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“The Earth will not continue to offer its harvest, except with faithful stewardship. 
We cannot say we love the land and then take steps to destroy it for use by future 

generations”. 
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Abstract 
Dissolved organic carbon (DOC) is a general description of the organic material 
dissolved in water. DOC is an important source of energy, carbon, and nutrient 
transfers from terrestrial to aquatic ecosystems. The export of DOC into aquatic 
ecosystems may contribute to the carbon balance of terrestrial ecosystems and to 
water degradation. Ongoing climate and land cover changes will affect both DOC 
generation and transport, with implications for both terrestrial and aquatic 
ecosystems. An assessment of land use land cover and climate variability’s 
impacts on DOC export is needed for better management of ecosystems. 
Watersheds are fundamental units of ecosystem functioning and are therefore an 
interesting organizational unit when used to understand the combined effects of 
land use land cover and climate variability on DOC export. Some studies have 
been conducted to explore this impact of land cover and climate variability on 
DOC, but most were conducted in a temperate environment and few in a tropical 
environment.  In this regard, this dissertation focused on the impact of land use 
land cover and climate variability on DOC mobilization and export in the 
Rukarara River Watershed (RRW), Rwanda. The main aim is to determine how 
different carbon input and output processes interact under climate and land cover 
variability to impact DOC emanating from tropical watersheds. 

Data used for this study include land cover maps produced from satellite imagery, 
daily air temperature and precipitation, digital elevation models (DEMs), water 
stage, flow, net primary productivity (NPP), soil properties such as total organic 
carbon (TOC), total nitrogen (TN), cation exchange capacity (CEC), aluminum 
(Al), iron (Fe), and soil texture within the RRW. Field observations were used to 
quantify riverine DOC loads, soil water extractable organic carbon (WEOC), DOC 
in percolation water (pDOC) and leached DOC (LDOC) and to describe their 
spatial variation and relationships with the aforementioned factors. Statistical 
models (including simple and quadratic regressions, general linear model, linear 
mixed effect models) were used to predict DOC within the study area. An eco-
hydrological model, the Regional Hydro-Ecological Simulation System 
(RHESSys), was used to simulate streamflow and link it with stream DOC within 
the study area. The results of this study show that land use land cover and climate 
change interact to produce soil WEOC, from which a significant fraction is 
transported into streams, mainly through overland flow and loaded by the 
Rukarara River. The riverine DOC loss was low compared to the NPP of the 
RRW, but may affect the function of both land and water resources with the study 
area. The RHESSys model detected the response of the watershed to climate 
variability within the RRW and captured the significant monthly variability in 
streamflow within the RRW. This result indicates the potential use of RHESSys to 
estimate streamflow in the RRW and similar tropical watersheds. Stream DOC 
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concentration was explained by simulated streamflow in the natural forest, 
indicating the potential use of RHESSys model simulated streamflow to predict 
stream DOC in the study watershed and similar ecosystems. Further studies should 
evaluate the performance of the RHESSys model to simulate other 
hydroecological processes in the tropical environment. 
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Sammanfattning 
Löst organiskt kol (DOC) är en allmän beteckning på organiskt material upplöst i 
vatten. DOC är en viktig källa för energi, kol och näring som överförs från 
markbundna till akvatiska ekosystem. Exporten av DOC till akvatiska ekosystem 
kan bidra till kolbalansen i markbundna ekosystem och till försämrad 
vattenkvalitet. Pågående klimat- och markförändringar kommer att påverka både 
genereringen och transporten av DOC, med implikationer för både markbundna 
och akvatiska ekosystem. En bedömning av markanvändning och 
klimatvariationers inverkan på exporten av DOC behöver göras för att bättre 
kunna hantera ekosystemen. Avrinningsområden är fundamentala för 
ekosystemets funktion och är därför intressanta för förståelsen för hur de 
kombinerade effekterna av markanvändning, gröngödsling och klimatvariationer 
påverkar exporten av DOC. Ett mindre antal studier har utförts för att undersöka 
hur marktäckning och klimatvariation påverkar DOC men de flesta har genomförts 
i tempererat klimat och endast få i tropiskt klimat. I denna avhandling har jag 
fokuserat på hur markanvändning, marktäckning och klimatvariationer  har 
påverkat mobiliseringen och exporten av DOC i Rukarara River Watershed 
(RRW), Rwanda. Huvudsyftet är att bestämma hur DOC i tropiska 
avrinningsområden påverkas av växelverkan mellan olika processer för in- och 
utflöde av kol under varierade klimat- och marktäckningsförhållanden.  

Data som har används för denna studie innefattar marktäckningskartor som 
skapats med utgångspunkt från satellitbilder, daglig temperatur i luft, nederbörd, 
DEMs, flodens vattennivå och flöde, nettoprimärproduktion (NPP), 
jordegenskaper som totalt organiskt kol (TOC), total kvävemängd (TN), 
katjonbyteskapacitet (CEC), aluminium (Al), järn (Fe) samt jordstruktur inom 
RRW. Fältobservationer har använts för att kvantifiera flodbaserat DOC, 
extraherbart organiskt kol i markvatten (WEOC), DOC i perkolationsvatten 
(pDOC) samt urlakat DOC (LDOC) för att beskriva deras rumsliga variation och 
relationer till ovannämnda faktorer. Statistiska modeller (inklusive linjär och 
kvadratisk regression, generell linjär modell samt modeller för linear mixed effect) 
har använts för att förutse DOC inom det studerade området. En ekohydrologisk 
modell, Regional Hydro-Ecological Simulation System (RHESSys), har använts 
för att simulera DOC-flöden inom det studerade området. Resultaten från denna 
studie visar att markanvändning och klimatförändring växelverkar för att skapa 
jord-WEOC, av vilket en signifikant del har transporterats till bäckar, 
huvudsakligen genom att rinna över marken, som leder till Rukararafloden. 
Förlusten av DOC till floden var låg jämfört med NPP i RRW, men kan tänkas 
påverka funktionen av både mark- och vattenresurser i det studerade området. 
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Introduction  

What is DOC and why do we care about it? 
Dissolved organic carbon (DOC) is the fraction of total organic carbon that can 
pass through a filter below 0.45 μm in size. DOC may contain amino acids, simple 
carbohydrates, a fraction of microbial biomass, and other simple organic 
compounds, fractions of humic acids of low molecular weight, as well as other 
numerous simple organic compounds (Gonet and Debska, 2006; Zou et al., 2005). 
DOC is a broad practical classification for organic molecules of varied 
composition within soils (soil DOC) and aquatic systems (water DOC). Soil DOC 
is a labile natural part of soil solution (Schwalm and Zeitz, 2014); it is the 
chemical and microbial degradable carbon that is physically accessible by soil 
microbes (Zou et al., 2005). Water DOC originates from within a body of water 
from aquatic plants or algae (autochthonous DOC) and from the external 
environment to a body of water from land areas (allochthonous DOC).  

