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Abstract

The past few years have witnessed dramatic growth in the number of wire-
lessly connected devices, which will continue to increase in the future. Fol-
lowing this trend, the capacity of the wireless networks has been enhanced
to provide high-quality service to tens of billions of devices. At the same
time, in response to the network enhancement, each device unashamedly
requests more and more throughput to support high-data-consuming ap-
plications such as video calls, high-definition video streaming, and online
multiplayer video games. This undoubtedly indicates that the demand for
high wireless throughput and numerous new connections will keep increas-
ing in the near future. In addition, the development of new technologies
such as virtual/augmented reality, self-driving cars, remote surgery, and
other latency-critical applications has caused concern regarding the net-
work response latency. Thus, next-generation wireless networks have to
satisfy three main requirements: i) high throughput; ii) simultaneous ser-
vice to many users; and iii) low latency. Massive multiple-input multiple-
output (MIMO) technology, where a base station (BS) equipped with a
large antenna array is capable of serving many users simultaneously in
the same time-frequency domain, has been developed to mitigate these re-
quirements except the last. However, massive MIMO technology has to
overcome the challenges related to the channel estimation (CE) overhead,
which inevitably increases the communication latency, to become the abso-
lute leader in the list of promising technologies for next-generation wireless
communication. This dissertation focuses on developing solutions that are
aimed to mitigate massive MIMO CE challenges. The dissertation consists
of three main parts: massive MIMO channel modeling, user localization in
massive MIMO networks, and full downlink channel reconstruction.

The first part (Chapter 3) discusses an approach for modeling spatially
consistent channels in massive MIMO networks. The main focus is put on
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describing specular reflections of wireless signals from arbitrarily inclined
surfaces by taking into account the signals’ polarizations and the spatial
distributions of massive MIMO antennas. The proposed approach has been
validated through simulating signal transmissions in a realistic environment
model based on Google Maps. Results show the importance of incorporat-
ing a spherical wave propagation model and the consideration of detailed
3D characteristics of the surroundings in the simulation of massive MIMO
channels.

The second part (Chapter 4) introduces a solution for localizing users in
massive MIMO networks. The main focus is on designing algorithms that
are capable of estimating the positions of users using only uplink signals by
exploring the advantages of the spherical wave propagation model proposed
in the first section. The designed localization schemes have been evaluated
through both simulation and proof-of-concept experiments. Simulation re-
sults show that the schemes can achieve decimeter-level localization accu-
racy using 64 and more antenna elements for distances up to 300 meters.
The proof-of-concept experiment justifies the feasibility of user localization
based on the estimation of the spherical shape of the incoming wavefront.

The third part (Chapter 5) investigates the problem of reconstructing the
full downlink channel from incomplete uplink channel measurements in mas-
sive MIMO systems. This problem arises in the next-generation networks,
where connected devices have multiple transmitting and non-transmitting
antennas. To achieve high throughput, channels for non-transmitting an-
tennas have to be reconstructed. This section presents ARDI, a scheme
that builds a bridge between the radio channel and physical signal propa-
gation environment to link spatial information about the non-transmitting
antennas with their radio channels. By inferring locations and orientations
of the non-transmitting antennas from an incomplete set of uplink channels,
ARDI can reconstruct the downlink channels for non-transmitting anten-
nas. The performance evaluation results demonstrate that ARDI is capable
of accurately reconstructing full downlink channels when the signal-to-noise
ratio is higher than 15dB, thereby expanding the channel capacity of mas-
sive MIMO networks.
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Chapter 1

Introduction

Wireless technologies have significantly enhanced human capabilities. Smart phones
influence every aspect of our daily lives: from finding our location in remote parts of the
planet through to real-time communication with friends on the other side of the world.
Smartphones have become indispensable. With the help of wireless health monitoring
devices, doctors can follow the health conditions of their patients while they are not
even in the hospital area. Parents can track the breathing of their children using
technology that can count the breathing rate based on radio waves propagation (Adib
et al., 2015). Rescuers can delegate dangerous missions to robots that are wirelessly
controlled, and so avoid injury.

In recent years, data traffic (both mobile and fixed) has grown exponentially due to
the dramatic growth of smartphones, tablets, laptops, and many other wireless data-
consuming devices. The demand for wireless data traffic will continue to grow in the
future, primarily due to emerging mobile video services and the global penetration of
high throughput networks for smartphones, such as long term evolution (LTE) and
LTE-Advanced (Cisco, 2018; Qualcomm, 2013; Ericsson, 2016). Figure 1.1 shows the
global Internet traffic growth by devices, which indicates that the increase of smart-
phone data traffic alone will be more than sevenfold between 2017 and 2022, and will
reach 175 exabytes (EB) per month by 2022. The traffic from wireless and mobile
devices will account for 71 % of the total data traffic. The majority of the Internet
content will be generated by high-definition real-time video streaming from smart-
phones, which means that networks should provide not only high-volume traffic but
also high throughput. The demand for high-throughput traffic adds a tremendous load
to the wireless network.

From the other side, there is an emerging high load that comes from the demand for
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Table 2.  Average number of devices and connections per capita

2017 2022

Asia Pacific 2.1 3.1 

Central and Eastern Europe 2.5 3.9

Latin America 2.1 2.9 

Middle East and Africa 1.1 1.4 

North America 8.0 13.4 

Western Europe 5.4 9.4 

Global 2.4 3.6 

Source: Cisco VNI, 2018.

The changing mix of devices and connections and growth in multidevice ownership affects traffic and can be seen 
in the changing device contribution to total IP traffic. At the end of 2017, 59 percent of IP traffic and 51 percent of 
Internet traffic originated from non-PC devices. By 2022, 81 percent of IP traffic and Internet traffic will originate from 
non-PC devices (Figure 4).

Figure 4. Global IP traffic by devices
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As in the case of mobile networks, video devices can have a multiplier effect on traffic. An Internet-enabled HD 
television that draws 2 hours of content per day from the Internet would generate as much Internet traffic as an entire 
household today. With the growth of video viewing on smartphones and tablets, traffic from these devices is growing 
as a percentage of total Internet traffic. Share of PCs to total global Internet traffic will decline to 19 percent by 2022, 
down from 49 percent in 2017. Smartphones will account for 50 percent of total global Internet traffic by 2022, up 
from 23 percent in 2017 (Figure 5).

Figure 1.1: Demand for Internet traffic by device type. (Cisco, 2018)

connections of an even higher number of machine-type devices. This trend is caused
by the development of the Internet-of-things (IoT) that connects devices such as home
appliances, industrial robots, and other infrastructural devices to the Internet. The
overall number of connected devices will be more than three times the global popula-
tion by 2022, but half of this number will be occupied by machine-to-machine (M2M)
connections as illustrated in Figure 1.2. There will be 14.6 billion M2M connections by
2022. The global M2M traffic will grow more than sevenfold, from 3.7 EB per month
in 2017 (3 % of global traffic) to more than 25 EB by 2022 (6 % of global traffic). The
amount of traffic will be growing faster than the number of connections because of the
increase in deployment of video applications on M2M connections and the increased
use of applications, such as telemedicine, video surveillance, and smart-car navigation
systems, which require higher throughput connection with lower latency.
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Trends 
Trend 1: Continued shifts in mix of devices and connections
Globally, devices and connections are growing faster (10 percent CAGR) than both the population (1.0 percent CAGR) 
and Internet users (7 percent CAGR). This trend is accelerating the increase in the average number of devices and 
connections per household and per capita. Each year, various new devices in different form factors with increased 
capabilities and intelligence are introduced and adopted in the market. A growing number of M2M applications, 
such as smart meters, video surveillance, healthcare monitoring, transportation, and package or asset tracking, are 
contributing in a major way to the growth of devices and connections. By 2022, M2M connections will be 51 percent 
of the total devices and connections. 

M2M connections will be the fastest-growing category, growing nearly 2.4-fold during the forecast period, at 19 
percent CAGR, to 14.6 billion connections by 2022.

Smartphones will grow the second fastest, at a 9 percent CAGR (increasing by a factor of 1.6). Connected TVs (which 
include flat-panel TVs, set-top boxes, digital media adapters [DMAs], Blu-ray disc players, and gaming consoles) will 
grow next fastest at 7 percent CAGR, to 3.2 billion by 2022. PCs will continue to decline (a 2.5 percent decline) over 
the forecast period. However, there will more PCs than tablets throughout the forecast period and by the end of 2022 
(1.2 billion PCs vs. 790 million tablets). 

By 2022, the consumer share of the total devices, including both fixed and mobile devices, will be 72 percent, with 
business claiming the remaining 28 percent. Consumer share will grow at a slightly slower rate, at an 8.8 percent 
CAGR relative to the business segment, which will grow at a 12.0 percent CAGR.

Figure 3.  Global devices and connections growth
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Globally, the average number of devices and connections per capita will grow from 2.4 in 2017 to 3.6 by 2022 (Table 2).

Among the countries that will have the highest average of per capita devices and connections by 2022 are the United 
States (13.6), South Korea (11.8), and Canada (11.0).

Figure 1.2: Connection growth by devices. (Cisco, 2018)

Meeting the growing demand for more connections and higher throughput requires
the development of new technologies and solutions. This thesis focuses on developing
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efficient solutions to improve the throughput and reduce the delay of wireless commu-
nication.

1.1 Evolution of Cellular Mobile Wireless Networks

Wireless communication systems became an integral part of our lives especially dur-
ing the last two decades. Currently, we are moving from 4G or the fourth generation
wireless communication systems to 5G wireless communication systems. So, the fo-
cus of the thesis is in advancing 4G networks to make 5G networks possible. Any
improvement in 4G can be considered as a contribution to 5G.

Wireless communication started its extensive penetration of the consumer market
approximately in the mid-1990s depending on the country. The first widely used gener-
ation was 2G. It began its market penetration at the beginning of the 1990s and quickly
earned the confidence of customers, and so enabled the future development of wireless
communication technology. 2G was mainly aimed at providing voice communication
wirelessly with an approximate data rate of 100 kbps.

Consumers quickly understood that wireless communication is convenient not only
for phone calls but also for browsing the Internet, and thus, a demand for high through-
put wireless communication occurred. The market pushed telecom operators to tran-
sition to the next-generation of communication. This third generation communication
took its place a little while after the start of 2G. The first deployment of 3G networks
started in Japan in 1998. In addition to voice communication, the primary aim of 3G
was Internet surfing with an approximate data rate of 10 Mbps.

Consumers wanted to have not only voice calls and Internet browsing but also video
calls and online gaming. The demand for higher throughput pushed the development
of wireless communication technology further. Around 2009, the fourth generation
communication or LTE started its market penetration. Currently, it is the most used
wireless communication standard. The main focus of 4G is in consumer entertainment
such as video and online gaming services. The published approximate data rate is 100
Mbps.

The 4G wireless systems gave an excellent platform for the development of the
paradigm of “smart” things such as “smart” toasters, “smart” watches, “smart” cars,
and other “smart” things like rescue and surgical robots. The key idea of the paradigm
is to connect everything to the network wirelessly and to control it, whether manually,
automatically, or “smartly” with the help of artificial intelligence. In the case of com-
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paratively simple things such as toaster or watches, 4G is capable of supporting the
“smart” paradigm. However, 4G cannot satisfy the requirements for mission-critical ap-
plications such as self-driving cars, remote surgery, or virtual/augmented reality. These
new applications form new requirements for the next generation of 5G communication.

The 5G wireless communication standard poses many new challenging tasks for
engineers and scientists. The data rate has to be increased ten times, reaching 1 Gbps;
the latency has to be reduced ten times from 50 milliseconds in 4G to 5 milliseconds in
5G; the network coverage has to be almost everywhere on Earth, and so on. Although
the development of 5G is still at the exploratory stage, several key physical layer
technologies can be highlighted as promising in enabling the increase of throughput:
massive MIMO (Björnson et al., 2017) and millimeter wave technology (Rappaport
et al., 2015).

1.2 Wireless Communication Channels

BS

UE

Figure 1.3: Wireless communication channel.

As illustrated in Figure 1.3, a wireless communication system typically contains a
base station (BS) transmitting to a user equipment (UE) that can be a cell phone,
smartphone, laptop, smart vehicle, or another connected device. To increase the net-
work’s coverage, a BS is usually mounted in a very high position like a tall tower or
building. The UE and BS communicate wirelessly via electromagnetic signals (waves
modulated by frequency, amplitude or phase). However, unlike traditional wired line
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communication systems where electrical signals propagate on a wire, in wireless com-
munication systems the radio environment is “open”. In addition to the direct line-
of-sight (LoS) propagation, there are also several retarded non-line-of-sight (NLoS)
copies of the signal that arise in the environment, as illustrated in Figure 1.3. These
copies arise due to the interaction of electromagnetic waves with different objects of
the propagation environment such as buildings, landscapes, trees, cars, and other mov-
ing objects. The copies arrive at the BS not just via a single path but via multiple
paths. Hence, such complex propagation is known as multipath propagation through
an environment. The copies are known as NLoS paths.

Overall, the wireless propagation environment is very different from the wired prop-
agation environment because in addition to the direct LoS path between the BS and
UE there are many paths that are caused by different electromagnetic phenomena such
as reflection, scattering, diffraction, and refraction. Each electromagnetic wave that ar-
rives at the UE antenna, covering different distances, is subject to attenuation because
of interaction with the environment. Since the distances are different, the delays are
different, which means that the phases of the waves arriving at the UE are different.
Multipath propagation can result in both constructive or destructive interference due
to the different attenuation and signal delays experienced at the UE side. Constructive
interference is where two signals add together to produce a stronger signal; conversely,
destructive interference is where the signals add together and produce a weaker signal
(and possibly reduce it to zero).

In addition to the interference caused by multiple paths, there is also interference
from other sources such as other wireless communication devices, including neighbour-
ing BSs. The interference from external devices (where the devices do not belong to
the network) can be considered as additional background noise since the network has
no idea about their origin and cannot control them. On the other hand, the interfer-
ence from cellular BSs has a known pattern and, more importantly, is to some extent
controllable. With “smart” resource scheduling, the network can minimize the interfer-
ence from other BSs. However, the cellular BSs operate at relatively close frequency
bands and inevitably create energy leakage to neighbouring bands, which is treated as
inter-cell interference. Depending on the conditions, the interference can significantly
degrade the capacity of the wireless channel. For example, as illustrated in Figure 1.4,
the edge UEs suffer more from such inter-cell interference because the signal reception
from the servicing BS can be weaker than from the neighbouring BS.
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Figure 1.4: A conventional cellular network with a number of cells. Each base station
services a certain cell (Björnson et al., 2017).

1.3 Approaches to Enhance Channel Capacity

Since the primary aim of a wireless channel is to provide communication, the main
characteristic of a wireless channel is its capacity C, which indicates how much infor-
mation, in bits per second, can be transmitted through the channel (Shannon, 1948).
The channel capacity shows the theoretical upper bound of the throughput at which in-
formation can be reliably transmitted through the given channel. In other words, if the
signal’s data rate is smaller or equal to the theoretically achievable throughput, then
the receiver can decode the signal with an arbitrarily low error probability, provided
that the length of the signal tends to infinity. Hence, the channel capacity indicates
how much throughput can be gained from the given channel.

The demand for newer communication technology can be narrowed down to the
request for higher throughput because a higher throughput enables new applications
for entertainment and professional services, and opens opportunities for other new
wireless-based technologies (Figures 1.1 and 1.2). Consequently, it is worth designing
solutions that enable channel capacity enhancement. In the case of interference from
other sources, the channel capacity can be lower bounded as follows (Björnson et al.,
2017):

C ≥ B log2

(
1 +

ps|h|2
pv + σ2

)
[bit/s/user] (1.1)

where B is the bandwidth, and ps is the power of the transmitted signal, h is the
channel response coefficient, pv is the interference power, and σ2 is the variance of the
receiver noise.

From Eqn. (1.1), it is clear that the channel capacity, and consequently the through-
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put, can be increased by expansion of the bandwidth B, or increasing the transmission
power ps, or by reduction of interference pv. Most likely, all three ways of increasing
the throughput will be implemented in 5G communication. We assume that we cannot
influence the receiver’s thermal noise σ2, since it is defined by a user’s hardware, which
is different for different UEs. Therefore σ2 represents an average noise variance relative
to which the network’s throughput is analyzed.

1.3.1 Expansion of the Bandwidth

The bandwidth B can be expanded by moving to higher frequencies up to visible light
ranges known as millimeter wavelength (mmWave) ranges (Emerson, 1997). For exam-
ple, to improve the throughput, LTE has also moved to LTE-Advanced and increased
the bandwidth from 20 MHz up to 100 MHz (Sesia et al., 2011). In the same way, in
5G, a significant bandwidth expansion is expected in the transition to mmWave bands
technology (e.g., range from 30–300 GHz) (Heath et al., 2016; Rappaport et al., 2015).
In mmWave, the bandwidth is expected to be around 500 MHz to 2000 MHz. The
move to mmWave technology, in general, reduces the communication range due to the
high attenuation properties of millimeter-wavelength electromagnetic waves, but smart
use of directed antennas or steerable antenna arrays help to overcome the attenuation
problems (Rappaport et al., 2013). However, due to unsophisticated mmWave hard-
ware, any further increase of the bandwidth is considered an open question at present,
which again limits further improvement of the throughput.

1.3.2 Magnifying the Transmission Power

According to the International Commission on Non-Ionizing Radiation Protection, the
power of transmission cannot be increased above than 4 watts/kg (ICNIRP, 2018).
However, there are many emerging health-related organizations that are concerned
with wireless radiation (Hardell, 2017). This trend indicates a further reduction of
emission in future wireless communication networks. Hence, future wireless communi-
cation networks will not be able to increase their transmission power to achieve higher
throughput. It is therefore not feasible to anticipate an increase of throughput via a
power increase. An alternative is to increase the reception power ps|h|2 by making
networks denser through adding more BSs. Increasing the network density makes the
distances between the BSs and the users shorter, and hence the signals experience less
attenuation, which increases the reception power without magnifying the transmission
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power. The densification of networks is considered one of the promising directions in
5G to increase network throughput. Together with the mmWave technology, which
well suits the idea of network densification due to high attenuation of signals, these
two approaches will likely increase the density of the future networks. Soon, regardless
of the mmWave technology implementation, the distances between BSs will be down
to several dozens of meters, while at present, there are several hundreds of meters be-
tween BSs in dense urban areas (Björnson et al., 2017; Fedorov et al., 2018). However,
excessive densification may lead to an increase of inter-cell interference pv. This factor
will limit the process of densification at some point, meaning that alternative ways of
throughput enhancement have to be developed.

1.3.3 Reduction of Interference

Densification of networks and expansion of bandwidth have historically dominated the
development of networks for a long time. With present technology, these solutions seem
to be approaching a saturation point where any improvement is increasingly compli-
cated and expensive. Nonetheless, both approaches can incorporate multi-antenna
systems for both UEs and BSs. There is scope for the reduction of interference by ex-
ploiting multi-antenna systems, known as multiple-input and multiple-output (MIMO)
antenna systems, and massive MIMO systems if the antenna arrays consist of a large
number of antennas (more than 32). The use of multi-antenna systems decreases the in-
terference due to the virtue of beamforming and spatial multiplexing techniques. Since
the addition of antennas does not rely on the technology, massive MIMO systems can
be immediately used in the BSs that are already in place. The next section shows why
Massive MIMO is considered the most promising technology for inter-cell interference
reduction in future cellular networks.

1.4 Massive MIMO Technology

In massive MIMO systems, an antenna array with individually controlled antennas
can dynamically direct signals in a required direction (Veen and Buckley, 1988; Swales
et al., 1990; Lorenz and Boyd, 2005). This is one of the primary features of mas-
sive MIMO systems, which is called beamforming, allows reducing interference pv in
Eqn. (1.1). The further examples in Figure 1.5 and Figure 1.6 show the advantages of
the beamforming technique in massive MIMO systems. The figures have been plotted
in Matlab and represent the strength of the delivered signal depending on the position
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Figure 1.5: The signal strength in different directions in dB. (a) Single antenna trans-
mission; the signal is omnidirectionally transmitted by creating interference in all di-
rections. (b) Conventional MIMO system with eight antennas; a wide signal beam is
formed and directed towards the UE, but significant side lobes create substantial inter-
ference in specific directions. (c) Massive MIMO system with 32 antennas; the signal
beam is narrower than in the conventional MIMO system, but small interference is
still leaking out to the sides. (d) Massive MIMO system with 128 antennas; the beam
is very narrow like a directed laser beam, and interference in other directions become
insignificant.

The beams are steered towards the UEs based on their angles relative to the BS (Veen
and Buckley, 1988). As illustrated in Figure 1.5 (a), to deliver a signal to the UE,
a single omnidirectional antenna BS emits the signal equally in all directions, which
creates substantial interference in the neighbouring cells, especially in the case of dense
networks. Conventional MIMO systems reduce the interference, as illustrated in Fig-
ure 1.5 (b), but the problem of these systems is the existence of significant side-lobes
where signal power is still considerable (Keysight, 2016), and if another user from a
neighbouring cell gets into a side lobe region, then the interference increases for this
user. To make side lobes weaker, more antennas should be added. Thus, in the case of
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32 antennas, side lobes becomes even smaller, but with 128 antennas the effect of side
lobes are almost negligible, as illustrated in Figure 1.5 (c,d). Note, that overall trans-
mission power stays the same for any number of antennas. The throughput increase
is earned not from a transmission power increase but via the reduction in interference:
all the power is concentrated in a narrow beam.
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Figure 1.6: The ability of massive MIMO to create a number of non-interfering beams
towards users. (a) 32-antenna massive MIMO creates wider beams that allow simul-
taneous servicing of fewer users than with (b) 128-antenna massive MIMO (Flordelis
et al., 2015). Note, the total amount of power is the same as for the single antenna
transmission.

The beamforming feature reveals a new ability for massive MIMO systems, that
of radio resource re-use where the same radio resource can be used for a number of
users. Let us consider another user within the same cell, UE2 in Figure 1.5 (c,d). In
the same way as for UE1, the BS can create a second beam for the second user, as
illustrated in Figure 1.6 (a,b) (Flordelis et al., 2015). Since the two beams do not
interfere with each other, the two users can receive the same amount of throughput
as in independent signal transmission. Note, in Figure 1.6, two layers of signals are
illustrated simultaneously in the plots. Thus, in this example, the ability of massive
MIMO to re-use its resource can almost double the network’s throughput. This is
another very useful feature of massive MIMO systems, which makes the technology
promising for the next-generation networks.

To be able to create focused beams towards users, a BS has to know the signal prop-
agation channels between them. Thus, the BS has to measure the UEs’ channels before
beamforming. In wireless communication theory, the channel measurement operation
is called the procedure of the channel estimation (CE), and this is one of the critical
steps for establishing a wireless connection between communicating units (Cho et al.,
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2010). Without knowledge of the propagation channel, the receiver cannot demodulate
signals, and the transmitter cannot leverage the multi-antenna array benefits.

1.5 Channel Estimation and its Challenges in Mas-

sive MIMO

To establish a wireless connection, communicating units first have to measure channels
between each other to know the distortion that signals experience during the trans-
mission and to be able to recover the distorted signals. To measure the channels, the
BS and UE have to perform the channel estimation procedure, during which a known
signal from each end is used to calculate distortion coefficients (Sesia et al., 2011; Cho
et al., 2010; Abu-Rgheff, 2007). Since the signal is known, the receiver can compare the
received signal with the undistorted one and, based on this comparison, can calculate
the distortion coefficients. Such signals are called training, reference or pilot signals
(Marzetta, 2010).

To some extent, the channel can be considered as static if the communicating units
and the surrounding environment are stationary, but if they move or the surrounding
environment is changing, then the channel becomes dynamic. Due to the dynamic
nature of the wireless channel, the communicating units have to measure the chan-
nel again and again, or periodically, which is time and energy consuming. Periodic
measurement CE adds complexity as the more the environment changes, the more the
channel varies, and consequently, the more frequently CE is required (Chen et al., 2011;
Mai et al., 2007). The frequent CE becomes an issue mostly for the UE side since a
mobile device is usually powered by a battery that has a limited capacity. Hence,
it may discharge the battery very quickly and reduce the quality of the customer’s
experience. Reducing the power consumption of the CE on the UE side and the CE
frequency are considered challenging tasks in the CE procedure (Hassanieh et al., 2012;
Fedorov et al., 2015).

1.5.1 Channel Estimation in Multi-Antenna Systems

Increasing the number of antennas in the BS/UE also introduces complexity. In multi-
ple antenna systems, channels hmn between all pairs of antennas of the BS and UE have
to be measured, as illustrated in Figure 1.7. Instead of estimating a single 1×1 channel,
both BS and UE need to estimate M ×N channels where the BS has N antennas and
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Figure 1.7: Multi-antenna system.

the UE has M (Ji et al., 2017). The increase in the number of antennas on both sides
is one of the main trends in achieving high-throughput connection in next-generation
communication (Fleury et al., 2002; Foschini and Gans, 1998; Chizhik et al., 2000).
The majority of communicating units will be operating through multi-antenna systems
because such antennas significantly increase the throughput for the same amount of
spectrum (Telatar, 1999; Shamai and Wyner, 1997a,b). In the modern communication
field, such kinds of systems are called MIMO systems (Sesia et al., 2011; Marzetta
et al., 2016; Björnson et al., 2017), and if a huge number of antenna elements is used
in a unit, for example N > 32, then such networks are called massive MIMO networks
(Shepard et al., 2012; Rusek et al., 2013; Harris et al., 2016).

