas
Expert Systems in Norway, and the three of us from Automatic Control. The
course gave a good feeling for the possibilities of G2 with many hands-on exercises
on Lisp machines. A general description of G2 is found in Chapter 3.

The first day consisted of a general introduction to G2 and a detailed description
of the object-oriented features of G2. The second day, the G2 simulator and the
different ways of referring to objects and attributes were described. The rule-
based part of G2 was covered during the third day and day four was devoted
to developing a G2 application. Finally during day 5, Michael Levin, the senior
programmer behind G2 gave information about the forthcoming developments
of G2. The next year will be devoted to creating a operator interface, supply
possibilities for transient objects and relations, add Grafcet inspired procedures,
improve the simulator, and add hierarchical objects. Whether Gensym will man-
age to carry out all these improvements or not is difficult to Jjudge. It is however
clear that even if they only succeed partly, G2 will be a very powerful system.

One experience of the course is the powerful capacities of the object-oriented
graphical system. In most examples and demonstrations, the graphical objects
are only used to represented physical components in the process and the con-
nections are used to represented physical interconnections among components.
The concept is however far more powerful than so. The graphical objects may
represent general abstract as well as concrete concepts and the connections may
represent general relations among objects. In this way it is possible to combine
process schematics with graphical, functional descriptions of the process. Exam-
ples were given where icon objects were used to represent activities in a process
planning setting.

116 Appendiz A Travel Notes

An interesting experience during the course was the change in attitude from the
industrial participants. During the first day, they were rather dubious towards
G2 and whether it was relevant for meeting industrial demands. However, as
the course went on they slowly changed their attitude and during the last day
they were more or less ready to sign contracts. An important criticism against
G2, however, was the total lack of user interface. The interface issues towards
existing control systems were also discussed frequently.

A final experience from the course is that it is very difficult to judge a system
like this before a larger application has been made.

A.2.2 Dep. of Chemical Engineering, MIT — 26/2

Bernt Nilsson visited Professor George Stephanopoulos, MIT, Cambridge, MA.
Prof. Stefanopoulos is well known for is work in knowledge-based systems applied
to chemical processes. He and his group are currently working on a project called
Process Design Kit. It is an environment for computer aided design of chemical
processes.

A.2.3 Foxboro Company — 29/2

Karl-Erik Arzén, Sven Erik Mattsson, and Bernt Nilsson visited the Foxboro
Company, Foxboro, MA. They met Edgar Bristol, Dick Shirley, Bill Pappe, and
Peter Hansen. First, a presentation of Foxboro’s new control system generation,
the JA (Intelligent Automation) Series was given. This system is based on IBM
PC compatibles and may be integrated with general IBM PC software. As an
example, Foxboro will sell IA systems together with the Personal Consultant
Ouqline expert system shell.

Foxboro started with research on expert systems in 1982. Foxboro participated
(together with Du Pont and the University of Delaware) in the Falcon project.
A demonstration was given of a alarm handling system implemented in Loops
that automatically, from the process schematics, generated causal models. Later,
the Foxboro Exact controller was discussed. Sven Erik Mattsson and Karl-Erik
Arzén gave a seminar where they presented the department, the CACE project,
Hibliz and the work on real-time expert systems.

A.2.4 Artificial Intelligence Technologies — 1/3

Karl-Erik Arzén visited Al Technologies, Hawthorne, New York and met their
director Michael Stock, George Yates, and Joe Cernada. Al Technologies is
a small company in the area of industrial expert system applications. Their
basic product is a toolkit that provided interfaces between DEC’s Common Lisp
and several VMS services such as DCL, GKS, RDB etc. AI Tech. also has a
background in relational databases.

|

A.2 Visit to USA, 22/2 - /3 117

Al Tech. is a customer-driven company and some of their buzzwords are Inte-
grated Al, Cooperating Expert Systems, and Distributed AL The main reason
for the visit was the system TunePro that AI Tech. has developed as a demon-
strator for Combustion Engineering. TunePro is a prototype of an on-line, expert
system based, plant-wide PID tuner that can handle single as well as cascaded
control loops. The method is based on introducing step changes in the set points
and measuring the reaction curves. The system was demonstrated.

A demonstration was also given of a “Intelligent Simulator” that simulated a
discrete event model of a potato chip fryer. The system was implemented on
a Vaxstation in Common Lisp using Mercury. Mercury is an internal AI Tech.
expert system shell that combines object-oriented modelling, rules, and strong
links to relational databases via SQL. The intelligence in the system came from
the use of object-oriented programming. The system was extremely slow.

A.2.5 IBM, Thomas J. Watson Research Center — 2/3

Karl-Erik Arzén visited Keith Milliken and Alan Finkel at IBM Thomas J. Wat-
son Research Center, Hawthorne, New York. This group is using RETE-based
production systems for monitoring of computer mainframes. The YES/MVS
system was an early OPS5-based version of the system were certain real-time
primitives were added to OPS5. From this, the language YES/L1 has been de-
veloped where production systems are integrated with the PL/I language. This
has recently been an IBM product under the name KnowledgeTool. Several ver-
sions of the system have been installed in an in-house computer center with good
results and good responses from the involved operators.

A.2.8 Dept. of Chemical Engineering, Columbia Univ, — 1/3

Bernt Nilsson visited Professor V. Venkatasubramanian at Columbia University,
New York. He presented his work on deep-model based fault diagnosis systems.
A demostration of the prototype system MODEX was shown.

A.2.7 Du Pont —2/3

Bernt Nilsson met Bjorn Tyreus at Du Pont, Newark, Delaware. Tyreus work
on object-oriented modelling of chemical processes was discussed. He also has
experience of several expert system applications at Du Pont.

A.2.8 Carnegie-Mellon University, 1/3 — 2/3

Sven Erik Mattsson visited Carnegie-Mellon University, Pittsburgh, PA. He met
Art Westerberg at the Chemical Department. They are developing a general
modelling language called ASCEND with many similarities to the CACE project
in Lund. He also met Ingemar Hulthage at the Robotics Institute, which is an

118 Appendiz A Travel Notes

independent research institute at CMU with a number of projects in the expert
system area. Hulthage had developed an expert system for the design of Al-Li
alloys sponsored by Alcoa.

A.2.9 Systems Research Center, 3/3 — 4/3

Karl-Erik Arzén, Sven Erik Mattsson and Bernt Nilsson visited the Systems
Research Center (SRC) at the University of Maryland. SRC is a NSF funded
national research center. The two days contained a very extensive programme.
Some of the persons that they met were Professors Odd Asbjornsen and Thomas
McAvoy at the Chemical Department. An expert system for distillation column
design, DICODE, was demonstrated. John Baras the director of SRC gave a talk
on some of their reserach programmes. These included expert systems for signal
processing, control of large flexible structures, adaptive routing in communication
networks, and production scheduling for manufacturing. A common factor in the
project was the intention to use the p-Explorer.

Mohammed Modarres at the Chemical Department gave a talk on his work in
deep model-based fault diagnosis using the goal-tree/success-tree concept. A
demonstration system for a reactor has been implemented that can handle 180
signals in real-time. The system is implemented on a Vaxstation and an IBM
AT. Kevin Balon and Larry Lebow described their work in expert control.

A.3 Visit to the UK, 25/4 — 28/4

Claes Rytoft and Anders Aberg from ABB, Borje Rosenberg and Lars Pernebo
from SattControl, David Lundberg from Telelogic, and Karl-Erik Arzén and Sven
Erik Mattsson from The Department of Automatic Control visited the U.K. April
25 — 28.

A.3.1 Intelligent Automation Lab, Heriot-Watt Univ., 25/4 — 26/4

On April 25'th, Karl-Erik Arzén and Sven Erik Mattson visited Roy Leitch at the
Intelligent Automation Lab, Heriot-Watt University, Edinburgh, Scotland. Dr.
Leitch has been active in knowledge-based control since 1982. He is currently
involved in a lot of ESPRIT activity. The day was devoted to discussion on future
collaboration between Heriot-Watt and the Department of Automatic Control.
Matters that were discussed were a possible joint ESPRIT Basic Research Action
proposal on Reasoning under time-constraints and a collaboration between the
CACE project and new ESPRIT II project concerning Training simulators based
on qualitative reasoning. Sven Erik Mattsson and Karl-Erik Arzén gave seminars
on the CACE project and expert control.

A.8 Visit to the UK, 25/4 - 28/4 119

On April 26’th, the rest of the group joined. Dr. Leitch gave a presentation of
his involvement in the RESCU project and the ESPRIT I, QUIC project. These
projects are described in Chapter 5.

A.3.2 The AI Department, University of Edinburgh — 26/4

The AI Department has groups in the fields of Theorem proving, Natural lan-
guage, CAD-design and Robotics+Vision. We were visiting the Robotics labo-
ratory under the leadership of Dr Chris Malcolm.