Soil DOC is linked with its capacity to supply nutrients (Sucker and Krause, 
2010); its export to water may cause both land and water degradation. Land 
degradation is an environmental problem that threatens food and energy security 
(Lobell et al., 2008, biodiversity (Maitima et al., 2009), resilience to climate 
change (Neely et al., 2009) and induces migration (Mélanie, 2008), offsite 
problems such as sedimentation and carbon emissions affecting climate change 
(Mupenzi et al., 2011). Soil DOC plays also a role in soil aggregation and erosion 
control, acid-base balance and exchange capacity in the soil, mobilization and 
export of nutrients, bioavailability and ecotoxicology of heavy metals, 
transformation and transport of organic contaminants (Arnold et al., 2010). In 
addition, it plays an important role in carbon cycling in watersheds: It causes 25% 
- 50% of the annual loss of carbon in forest-floor (Kalbitz et al., 2000). As the 
mobile fraction of soil organic matter (SOM), DOC represents a key vehicle for 
the translocation and loss of soil nutrients (Hagedorn et al., 2004). Regarding 
natural water degradation, high DOC concentrations can result in brown water, 
with a negative impact on drinking water purification and water recreational value. 
Also, high DOC concentrations reduce light penetration in water, and this affects 
the aquatic productivity and thereby aquatic food chain (Erlandsson et al., 2011). 
Additionally, high DOC in water affects predator-prey interactions (Stasko et al., 
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2012) and, coupled to nitrogen and phosphorus, induces eutrophication processes 
(Aparicio et al., 2016). However, a reasonable amount of water DOC plays a key 
role in aquatic ecosystem function: It is a potential source of carbon and energy for 
heterotrophic organisms and thus contributes significantly to aquatic ecosystem 
metabolism. Understanding the dynamics of soil and water DOC is, therefore, 
important for better management of land and water resources. 

Over the past two decades, a significant amount of allochthonous DOC has been 
exported into natural waters and, therefore, increased water DOC concentrations 
across large parts of the world.  This increase of DOC in natural waters can 
increase CO2 production in aquatic ecosystems, exacerbating global warming. 
Increased water DOC input may stimulate heterotrophic metabolism and thus CO2 
production. Also, increased water DOC affects water color with, eventually, a 
shading effect that negatively impacts on water primary production by decreasing 
atmospheric CO2 uptake by water primary producers, thus increasing CO2. The 
increased DOC may acidify the water and, consequently, decrease water pH with a 
subsequent increase in CO2. Understanding water and soil DOC dynamics is 
therefore important for implementing effective global warming mitigation. 

Soil DOC production and climate change 
Soil DOC is the outcome of processes that depend on climate: soil organic matter 
(SOM) production, decomposition, mineralization and sorption (Kalbitz et al., 
2000). The CO2:DOC production ratio increases with warming, meaning that DOC 
production increases with temperature due to enhanced photosynthesis under 
higher CO2 conditions (Cox et al., 2013). But Moore et al. (2008) indicated that 
DOC mineralization is even more temperature sensitive, especially in the tropics. 
Thus, high DOC production is offset by high decomposition of old soil carbon, 
induced by the microbial priming effect. This microbial priming effect is an extra 
decomposition of organic carbon after the addition of easily decomposable organic 
substances to the soil (Kuzyakov, 2010; Dalenberg and Jager, 1989) or nutrients 
such as, for example, nitrogen (Léon et al., 1995; Jenkinson et al., 1985;), 
phosphorus (Fokin and Radzhabova, 1996), and sulfur (Chapman, 1997; Lefroy et 
al., 1994; O'Donnell et al., 1994) or other soil treatments such as drying and 
rewetting (Kuzyakov, 2010). Under climate change, the microbial priming effect is 
induced by increased photosynthesis consequent to higher CO2 and precipitation, 
and this has positive implications for rooting depth and exudates. These exudates 
increase the activity of soil microorganisms, resulting in acceleration of SOM 
mineralization or microbial biomass turnover in the rhizosphere (Figure 1). 
However, this microbial priming effect is not always straightforward (Zimmerman 
et al., 2011). For example, SOM decomposition increased up to 5-fold or 
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decreased by up to 30% in the presence of plant residues (Nottingham et al., 2009; 
Bell et al., 2003) or root exudates (Cheng and Lehmann, 2009; Kuzyakov, 2002). 

 

 

Figure 1 Increased soil DOC production stimulated by high soil old carbon decomposition induced by the microbial 
priming effect. 

Climate change also impacts on soil DOC production through its effects on carbon 
and nitrogen interactions. Increased photosynthesis under higher CO2 negatively 
affects soil nitrogen availability (Figure 2); more soil nitrogen is taken up by 
plants. Such nitrogen-limited conditions suppress the CO2 fertilization effect on 
canopy assimilation (Maaroufi et al., 2015) thus limiting organic matter 
production and, therefore, soil DOC. Under these conditions of limited soil 
nitrogen, fungi decompose lignin and the resulting increase of soil nitrogen can 
cause a shift from fungal to bacterial decomposers, with less SOM decomposition 
and thus less soil DOC (Maaroufi et al., 2015). The lignin decomposition leads to 
a positive feedback in response to rising atmospheric CO2, whereas the shift from 
fungal to bacterial decomposers leads to a limited CO2 fertilization effect, and 
consequently less soil DOC. 
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Figure 2 Increased soil DOC production stimulated by high old soil carbon decomposition (arrow +E) induced by the 
nitrogen priming effect (arrows +A and +B) through a lower carbon to nitrogen ratio. Additionally, the figure shows 
effect of high old soil carbon decomposition on atmospheric CO2 (arrow + C), photosynthesis (arrow + D), soil nitrogen 
availability (arrow + E), and other interrelations within the cycle (arrows G to L). 