The throughput is increasing due to the physical principles of the multi-antenna
systems that allow reduction of the interference in (1.1), i.e., increasing the system’s
spectral efficiency (SE) (Ngo et al., 2013; Vieira et al., 2014; Larsson et al., 2014).
The number of channels is also increased according to the number of antennas (Hoydis
et al., 2013; Björnson et al., 2016). This requires allocating a portion of the gained
throughput for measuring the increased number of channels (Marzetta, 2010; Fodor
et al., 2017). The throughput increase is paid for by the usage of more complex and
expensive hardware and by developing more advanced signal processing algorithms,
including a more complicated procedure for CE. In multi-antenna systems, in addition
to the frequent channel measurements as for the 1× 1 channel, the CE procedure has
to be done for a far greater number of antennas (Yang and Marzetta, 2013; Björnson
et al., 2014; Prabhu et al., 2017).

The beamforming feature is capable not only of reducing the inter-cell interference,
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but also providing constructive interference at the receiver side when the same signal
constructively adds up at a receiver’s antenna (Gao et al., 2015). In contrast to the
destructive interference that occurs in multipath propagation, in constructive interfer-
ence the receiving antenna receives well-aligned copies of the transmitted signal that
together give a signal with a higher signal-to-noise ratio (SNR). However, to form
a proper beam that enables constructive interference on the UE’s antennas, the BS
needs to know M × N channels, otherwise, some signals may add up destructively,
which nullifies all the effort directed to increase the throughput. With the knowledge
of the distortion coefficients of M × N channels, the BS can adjust all signals be-
fore transmission through its antennas in such a way that the delivered signals create
constructive interference at the receiver’s antennas.

Figure 1.8: Definition of uplink and downlink signals.

As mentioned previously, BSs are mounted in elevated places, which means that
signals go DOWN from BSs to users, and go UP from users’ BSs (Sesia et al., 2011). In
order to avoid confusion in terminology, signals and channels are specified as follows:
the signals that are transmitted from the UE are called Uplink uplink (UL) signals and
the channels are called UL channels; the signals transmitted from the BS are called
Downlink downlink (DL) signals and channels are called DL channels, as illustrated
in Figure 1.8. Hence, a UE receives DL signals and measures DL channels, and a BS
receives UL signals and measures UL channels.
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1.5.2 Downlink Channel Feedback

Unlike in 1 × 1 systems, in MIMO systems, the CE has to take into account not
only the distortion coefficients but also the interference state of the channel caused
by the simultaneous transmission from a number of antennas. In other literature, the
expanded information about the channel is called channel state information (CSI), but
there is no need to specify the difference between CE and CSI in this dissertation.
Before transmission, the transmitter needs to be sure that signals transmitted from
its antennas do not create destructive interference at the receiver’s antennas. This
requires the transmitter to know both UL and DL channels. The main challenge in
this scheme is to obtain the estimation of the opposite channel (Flordelis et al., 2018;
Ji et al., 2017; Jiang et al., 2015). For example, a BS needs to somehow obtain the
estimation of a DL channel before signal transmission.

A simple approach is to send DL training signals to a UE, which estimates the DL
channels on its M antennas and then feeds the information about the DL channels
back to the BS. Such a feedback mechanism is known as DL feedback. The feedback
information may contain either a full DL channel measurement, a sparse representation
of the DL channel, or an indicator from a codebook that contains a limited number
of states of DL channels. The transmission of the whole DL channel measurement
is impractical since it can occupy a large part of the UL transmission. Due to this
problem, a limited feedback approach has been adopted (Love et al., 2008). Wireless
systems with a relatively small number of antennas could quite successfully work with
codebooks (Schulz, 2015; Love et al., 2003; Love and Heath, 2005; Raghavan et al.,
2007). However, the increased number of antennas on the BS side expanded the volume
of the codebooks, which made the approach ineffective in terms of computation and
memory consumption. The main drawback of codebooks is that the limited number
of states in a codebook cannot closely approximate the real channel (Flordelis et al.,
2018). Thus, the feedback technology has moved to the sparse representation of the
measured channels, which successfully compresses the feedback data (Song et al., 2010;
Joung and Sun, 2014; Liu et al., 2016).

Despite the approach where the UE estimates the full DL channel and sends it back
to the BS not being preferable for next-generation communication, the estimation of
M × N channels is time-consuming in itself. The BS needs to send signals from each
of its N antennas separately to avoid mixing of signals on the UE’s antennas. The
signals can be separated either in the time domain, in the frequency domain, in a code
domain where different orthogonal codes are allocated for different antennas of the BS,
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or a combination of these approaches, as illustrated in Figure 1.9. In any case, the
UE has to estimate all these DL channels by performing the CE procedure and then
send the information about the DL channels back to the BS, which means that the UE
increases its energy consumption due to the CE and feedback transmission, and hence,
developing practical solutions for eliminating or reducing feedback is considered one of
the most vital directions for massive MIMO systems (Björnson et al., 2017).

Figure 1.9: Time, frequency, and code division domains.

1.5.3 Channel Reciprocity

Another drawback of channel estimation at the UE side is that the BS may receive
information about the outdated DL channel since the DL transmission of training
signals takes some time, and in addition, the UL transmission of the feedback also
requires some time (Zhou and Giannakis, 2004). This type of channel estimation
approach is acceptable for low mobility scenarios due to slow variation of channels but
is unacceptable for high mobility scenarios because the outdated channel may not have
any similarity with the actual one. In order to overcome the power consumption and
outdated channel problems, the idea of the reciprocity of channels has been adopted
(Vieira et al., 2017; Björnson et al., 2017). The channel reciprocity simply means that

15



UL and DL channels are equivalent. Once channels become equivalent, the need to
send the channel feedback disappears because the DL channel can be measured during
the UL CE procedure. The channel reciprocity approach also reduces the UE’s energy
consumption since the UE does not need to estimate the channel and feed back the
results to the BS. The major part of the CE is delegated to the BS side.

Figure 1.10: Definition of time division duplex and frequency division duplex modes.

Unfortunately, the idea of channel reciprocity suits only the time division duplex
(TDD) mode of communication, used in Wi-Fi and some LTE networks. The TDD
mode means that UL and DL signals occupy the same frequency band and are separated
in the time domain, i.e., a BS and UE communicate sequentially, as illustrated in Figure
1.10. In the case of the frequency division duplex (FDD) communication mode, which
is typical in LTE, the UL and DL channels occupy different frequency bands. The
separation is in the frequency domain and this allows communication between the BS
and UE simultaneously. The FDD mode potentially has higher throughput due to
the feature of simultaneous communication. As illustrated in Figure 1.10, the area
occupied by the DL transmission in the TDD mode is smaller than in the FDD mode,
where coloured areas indicate the amount of transmitted data. Due to the frequency
separation, the UL and DL channels significantly differ from each other, which means
the channel reciprocity approach is not applicable (Vasisht et al., 2016; Hugl et al.,
2002). Because of this, DL channel acquisition becomes even more challenging for the
FDD mode. So, the question of developing practical solutions for channel feedback
mechanisms remains unanswered for the FDD mode.

1.5.4 Channel Prediction

The majority of the existing prototypes of the next-generation networks are operat-
ing on the TDD mode (Shepard et al., 2012; Rusek et al., 2013; Harris et al., 2016).
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Although the channel reciprocity allows the DL channel to be obtained from the ob-
servation of UL signals, the measured channels are still delayed. From the moment
of the UL signal transmission to the moment of the CE results calculation, the actual
channel of the UE may significantly change due to mobility, and the estimated DL
channel may become outdated (Duel-Hallen et al., 2000; Duel-Hallen, 2007; Zhou and
Giannakis, 2004). The outdated channels can severely reduce the throughput of a net-
work (Harris et al., 2017). For the high mobility and high throughput scenarios, the
actuality of the channel estimation becomes vital. Unfortunately, the CE procedure
always captures the past and never gives the actual channel. Taking this into account,
an effective approach in massive MIMO systems is to predict the channel values at
future times when they will be used. It is an appropriate moment in the evolution of
wireless communication to move from the channel estimation paradigm to the channel
prediction paradigm. The challenging question that arises here is how to predict the
channel in massive MIMO systems.

Currently, there are some studies regarding channel prediction for massive MIMO
systems, but their approaches are not standardized, and the results have to be evaluated
through realistic test cases (Li et al., 2017; Kashyap et al., 2017; Adeogun et al., 2015).
Usually, channel prediction deals with predictions in the time domain, i.e., channel
states are constructed to fit the channel in future moments. However, the same idea
of predicting a channel can be used in the frequency (Kumar et al., 2014; Palleit and
Weber, 2010; Han et al., 2018), code, and spatial domains. Since the question of how
to predict channel in massive MIMO systems is still open, it is worthwhile investigating
ways to enable the design of practical solutions for channel prediction.

1.5.5 Channel Reconstruction

The channel reconstruction topic is closely related to, or partially overlaps with, the
channel prediction idea. The main purpose of the channel reconstruction approach is to
recover a full channel from its incomplete observation. For example, in the orthogonal
frequency division multiplexing (OFDM) transmission (Cho et al., 2010; Sesia et al.,
2011), a channel can be measured on some subcarriers and then, using a solution
for channel reconstruction, recovered for the remaining subcarriers. In the case of
massive MIMO systems, because of the massive numbers of antennas on both the BS
and UE sides, obtaining incomplete observation can be justified by the reduction in
the computational complexity, hardware cost, or radio resource scarcity (Gkizeli and
Karystinos, 2014; Sohrabi and Yu, 2016; Mohammadi and Ghannouchi, 2011). This
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dissertation concentrates on designing a solution that reconstructs the full massive
MIMO channel from incomplete observation caused by the incompleteness of the set
of antennas that are capable of transmitting.

While the trend to increase the number of antennas at the UE side is evident
(Samsung, 2018; Qualcomm, 2018), having more antennas for transmission on the UE
side will not only increase the hardware complexity and consume more energy, but also
make the pilot contamination problem even worse (Marzetta, 2010). The leading UE
producers are making efforts to optimize the antenna design by limiting the number of
antennas for transmission, that is, only using a subset of the antennas for transmission,
and the others for receive-only. As a result, it is expected that in 5G, the number of
transmitting antennas will be smaller than the total number of antennas on the UE
side. Since only a subset of antennas is used for transmission, the BS can measure an
incomplete channel. Hence, the available channel capacity becomes smaller than the
capacity of the full channel where all UE antennas are involved in transmission.

To improve the capacity of the channel that is incompletely observed, new channel
reconstruction approaches for non-transmitting antennas have to be investigated. The
channel reconstruction solutions can become helpful for channel capacity enhancement
due to their ability to complete the observed incomplete channels with the recon-
structed ones. The main problem in channel reconstruction for a non-transmitting
antenna is that the BS cannot obtain any observations about the non-transmitting an-
tenna. Thus, it is a challenging task to construct an appropriate relation between the
channel of a non-transmitting antenna and the channels of transmitting antennas. To
reconstruct channels for non-transmitting antennas, the BS has to obtain information
about the location of non-transmitting antennas, infer the propagation paths of poten-
tial signals as if they are transmitted by the non-transmitting antennas (Vasisht et al.,
2016; Palleit and Weber, 2010; Han et al., 2018), and also estimate the orientations of
the non-transmitting antennas.

1.5.6 Channel Scarcity in Next-Generation Communication

As mentioned above, the major part of the CE is performed at the BS side. To measure
UL and DL channels at the BS side, the antennas of a UE send training UL signals that
are separated either in frequency, time or code domains, as illustrated in Figure 1.9. To
send training signals, each antenna occupies a time slot and a frequency bandwidth,
and may use a specific code to reduce interference to other signals, depending on
a communication protocol. Transmitting antennas need to use signals that do not
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interfere with each other. It can be achieved if the signals are sent in different time
slots or different frequency bands. The signals also do not interfere with each other
if they are separated by orthogonal codes (Abu-Rgheff, 2007; Sesia et al., 2011). The
time window during which the UE can send training signals through its antennas
is limited by the channel coherence time (Flordelis et al., 2016). The numbers of
available frequencies and orthogonal codes are also limited by communication protocols
(Rappaport et al., 2015; Cho et al., 2010). Hence, with the increase in the number of
transmitting antennas, the amount of available radio resources such as time, frequency,
and codes becomes smaller.

At some point, the number of antennas can become large enough to create a scarcity
of the available radio resource, such as available bandwidth, orthogonal codes, and time
slots. The logic of the scarcity emergence can be explained with an example. Let us
define TW as the channel’s coherence time specified for a network, during which the
channel is considered constant, and BW as the network’s bandwidth. Let TW ×BW
be the available time–frequency resource, Ncode be the maximum number of available
codes, and tb × fb be the size of the smallest time–frequency resource that can be
allocated to an antenna, then the maximum number of antennas that can be used
without collisions cannot be greater than Nant = Ncode

TW
tb

BW
fb

. In practice, protocols
for radio communication use some redundancy in their resource allocation to increase
the probability of successful reception. An antenna usually occupies a time–frequency
resource that is bigger than the smallest resource, which means that the maximum
number of antennas becomes smaller than Nant.

To mitigate the problem of radio resource limitation, the idea of using a limited
number of transmitting antennas on the UE side has been adopted (Molisch et al.,
2003; Theofilakos and Kanatas, 2006). Instead of transmitting using M antennas, a
UE is forced to use a smaller number m < M of antennas for transmission. The
full set of antennas is used only for reception. The benefits of using fewer transmitting
antennas are in the reduction of hardware cost due to cheaper receiver hardware, a more
efficient usage of the available radio resource, and less energy consumption, caused by
the reduction in the number of transmitting antennas. Everything looks good from the
benefits perspective. However, the reduction in the number of transmitting antennas
leads to a decrease in the throughput caused by the reduction of the channels’ capacity
(Telatar, 1999; Foschini and Gans, 1998; Chizhik et al., 2000). Instead of having a full
set of M × N channels for transmission, a network can exploit an incomplete set of
m × N channels, which decreases the capacity. This happens because the BS cannot
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observe the channels of non-transmitting antennas and consequently cannot obtain the
full set of M × N DL channels. The channel capacity cannot be enhanced by only
increasing the number of non-transmitting antennas. Hence, it is worth investigating
channel reconstruction approaches to design a solution that enables the reconstruction
of the channels for non-transmitting antennas.

1.5.7 Summary on Channel Estimation

Channel estimation is increasing in complexity due to advancements in wireless com-
munication technologies. For some applications, especially related to the FDD mode,
it is too complex and becomes an insurmountable obstacle to further developments,
rendering future FDD massive MIMO technology improvements questionable. If an
efficient solution for DL channel feedback cannot be found, then the FDD massive
MIMO approach is not viable (Björnson et al., 2016). The challenges described above
regarding the procedure of CE can be summarized as follows:

• CE consumes excessive energy at the UE side;

• CE has an ineffective feedback mechanism;

• CE gives an outdated channel state instead of the actual state;

• CE cannot provide channel state information for non-transmitting antennas.

These challenges make current networks slow with regard to throughput and response
latency, which has to be addressed to enable next-generation communication. This
thesis attempts to develop solutions that mitigate the challenges of the relationship of
the wireless channel with the propagation environment.

1.6 Research Problems and Contributions

The core of the CE problem is in its complexity, which increases with the advancement
of communication technology. Notably, the complexity becomes too high in massive
MIMO systems, threatening MIMO technology adoption. The main aim of the thesis is
to investigate the relationship between the channel and the propagation environment to
develop efficient schemes for channel derivation in massive MIMO systems, especially
the reconstruction of channels for non-transmitting antennas of a UE based on the
known spatial relationship between non-transmitting and transmitting antennas. This
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means that in order to reconstruct channels for non-transmitting antennas, further
steps have to be taken:

1. Create a spatially consistent channel model that is suitable for massive MIMO
networks, especially under dense deployment;

2. Develop an algorithm that can estimate the locations of the communicating UEs
based on the conventional network’s signals;

3. Develop an algorithm that can estimate the orientations of the communicating
UEs based on the conventional network’s signals;

4. Design a scheme that can reconstruct the channels for non-transmitting antennas
based on the location and orientation of the UEs.

The thesis follows the logic described and includes following contributions:

• Creating a consistent massive MIMO channel simulation model

Since the designed solutions are intended to serve next-generation networks, they
have to be evaluated on channel simulation models that take into account the re-
cently explored phenomena of massive MIMO systems. Firstly, massive MIMO
systems have a much higher spatial resolution than conventional MIMO systems
(Raschkowski et al., 2015). As a result, new wireless channel models have to
be able to model the detailed space features of the surrounding environment.
Secondly, recent experiments revealed that a common plane wave propaga-
tion (PWP) model is no longer suitable for massive MIMO due to the ability
of a massive MIMO BS prototype to recognize the sphericity of an incoming
wavefront (Zhang et al., 2016; Vieira et al., 2017), and thus new channel models
also need to incorporate the spherical wave propagation (SWP) model to sim-
ulate more realistic and spatially consistent channels. Thirdly, to enable the
channel prediction feature, new channel models must be able to simulate realistic
3D movements of UEs accurately. This requires very carefully simulating the
change of signal polarization to make it consistent with the movement.

In this piece of work, a massive MIMO channel simulation model was developed
to satisfy the requirements listed above. The contributions are summarized as
follows:

1. A realistic environment from Google maps was incorporated into the massive
MIMO channel simulation. To my knowledge, at that time, this was the
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first channel model that could take into account and handle a geometrically
accurate representation of a realistic environment.

2. The spherical waves propagation assumption has been incorporated into
the massive MIMO channel simulation model. The simulation results have
revealed the importance of incorporating the spherical propagation of sig-
nals and accurate representation of the environment in channel generation,
especially for massive MIMO systems.

3. The phenomenon of electromagnetic wave reflection from an arbitrarily in-
clined surface by taking into account the wave polarization transformation
has been carefully described. The reflection from an arbitrarily inclined sur-
face has not been described in other existing channel models. The feature
enables the proposed channel model to deal with complex-shaped objects
and simulate a spatially consistent evolution of the simulated channel.

4. The results of channel simulation show the importance of considering the
detailed 3D characteristics of the surroundings. Even slightly inclined walls
can have significant influence on channels compared with models having only
vertical and horizontal surfaces, due to different propagation paths, angles
of reflection, and changes of polarization.

The research outcomes have been presented at the IEEE ICC 2017 conference in
Paris, France (Fedorov et al., 2017).

• Localization of users based on the SWP model using only UL signals

In this contribution, the main focus is on developing practical solutions to lo-
calize users in areas with a high population density (e.g., urban areas during
business hours and airports), where it is challenging to provide high-quality mo-
bile communication due to the need to serve a large number of UEs using limited
radio resources (time, frequency, code, as in Figure 1.9). Such areas are typically
covered by many small cells with distance between adjacent BSs less than a few
hundred meters (Björnson et al., 2017; Alsharif et al., 2017). In such scenar-
ios, the SWP model can be adopted to locate UEs more accurately in massive
MIMO systems because the linear dimensions of a massive MIMO array are large
enough to distinguish the spherical shapes of the incoming wavefronts. Based
on the SWP model, the difference in time delay experienced at different antenna
elements of a BS can be described through small phase shifts between antenna
measurements.
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In this piece of work, a user localization algorithm that carefully processes the
measured phase shifts has been developed. The algorithm leverages the advan-
tages of spherical wave propagation since the spherical propagation allows si-
multaneously estimating the angle of arrival and the propagation distance from
the user equipment to each antenna element in the BS. The contributions are
summarized as follows:

1. A localization algorithm has been designed to localize UEs by using the
very first signals that are sent during the random access channel (RACH)
synchronization procedure in both single-path and multipath environments.
To my knowledge, this is the first method that exploits RACH signals for
localization. Since the RACH procedure is performed before the actual
connection of a UE to the network, the location information obtained can
be immediately used to optimize the allocation of radio resource and perform
accurate beamforming.

2. In the case of single-path LoS communication, the localization problem has
been formulated as the problem of the common sphere parameters estima-
tion based on phase shifts between antenna measurements. The last can be
solved using the Bancroft algorithm that has a closed-form solution.

3. In the case of multipath propagation, the localization problem has been
formulated as a nonlinear data-fitting optimization problem that leverages
the OFDM nature of UL signals to obtain more measurements for the joint
estimation of the shapes of all the incoming signals.

4. Because of non-ideal synchronization between massive MIMO antennas,
measurements always have relative phase noise that can significantly de-
grade the localization accuracy. A phase noise cancellation algorithm has
been developed to improve this. The algorithm estimates phase noise in a
massive MIMO antenna array and then removes it from the measurements,
by which the accuracy can be improved by almost a factor of two.

5. A proof-of-concept experiment has been conducted to validate the feasibility
of the localization algorithm in the single-path case using the Otago Uni-
versity massive MIMO prototype. For this purpose, I have built the Otago
University massive MIMO prototype using two Ettus USRPs N210 and one
10 MHz reference NI OctoClock (Ettus, 2019).
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The research outcomes have been presented at the IEEE ICCCN 2018 conference
in Hangzhou, China (Fedorov et al., 2018).

• Reconstruction of channels for non-transmitting antennas

For a UE that hasM antennas, from which onlym < M can transmit signals, the
location information is not sufficient for reconstructing channels for the M −m
non-transmitting antennas. Due to this issue, in addition to location information,
the UE orientation information must also be obtained. This information is used
to derive the locations and orientations of non-transmitting antennas. Once the
locations and orientations are known, the channels for non-transmitting antennas
can be reconstructed.

In this research, a novel channel reconstruction methodology has been developed
that can reconstruct channels for non-transmitting antennas using an incomplete
set of UL signals from the transmitting antennas. The contributions are summa-
rized as follows:

1. A solution for estimation of the orientation of a transmitting antenna has
been developed that is suitable for both single-path and multipath propaga-
tion environments. The proposed solution is a closed-form solution and was
developed from first principles using Maxwell’s equations (Orfanidis, 2014).
The main idea of the solution is informed by the strong relation between
the voltage induced at a receiving antenna and the mutual orientation of
two communicating antennas in 3D space. The solution reconstructs the
orientation of a transmitting antenna based on the voltage measurements
by exploring the above relationship.

2. A voltage-extracting methodology has been developed. The methodology
allows the extraction of voltages induced from the UL signals on distributed
antenna elements of a BS during the CE procedure. Due to the spatial
consistency of the massive MIMO channel simulation model, the spatially
diversified voltage measurements and the consideration of SWP assumption
allow the reconstruction of the orientation of the transmitting antenna.

3. A realistic human gait has been incorporated to the simulation model to
imitate consistent orientation change during a pedestrian walk. The primary
purpose is to examine the ability of the algorithm to estimate orientation in
an aggressive type of movement, which occurs, for example, when a UE is
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located in a person’s hand that is swinging back and forth. The results of
simulation show that for high SNRs the orientation of transmitting antennas
can be accurately estimated with less than 1◦ of error for SNRs higher than
25 dB.

4. The steps for the reconstruction of a full massive MIMO channel have been
thoroughly described. The results of simulation experiments show that chan-
nels for non-transmitting antennas can be reconstructed with high accuracy
for SNRs higher than 15 dB.

The research outcomes have been presented at the IFIP Networking 2019 confer-
ence in Warsaw, Poland.

1.7 Thesis Structure

The final channel reconstruction algorithm is built on three consecutive steps: creating
a channel model for the evaluation of algorithms, designing a localization algorithm for
DL channel reconstruction, and designing an antenna orientation estimation algorithm
for reconstruction of non-transmitting antenna channels. Hence, the structure of the
thesis is straightforward: Chapter 2 introduces the technical background of the area
investigated, and material related to approaches and techniques for 3D channel simula-
tion, localization of users based on uplink signals in wireless communication networks,
and channel reconstruction; Chapter 3 gives a detailed description of how to model the
massive MIMO reception and signals’ interactions with objects within a propagation
environment; Chapter 4 describes two localization algorithms designed to localize users
in single-path and multipath propagation environments; Chapter 5 explains the steps
for antenna orientation reconstruction and the methodology of channel reconstruction
for non-transmitting antennas; finally, Chapter 6 contains the discussion of the work
and the directions for future research.

Figure 1.11 illustrates the different parts of the thesis in a graph structure in order
to provide a visualization of the thesis. The contribution chapters are depicted together
with the background chapter to illustrate my personal vision of how much the corre-
sponding research fields have been investigated by other researchers, indicated by the
amount of overlap between the boxes. In contrast, the areas outside the background
area signify the contribution volume that the dissertation presents. Thus, a couple
of small contributions in well-studied areas such as channel modeling and localization

25



have enabled a couple of strong contributions such as the reconstruction of the orienta-
tion of a single transmitting antenna and channel reconstruction for a non-transmitting
antenna.

Channel

Modeling

Chapter 3

Localization

Chapter 4

Orientation 

Reconstruction

Chapter 5

Channel

Reconstruction

Chapter 5

Background

Chapter 2

Introduction

Chapter 1

Conclusion

Chapter 6

Figure 1.11: Layout of the thesis and the relationship between different parts. The
intersections of the Background with the four contributions indicate how much the
topics have been studied by other researchers (in my personal opinion).
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Chapter 2

Background and Literature Review

The main contribution of this thesis is in proposing novel approaches to the description
of wireless signal generation and propagation. In general, these novel approaches can
be grouped into two significant areas:

1. incorporating the Spherical Wave Propagation (SWP) model in massive MIMO
systems, which enabled the accurate localization of users on a single BS with a
massive MIMO antenna;

2. incorporating the orientation of an antenna in signal generation and reception,
which enabled the channel reconstruction for non-transmitting antennas via the
estimation of orientations of transmitting antennas of a UE.

These two novelties have a direct implication on channel models. Once they are incor-
porated in the signal propagation, the channel model becomes spatially consistent.

Before going deep into the background study, I would like to share my vision as to
why channel estimation became ineffective in current multi-antenna-based communi-
cation and will most likely become the bottleneck for the next generation of commu-
nication.

