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Fast algorithm of LTE RACH detection based on
Sparse Fourier Transform

Abstract—In this paper, we present fast algorithm of time
synchronization between User Equipment (UE) and Base Station
(BS) which is suitable for Long Term Evolution (LTE) Random
Access Channel (RACH). The algorithm reduces the complexity
more than 1.5 times. Further, if the SNR is above a threshold,
the algorithm allows to extremely reduce the complexity of
synchronization more than 3 times. The presented method uses
the sparse nature of a time synchronization problem, where the
spike of a cross-correlation between received signal and local
RACH preamble indicates correct time delay.

I. INTRODUCTION

LTE is one of the rapidly growing branches in the wireless
communication systems. The number of subscribers worldwide
is rising fast. Predictions say that the amount of subscribers
will reach billion in next several years. It is the reason of
increasing traffic loads through a BS serving the LTE users.
Base station proceeds the time synchronization for UE, when
UE tries to access an LTE cell, to put it in schedule of the
local cell. In LTE the process of time synchronization is called
RACH preamble detection, therefore we will use both names.
Here preamble is a special synchronization burst which has a
certain structure [1].

The state of the art of the RACH preamble detection is
based on the Fourier transform (FT) and has a complexity
of O(n log n) (see Fig. 1), where n is the number of burst
samples. We will call traditional method (or approach, or
algorithm) the presented in Fig. 1 algorithm. This procedure of
detection is quite costly and requires hundreds of millions of
hardware multiplications, leading to high power consumption.
That is why rapid increasing of subscribers amount will neg-
ative affect the BS performance. In this paper we discuss the
optimization of synchronization part and we will present the
method which exploits the sparse nature of the synchronization
problem [3].

Nowadays, Discrete Fourier Transform (DFT) is the most
common analysis tool. The idea to reduce complexity of
FT algorithms is one of the central subjects in the theory
of algorithms. Meanwhile, in many applications most of the
Fourier coefficients of a signal are small or even vanishing.
We call such signals as Sparse Signals (SS), which means that
the signals have sparse spectrum in frequency domain. If a
signal has a small number k of non-zero Fourier coefficients,
then the output of the DFT can be represented using only k
coefficients and theirs positions. Hence, for such signals, it
should be investigated fast DFT algorithms whose runtime is
sub-linear in the signal size n.

There is a new algorithm of DFT which works with SS –
sparse FFT (SFFT) [2]. For exactly k-sparse case, when DFT
of a signal includes k non-zeros frequencies, the complexity of

Fig. 1. Traditional approach of synchronization.

algorithm SFFT is equal to O(k log n). Note, that a complexity
of DFT is reduced by the factor of n/k comparing with
common FFT. For general case, when DFT of signal includes
approximately k large frequencies, the complexity of SFFT is
equal to O(k log n log(n/k)) [2].

The main idea of SFFT is to do FFT of shorter signal,
n/p = B in size instead of large original signal of size
n, here p is an aliasing factor, B is an integer number.
For this purpose SFFT algorithm uses random permutation
of the spectrum of original signal then aliasing the result
into small number of elements. To avoid a leakage it uses
filtering. After these steps, SFFT techniques allows to estimate
”heavy” coefficients of FFT and theirs positions. Of course,
this method is probabilistic, for special class of signals the
method has a good probability to correct reconstruction of
Fourier coefficients [2].

As it was noted above, in the problem of time synchro-
nization there is one major spike of the correlation function.
Attempts to make use of sparseness of correlation function in
the time domain gave rise of using sparse IFFT [3]. The sparse
IFFT algorithm proceeds as follows. Firstly, it subsamples
the frequency domain signal by an aliasing factor p. Then it



computes the IFFT over n/p frequency samples. It is well
known from basic sampling theory that sub-sampling in the
frequency domain is equivalent to aliasing in the time domain.
Thus, the output of sub-sampled IFFT step is an aliased version
of the output in the original IFFT step shown in Fig 1.