Dr Malcolm showed us an experimental system for automatic assembling using
a robot and automatic planning.

There were two main inputs to the system. One was the description of the final
product in terms of the external shape. In the demonstrated cases the shapes
were a cube and a sofa. The position of the final product was also included.

The second input was the description of the different parts and their approximate
positions. The parts consisted of smal cubes glued together in different shapes.
They were glued together in an inexact way in order to get non-ideal and un-
certain shapes of the parts. It was possible to combine the parts in hundreds of
ways to get the final shape.

The description of the environment to the assembly task was not regarded as a
normal input. The environment consisted of the robot, the ground floor (a table
surface), a big cube used as a fixture and a stick used as a robot tool.

The first activity for the system was to generate a plan of all robot actions in
order to get the assembled final product out of the initial state. After that, the
robot performed the assembly using the derived action plan. No precise fixture
was used, the big cube had an inexact position. This cube was used in cases
where there was a need for the robot to take a new grip on a part.

The planner was hierarchical with refinements of the plan on lower levels. The
representation of the objects in the planner was precise without any uncertainties.
Thus the generated final plan would be ideal in nature. Uncertainties in dimen-
sions, positions etc were taken care of in the assembling stage using "feed-back”
ways of thinking. Dr Malcolm said, this was the key to their success.

The top level in the planner did only concern with the question of how to combine
the parts to the final product. This level was only dependent on information of the
parts and the product. No manufacturing equipment information was included.
The next level included the need for the robot to have enought space for the
gripping tool in the final assembling stage. The third level looked upon the
gravitational stability of the parts in their different positions and orientations.
This was needed as holding fixtures were excluded. The parts had to rest stable
in the positions they had been put into.

120 Appendiz A Travel Notes

Other levels dealt with orientational planning of the parts and regripping as a
mean to extend the number of orientations of the parts. A primitive optimization
of plans existed. Direct movements of parts from initial to final position were
prefered over movements involving regripping.

The planner was programmed in PROLOG. The user interface was primitive but
understandable.

During the assembly phase the robot pushed the parts to known positions by
using the stick tool and a special pattern of movements. The final adjustments
were made by the gripping tool. Dr Malcolm said, this was used as a cheap
solution instead of tactile sensors and vision. Vision will be included later this
year.

We were quite impressed by the demonstration. The assembly task seemed to
be quite advanced. The CAD-design Al group seemed to be interested in in-
corporating above ideas in their integrated CAD system. The Turing institute
(Glasgow) did also show interest in the demonstration.

A.3.3 Applied Institute for Artificial Intelligence (AIAI) — 26/4
The Al activities at The Edinburgh University are divided into four departments:

o Department of Al, dealing with natural language, robotics, vision, theorem
proving, etc.

o AIAI (Artificial Intelligence Application Institute) with 30 persons divided
into three groups. A knowledge based planning group, a knowledge represen-
tation and expert system group and a programming system group. AJAT is
the commercial part of the Al Department.

o Centre for Speech Technique Research (CSTR).

o Cognitive science and computer science.

In these four departments there are approximately 120 employees.

The AIAI

We visited Ken Curry working in the planning group at AIAL This group is
mainly working with knowledge based techniques for nonlinear planning.

The idea behind AIAI is to spread Al technology to the industry. To do this,
AIAI have collected and developed various AT tools that people from industry
can come and learn how to use. AIAI supports the industry with training and
education on these tools. The institute is completely financed by its customers.

A.3 Visit to the UK, 25/ - 28/4 121

The planning group is mainly working in the area of non-linear planning. The
domains they have experience of are primarily in the non real-time area. Their
opinion is that there is very little done in knowledge based planning in real
time environments. They are trying to develop knowledge based system able to
combine classical planning with scheduling and simulation. Research areas are
e.g. net theory and knowledge representation using graphs. These methods are
used to represent the actions and achievements of operators at work.

Their overall goal for the research in knowledge based planning is to include
the whole life cycle of process control. All knowledge should be contained in a
common representation.

Using results from the NONLIN system for non-linear planning they have devel-
oped a tool called OPLAN (Open PLANning architecture). This tool is written in
POP and supports the use of a blackboard architecture. The tool contains heuris-
tic knowledge about planning and uses domain independent pruning techniques.
They hope to use this tool in real applications, one possibility is a proposed
ESPRIT II project with GEC, ICL and CRI concerning scheduling.

A.3.4 PA Computers and Telecommunications - 27/4

PA is an international management and technology-oriented consulting group
that is represented in 22 countries and which has 2400 employees. PA Computers
and Telecommunications is a division of PA with a staff of 350 people. We met
R A E Sargeant and Paul Sachs.

The company has developed a real-time expert system called ESCORT and clajms
to be ”the leading real-time expert system supplier in the world”,

The development started with a demonstration system in 1985. It was followed
by a feasibility study 1986 especially in the areas of off/on shore, oil & gas and
food industry. 1987 the specification of the system was completed and 1988 a
full implementation was expected. The first real system, a very big oil& gas
application for BP, was to be delivered in J une 1988.

ESCORT is a real time expert system which "reduces cognitive overload on oper-
ators” in control rooms. It can enable crisis avoidance action to be taken before
alarm systems respond. It is limited to this type of applications. New appli-
cations, eg for planning, require development of specific new modules. No such
development of new applications has been done.

ESCORT is not a control system. It only handles the reasoning process in a
real-time control system. To do this it needs two computers, one for the Al
computation and one for communication with a database and communication
with a process computer for the traditional part of a process control system.
Connected to the Al-computer is one operators interface and one engineers in-
terface.

122 Appendiz A Travel Notes

ESCORT is dedicated to monitoring and diagnosis. It is based on causal rela-
tionships that are defined for the components in the plants. A causal network is
created which is compared against measurements from the plant. Mismatches are
indications on failures. ESCORT has possibilities to store historical information.
This is done by incrementally saving the causal networks for different situations.

A demonstration was given of the prototype system. It was connected to a real-
time simulation of a part of a plant. The operator interacted with ESCORT
through a touch-sensitive screen. The output from ESCORT was a priority list
of problems in the plant that required the operators attention. The operator
could ask for advice and explanations on the problems.

Present ESCORT system requires a Symbolic 3600 as Al-computer and a uVax
as communication computer.

Loops was used in the first prototype. In the current version, KEE is used for the
object-oriented parts of the program but only for compiling knowledge and not
in run-time. The engineering interface comprises 80% of the code. All procedural
knowledge has to be processed by the process computer. Garbage collection is
avoided by internal memory management.

10 man years have been spent developing ESCORT.

Typical current cost of an ESCORT system: Hardware £ 140.000 + Software —
AI/MMI £ 250.000 + Application software and management £ 250.000.

A.3.5 Cambridge Consultants Limited — 28/4

David Lundberg, Sven Erik Mattsson, Lars Pernebo and Anders Aberg visited
Cambridge Consultants Limited, Cambridge and met Jeremy N Clare (Consul-
tant, Instrumentation and Systems Division), Roberto Zanconato (Artificial In-
telligence) and Richard Stobart (Control Engineering).

Cambridge Consultants Limited was set up in 1960. The company’s aim is to
help clients improve their business performance through the effective application
of technology. CCL now employs more than 200 people, and is a subsidiary
of the international consultancy group Arthur D. Little. Its clients range from
governments and multinationals to new venture-backed companies, and are sit-
wated all over the world. 60% of the work results in manufactured hardware
and software. Examples of applications are cutting of silicon wafers, wrapping
of chocolate bars, measurement of thickness of sea ices from a helicopter and a
vehicle for inspection of road surfaces.

MUSE

Our motive to visit CCL was to learn about MUSE, which is a toolkit for the
development of real-time applications of artificial intelligence. By real-time they

A.3 Visit to the UK, 25/4 - 28/4 123

mean that it should respond to external events within the timescale of the appli-
cation; it should be run-time efficient, support interrupt handle, allow prioritizing
of events, have an interface to outside world. A detailed description of MUSE is
found in Chapter 3.

MUSE contains a language system, a development package and an example de-
livery system. The development system contains a structure editor, run-time
browser, run-time debugger and a static knowledge base checker.,

MUSE is available on Sun workstations and will be ported to VAX/VMS. The
current commercial network site price is GBP 25000 and a single licence is avail-

able for GBP 15000. The university prices are GBP 8000 and GBP 5000.
Applications of MUSE

The existing applications of MUSE are in the area of alarm handling and con-
dition monitoring. They had one system for analysing alarms from a helicopter
engine. It could explain the reason for the pilot and advice him whether he could
neglect the alarm and continue the flight or if he should land as fast as possible
or when convenient. They also had systems for on-line condition monitoring of
diesel engines. It had to cope with variations in fuels and could predict mainte-
nance. You want to predict maintenance so you can do it when the ship isin a
harbour and avoid break downs at sea.