2.1 Evolution of Wireless Communication Theory

It is well known that the development of a theory occurs in spurts. At first, the
knowledge of an area accumulates until it reaches maturity. At the mature stage, the
theory generates technology based on available knowledge. Technology justifies the
mature theory to some extent and additionally reveals far more new questions, for
which the volume of accumulated knowledge is not enough to explain the new findings.
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For example, Albert Einstein predicted gravitational waves in 1916, but it took almost
a century for general relativity theory to become mature and to generate technology
that can support the theory. In 2015, the LIGO laboratory confirmed the existence of
gravitational waves and revealed many new, previously unseen observations regarding
our universe and its evolution (Abbott et al., 2016).

A similar process is occurring in wireless communication theory. The preparation
for the 5G era has predicted many new benefits such as higher throughput, lower
response time, connection everywhere, etc. Preliminary theoretical investigations also
inform challenging questions regarding the deployment of next-generation networks,
such as resource allocation, channel estimation, accommodation of a massive number
of users, etc. The steps conducted can be considered an accumulation of knowledge in
communication theory.

Currently, the technology is in the form of experimental prototypes. Across the
world, large laboratories using experimental testbeds like massive MIMO (Shepard
et al., 2012; Rusek et al., 2013; Harris et al., 2016; Facebook, 2016; Huawei, 2017;
Ericsson, 2018) and millimeter wave (mmWave) (Rappaport et al., 2013; Qualcomm,
2018; Instruments, 2018; Facebook, 2016) prototypes have expanded the boundaries
of communication theory. For example, the collaborative experiments of Docomo
and Mitsubishi on a multi-antenna prototype have shown a significant increase in the
throughput, to more than 25 GBps (DOCOMO, 2018), which was almost impossible
in 2015; the collaborative experiments of Lund and Bristol Universities with massive
MIMO prototypes have revealed that a standard assumption about plane wave prop-
agation (PWP) is no longer suitable for massive MIMO antenna arrays, Figure 2.1
(a): the increasing number of antennas increases the linear dimensions of a massive
MIMO antenna array, which expands its near-field region. For example, according to
the Rayleigh distance (Zhou et al., 2015), for a 100-antenna-elements massive MIMO
and a signal carrier frequency of 2.6 GHz, the near-field distance can be expanded
up to 600 meters. Nowadays, the distances between BSs are not more than a few
hundreds of meters in dense urban areas (Björnson et al., 2017), which means that
potentially almost all UEs are located in the near-field region. If a signal is sent from
the near-field region, then a massive MIMO can distinguish the spherical shape of the
incoming signal. Hence, signal-processing algorithms that are intended to serve dense
deployment areas have to incorporate a spherical wave propagation model to be able
to handle near-field channels properly and, consequently, increase the throughput of
the networks effectively (Rusek et al., 2013; Harris et al., 2016).
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Figure 2.1: Difference between plane wave propagation and spherical wave propaga-
tion assumptions: all paths from UE antenna to BS antenna elements cover the same
distance with the same angle of arrival in (a), but cover different distances and have
different angles of arrivals in (b).

The main conclusion from the experiments with prototypes is that the phenomena
of signal propagation and wireless channels are still not thoroughly understood. For
example, the question of how to model the interaction of signals with objects within
the propagation environment is still open, and there is no standardized approach for
taking it into account; the meaning of channel is treated as something that distorts
signals and emerges only after a signal transmission. Although it is believed that the
signal propagation environment defines the channel, there is no clear description of
how the surrounding environment determines the channel, which parameters of the
environment play a dominant role in the channel formation and how to take them into
account.

2.1.1 Stochastic Channel Models:

Why Channel Estimation Became a Bottleneck

Conventional wireless channel models contain statistics of specific parameters such as
the number of propagation paths, time delays, angles of arrival and departure, coef-
ficients of attenuation, etc., which are collected during real channel measuring cam-
paigns. Such channels models are called stochastic channel models and include WIN-
NER (Heino et al., 2010), 3GPP-3D (Heino et al., 2010), IMT-Advanced (ITU, 2009),
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and Quadriga (Jaeckel et al., 2014). The advantages of these models are that they
describe a vast variety of environments and scenarios: outdoor, indoor and outdoor-
to-indoor. Since the models contain realistic statistics from extensive measuring cam-
paigns, the models are widely accepted and used by the communication society. Inter-
estingly, the first models were designed initially for 2D propagation but then extended
to handle 3D propagation; that is why they are not comprehensive in representing
3D features of signal propagation. For example, a proper reflection from an arbitrary
surface and consecutive polarization change are not considered.

Overall, the main drawback of the stochastic approach, from the channel estimation
point of view, is that each realization of a channel generates new parameters that are
inconsistent regarding the channel evolution caused by the mobility of the propagation
environment (Raschkowski et al., 2015). This drawback influenced the procedure of
CE in that the CE always estimates the channel after its realization, i.e., the CE
measures the previous realization of the channel but not the actual one, which has to
be realized during the next transmission. Due to the inconsistent channel evolution,
the channel’s realizations can be quite different, especially if the positions of UEs and
BSs are changing with time. as a result, there is no opportunity to design a solution
within the stochastic model’s paradigm that could track the channel’s evolution, and
consequently, predict the channel. To develop channel prediction solutions, researchers
usually use or estimate the statistics of the channel variation, which describe the exact
behavior of a specific channel model but not a realistic channel, and which are hard
to obtain in practice due to the non-stationary nature of a radio channel in reality.
Such types of prediction solutions may fail in their predictions due to the channel’s
behaviour changes, which usually happens in practice (Raschkowski et al., 2015).

In addition, all the considered stochastic channel models are not capable of sup-
porting spherical waves, a crucial factor for developing channel tracking solutions.
Unfortunately, stochastic models are “blindly” used by the majority of wireless com-
munication researchers especially by beginner researchers who consider these models
as ground truth. Instead of observing all features of the signal propagation, they are
limited by the borders of these models. Hence, they are working with a limited number
of tools, which does not allow them to design solutions with capabilities beyond the
edges of the paradigm. From my point of view, this is the main reason for delays
in the progress in channel prediction and channel inference approaches. Due to the
wide usage of stochastic models, the approaches for inferring and predicting the actual
state of the wireless channel have not been widely investigated. For these reasons, the
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current procedures of channel estimation measure outdated states of channels, and one
of the possible ways of increasing the CE accuracy is to perform the procedure more
frequently, which may add a tremendous channel estimation overhead.

There have been some attempts to design channel prediction solutions, but most of
them still suffer from inconsistent channel models. Thus, the approaches from the early
2000s suffer from oversimplified stochastic channel models that consider 2D mobility
and constant channel parameters (Dong et al., 2001; Cao and Wang, 2004; Wong and
Evans, 2005). These studies do not predict channels across frequency bands, which is
crucial in the FDD mode. The recently proposed channel prediction solutions still in-
corporate stochastic modeling approaches, but the channel models used are much more
comprehensive. Thus, in a static point-to-point MIMO communication, the estimation
of frequency-independent parameters of the UL propagation has allowed the prediction
of the DL channel in a different frequency band (Palleit and Weber, 2010). A logi-
cal extension of this work is the reduction in the feedback transmission frequency in
beamforming by predicting DL channels from the observation of UL channels (Vasisht
et al., 2016). The authors of this work have managed to tune signal beams towards
UEs without any DL feedback. In both studies, the feasibility of channel prediction
in different frequency bands has been experimentally justified; however, the mobility
case and the ability to predict the channel state in the time domain have not been
investigated.

The newest solutions on channel prediction cover mobility scenarios but still con-
sider 2D scenarios without proper modeling of signal reflection and polarization change
caused by the movement (Adeogun et al., 2015; Kashyap et al., 2017). In the first
of these works, a well known Kalman filter approach is used to predict the channel
(Adeogun et al., 2015). The authors wanted to investigate the problem of the feedback
frequency reduction using channel prediction. Based on simulation experiments, they
conclude that prediction helps to increase the throughput in comparison with no pre-
diction communication. In the second work, the authors used an ESPRIT approach to
estimate multipath propagation components, which were then used to predict the fu-
ture channel (Kashyap et al., 2017). Although their solution successfully predicted the
channel, the assumption that they used considers non-variable propagation parameters
over a long time scale, which is quite unrealistic (Raschkowski et al., 2015).

All in all, the development of effective channel estimation solutions has been neg-
atively influenced by the widespread acceptance and use of the stochastic channel
models, which are not comprehensive regarding spatial channel evolution. Thus, to
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enable the development of effective channel estimation approaches, it is crucial to de-
velop consistent channel models that are capable of accurately describing the evolution
of the radio channel.

2.2 Channel Models for Next-Generation Networks

One of the ways to address the problem of outdated channel measurements is to design
proper channel models that allow deriving the channel for any point in time including
current and future points. To do this, the models have to incorporate deterministic
elements of the channel. By leveraging the deterministic part of the propagation en-
vironment, the actual and future states of the channel can be partially inferred. Any
determined object or determined movement within the propagation environment can
be considered as a deterministic element of the channel. An object can be described
by its geometry and physical parameters; a movement can be described by its velocity
and direction. This dissertation aims to design an approach for channel modeling that
can generate channels based on realistic environments (Figure 2.2), which can be taken
from open-source maps such as Google Maps (Google, 2005) and OpenStreetMaps
(OpenStreetMaps, 2004). In this way, I believe, the channel models can become flexi-
ble regarding setting communication scenarios (dense urban areas or hilly rural areas)
and can become comprehensive in representing possible propagation features that are
highly dependent on the area of consideration: radio channels in Moscow are quite
different from radio channels in Dunedin, for example.

2.2.1 Cluster-Based Channel Models

There are some models that include a deterministic element in the channel generation
COST2100 (Liu et al., 2012), GEMV2 (Boban et al., 2014), METIS (Raschkowski et al.,
2015). The primary aim of these models is to emulate a consistent channel evolution. A
significant separation from the stochastic models has been achieved by incorporating
reflecting clusters with fixed positions in COST2100 channel models. Each cluster
has a region from which it is visible, i.e., the UEs located in the region can see the
cluster. At first, COST2100 constructs a generic propagation environment around
a BS, then simulates the movement of users within the environment. Simultaneous
operation of two or more BSs becomes an issue for COST2100 because it generates a
specific environment for each BS separately and the matching of several environments
becomes a complex task. In addition, the mobility of UEs does not incorporate a
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Figure 2.2: The Gate of Europe in Madrid of Spain are twin inclined office buildings.
During propagation, the signals between BS and UE are reflected by the twin office
buildings.

consistent polarization change. The polarization change behaviour is based on statistics
that are taken from another channel model, whose construction is based on indoor
channel measurements (Quitin et al., 2010). Hence, this family of channel models is
not appropriate for developing channel tracking solutions.

2.2.2 Geometry Based Channels Models

The other models, GEMV2 (Boban et al., 2014) and METIS (Raschkowski et al., 2015),
are more geometry-based channel models. They can take into account 3D city models.
The GEMV2 model is designed to simulate vehicular communication. It generates a
channel based on information about vehicles, buildings and foliage outlines, which are
taken from OpenStreetMaps and traffic video records. To avoid simulation complexity,
GEMV2 works with a small area with a round-trip distance of less than 500 meters.
Although the simulation results are consistent with the measurements (Boban et al.,
2014), the calculation of reflections is based on a 2D map, which can to some extent
be acceptable for a flat area, but not for a hilly area. The model has to be further
developed to handle 3D reflection phenomena.

The recent METIS (Raschkowski et al., 2015) project gives a list of requirements
regarding the modeling of a next-generation wireless channel, including accurate 3D
modeling of the surroundings, antenna polarization, and the spread of spherical waves,
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and proposes a new wireless model with the aim of improving the spatial consistency
of the channel model. By experimentally measuring many signal propagation effects
and comparing them with simulation results, the authors of METIS concluded that all
the existing models are inadequate for 5G requirements and cannot cover the required
scenarios and environmental influences. The majority of channel simulation methods
described in this dissertation are adopted from this model.

The main drawback of METIS is that it is strictly limited to consideration of vertical
walls, instead of inclined walls, to simulate the major interaction effects of signals with
obstacles, such as specular reflection (Noerpel et al., 1991) and changes of polarization
(Fedorov et al., 2019). Meanwhile, many objects of a real environment have complex
shapes with inclined surfaces (e.g., Figure 2.2) that can have a significant impact on
channel behaviour. Consequently, the generated channel may significantly differ from
the real channel because polarization is very sensitive to the parameter of inclination,
as the parallel and perpendicular components of polarization have different coefficients
of reflection (Orfanidis, 2014; Landron et al., 1996). Hence, METIS also requires the
incorporation of a proper reflection feature that takes into account the inclination of
the objects.

2.2.3 Summary on Channel Models

It is apparent from the discussion above that one of the challenges in designing new
approaches for CE that estimates the actual state of the channel is to create channel
models that are consistent regarding the channel evolution, environment description,
and mobility modeling. The first aim of this thesis is to design a spatially consis-
tent channel model that can take into account a realistic environment and arbitrary
mobility within the environment to derive the channel’s state at any moment of time.
In the dissertation, the environmental consistency of the proposed channel model is
achieved through a thorough derivation of the electromagnetic signal reflection phe-
nomenon from an arbitrary inclined surface by taking into account the polarization of
signals. The model incorporates Google Maps data into its simulation and validates
the significance of considering the inclination of reflecting objects and an accurate ge-
ometrical representation of the surrounding medium. The model also incorporates the
spherical wave propagation model, which becomes crucial in the channel generation
especially for large antenna arrays because the difference between the channels gener-
ated by plane waves and spherical waves becomes obvious. The full description of the
channel design is presented in Chapter 3. The full comparison of the discussed channel
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models is listed in Table 2.1.
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2.3 Transition to Deterministic Channel Paradigm

To overcome the challenging open questions in wireless channel estimation described
in Section 1.5.7, entirely new approaches need to be developed in channel estimation
theory. The primary objective of the thesis is to explore the relationship between the
propagation environment and the radio channel. If the surrounding environment is
known, then the channel becomes almost deterministic and depends on the position
and action of UEs (Witrisal et al., 2016). The description of the relationship between
the propagation environment and the radio channel is an attempt to transition from
the stochastic channel paradigm to the deterministic channel paradigm. In the massive
MIMO networks, the radio channel becomes nearly deterministic due to the high spatial
resolution of massive antenna arrays (Ngo and Larsson, 2017).

An analogy of this effect can be constructed from a biological example. A creature
with a single photoreceptor cell (antenna) can recognize if there is light or not and
its intensity while a creature with a massive number of photoreceptor cells (many
antennas)realizes where the light comes from and its source if the creature is intelligent
enough. In the case of the first creature, the environment is unknown, and the light
has a random nature with its statistics, which can be collected if based on a long
observation. If conditions in the environment change, the single-cell creature has to
collect statistics again. On the other hand, the multi-cell creature to some extent sees
the environment and can make some decisions, depending on the changes. Even if the
single-cell creature is capable of making decisions, then these decisions will be taken
much more slowly than in the case of the multi-cell creature due to less observation. In
the same way, a BS equipped with a massive MIMO antenna can, to some extent, see
the surrounding propagation environment through the radio channel and can definitely
recognize sources of communications UEs (sources of light), and hence, for such types
of BS, channels become determined by the environment and the positions of UEs.

The motivation of the transition to deterministic channel paradigm is that a channel
can be treated as a deterministic function of an environment and a signal:

H = f(Env, xUE, s). (2.1)

Here H is the channel response, f is the deterministic channel function, Env is the envi-
ronment, xUE is the location of the UE, and s is the transmitted signal. The meaning of
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the environment aggregates physicomechanical properties of the propagation medium
and its 3D geometrical characteristics. The function f is describing different paths,
through which a transmitted signal propagates in a multipath environment. Different
paths originate from different electromagnetic phenomena such as reflection, scatter-
ing, diffraction, and refraction (Richter, 2005). Since each phenomenon has an explicit
representation as a function of the user’s location and the surrounding environment
(Raschkowski et al., 2015; Tse and Vishwanath, 2005), function f can be explicitly
derived as a combination of these functions.

2.4 Channel Inference in Massive MIMO Networks

One of the primary benefits of the deterministic channel representation (2.1) is that if
f , Env, and xUE are known, then the channel can be calculated for any signal s even in
the case of the frequency separation of the UL and DL signals, as illustrated in Figure
1.10. In an ideal situation, the CE procedure can be eliminated completely since chan-
nels can be calculated directly. If at some moment in the future, the coordinates of
the user and the state of the surrounding environment are known via motion tracking
(Rapoport et al., 2010; Golovan and Cepe, 2016), then the future channel can be explic-
itly calculated based on (2.1). An explicit representation of the radio channel, such as
(2.1), enables a clear and easy understanding of the idea of channel reconstruction and
prediction, or in other words, channel inference. By using such an approach, BSs can
track UE channels based on their spatial relations with the surrounding environment
and infer (predict/reconstruct) channels for other positions, signals, and points in time.
The deterministic channel paradigm can become helpful in answering the challenging
questions regarding channel prediction and reconstruction listed in Section 1.5.7.

The issue with the deterministic channel paradigm is in obtaining information about
f , Env, and xUE for the channel function (2.1). This information can be obtained
from a received UL signal, because the signal captures the propagation information
during its travel from the user’s position xUE to the BS, and its interaction with the
environment (Env). In fact, during propagation, wireless signals are distorted due to
inevitable interactions with the propagation medium. The distortion can be treated
as the capture of information about f , Env, and xUE: after the signal’s reception, the
captured information can be extracted (Richter, 2005; Fleury et al., 1999, 2002), and
then the required channel (2.1) can be inferred. Consequently, the second aim of

the thesis is to develop solutions for the extraction of propagation information from
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received UL signals for further use in the DL channel inference.

There is extensive literature on inferring channels from limited or compressed feed-
back (Love et al., 2008; Schulz, 2015; Love et al., 2003; Love and Heath, 2005; Ragha-
van et al., 2007; Song et al., 2010; Joung and Sun, 2014; Liu et al., 2016). All of these
methods deal with the feedback mechanism. As was discussed in Chapter 1, all the
feedback solutions are aimed at reducing the size of the information that is included
into feedback but not the frequency of feedback transmission. Hence, a UE has to
frequently measure the channel and send its state back to the servicing BS, which is
time- and energy-consuming. There is also a constant interest in solutions that pre-
dict channels in the time domain (Dong et al., 2001; Cao and Wang, 2004; Wong and
Evans, 2005; Kashyap et al., 2017; Duel-Hallen et al., 2000; Duel-Hallen, 2007), which
was discussed earlier in the thesis. All the listed channel prediction approaches do not
predict/reconstruct channels in the frequency, code, or spatial domains.

Although there are concerns regarding the feedback overhead in FDD massive
MIMO systems, some big companies like Ericsson, Samsung, and Huawei have al-
ready announced the deployment of their FDD massive MIMO networks (Ericsson,
2017; Samsung, 2017; Huawei, 2018). Since the FDD mode of communication has
theoretically higher capacity than the TDD mode, as discussed in Chapter 1, many
researchers are putting effort into achieving a practical solution that can overcome the
problem of a large feedback overhead. The available solutions can be divided into two
based on the approaches used: stochastic and deterministic.

The stochastic DL channel inference approaches exploit the special correlation prop-
erties of massive MIMO channels to infer the channels in different frequency bands.
The main problem of all stochastic solutions is in the availability of long-term channel
statistics, which are hard to obtain, and the consideration of very strong assumptions
regarding the stochastic properties of channel matrices (Aleksiejunas, 2016; Han et al.,
2010). By using the stochastic properties, the author of the first work can decompose
the channel correlation matrices in a way such that fading parameters in space, time
and frequency domains become independent, which is not realistic (Raschkowski et al.,
2015; Björnson et al., 2017).

On the other hand, the deterministic DL channel inference approaches exploit the
estimated propagation parameters such as directions of arrival and departure, distances,
attenuation coefficients, etc; currently there are many robust methods to estimate these
propagation parameters (Richter, 2005; Fleury et al., 1999; Li et al., 2017; Kumar et al.,
2014; Fedorov et al., 2018). The benefits of such approaches are that there is no need
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to collect statistics about the channel: the channel inference can be performed in
any environment as long as parameters are estimated accurately. However, the main
problem of all deterministic solutions is that the quality of the inferred channel is highly
dependent on the accuracy of the parameter estimations. That is why the main focus
of these solutions is on achieving an accurate estimation of the propagation parameters.
Further sections discuss deterministic approaches in DL channel inference.

2.4.1 Estimation of Directions of Arrival
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Figure 2.3: Disadvantages of MUSIC- and ESPRIT-like methods in determination
of directions of arrival. (a) Consider two signal paths emerging from 102◦ and 84◦

as shown. (b) Depicts the signal components of individual paths across direction of
arrival. (c) Power profile is constructed based on uplink frequencies. (d) Power profile
is constructed based on downlink frequencies.

The deterministic DL channel inference approaches exploit the propagation reci-
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procity idea where it is assumed that UL and DL signals propagate through the same
paths. Unlike the channel reciprocity idea where signals experience the same channel
distortions, here signals propagate through the same environment. Consequently, due
to frequency separation, UL and DL signals are distorted differently. In (Palleit and
Weber, 2009, 2010; Adeogun et al., 2015), the authors demonstrated the usefulness of
direction of arrival parameters for DL channel reconstruction in some special scenar-
ios. They used MUSIC- and ESPRIT-like algorithms, which find directions of arrival
based on spikes in the angular power profiles (Schmidt, 1986; Roy and Kailath, 1989;
Swindlehurst et al., 1992). It is known that angular power profile algorithms suffer
from inaccurate direction determination in the case of multipath propagation (Vasisht
et al., 2016). As illustrated in Figure 2.3, the direction of arrival power profile has
different shapes depending on the frequency band, which affects the estimation results.
The direction mismatch influences the DL channel reconstruction accuracy.

The example in Figure 2.3 is plotted in Matlab by following the same approach
described in (Vasisht et al., 2016). For clarity, the power profile has been constructed for
a BS with 8 antenna elements. The center frequencies for the UL and DL channels are
2.6 GHz – 30 MHz and 2.6 GHz + 30 MHz, respectively, 40 MHz separation. The LoS
signal comes from the angle 102◦ with attenuation a1 and phase ϕ1; the covered distance
is 100 meters. The reflected NLoS path has a direction of arrival of 84◦, and attenuation
a2; phase ϕ2, and distance d2 = 120 meters. With the increase in the number of
antennas, the width of the spikes become narrower, which increases the accuracy of
direction estimation. However, adding more antennas does not help to overcome the
method’s weakness because for any resolution (for any number of antennas), there can
exist closely located paths that reduce the accuracy of direction estimation. In practice,
this significantly impairs the DL channel reconstruction performance (Vasisht et al.,
2016).

2.4.2 Estimation of Multipath Propagation Components

To overcome the direction mismatch, (Imtiaz et al., 2014) used more advanced mul-
tipath component extraction optimization methods such as a SAGE-based algorithm
(Fleury et al., 1999, 2002). The authors did not aim to reconstruct the DL channel;
instead they wanted to investigate the dissimilarity of UL and DL channels depending
on the value of frequency separation of the two channels. According to their work, the
number of propagation paths had the highest impact on the dissimilarity of UL and
DL channels. Another well-known method that advances the multipath component
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extraction is the use of RiMAX algorithms (iterative maximum-likelihood criterion)
(Salmi et al., 2009; Li et al., 2017). In these works, the authors aimed to investigate
robust methods in multipath component extraction rather than in DL channel infer-
ence. According to their results, the RiMAX algorithms are suitable for high-accuracy
extraction of multipath components, and hence, can be helpful for DL channel recon-
struction. The critical component of their approach is to expand the dimensionality of
the measurements through leveraging the orthogonal frequency division multiplexing
(OFDM) nature of signals (Sesia et al., 2011). Orthogonal subcarriers become inde-
pendent observation channels for obtaining measurements, and the number of mea-
surements increases according to the number of subcarriers (Fedorov et al., 2018).

OFDM is a convenient way to transmit signals in parallel using multiple orthogonal
carriers, which are called subcarriers. The main advantage of the OFDM method is
that signals can be transmitted with a lower sampling rate. Historically, the purpose
of using orthogonal subcarriers was to combat the problem of intersymbol interference
due to the lack of accurate time synchronization (Cho et al., 2010; Alard and Lassalle,
1987), but now, due to software and hardware development, the advantages of the
methods have broadened. The method is considered a key technology in 5G since
OFDM can provide higher spectral efficiency than other modulation techniques and
flexible resource allocation, as illustrated in Figure 2.4. In addition, it is sensitive to
Doppler shift and frequency synchronization; that is why effective signal processing
solutions have to be proposed to mitigate the disadvantages.

Figure 2.4: OFDM signal. Orthogonal subcarriers can be shared among up to four
users, or can be used by one user. Flexible resource allocation.
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The main issue with SAGE- and RiMAX-like algorithms is in their computational
complexity. A number of research groups are working on alternative optimization
methods that are less computationally complex. In (Vasisht et al., 2016), an MIT
team proposed a method that extracts propagation components by matching a com-
prehensive channel model with the channel measurements. By using observations from
all OFDM subcarriers, their method can extract exact paths through which signals
travel. The paths are parameterized via a frequency-independent amplitude, direction
of arrival, and distance to the source. The main drawback of their method is that
they model reflection coefficients as a frequency-independent attenuation coefficient
multiplied by a frequency-dependent exponent aejφ, which is not in agreement with
the Fresnel reflection coefficient (Raschkowski et al., 2015; Landron et al., 1996; Fe-
dorov et al., 2017). Also, the algorithm has been developed by considering a BS with a
conventional MIMO antenna system, which allowed them to design the solution under
the PWP assumption.