Soil DOC export into natural waters 
The export of soil DOC from the terrestrial system to the aquatic ecosystem is 
fundamental for the global carbon cycle, because it is an interface between 
terrestrial and marine carbon cycling (Richey et al., 2004). The soil DOC delivery 
processes, include leaching, groundwater retention and discharge, floodplain and 
riparian zone exchange and retention, and waste discharge. The spatial delivery 
scale is local, whereas the temporal scale varies from days for point sources and 
surface runoff, to days to weeks or months for riparian zones, and from weeks to 
years for shallow aquifers, and years to centuries for deep aquifers (Bouwman et 
al., 2013). 

Soil DOC export depends on many factors including hydrology, temperature, land 
use land cover, mineral soil absorption, hydraulic soil conductivity, dry-wet cycle 
of hydrological conditions, surface and sub-surface runoff, landscape position, 
transformations between particulate, dissolved and gaseous phases that may occur 
during the transport, and DOC redox reactivity (Williams et al., 2010; Mattsson et 
al., 2009; Blair et al., 2004; Webster et al., 1999). Changes in temperature may 
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influence DOC export from soils by altering decomposition and mineralization of 
organic matter (Sucker and Krause, 2010). Increased precipitation alters the water 
budget and discharge, which then increases DOC concentrations (Hongve et al., 
2004). Land use changes influence the retention and the export of organic carbon 
from watersheds (Johnson et al., 2009). Landscape position along a hillslope 
affects biophysical processes such as infiltration, erosion, sedimentation and 
insolation that, in turn, affect DOC inputs and losses (Balkcom et al., 2005). 

The riparian zone is the main source of DOC entering streams independent of 
upslope conditions (Strohmeier et al., 2013; Dick et al., 2015; Ledesma et al., 
2015). Lateral DOC fluxes from riparian zone to streams are limited to only a 
fraction of the total riparian zone, with most lateral DOC fluxes occurring within 
predominant flow paths (Ledesma et al., 2015). Riparian zones have filtering 
capacity to retain and release nutrient and sediment (Ranalli and Macalady, 2010). 
The transport of DOC from floodplains to streams dominates during wetter 
periods, whereas deeper sources dominate during dry periods (Tiwari et al., 2014; 
Dick et al., 2015). The role of leaching process on soil DOC depends on soil 
properties and vegetation (Fujii et al., 2011). For example, soil ionic strength and 
pH influence organic matter solubility, whereas ferric and aluminum oxides or 
hydroxides and clay determine the sorption process (Chantigny, 2003) where high 
adsorption reduces DOC leaching (Kalbitz et al., 2000). 

DOC simulation in watersheds 
Contemporary environmental problems are being approached more and more on 
the geographic basis of the watershed to understand ecosystem processes and 
responses to climate change and land-cover (Tetzlaff et al., 2013). From this 
perspective, process-based models have been developed to simulate soil DOC 
export into rivers (see Table 1).  Some models of this sort focus on soil absorption 
(Yurova et al., 2008), hydrological rainfall-runoff processes (Xu et al., 2012), 
DOC production (Wu et al., 2014), some combination of DOC production, soil 
absorption and leaching functions, or combination of ecological and hydrological 
processes (Futter et al., 2009). The latter approach is interesting because it can 
include the effects of climatic, hydrological, biogeochemical and ecological 
processes and their interrelations in soil and water (Palmer and Bernhardt, 2006; 
Krysanova et al., 2005). Hydrological processes interact with climate and 
terrestrial vegetation to determine water availability and flow regimes. These flow 
regimes and their interaction with soils influence ecological processes such as 
nutrient cycling. In return, ecological processes and patterns influence water 
availability (Palmer and Bernhardt, 2006). Hydroecological models are important 
tools for studying the mechanisms of ecological patterns and processes and for 
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assessing the effects of environmental change on hydrological and ecological 
processes (Chen et al., 2014). 

Table 1  
Summary of models used to understand ecosystem hydrological and eco-hydrological processes. 

Model types Goal Examples 

One-way coupling 
models 

Describe biophysical properties such as 
canopy interception, rainfall interception, 
infiltration, and evapotranspiration to 
simulate hydrological processes without 
considering the impact of hydrological 
processes on physiological or 
biochemical processes of the vegetation. 

Distributed Hydrology Soil Vegetation 
Model (DHSVM) (Wigmosta et al., 1994) 
Variable Infiltration Capacity (VIC) (Liang 
et al., 1994). 

Mutually coupling models 
 
 
 
Conceptual models 

Simulate hydrological and ecological 
processes considering vegetation 
dynamic change in the leaf, root depth 
and litter, and changes in the soil 
moisture. 
Couple hydrological models with 
parametric models such as light-use 
efficiency models or empirical crop 
growth models 

(See examples for below  
model types) 
 
 
Soil and Water Assessment Tool (SWAT) 
(Arnold et al., 1998)  
Eco-Hydrological Assessment Tool 
(EcoHAT) (Liu et al., 2009). 

Semi-physical process  
based models 

Discretize the watershed into fully 
distributed space units and describe 
interaction between the dynamic growth 
of the vegetation and hydrology 

TOPOG model (o'Loughlin, 1986) 

Physical  
process  
based models 

Describe physiological processes and 
mechanisms such as photosynthesis, 
couple vegetation biochemical processes 
and hydrological processes and 
characterize finally hydrological 
processes particularly the effects of soil 
moisture on the vegetation biochemical 
process. 

Regional Hydro-Ecological Simulation 
System (RHESSys) model (Band et al., 
1993) 
 
BEPS-TerrainLab (Govind et al., 2009)  
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Problem statement 

The Earth’s climate is changing in both temperature and precipitation patterns due 
to the emission of carbon greenhouse gases to the atmosphere, altering its heat-
trapping capacity (IPCC, 2007). This changing climate can have both immediate 
and long lasting effects on primary production, accumulation and export of soil 
organic carbon into natural waters, and therefore on carbon balance. There is 
debate about the amount of carbon stored in, and emitted from, terrestrial 
ecosystems (Le Quéré et al., 2016). Quantifying this carbon balance is a challenge, 
as the interactions between climate change and land use land cover (LULC) on 
carbon export into natural waters are not well understood (Moss et al., 2011; 
Matthews and Caldeira, 2008). Sources and destinations of carbon fluxes from the 
land to water, especially for dissolved organic carbon (DOC), are still unclear 
(Yang et al., 2013). There is a need to understand how changing climate and other 
disturbance regimes, such as land use land cover change, combine to give a 
particular signature to DOC export.  