The very first application, which actually started the development was a military
situation assessment problem. It tries to assess the situation when you have two
ships and a number of hostile aircrafts approaching them. The goal is to come
up with a defence strategy; at which aircrafts should the ships fire?

A more control oriented application was selection of control modes for position
control of a hoover craft with two types of thrusters. It assessed the environment:
the direction and speed of wind, tide and waves. It evaluated the performance of
the system: trends and saturating controllers.

They also considered the possibilities to combine rules and numerical procedures
like Kalman filters for conditioning monitoring and estimation of system state
and system parameters.

A.3.6 SIRA Ltd — 28/4

Claes Rytoft, Borje Rosenberg, and Karl-Erik Arzén visited SIRA Ltd in Chisle-
hurst, Kent. SIRA is a non-profit company that mainly is dealing with technology
services and research and development. The company was founded 1918 by the
UK-government. Today the company have 250 employees and the chairman of
the Sira group is Dr. John Alvey.

SIRA:s R & D department consists of an industrial part and a Military & Space
department. The Industrial department has three groups of which one is the KBS

124 Appendiz A Travel Notes

(Knowledge Based System) group that we visited. The KBS-group is headed by
Dr. J C Taunton. The group has been working with KBS-technique since 1984
and one of the main activities have been to organize 2 expert systems club.
Between 1984-87 this club had about 60 companies as members, must of them
UK-based. Within the club there have been different sub-committees dealing
with specific tasks, such as:

Rule-based KBS and fuzzy control: Most of the work here was done by SIRA and
British Petroleum (BP). SIRA has developed their own fuzzy controller named
LINKMAN, that is sold commercially mainly to the cement industry.

Troubleshooting: The work in this group was mainly done by SIRA and British
steel. The project name is SAVOIR.

Alarm management: This group mainly concentrated on power generation and
their main tool was PICON.

Process scheduling and planning: This group has made prototype implementa-
tions for the food, glass and oil business using KEE.

Since the beginning of 1988 STRA has restructured their Expert system club
which today has about 30 members, whereof 2 or 3 is non-UK companies. The
new club has started one activity aimed for process management. The project
runs for about 9 months and the main tool is KEE on a Texas Explorer. The
goal for the project is to try to show that a KBS-system could handle more than
one task at the time, and to show that a KBS-system does not have to be rule
based. Their priority of the tasks is diagnose, maintenance, optimization and
control.

The important issues in knowledge-based control according to their views are
reasoning about time and knowledge representation.

The ideas at SIRA are very close to ours. They were interested in maintaining
contacts with us during the project.

A.4 Visit to CRI, Denmark, 4/5

Claes Rytoft, Borje Rosenberg, David Lundberg, and Karl-Erik Arzén visited
CRI (Computer Resources International). They met AAge Jonasen, Michael
Jepsen, Bent Madsen, Ole Ravntoft, and Brian Wheeldon. CRI have approx-
imately 260 employees. The company is divided into the following six depart-
ments.

A.4 Visit to CRI, Denmark, 4/5 125

e AIP (Advanced Information Processing) department
e Software Services
e Software Tools

e Manufacture Automation (PROCOS)
e Space

e Defence & Community

The AIP department, that we visited, is participating in several EC project.
Among these are three ESPRIT projects, GRADIENT, Eurohelp and ESCORT
and one RACE project called ADVANCE. Our hosts at CRI where all working
in the GRADIENT project. A description of GRADIENT is found in Chapter 5.

CRI uses the GRADIENT prototype to control a packet switching data network.
The network is simulated in a SUN computer. The network is designed using
KTAS datapak network PAXNET as an example. The prototype is implemented
on two T1 Explorer computers. One is hosting the network description and one
the QRES alarm handling system. When the prototype is completed, the SES and
RESQ expert systems should run on another TI Explorer. As long as Strathclyde
is not ready with the graphics, the demo system has to use KEEPICTURES in
KEE for the user interface. This makes the prototype so slow that it is quite
impossible to use. The response time for changing one single KEEPICTURES
window on the TI Explorer is about 45 seconds Just to call a pop-up menu takes
about 15 seconds.

A quite interesting concept is used in the GRADIENT project. Several expert
systems are solving different tasks in process control. These expert systems
exchange data and knowledge over communication links. Deep knowledge is
used in the process description and rule-based expert system can use this process
model in the reasoning process.

Future directions

Design knowledge stored in the process models should come directly from the
designer. An important trend will be to develop tools for the designer, making
it possible to automatically extract the process knowledge when designing or re-
designing the process. The fault diagnosis will probably always need unstructured
expert knowledge, added to the expert systems in the traditional way.

Competence Profile

B.1 Asea-Brown Boveri AB — ABB

ABB is one of the worlds largest electro-technical companies. The Swedish part
of ABB delivers electronic equipment and automation systems to a yearly revenue
of about 4.000 MSEK of which 70% comes from export. To be a leading supplier
of automation systems is a prerequisite for delivering complete plants which is
large part of ABB’s business. An important part of ABB’s R & D is therefore
focussed on this area.

ABB belongs to the technological forefront in many areas. Some examples are
robotics, technique for power system monitoring, and automation systems. ABB
is represented in the IDEON Research Park in Lund since 1983. In Lund, the
work is concentrated on R & D in man-machine systems, control and optimization
of distant heating networks, and advanced sensor electronics. ABB in Visteras
has a Corporate Research Group in AL Similar groups exist is Heidelberg and
Baden. ABB is one of the members of the ESPRIT 1 project GRADIENT and
also a member of the COGSYS industrial club.

B.2 SattControl AB

SattControl is among the world leaders in process control and automation. The
company has a broad competence within information technology in general.

10

B.2 SattControl AB 127

SattControl belongs to the technological forefront in man-machine communi-
cation systems and develops process control languages, MAP communication
systems, database techniques, work cell computers for CIM and FMS applica-
tions, real-time programming, and knowledge-based systems. SattControl AB
has about 1.100 employees and belongs since one year to the Alfa-Laval group.

The R & D group is located in Lund and consists of about 100 persons. The
marketing is done both by wholly-owned market companies, whereof 10 is outside
Sweden, and by Alfa-Laval’s world-wide organization,

B.3 Televerket and Telelogic

The Swedish Telecommunications Administration (Televerket) is a government-
owned enterprise and public utility with about 50.000 employees. Televerket
plays a dominant role in the telecommunications community based on its large
investments, industrial organisation, and extensive R & D on new services and
products within telecommunication systems. A large part of the R & D on
programming methodology is placed at the subsidiary company TeleLogic.,

TeleLogic develops and markets technique, products, and services for system
development based for instance on SDL and Ada. The company also perform
consulting within the communication area, TeleLogic has a partly-owned mar-
keting company in Bruxelles and cooperates with TeleSoft, San Diego on ADA.
TeleLogic is established at 7 places in Sweden and has in all about 250 employees.
The Malmé branch of TeleLogic is focused on tools and methods for SDL, sys-
tem development methodology, and base techniques for AT and knowledge-based
systems. It consists of about 80 persons.

B.4 Department of Automatic Control, Lund

The department of Automatic Control at Lund Institute of Technology has about
30 persons. The department is headed by Professor Karl Johan Astrém., There
are six persons at the professorial level. Twenty-nine DSc degrees have been
awarded, and more than 370 students have made MS theses at the department.
The group has a wide experience in adaptive control, computer aided control
engineering, robotics, real-time programming, real-time knowledge-based systems
and control applications. The department has good computing resources in the
form of VAX, Sun, Silicon Graphics, Symbolics, Mac I and a good control library.
The department has access to G2 and KEE. The department also has excellent
relations with industry.

Dr. Karl-Erik Arzén has recently finished his Ph D thesis “Realization of Expert
System Based Feedback Control”. In this work a real-time, blackboard based

128 Appendiz B Competence Profile

expert system shell has been developed and implemented (Arzén, 1986a; 1986b;
1987; Astrém and Anton, 1984; Astrdm et al, 1986).

Dr. Sven Erik Mattsson is the project leader for the Computer Aided Control
Engineering (CACE) project. The project is aimed at developing an environment
for modelling and simulation. The concepts which are used are hierarchical mod-
els with model classes, multiple realizations, and symbolic equations for knowl-
edge representation (Mattsson, 1988a; 1988b; Elmqvist and Mattsson, 1986). A
prototype of this system is currently being implemented in KEE.

The department have also a project where an expert system is used as an intelli-
gent front-end to an interactive package for systems identification (Larsson and
Persson 1986; 1987). This project has led to two licentiate theses.

i
E
|
|
|
g

Glossary

Active value

Agenda

Antecedent
Application-specific system

Artificial Intelligence

Attribute

Autonomous system

Backtracking

Frame attribute to which a procedure, or
demon, is attached. The procedure is exe-
cuted when the attribute is changed or re-

ferred to. The programming style is called
access-oriented.