A very recent solution on DL channel reconstruction has been proposed (Han et al.,
2018). Although this work was not available during my PhD research, this is an
interesting study. The main contribution of this work is in introducing a Newtonized
orthogonal matching pursuit algorithm that extracts multipath propagation delays and
paths gains. Unfortunately, the authors did not consider the SWP assumption, which
is an experimentally justified suitable propagation model for massive MIMO (Shepard
et al., 2012; Rusek et al., 2013; Harris et al., 2016).

All the considered DL inference solutions do not consider the more realistic SWP
assumption. The common disadvantage for all methods is that they do not consider
a truly mobile scenario with a consistent motion of UE and its polarization change.
The majority of solutions provide solutions in 2D scenarios with non-changing polar-
ization of transmitting and receiving antennas. For next-generation communication,
providing high throughput in a mobility scenario is considered to be one of the critical
requirements.

A logical evolution of DL channel reconstruction methods lies in the channel recon-
struction for non-transmitting antennas. The question here is how to obtain multipath
propagation parameters for non-transmitting antennas. As mentioned previously, the
final aim of the thesis is to design a solution that is flexible in reconstructing and
predicting channels for non-transmitting antennas in any domain: in the frequency do-
main (channel reconstruction), in the time domain (channel prediction), and in spatial
or code domains (channel inference).
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2.4.3 Estimation of Location

The main effort in the extraction of propagation information is put into finding the
location of the UE since it is a convenient parameter, through which the problem of
the propagation information extraction can be formulated as a well-known optimiza-
tion problem (Vasisht et al., 2015; Fedorov et al., 2018, 2019). In other words, the
localization of users and the extraction of environmental information can be performed
jointly. In addition, the location information is useful for many other applications such
as safety and servicing applications, yet the interest of the thesis is in the channel
deviation (2.1) at any moment of time and any position.

The most promising application within the channel estimation topic that will be
used in next-generation communication is beamforming (Figure 1.6). The beamforming
technique allows a BS to create focused beams towards UEs, by which energy consump-
tion and interference can be significantly reduced and radio resources can be reused
to increase capacity (Vasisht et al., 2016; Vieira et al., 2017; Malkowsky et al., 2017;
Zhang et al., 2016). In the conventional beamforming schemes, the beam’s precoding
is based on the DL channel feedback, which causes an extreme overhead to DL data
communications. In some cases, especially in the multi-user FDD communication, the
downlink channel feedback may exceed half of the overall traffic generated by the BS
(Björnson et al., 2016). To reduce the overhead, location-based DL channel inferring
approaches have been proposed. For static UEs, with the knowledge of the location
information, some of these approaches can perform accurate beamforming without the
use of any channel feedback (Palleit and Weber, 2010; Vasisht et al., 2016). However,
all of these methods are constructed for conventional MIMOs and do not take into
account propagation effects that are specific for massive MIMO systems with large
antenna arrays. Consequently, the localization solutions for massive MIMO systems
are highly desirable to enable efficient beamforming and interference cancellation.

There are many methods in UE location determination. Since the dissertation deals
with channel estimation methods, and the position knowledge is required for channel
description, only specific network-oriented localization methods are considered. All the
existing localization methods can be broadly divided into three groups: UE-based, UE-
assisted, or network-based (Cherian and Rudrapatna, 2013). In the UE-based methods,
the UE obtains a location measurement and calculates its position. These methods are
not considered in the dissertation because they add high computational load on the UE
side and additional energy consumption in feeding back the location information to the
network. In UE-assisted methods, the UE provides positioning measurements to the
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network and the network uses those to calculate the position of the UE. These methods
also require energy expenditure on measuring and transmitting additional positioning
information to the network, which is why they are not considered in the dissertation.

The preferred methods are network-based where the network calculates the UE
position without UE involvement. UEs act as usual while the BSs locate them from
the users’ UL signals. This means that UEs do not spend energy on localization and
transmission of any additional information. Also, localization based on UL signals is
quicker than the UE-based and UE-assisted methods since the additional information
transmission step is omitted. There are also complex methods used by third parties and
application providers, and proprietary methods based on GPS, Wi-Fi and others. The
exchange of location information between the network and the third parties requires
time, and consequently, extends the localization delay for the network, which is critical
for channel prediction methods. As a result, only network-based localization methods
are considered in the dissertation.

In the design of localization solutions, the central focus is put on areas with high
population density (e.g., urban areas in business hours and airports), where it is chal-
lenging to provide high-quality mobile communication using limited radio resources,
due to the need to serve a large number of UEs. Such areas are typically covered by
many small cells with distances between adjacent BSs less than a few hundred meters
(Björnson et al., 2017; Alsharif et al., 2017). In such scenarios, the SWP model can be
adopted to locate UEs more accurately in massive MIMO systems because the linear
dimensions of a massive MIMO array are large enough to distinguish the spherical
shapes of the incoming wavefronts. Figure 2.1 compares the SWP model with the
conventional PWP model. Due to the sphericity of an incoming wavefront, a BS with
a massive MIMO antenna can estimate the center of the wavefront’s sphere, which is
the location of the UE that transmits the signal. Hence, the adoption of the SWP
assumption allows a massive MIMO BS to estimate the direction and distance to the
transmitting UE simultaneously.

2.4.4 Estimation of Antenna Orientation

During the finding of a UE’s location xUE, a massive MIMO BS extracts the prop-
agation information f and Env, which gives opportunity to explicitly calculate the
corresponding channel (2.1). However, in the case when a UE has more than one
antenna, and some of them are not capable of transmitting signals due to a design
solution or radio resource limitation, the location information becomes insufficient to
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calculate channels. This is because the channels of transmitting and non-transmitting
antennas become uncorrelated if the non-transmitting antennas have orthogonal ori-
entations relative to the transmitting antennas (Orfanidis, 2014). Hence, the channels
of the non-transmitting antennas cannot be inferred from the channels of transmitting
antennas. Therefore, in addition to the location information, the information about
the orientation of antennas also has to be incorporated into the channel function (2.1).

Due to a fixed design of user equipment (smartphones, laptops, cars, etc.), the
orientations of non-transmitting antennas can be derived from the orientation of the
UE, which is defined by the orientation of the transmitting antennas. As illustrated in
Figure 2.5, the orientation of the UE can be defined by the directions of the two red
transmitting antennas. It is assumed that among the transmitting antennas at least
two are not parallel. Hence, the updated version of (2.1) can be derived as follows:

H = f(Env, xUE,Ω, s), (2.2)

where Ω is the orientation matrix of the UE in the global coordinate system, as illus-
trated in Figure 2.5.

Ω

𝑋

𝑌

𝑍

𝑂𝐺

𝑍UE

𝑌UE

𝑋UE

Tx/Rx
Rx

𝑂UE

Figure 2.5: Definition of UE’s orientation relative to the global coordinate system OG.
Red arrows indicate transmitting antennas, orange arrows indicate non-transmitting
antennas.

The solution for antenna orientation reconstruction is motivated by the strong rela-
tionship between the voltage induced at a receiving antenna and the mutual orientation
of two communicating antennas. The key idea of our solution is to reconstruct the ori-
entation of a transmitting antenna based on the voltage measurements by exploring
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the relationship above. For a BS with a massive MIMO antenna, the voltages induced
from the uplink signals can be measured on the distributed antenna elements. The spa-
tially diversified voltage measurements allow reconstruction of the orientation of the
transmitting antenna. Based on these orientations, the BS defines the orientation Ω of
the UE. Based on the orientation of the UE, the orientations of the non-transmitting
antennas are then reconstructed. Finally, using extracted information f , Env, xUE,
and Ω, the BS becomes capable of reconstructing channels for the non-transmitting
antennas.

In this thesis, I present ARDI (Antenna orientation Reconstruction and Downlink
channel Inference), a scheme that can reconstruct the full DL channel based on in-
complete UL channel measurements. The heart of ARDI is the reconstruction of UE
antenna orientation at the BS based only on UL signals. In fact, the channel response is
closely related to the mutual orientations of transmitting and receiving antennas. The
design of ARDI has been based on this observation. It allows the BS to use channel
response as a measurement and calculate the orientation of the transmitting antennas
of the UE based on the electromagnetic signal propagation model. Since the layout of
the antennas at a UE is assumed to be known, as it is related to the UE model, the
orientations and other propagation parameters for the non-transmitting antennas can
be inferred. Based on the inferred propagation parameters the full downlink channel
can be reconstructed.

ARDI is the first scheme that can reconstruct the orientation of an antenna based
on a single electromagnetic impulse in both single-path and multipath propagation
environments. A closed-form solution for antenna orientation reconstruction in both
propagation environments has been derived. Although there are some works on antenna
array orientation reconstruction (Sinclair, 1950; Shahmansoori et al., 2018; Talvitie
et al., 2017), none of them can reconstruct the orientation of a single antenna or
reconstruct the orientation of a UE based on two transmitting antennas. Also, the
proposed solution is the first that can infer channels for non-transmitting antennas at
any domains.

2.5 Summary

This chapter provides an overview of the current state of the radio channel modeling
theory. Although the understanding of the wireless signal propagation phenomenon
has been dramatically expanded by observations from experimental campaigns using
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advanced massive MIMO and mmWave hardware, the implementation of the knowledge
obtained in practice is minimal. For example, the majority of the signal processing
algorithms designed for massive MIMO systems do not take into account the spherical
propagation of wireless signals, which can be beneficial for massive MIMO algorithms
such as user localization and user motion tracking. Also, the chapter sheds light on
related works regarding channel reconstruction approaches, and discusses their pros
and cons. Finally, the chapter ends with the formulation of the problem of channel
reconstruction for non-transmitting antennas and gives a high-level description of the
proposed solution, which is based on antenna orientation reconstruction.
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Chapter 3

Channel Modeling

In this chapter, approaches for modeling massive MIMO channels are described. The
phenomenon of reflection of wireless signals from an arbitrary inclined rough surface
is thoroughly investigated by taking into account the signals polarization and spatial
distribution of massive MIMO antenna elements. The difference between plane and
spherical wave propagation models is analyzed.

3.1 Introduction

The wireless signal propagation environment is very complex in terms of accurate
modeling. It is a challenging task to take into account all factors such as shapes of
landscapes, buildings, moving objects and trees/foliage. Even though field experiments
are more appropriate for validating new concepts and approaches on wireless commu-
nication than simulation tests, field tests are commonly costly and time-consuming.
Hence, new concepts in wireless communication are generally first validated through
simulation, which demands the simulation models to be realistic enough to provide all
required effects of a real propagation environment.

In the wireless communication field, similar to the graphics field (Wyvill and Trot-
man, 1990, 1992), the approach of ray tracing is widely used to model the geometry-
based multipath propagation channel. The approach takes into account the geometri-
cal and physical conditions of the propagation environment where a transmitted signal
undergoes reflection, diffraction, and scattering from different objects (Noerpel et al.,
1991). While the multipath signal propagation enables communication when the LoS
direction is blocked, it also has other effects including destructive and constructive
interference and phase shifting of the signal. The destructive effects can have harmful
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impacts on the power of the received signal and make the signal undecodable due to low
SNR. Hence, it is vital to develop a simulation module that could model such effects,
which in turn allows the development of efficient solutions to deal with the effects.

Existing 3-Dimensional multipath models can be generally divided into two groups:
Stochastic Channel (SC) models (Jaeckel et al., 2014; Heino et al., 2010; the 3rd Gener-
ation Partnership Project, 2015; ITU, 2009) and Geometry-based Channel (GC) models
(Liu et al., 2012; Quitin et al., 2010; Boban et al., 2014; Raschkowski et al., 2015) which
also can incorporate stochastic parameters. The SC models have comparatively low
complexity, but do not consider specific environment features, whereas a local medium
is the main determining factor of a channel. Therefore, SC models are not suitable to
validate new concepts such as beamforming and radio resource reuse that require spe-
cific characteristics of a local environment to deal with spatial properties of a channel.
The GC models consider the impact of surrounding infrastructures, but they consider
only simple shapes of objects described using vertical and horizontal planes. Mean-
while, many objects in a real environment have complex shapes with inclined surfaces
(e.g. Figure 2.2) that can have a crucial impact on channel behavior. By considering
simple objects shapes, the GC models limit the number of available propagation sce-
narios. For example, a radio channel for a hilly area may have specific features, which
cannot be modeled using simple vertical and horizontal shapes. Consequently, the
modeled channel may significantly differ from the real channel due to the inaccuracy of
the environment representation. These facts became a motivation for developing new
channel modeling methods that enable generating realistic channels.

The goal of this work is to examine the significance of consideration of geometri-
cally accurate representation of the propagation environment in the simulation of a
radio channel. The difference in the channel generation under the SWP and PWP
assumptions is also examined. To achieve the goals, channels are generated for the
same environment (Kio Torres area on Figure 2.2) but under different conditions (sim-
ple and accurate geometrical representations, under SWP and PWP assumptions) and
then compared. The difference between the channels can be seen from the example
shown in Figure 3.1. The BS receives two copies of the signal from the UE: one comes
through LoS, and the other is reflected from the wall. Suppose, the wavelength of the
signal is λ = 12 cm (the carrier’s frequency Fc = 2.6 GHz, which is typical for LTE
systems (Wikipedia contributors, 2019b)). If the lengths of the paths differ by about
6 cm or 6 + 12 · k cm, where k ∈ Z, the two copies in superposition give a strongly
attenuated signal, an effect known as a deep fading effect. A small inclination of the
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wall changes the length of the reflected signal’s path (dashed lines in Figure 3.1). Even
if the change of the length within 12 cm, it can totally change the channel from the
deep fading to the doubling of the power of the received signal. The example shows
that the accurate representation of an environment is crucial for channel simulation.

 

𝐴 

𝑠2ሺ𝑡ሻ = 𝑠𝑖𝑛 ሺ𝜔 𝑡 + 𝜋ሻ 

𝑠ሺ𝑡ሻ = 𝑠1ሺ𝑡ሻ + 𝑠2ሺ𝑡ሻ = 0 

𝑠1ሺ𝑡ሻ = 𝑠𝑖𝑛 ሺ𝜔 𝑡ሻ 

Path 1 

Path 2 

Total 𝐔𝐄 

𝐁𝐒 

Figure 3.1: The effect of deep fading when the reflected copies of the signal in superpo-
sition give a strongly attenuated signal regardless the power of the transmitted signal.
The inclination of the wall changes the reflected path.

The next section describes an approach in modeling the reflection of signals from
an arbitrary inclined surface by taking into account the polarization of signals. The
incorporation of Google Maps data into the simulation model validates the necessity
to consider inclined walls. Simulation results show significant differences between the
channel with inclined walls and the channel with vertical walls. Comparison of spherical
and plane wave propagation assumptions reveals an interesting observation that the
difference in channel generation under the two assumptions is small for small antenna
arrays and is significant for big antenna arrays.

3.2 Specular Reflection of a Signal from an Arbitrary

Inclined Surface

In this section, the model of the specular reflection of a signal from an arbitrary inclined
surface is presented. For the sake of simplicity, the description is started from the
consideration of a smooth surface and then extended to a rough surface. It is assumed
that all reflections are modeled according to the Law of Reflection and the ray tracing
approach, i.e. the angle between an incident ray and the normal vector of the reflection
surface is equal to the angle between the reflected ray and the normal vector, and the
reflection is proceeding in the plane perpendicular to the reflection surface. Reflections
with two or more bounces are not considered because, in most practical cases, the
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energy of a transmitted signal sharply drops after the second reflection according to
the Fresnel coefficients of reflection (Landron et al., 1996; Raschkowski et al., 2015).
The modeling is explained using uplink signals (from the UE to the BS as illustrated
in Figure 1.8) because the reflections of uplink and downlink signals can be modeled
similarly.

Notations: Throughout the thesis, I use (·) to denote the operation of a scalar
product and (×) to represent the operation of a vector product. The operation of
transpose is represented with superscript T , the operation of Hermitian transpose is
represented with superscript H and bold notations represent vectors.

3.2.1 Reflection from an Arbitrary Plane

𝑅 𝐔𝐄 = 𝐔𝐄 − 2 ⋅ 𝑛1, 𝐔𝐄 − 𝐴1 ⋅ 𝑛1

𝑥UE

𝑃𝑆1(𝑥UE)

𝑃𝑆1(𝑥BS)

𝑆2

𝑆3(𝑥BS)

𝑆3(𝑥UE)

𝐴1

𝑋

𝑌

𝑍

𝑥BS

𝒏3𝒏1

𝐾

𝑆1

𝑅(𝑥UE)

𝒏1

𝒏1

𝒏2

𝒏2

Figure 3.2: Illustration of the Law of Reflection.

As illustrated in Figure 3.2, plane S1 is the reflection plane, plane S2 is perpendicular
to S1, and point K is the reflection point. Suppose UE is the transmitter and BS is
the receiver with antenna coordinates xUE and xBS, respectively.
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Each plane can be defined by its normal vector and a point, through which the
plane goes. In the remaining sections of this chapter, all normal vectors are assumed
to be unit vectors. Suppose plane S1 has the normal vector n1 = (n11, n12, n13)T and
a point A1 = (x1, y1, z1)T . Hence, it can be represented as follows:

nT1



x

y

z


− nT1A1 = 0,



x

y

z


 ∈ R3. (3.1)

As shown in Figure 3.2, the unit length direction vector of a LoS path can be defined
as follows:

LoS =
xBS − xUE

dLoS
, (3.2)

where dLoS = ‖xBS − xUE‖ is the Euclidean distance between UE and BS. Since S1

and S2 are perpendicular to each other and the points xUE, xBS and K are on S2, the
normal vector n2 of the plane S2 is the cross product of LoS and n1, that is:

n2 =
LoS × n1∥∥LoS × n1

∥∥ ,

and plane S2 can be defined as follows:

nT2



x

y

z


− nT2 xUE = 0,



x

y

z


 ∈ R3. (3.3)

To define the path/trajectory of the reflected signal inside S2, two things are needed
to be found. First is the intersection of planes S1 and S2, which is a line with the
direction vector n3 = n1 × n2, and the second is the reflection point K. For this
purpose, two planes S3(xUE) and S3(xBS) are constructed. The planes are perpendicular
to both S1 and S2 and going through xUE and xBS, respectively:

S3(xUE) : nT3



x

y

z


− nT3 xUE = 0,



x

y

z


 ∈ R3,

and

S3(xBS) : nT3



x

y

z


− nT3 xBS = 0,



x

y

z


 ∈ R3.

As illustrated in Figure 3.2, the coordinates of projections PS1(xUE) and PS1(xBS) of
points xUE and xBS to S1 can be found as intersections of three perpendicular planes

PS1(xUE) : S1 ∩ S2 ∩ S3(xUE)
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Figure 3.3: (a) Reflection of the signal inside the plane S2. (b) Polarization changes
according to the observed direction er.

and

PS1(xBS) : S1 ∩ S2 ∩ S3(xBS).

Once projections PS1(xUE) and PS1(xBS) are defined, the point K can be found as
illustrated in Figure 3.3(a). The point K divides the segment [PS1(xUE), PS1(xBS)] with
length

d = ‖PS1(xUE)− PS1(xBS)‖

into two segments with lengths b1 and b2. The segments [xUE, PS1(xUE)] and [xBS, PS1(xBS)]

have lengths

a1 = ‖xUE − PS1(xUE)‖ and a2 = ‖xBS − PS1(xBS)‖,

respectively. According to the Law of Reflection:

]PS1(xUE)KxUE = ]PS1(xBS)KxBS.

Hence,

b1 =
a1 · d
a1 + a2

, b2 =
a2 · d
a1 + a2

.

Finally, the coordinates of the point K can be found as

K = PS1(xUE) + b1n3.

The exact trajectory of the reflected signal inside S2 is defined through the arrival
and departure NLoS directions, and can be computed respectively as follows:

NLoSa =
xBS −K
‖xBS −K‖

, NLoSb =
K − xUE

‖K − xUE‖
. (3.4)
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Here, subscript “b” indicates vectors corresponding to the signal before reflection and
subscript “a” indicates vectors corresponding to the signal after reflection. As shown
in Figure 3.3(a), the total distance covered by the reflected signal is:

dNLoS = ‖xBS −K‖+ ‖K − xUE‖. (3.5)

The total distance also can be calculated as follows:

dNLoS = ‖xBS −R(xUE)‖, (3.6)

where R(xUE) is the position of the reflected image of the UE about to plane S1 as
illustrated in Figure 3.2. The coordinates of the image can be represented as follows:

R(xUE) = xUE − 2(xUE − PS1(xUE)), (3.7)

which also has another well-known Householder transformation representation (House-
holder, 1958):

R(xUE) = xUE − 2n1

(
nT1 (xUE − A1)

)
. (3.8)

3.2.2 Perpendicular and Parallel Components of Polarization

The polarization of a signal is defined by the direction of its electric field, which is
perpendicular to the direction of signal propagation (Orfanidis, 2014). However, a
signal is transmitted from an antenna, and consequently the transmitting antenna
defines the polarization of the transmitted signal. The nature of electromagnetic signal
polarization is a complex concept in terms of physics. A more detailed discussion is
presented in Chapter 5. Roughly speaking, the polarization of a transmitted signal
can be defined by the orientation of the transmitting antenna element, which converts
electric current to electromagnetic waves and vice-versa. Here, orientations of UE and
BS antennas are defined as unit vectors pUE and pBS, respectively. As illustrated in
Figure 3.3(b), if a transmitted signal is observed in direction er, then the polarization
pUE(θ) of the signal is defined as projection of pUE to eθ and calculated as follows:

pUE(θ) = eθ (eTθ pUE). (3.9)

Eqn. (3.9) holds for the Hertzian dipole antenna model, and the expression can be
different for other antenna models (Orfanidis, 2014). It means that the observation in
direction er causes additional attenuation of the reception. Here, vector eθ is perpen-
dicular to er and parallel to the plane generated by pUE and er. Note, er and eθ are
unit vectors.
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An antenna element creates a heterogeneous electric field around itself. Depend-
ing on the observed direction er relative to the antenna element, the observed signal
can have different polarization. The vector function of the relation between an ob-
served direction er and the vector of the observed polarization is denoted as F (θ, ϕ)

(Narandzic et al., 2007; Orfanidis, 2014; Sinclair, 1950), where θ and ϕ are spherical
coordinates of er relative to the antenna element’s coordinate system, as illustrated in
Figure 3.4 in the case of pUE. This means that if a signal is observed in direction er
with the spherical coordinates θ and ϕ, then the polarization of the signal is expressed
as p = F (θ, ϕ).

𝑋

𝑌

𝑍

𝜑

𝜃

𝒆𝜑

𝒆𝜃

𝒆𝑟

𝒓

𝒑UE

Figure 3.4: Spherical coordinates relative to the antenna coordinate system.

Let us define angle θb that represents angle between pUE andNLoSb. As illustrated
in Figure 3.3(a) and Figure 3.2, in the case of reflection, the transmitted signal interacts
with plane S1 at point K and its polarization vector pUE(θb) is decomposed into the
perpendicular component:

p⊥ =
(
pUE(θb)

T n2

)
n2, (3.10)

and parallel component:

p‖ =
(
pUE(θb)

T (n2 ×NLoSb)
)

(n2 ×NLoSb), (3.11)

relative to S2. SinceNLoSb and n2 are unit length perpendicular vectors, their vector
product defines a unit length vector that is perpendicular both of them (Gel’fand,
1989). Note, that

(
pUE(θb)

T n2

)
and

(
pUE(θb)

T (n2 × NLoSb)
)
define the lengths

of perpendicular and parallel projections of polarization vector pUE(θb) to plane S2,
correspondingly. Let us note these lengths as p⊥ and p‖, respectively.
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The decomposed components are attenuated in accordance with the Fresnel reflec-
tion coefficients Γ⊥ and Γ‖, which depend on the angle of an incident ray and the
material of the surface (Raschkowski et al., 2015; Landron et al., 1996). In addition
to the attenuation, the parallel component of the polarization has to be rotated to
become perpendicular to NLoSa. Hence, the polarization of the reflected signal can
be expressed as follows:

pref = Γ⊥ p⊥ + Γ‖ p‖ (n2 ×NLoSa). (3.12)

This equation shows that the reflection changes the polarization of a signal, and the
result of the change is inextricably linked with the value of the inclination of the
reflecting surface. The final attenuations caused by polarization transformations for
LoS and NLoS directions can be calculated as follows:

GLoS = pUE(θ)T pBS, GNLoS = pTref pBS, (3.13)

where θ is angle between pUE and LoS direction, Figure 3.3.

3.2.3 Extension to a Rough Surface

In the case of a rough surface, the energy of the specularly reflected signal is reduced
due to the scattering effect (Ament, 1953). The energy of an incident signal is scattered
in multiple directions instead of the direction of specular reflection. According to the
Rayleigh criterion (Landron et al., 1996), a surface is considered to be rough if the
difference h between the minimum and maximum heights of a surface is higher than
the critical height hc that can be calculated as follows:

hc =
λ

8 · cosα
, (3.14)

where α is the angle between the incident ray and the normal vector of a surface, as
shown in Figure 3.2. The attenuation coefficient ρs of the reflected signal caused by a
rough surface is given by

ρs(α) = exp

[
−8 ·

(
π · σh · cosα

λ

)2]
, (3.15)

where σh is the standard deviation of the surface’s height.