Let us briefly explain the method of synchronization in
GPS via the SFFT, which was developed by a team from MIT
[3].

We call bucketization [2] the procedure that hashes n
original outputs samples into n/p buckets. There is one major
correlation spike in the output of the IFFT, the amplitude of
the bucket with spike will be significantly larger than that
of other buckets where only noise samples located. Hence,
the algorithm chooses the bucket with the largest amplitude
among the n/p buckets at the output of sub-sampled IFFT.
The chosen bucket contains p aliased samples. Each signal’s
sample corresponds to its time shift. It means, that out of p
candidate shifts from one bucket there is only one which is
the actual correlation spike. To identify the spike among these
p candidate shifts, the algorithm correlates the received signal
with each of those p shifts of the local preamble. The shift that
produces the maximum correlation is the Correct Shift (CS).

We call it MIT method. Attempts to further utilize sparse-
ness and minimize computational complexity is resulted in
current paper.

The paper is organized as follows. In Section II the LTE
random access channel model is described. In Section III
the preamble detection algorithm based on modified SFFT is
developed. Section IV presents the performance degradation
analysis and an example of the selection of algorithm param-
eters. Section V presents the simulation conditions and the
experiment results. Section VI presents concluding remarks
and declares directions of the future work.

II. SYSTEM MODEL

Let us shortly recall the LTE RACH theory. When UE
wants to access to the BS cell, first it transmits a random access
preamble using a special case of multicarrier transmission —
Orthogonal Frequency Division Multiplexing (OFDM) [4]. The
preamble is generated from Zadoff-Chu (ZC) sequence [5], [6].
A ZC sequence that has not been shifted is known as a ”root
sequence”. The root ZC sequence parametrized by u is defined
by

xu(m) = e
−j πum(m+1)

NZC , j =
√
−1,

where m ∈ [0, NZC − 1], u ∈ [0, NZC ], gcd(NZC , u) = 1,
NZC is the length of the ZC sequence, for LTE RACH
preamble NZC = 839 [1].

One of typical methods of generation of a RACH signal
is illustrated in Fig. 2. The frequency domain scheme of
generation of the RACH signal is explained as follows:

1) Zadoff-Chu sequence is generated in Time Domain.
2) NZC-point DFT is used for time to frequency domain

conversion, where NZC is the Zadoff-Chu sequence
length with prime number, in this paper NZC = 839.

3) The output of DFT is mapped to the assigned sub-
carriers, see Fig. 3. Total number of sub-carriers
2048, output of DFT uses just 839 sub-carriers.

4) IFFT is used for frequency to time domain conver-
sion, the output result of this step is the vector of
RACH preamble r, also we call r local code.

5) Cyclic Prefix (CP) insertion.
6) Upsampling, to take output signal v, which goes to

the channel.

Fig. 2. Generation of RACH signal.

Fig. 3. Sub-carrier Mapping.

The signal v is passed through a channel. There can be
different models of channel hch [7]. We consider a channel
with static propagation conditions. Transmission of signal
through the channel can be defined as follows: s′ = hch∗v+ξ.
Here ξ is an Additive white Gaussian noise (AWGN).

The received signal is first pre-processed in time domain:
signal is passed through the Low Path Filter (LPF), which
avoids aliasing after Decimation, then the result is fed into
CP-removing block. After CP-removing block, the signal is fed

Fig. 4. Receiver side.

into RACH Detection block Fig.4. In the traditional approach,



the algorithm of detection coincides with the method, which
is shown in Fig1.

III. FAST RACH DETECTION ALGORITHM

A. Bucketization

Let us consider the special operation, which allows to
reduce the size of an array from n to B = n/p, where
p is an aliasing factor. The special operation is required to
reduce complexity of circular convolution of two arrays. In
our case, we talk about convolution of received signal and
local preamble in receiver.