DOC export to waters may cause both soil and natural water degradation. Land 
degradation is a global problem that affects at least a quarter of the global land 
area (Lal et al., 2012), seriously undermining the livelihoods in all agro-ecologies 
across the world (Nkonya et al., 2011). Land degradation reduces biological 
products, including food, and carbon sequestration services of the land ecosystem 
(Le Quéré et al., 2016). Also, soil DOC export threatens soils’ potential to mitigate 
climate change (Neely et al., 2009; Stockmann et al., 2013). Development 
activities such as agriculture, urbanization, forestry and industries often lead to 
more intensive land use, which increases runoff, and consequent transport of 
pollutants directly into the natural waters. Land and water degradation results in 
decreasing ecosystem resilience and provision of environmental services 
(Costanza et al., 1997). Land and water degradation threaten food security for 
many of the poorest and most food insecure living in Asia, Africa and Latin 
America (Kaiser, 2004). Land and water degradation is a challenge that must then 
be tackled to preserve ecosystem resilience and provision of environmental 
services and meet poverty alleviation goals. As it is ubiquitous in terrestrial 
ecosystems, DOC can serve as a sensitive indicator of land and water natural water 
degradation through shifting in ecological processes (Bolan et al., 2011; 
Srinivasarao et al., 2014).  
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Watersheds are fundamental units of ecosystem functioning, and thus can help us 
to better understand combined effects of changing climate and land use land cover 
on DOC export. This is important in order to identify mitigation strategies for 
healthy watersheds that maintain their balanced nutrient cycling, energy, and 
services such as water quality and food for people and wildlife. Some studies on 
DOC export dynamics have been conducted, but most of them are focused on 
temperate watersheds, and very few on tropical watersheds. There is a need for 
such studies in tropical watersheds, where coupled climate–carbon-cycle models 
indicate that carbon storage on land will increase due to the simultaneous 
enhancement of plant photosynthesis and water use efficiency under higher 
atmospheric CO2 concentrations, or will decrease due to higher soil and plant 
respiration rates associated with warming temperatures (Cox et al., 2013). 
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Aims and objectives 

The aim of this research is to determine how different carbon input and output 
processes interact under climate and land cover variability to impact DOC from 
tropical watersheds. A key uncertainty is the degree to which tropical watersheds 
respond to climate driven changes in hydrology and DOC export. Understanding 
this could help to develop effective integrated watershed policies that can build 
resilience to the impacts of climate and land cover changes and protect watershed 
services. This research is focused on soil water DOC mobilization and transfers, to 
better understand their dynamics (Figure 3). Within the study area, the specific 
objectives of the research are the following:  

1. Quantifying water DOC loads to estimate to what extent riverine DOC 
affects the carbon budget in the study area (Papers I and V);  

2. Investigating soil WEOC concentration and quantifying the effect of 
topography, land cover, rainfall amount and intensity, mean average 
temperature and soil properties on its variation (Paper II); 

3. Investigating leached DOC flux and factors controlling its variation in the 
study area (Paper III); 

4. Simulating water flow and linking it with stream DOC contents in the 
Rukarara River basin using the Regional Hydroecological Simulation 
System (RHESSys) model (Paper IV). 
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Figure 3 Overview of the thesis. 
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Materials and Methods 

Study sites 
The research presented here includes field studies (Papers 1, 2, 3, and 5) and a 
simulation study (Paper 4). All studies were carried out in the Rukarara River 
Watershed, a mixed agriculture and forest watershed in Southwestern Rwanda. 
Three sites were selected in the watershed: The Eastern site (ES), the Centre site 
(CS) and the Western site (WS) (Figure 4). The ES and CS sites were located 
areas dominated, respectively, by small crops and tea plantations. The WS was 
located in the Nyungwe National Park, a primary mountainous rainforest forest. 
The watershed drains an area of 493.5km2 and its landscape is composed of 
mountainous terrain with elevations from 1,541 to 2,924 MASL and slopes from 
0° to 68°. More detailed information on the study watershed was provided in the 
following papers. 
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Figure 4 Map showing study sites within the study area, the Rukarara River Watershed. 

Data used in this thesis 
This project used various kinds of data, including field measurements, laboratory 
analysis data, spatial data, historical data, and literature-based data. Field 
measurements include rainfall, air temperature, and water stage data. Rainfall data 
were recorded using tipping bucket rain gauges with integrated data loggers 
(OMC-210-2). Air temperature data were recorded using temperature sensors 
(automatic pressure transducer stage gauges with integrated data logger PT2X and 
mini-divers). Water stage data were measured at the three small river sites and at 
the Rukarara River outlet using current meters (small and medium size) and the 
aforementioned automatic pressure transducers.  

Laboratory analysis data included samples of soil collected in topsoil (0–20cm 
depth), stream water, percolation water, and leached water. Soil samples were used 
to analyze soil water extractable organic carbon (WEOC) and physico-chemical 
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soil properties including total organic carbon (TOC), total nitrogen (TN), iron (Fe 
ppm), aluminum (Al ppm), and cation Exchange Capacity (CEC), clay content, 
sand content, and silt content. WEOC was analyzed using a modified version of 
the Zhang et al. (2011) method, whereas stream DOC, percolation water (pDOC), 
and leached waters (LDOC) was analyzed on a TOC analyzer. Soil texture 
elements were analyzed using the improved Bouyoucos method (Bouyoucos, 
1962); TOC (%) by the Loss On Ignition (LOI) method (Davies, 1974); TN (%) by 
the micro-Kjeldahl digestion - distillation method (Bremner, 1996); Fe and Al 
(ppm) by the Sodium tetraborate method followed by the atomic absorption 
spectroscopy (AAS) method, and the CEC (mEq/100g) by the Sodium acetate 
method (Taiwan, 1994). 

Regarding spatial data, this research project utilized land use land cover maps 
derived from remote sensing imagery (for the years 2008 and 2015), a 10m digital 
elevation model (DEM), net primary productivity (NPP) derived from remote 
sensing imagery, soil depth, and GPS data. The land use land cover map for the 
year 2008 was obtained from Wasige et al. (2014), whereas the land use land 
cover map for the year 2015 was developed based on a 6.5 m ground resolution 
RapidEye satellite image of the study area. The 10 m DEM was provided by the 
Centre of Geographic Information and Remote Sensing of the University of 
Rwanda (CGIS-UR). Soil depth and soil texture data were provided by CGIS-UR. 
NPP data were Moderate Resolution Imaging Spectroradiometer (MODIS) 
(MOD17A3: 500 m × 500 m) data (ORNL DAAC, 2018; Running and Zhao, 
2015). GPS data were collected during sampling campaigns. 