3.3 Simulation of massive MIMO Reception

In this section, the signal reception at the massive MIMO BS side is modeled. In order
to compare the channel generation results of different channel models constructed on
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Figure 3.5: Close range observation of the Gates of Europe. The walls of the buildings
are not ideally flat. The roughness effect has to be considered in channel generation.

the PWP and SWP assumptions, it is worth to give a description of the simulating
of the massive MIMO reception under the two assumptions. The section starts with
the explanation of the antenna elements sorting according to the receiving sequence
under the assumption of plane waves. Then the calculation of time differences between
signal reception of different antenna elements is developed. The section ends with the
extension of the channel model to spherical waves.

As illustrated in Figure 3.6(a), it is assumed that the antenna is deployed in a plane
perpendicular to the Ox axis, and the normal vector of that plane is represented by
unit vector nBS. Vector va denotes the direction of an arrived signal (LoS or NLoSa
). The angle between arrived signal va and nBS is denoted as Θ, and the angle between
axis Oz and the projection of va to plane Oyz, which is Pyz(va), is denoted as Φ. The
cosines of both angles Θ and Φ can be calculated as follows:

cos Θ = −nTBS va, cos Φ =
eTz Pyz(va)

‖Pyz(va)‖
,

where ez is the direction vector of the Oz axis.
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Figure 3.6: (a) The geometry of an antenna array. (b) Calculation of time delays
according to the receiving sequence.

3.3.1 Sorting Antenna Elements

The coordinates of antenna elements are denoted as Elmkl (k = 1, . . . , Nv, l = 1, . . . , Nh),
where Nv and Nh are the numbers of vertical and horizontal elements, and N = Nv ·Nh.
As illustrated in Figure 3.6(a), signal va first reaches the bottom right element and then
all other elements sequentially. To know the sequence in which the elements receive the
signal, sorting of all elements is needed to be done. The sorting of the elements should
be done according to their positions relative to the new axis Oz′ , which is defined by
rotating Oz with angle Φ. For this purpose, old coordinate system Oyz needs to be
rotated counterclockwise with angle Φ to obtain the new coordinate system Oy′z′ . After
the rotation, coordinates in the new system can be found using the following equation:

(
y′

z′

)
=

(
cos Φ sin Φ

− sin Φ cos Φ

)(
y

z

)
. (3.16)

As illustrated in Figure 3.6(b), elements Elmkl can be sorted in ascending order relative
to z′ coordinate, and the resulting set can be noted as Ai, i = 1, . . . , Nv ·Nh.

3.3.2 Calculation of Time Differences

As illustrated in Figure 3.6(b), the signal first reaches element A1, then A2, and etc.
d12 denotes the Euclidean distance between elements A1 and A2 in z′ coordinates. To
reach element A2 after A1, the arrived signal spends time ∆t2, which can be calculated
as:

∆t2 =
d12 · sin Θ

c
,
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where c is the speed of light. Hence, the time spent by the signal to reach point Ai can
be calculated as:

∆ti =
d1i · sin Θ

c
,

where d1i is Euclidean distance between A1 and Ai in z′ coordinates.

3.3.3 Spherical Wave Propagation

Under the SWP assumption (Raschkowski et al., 2015), each element of the antenna
has its own LoS and NLoS directions. The calculation of the directions, interactions,
and attenuations have to be performed separately for each element, i.e. all steps from
Section 3.2 have to be done for each antenna element. It is clear that the modeling
of SWP-based channels is computationally more complex than PWP-based channels.
For example, for a SWP channel model, if a UE has M antennas and the serving
BS has N antennas, then all steps from Section 3.2 have to be calculated M × N

times for each communicating pair. On the other hand, the PWP assumption requires
calculating steps from Section 3.2 only M times because antennas of the BS are not
distinguishable for the channel in terms of angles of arrival. Thus, for each UE’s
transmitting antenna, propagation paths and signal’s interactions with the environment
have to be derived just for one antenna of the BS. Thus, for each UE’s transmitting
antenna, propagation paths and signal’s interactions with the environment have to be
derived just for one antenna of the BS. Other antennas will have the same paths,
same attenuations, and same polarization change – the only difference in reception
time, which is defined by the direction of arrival. However, in the case of spherical
waves, generated channels become more spatially consistent and enable many new
opportunities for signal processing algorithms. Hence, spatial consistency becomes the
payment for the accepted computational complication.

3.4 Simulations

To validate the proposed solution in terms of modeling reflections from an arbitrary
surface, a simulation model in MATLAB has been implemented and LTE uplink trans-
mission has been simulated (Sesia et al., 2011; Cho et al., 2010).
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3.4.1 Simulation Setup

The carrier’s frequency Fc is set to 2.6 GHz, which is typical for LTE systems (Wikipedia
contributors, 2019b). In order to examine the channel behavior on the whole band-
width of Uplink, the maximum bandwidth in 100 resource blocks is allocated to one
UE, where each resource block has 12 subcarriers with each having a bandwidth of 15

kHz (Sesia et al., 2011). The simulation includes one UE and one BS. The UE has one
antenna element, whereas the number of antenna elements in BS is varied from 1 to
100. Each element receives a multipath signal mixed with additive white Gaussian noise
with 15 dB of SNR. The distance between the neighboring antenna elements on the
massive MIMO antenna array is configured to be half of the wavelength ∆d = λ/2 ≈ 6

cm (Orfanidis, 2014). The BS’s antennas have vertical orientation pBS, while antenna
orientation pUE of the UE can be configured with three options: (1) Horizontal, (2)
Vertical, and (3) Inclined with 45-degree.

Environment Setup

Figure 3.7 illustrates the environment’s model that is constructed based on the Gate of
Europe area in Spain. The information about the area has been obtained from Google
maps (Figure 2.2). The geometrical characteristics of the buildings are obtained from
Wikipedia. The height of the buildings is 114 meters, and the angle of inclination is 15
degrees for both towers. The height of BS antenna is set to be 30 meters, and UE is 1.9
meters (probably Michael Phelps, the most decorated Olympian of all time (Wikipedia
contributors, 2019a)).

In order to evaluate the influence of inclined surfaces and spherical waves to the
channel generation, both types of waves (plane and spherical) are examined and the
following three environment setups are used, as illustrated in Figure 3.8: (1) Inclined
walls (the real inclination of towers with 15 degrees), (2) Vertical walls (no inclination
for the two towers), and (3) Displaced walls (the inclination degree is set to be 1 degree).
Figure 3.7 shows both the LoS path and the NLoS paths caused by the reflections from
the inclined walls, and the ground.

The Effect of Wall Roughness

Based on the street view from Google maps (using street view in Google maps), it
can be seen that the most part of the surface of the buildings is covered by a glass
material and the floor under the UE is made from concrete. As illustrated in Figure

61



Figure 3.7: The model of the Gate of Europe. The solid line is the LoS, and the
dash-doted lines represent reflections from inclined walls.

3.5, the gray straight elements on the surfaces make the walls rough. It is assumed
that the gray elements stick out from the main surface with hmax = 0.2 meters, which
is higher than the critical value of the roughness hc given in Eqn. (3.14) for all angles of
incidence θ from 0◦ to 86◦. In the performed simulation, angles of reflection are smaller
than 86◦. Hence, the walls are considered as rough, and the attenuation coefficient
given in Eqn. (3.15) is used. From the street view, it can be roughly estimated that
the percentage of gray elements is around 25% of the surface, which results in standard
deviation σh = 0.08 m.

Calculation of Reflection and Penetration Coefficients

All the physical parameters of materials and the equations used for calculating the Fres-
nel coefficients of reflection are used in accordance to the METIS report (Raschkowski
et al., 2015), and set as follows: (1) Glass material: relative permittivity ε′r = 7.0, and
conductivity σ = 0.25; (2) Concrete material: ε′r = 5.31, and σ = 0.0707. The Fresnel
coefficients are calculated as follows:

Γ⊥(θ) =
cos θ −

√
εr − sin2 θ

cos θ +
√
εr − sin2 θ

, (3.17)

Γ‖(θ) =
εr · cos θ −

√
εr − sin2 θ

εr · cos θ +
√
εr − sin2 θ

, (3.18)
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Figure 3.8: The considered three scenario with different angles of inclination.

and the complex relative permittivity of the material is represented as

εr = ε′r − j · 17.98 · σ/f, (3.19)

where j is the imaginary unit, and f is the frequency in GHz. In the simulation,
f = 2.6.

It is also assumed that the LoS and the reflected from the concrete floor propa-
gation paths are blocked by a human body. This consideration adds flexibility in the
channel generation. It is always beneficial to have such kind of scenarios. The physical
parameters of a human’s body are: ε′r = 2.97 and σ = 0.0116 · f 0.7076. The penetration
coefficient through a human body is calculated as follows:

Th =
(1− Γ2

h) · exp(−j · (δ − 2π
λ
· dh))

1− Γ2
h · exp(−j2δ) , (3.20)

where
δ =

2π

λ
· √εr,

dh is the thickness of the human’s body (0.6 m in the simulation), and Γh means
Fresnel coefficient for the perpendicular and parallel components of a signal, which are
calculated based on Eqn. (3.17) and Eqn. (3.18), respectively. In the case of human
body penetration, the antenna of the UE is close enough to the human’s body that
angle of incident α = 0.

Free Space Path Loss and Attenuation Coefficients

Since the main aim is to examine the effect of reflection from inclined walls, a simple
model of free space path loss has been used

PL(d) =
λ

4πd
, (3.21)
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where d is the distance covered by a signal. The attenuation coefficients for each
propagation path are calculated separately as follows based on equations (3.13), (3.15),
(3.20), (3.21):

• LoS path
KLoS = GLoS · Th · PL(dLoS); (3.22)

• NLoS path reflected from the floor

Kfloor = Gconcrete
NLoS · Th · PL(dfloor); (3.23)

• NLoS paths reflected from the walls

KNLoS = ρs ·Gglass
NLoS · PL(dNLoS). (3.24)

Here, Gmaterial
NLoS is the attenuation coefficient caused by polarization change in the de-

pendency on the considered material.

3.4.2 Simulation Results

In this section, the results of channel response based on LTE uplink channel estimation
procedure are presented (Mai et al., 2007). As the channel measurements are noisy,
the measurements are averaged using a sliding window with length of 10 samples.

Scenario I (One Reflecting Surface)

To evaluate the correctness of the simulation approach, the channel modeling method-
ology has been tested in a simple scenario with only one reflecting surface, which is the
concrete floor. In this scenario, the BS observes two incoming signals: a LoS signal and
a reflected from the concrete floor signal. Intuitively, it is anticipated that the power
of the received signal should be higher if the antennas (UE and BS) have the same
orientation and should be lower when the orientations are perpendicular to each other,
i.e. the UE has a horizontal orientation. For 45 degrees of inclination of the UE’s ori-
entations, the resulting channel response should be between the two channel responses
when the UE has vertical and horizontal orientations. As illustrated in Figure 3.9, this
intuition is well followed: the black lines represent the situation when both antennas
have the same orientation, the blue lines represent the situation when the orientation
of the UE is inclined on 45 degrees relative to the vertical axis, and the red lines repre-
sent the situation when the orientation of the UE is horizontal. This indicates that, by
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changing the receiver’s/transmitter’s antenna orientation, the connection quality can
be improved. Since the UE is not located in the direction perpendicular to the antenna
panel of the BS, the polarization of the transmitted signal is changing through LoS
and NLoS paths. Hence, the BS can receive nonzero signals from the UE even if it has
a horizontally oriented antenna.

In this simulation, it can be observed that the more the number of antenna elements
at the BS, the stronger the received signal strength, which is consistent with the massive
MIMO purposes. Another observation is that the discrepancy between the channels
generated under the PWP and SWP assumptions grows with the number of antenna
elements. This is caused by the fact that the distance between two maximally distanced
antenna elements within an antenna array increases with the increase of the number
of antenna elements. When the number of elements is small, spherical waves can be
accurately approximated by plane waves because the difference between these waves is
minuscule. However, for a massive MIMO with a big number of antennas, the difference
in receiving signal power for elements that are far away from each other is large. Hence,
the approximation of spherical waves by plane waves becomes rough, which has a big
influence on the generation of wireless channels. This effect is well observed in Figure
3.9: for four antenna elements, the spherical and plane channels are very close; for 16
elements the channels begin to differ and the discrepancy becomes significant for 100
elements. For example, in this particular scenario, the average difference is about 1 dB,
and for other scenarios with multiple reflecting surfaces the difference could be even
larger.

Scenario II (the Gate of Europe)

The main aim of this scenario is to show the importance of consideration of inclined
surfaces in simulations. The channel responses in the three setups given in Section 3.4.1
are compared. The displaced walls are simulated to show that even a small inclination
can have a significant impact on the channel behavior. The orientations of the BS
antennas are vertical, and the UE has 45-degree antenna inclination.

As illustrated in Figure 3.10, the black lines represent the model with inclined walls,
the blue lines represent the model with vertical walls, and the red lines represent dis-
placed walls. The thin lines mean that the channels are generated under the spherical
waves propagation assumption, and the thick lines mean that the channels are gener-
ated under the plane waves propagation assumption. For the sake of simplicity, they
are referred to as spherical channels and plane channels, respectively. As shown in
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Figure 3.9: The impact of orientations of communicating antennas; different types of
waves, and different number of antenna elements at the BS. Orientation pUE has three
states: vertical, horizontal, and 45◦. The number of the BS’s antenna elements varies
between 4, 16 and 100 elements with all elements having a vertical orientation.

Scenario I, the difference between channels generated by spherical and plane waves is
small when the number of antenna elements is small. It can be seen from Figure 3.10
that, for four antenna elements, the difference between spherical and plane channels
is less than 0.3 dB. Moreover, all three models generate channels close to each other,
and the maximum discrepancy is less than 1.4 dB. This indicates that it is feasible to
use plane waves to simulate multipath channel for antennas with a small number of
antenna elements.

With the increase of the number of antenna elements, the difference between gener-
ated channels becomes significant. For 16 elements, the maximum difference between
the channels with inclined walls and with vertical walls is around 8 dB. The models
with vertical and displaced walls generate similar channels, and the difference between
them is less than 2 dB. An interesting observation is that the spherical channel and
the plane channel are very close in the model with inclined walls, while they are sig-
nificantly different in the other models. For example, the difference for inclined walls
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Figure 3.10: The impact of the number of antenna elements and different types of wave
propagation models in the Gate of Europe scenario. The BS has vertically oriented
antennas, and the UE has 45◦ antenna inclination. The number of antenna elements
varies between 4, 16 and 100.

is less than 1 dB, while the difference for vertical/displaced walls is up to 6 dB. In the
case of 100 elements, the channels with vertical walls and displaced walls start to differ
up to 3 dB, which can be vital for the LTE procedures such as signal equalization,
demodulation, decoding, and etc. These results indicate that massive MIMO systems
are more sensitive to the accurate environment representation and they require very
accurate and realistic channel models.
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3.5 Conclusion

In this chapter, the steps on the modeling of wireless signal propagation for massive
MIMO systems are described. The primary focus of the modeling is put into the
description of the reflection phenomenon from arbitrarily inclined surfaces since, in
practice, the majority of objects within the surrounding environment has sloped sur-
faces. The analyzed example from the simulation part shows the ability of the modeling
approaches taking into account and handling any realistic environment. The simulation
results indicate that inclined surfaces can have a significant influence on the channel
generation in comparison with vertical surfaces due to the difference in propagation
paths, angles of reflection, and polarization transformations of electromagnetic waves.
Further, the difference between spherical and plane waves assumptions has been exam-
ined regarding the channel generation. It is seen that, for the MIMO antennas with a
large number of antenna elements, the difference between the channels with spherical
waves and plane waves is significant. Hence, by default, all the further discussions in
further chapters regarding the channel modeling use the spherical wave propagation
assumption.
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Chapter 4

User Localization

This chapter describes the solution to localize users at the massive MIMO BS side
using only uplink signals and by taking the advantages of the sphericity of the incoming
wavefronts.

4.1 Introduction

In most existing beamforming schemes, beams are created based on the estimation
of the DL channels via reference signals, which brings large overhead to DL data
communications. For example, to maintain 25 UEs, the per-antenna reference signals
used to measure the DL channels for a BS with 100 antenna elements consume more
than 50% of the traffic generated by the BS (Björnson et al., 2016). Recently, it has
been demonstrated in (Vasisht et al., 2016; Han et al., 2018) that, with information on
UE locations, accurate beamforming can be performed without any channel feedback
overhead. Hence, it is worth developing accurate UE localization schemes to support
efficient beamforming in massive MIMO systems.

Limitations of existing works: Existing GPS-based solutions cannot provide
precise locations for accurate beamforming using the commodity mobile devices, espe-
cially in dense urban areas. Moreover, the location information is available at the user
side instead of the BS. To use location information for beamforming, the BS has to
frequently pull it for the UEs, which is energy consuming. Several schemes (Vasisht
et al., 2016, 2015; Kumar et al., 2014) have been proposed to locate UEs using LTE UL
signals based on the reference symbols carried in data communication. However, such
schemes can locate UEs only after radio resources have been allocated. If the UEs can
be located before radio resource allocation, the location information can be immediately
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used to optimize resource allocation and beamforming. Another limitation of existing
schemes is the lack of consideration for phase noise caused by non-ideal synchroniza-
tion between antenna elements, which can significantly deteriorate the accuracy of UE
localization (Yang et al., 2014).

Challenges: The first challenge is to accurately estimate the distance between each
antenna element in the massive MIMO antenna array and the UE without the need
of precise time synchronization between UEs and the BS. Due to the use of the SWP
assumption, the difference in time delay experienced at different antenna elements can
be described through small phase shifts between the BS’s antenna measurements. In
case there is a single dominant LoS path to each antenna element, the phase shifts can
be obtained by analyzing the angles of the RACH correlation spikes that are already
computed during the RACH procedure (Sesia et al., 2011; Fedorov et al., 2015). In case
there are multiple communication paths, the proposed scheme leverages the OFDM
nature of RACH signals to obtain more measurements for a joint estimation of the
shapes of all the incoming wavefronts via a nonlinear data-fitting approach.

The second challenge is to deal with the phase noise caused by non-ideal synchro-
nization between massive MIMO antenna elements. Even though all antenna elements
at a BS are synchronized using a reference clock (Malkowsky et al., 2017), there are still
small phase deviations, which can have a big impact on the estimation of the wavefront
shape of the incoming signals. Using the Otago University massive MIMO testbed that
consists of two Ettus USRPs N210 and one 10 MHz reference NI OctoClock, the phase
noise between the two USRPs has been measured. According to the measurements
campaign, the phase noise cannot be simply approximated by Gaussian noise. Instead,
stochastic properties for the measured phase noise have been estimated via a system
identification approach. Due to the incorporation of the stochastic properties of the
phase noise to the localization procedure, the harmful impact of the phase noise has
been successfully eliminated.

Contributions: Existing localization schemes are designed based on the assump-
tion of PWP, which is not realistic for massive MIMO due to the increased antenna
array size. Since real wireless signals propagate spherically and massive MIMO antenna
arrays can recognize the sphericity of incoming waves, it is worth to take the advan-
tages of the spherical propagation. The main advantage of the spherical propagation
is that the captured by a massive MIMO BS piece of a wavefront belongs to a sphere.
Consequently, the center of the sphere is the position of the signal source, which is the
antenna position of a communicating UE. Hence, the sphere that fits the incoming
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wavefront shape automatically infers the location of the UE. This advantage is used
in the proposed localization algorithm.

In this dissertation, the architecture of LTE signals is used in the development of
localization algorithms since the core of 5G signals will be adopted from LTE, at least
the OFDM structure will be kept in 5G (Venkatesan and Valenzuela, 2016; Zaidi et al.,
2016). In LTE, communication between a UE and a BS starts from the RACH syn-
chronization procedure where the UE broadcasts special signals to indicate its intention
to connect to the BS’s network. Two solutions are proposed to localize UEs based on
RACH signals in both single-path and multi-path propagation environments. The first
solution is suitable for a single-path LoS communication case and based on the Ban-
croft algorithm that utilizes relative phase shifts of the RACH correlation spikes to find
the UE’s location. The second solution is based on a nonlinear data-fitting approach
that exploits the OFDM nature of RACH signals to jointly estimate the parameters
of spheres of all the incoming wavefronts. Since UE locations are obtained based on
RACH signals, the proposed schemes enable the BS to get the location of a connecting
UE before allocating radio resource to it, thereby enabling the use of UE locations to
optimize radio resource allocation and perform accurate beamforming.

The chapter also provides the evaluation of the proposed schemes through both sim-
ulations and a proof-of-concept experiment. Simulation results show that the single-
path solution can provide a decimeter-level localization accuracy for massive MIMO
with 64 or more antennas within the region of 100 meters and a sub-meter-level local-
ization accuracy for massive MIMO with 80 or more antennas up to 300 meters. For
the multipath solution, the same results can be achieved using massive MIMO with
no less than 48 antenna elements. The single-path solution has been implemented and
evaluated on the testbed by emulating MIMO systems with 8, 12 and 16 antenna el-
ements. The results of the proof-of-concept experiments justify the feasibility of the
proposed approach.

4.2 Background on LTE RACH Synchronization

To connect to an LTE network, a UE has to perform the RACH synchronization pro-
cedure by sending a RACH signal (i.e. preamble) to a network BS (Sesia et al., 2011).
For this purpose, the UE randomly selects a RACH preamble from the assigned list of
available preambles, which is also known at the BS side, and sends it, as illustrated in
Figure 4.1. Once the preamble reaches the BS, the correlations between the incoming
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signal and the local preambles from the assigned list are calculated. If the incoming
signal matches with a preamble in the assigned list, a correlation spike occurs. By
detecting the correlation spike, the BS distinguishes the exact preamble used by a UE
and estimates its time delay.Generation of RACH preamble (local code)
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Figure 4.1: Procedure of RACH synchronization.

The robustness of RACH synchronization is provided by the good self- and mutual-
orthogonal properties. RACH preambles are generated from the Zadoff-Chu (ZC) se-
quences (Chu, 1972), which have a constant amplitude and zero autocorrelation wave-
forms. In the time domain, a root ZC sequence is defined as follows:

zcu(l) = e
−j πul(l+1)

NZC , (4.1)

where NZC = 839, l = 0, . . . , NZC − 1, and the root index u is a prime number less
than NZC . Other sequences can be generated by cyclically shifting the root sequence.
The time domain sequence is then converted to ZC(k) in the frequency domain via an
839 points discrete Fourier transform (DFT), as illustrated in Figure 4.2.
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Figure 4.2: RACH signal generation.

To generate a RACH signal in the time domain, the 839 elements of ZC(k) are
mapped to the assigned OFDM subcarriers in the frequency domain and then converted
to the time domain via a 1024 points inverse fast Fourier transform (IFFT). The UE
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performs upsampling of the obtained RACH signal in order to mix with the carrier
waveform and transmits the upsampled RACH signal to the BS. The sampling rate of
the transmitted RACH signal becomes equivalent to the conventional sampling rate of
the LTE system (Sesia et al., 2011). The reverse steps are done at the BS side starting
from removing carrier waveform and downsampling to extract the ZC sequence at
a lower sampling rate in the digital time domain, as illustrated in Figure 4.3. The
extracted signal actually contains all the information about the channel through which
it has been transmitted. This channel information can be used to find the location of
the UE.
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Figure 4.3: RACH signal reception.

4.3 SWP-Based Channel Modeling

The massive MIMO channel modeling part of this chapter is based on the approaches
described in Chapter 3. As illustrated in Figure 4.4, an LTE BS is equipped with
a massive MIMO antenna with N spatially separated antenna elements Elmi (i =

1, 2, · · · , N). Suppose, the LTE network has an operating frequency F = ω/2π and a
sampling duration ∆t. To broadcast an uplink signal s(t), a UE emits an electromag-
netic wave ejωt (Orfanidis, 2014) to carry the symbols to be transmitted as follows:

s(t) =
M∑

m=1

bm(t) ejωt,

where symbol bm(t) is nonzero in the period [(m− 1)∆t,m∆t], and 0 in other periods.
M is the number of transmitted symbols.

Let pl represents a single path from the UE to antenna element Elmi, and dli

represents the length of path pl. All the symbols received at Elmi along path pl are
delayed by tli = dli/c where c is the speed of light. Let s′li(t) be the signal received at
Elmi along path pl as follows:

s′li(t) = ali

M∑

m=1

bm(t− tli) ejω(t−tli) + ηi(t), (4.2)
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time delay on subcarriers and reconstruct the time delay with
nanosecond accuracy. However, unlike our method, they derive
channel model under the PWP assumption, which is unsuitable
for massive MIMO systems, and consequently cannot be
directly implemented to massive MIMO.

The experiments with massive MIMO prototypes showed
the necessity of exploiting more realistic assumption based
on SWP [2]. The researchers from the University of Bristol
claimed that PWP is not suitable for massive MIMO systems
anymore. The theoretical comparison of channels generated
under the two assumptions is provided in [8], where the
authors clearly showed that for antenna arrays with large
amount of antenna elements the difference between the two
channels becomes significant and this difference has to be
taken into account. These results motivated us to develop
methods that utilize SWP in UEs localization problem.

III. BACKGROUND ON LTE RACH
To connect to an LTE network, a UE has to perform the

RACH synchronization procedure by sending a RACH signal
(i.e. preamble) to a network BS [10]. For this purpose, the UE
randomly selects a RACH preamble from the assigned list of
available preambles, which is also known at the BS side, and
sends it. Once the preamble reaches the BS, the correlations
between the incoming signal and the local preambles from
the assigned list are calculated. If the incoming signal matches
with a preamble in the assigned list, a correlation spike occurs.
By detecting the correlation spike, the BS distinguishes the
exact preamble used by a UE and estimates its time delay.