There is a lot of ways to reduce a size of an array: cutting
of the array with deletion of members, hashing of the array into
a small size array, hashing of the array into a small size array
with multiplication on complex weights. The first way is not
acceptable, because of information lost. Hashing of the array
into a small size array is called bucketization (like distribution
quantities of a material between ”buckets”)

Denote by Ψ(α, p) the matrix of bucketization:

Ψ(α, p) = (IB×B , e
jα
p · IB×B , . . . , e

j(p−1)α
p · IB×B), (1)

where j is the imaginary unit, α is an angle of rotation, IB×B
is an identity matrix of size B-by-B. Note, by default we use
Ψ instead of Ψ(α, p) in the text below. If we want to specify
values of α or p, then we use expression Ψ(α, p) with specified
values. Let us define the n-by-n matrix of a shifting C,

C =

(
01×n−1 0
In−1×n−1 0n−1×1

)
;

and the B-by-B matrix of a cyclic shifting S,

S =

(
01×B−1 1
IB−1×B−1 0B−1×1

)
.

The matrix of a shifting C will be used for setting of a
spreading time delay of a signal, the matrix of a cyclic shifting
S will be used for calculation correlation values.

Let us consider a purified scenario, where the received
signal consists only of a time delay, and the local preamble
r. The time delay equals K samples. For the explanation of
the algorithm we use the signal s without CP: s = CKr =
[0, 0, . . . , 0, r1, r2, . . . , rn−K ]. Furthermore, we assume K =
(l − 1)B + k, k ∈ [0, B − 1], l ∈ [1, p], here l is called floor
of start point of the received signal, i.e. the first element r1

of the vector r is located in the l-th part of the vector s after
dividing s into p parts. The operation of bucketization is as
follows:

rnew = Ψr, snew = Ψs. (2)

The new arrays are B-by-1 vectors (columns).

B. Calculation of a correlation

The correlation value on m-th shift of two new arrays snew
and rnew can be represented as follows:

Corr(m) = (Sm−1rnew)Hsnew, 1 ≤ m ≤ B.

By construction of the bucketization matrix Ψ, all values of
the correlation function Corr(m), except the one position

m∗ = k + 1, do not contain members like |rm|2 ej
α
p η for

some m ∈ [1, B] and η ∈ [0, p− 1]. The correlation value for
m = m∗ Corr(m∗) contains N−K members like |rm|2 ej

α
p η .

The statement |rm|2 = 1 follows from the properties of a ZC
sequence. Further,

Corr(m∗) = (B − k)(p− l + 1) ej
α
p (l−1)+

+ k(p− l) ej
α
p l+

+
∑

m6=t;η,ξ
rmr̄t e

j αp (η−ξ) =

= Rl−1 e
j αp (l−1) +Rl e

j αp l + ∆ =
= Rejϕ + ∆.

(3)

Here ∆ =
∑

m6=t;η,ξ
rmr̄t e

j αp (η−ξ), Rl−1 = (B − k)(p− l + 1)

and Rl = k(p− l), R,ϕ are the length and the argument of the
maximum value of the correlation function (3), respectively.
The explanation is geometrically represented in Fig. 5. In LTE
practice, the value of a time delay lies in a fixed range, due to
this fact: a minimum length Rmin of a maximum vector bigger
then n/2.

Fig. 5. Definition of Maximum element’s argument.

Obviously, according to the Fig. 5 the floor l can be
estimated by using an angle ϕ of the maximum element. The
value of ∆ can be the cause of incorrect estimation. Let us
rewrite (3) in the following form: Corr(m∗) = R′ ej(ϕ+θ).
Here the variable θ is a phase error Fig. 5.

Let us estimate possible ranges of θ. For this purpose we
need to analyze a behavior of the value ∆, but we suggest
better solution for considered problem such that the maximum
radius ρ∆ of an error circle (the error circle is defined in Fig.5)
should be calculated for all possible variants of time shifts and
for all ZC sequences. There was empirically obtained a relation
for radius of the error circle: ρ∆ = p

400n. This relation was
calculated for p = 8, p = 4 and p = 2.