A prioritized list of waiting activities. Used

in blackboard systems to schedule knowledge
sources.

The IF-part of a production rule. Other
names are premise and condition.

Knowledge-based system framework aimed
at a specific type of applications.

A subfield of computer science, which accord-
ing to one definition is the study of how to
make computers do things at which, at the
moment, people are better.

A property of an object. Also called slot.

A system that solves problems without hu-
man intervention. Autonomously guided ve-
hicles and sonar interception systems are
some examples.

A search strategy that makes guesses at
several stages in the search procedure. If
a guess gives an unsatisfactory result, the
system backtracks and makes a new guess.

1 an

130

Backward chaining

Blackboard

Blackboard architecture

Causal model

Certainty factor

Circumscription

Class

Cognitive science

Compiled knowledge

Appendiz C Glossary

Could be dependency-directed or chronologi-
cal. Chronological backtracking always back-
tracks to the latest guess made.

An inference method where the system starts
with what it wants to prove and then tries to
find the necessary facts in the data base or
as the conclusion of a rule. Also known as
goal-directed search. Contrast with forward
chaining.

A data base used by several independent
knowledge sources to exchange information
about the problem solving and to store the
problem solving state.

An expert system architecture in which sev-
eral independent knowledge sources each ex-
amine a common data base, called a black-
board. An agenda-based control system con-
tinually examines all of the possible pending
actions and chooses the one to try next.

A model of a physical object that expresses
the causal relations among the involved sig-
nals, or events.

A number that measures the certainty, cred-
ibility or confidence a fact or rule has.

A technique for formalizing certain notions
in nonmonotonic reasoning. It corresponds
to minimizing the number of objects having
certain properties. In effect, one is consid-
ering conjectures that for certain properties
P, an object = does not have P unless it is
required to do so. Developed by McCarthy.

A group of objects that share the same
attributes and behavior. Organized into an
inheritance lattice.

An interdisciplinary research area concerning
the principles by which intelligent entities
interact with their environment. Includes
topics from psychology, computer science,
physiology, philosophy, engineering etc.

Knowledge that has been structured and
compiled into a form that is efficient for ex-
ecuting. The heuristic knowledge of, e.g., a
human process operator can, e.g., be com-
piled into a production rule format.

Composite object

Concept

Conflict resolution

Connectionism

Control (of a KBS)

Data-driven

Declarative knowledge

Declarative programming

Deep knowledge

Default reasoning

Demon

131

An object whose attribute values are other
objects.

Used as a designation for real or abstract
objects and terms, that are represented in
a knowledge-based system.

The technique of resolving the problem of
multiple matches in a rule-based system.

A highly parallel computational paradigm.
Pieces of information are represented by
very simple computing elements that com.
municate by exchanging simple messages,
Complex computations are carried out by
virtue of massively parallel interconnection
networks of these elements. Self-learning
abilities.

The method used by the inference engine to
regulate the order in which reasoning occurs.
Backward chaining, forward chaining, and
blackboard agendas are all examples of con-
trol methods.

An approach to problem solving that starts
from current or initial information and em-
ploys forward chaining,

A description of what is, Contrast with
procedural knowledge, which is a description
of how to.

An organizational technique for computer
programs. The wanted result and precon-
ditions are stated instead of a step-by-step
description of how to solve the task. Con-
trast with procedural programiming.

Knowledge of basic theories, first principles,
axioms, and facts about a problem domain.
Often in the form of a model of the behavior
of the problem domain. The model could be
expressed as, e.g., a causal model.

Patterns of inference that permit drawing
conclusions suggested but not entailed by
their premises. Especially important for
systems that must reason from incomplete
information.

A procedure that is attached to a frame
attribute. The procedure is executed when

132

Dependency-directed backtracking

Empirical knowledge

Experiential knowledge

Expert control

Expert system

Expert systemn framework

Expert system shell

Explorative programming

Facet

Appendiz C Glossary

the attribute is changes or referred to. The
programming style is called access-oriented.

A problem solving technique for evading con-
tradictions. Is invoked when the problem
solver discovers that its current state is in-
consistent. The goal is, in a single oper-
ation, to change the problem solver’s state
to one that contains neither the contradic-
tion just uncovered nor any contradictions
encountered previously. This is achieved by
consulting records of the inferences the prob-
lem solver has performed and records of pre-
vious contradictions.

Knowledge based on empirical or experiential
observations of a process.

Knowledge based on empirical or experiential
observations of a process.

Seeks to extend the range of conventional
control algorithms by encoding general con-
trol knowledge and heuristics in a supervi-
sory expert system.

A computer program that uses expert knowl-
edge to attain high levels of performance
in a narrow problem area. The results are
compatible with those of a human expert.
Knowledge-based system is sometimes used
as a synonym.

A computer environment that provides dif-
ferent tools for implementing expert systems.
One or many knowledge representation tech-

niques are supported. Also expert system
shell.

A computer environment that provides dif-
ferent tools for implementing expert systems.
One or many knowledge representation tech-
niques are supported. Also expert system
framework.

Programming without any given specifica-
tions. Requires powerful and flexible pro-
gramming environments and programming
languages that support rapid testing and
prototyping.

Describes an attribute in a frame system.
One facet is the value of the attribute. Other

First generation diagnosis system

Forward chaining

Frame

Frame axioms

Frame problem

Functional views

Fuzzy controller

Fuzzy logic

Garbage collection

133

facets may give additional documentation,
specify allowed data types of the attribute
value, or record justifications for the at-
tribute.

Knowledge-based diagnosis system based on
empirical knowledge, usually represented as
rules, of how fault symptoms and causes
relate.

A problem solving technique where hypothe-
ses are verifies by starting with known facts
and trying to make deductions from these.
The same as data driven. Contrasts with
backward chaining,.

A knowledge representation scheme based on
the idea of a frame of reference. A frame
consists of slots or attributes that describe
the features of the frame. The slots are
further described by facets.

Axioms that describes which facts that are
changed by an event and which that are not,
Only possible in closed worlds.

A problem in temporal reasoning. In order
to reason about the effect of an event on the
world, it is necessary to assert not only what
effects it has on the worlds but also what
effects it does not have.

Knowledge views related to the activities,
functions or services that the process control
system is expected to supply to the organi-
zations employing it. Also service views,

A controller based on rules of how the con-
trol variable be selected based linguistically
quantized values of the measured variables.
Uses fuzzy logic to describe the quantized
values.

A logical theory where the truth values ’true’
and ’false’ have been replaced with more
approximate values like 'not very true’, 'not
likely’ and ’very unlikely’,

A background activity where free memory
are reclaimed to the programming system.
Important in languages with dynamic mem-
ory allocation, e.g., Lisp.

134

Goal-directed system

Heuristic

Hierarchical planning

Hybrid system

Hypertext

Induction system

Inference

Inheritance

Inference engine

Instance

Instantiation

Job shop scheduling

Appendiz C Glossary

An inference method where the system starts
with what it wants to prove and then tries
to find the necessary facts in the data base
or as the conclusion of a rule. Also known
as backward chaining. Contrast with data-
driven system.

A rule or some other piece of knowledge that

is based on experience or observation: a rule
of thumb.

Top-down planning that allows macro ac-
tions which themselves may be plans.

An expert system shell that allows a variety
of different knowledge representation tech-
niques.

A technique that extends the traditional no-
tion of “flat text” files by allowing more com-
plex organizations of the material. Mech-
anisms that allow direct machine-supported
links from one textual chunk to another and
new interactive interface techniques allow the
user directly interact with these chunks and
to establish new relationships between them.
Hypermedia also includes non-textual infor-
mations such as images, time series signals,
audio recordings etc.

A system that can deduce rules from a
material consisting of many examples from
the problem area.

The process of drawing conclusions from
premises.

A process where new objects in a hierarchical
structure can get new attributes deduced
from more general objects in the structure.

The part of a knowledge based system that
contains the general problem-solving knowl-
edge.

An object that describes a unique member of
some object class.

The process where a new individual of a
certain type is created.

The job shop scheduling or factory schedul-
ing problem concerns the allocation over time

Knowledge

Knowledge acquisition

Knowledge base

Knowledge-based system — KBS

Knowledge elicitation

Knowledge engineer

Knowledge representation

Knowledge source

Knowledge tools

Learning control

Lisp machine

Local fault model

135

of a finite set of resources to specific man-
ufacturing operations such that the orders
for parts are received by the factory are pro-
duced in a timely and cost-effective fashion.

Information that is used to behave in an
intelligent way.

The process of acquiring, structuring and
organizing the knowledge of a particular
domain, Also knowledge elicitation,

The part of a knowledge based system that
contains the knowledge.