To improve the robustness of RACH synchronization,
the preambles have to be created with good self- and
mutual-orthogonality. RACH preambles are generated from
the Zadoff-Chu (ZC) sequences [11], which have constant
amplitude and zero autocorrelation waveforms. In the time
domain, a root ZC sequence is defined as follows:

zcu(l) = e
�j

⇡ul(l+1)
NZC , (1)

where NZC = 839, l = 0, . . . , NZC � 1, and the root index
u is a prime number less than NZC . Other sequences can be
generated by cyclically shifting the root sequence. The time
domain sequence is then converted to ZC(k) in the frequency
domain via an 839 points Discret Fourier Transform (DFT).

To generate a RACH signal in the time domain, the 839
elements of ZC(k) are mapped to the assigned OFDM sub-
carriers in the frequency domain and then converted to the
time domain via a 1024 points Inverse Fast Fourier Transform
(IFFT). The UE performs upsampling of the obtained RACH
signal in order to mix with the carrier waveform and transmits
the upsampled RACH signal to the BS. The sampling rate
of the transmitted RACH signal becomes equivalent to the
conventional sampling rate of the LTE system [10]. The
reverse steps done at the BS side start from removing carrier
waveform and downsampling to extract the ZC sequence at
a lower sampling rate in digital time domain. The extracted
signal, actually, accumulates all the information about the
channel through which it has been transmitted. This channel

information can be used to find the location of the transmitting
UE.

IV. SWP-BASED CHANNEL MODELLING

As illustrated in Fig. 1, we assume that an LTE BS is
equipped with a massive MIMO antenna with N spatially
separated antenna elements Elmi (i = 1, 2, · · · , N). Suppose
the LTE network has an operating frequency F and a sampling
duration �t. To broadcast an uplink signal s(t), a UE emits
an electromagnetic wave ej2⇡Ft [12] to carry the symbols to
be transmitted as follows: s(t) =

PM
m=1 bm(t) ej2⇡Ft, where

symbol bm(t) is 1 in the period [(m � 1)�t, m�t], and 0 in
other periods. M is the number of transmitted symbols.

UE

BSElmi

Reflector

LoS
NLoS

pk

pl

Fig. 1. Communication between a UE and a LTE BS with massive MIMO.

Consider a single path pj from the UE to antenna element
Elmi, we use dij to represent the distance that path pj

traverses. Hence, all the symbols received at Elmi along path
pj are delayed by tij = dij/c where c is the speed of light.
Let s0ij(t) be the signal received at Elmi along path pj , which
can be modeled as follows:

s0ij(t) = aij

MX

m=1

bm(t � tij) ej2⇡F(t�tij) + ⌘i(t), (2)

where aij is the path attenuation, and ⌘i(t) is the noise. We
define aij = f(dij ,F, Env), indicating that path attenuation
depends on not only the traveled distance and the carrier’s
frequency but also the propagation environment Env [13].

In a real environment, the radio signal may reach each
antenna element along multiple paths due to signal reflection,
scattering, diffraction and refraction, which is known as multi-
path propagation. Let s0i(t) be the signal received at Elmi via
multipath propagation, and Li be the number of paths traversed
by the signals received at Elmi. s0i(t) can be modelled as

s0i(t) =

LiX

j=1

aijs(t � tij) + ⌘i(t), (3)

where tij = dij/c is the time delay to cover the distance dij

along path j from UE to Elmi.
The above wireless channels are modelled based on single

carrier signal. However, LTE uses OFDM that is based on
multi-carrier modulation. In the following we extend our
model for multi-carrier signals. Let s0i(t, fk) represent the
signal received at Elmi with frequency fk, where sk(t) is

Figure 4.4: Communication between a UE and an LTE BS with massive MIMO.

where ali is the path attenuation, and ηi(t) is the noise. The attenuation coefficients
are defined as ali = f(dli, ω,Env), and indicating that a path attenuation depends on
not only the traveled distance and the carrier’s frequency but also the propagation
environment Env (Raschkowski et al., 2015).

In a real environment, a radio signal may reach each antenna element along multiple
paths due to signal reflection, scattering, diffraction and refraction, which is known as
multipath propagation (Hertz and Jones, 1893; Richter, 2005). Let s′i(t) be the signal
received at Elmi via multipath propagation, and Li be the number of paths traversed
by the signals received at Elmi. s′i(t) can be modeled as

s′i(t) =

Li∑

l=1

alis(t− tli) + ηi(t), (4.3)

where tli = dli/c is the time delay to cover the distance dli along path pl from the UE
to Elmi.

In the following, the model is extended for multi-carrier signals. Let s′i(t, fk) rep-
resent the signal received at Elmi with frequency fk, where k ∈ [1, Ns] and Ns is the
number of subcarriers. Then Eqn. (4.3) can be extended for OFDM signals as follows
(Salmi et al., 2009; Li et al., 2017):




s′i(t, f1)

s′i(t, f2)
...

s′i(t, fNs)


 =




∑Li
l=1 ali(f1)si(f1, t− tli)∑Li
l=1 ali(f2)si(f2, t− tli)

...
∑Li

l=1 ali(fNs)si(fNs , t− tli)




+




ηi(t, f1)

ηi(t, f2)
...

ηi(t, fNs)


 . (4.4)
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4.4 Localization for the Single LoS Path Case

In this section, a localization method for the single path case is described. The solution
for the multipath case will be presented in section 4.5.

4.4.1 Phase Estimation

Let us start the derivation of the localization problem from the assumption of ide-
ally synchronized antenna elements in the BS. The non-ideal synchronization case is
addressed in Section 4.4.3.

In the case of a single path and RACH signals, the notation ali becomes ai, tli
becomes ti and the symbols bm become RACH symbols in Eqn. (4.2). To recover each
received symbol bm, the BS removes the carrier wave ejωt. Then the symbols received
at Elmi in Eqn. (4.3) can be represented as follows:

s′′i (t) =
s′i(t)

ejωt
= aie

−jωti
M∑

m=1

bm(t− ti) + ξi(t), (4.5)

where ξi(t) is a modified noise. As can be seen from Eqn. (4.5), the channel change
(i.e. aie−jωti in Eqn. (4.5) is also reflected by ti, which can be directly measured by
phase shift. The time delay ti can be estimated through the phase shift of the channel
change.

While the single carrier approach has the limitation in closely
relating a physical environment with the corresponding wire-
less channel due to the limited amount of measured infor-
mation, the multi-carrier approach overcomes the drawback
as the path attenuation aij(fk) depends on frequency. This
dependence is vital in connecting of the environment with the
corresponding channel. In the following sections, we will show
that this effect gives a significant benefit in UE localization.

VI. LOCALISATION FOR THE LOS PATH CASE

The aim of our work is to localize LTE users at the BS
side using only UL signals, particularly the RACH signals.
With a massive MIMO antenna, this becomes feasible since the
signal measurements at the antenna elements become enough
to jointly estimate the locations of UEs. In this section we
explain the theory behind our localization idea for the single
Line-of-Sight (LoS) path case. The solution for the multipath
case will be presented in the next section.

A. Phase estimation

We assume that all antenna elements of the BS are well
synchronized since they share a common local oscillator and
can be pre-synchronized for phase alignment [?]. Since we
only consider the LoS path, the notation aij becomes ai, and
tij becomes ti. To recover each received symbol bm, the BS
removes the carrier wave ej2⇡Ft. Then the symbols received
at Elmi based on Eq (3) can be represented as follows:

s00i (t) =
s0i(t)

ej2⇡Ft
= aie

�j2⇡Fti

MX

m=1

bm(t � ti) + ⇠i(t), (5)

where ⇠i(t) is a modified noise.

0

b1 b2 bMaie
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= s00i (t)

=
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m=1 bm(t � ti)

= ~b

Fig. 2. Signal’s reception and its representation in continuous and discrete
time domains.

A key challenge here is to measure the phase of an incoming
signal in the digital domain. As illustrated in Fig. 2, we simply
take the scalar product of the incoming signal s00i (t) with the
one shifted by ti symbols

PM
m=1 bm(t�tij) to obtain the pure

channel change h0
i:

h00
i =

1

kbk2
(s00i (t),

MX

m=1

bm(t � ti)) = aie
�j2⇡Fti + &i, (6)

where kbk is the norm of vector b = (b1, b2, .., bM ), and
&i is the modified noise. The phase of s00i (t), denoted by
'i, is simply the argument of the channel change since the
attenuation coefficient ai for a LoS path is a real number, i.e.,

'i = � arg(h00
i ) = 2⇡Fti mod 2⇡, (7)

where mod is the Modulo operator. Note that the influence
of &i to the phase estimation is considered as minuscule since
the standard deviation of the phase change caused by &i, even
for zero SNR, is less than 1/kbk2 (1/839 in LTE [?]).

Since the computation of 'i needs the knowledge of ti,
we estimate ti based on the discrete measurements from
antenna elements during RACH synchronization. Suppose LTE
operates with a sampling period of �t. The BS can measure an
incoming signal only in discrete time at tl = l�t as follows:

s00i (tl) =
s0i(t

l)

ej2⇡Ftl = aie
�j2⇡Fti

MX

m=1

bm(tl � ti) + ⇠i(t
l). (8)

As illustrated in Fig. 2, the shifted symbol bm(tl � ti) =
bm if tl 2 [(m � 1)�t + ti, m�t + ti]. Accordingly, starting
from the time moment ti = �td ti

�te 2 [ti,�t + ti] at whichPM
m=1 bm(ti � ti) = b1, antenna element Elmi measures the

values that contain useful signal as follows:

ti, s00i (ti) = aie
�j2⇡Ftib1 + ⇠i(t

i);

ti+1, s00i (ti+1) = aie
�j2⇡Ftib2 + ⇠i(t

i+1);

. . . . . .

ti+M�1, s00i (ti+M�1) = aie
�j2⇡FtibM + ⇠i(t

i+M�1).

(9)

During all previous moments tl before the moment ti, Elmi

measures noise s00i (tl) = ⇠i(t
l) as no symbol is sent. The

received signal can also be written using vector representation:

~si = aije
�j2⇡Fti (0, . . . , 0, b1, . . . , bM ) + ~⇠i. (10)

In order to the calculate scalar product in Eq. (6), the BS
needs to shift symbols

PM
k=1 bm(t), i.e. the RACH preamble

vector ~b = (b1, b2, .., bM ), by d ti

�te integer steps in discrete
time and calculates the scalar product with ~si. In this way, the
BS can measure the channel change at each antenna element,
and estimate phases of the incoming signals. Fortunately,
the RACH synchronization procedure calculates a correlation
vector between the incoming signal with the discrete shifted
preamble vector, which is exactly the same operation as the
scalar product in Eq. (6) [13]. Once a shift is the proper shift
as in Eq. (10), a spike occurs in the correlation vector, and
the BS can then measure the argument of the spiking element
and estimate the phase of the incoming signal according to
Eq. (7). The main issue of this procedure is that the argument
of the spiking element can only be measured in modulus 2⇡,
which adds ambiguity since the quotient (i.e. how many 2⇡’s
in the phase shift) is unknown. In the following we present a
scheme based on phase sorting to overcome this issue.

We assume that the coordinates of each antenna element
relative to the position of the MIMO antenna array is precisely
known and the distance between any two neighboring elements
is no larger than a half of the wavelength �/2 where � = c/F
[11]. This guarantee that the difference in phase changes
of the received signals between two neighboring antenna
elements is no larger than ⇡ since the time for covering a
half of the wavelength multiplied to the frequency in radians
is �

2c ⇥ 2⇡F = ⇡. Consequently, for any two neighboring

Figure 4.5: Illustration of signal shifting in continuous and discrete time domains.

A key challenge here is to retrieve the phase shift from the incoming signal in the
digital domain. As illustrated in Figure 4.5, it is seen that the scalar product of the
incoming signal s′′i (t) with the one shifted by ti symbols

∑M
m=1 bm(t − ti) gives pure

channel change h′′i as follows:

h′′i =
1

‖b‖2
(s′′i (t),

M∑

m=1

bm(t− ti)) = aie
−jωti + ςi, (4.6)
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where the notation (∗, ∗) means the operation of scalar product, ‖b‖ is the norm of
vector b = (b1, b2, .., bM), and ςi is the modified noise. The phase shift of s′′i (t), denoted
by ϕi, is simply the argument of the channel change since the attenuation coefficient
ai for a LoS path is a real number, i.e.,

ϕi = − arg(h′′i ) = (ωti + δϕi) mod 2π, (4.7)

where δϕi is noise caused by the modified noise, mod is the Modulo operator. However,
the exact value of ti is unknown. Thus, the only way to estimate ti is based on
the discrete measurements from antenna elements during the RACH synchronization
procedure. Suppose the synchronization is performed with a sampling period of ∆t.
The BS can measure an incoming signal only at discrete time moments tk = k∆t as
follows:

s′′i (t
k) =

s′i(t
k)

ejωtk
= aie

−jωti
M∑

m=1

bm(tk − ti) + ξi(t
k). (4.8)

As illustrated in Figure 4.5, the shifted symbol bm(tk − ti) = bm if

tk ∈ [(m− 1)∆t+ ti,m∆t+ ti].

Accordingly, starting from the time moment

ti = ∆td ti
∆t
e ∈ [ti,∆t+ ti]

at which
M∑

m=1

bm(ti − ti) = b1,

antenna element Elmi measures the values that contain useful signal as follows:

ti, s′′i (t
i) = aie

−jωtib1 + ξi(t
i);

ti+1, s′′i (t
i+1) = aie

−jωtib2 + ξi(t
i+1);

. . . . . .

ti+M−1, s′′i (t
i+M−1) = aie

−jωtibM + ξi(t
i+M−1).

(4.9)

During all the previous moments tk before the moment ti, Elmi measures noise s′′i (tk) =

ξi(t
k) as no symbol is sent. The received signal can also be written using vector

representation:
si = aie

−jωti (0, . . . , 0, b1, . . . , bM) + ξi. (4.10)

In order to calculate the scalar product in Eqn. (4.6), the BS needs to shift symbols
∑M

k=1 bm(t), i.e. the RACH symbols vector b = (b1, b2, .., bM), by d ti
∆t
e integer steps in

discrete time and calculates the scalar product with si.
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Figure 4.6: The results of RACH synchronization are depicted for three antenna ele-
ments in 3D and in a complex plane. The correlation spikes define phase shifts, which
can be measured according to Eqn. (4.7).

In this way, the BS can measure the channel change at each antenna element and
estimate phases of the incoming signals. Fortunately, the RACH synchronization pro-
cedure calculates a correlation vector between the incoming signal with the discrete
shifted RACH vector, which is exactly the same operation as the scalar product in
Eqn. (4.6) (Sesia et al., 2011). Once a shift is the proper shift as in Eqn. (4.10), a spike
occurs in the correlation vector, and the BS can then measure the argument of the
spiking element and estimate the phase of the incoming signal according to Eqn. (4.7).
This means that the scheme can take the values of correlation spikes directly from the
RACH procedure and, consequently, it does not introduce an additional complexity in
the correlation spikes calculation.

The main issue of the phase estimation is that the argument of the spiking element
can only be measured in modulus 2π, which adds an ambiguity since the quotient (i.e.
how many 2π’s in the phase shift) is unknown. The following presents a phase sorting
scheme to overcome this issue. It is assumed that the coordinates of each antenna
element relative to the position of the MIMO antenna array are precisely known and
the distance between any two neighboring elements is no larger than the half of the
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wavelength λ/2 where λ = 2π c
ω
(Orfanidis, 2014). This guarantees that the difference

in phase changes of the received signals between two neighboring antenna elements
is no larger than π. Consequently, for any two neighboring antenna elements, the
signal with the smallest phase can be always found except in the situation where the
difference is equal to π. This case is not considered because in practice, such situation
is very unlikely since a BS maintains a particular area, which cancels situations with
phase shifts close to π radians. The influence of noise δϕi can also be neglected in
the phase sorting scheme since even in the situation with zero SNR RACH signals, the
standard deviation of the phase noise is less than 0.03 radians (a detailed description
is in Section 4.4.3). Hence, for any two neighboring antenna elements, the signal with
smaller phase can be always found based on the following two rules:

• if |ϕi+1 − ϕi| < π, the smaller one remains to be smaller than the bigger one;

• if |ϕi+1 − ϕi| > π, the smaller one becomes bigger since the difference between
them cannot be bigger than π, and 2π should be added to the smaller phase.

antenna elements, the signal with the smallest phase can be
always found except in the situation where the difference is
equal to ⇡. This case is not considered because the signals
are in fact transmitted exactly from the direction alongside
the neighboring elements. In practice, such the situation is
very unlikely since a BS maintains a particular area, which
cancels situations with phase shift in ⇡ radians. Consequently,
for any two neighboring antenna elements, the signal with
smaller phase can be always found based on the following
two rules:

• if |'i+1�'i| < ⇡, the smaller one remains to be smaller
than the bigger one;

• if |'i+1�'i| > ⇡, the smaller one becomes bigger since
the difference between them cannot be bigger than ⇡, and
2⇡ should be added to the smaller phase.
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Fig. 3. The phase rotation according to antenna elements.

As illustrated in Fig. 3(a), 'i = ⇡
6 and 'i+1 = 10⇡

6 . Since
|'i+1�'i| > ⇡, the actual difference should be 2⇡+ ⇡

6 � 10⇡
6 ,

i.e. the difference represented by the arrrow with solid line
instead of the one with the dashed line. Hence, 'i > 'i+1.

To compute the actual phase for the signal received at each
antenna element, we need to find the minimum phase for the
signals received at all antenna elements, which can be done
by performing pairwise comparison between neighbouring
antenna elements based on the above two rules. Suppose the
signal received at antenna element Elmi has the minimum
phase 'i. For each neighbour of Elmi denoted by Elmj , if
|'j�'i| > ⇡, 'j = 'j+2⇡; otherwise 'j remains unchanged.
We repeat the same operation for the neighbours of Elmj and
so on until all 'is have been corrected. As illustrated in Fig.
3(b), the minimum phase is 'i = 11⇡

6 . Since |'i+1�'i| < ⇡,
'i+1 remains unchanged. But for 'i+2, |'i+2 � 'i+1| > ⇡.
Hence, 'i+2 = 0.1⇡

6 +2⇡ = 12.1⇡
6 . In such a way the ambiguity

caused by unknown quotient is eliminated.

B. LoS localization during RACH synchronization

Because of the use of SWP, each phase shift 'i corresponds
to a certain distance Ri = �⇥ 'i

2⇡ .
As shown in Fig. 4, for each antenna element Elmi, we draw

a sphere centered at Elmi with radius of Ri. We further draw
a sphere centred at the UE with radius of R = 2⇡N� so that
this sphere is tangent to each sphere centred at Elmi where
i 2 [1, N ]. It can be seen that the LoS distance from the UE to

2⇡N�
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Fig. 4. The phase rotation alongside the antenna array.

antenna element Elmi can be rewritten by di = R + Ri, i =
1, . . . , N . By representing di with the coordinates of the UE
(x, y, z) and Elmi (xi, yi, zi), we have

p
(x � xi)2 + (y � yi)2 + (z � zi)2 = R + Ri. (11)

To localize the UE, the BS needs to jointly estimate the UE’s
coordinates and the common parameter N�. Since the number
of unknown parameters is four (x, y, z, R), the coordinates of
the UE can be calculated if there are no less than 4 antenna
elements, which is not a problem for BS with Massive MIMO
[2], [?]. Once the BS has enough antenna elements, the above
formulated localisation problem transforms to the classical
GNSS positioning problem that can be solved using Bancroft’s
algorithm, which has a closed form solution [14].

C. Localization in the presence of carrier frequency offset

While the elements in one antenna array can be accurately
synchronised as they share the same oscillator, the UEs
and BSs have independent local oscillators, and cannot be
ideally synchronized. Consequently, there are always a Carrier
Frequency Offset (CFO) �F, and a phase offset � caused by
different starting moments of the oscillators. This non-ideality
can be counted at the BS side in Eq. (8) as follows:

s00i (tl) =
s0i(t

l)

ej
⇥
2⇡(F��F)tl��

⇤ =

= aie
�j2⇡Fti


ej�

MX

m=1

bm(tl � ti)e
j2⇡�F tl

�
+ ⇠i(t

l). (12)

In the same way as in (9), the useful signal starts to reach Elmi

at moment ti, and the vector representation of the received
signal given in Eq. (10) can be rewritten as follows:

~si = Kie
j� (0, . . . , 0, b1f

i, . . . , bM fi+M�1) + ~⇠i, (13)

where fi = ej2⇡�F ti

and Ki = aie
�j2⇡Fti . Hence, the spiking

value in the correlation vector between the incoming signal
and RACH preamble vector ~b can be represented as:

h0
i = aie

�j2⇡Fti


ej� 1

kbk2

MX

m=1

f i+m�1

�
+ &i. (14)
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equal to ⇡. This case is not considered because the signals
are in fact transmitted exactly from the direction alongside
the neighboring elements. In practice, such the situation is
very unlikely since a BS maintains a particular area, which
cancels situations with phase shift in ⇡ radians. Consequently,
for any two neighboring antenna elements, the signal with
smaller phase can be always found based on the following
two rules:
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As illustrated in Fig. 3(a), 'i = ⇡
6 and 'i+1 = 10⇡

6 . Since
|'i+1�'i| > ⇡, the actual difference should be 2⇡+ ⇡

6 � 10⇡
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i.e. the difference represented by the arrrow with solid line
instead of the one with the dashed line. Hence, 'i > 'i+1.

To compute the actual phase for the signal received at each
antenna element, we need to find the minimum phase for the
signals received at all antenna elements, which can be done
by performing pairwise comparison between neighbouring
antenna elements based on the above two rules. Suppose the
signal received at antenna element Elmi has the minimum
phase 'i. For each neighbour of Elmi denoted by Elmj , if
|'j�'i| > ⇡, 'j = 'j+2⇡; otherwise 'j remains unchanged.
We repeat the same operation for the neighbours of Elmj and
so on until all 'is have been corrected. As illustrated in Fig.
3(b), the minimum phase is 'i = 11⇡

6 . Since |'i+1�'i| < ⇡,
'i+1 remains unchanged. But for 'i+2, |'i+2 � 'i+1| > ⇡.
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6 +2⇡ = 12.1⇡
6 . In such a way the ambiguity

caused by unknown quotient is eliminated.

B. LoS localization during RACH synchronization

Because of the use of SWP, each phase shift 'i corresponds
to a certain distance Ri = �⇥ 'i

2⇡ .
As shown in Fig. 4, for each antenna element Elmi, we draw

a sphere centered at Elmi with radius of Ri. We further draw
a sphere centred at the UE with radius of R = 2⇡N� so that
this sphere is tangent to each sphere centred at Elmi where
i 2 [1, N ]. It can be seen that the LoS distance from the UE to
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antenna element Elmi can be rewritten by di = R + Ri, i =
1, . . . , N . By representing di with the coordinates of the UE
(x, y, z) and Elmi (xi, yi, zi), we have

p
(x � xi)2 + (y � yi)2 + (z � zi)2 = R + Ri. (11)

To localize the UE, the BS needs to jointly estimate the UE’s
coordinates and the common parameter N�. Since the number
of unknown parameters is four (x, y, z, R), the coordinates of
the UE can be calculated if there are no less than 4 antenna
elements, which is not a problem for BS with Massive MIMO
[2], [?]. Once the BS has enough antenna elements, the above
formulated localisation problem transforms to the classical
GNSS positioning problem that can be solved using Bancroft’s
algorithm, which has a closed form solution [14].

C. Localization in the presence of carrier frequency offset

While the elements in one antenna array can be accurately
synchronised as they share the same oscillator, the UEs
and BSs have independent local oscillators, and cannot be
ideally synchronized. Consequently, there are always a Carrier
Frequency Offset (CFO) �F, and a phase offset � caused by
different starting moments of the oscillators. This non-ideality
can be counted at the BS side in Eq. (8) as follows:

s00i (tl) =
s0i(t

l)

ej
⇥
2⇡(F��F)tl��

⇤ =

= aie
�j2⇡Fti


ej�

MX

m=1

bm(tl � ti)e
j2⇡�F tl

�
+ ⇠i(t

l). (12)

In the same way as in (9), the useful signal starts to reach Elmi

at moment ti, and the vector representation of the received
signal given in Eq. (10) can be rewritten as follows:

~si = Kie
j� (0, . . . , 0, b1f

i, . . . , bM fi+M�1) + ~⇠i, (13)

where fi = ej2⇡�F ti

and Ki = aie
�j2⇡Fti . Hence, the spiking

value in the correlation vector between the incoming signal
and RACH preamble vector ~b can be represented as:

h0
i = aie

�j2⇡Fti


ej� 1

kbk2

MX

m=1

f i+m�1

�
+ &i. (14)

(b)

Figure 4.7: Phase shift at different antenna elements.

As illustrated in Figure 4.7(a), ϕi = π
6
and ϕi+1 = 10π

6
. Since |ϕi+1 − ϕi| > π, the

actual difference should be 2π + π
6
− 10π

6
, i.e. the difference represented by the arrow

with solid line instead of the one with the dashed line. Hence, ϕi > ϕi+1.
To compute the actual phase for the signal received at each antenna element, at

first, the minimum phase has to be found among the signals received at all antenna
elements. The minimum phase can be found by performing a pairwise comparison
between neighboring antenna elements based on the above two rules. Suppose the signal
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received at antenna element Elmi has the minimum phase ϕi. For each neighbor of Elmi

denoted by Elmj, if |ϕj − ϕi| ≤ π, ϕj remains unchanged, otherwise ϕk = ϕk + 2π for
any Elmk in the direction from Elmi to Elmj. The same operation needs to be repeated
for the neighbors of Elmj and so on until all ϕis have been corrected. As illustrated
in Figure 4.7(b), the minimum phase is ϕi = 11π

6
. Since |ϕi−1 − ϕi| < π, ϕi−1 remains

unchanged. For ϕi+1, |ϕi+1 − ϕi| > π. Hence, each antenna element in the direction
from Elmi to Elmi+1 should correct its phase by adding 2π, i.e., ϕi+1 = 0.1π

6
+2π = 12.1π

6

and ϕi+2 = 0.4π
6

+2π = 12.4π
6

. Then ϕi+2 and ϕi+1 are compared. Since ϕi+2−ϕi+1 < π,
ϕi+2 = 12.4π

6
. In such a way the ambiguity caused by an unknown quotient is eliminated.