Based on the relation for the radius the phase error θ can
be estimated as follows:

|θ| ≤ sin−1
(

ρ∆

Rmin

)
= sin−1

(
p

200

)
≈ p

200 . (4)



Obviously, from the inequality (4) that the phase error crucially
depends on aliasing parameter p. The higher the value of p,
the greater the value of θ. As it shown above, the maximum
element of correlation function Corrmax = Corr(m∗) can be
located in sector

Corrmax ∈
[
α

p
(l − 1)− |θ|, α

p
l + |θ|

]
. (5)

C. Correct Shift and ”Floor” estimation

In this subsection we explain how to estimate the Correct
Shift (see explanation of MIT method in section I). We
consider the output array of the correlation function Corr,
which is calculated using bucketization with parameters α, p.
Let ϕ be the angle of maximum element Corrmax. Denote
by fl the value of the floor. The floor can be calculated as
follows:

fl = round

(
ϕ
α
p

)
= round

(pϕ
α

)
. (6)

We assume, that the received signal’s start point is located on
sample (l − 1)B + k + 1. Actually, it means that fl equals
(l−1). Denote by f̃ l an estimation of fl. Equation (3) can be
represented as follows:

Corr(m∗) = (B−k)(p−l+1)e
jα
p (l−1)+k(p−l)e

jα
p l+∆, (7)

where m∗ = k + 1. Due to (7) and Fig.5 estimation of the
floor can be equal to l − 1 or l, the result depends on k and
∆. There are two ways to check correlation between s and
r: at shift sh1 = B(f̃ l − 1) +m∗, at shift sh2 = Bf̃l +m∗.
Checking of the correlation can be done using only B samples
[3]:

A1 = (s(sh1 : sh1 +B − 1))Hr(1 : B),
A2 = (s(sh2 : sh2 +B − 1))Hr(1 : B).

(8)

The correct shift cs gives the biggest correlation value. For
fl = l−1: if there is estimated f̃ l = l−1, then A2 > A1 and
cs = sh2; else if there is f̃ l = l, then A1 > A2 and cs = sh1.
The case, where A2 is bigger than A1 means that the floor was
estimated correctly. Furthermore, if there exists a threshold
Thr, which is based on statistic of previous measurements,
then the algorithm should calculate just one correlation value,
for example A2, and compare the correlation value with the
threshold: if A2 > Thr, then cs = sh2; else cs = sh2 −B.

The full algorithm of the proposed method is presented in
Appendix.

D. Runtime

Computational scheme of the proposed method described
in the Appendix consists of five steps. Computational complex-
ity is estimated according to this scheme and is summarized in
the Table I. Note, our algorithm is very similar to the traditional
method of synchronization Fig.1 with except of two steps: Step
1 – bucketization and Step 5 – Find the CS. These two steps
are absent in the traditional approach (see Table I).

Fig. 6. Implementation of the proposed algorithm for n = 1024 and p = 8.
Here are 8 different time delays, the algorithm allows to find all positions.
Dashed lines mean division of the long array of measurements into eight
buckets. Note, here pictured 8 separate scenarios with different delays. The
algorithm had worked 8 times to calculate all delays.

Traditional MIT Proposed
1. Bucketization - n 2n
2. FFT n logn B logB B logB
3. Multiplication n B B
4. IFFT n logn B logB B logB
5. Find the CS - 2n 2B

TOTAL (n = 2048, p = 4) 47104 15872 14848
Coefficient of Reduction 1 2.97 3.17

TABLE I. COMPARISON OF COMPUTATIONAL COMPLEXITIES

IV. PERFORMANCE DEGRADATION AND PARAMETERS
SELECTION

Description in the previous section shows the main benefit
of the suggested method is Reducing of the Complexity of
Detection Algorithm. In this section we analyze the perfor-
mance of the proposed algorithm. Looking ahead, it is worth
noting that our method causes of the detection performance
degradation.

A. Performance degradation

For simplicity explanation, we use a channel with static
propagation conditions and without spreading time delay:

s′ = r + ξ.