A computer system that contains knowledge
and is able to reason with that knowledge
to reach solutions. Sometimes a synonym to
expert system. See expert system.

The process of acquiring, structuring and
organizing the knowledge of a particular
domain. Also knowledge acquisition.

The person who designs and builds the ex-
pert system. This person should have expe-
rience of artificial intelligence methods.

Formalisms used to represent knowledge. By
using these formalisms, it is possible to han-
dle and manipulate the knowledge. Typi-
cal formalisms are semantic networks, frames
and predicate logic.

Knowledge module in a blackboard system.

Provide the different user views and perform
the different tasks in the process control
system. Terminology used in in the basic
system concept in Chapter 6.

A combination of AI techniques and control
theory that utilizes various learning schemes
for control purposes. Also intelligent control
and self-organizing control.

Workstation with dedicated hardware for
Lisp execution. Has very powerful program-
ming environment.

A model that relates faults in a physical
component with possible causes internal to
the component.

136

Mental model

Message passing

Method

Modal logic

Modus ponens

Monotonic reasoning

Multilevel flow models - MFM

Multiple inheritance

Multiple perspectives

Multiple worlds

Appendiz C Glossary

The human operator’s apprehension of how
the process behaves.

Communication method between objects in
a object-oriented system. Supports data
abstraction and generic algorithms.

Procedure associated with an object that
responds to a certain message.

A logic system that includes the notions of
necessity and possibility. A proposition is
necessarily true if it could not be the case
that it was false. A proposition is possible if
it is not necessary that it be false

An inferencing rule which says that whenever
a fact A is known to be true and there is
an implication A = B, it is permitted to
conclude that B is true.

A logical system where axioms that have
been stated and conclusion that have been
drawn are not allowed to change during
the reasoning process. The set of beliefs
is monotonically increasing. The case for
standard logic systems.

A technique for describing physical systems
that emphasizes functional relations among
the involved components. Systems are de-
scribed in terms of goals, functions, and com-
ponents. Two main abstraction relations ex-
ist: the part—whole relation and the means—
ends relation. Developed by M. Lindh.

An inheritance mechanism where a class may
have more than one superclass. Contrasts
with single inheritance.

Used in some object-oriented system for the
case when a single object, at every time, can
be seen as the instance of one out of a set
of classes. It can be seen as a special kind
of multiple inheritance where the behavior
and attributes from the inherited classes are
kept separated in the object instead of being
combined together.

Represents alternative states of knowledge in
which different assumptions have been made.
They allow the problem solver to set up hy-
pothetical assumptions which automatically

Neural network

Nonmonotonic reasoning

Object-attribute-value triplets

Object-oriented programming

Ontological knowledge

Opportunistie reasoning system

Organizational views

Predicate logic

Premise

Procedural

Procedural knowledge

137

are withdrawn when worlds are deleted. Also
multiple viewpoints and hypothetical worlds.

Connectionist system modelled after the neu-
ron structure of the human brain.

A knowledge based system allowing new
information that can make old deductions
become false. This is very important when
information changes during execution.

A way of storing knowledge in an object-
oriented system.

A style of programming based on directly
representing physical objects and abstract
concepts in the machine. The basic entity
is the object which has a local state and a
behavior. Objects are asked to perform oper-
ations by sending messages to them. Exam-
ples of programming languages are SIMULA
and SMALLTALK.

Knowledge based on theoretical knowledge
which is analytic and derived from first prin-
ciples.

A reasoning system that changes inferencing
strategy depending on the problem solving
state.

Knowledge views related to the different
organizations or user groups that interact
with the process control system. Also user
views.

A classical logic which is based on the use
of predicates to express relations among ob-
Jjects. The formal basis for Prolog. Also pred-
icate calculus or first order logic.

The IF-part of a production rule. Sometimes
it is called ’antecedent’. The THEN-part is
called 'conclusion’.

A technique for organization of programs,
by using a step by step description of how
to solve a problem. The opposite word is
declarative.

A description of how to. Contrast with
declarative knowledge, which is a description
of what is.

138

Process

Process control

Process control system

Production system

Production rule

Propositional logic

Qualitative models

Qualitative knowledge

Quantitative knowledge

Recognize-act cycle

Rule

Rule based system
Script

Appendiz C Glossary

The controlled flow of matter, energy, or
information from generation (source), via
transport, storage, distribution, and change
to consumption (sink). The flow may be
discrete or continuous.

The different tasks that interact with a spec-
ified process and with the different users of
the process.

The system that controls and supervises the
the operation of a process.

A rule-based system where rules or produc-
tions are matched against the contents of a
working memory and executed by forward
chaining inferencing.

A type of rule in a knowledge based system,
usually expressed as an IF-THEN statement.

A classical logic which is based on proposi-
tions without any internal semantics.

Models of a process in the terms that a hu-
man uses when describing and analysing the
process. Used for simulation and analysis.
Based on the ideas in Naive Physics.

Knowledge about and based on matters that
cannot be measured quantitatively.

Knowledge about and based on matters that
can be numerically measured. An differential
equation model is one example.

The execution cycle of a forward chaining in-
ference engine. Fulfilled rules are collected
during the match phase. During the select
phase one rule is chosen for execution. Dur-
ing the act phase the right hand side of the
rule is executed.

A formal way to specifying a fact, directive or
strategy. The most common way to represent
it is by the IF-THEN construction.

A program organized as a set of rules.

A knowledge structure containing a stereo-
type sequence of actions.

Second generation diagnosis system Knowledge-based diagnosis system based on

deep-level or first principles knowledge about
the problem domain.

Semantic network

Service views

Single inheritance

Situation calculus

STRIPS assumption

Superclass—subclass hierarchy

Tasks-tools-roles model

Temporal logic

Time constrained reasoning

Truth maintenance system

User views

139

A knowledge representation method based
on a structure of nodes that represent objects
and named arcs between the nodes that
define attributes and relations.

Knowledge views related to the activities,
functions or services that the process control
system is expected to supply to the organi-
zations employing it. Also functional views.

An inheritance mechanism where a class may

have only one superclass. Contrasts with
multiple inheritance.

A temporal formalism where a situation is a
snapshot of the universe at a given moment.
Actions are the means of transforming one
situation to another.

States that the only facts that are changed
by a plan operator is the ones which are
explicitly named in the add and delete list
of the operator. A way to handle the frame
problem in closed worlds.

A directed graph that describes the relations
among object classes. A subclass inherits
behavior and attributes from its superclasses.

A model of process control. It consists of
the tasks to be performed in order to assure
proper function of the controlled process,
the tools that do this, and the roles which
interact with the tools. The roles represent
single users or user groups.

A logic system that includes time intervals
or time instants and the truth relations over
time.

The situation where a reasoning system must
be able to come up with the best solution
before a certain deadline.

A system that revises sets of beliefs when
new information is found to contradict old
information. Inconsistencies in the set of
beliefs are resolved by using dependency-
directed backtracking to alter the minimal
set of beliefs which is responsible for the
contradiction.

Knowledge views related to the different or-
ganizations or user groups that interact with

140 Appendiz C Competence Profile

the process control system. Also organiza-
tional views.

Validity interval A time interval that tells how long the
associated fact is valid.

‘Working memory The fact database in a production system.

References

ALLARD, J.R. and W.F. KAEMMERER (1987): “The goal/subgoal knowledge
representation for real-time process monitoring,” Proceedings 1JCAIL-87,
Milano, Italy, pp. 394-398.

ALLEN, E.M. (1983): “YAPS: Yet another production system,” TR-1146,
Department of Computer Science, University of Maryland.

ALLEN, J.F. (1984): “Towards a general theory of action and time,” Artificial
Intelligence, 28, 123-154.

ANDERSON, C.W. (1986): “Learning and problem solving with multilayer
connectionist systems,” Ph.D. Dissertation, COINS Technical report 86-50,
University of Massachusetts, Amherst, MA.

ANDERSON, J.M., W.S. Coares, A.L. Davis, R.W. Hon, LN. RoBiNsoON,
S5.V. ROBINSON and K.S. STEVENS (1987): “The architecture of FAIM-1,”
IEEE computer, 20, 1, 55-65.

ARrzEN, K-E. (1986): “Use of expert systems in closed loop feedback control,”
Proc. of American Control Conference, Seattle, WA.

ArzEN, K-E. (1987): “Realization of expert system based feedback control,”
Ph.D. thesis CODEN: LUTFD2/TFRT-1029, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

AstrOM, K.J. and J.J. ANTON (1984): “Expert control,” Proc. 9’th IFAC
World Congress, Budapest, Hungary.

AsTtrOM, K.J., J.J. ANTON and K.-E. ARzEN (1986): “Expert control,”
Automatica, 22, 3, 277-286.