4.4.2 LoS Localization During RACH Synchronization

Because of the use of the SWP model, each phase shift ϕi corresponds to a certain
distance

Ri = λ× ϕi
2π
.

As shown in Figure 4.8, each antenna element Elmi is surrounded by a sphere with

is no larger than a half of the wavelength �/2 where � = c/F
[12]. This guarantee that the difference in phase changes
of the received signals between two neighboring antenna
elements is no larger than ⇡ since the time for covering a
half of the wavelength multiplied to the frequency in radians
is �

2c ⇥ 2⇡F = ⇡. Consequently, for any two neighboring
antenna elements, the signal with the smallest phase can be
always found except in the situation where the difference is
equal to ⇡. This case is not considered because the signals
are in fact transmitted exactly from the direction alongside
the neighboring elements. In practice, such the situation is
very unlikely since a BS maintains a particular area, which
cancels situations with phase shift in ⇡ radians. Consequently,
for any two neighboring antenna elements, the signal with
smaller phase can be always found based on the following
two rules:

• if |'i+1�'i| < ⇡, the smaller one remains to be smaller
than the bigger one;

• if |'i+1�'i| > ⇡, the smaller one becomes bigger since
the difference between them cannot be bigger than ⇡, and
2⇡ should be added to the smaller phase.
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As illustrated in Fig. 3(a), 'i = ⇡
6 and 'i+1 = 10⇡

6 . Since
|'i+1�'i| > ⇡, the actual difference should be 2⇡+ ⇡

6 � 10⇡
6 ,

i.e. the difference represented by the arrrow with solid line
instead of the one with the dashed line. Hence, 'i > 'i+1.

To compute the actual phase for the signal received at each
antenna element, we need to find the minimum phase for the
signals received at all antenna elements, which can be done
by performing pairwise comparison between neighbouring
antenna elements based on the above two rules. Suppose the
signal received at antenna element Elmi has the minimum
phase 'i. For each neighbour of Elmi denoted by Elmj , if
|'j�'i| > ⇡, 'j = 'j+2⇡; otherwise 'j remains unchanged.
We repeat the same operation for the neighbours of Elmj and
so on until all 'is have been corrected. As illustrated in Fig.
3(b), the minimum phase is 'i = 11⇡

6 . Since |'i+1�'i| < ⇡,
'i+1 remains unchanged. But for 'i+2, |'i+2 � 'i+1| > ⇡.
Hence, 'i+2 = 0.1⇡
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As shown in Fig. 4, for each antenna element Elmi, we draw
a sphere centered at Elmi with radius of Ri. We further draw
a sphere centred at the UE with radius of R = 2⇡N� so that
this sphere is tangent to each sphere centred at Elmi where
i 2 [1, N ]. It can be seen that the LoS distance from the UE to
antenna element Elmi can be rewritten by di = R + Ri, i =
1, . . . , N . By representing di with the coordinates of the UE
(x, y, z) and Elmi (xi, yi, zi), we have

p
(x � xi)2 + (y � yi)2 + (z � zi)2 = R + Ri. (11)

To localize the UE, the BS needs to jointly estimate the UE’s
coordinates and the common parameter N�. Since the number
of unknown parameters is four (x, y, z, R), the coordinates of
the UE can be calculated if there are no less than 4 antenna
elements, which is not a problem for BS with Massive MIMO
[2], [?]. Once the BS has enough antenna elements, the above
formulated localisation problem transforms to the classical
GNSS positioning problem that can be solved using Bancroft’s
algorithm, which has a closed form solution [15].

C. Localization in the presence of carrier frequency offset
While the elements in one antenna array can be accurately

synchronised as they share the same oscillator, the UEs
and BSs have independent local oscillators, and cannot be
ideally synchronized. Consequently, there are always a Carrier
Frequency Offset (CFO) �F, and a phase offset � caused by
different starting moments of the oscillators. This non-ideality
can be counted at the BS side in Eq. (8) as follows:
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As shown in Fig. 4, for each antenna element Elmi, we draw
a sphere centered at Elmi with radius of Ri. We further draw
a sphere centred at the UE with radius of R = 2⇡N� so that
this sphere is tangent to each sphere centred at Elmi where
i 2 [1, N ]. It can be seen that the LoS distance from the UE to
antenna element Elmi can be rewritten by di = R + Ri, i =
1, . . . , N . By representing di with the coordinates of the UE
(x, y, z) and Elmi (xi, yi, zi), we have

p
(x � xi)2 + (y � yi)2 + (z � zi)2 = R + Ri. (11)

To localize the UE, the BS needs to jointly estimate the UE’s
coordinates and the common parameter N�. Since the number
of unknown parameters is four (x, y, z, R), the coordinates of
the UE can be calculated if there are no less than 4 antenna
elements, which is not a problem for BS with Massive MIMO
[2], [?]. Once the BS has enough antenna elements, the above
formulated localisation problem transforms to the classical
GNSS positioning problem that can be solved using Bancroft’s
algorithm, which has a closed form solution [15].

C. Localization in the presence of carrier frequency offset

While the elements in one antenna array can be accurately
synchronised as they share the same oscillator, the UEs
and BSs have independent local oscillators, and cannot be
ideally synchronized. Consequently, there are always a Carrier
Frequency Offset (CFO) �F, and a phase offset � caused by
different starting moments of the oscillators. This non-ideality
can be counted at the BS side in Eq. (8) as follows:
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at moment ti, and the vector representation of the received
signal given in Eq. (10) can be rewritten as follows:
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value in the correlation vector between the incoming signal

Figure 4.8: Phase shifts at antenna elements alongside the antenna array.

radius of Ri. Hence, due to the spherical propagation, there is a common sphere with
radius of R = 2πNλ centered at the UE. The common sphere is, in fact, tangent to all
the small spheres with radii of Ri where i ∈ [1, N ]. It can be seen that the LoS distance
from the UE to antenna element Elmi can be rewritten by di = R + Ri, i = 1, . . . , N .
By representing di through the coordinates of the UE (x, y, z) and Elmi (xi, yi, zi), the

79



following relation can be obtained:

√
(x− xi)2 + (y − yi)2 + (z − zi)2 = R +Ri. (4.11)

To localize the UE, the BS needs to jointly estimate the UE’s coordinates and the
common parameter Nλ. Since the number of unknown parameters is four (x, y, z, R),
the coordinates of the UE can be calculated if there are no fewer than 4 antenna
elements, which is not a problem for BS with Massive MIMO (Zhang et al., 2016;
Vieira et al., 2017). Once the BS has enough antenna elements, the above formulated
localization problem transforms to a classical GNSS positioning problem that can be
solved using the Bancroft’s algorithm (Bancroft, 1985).

4.4.3 Combating with Phase Noise

To understand how big is the phase noise between antenna elements in a massive
MIMO antenna array, phase noise measuring experiments have been conducted using
the “Otago University massive MIMO prototype” that consists of two radios Ettus
USRPs N210 synchronized via a reference clock source NI OctoClock CDA-2990. The
hardware is illustrated in Figure 4.9.

Ettus USRP N210

NI OctoClock CDA-2990

Figure 4.9: The massive MIMO hardware.

One USRP periodically sends RACH signals to the other USRP that calculates cor-
relation between the incoming and local signals and measures the phase of a correlation
spike as in Eqn. (4.7). The testbed is operating with a carrier frequency of 2.6 GHz and
a sampling rate of 5.12 MS/s. Due to NI OctoClock, two radios are well synchronized,
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but there is still a time variation between their samples, or in other words, synchro-
nization inaccuracy. The same problem is in the discussed massive MIMO prototypes
where each antenna has its radio chain, which is synchronized via a central reference
clock of the BS (Malkowsky et al., 2017). The aim of the measurements campaign
is to measure the synchronization inaccuracy, which transforms to phase noise during
communication. Thus, to minimize wireless channel effects and to guarantee a constant
distance between the transmitter and receiver, two antenna ports of USRPs have been
connected with a 1-meter long SMA-SMA cable. To obtain stochastic properties of
the phase noise, 2900 RACH synchronization rounds with the phase shift measurement
have been executed on the testbed. The histogram and Welch’s power spectral density
of the phase noise measurement campaign is illustrated in Figure 4.10 (Welch, 1967).

Figure 4.10: (a) Histogram of the measured phase noise; (b) Power spectral density of
the measured phase noise.

As illustrated in Figure 4.10(a), the phase noise is too small to have a big impact on
the phase sorting. However, it cannot be ignored in the phase shift estimation since it
has a big impact on the localization accuracy (Yang et al., 2014). Figure 4.10(b) shows
the phase noise spectral density that has a number of significant spikes. In the presence
of phase noise, the estimated phase after the sorting procedure can be represented as
follows:

ϕ′i = ϕi + ∆ϕi + δϕi, (4.12)

where δϕi comes from the modified noise in Eqn. (4.6) and has Gaussian noise charac-
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teristics, while ∆ϕi is the phase noise that has to be estimated during the localization
procedure.

To take into account the phase noise, it is modeled as a response of a state space
model to white noise (Ljung, 1999):

ηi+1 =Aηi +Kei,

yi =Cηi + ei, (4.13)

where matrices A,K,C define the state space model, yi is the output that has the same
statistical properties as ∆ϕi, ei is the disturbance of the model that has white noise
properties and ηi is the vector of the model’s states. In the conducted experiments,
the best number of states is 6. The identified process yi is illustrated in the black
line in Figure 4.10 (b). In order to retrieve the pure ϕi from Eqn. (4.12), a Kalman
filter approach is used where ϕ′is are measurements and the state space model given in
Eqn. (4.13) is the Kalman filter’s dynamic part (Agee and Turner, 1972). The output
of Bancroft’s algorithm is used as the initialization for the Kalman filter. After the
filtering, the output of the Kalman filter ( i.e. ϕis) is put back to the Bancroft’s
algorithm to compute the refined UE location.

4.4.4 Eliminating Carrier Frequency Offset and Initial Phase

Offset

There are always a carrier frequency offset (CFO) δω and an initial phase offset φ that
are caused by independent work of local oscillators of a UE and a BS. This non-ideality
can be counted at the BS side in Eqn. (4.8) as follows:

s′′i (t
l) =

s′i(t
l)

ej
[

(ω−δω)tl−φ
] =

= aie
−jωti

[
ejφ

M∑

m=1

bm(tl − ti)ejδω t
l

]
+ ξi(t

l). (4.14)

In the same way as in Eqn. (4.9), the useful signal starts to reach Elmi at moment
ti, and the vector representation of the received signal given in Eqn. (4.10) can be
rewritten as follows:

si = Kie
jφ (0, . . . , 0, b1fi, . . . , bM fi+M−1) + ξi, (4.15)

where
fi = ejδω t

i

,
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and
Ki = aie

−jωti .

Hence, the spiking value in the correlation vector between the incoming signal and
RACH preamble vector b can be represented as:

h′i = aie
−jωti

[
ejφ

1

‖b‖2

M∑

m=1

f i+m−1

]
+ ςi. (4.16)

The CFO impact, inside of the square brackets in Eqn. (4.16), depends on the starting
moment ti, which can be different for different antenna elements. However, in LTE
RACH synchronization, the maximum difference is no more than one RACH sampling
period, i.e. for any two antenna elements Elmi,Elmk, the difference in the first receiving
moments |ti − tk| ≤ ∆τ where ∆τ is the length of the RACH sampling period. This is
because the sampling rate of RACH preamble vector b is 1.28 MHz, which is 24 times
smaller than conventional LTE sampling rate 30.72 MHz (Sesia et al., 2011). Hence,
to make it possible for the situation when |ti − tk| > ∆τ , the size of a massive MIMO
antenna array has to be bigger than

3 · 108 m/s
1.28MHz

≈ 234meters.

In the case where |ti − tk| = ∆τ , it is preferable to take the moment (ti or tk) for
which the maximum number of antenna elements have spiking values. In this way, all
elements of the massive MIMO antenna array obtain the same impact from the CFO
and initial phase offset provided that all antenna elements are well-synchronized (Vieira
et al., 2017). In the same way, the phases of the incoming signals can be estimated
at different antenna elements. All spiking values are then divided by the spiking value
with the minimum phase as follows:

h′′i =
h′i
h′∗

= aie
−j(ωti−ϕ∗) + νi, (4.17)

where h′∗ is the spiking value with the minimum phase ϕ∗, and νi is the modified noise.
Let r∗ be the radius that corresponds to ϕ∗. From Eqn. (4.17), it is well seen that h′′i
has a phase shift relative to ϕ∗. It means that the relative phase shift for the antenna
element with ϕ∗ becomes zero and its region has a zero radius, whereas the radii of
the rest regions are reduced by r∗. Consequently, the radius of the common sphere
centered at the UE is increased on r∗. The localization problem now can be rewritten
as follows:

√
(x− xi)2 + (y − yi)2 + (z − zi)2 = R + r∗ + (ri − r∗), (4.18)
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and can be solved in the same way as Eqn. (4.11). Please note, the operation in
Eqn. (4.17) change the noise properties in Eqn. (4.12)); however, the model in Eqn. (4.13)
stays the same except the doubled variance of the disturbance ei, which has to be taken
into account during the phase noise estimation.

4.5 Localization for the Multipath Case

For the l-th path from UE to antenna element Elmi, the attenuation coefficient ali can
be represented in the form of a complex number as:

ali = rli e
jθli .

Since the attenuation for a LoS path is usually considered as a free-space loss, its at-
tenuation coefficient commonly has a real value, that is why θli = 0 (Orfanidis, 2014).
This makes it possible for the single-path solution to localize a UE owing to the un-
necessity to estimate the attenuation coefficients since real-valued attenuation does not
introduce any phase rotation (θli). However, the attenuation coefficients for multipath
propagation are generally considered as complex values (Tse and Vishwanath, 2005),
and a localization algorithm has to estimate these attenuation coefficients too. Hence,
the parameters to be estimated include the UE’s coordinates (x, y, z), the radius of
the common sphere R, and the attenuation coefficients for all paths that are different
for each antenna element. Suppose the total number of paths is L. The number of
parameters to be estimated becomes 4 +LN that is larger than the number of antenna
elements N . Thus, the proposed single-path solution cannot be simply extended for
the multipath case. In this section, the localization problem for the multipath scenario
is solved by exploiting the OFDM nature of RACH signals.

Unlike the solution for the LoS path case, the channel influence is derived in the
frequency domain, which makes it easier to understand the channel influence on OFDM
signals. The approach proposed in this section first constructs a model of the radio
channel based on the known environment and then optimizes it based on OFDM mea-
surements using a nonlinear data-fitting procedure. Since RACH signals are OFDM
based and the received signal is known due to the RACH synchronization procedure,
the channel influence can always be estimated in the frequency domain.
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4.5.1 Channel Model in Frequency Domain

The frequency response of a multipath channel Eqn. (4.3) at Elmi, denoted by Hi, can
be represented as follows (Tse and Vishwanath, 2005):

Hi =

Li∑

l=1

alie
−jωtli , (4.19)

where Li is the number of paths from the UE to Elmi, and tli is the time for the signals
to traverse distance dli along path l.

The CFO impact, inside of square brackets in Eq. (14),
depends on the starting moment ti, which can be different for
different antenna elements. However, in Long Term Evolution
(LTE) RACH synchronization, the maximum difference is no
more than one sample, i.e. for any two antenna elements
Elmi, Elmj , the difference in the first receiving moment
|ti � tj |  �t where �t is the length of a sampling period.
This is because the sampling rate of RACH preamble vector ~b
is 1.28 MHz, which is 24 times smaller than LTE conventional
sampling rate 30.72 MHz. Hence, to make it possible for the
situation when |ti � ti2 | > �t, the size of a massive MIMO
antenna has to be bigger than 3·108m/s

1.28MHz ⇡ 234 meters.
In case that |ti � tj | = �t, we take that the moment (ti or

tj) for which the maximum number of antenna elements have
spiking values. In this way all elements of the massive MIMO
antenna obtain the same impact from CFO and phase shift
provided that all antenna elements are well synchronized [?].
In the same way we can estimate the phases of the incoming
signals at different antenna elements. All spiking values are
divided by the spiking value with the minimum phase as
follows:

h00
i =

h0
i

h0⇤
= aie

�j(2⇡Fti�'⇤) + ⌫i, (15)

where h0
⇤ is the spiking value with the minimum phase '⇤,

and ⌫i is the modified noise. Let r⇤ the radius that corresponds
to '⇤. From Eq. (15), it is well seen that h00

i has a phase shift
relative to '⇤. It means that the relative phase shift for the
antenna element with '⇤ becomes zero and its region has a
zero radius, whereas the radii of the rest regions are reduced
by r⇤. Consequently, the radius of the common sphere centred
at the UE is increased on r⇤. The localization problem now
can be rewritten as follows:p

(x � xi)2 + (y � yi)2 + (z � zi)2 =

= R + r⇤ + (ri � r⇤),
(16)

and can be solved in the same way as Eq. (11).

VI. LOCALIZATION FOR MULTIPATH PATH CASE

For the jth path from UE to antenna element Elmk, we
can represent its attenuation coefficient akj in the form of a
complex number as akj = akj + bkji = rei✓kj . Since the
attenuation for a LoS path is usually considered as free-space
loss, its attenuation coefficient commonly has a real value, that
is, ✓kj = 0. This makes it possible for our solution to localize
an UE owing to the unnecessity to estimate the attenuation
coefficients since real valued attenuation does not introduce
any phase rotation (✓kj). However, the attenuation coefficients
for multipath propagation are generally considered as complex
values [9], and localization algorithm has to estimate these
attenuation coefficients too. Hence, the parameters to be es-
timated include the UE’s coordinates (x, y, z), the radius of
the common sphere R, and the attenuation coefficients for
all paths. Suppose the total number of paths is L. Since the
number of parameters to be estimated is 4 + L that is much
larger than the number of antenna elements, the proposed
solution for LoS path case cannot be simply extended for

multipath case. In this section, we solve the UE localization
problem for the multipath propagation scenario by exploiting
the OFDM nature of RACH signals.

Unlike the solution for the LoS path case, we analyze
channel influence in the frequency domain, which makes it
easier to understand the channel influence on OFDM signals.
Our algorithm first constructs a model of the radio channel
based on the known environment, and then optimizes it based
on OFDM measurements using the nonlinear data-fitting ap-
proach. Since RACH signals are OFDM based and the received
signal is known due to RACH synchronization, the channel
influence can be always estimated in the frequency domain.

A. Channel model in frequency domain
The frequency response of a multipath channel (Eq. (3)) at

Elmi, denoted by Hi, can be represented as follows [9]:

Hi =

LiX

j=1

aije
�j2⇡Ftij , (17)

where Li is the number of paths for UE to Elmi, and tij is
the time for the signal to traverse distance dij along path j.
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Fig. 5. Reception of multipath signal. The areas of search S1 and S2.

At first, it is worth explaining how the Non-Line-of-Sight
(NLoS) signals are originated. The transmitted signal during its
propagation may interact with the objects in the environment.
Once an interacted signal is received by BS, we call it as a
NLoS signal. The interactions can be in general grouped into
physical phenomena such as reflection, scattering, diffraction
and refraction/penetration [13]. Regardless the physical phe-
nomena, NLoS signals cover different distances and have dif-
ferent angles of arrival. Consequently, from the BS perception,
it looks like that the NLoS signals come from different sources.
Let us call these sources as images of the original source as
illustrated in Fig. 5, where the black circle is the real position
of UE with coordinates UE1 and the gray circle is the UE’s
image with coordinates UE2.

The distance dij from an image source UEj(xj , yj , zj)
to Elmi can be represented as an Euclidean distance:
dij = kElmi � UEjk. The attenuation coefficient aij =
f(dij ,F, Env) is a function of distance dij , frequency and
the physical properties of the interacting objects:

aij =
c2

(4⇡F)2
�j(F, Elmi, UEj , Env)

kElmi � UEjk
, (18)

Figure 4.11: Reception of a multipath signal, S1 and S2 are the location search areas.

A transmitted signal during its propagation may interact with objects in the prop-
agation environment as it is discussed in Chapter 3. Once an interacted signal is
received by the BS, it is noted as an NLoS signal. The interactions can be in general
grouped into physical phenomena such as reflection, scattering, diffraction and refrac-
tion/penetration (Raschkowski et al., 2015; Richter, 2005). Regardless of the physical
phenomena, NLoS signals cover different distances and have different angles of ar-
rival. Consequently, from the BS perception, it looks like that the NLoS signals come
from different sources. These sources are further referred to as images of the original
source as illustrated in Figure 4.11, where the black circle is the real position of the
UE with coordinates x1

UE and the gray circle is the UE’s image with coordinates x2
UE.

The coordinates of the images can be found through the Householder transformation
Eqn. (3.8).

The distance dli from image UEl that has coordinates xlUE = (xl, yl, zl)T to Elmi is
represented as an Euclidean distance:

dli = ‖Elmi − xlUE‖.
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The attenuation coefficient ali is defined in Eqn. (3.4) and it can be treated as a function
of distance dli, frequency ω, physical properties of the interacting objects, positions and
orientations of the communicating UE and BS:

ali =
c

2ω

ρliGli

‖Elmi − xlUE‖
, (4.20)

where ρli is the coefficient of roughness defined in Eqn. (3.15); Gli is defined in Eqn. (3.13)
and is responsible for the attenuation caused by the path l Eqn. (3.12), orientations
and locations of the UE and Elmi, and the Fresnel reflection coefficients defined in
Eqn. (3.17) and Eqn. (3.18). The coefficients ρli and Gli are frequency dependent by
definition. However, a relatively small deviation in frequency does not change these
coefficients much. Especially in the case of RACH signals where the bandwidth is 1.28
MHz, the coefficients change can be neglected. Thus, to simplify the model, each pair
ρliGli is considered as a single frequency independent coefficient Γli = ρliGli.

The model of a multipath channel given by Eqn. (4.19) can then be refined by
incorporating Eqn. (4.20) as follows:

Hi =

Li∑

l=1

[
c

2ω

Γli
‖Elmi − xlUE‖

]
e−j

ω
c
‖Elmi−xlUE‖. (4.21)

This is a system of N equations i = 1, . . . , N as the antenna array has N elements.
The number of unknown parameters Γli and xlUE is equal to

∑N
i=1 Li+3 maxi{Li} (here

3 comes from xlUE = (xl, yl, zl)), which is bigger than N . In the case where all Li = L,
the number of the unknowns becomes equal to NL+ 3L.

Since RACH signals are OFDM signals, channels can be measured on each subcar-
rier. In the same way, to be able to estimate the propagation parameters, it is worth
to derive channel models for each subcarrier as follows:

Hi =




Hi1

Hi2
...

HiNs


 =




∑Li
l=1

cΓli
2f1

e−j2π
f1
c ‖Elmi−x

l
UE‖

‖Elmi−xlUE‖∑Li
l=1

cΓli
2f2

e−j2π
f2
c ‖Elmi−x

l
UE‖

‖Elmi−xlUE‖...
∑Li

l=1
cΓli
2fNs

e−j2π
fNs
c ‖Elmi−x

l
UE‖

‖Elmi−xlUE‖



, (4.22)

where fk = ω+ k∆f is the k-th subcarrier’s frequency, ∆f is the frequency separation
between the subcarriers, and ∆f = 1250 Hz for RACH signals (Sesia et al., 2011).

Non-zero RACH symbols are carried by Ns = 839 subcarriers, which means that the
number of unknown parameters becomes much less than the number of equations. For
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each antenna element Elmi, the number of unknown parameters is Li+3Li according to
Eqn. (4.22), where Li is the number of unknown coefficients Γli and 3Li is the number
of unknown coordinates of Li image sources. In practice Li � Ns. It has been reported
that the number of observed paths is no more than 15 when the distance to UE is more
than 20 meters (Mahler et al., 2015; Raschkowski et al., 2015).

4.5.2 RACH OFDM Measurements

Similarly to the single-path case, all required operations are already calculated during
the RACH synchronization procedure including the channel estimation. In fact, the BS
calculates correlation vectors between incoming signals and local sequences based on
the Fourier transformation where multiplication operations are done in the frequency
domain (Fedorov et al., 2015). Since the amplitudes of RACH symbols are equal to
one, the conjugated multiplication of incoming symbols with RACH symbols becomes
equivalent to the corresponding division of the incoming symbols to the RACH symbols.
This means that the BS can obtain the channel measurements without introducing an
additional complexity during the multiplication operation in the frequency domain.
The channel measurement Hi

′ at Elmi can be represented by:

Hi
′ = Hi + ri, (4.23)

where ri is an Ns dimensional vector of noise.

Now, the channel is accurately derived based on the positions of the BS’s antenna
elements, the UE and its images, and the surrounding environment. However, a single
antenna by itself can only resolve the distances dli, but not the coordinates of images
xlUE. Hence, the measurements from all antenna elements of the BS have to be com-
bined together to jointly estimate all the unknown coordinates xlUE. The combined
measurements for N antenna elements of the BS can be written in a vector form as
follows: 



H1
′

H2
′

...
HN

′


 =




H1

H2
...
HN


+




r1

r2
...
rN


 .