Here r is a local preamble, ξ is an AWGN noise with a variance
σ2.



The maximum value of the correlation function between s′
and r is equal to a scalar multiplication:

MTRD = rHs′ = rHr + rHξ = n+ rHξ. (9)

Let us denote by η the process rHξ. The value η is a random
process with zero mean E[η] = E[rHξ] = rHE[ξ] = 0, and
the variation

E[ηηH ] = E[rHξξHr] = rHE[ξξH ]r = rHσ2In×nr = σ2n.

Here η is the random part and n is the deterministic part of
MTRD. The ratio of the variation of η to the deterministic part
of (9) is defined as follows:

ΞTRD =
σ2n

n
= σ2.

This is the ratio for the traditional method.

Let us consider the proposed method for some α and p.
Operation of bucketization gives us next expression:

s′new = Ψr + Ψξ.

Maximum value of the correlation function after bucketization
is equal to scalar multiplication:

MMOD = (Ψr)Hs′new = rHΨHΨr + rHΨHΨξ = d+ ζ.
(10)

Here d = rHΨHΨr, ζ = rHΨHΨξ. It can be clearly shown,
that the expression d = rHΨ(0, p)HΨ(0, p)r is equal to n and
for any α the maximum value of d

max
r

[rHΨ(α, p)HΨ(α, p)r] = n.

Note, in case α = 0 we need use MIT method instead of
proposed method.

The value ζ is a random process with zero mean E[ζ] =
E[rHΨHΨξ] = rHΨHΨE[ξ] = 0, and variation

E[ζζH ] = E[rHΨHΨξξHΨHΨr] =
= rHΨHΨE[ξξH ]ΨHΨr =
= rHΨHΨσ2In×nΨHΨr
= σ2rHΨH(ΨΨH)Ψr =
= σ2rHΨHp IB×BΨr = σ2p d.

(11)

Here equality (ΨΨH) = p IB×B is satisfied by the construc-
tion of bucketization matrix (1). The ratio of the variation of
ζ to the deterministic part of (10)

ΞMOD =
σ2pd

d
= σ2p.

This is the ratio for our method.

As it shown above, the error variance increases p times. It
means, that the procedure of bucketization leads degradation of
the detection performance. Both methods (MIT and proposed)
lead a performance degradation. MIT and proposed methods
are trade-off between a complexity reduction and an accuracy
degradation.

B. Parameters selection

In this subsection we explain how to choose rotation and
aliasing parameters of proposed algorithm. Let us consider
AWGN static propagation channel and a signal with time delay
in K samples:

s′ = CKr + ξ. (12)

According to (5) and Fig. 5 the angle α and the aliasing
parameter p should satisfy the condition:

1

2

α

p
> θ. (13)

Obviously, the phase error increases for a signal with a noise.
Let us calculate the maximum value of the correlation function
for signal (12) after bucketization:

Corr(m∗) = (S(m∗−1)rnew).Hs′new =
= (S(m∗−1)rnew)H(snew + Ψξ)
= (S(m∗−1)rnew)Hsnew+
+(S(m∗−1)rnew)HΨξ =
= Rejϕ + ∆ + ∆n.

(14)

Here (14) we denote by ∆n the variable ζ (10). As it shown
in (11) the highest value of the square root of the variance
σζ = σ

√
pn. Thus, due to the three-sigma rules, the radius of

the error circle Fig. 5, which covers 99.73% of all deviations,
is equal to r3σ = ρ∆ + 3σζ .

Example: Let us estimate θ in case σ = 1/3 and p = 8:

|θ| < sin−1(r3σ) = sin−1

(
8

200
+

√
4 · 8
2048

)
< 0.17.

Last means, that the parameter α, due to (13), satisfies next
inequality: α ≥ 2.72 rad. Finally, for σ = 1/3 it is enough to
use α = π and p = 8. Under these conditions a runtime of the
proposed algorithm is O(n), see Table I.