Birxy, G.J., T.J. MCAvOY and M. MODARRES (1988): “An expert system for
distillation control design,” Computers and Chemical Engineering, To appear.

- A

142 References

BmrpwELL, J.D., J.R.B. CoCKETT, R. HELLER, R.W. ROCHELLE, A.J. LAUB,
M. ATHANS and L. HATFIELD (1985): “Expert systems techniques in a
computer based control system analysis and design environment,” Proc. 3rd
IFAC/IFIP Int. Symp. on Computer Aided Design in Control and Engineering
Systems, Lyngby, Denmark.

BLICKLEY, G.J. (1987): “Designing control systems with an expert system,”
Control Engineering, September, 112-113.

Bosrow, D.G. (1984): in Bobrow (Ed.): Qualitative Reasoning about Physical
Systems, Reprinted from the journal of Artificial Intelligence, volume 24.

BoBrow, D.G. and T. WINOGRAD (1977): “An overview of KRL, a knowledge
representation language,” Cognitive Science, 1, 1, 3-46.

Bosrow, D.G., K. KauN, G. Kiczales, L. MASINTER, M. STEFIK
and F. ZDYBEL (1985): “COMMONLOOPS: Merging Common Lisp and
object-oriented programming,” Intelligent Systems Lab. Series ISI.-85-8, Xerox
Palo Alto Research Center, Palo Alto, California.

BracHMAN, R.J. (1979): “On the epistemological status of semantic networks,”
in N.V. Findler (Ed.): Associative Networks: Representation and Use of
Knowledge by Computers, Academic Press, New York.

BrisToL, E.H. (1977): “Pattern recognition: An alternative to parameter
identification in adaptive control,” Automatica, 13, 197-202.

BrownsTON, L., R. FARRELL, E. KANT and N. MARTIN (1985): An
Introduction to Rule-based Programming, Addison-Wesley, Reading, MA.

BURSTALL, R.M. (1980): “The semantics of CLEAR, a specification language,”
Proc. of the 1979 Copenhagen Winter School on Abstract Software Specifica-
tion,, LNCS 86, Springer-Verlag.

Cannon, H.I. (1982): “Flavors: A non-hierarchical approach to object-oriented
programming,,” unpublished paper.

CHANDRASEKARAN, B. (1986): “Generic tasks in knowledge-based reasoning:
High level building blocks for expert system design,” IEEE Expert, 1, 3,
23-30.

CHANDRASEKARAN, B. (1987): “Towards a functional architecture for in-

telligence based on generic information processing tasks,” Proc. IJCAI-87,
pp. 1183-1192.

CHUNG, D.T. and M. MODARRES (1987): “GOTRES: An expert system for fault
detection and analysis,” Department of Chemical and Nuclear Engineering,
The University of Maryland, College Park, Maryland.

CraNCEY, W.J. (1985): -“Heuristic classification,” Artificial Intelligence, 27, 3,
289-350.

References 143

CLINGER, W. (1981): “Foundations of actor semantics,” Tech. rep. 633, MIT
Artificial Intelligence Lab., Cambridge, MA.

CLocksiN, W.F. and C.S. MELLISH (1984): Programming in Prolog,
Springer-Verlag, Berlin.

CoNkLIN, J. (1987): “Hypertext: An introduction and survey,” Computer,
September, 17-41,

ConNELL, ML.E. and P.E. UTGOFF (1987): “Learning to control a dynamic
physical system,” Proc. AAAIL-87, pp. 456-460.

CorsBERG, D. (1987): “Alarm filtering: Practical control room upgrade using
expert system concepts,” InTech, April, 39-42.

Cox, B.J. (1986): Object Oriented Programming - An Evolutionary Approach,
Addison-Wesley, Reading, MA.

Cruisg, A., R. Ennis, A. FINKEL, J. ELLERSTEIN, D. KLEIN, D. LoEB,
M. MasuLLO, K. MILLIKEN, H. VAN WOERKOM and N. WAITE (1987):
“YES/L1: Integrating rule-based, procedural, and real-time programming for
industrial applications,” Proceedings of the Third Conference on Artificial
Intelligence Applications, IEEE Computer Society, Washington, D.C..

Dann, O.J. and K. NYGAARD (1966): “SIMULA-an algol-based simulation
language,” Communications of the ACM, 9, 671-678.

DARLINGTON, J. and M. REEVE (1983): “ALICE and the parallel evaluation
of logic programs,” Tech. rep., Imperial College of Science and Technology,

London, England.

Davis, R. and R.G. SMITH (1983): “Negotiation as a metaphor for distributed
problem solving,” Artificial Intelligence, 20, 63-109.

DE KLEER, J. (1986): “An assumption-based TMS,” Artificial Intelligence, 28,
127-162.

DE KLEER, J. and J. S. BROWN (1984): “Qualitative reasoning about physical
systems,” Artificial Intelligence, 24.

DECKER, K.S. (1987): “Distributed problem solving,” IEEE Transaction on
Systems, Man and Cybernetics, SMC-17, 5, 729-740.

DHALIWAL, D.S. (1985): “The use of Al in maintaining and operating complex
engineering system,”.

DIN (1985): no. 19222, March 1985.

Dovig, J. (1979): “A truth maintenance system,” Artificial Intelligence, 20,
231-272.

DRESCHER, G.L. (1985): “The ObjectLisp user manual (preliminary),” LMI
Corp., Cambridge, MA.

144 References

Dupa, R.O., P.E. HART and R. REBOH (1977): “A rule-based consultation
system for mineral exploration,” Proc. of the Lawrence Symposium on Systems
and Decision, UC Berkeley, California, pp. 306-309.

EiMqvisT, H. and S.E. MarTssoN (1986): “A Simulator for Dynamical
Systems Using Graphics and Equations for Modelling,” Proceedings of the
IEEE Control Systems Society Third Symposium on Computer-Aided Control
Systems Design (CACSD), Arlington, Virginia, September 24-26, 1986,
pp. 134-139, Accepted for publication in Control Systems Magazine.

ENDERLE, G., K. KANSY and G. PFAFF (1984): Computer Graphics Program-
ming (GKS—The Graphics Standard), Springer-Verlag.

FAHLMAN, S.E. and G.E. HINTON (1983): “Massively parallel architectures
for Al: NETL, THISTLE and BOLTZMANN machines,” Proc. of National
Conference on Artificial Intelligence AAAI-83, pp. 109-113.

Fikes, R.E. and N.J. NiLssoN (1971): “STRIPS: A new approach to the

application of theorem proving in problem solving,” Artificial Intelligence, 2,
189-208.

FisHER, E.L. (1986): “An Al-based methodology for factory design,” AT
Magazine, 7, 4, 72-85.

ForBus, K.D. (1984): “Qualitative process theory,” Artificial Intelligence, 24,
85-168. :

Foray, C.L. (1979): “OPS4 User’s manual,” Technical report CMU-CS-79-132,
Department of Computer Science, Carnegie-Mellon University.

Foray, C.L. (1981): “OPS5 User’s manual,” Technical report CMU-CS-81-135,

Department of Computer Science, Carnegie-Mellon University.

Foray, C.L. (1982): “Rete: A fast algorithm for the many pattern/many object
pattern match problem,” Artificial Intelligence, 19, 1, 17-37.

Fox, M.S. (1983): “Constraint-directed search: A case study of job shop
scheduling,” Ph D thesis, Carnegie-Mellon University.

Fox, M.S., B.P. ALLEN and G.A. STROHM (1982): “Job shop scheduling:
An investigation in constraint-directed reasoning,” Proc. Second National
Conference on Artificial Intelligence, pp. 155-158.

Francis, J.C. and R.R. LEITCH (1985): “Artifact: A real-time shell for intelli-
gent feedback control,” in M.A. Bramer (Ed.): Research and Developments in
Expert Systems, Cambridge University Press, UK.

Fu, K-8. (1970): “Learning control systems — review and outlook,” IEEE
Transactions on Automatic Control, 15, 210-221.

Fu, K-S. (1971): “Learning control systems and intelligent control systems: An

References 145

intersection of artificial intelligence and automatic control,” IEEE Transactions
on Automatic Control, 16, T0-73.

FUIIWARA, R. et al (1985): “An intelligent load flow engine for power system

planning,” Proc. of 1985 Power Industry Computer Application Conference,
pPp- 236-241.

GELLI, P. (1987): “Evaluation and comparison of three specification languages:
SDL, LOTOS and ESTELLE,” in R. Saracco and P.A.J. Tilanus (Eds.):
SDL’87: State of the Art and Future Trends, Elsevier Science Publications
(North-Holland), pp. 211-231.

GEORGEFF, M.P. and A.L. LANSKY (1986): “Procedural knowledge,” Proceed-
ings of the IEEE, T4, 10, 1383-1398.