Historical rainfall and temperature data were provided by Meteo Rwanda, whereas 
historical flow data were provided by the Rwanda Water and Forest Agency 
(RWFA) and the Rukarara Hydropower Station. Curve number (CN) values were 
selected according to the Mockus (1969) handbook, whereas HSGs data were 
retrieved from the ORNL DAAC (HYSOGs250m) (Ross et al., 2018). Vegetation 
physiological parameters and soil parameters, required to run the RHESSys model, 
were derived from Peng et al. (2016). The use of all of the above data in their 
respective papers is summarized in the following Table 2. 
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Table 2  
Summary of data used in this thesis and their use in different papers 

Data type Use Paper number 

Rainfall To determine relationship between WEOC and rainfall through 
antecedent precipitation index (API). 
Data in brief 
As input data for running RHESSys model 

Paper 2 
 
Paper 5 
Paper 4 

Air temperature To determine relationship between WEOC and temperature through 
mean antecedent temperature (MAT). 
Data in brief  
As input data for running RHESSys model. 

Paper 2 
 
Paper 5 
Paper 4 

Water stage To produce rating curves necessary to predict non-measured flow 
data that have been used in estimation of annual DOC load. 

Paper1 

Soil properties To determine responses of DOC to soil properties within the study 
area. 

Paper 2 

WEOC To quantify soil DOC and its relationship with LULC, soil properties, 
and landscape attributes. 

Paper 2 

sDOC To calculate DOC loadings Paper 1 

pDOC To determine the effect of climate variability on soil DOC. Paper 2 

LDOC To quantify the effect of leaching process on soil DOC. Paper 3 

Land cover To calculate spatial distribution index (SI) used in turn to describe the 
influence of LULC on DOC loading. 
To calculate curve number (CN), area and mean slope for each LULC 
class 
As input data to run the RHESSys model  

Paper 2 
 
Paper 3 
 
Paper 4 

DEM To calculate topographic position index (TPI) used to identify slope 
position (SP)  
To calculate Topographic Wetness Index (TWI) used to describe the 
topography of different LULC classes and to quantify overland flow 
and therefore the combined effects of LULC and topography on DOC 
loading. 
To delineate watershed boundary, to calculate slope, identify elevation 
data  

Paper 2 
 
Paper 1 
 
 
Papers 1- 4 

Soil depth As input data to run the RHESSys model Paper 4 

NPP To calculate daily NPP and to estimate the impact of stream DOC 
loading on the carbon sequestration within the study area. 
Data in brief 

Paper 1 
 
Paper 5 

GPS data To map sampling sites and points, and rain gauge and sensors 
locations 

Papers 1- 4 

Historical rainfall To fill in missing data Paper 2 

Historical flow To calibrate the RHESSys model simulated flow Paper 4 

 

A series of statistical techniques and models were used in this thesis to compare 
DOC values, to evaluate the controlling effects on DOC, to predict DOC values, or 
to determine relationships between DOC and climate variability, soil properties, 
LULC and landscape attributes. A t-test was used to test the statistical difference 
between two DOC values. A one-way ANOVA with the post hoc Tukey honest 
significant difference approach (Tukey HSD) and the Spearman’s rank correlation 
were used to evaluate the effects of, respectively, LULC and slope position (SP) 
on WEOC (Paper 1). 
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Various predictions were performed in this thesis using simple linear models 
(LM), quadratic models, power function, generalized linear models (GLM) and 
linear mixed-effects models (LME). LMs that summarize and study relationships 
between two continuous variables were used to predict WEOC as a function of soil 
properties (Paper 1), and LDOC flux as a function of rainfall amount (Ra) and 
intensity (Ri), on the one hand, and Q and F on the other hand (Paper 3). GLMs 
that analyze fixed effects were used to estimate the fixed effects of soil properties 
including TOC, TN, Al, CEC, Fe, and soil texture elements on WEOC (Paper 1). 
GLMs that analyze both fixed and random effects were used to model WEOC and 
LDOC. Fixed effects are defined as the effects of covariates, whereas random 
effects are effects of factors whose levels are sampled from a larger population 
(Bolker et al., 2009). LMEs assume normal distributed residuals and are 
appropriately applied to repeated data that are likely to be correlated. Fitted to 
repeatedly-measured data, LMEs involve the estimation of covariance parameters 
to capture this correlation. In the Paper 1, LMEs analyzed fixed effects of soil 
properties and random effects of sites (East, Center and West) and LULC (natural 
forest, plantation forest, tea plantation, and cropland) on WEOC. In Paper 3, 
LMEs analyzed fixed effects with respect to LULC (forests and cropland) for Q 
and F and in respect with site (WS, CS, ES) on LDOC. The quadratic model was 
used to determine the relationships between pDOC, precipitation and temperature 
via API and MAT (Paper 1), whereas the power function was used to determine 
the relationship between stage and flow on one hand, and between DOC and flow 
on other hand (Paper 2). 

LME models were fitted by the restricted maximum likelihood (REML) method, 
which has the advantage of producing unbiased estimates of variance and 
covariance parameters (Liu et al., 2017). LMEs were evaluated by using the 
Akaike Information Criterion (AIC), which was found optimal by Yang (2005) for 
selecting a model with the optimal balance between minimal mean squared error 
and minimal complexity. 

Hydroecological simulation 
Apart from statistical models, the Regional Hydro-Ecological Simulation System 
(RHESSys) model was applied in this thesis to simulate DOC concentration and 
flux in the study area. The RHESSys model has already been successfully applied 
to many watersheds to simulate DOC flux (e.g.: Yang et al., 2013; Rouhani et al., 
2014). The carbon cycling in the RHESSys model includes the estimation of 
photosynthesis, vegetation respiration, vegetation allocation and turnover rates, 
organic matter decomposition rate. Photosynthesis is estimated by the Farquhar 
photosynthesis model (Farquhar and von Caemmerer, 1982), vegetation 
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respiration by the Ryan model (Ryan, 1991), and the vegetation allocation 
processes by the 3-PG model (Landsberg and Waring, 1997) or the Dickenson et 
al. (1998) model. The vegetation turnover rate is determined by vegetation specific 
parameters that are scaled by environmental factors. Soil and decomposition rates 
are based on the work of Thornton (1998).  Both soil and litter pools are associated 
with C:N ratios and a potential decay rate, including carbon lost and carbon 
transferred to soil or litter pools. Soil and litter respiration are computed as 
percentage of decomposition rates. Details about sub-models and corresponding 
mathematical equations used in the RHESSys model can be found in Tague and 
Band (2004). 

