

Formation and Fracture of Expanding Precipitates

Talk given at the annual meeting of the Italian Group of Fracture, Urbino, Italy. Orationem Meam.

Ståhle, P.

2017

Document Version: Förlagets slutgiltiga version

Link to publication

Citation for published version (APA):

Ståhle, P. (2017). Formation and Fracture of Expanding Precipitates: Talk given at the annual meeting of the Italian Group of Fracture, Urbino, Italy. Orationem Meam.

Total number of authors:

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

IGFXXIV, Urbino, Italy, March 2017

Phase Field Modelling of Formation and Fracture of Expanding Precipitates

Wureguli Reheman and Per Ståhle

Solid Mechanics, Lund University, Sweden

The experiment

Initially hydrogen is in solid solution. As the cold finger makes contact hydride precipitation occurs. The hydride grows with the arrival of thermally migrated hydrogen

The Phase Field keeps track of the hydride

Double-well chemical potential

$$U(\psi) = p \psi^2 (1 - \psi)^2$$

Expansion

$$\epsilon^{s}(\psi) = \epsilon_{s}(3-2\psi)\psi^{2}$$

Contributions to the free energy

$$\mathcal{F} = \mathcal{F}_{el} + \mathcal{F}_{ch} + \mathcal{F}_{gr}$$

Elastic energy
$$\mathcal{F}_{el} = \int \sigma_{ij} \mathrm{d}\epsilon_{ij}$$

Chemical energy
$$\mathcal{F}_{ch} = U(\psi)$$

Gradient energy
$$\mathcal{F}_{gr} = \frac{g_r}{2} \left(\psi_{,i} \right)^2$$

Unknown: ψ, u_1, u_2, u_3

Phase:
$$\frac{\partial \psi}{\partial t} = -L_{\psi} \left(\frac{\partial \mathcal{F}}{\partial \psi} - \nabla \frac{\partial \mathcal{F}}{\partial (\nabla \psi)} \right)$$

Displ.:
$$\frac{\partial u_i}{\partial t} = -L_{u_i} \left(\frac{\partial \mathcal{F}}{\partial u_i} - \nabla \frac{\partial \mathcal{F}}{\partial (\nabla u_i)} \right)$$

Evolution of the phase.

$$\psi_{,ii} - \frac{\partial \psi}{\partial \tilde{t}} = \left\{ 3\epsilon_{ii}^{el} \tilde{\epsilon}_s + 2(1 - 2\psi) \right\} (1 - \psi)\psi$$

Mechanical equilibrium with expansion

$$\tilde{u}_{i,jj} + \frac{1}{1 - 2\nu} \tilde{u}_{j,ij} = 2\tilde{\epsilon}_{ij,j}^p + \tilde{\epsilon}_{,i}^s$$

In analogy with a fully coupled thermal-stress

Emedded Cylinder - Phase Field

Largest Principal Stress

Blister Depth vs Radius

Summary

Growing hydrides are studied using a phase field model

The expanding hydride develops internal tensile stress

The fracture of surface hydrides is possibly explained