GOGUEN, J.A., J.P. JOUANNAUD, J.P. MESEGUER and K. FUTATZUGI (1985):
“Principles of OBJ2,” Proc. of 12th Symposium on Principles of Programming
Languages.

GOLDBERG, A. and D. RoBSON (1983): Smalltalk-80: The Language and its
Implementation, Addison-Wesley, Reading, MA.

GoMEZ, F. and B. CHANDRASEKARAN (1981): “Knowledge organization and
distribution for medical diagnosis,” IEEE Transactions on Systems, Man and
Cybernetics, SMC-11, 1, 34-42.

GoopwiN, J.W. (1987): “A theory and system for non-monotonic reasoning,”
Ph.D. thesis, Link8ping Studies in Science and Technology, Dissertation no.
165, Linkoping Institute of Technology, Sweden.

GREEN, C. (1969): “Application of theorem proving to problem solving,” Proc.
IJCAI, Washington DC, pp. 219-239.

Havasz, F.G., T.P. MoORAN and T.H. TRIGG (1987): “Notecards in a
nutshell,” Proc. of the ACM Conference on Human Factors in Computing
Systems, Toronto, Canada.

HALPERN, J.Y. (1986): Theoretical Aspects of Reasoning About Knowledge:
Proceedings of the 1986 Conference, Kaufmann, Los Altos, CA.

Haves, P. (1973): “The frame problem and related problems in artificial
intelligence,” in A. Elithorn and D. Jones (Eds.): Artificial and Human
Thinking, Jossey-Bass Inc..

Haves-RoTH, F. (1980): “Towards a framework for distributed AL” SIGART
Newsletter, October, 51-52.

HEW, U. (1983): “PAUL-The kernel of a representation and reasoning system
designed for knowledge engineering tasks,” AILAB Working paper No 16,
Linkdping University, Sweden.

146 References

HEwITT, C. and B. KORNFELD (1980): “Message passing semantics,” SIGART
Newsletter, October.

HiLuis, D. (1985): The Connection Machine, The MIT Press, Cambridge, MA.

Hoarg, C.A.R. (1985): Communicating Sequential Processes, Prentice-Hall
Intl..

Hopaoobp, F.R.A., D.A. Ducg, J.R. GALLoP and D.C. SuTcLIFFE (1983):
Introduction to the Graphical Kernel Standard (GKS), Academic Press.

HwaNg, K., J. GHOSH and R. CHOWKWANYUN (1987): “Computer architec-
tures for artificial intelligence,” IEEE Computer, 20, 1, 19-27.

INFERENCE CORP. (1984): ART - User Manual.

INTELLICORP (1984): Knowledge Engineering Environment (KEE) - User
Manual, Menlo Park, CA.

James, J.R., D.K. FREDERICK and J.H. TAYLOR (1985): “The use of ex-
pert-system programming techniques for the design of lead-lag compensators,”

IEE Conference, Control ’85, Cambridge, England.

JEFFREYS, S. (1987): “Software simplifies batch control design,” Control
Engineering, September, 107-109.

K, I.S. and M. MODARREs (1987): “Application of goal tree-success
tre¢ models as the knowledge-base of operator advisory systems,” Nuclear
Engineering and Design, 104, 67-81.

KosEKI, Y., S. WaDA, T. NisHIDA and H. MoR1(1987): “SHOOTX: A multiple
knowledge based diagnosis expert system for NEAX61 ESS,” ISS Proceedings.

Kravus, T.W. and T.J. MYRON (1984): “Self-tuning PID controller uses pattern
recognition approach,” Control Engineering, June, 106-111.

Kuipers, B.J. (1986): “Qualitative simulation,” Artificial Intelligence, 29,
289-338.

LAFFEY T. J. and T.A. NGUYEN (1986): “Reasoning about fault diagnosis with
LES,” IEEE Expert, Spring.

Larrey, T.J., P.A. Cox, J.L. ScaMmpT, 5.M. KA0, and J. Y READ (1988):
“Real-time knowledge-based systems,” AT Magazine, 9, 1, 27-45.

LaMB, D.E., P. DHURJATI and D.L. CHESTER (1986): “Development of an
expert system for fault identification in a commercial scale chemical process,”
Proc. Sixth Int. Workshop on Expert Systems, 2, pp. 1371-1382.

LArssoN, J.E. and P. PERsSsON (1987): “An expert system interface for
IDPAC,” Technical report TFRT-3184, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

References 147

LErTcH, R.R. (1987): “Modelling of complex dynamic systems,” IEE Proceed-
ings Part D, 134, 4, 245-250.

LEnar, D.B. (1982): “AM: Discovery in mathematics as heuristic search,”
in R. Davis and D.B. Lenat (Eds.): Knowledge-Based Systems in Artificial
Intelligence, McGraw-Hill, New York.

LeENaT, D.B. (1983): “EURISKO: A program that learns new heuristics and
domain concepts,” Artificial Intelligence, 21, 1,2, 61-98.

LINDH, M (1983): “A systems Modelling Framework for the design of integrated
Process Control Systems,” Ris5-M-2409..

LIND, M (1987): “Systembeskrivelse og presentation i processkontroll,” Report
from the SIP project.

Lroyp, M. (1985): “Graphical function chart programming for programmable
controllers,” Control Engineering, October, 73-76.

MaARrcus, S and J. MCDERMOTT (1987): “SALT: A knowledge acquisition tool
for purpose-and-revise systems,” Technical report, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pa.

MaTTssoN, S.E. (1988a): “On Model Structuring Concepts,” To be presented
at the 4th IFAC Symposium on Computer-Aided Design in Control Systems
(CADCS), August 23-25 1988, P.R. China.

MaTTssoN, S.E. (1988b): “On Modelling and Differential/Algebraic Systems,”
Simulation, Accepted for publication.

McCarTHY, J. (1980): “Circumscription—A form of non-monotonic reasoning,”
Artificial Intelligence, 13, 27-39.

McCarTHY, J. and P.J. HaYEs (1969): “Some philosophical problems from
the standpoint of artificial intelligence,” in B. Meltzer and D. Mitchie (Eds.):
Machine Intelligence, American Elsevier, New York.

McDERMOTT, J. (1980): “R1: A rule-based configurer of computer systems,”
Technical report 80-119, Carnegie-Mellon Department of Computer Science.

McDERMOTT, D. (1982): “A temporal logic for reasoning about processes and
plans,” Cognitive Science, 6, 2.

McDERMOTT, D. and J. DOYLE (1980): “Non-monotonic logic I” Artificial
Intelligence, 13, 41-72.

MIcHIE, D, and R.A. CHAMBERS (1968): “BOXES: an experiment in adaptive
control,” in E. Dale and D. Michie (Eds.): Machine Intelligence 2, Oliver and
Boyd, Edinburgh, pp. 137-152.

MILLIKEN, K.R., A.V. CRUISE, R.L. ENNIs, A.J. FINKEL, J.L. HELLERS'I:EIN,
D.J. LoEeB, D.A. KLEIN, M.J. MasuLLo, H.M. VAN WOERKORN and

148 References

N.B. WAITE (1986): “YES/MVS and the automation of operations for large
computer complexes,” IBM Systems Journal, 25, 2, 159-180.

MILNER, R. (1980): A Calculus of Communicating Systems, LNCS 92, Springer
Verlag, Berlin.

MINSKY, M. (1975): “A framework for representing knowledge,” in P.H. Winston
(Ed.): The Psychology of Computer Vision, McGraw-Hill, New York.

MODARRES, M. and T. CADMAN (1986): “A method of alarm system analysis

in process plants with the aid of an expert computer system,” Comput. Chem.
Eng., 10, 557-565.

MOKHTARI, S. et al (1987): “A unit commitment expert system,” Proc. of the
Power Industry Computer Application Conference.

MoogrEg, B.C. (1986): “Hypothesis feedback models for multivariable systems,”
Technical Report, Dow Chemical Co., Plaquemine, Lousiana, submitted to
the IEEE Trans. on Automatic Control.

Mogrxris, H.M. (1987): “Design station uses Al for factory cell control,” Control
Engineering, September.

NEWELL, A. and H.A. SiMON (1972): Human Problem Solving, Prentice-Hall,
Englewood Cliffs, NJ.

NEWELL, A. and H.A. SiMmoN (1976): “Computer science as empirical inquiry:
Symbols and search,” Communications of the ACM, 19, 3.

NEWELL, A., J.C. Suaw and H.A. SmMon (1960): “Report of a general
problem-solving program for a computer,” Proc. of an International Conference
on Information Processing, UNESCO, Paris, France, pp. 256-264.

N, H.P. (1986a): “Blackboard systems: The blackboard model of problem
solving and the evolution of blackboard architectures,” AI Magazine, 7, 2,
38-53.