During carbon cycling in RHESSys model, plants fix carbon from atmospheric 
CO2 through photosynthesis, whose rate depends on nutrient availability, water 
availability, incoming radiation, and temperature. A portion of fixed carbon is 
used for plant respiration; another portion is allocated to the various parts of plants 
for their respiration, growth and maintenance (first carbon pool). Within RHESSys 
modeling, the Landsberg and Waring (1997) partitioning strategy is used in 
RHESSys model to estimate species-specific allocation ratios. Nutrient availability 
affects the amount of carbon allocated to roots, with a greater proportion going to 
roots on infertile sites than those on fertile sites. The remaining fixed carbon 
continuously gives rise to litter and soil organic carbon (secondary carbon pools). 
DOC in soil solutions is produced from theses secondary pools via decomposition 
processes (Figure 5). The decomposition rate is calculated using base 
decomposition rates for the litter and soil pools before it is scaled by soil 
temperature, nutrient availability and soil water content.  

The RHESSys model simulates hydrological processes, including lateral and 
vertical flows and, thus, the DOC flux associated with these flows. The rainfall 
that reaches the soil surface after being intercepted by the canopy strata infiltrates 
into soil layers following Philip’s infiltration equation (Philip, 1957). The 
RHESSys model uses a three layer model (root zone, unsaturated zone, and 
saturated zone) to simulate vertical rainfall water fluxes. The vertical movement of 
water through the soil profile is based on hydraulic conductivity and pressure 
gradient at the boundary of the saturated and unsaturated zones. When the soil 
layers are saturated, the lateral flow carries the DOC out from the soil. The DOC 
transport depends on soil porosity, decay rate of soil porosity, soil depth at defined 
layers (root zone, unsaturated and saturated zones), soil DOC availability, DOC 
distribution with depth, DOM production rate, DOC absorption rate, and soil water 
content.  

All rainfall water exceeding the soil storage capacity is routed to one or more 
downslope patches within one time step, whereas only a portion of the patch’s 
subsurface water store is routed to the downslope patches following an exponential 
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transmissivity decay model. Lateral drainage of saturated water is routed to 
streams via surface flow, shallow subsurface flow, or groundwater depending on 
topography and soil characteristics. 

 

Figure 5 Simplified framework of DOC simulation in the RHESSys model. 

A text document called a worldfile was used to reference input maps with 
landscape, soil and land cover characteristics, and vegetation physiological traits 
of the study area for RHESSys initialization state variables. Soil physical 
characteristics and vegetation physiological traits of the study area characteristics 
were all defined in default files (soil and vegetation default files). Remote sensing 
and in situ data can both be used as inputs to simulate watershed dynamics using 
the Regional Hydro-Ecological Simulation System (RHESSys) (Nemani et al., 
2009; Tague and Band 2004). A flow table was used to describe the connectivity 
between the patch objects. Patch objects were created from the 10m DEM, the soil 
map, and the land use/land cover map. The RHESSys model, through its 
hydrological models, used this information to model subsurface and overland flow 
routing. The MT-CLIM sub-model (Running et al., 1987) used topography and 
climate satiation variables to model the spatial distribution of climate variables 
over the study area. An ecophysiological model based on BIOME-BGC (Running 
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and Coughlan, 1988; Running and Hunt, 1993) in conjunction with a hillslope 
hydrology model based on DHSVM (Wigmosta et. al, 1994) was used to estimate 
carbon, water and nutrient fluxes. 
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Results and discussion 

Impact of LULC variability on DOC within the 
RRW 
Stream DOC, WEOC, pDOC and LDOC decrease from natural forest to cropland 
sites within the RRW. Our results are consistent with Camino‐Serrano et al. (2014) 
and Were et al. (2015), who both found that natural forests have higher DOC than 
other types of vegetation due to their higher inputs of detritus to the soils (Eclesia 
et al., 2012). The higher DOC in the natural forest within the RRW is due to the 
important accumulation of TOC, from which DOC is mobilized. Within the RRW, 
Wasige et al. (2014) found higher organic carbon stock in the natural forest 
compared to other LULC classes. TOC is the raw material from which DOC is 
produced, and positively affects the rates, extent, and pathways of microbial 
degradation. This preponderant role of TOC on DOC mobilization was confirmed 
by results that show TOC to have the highest correlation coefficient (0.60) with 
WEOC compared to other soil properties (TN, CEC, and Al) whose relationships 
with WEOC are statistically strong at significance level of 5% within the study 
area (Figure 6). 
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Figure 6 Relationship between normalized soil properties and WEOC and the corresponding correlation coefficients 
in the RRW. Figure from Paper 2. 

The lowest stream DOC, soil WEOC, pDOC and LDOC in cropland sites is 
explained by the loss of SOM that followed the conversion of the natural forest to 
croplands. Oslo (1996) indicated that the soil of Rwanda has been farmed since at 
least 300 A.D. The conversion from forest to agriculture lands decreased soil 
organic carbon (SOC) stocks via soil structure degradation by increased water 
erosion rates, and SOC export from fields (Grimaldi et al., 2003; Don et al., 2011). 
Also, the conversion from natural forest to cropland greatly influenced the 
characteristics of soil carbon and nitrogen and impacted on the amount and quality 
of litter input, the litter decomposition rates and the processes of SOM 
stabilization in soils, and the quantity and quality of soil microorganisms (Soosaar 
et al., 2011; Zhang et al., 2007). 
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Impact of climate variability on DOC  
within the RRW 

Antecedent precipitation, rainfall intensity and WEOC  
within the RRW 
High pDOC was observed when the values of the antecedent precipitation index 
(API) were at their optima and the natural forest showed the highest R2 (Table 3). 
Additionally, LDOC flux increases with both the rainfall amount (Ra) and mean 
rainfall intensity (Ri) in the RRW (Figure 8). The effect of API on pDOC is 
consistent with the results of Wen et al. (2006), Saidy (2013) and Sierra et al., 
(2015), that all observed an increase in carbon decomposition with increased soil 
water content. Optimal API causes high soil water content and consequently high 
diffusion of soil DOC (Taggard et al., 2012). Optimal API represents optimal 
antecedent wetness that is important for SOM dissolution, microbial activity and 
DOC lateral and vertical fluxes. A decrease of pDOC after it reaches its optimum 
can be explained by excess of soil moisture that dilutes microbial enzymes and 
affects substrate concentration and oxygen diffusion at the enzyme reaction site 
(Wen at al. 2006) reducing SOM decomposition rate into DOC. 