V. SIMULATION

The proposed method is tested in LTE RACH synchro-
nization and compared with traditional and MIT methods
(see Table II). There are simulated the transmitter and the
receiver with a single antenna, the number of iterations is
50000. The signal includes the preamble with probability 50%.
Requirements [7] for this simulation are follows: probability
of a correct detection shall be equal or exceed 99% for
SNR = −11dB for a static propagation AWGN channel with
a single path; probability of a false alarm should be less 0.1%.
The requirements are reached. The last means that proposed
method can be applied in RACH synchronization issues.

The scenario of an LTE RACH synchronization is simu-
lated as follows:

1) Generation of a RACH preamble (see Fig. 2) in an
upsampling rate (30.72 MHz) using a RACH signal
structure which is defined in Fig. 3.

2) Simulation of a passing through a single path static
propagation AWGN channel (SNR from -15 dB to
-10dB).

3) Receiving the signal Fig. 4 and feeding it in a down-
sampling rate (2.56 MHz) to the RACH detecting
block.



Single Path Static Channel with AWGN
Traditional method

SNR -15 dB -14 dB -13 dB -12 dB -11 dB -10 dB
100% 100% 100% 100% 100% 100%

p MIT method
2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
4 97.9% 99.6% 100.0% 100.0% 100.0% 100.0%
8 77.4% 88.2% 95.1% 98.5% 99.6% 99.8%

p Proposed method
2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
4 97.9% 99.6% 100.0% 100.0% 100.0% 100.0%
8 77.5% 88.2% 95.2% 98.5% 99.6% 99.8%

TABLE II. PERCENTAGE OF RACH PREAMBLES CORRECT DETECTION
FOR SINGLE PATH AWGN CHANNEL

VI. CONCLUSION

This paper presents the fast RACH preamble detection
algorithm. The main feature of the algorithm consists in
compression of the received signal using its complex-valued
linear combinations. The algorithm allows for reduction of the
calculation complexity while performing the synchronization
of the received signal with the locally generated replica.
Analysis shows advantages as well as disadvantages of the
proposed method. Reasonable trade-off between complexity
reduction and accuracy degradation is controlled by the alias-
ing parameter p depending on SNR.

On the system level we always have trade-off between time
for resource allocation (due to RACH) and the physical uplink
control channel (PUCCH) load. For dynamic scheduling we
need processing a lot of scheduling requests via PUCCH. For
cell edge users we can obtain poor synchronization conditions
and compensate time offset by special technique [8]. When
control channel is overloaded, part of users can repeats the
requests or reuses random access for synchronization im-
provement and resource scheduling. RACH procedures based
on proposed algorithm can be faster than scheduling request
repetition that is new reason for further optimization

In the future work we plan to investigate potential capa-
bilities of the method in multiuser case using more realistic
simulation models.
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APPENDIX

A. Full Algorithm of the proposed method

Inputs: s′, r and parameters α, p.
Outputs: Correct Shift cs estimation.

1) Bucketization:
snew = Ψ(α, p) · s, rnew = Ψ(α, p) · r

2) Small size FFT:
S = FFT(snew), R = FFT(rnew)

3) Multiplication:
Vi = Si ·RHi , i = 1, · · · , B

Note: The algorithm can precompute R and store
R in the frequency domain. There are several vari-
ants of choosing parameters α, p, and the vector R
can be precomputed for all these variants.

4) Small size IFFT:
v = IFFT(V )

5) Find the correct shift:
Inputs: v, s, r, Thr
• Find the element Emax with maximum mag-

nitude in the vector v and its position m∗.
Estimate the phase ϕ of Emax.

• Estimate the floor f̃ l of the start point local-
ization (6).

• In case when f̃ l = 0 choose cs = m∗, in
another case go further.

• Calculate: sh = B · f̃ l +m∗,

A = (s(sh : sh+B − 1))H · r(1 : B).

• Compare with threshold: if A > Thr, then
cs = sh, else cs = sh−B.
Note: The value Thr can be precomputed
using previous measurements.

Outputs: cs