N1, H.P. (1986b): “Blackboard systems: Blackboard application systems,
blackboard systems from a knowledge engineering perspective,” AI Magazine,

7, 3, 82-106.

Ni, H.P., E.A. FEIGENBAUM, J.J. ANTON and A.J. ROCKMORE (1982):
“Signal-to-symbol transformation: HASP/SIAP case study,” AI Magazine, 3,
2, 23-35.

Nipa, K. and T. UMEDA (1986): “Process control system synthesis by an expert
system,” in M. Morari and T.J. McAvoy (Eds.): Chemical Process Control —
CPCIII, CACHE, Elsevier, Amsterdam.

NiLssoN, N.J. (1982): Principles of Artificial Intelligence, Springer-Verlag,
Berlin.

References 149

OsBORNE, R.L., A.J. GoNzALEzZ and C.A. WEEKS (1986): “First years
experience with on-line generator diagnostics,” American Power Conference,
Chicago, IL.

Ow, P.S. and 5.F. SMITH (1986): “Toward an opportunistic scheduling system,”

Proc. Nineteenth .Hawaiian International Conference on System Sciences,
pp. 345-353.

PaNG, G.K.H. and A.G.J. MCFARLANE (1987): An Expert System Approach
to Computer-Aided Design of Multivariable Systems, Springer Verlag, Berlin.

PELAVIN, R. and J.F. ALLEN (1986): “A formal logic of plans in temporally
rich domains,” Proceedings of the IEEE, 74, 10, 1364-1382.

PETERSON, J.L. (1981): Petri net theory and the modelling of Systems,
Prentice-Hall.

PorTER, B., A.H. JoNES, and C.B. MCKEOWN (1987): “Real-time expert
tuners for PI controllers,” IEE Proceedings Part D, 134, 4, 260-263.

QUILLIAN, M.R. (1966): “Semantic memory,” Report AFCRL-66-189, Bolt,
Beranek & Newman, Cambridge, MA.

QUINLAN, J.R. (1979): “Induction over large databases,” Report HPP-79-14,
Stanford University, Stanford, CA.

RAHMAN, S. et ol (1987): “An expert system based algorithm for short term
load forecast,” Proc. of IEEE PES Winter Power Meeting.

RASMUSSEN, J. (1986): Information Processing and Human-Machine Interaction:
An Approach to Cognitive Engineering, North-Holland, New York.

REITER, R. (1980): “A logic for default reasoning,” Artificial Intelligence, 13,
81-132.

RicH, E. (1983): Artificial Intelligence, McGraw-Hill, New York.

RicH, S.H. and V. VENKATASUBRAMANIAN (1987): “Failure-driven learning in

expert systems for process fault diagnosis,” Proc. of AIChE Annual Meeting,
New York.

RosENBLATT, F. (1961): Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms, Spartan Books, Washington DC.

ROSENSCHEIN, J.S. and M.R. GENESERETH (1984): “Communication and

cooperation,” Tech. rep. HPP-84-5, Stanford Heuristic Programming Project,
Stanford, CA.

SacerpoTl, E.D. (1974): “Planning in a hierarchy of abstraction spaces,”
Artificial Intelligence, 5, 115-135,

SACERDOTI, E.D. (1975): “A structure for plans and behavior,” Tech. note 109,
Al Center, SRI International Inc., Menlo Park, CA.

150 References

Sacus, P.A., A.M. PATERSON and M.H.M. TURNER (1986): “Escort — an

expert system for complex operations in real time,” Expert Systems, 3, 1,
22-29.

SaxacusHI, T., H. TaNnaka, K. Uenisui, T. GoTon and Y. SEKINE (1987):
“Prospects of expert system in power system operation,” Proc. of 9th Power
Systems Computation Conference, Cascais, Portugal.

SANDEWALL, E. (1972): “An approach to the frame problem, and its implemen-
tation,” in B. Meltzer and D. Michie (Eds.): Machine Intelligence, Wiley, New
York, pp. 195-204.

SANDEWALL, E. and R. RONNQUIST (1986): “A representation of action
structures,” Proc. of the 5th National Conf. on Artificial Intelligence, AAAI,
Philadelphia.

Saripis, G.N. (1977): Self-Organizing Control of Stochastic Systems, Marcel
Dekker, Inc., New York.

SARIDIS, G.N. (1983): “Intelligent robotic control,” IEEE Transactions on
Automatic Control, 28, 5, 547-557.

SarosH N. T. and L.V. LEAO (1986): “Toast: The power system operator
assistant,” IEEE Computer, July.

ScHINSKEY, F.G. (1986): “An expert system for the design of distillation
controls,” in M. Morari and T.J. McAvoy (Eds.): Chemical Process Control —
CPCIII, CACHE, Elsevier, Amsterdam.

SHORTLIFFE, E.H. (1976): Computer Based Medical Consultations: MYCIN,
Elsevier, New York.

SHUEY, D., D. BAILEY and T.P. MORRISSEY (1986): “PHIGS: A Standard,
Dynamic, Interactive Graphics Interface,” IEEE Computer Graphics and
Applications, Vol. 6, No. 8, August 1986, pp. 50-57.

SIS (1985): “Datorgrafik—PHIGS, Programmers Hierarchical Interactive Graph-
ics Standard,” Technical report no. 306, SIS—Standardiseringskommisionen i
Sverige.

SmItH, S.F., M.S. Fox and P.S. Ow (1986): “Construction and maintain-
ing detailed production plans: Investigations into the development of knowl-
edge-based factory scheduling systems,” AI Magazine, 7, 4, 45-61.

STEELE JR., G.L. (1984): Common Lisp, Digital Press, Digital Equipment
Corp..

STEFIK, M. and D.G. BoBROW (1986): “Object-oriented programming: Themes
and variations,” AI Magazine, 6, 4, 40-62.

Storro, S.J. and D.P. MIRANKER (1986): “The DADO production system
machine,” Journal of Parallel and Distributed Computing, 3, 2, 269-296.

References 151

STROUSTRUP, B. (1986): The C++ Programming Language, Addison-Wesley,
Reading, MA.

TRANKLE, T.L., P. SHEU and U.H. RABIN (1986): “Expert system architecture
for control systems design,” Proc. ACC, Seattle, WA, pp. 1163-1169.

TURNER, R. (1984): Logics for Artificial Intelligence, Ellis Horwood Limited,
Chichester, England.

UENIsHI, K. et al (1987): “Maintenance scheduling of electric power systems,”
Proc. of the IEEE/UNIPEDE Workshop on Expert Systems.

vaN MEeLLe, W., A.C. Scorr, J.S. BENNETT and M. PeAIRs (1981):
“The EMYCIN manual,” Technical report HPP-81-16, Computer Science
Department, Stanford University, California.

VEGDAHL, S.R. (1987): “Architectures that support functional programming
languages,” in V.M. Milutinovic (Ed.): Advanced Topics in Computer
Architecture, Elsevier Science, New York.

VENKATASUBRAMANIAN, V. and S. H. Ricu (1987): “Integrating heuristic and
deep-level knowledge in expert systems for process fault diagnosis,” Proc.
of NSF-AAAI Workshop on Artificial Intelligence in Process Engineering,
Columbia University, New York, NY.

VERE, S.A. (1983): “Planningin time: Windows and durations for activities and
goals,” IEEE Transactions on Pattern analysis amd Machine intelligence, 5

3, 246-267.

7

VICENTE, K.J. and J. RASMUSSEN (1987): “The cognitive architecture of
decision support systems for industrial process control,” Proc. of First
European Meeting on Cognitive Science Approaches to Process Control,
Marcoussis, France, pp. 1-16.

Wartz, D.L. (1987): “Applications of the connection machine,” JEEE Com-
puter, 20, 1, 85-97.

WEIss, S.M. and C. A. KULIKOWSKI (1981): “Expert consultation systems:
The EXPERT and CASNET projects,” Machine Intelligence, Infotech State
of the Art Report, Pergamon Infotech Ltd., Maidenhead Berks, U.K..

WiDrow, B. (1962): “Generalization and information storage in networks of
Adaline neurons,” in M.C. Yovits, G.T. Jacobi and G.D. Goldstein (Eds.):
Self-Organizing Systems 1962, Spartan Books, Washington DC.

WILKINS, D. (1984): “Domain independent planning: Representation and plan
generation,” Artificial Intelligence, 22, 269-301.

WILLIAMSON, G.I., J.W. BUTLER, S.G. KING and J. BIGHAM (1987): “Using
KBS in telecommunications 2,” KRITIC Technical Memo Mo. 12, .

152 References

WinsToON, P.H. and B.K.P. HORN (1984): Lisp, Addison-Wesley, Reading,
MA.

ZADEd, L.A. (1965): “Fuzzy sets,” Inform. Control, 8, 338-353.