Table 3  
Quadratic regression models of percolation water DOC (pDOC) as a function of APIs, their coefficients of 
determination and squared errors within the RRW. Table adapted from Annexes A-C, Paper 2. 

Sites NAD Quadratic regression models R2 SSR 

NF 21 pDOC=-5E-04API2+0.07API+3.72*** 0.17* 137.79** 

TP 7 pDOC=-16E-04API2+0.13API+4.21*** 0.14* 165.92** 

CL 56 pDOC=-11E-04API2+0.10API+2.10*** 0.12* 224.99** 

NAD: number of antecedent days with the highest R2; NF: Natural forest site; TP: Tea plantation site; CL: Cropland 
site; pDOC: percolation water DOC; API: antecedent precipitation index of the corresponding number of antecedent 
days; *: the highest squared R; **: the least SSR; ***: the best quadratic regression model. 

Antecedent wetness was found to be negatively correlated with the soil capacity to 
store rainwater in the RRW (Figure 7). The study showed an inverse relationship 
between LDOC flux and rainwater soil storage capacity on LDOC in the RRW. 
This inverse relationship could be associated with soil infiltrability (Eigel and 
Moore, 1983). As soils store rainwater, the infiltration water and, therefore, LDOC 
flux decreased. With increased rainfall storage, fine particles moved down in the 
soil profile to 0.1–0.5 mm depth and accumulated, clogging conducting pores, 
decreasing infiltration water volume but generating more overland flows (Agassi 
et al., 1981). When these overland flows were initiated, subsequent raindrop 
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impacts lifted organic carbon particles into the flows and increased the turbulence 
of these flows, which in turn enhanced the erosive power of overland flows 
(Bradford et al., 1987). This lift of organic carbon particles into overland flows 
progressively decreased DOC concentration in infiltration water and therefore 
LDOC flux. This decrease of LDOC flux is probably exacerbated by high slopes 
(mean slope = 44.27%) within the RRW. 

 

Figure 7 Trend lines between LDOC flux, actual rainfall storage and potential runoff in the RRW. Figure from Paper 3. 

Rainfall intensity (Ri) was found to be in a direct relationship with LDOC flux. 
The direct relationship between LDOC and Ri could be associated with shortened 
initial breakthrough of percolation and increased percolate volume under high 
intensity rainfall. The latter has been found to be more effective in detaching soil 
(Morgan, 1978, Van Dijk, et al., 2002). Under high rainfall intensities, significant 
portions of rainfall water likely moved through macropores and produced most of 
the percolation (Ma et al., 2014; Edwards et al., 1992). Also, physical protection of 
soil organic carbon (SOC) was removed by water erosion and when raindrop-
impacted aggregates were broken down, DOC was released. High rainfall 
intensities can move great amount of DOC and therefore increase LDOC flux. 

 

Figure 8 Trend lines between leached DOC (LDOC), rainfall and rainfall intensity in the RRW. Figure from Paper 3. 
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Mean average temperature and DOC within the RRW 
The highest pDOC was observed at the natural forest site with the lowest 
temperature (13.99⁰C) and the highest WEOC (0.69g/L) compared to other sites 
(Tea: 18.54 ⁰C; 0.42g/L; Farm: 20.33⁰C and 0.29 g/L respectively). This result can 
be explained by high SOM that may be intrinsically sensitive to temperature and, 
therefore, may need low activation energy to initiate the decomposition process 
and mobilize DOC at the site. The low activation energy effect combines with 
SOM of high quality at the site to mobilize more DOC as compared to tea 
plantations and croplands sites. Mean TN at the natural forest site is 0.08%, 
exactly double the mean TN at tea and cropland sites. High TN favors soil carbon-
decomposing microorganisms in terms of amount and quality. These 
microorganisms, under favorable conditions of temperature and soil moisture, 
decompose and produce more pDOC in soil solution at the natural forest site as 
compared to the other sites. 

 

Figure 9 Quadratic trend line of percolation water DOC as a function of MAT in natural forest. Figure from Paper 2. 

The convex up relationship between pDOC and MAT (Figure 9) indicating high 
pDOC at lower temperatures, can be explained by low utilization of soil DOC by 
microorganisms. The relative decrease of the pDOC with intermediate 
temperatures can be due to the decline of soil DOC as it was utilized by 
microorganisms. As the temperatures increase, microorganisms increase their 
physiological and metabolic processes rates such as enzyme production (A'Bear et 
al., 2014). The higher pDOC at higher temperatures is then explained by microbial 
activity on both easily decomposable and/or highly stable organic carbon (A'Bear 
et al., 2012; Deressa, 2015). pDOC is probably enhanced by increased projected 
temperature and precipitation in the study area (Paeth et al., 2009). Temperature 
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increase will then positively influence terrestrial organic carbon production, its 
decomposition to DOC, leaching and, therefore, transport into streams. 

Impact of surface, subsurface and groundwater 
flows on riverine DOC within the RRW 
Flow duration curve analysis revealed that the quick flow component is a very 
important stream flow component within the RRW (Figure 10).  

 

Figure 10 Probability - flow relationships within the RRW for a two-year period from March 2015 to February 2017. 
Letters A, B, C and D represent the relationship for the stream in natural forest, tea, farm and outlet. Figure from 
Paper 1. 

Our results indicated groundwater contributions ranging from 1.20 to 2.73%, 
meaning quick flow contributions of 97.27 to 98%. Quick flow includes runoff, 
interflow and direct precipitation; all of which mobilize and transport DOC into 
streams and rivers. This result is confirmed by the observation of high riverine 
DOC during high flow periods (Figure 11) and the low impact of leaching on 
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topsoil carbon. Topsoil LDOC flux to deeper soil layers represents 0.5% of the 
annual NPP and 0.02% of the soil carbon stock in the RRW. The quick flow role 
in riverine DOC can be associated with the steeper slopes found in the RRW 
(mean slopes =44.27%), which favor runoff and not leaching. 

 

Figure 11 Relationship between stream flow and DOC in the RRW. Letters A, B, C and D correspond to the streams 
at natural forest, tea, farm and outlet stations. Equations represent the power function of the relationship between 
discharge and stream DOC at the sites and the corresponding coefficient of determination (R2). Figure from Paper 1. 

Impact of riverine DOC loss on carbon budget in 
the RRW  
DOC riverine loading is 8.44% of the daily NPP of the RRW (Paper 1). This 
riverine DOC is low compared to its NPP, but is higher than global riverine DOC 
loss (5%) (Lal et al., 2013). DOC loss through riverine loading is low, but could 
have direct consequences for the net carbon balance in the watershed, and can 
constrain its productivity, as long as soil DOC is linked with a soil’s capacity to 
supply nutrients (Sucker and Krause, 2010). Soil DOC loss is associated with the 
loss of soil nutrients and this may exacerbate soil degradation in the study area and 
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therefore reduce crop production with direct consequences on food security. A 
drastic decline in soil organic matter can degrade soil structure, lead to erosion, 
and reduce agricultural productivity (Stocking, 2003). In terms of ecosystem 
function, DOC riverine loss can cause shifts in primary productivity, 
decomposition, leaching/discharges, and/or transport in both terrestrial and aquatic 
ecosystems (Clark et al., 2010).  

Streamflow hydroecological modelling 
Our results indicated less than satisfactory performance of RHESSys model in 
simulating stream flow and low explained variation of stream DOC by simulated 
streamflow in the farm basin (Paper 4). Possible inaccuracies in landscape 
representation may have come in estimates of climate, soil, vegetation, and 
landscape attributes and from fine-scale heterogeneity in soil drainage 
characteristics. Additionally, streamflow calibration does not completely resolve 
errors in soil parameter estimates (Beven and Freer, 2001). These types of errors in 
model input data may explain unsatisfactory performance of our implementation 
of the RHESSys model to simulate stream flow of the farm basin. It may also be 
that our representation of this landscape simply does not include the significant 
anthropogenic influences on this landscape that are exerted in terms of cropping 
and water management practices.  
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Figure 12 Variation of monthly streamflow within the RRW. Figure parts NF, TB, and FB show the natural forest, tea 
and farm basins, respectively; “sim” indicates RHESSys simulated streamflow and “obs” indicates simulated 
Thornthwaite streamflow.  
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Simulated streamflow and DOC in the natural 
forest basin 
RHESSys simulated streamflow explained 85% of the variance of monthly stream 
DOC in the natural forest (Figure 5 from Paper 4). The poor prediction of stream 
DOC by simulated flow data in the farm and tea basins could be due to high 
variance of stream DOC in these locations, as compared to that found in the 
natural forest basin. This is likely mainly due to human activities, and their 
insufficient representation in our simulations. For example, we realized during 
sampling campaigns that some parts of buffer zone were cultivated. This could 
have had a significant impact on the export of organic matter in the farm and tea 
basins, and could only have been effectively simulated and quantified with 
detailed information about cultivation practices, describing precisely when and 
how they were applied. 
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Figure 13 Monthly distribution of RHESSys simulated stream flow and observed stream DOC within the RRW. NF, 
TB, and FB stand, respectively, for the natural forest, tea, and farm basins. 
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Conclusion and outlook 

This dissertation has investigated the dynamics of DOC in a mixed agriculture and 
forest watershed, focusing on its mobilization and export. The following are the 
main conclusions linked to the main aims:  

1. Riverine DOC loading from the study watershed is low compared to its 
NPP, but is higher than global average riverine DOC loss, and may 
measurably affect the carbon budget in the study area. 

2. The land use land cover, through its control on soil total organic carbon 
(TOC), is the overarching factor explaining soil WEOC dynamics within 
the study area. In return, TOC can be sufficiently predicted by WEOC in 
the study watershed. Land use cover change from forest to land crop will 
decrease soil DOC and, therefore, exacerbate land degradation within the 
studied watershed.  

3. The annual LDOC flux from topsoil was 2% of the net primary 
productivity (NPP), and LULC was the main controlling factor, with the 
highest LDOC flux within plantation forest. Land cover change from 
cropland to plantation forest will increase LDOC within the RRW with 
implications on groundwater quality.  

4. The RHESSys model detected the response of the watershed to climate 
variability within the natural forest basin and captured the significant 
monthly variability in streamflow within the basin. This result indicates 
the potential use of RHESSys to estimate streamflow in forest basin and 
similar tropical watersheds. 

5. Hydrological and stream dissolved organic carbon data for a three-year 
period in a tropical watershed were produced. The data are useful in water 
resource management, ecosystem restoration and conservation. 

This dissertation has studied DOC mobilization and export using field 
observations, and statistical and eco-hydrological modelling approaches. The 
acquired knowledge and data can be used for further research and management of 
watersheds. For example, most riverine DOC was found to be transported by 
overland flow. This information is useful for watershed managers, who can choose 
to enhance existing anti-erosive practices. Some DOC and associated nutrients, 
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such as nitrogen, can leach from soils into adjacent streams (Lal et al., 2013). An 
excess of DOC and nitrogen has impacts on groundwater quality (Jahangir et al., 
2012). To give some insights into the impact of landscape DOC and nitrogen on 
groundwater quality within the studied watershed or similar watersheds, further 
research can use our methodology and data. The majority of DOC in terrestrial and 
aquatic environments is ultimately returned to the atmosphere as CO2 (Bolan et al., 
2011) CH4. Our results for DOC within different LULC classes can be used in 
such research on CO2 and CH4 dynamics within the study area. Our results can be 
also used in future research into soil nutrients deletion and metal transport into 
stream waters, given that DOC is known to act as a key vehicle for the 
translocation and loss of soil nutrients into waters (Hagedorn et al., 2004). 
Streamflow simulation was successfully calibrated and validated at the monthly 
scale in the RRW using the RHESSys model. This result indicates the potential 
use of RHESSys to estimate hydroecological processes in the forest basin and 
similar tropical watersheds. 
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