Let us denote the N ·Ns dimensional vectors as follows

H′ = H + r. (4.24)
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4.5.3 Localization as an Optimization Problem

The main goal is to find the position xUE of the UE. The multi-path localization
problem can be formulated as the following optimization problem with the objective to
minimize the squared difference between the channel measurements H′ and the channel
model H from Eqn. (4.24).

min
{Γli,xlUE}

‖H′ −H‖2 = min
{Γli,xlUE}

N∑

i=1

Ns∑

k=1

‖H ′ik −Hik‖2 (4.25a)

s.t. xlUE ∈ Sl,∀pl ∈
N⋃

i=1

Li. (4.25b)

Here, Sl are search areas, an example of search areas is illustrated in Figure 4.11. The
objective function given in (4.25a) is nonlinear due to the nonlinearity of the channel
model Eqn. (4.22). Such kind of optimization problem can be solved using one of
the standard optimization methods such as Levenberg-Marquardt (Marquardt, 1963),
SAGE (Fleury et al., 1999), or RIMAX in a more complex propagation model (Salmi
et al., 2009) with dense multipath components.

The constraints in (4.25b) restrict the regions where the UE and its images can
locate. It is assumed that the BS has the knowledge of its surrounding environment due
to the availability of Google maps, Openstreetmaps, and the heatmaps generated based
on the statistics of cellular and Internet traffic. The search regions can be restricted to
the areas that are accessible to human beings. The RACH synchronization procedure
can also help to reduce the size of the search area. It can provide a rough estimation
of the time delay based on the position of the correlation spike, by which the distance
from UE to BS can be estimated with the accuracy of ∼ 200 meters (Sesia et al., 2011).
The intersection of the area maintained by the BS and the ring defined based on the
estimated time delay (RACH ring area) can be employed to further decrease the search
area.

Since the objective function is nonlinear and non-convex, it is vital to start the
optimization from a good initialization as an improper starting point may cause early
convergence to a local minimum. A straightforward approach to estimate the global
optimal location is to split the area maintained by the BS into small pieces and perform
an optimization within each small area. However, the complexity of such a naive
approach is very high. The idea used in the dissertation is to use the output of the
single-path localization algorithm as the initialization for the optimization problem.
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4.6 Performance Evaluation

In this section, the experimental setups and results of the simulation and proof-of-
concept experiments are discussed.

4.6.1 Simulation Setup

The carrier frequency F = ω/2π is set to 2.6 GHz, which is typical for LTE systems.
The RACH signals occupy 864 subcarriers including 25 guard/empty subcarriers with
the subcarrier spacing of ∆f = 1250 Hz. The preambles are constructed according
to LTE RACH signals format 0, which is set for a network cell with a radius of ap-
proximately 14 km. According to the RACH performance report from the European
Telecommunications Standards Institute (ETSI), for a single-antenna receiver, the SNR
is set to −17 dB (minus seventeen decibels) for the signals sent from the edge of a cell
(ETSI, 2011). This SNR is used to generate background additive white Gaussian noise
by considering the distance of 14 km and the UE transmitter power of 100 milliwatts.

The simulation setup includes one UE and one BS. The UE has one transmitting
antenna element, whereas the number of antenna elements at the BS is varied from 16
to 100 in the single-path case, and from 8 to 64 in the multi-path case. The antenna
elements at the BS is simulated as a uniformly distributed array alongside a line. The
distance between two neighboring elements is configured to be half of the wavelength
λ/2 ≈ 6 cm (Orfanidis, 2014). Both communication sides have vertically oriented
antennas. The coordinates of the BS are used as the center of the MIMO antenna
array, and the coordinates of the UE as the coordinates for its single antenna. Each
antenna element receives a signal mixed with the background noise that is −17 dB. The
signal reception by a massive MIMO BS is simulated based on the modeling approaches
described in Chapter 3. To evaluate the performance of the proposed algorithms in the
single-path and multi-path cases, the following two scenarios are considered:

Single-Path Case

The UE is located in a sector with a 120 degree angle. The distance from the UE to
the BS is varying from 10 to 500 meters. The single-path algorithm is tested for the
single-path case to localize a UE in the following five regions: 10m - 50m, 50m - 100m,
100m -150m, 150m -300m, and 300m - 500. The 10m - 50m region is used to evaluate
the performance for the near-field region, the next three scenarios are used for the
transition regions between the near and far field regions, and the last scenario is used
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to check the localization performance for the region that is around or exceeding the
edge between the near and far fields. Note, the size of the near field region is defined
by the size of an antenna array. The both measured and modeled phase noises are
incorporated in the simulation. The results presented in Figure 4.12 and Figure 4.13
are calculated based on the results of 500 rounds for each configuration.

Multi-Path Case

The position of the UE is varying inside of the same sector as for the single-path case but
the distance is limited to 200 meters. The NLoS signals are simulated to be specular
reflections from concrete walls. The Fresnel coefficients of reflection Γ⊥ Eqn. (3.17)
and Γ‖ Eqn. (3.18) are calculated based on the experimental measurements provided
in (Raschkowski et al., 2015). To simulate reflections, two walls are randomly placed
within the simulated area such that they do not block the LoS path. The images
of the UE are calculated relative to the walls using the Householder transformation
Eqn. (3.8). The phase noise has not been incorporated to the multipath simulation.
The results presented in Figure 4.14 are calculated based on the averaged values of 100
rounds for each configuration.

4.6.2 Simulation Results

Single-Path Scenario

The localization algorithm for the single-path case is evaluated using the following two
metrics:

• Localization error: the Euclidean distance between the estimated location and
the real UE location;

• Angle error: the difference on angle-of-arrival (AoA) between the estimated lo-
cation and the real location.

Figure 4.12 shows the Root Mean Square (RMS) of the localization error with the
variation of the number of antenna elements, respectively. The errors higher than 2.5

meters are not drawn on the plot. The blue lines represent the results of the Bancroft’s
algorithm, and the black lines represent the results of the Bancroft’s algorithm after
taking into account the phase noise Section (4.4.3). Figure 4.13 shows the RMS of the
angle error with the variation of the number of antenna elements.
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Figure 4.12: Single-path: RMS of the localization error for the Bancroft (BC) and
refined (FK) results.
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Figure 4.13: Single-path: RMS of the AoA estimation error for the Bancroft (BC) and
refined (FK) results.
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A key observation from the two figures is that the SWP assumption is desirable
for massive MIMO systems since the localization and angle errors decrease with the
increase of the number of antenna elements. Even for the region of 300m-500m, the
achievable accuracy with 100 antenna elements is around one meter after taking into
account the phase noise. This enables the user separation in crowded open areas such
as sports matches in stadiums and open-air events.

Another observation is that in the SWP model the phase noise can significantly
deteriorate the localization performance. This is why it is vital to take into account
the phase noise in localization procedures. The simulation results confirm the necessity
of the phase noise elimination because the refined results (i.e. FK results) are better
than the results of the standard Bancroft’s algorithm. An exceptional situation occurs
when the number of antenna elements is higher than 64 and the distances are closer
than 100 meters. The reason for this effect is that the trends of the pure phases
ϕi from (4.12) are approximated using parabolic shapes in the Kalman filtering. In
other words, using a Kalman filter, parameters of a parabolic shape are searched in
the phase measurements (4.12) by taking into account the phase noise, and then the
resulting parabolic shape is fed to Bancroft’s algorithm. Obviously, a small portion of
a sphere can be well approximated by a parabolic shape, but if the portion of a sphere
is big enough, then the parabolic approximation becomes worse. In the case of small
distances, the same effects can be seen when comparatively big portions of spherical
shapes are captured by big antenna arrays and the refinement using a Kalman filter,
in opposite, deteriorates the performance of the localization algorithm.

It is worth noting that the AoAs can be estimated with accuracy less than one
degree. However, it can be well seen that the constructed Kalman filter converges
slowly, and it starts to converge after 32 iterations, i.e. if an antenna array has more
than 32 antennas. This effect is observed in Figure 4.13 where the AoA estimation
accuracy for 16 and 32 elements is deteriorated by the refinement (the first and the
second black lines from the up in the figure) while it is improved by the refinement for
the higher number of antenna elements.

Multi-Path Scenario

At first, the single-path solution is executed to estimate the initial position. If the
single path algorithm gives a solution that is behind walls, then the initial point is set
near the intersection of the walls. As it was mentioned above, the BS has knowledge
about the surrounding environment. That is why it is possible to place the initial
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position near the intersection of the walls. Empirically, it has been found that the
single-path algorithm gives an unpredictably large error when the power of reflected
signals is relatively high. Due to this fact, in the simulation experiments, the initial
position is always set based on the information about the surrounding environment (an
environmental initialization). A standard Matlab function lsqnonlin has been used
to solve the formulated non-linear optimization problem Eqn. (4.25). To terminate the
running of lsqnonlin, the following stopping policy is used: if the difference between
two adjacent steps is smaller than 10−19, then the Matlab function lsqnonlin aborts.
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Fig. 9. (a) Experiment Setup with USRP; (b) the estimated phases; (c) UE localization based on real measurements with an accuracy around 8 cm.
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C. Hardware experiments with a single tone signal

We implemented the single path algorithm on a Ettus USRP
N210 software radio platform emulating massive MIMO BS
with eight antenna elements. The transmitting and receiving
USRPs are synchronized using an external NI Octoclock-G
CDA-2990. The transmitter repetitively transmits single tone
signal, and the receiver changes its position eight times to
emulate an antenna array with eight elements as illustrated
in Fig. 9(a). Once the receiver start to capture signals, the
transmitter start to record the transmitting signals. We perform
our experiment in an indoor setting with a heavy multipath
office environment with moving objects and people.

Fig. 9(b) shows the the phase of the incoming signal at
emulated antenna elements. It can be seen that the phase
changes consistently accordingly to the antenna element posi-
tion, thereby justifying the feasibility of our solution. Fig. 9
(c) illustrates the localisation results. It can be seen that the
proposed single path algorithm well localizes the UE with
an accuracy no larger than 8cm. Such a high accuracy is
obtained because the LoS signal is still the dominating signal
even though the experiment was performed in a multi-path
propagation environment.

VIII. CONCLUSION

In this paper, we propose two algorithms for LTE UE
localization during the RACH synchronization procedure. The
first algorithm is designed to localize UEs in the single paths

case using phase rotations of incoming signals, which can be
captured by the antenna elements of a massive MIMO at the
BS. The second algorithm works in the multipath case, in
which the multipath channel is modelled using the spherical
wave propagation assumption and linked to the propagation
environment. We evaluate our schemes in bot simulations and
experiments, and results show that... The further development
of the research lays in the extensive experimental validation
of the proposed algorithms and enhancement of optimization
methods.
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Figure 4.14: Multipath: RMS of multipath localization error.

Figure 4.14 compares the RMS with those of the single-path algorithm. It is well
seen that the multipath algorithm gives slightly better results in comparison with the
single paths algorithm when the number of antenna elements is no larger than 32. This
is because the ability to choose slightly better initializations in overall has a positive
impact. Significant improvement occurs when the number of antenna elements reaches
48. This means that starting from 48 elements, the amount of measurements becomes
enough for the multipath algorithm to resolve the localization problem even if the
initialization is not accurate. The proposed algorithm for the multipath case becomes
robust and the achieved accuracy is within several centimeters. The accuracy of the
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scenarios with a small number of antenna elements is worse due to the impact of weak
initialization. If a good initial point is chosen, the result becomes good, otherwise, the
algorithm may be trapped in a local minimum, and the Matlab solver does not have a
good performance. Please note that the phase noise is not considered in the multipath
scenario.

4.6.3 Proof-of-Concept Experiment

UE
BS

UE positions

BS antenna 
elements positions 

from 1 to 16

Figure 4.15: The Otago University Massive MIMO testbed that is capable of emulating
simultaneous reception of up to 16 antennas. Yellow dots on the right side indicate the
positions of MIMO antenna elements, on the left side indicate positions of the UE.

The single-path solution has been implemented on the massive MIMO testbed. The
number of antennas on the emulated antenna array varies between 8, 12 and 16 antenna
elements. The experimental setup is the same as in the phase noise measurements
experiment described in 4.4.3 except the two radios are communicating through the
air as illustrated in Figure 4.15. The ranges of experiments are limited by the lengths
of available SMA cables that synchronize the radios, which do not allow positioning
the two radios further than 2 meters from each other. The UE repetitively sends
RACH signals over the air, and the receiver changes its position according to the
required number of times to emulate antenna arrays with 8, 12 and 16 elements. Once
the receiver captures a signal, it performs the RACH synchronization procedure and
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measures the phase of the correlation spike as in Eqn. (4.7). Since the radios know
the transmission moments due to the reference clock, the time alignment has been
performed to emulate simultaneous reception by all antenna elements. The sorted
phases are illustrated in Figure 4.16. It can be seen that the phase changes consistently
according to the positions of the antenna elements, thereby justifying the feasibility of
the designed solution.
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Figure 4.16: Experimental results: sorted phases obtained from the RACH synchro-
nization procedure.

The experiments have been conducted in an indoor office environment with mov-
ing objects and people. For each position, the testbed executes 16 RACH procedures.
Consequently, for each antenna configuration, the localization algorithm has been exe-
cuted 16 times as illustrated in Figure 4.17. The centimeter-level accuracy is achieved
because of the emulated antenna array can easily capture the spherical shape of the
wavefront for such limited distances. The key observation from the proof-of-concept
experiment is that the localization accuracy is increasing with the increase of the num-
ber of antenna elements. Thus, from a 4.3cm accuracy for 8 antennas, it goes down to
a 1.3 cm of accuracy for 16 antennas. The doubling of the number of antenna elements
gives an improvement more than two times. Note, the phase noise elimination has not
been performed in these experiments since the sizes of antenna arrays are too small for
using the Kalman filtering approach described in section 4.4.3. Instead, a calibration
procedure has been done where using the known position of the UE, the initial phase
shifts have been estimated for all 16 antennas. Then 16 executions of the localization
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procedure have been done by taking into account the estimated initial phase shifts.

Figure 4.17: Experimental results: the estimation of two locations with different num-
ber of antenna elements.

4.7 Conclusion

In this chapter, two algorithms to localize LTE UEs during the RACH synchronization
procedure are proposed. The first algorithm is designed to localize UEs in the single
path case using phase rotations of incoming signals, which can be measured by the an-
tenna elements of a massive MIMO BS during the procedure of RACH synchronization.
The second algorithm works in the multipath case, in which the multipath channel is
modeled using the spherical wave propagation assumption and linked to the propaga-
tion environment. The proposed schemes have been evaluated in both simulations and
experiments. The obtained results show that the localization algorithms can achieve
decimeter-level accuracy for massive MIMO with a big number of antenna elements.
The further development of the research lays in the extensive experimental validation
of the algorithms and the enhancement of the optimization methods.
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Chapter 5

Downlink Channel Reconstruction

This chapter presents an efficient solution for downlink channels reconstruction of non-
transmitting antennas of a UE based on an incomplete observation of uplink channels of
the UE’s transmitting antennas. The key idea of the DL channel reconstruction is to use
the location and orientation information of non-transmitting antennas, which can be
inferred based on the UL signals received from the transmitting antennas. In addition
to the location information, for a non-transmitting antenna, the information about
its orientation becomes critical for reconstructing the antenna’s channel because for
the same location, for example, two antennas can have significantly different channels
depending on their orientations. The methodology on the estimation of the orientation
of a transmitting antenna in both single-path and multi-path propagation environments
is thoroughly described in this chapter. The estimation of the orientation is determined
as a closed-form expression in both propagation environments.

More advanced channel modeling approaches are also presented that are comple-
mentary to the methods described in Chapter 3. The advancement is caused by the
introduction of a new concept of a non-zero size antenna. The consequence of the in-
troduced concept is that an antenna is no longer treated as a source-point but defined
by its size and orientation. The concept enables modeling a more realistic variation of
the electromagnetic wave polarization caused by the mobility of a UE making the evo-
lution of the channel more consistent, which becomes crucial in the antenna orientation
estimation.
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5.1 Introduction

The continuously increasing demand on high throughput wireless communication has
forced the communication technology to integrate more and more antennas at both BS
and UE sides to exploit the advantages of the MIMO technology to increase the capacity
of the wireless channel. From the BS side, the massive MIMO technology, as one of the
key technologies for 5G networks, tends to integrate even hundreds of antennas at one
BS. Ericsson, Huawei, and Facebook have demonstrated massive MIMO systems with
as many as 96 to 128 antennas (Ericsson, 2018; Huawei, 2017; Facebook, 2016). From
the UE side, the existing flagman smartphones such as Samsung S8, Note9, Sony XZ,
Pixel 2 already have four antennas (Samsung, 2018). In 2018, Qualcomm has unveiled
the first mmWave 5G antennas for smartphones, and its Snapdragon X50 modem can
support up to 16 antennas in one smartphone (Qualcomm, 2018). It is undoubted that
more and more antennas will be added to both UEs and BSs in the near future.

While the trend in the increasing of the number of antennas at the UE side is
evident, having more antennas for transmission will not only increase the hardware
complexity and consume more energy, but also make the pilot contamination problem
even worse (Jose et al., 2011). Hence, leading UE producers are putting efforts to
optimize the antenna design by limiting the number of antennas for transmission, so
only a subset of the antennas is used for transmission, and the others are receive-only.
A UE with a number of antennas simply performs a weighted summation of signals from
antennas with similar channels during signal reception. Since only a subset of antennas
is used for transmission, the BS inevitably measures an incomplete channel. Hence,
the available channel capacity becomes smaller than the capacity of the full channel
where all UE’s antennas are involved in transmission, and the increase in throughput
can be minuscule.

The question investigated in this chapter is: is it possible to reconstruct the full
downlink channel between all antennas at a UE and a BS based on only the incomplete
uplink channel measurements obtained from the subset of transmitting antennas at the
UE? A possible approach in the DL channel reconstruction is to use the frequency-
independent reciprocity on propagation paths, which implies that UL and DL signals
traverse through the same paths. This approach has been proposed to eliminate or
significantly reduce the overhead caused by DL channel estimation feedback (Vasisht
et al., 2016; Han et al., 2018). Using the parameters of the propagation paths (Li et al.,
2017; Salmi et al., 2009; Fedorov et al., 2018; Fleury et al., 1999), the DL channel can be
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inferred using UL channel measurements. However, such an approach becomes inappli-
cable for the receive-only antennas since the BS cannot directly obtain the information
about the propagation parameters for the receive-only antennas. Hence, the BS has
to at first obtain the location and orientation of non-transmitting antennas, and only
then infer propagation parameters.

Full Downlink Channel Reconstruction using Incomplete Uplink
Channel Measurements in Massive MIMO networks

Aleksei Fedorov1, Haibo Zhang1, Galina Sidorenko1, and Bo Yang2

1Department of Computer Science, University of Otago, New Zealand
2School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, China

Abstract— While more and more antennas are integrated into
single mobile user equipment to increase communication quality
and throughput, the number of antennas used for transmission
is commonly restricted due to the concerns on hardware
complexity and energy consumption, making it impossible to
achieve the maximum channel capacity. This paper investigates
the problem of reconstructing the full downlink channel from
incomplete uplink channel measurements in Massive MIMO
systems. We present ARDI, a scheme that builds a bridge
between radio channel and physical signal propagation envi-
ronment to link spatial information about the non-transmitting
antennas with their radio channels. By inferring locations and
orientations of the non-transmitting antennas from an incom-
plete set of uplink channels, ARDI can reconstruct the downlink
channels for non-transmitting antennas. We derive closed-form
solution to reconstruct antenna orientation in both single-path
and multi-path propagation environments. The performance
of ARDI is evaluated using simulations with realistic human
movement. The results demonstrate that ARDI is capable of
accurately reconstructing full downlink channels when the
signal-to-noise ratio is higher than 15dB, thereby expanding
the channel capacity of Massive MIMO networks.

I. INTRODUCTION

The continuously increasing demand on high throughput
wireless communication has forced the communication tech-
nology to integrate more and more antennas at both Base
Station (BS) and User Equipment (UE) sides to exploit the
advantages of Multiple Input Multiple Output (MIMO) to
increase the capacity of the wireless channel. From the BS
side, Massive MIMO, as one of the key technologies for 5G
networks, tends to integrate even hundreds of antennas at
one BS. Ericsson, Huawei, and Facebook have demonstrated
Massive MIMO systems with as many as 96 to 128 anten-
nas [1]–[3]. From the UE side, the existing commodity of
flagman smartphones such as Samsung S8, Note9, Sony XZ,
Pixel 2 already have four antennas [4]. In 2018 Qualcomm
unveils the first mmWave 5G antennas for smartphones, and
its Snapdragon X50 modem can support up to 16 in one
smartphone [5]. It is undoubted that more and more antennas
will be added to both UEs and BSs in the near future.

While the trend in increasing the number of antennas at the
UE side is evident, having more antennas for transmission
will not only increase the hardware complexity and consume
more energy, but also make the pilot contamination problem
even worse [6]. Hence, the leading UE producers are putting
efforts to optimize the antenna design by limiting the number
of antennas for transmission, that is, only use a subset of the

antennas for transmission, and the others are receive-only.
The UE simply performs a weighted summation of signals
from antennas with similar channels during signal reception.
Since only a subset of antennas are used for transmission, the
BS inevitably measures an incomplete channel. Hence, the
available channel capacity becomes smaller than the capacity
of the full channel where all UE’s antennas are involved, and
the increase in throughput can be minuscule.

The question investigated in this work is: is it possible to
reconstruct the full downlink channel between all antennas at
a UE and a BS based on only the incomplete uplink channel
measurements obtained from the subset of transmitting anten-
nas at the UE? A possible approach is to use the frequency-
independent reciprocity on propagation paths, which implies
that Uplink (UL) and Downlink (DL) signals traverse through
the same paths. This approach has been proposed to eliminate
or significantly reduce the overhead caused by DL channel
estimation feedback [7], [8]. Using the parameters of the
propagation paths [9]–[12], the DL channel can be inferred
using UL channel measurements. However, such an approach
becomes inapplicable for receive-only antennas since the BS
cannot directly obtain the information about the propagation
parameters for the receive-only antennas.

𝒑1

𝒑2 𝒒

𝑇𝑥
𝑅𝑥

Incomplete Channel Full Channel

Propagation parameters, Orientations

(a) (b)

Fig. 1: (a) Impact of the mutual orientations of the transmit-
ting antenna (Tx) and the receiving antenna (Rx) on channel.
(b) Reconstructing the full channel by inferring propagation
parameters and orientations in ARDI.

Since the form factor of a UE is usually small especially
for smartphones, it is commonly assumed that the channels
for different antennas are similar [11]. However, as illustrated
in Fig. 1(a), the channels for transmitting antennas with ori-
entations p1 and p2 are significantly different. The reception
from antenna with orientation p1 is almost equal to zero
since it is perpendicular to the orientation of the receiving
antenna q. This example shows that, even if the parameters
of propagation paths are known, the channel for a receive-
only antenna cannot be inferred due to unknown orientation,
which can significantly affect channel reconstruction.

Novelty&Contribution: In this paper, we present ARDI

Figure 5.1: (a) The impact of the mutual orientations of the transmitting antenna (Tx)
and the receiving antenna (Rx) on the channel. (b) Reconstructing the full channel by
inferring propagation parameters and orientations in ARDI.

Since the form factor of a UE is usually small especially for smartphones, it is
commonly assumed that the channels for different antennas are similar. However, as
illustrated in Figure 5.1(a), the channels for transmitting antennas with orientations p1

and p2 are significantly different, they are perpendicular to each other. The reception
from the antenna with orientation p1 is almost equal to zero since it is perpendicular
to the orientation of the receiving antenna q. This example shows that, even if the
parameters of propagation paths are known, the channel for a receive-only antenna can-
not be inferred due to unknown orientation, which can significantly affect the channel
reconstruction.

Novelty and Contribution: In this chapter, a novel channel reconstruction
scheme ARDI (Antenna orientation Reconstruction and Downlink channel Inference)
is designed that can reconstruct the full DL channel based on incomplete UL channel
measurements. The scheme is named after early human-like female anthropoid Ardi,
which is dated as 4.4 million years old (Gibbons, 2009). The heart of ARDI is the
reconstruction of a UE transmitting antenna orientation at the BS side based on only
UL signals. It is observed that the channel response is closely related to the mutual
orientations of transmitting and receiving antennas. This observation has allowed de-
signing an algorithm that enables the BS to use channel response as a measurement and
calculate the orientation of transmitting antennas of UE based on the electromagnetic
signal propagation model. Since the layout of the antennas at a UE is known based
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on the UE models, the orientations and other propagation parameters for the non-
transmitting antennas can then be inferred, based on which the full downlink channel
can be reconstructed.

To the best of my knowledge, ARDI is the first scheme that can reconstruct the
orientation of an antenna based on a single electromagnetic impulse in both single-
path and multipath propagation environments. The derived solution has a closed-form
expression for antenna orientation reconstruction in both propagation environments.
Although there are some works on antenna array orientation reconstruction (Shahman-
soori et al., 2018; Talvitie et al., 2017), none of them can reconstruct the orientation
of a single antenna or reconstruct the orientation of a UE based on two transmit-
ting antennas. Also, ARDI is the first scheme that can reconstruct DL channels for
non-transmitting antennas. There are some existing works on the DL channel recon-
struction (Vasisht et al., 2016; Han et al., 2018), but all of them consider only a single
antenna at UEs.

In addition, ARDI is designed to make the radio channel deterministic Eqn. (2.2)
via linking the physical environment where signals propagate and the channel trans-
formation that signals experience during their traverse from a transmitter to a receiver
(Figure 5.2). Hence, it is capable of inferring channels in different frequency bands as
well as for different positions and time moments. The suitability of the scheme in both
FDD and TDD modes will be explained in later sections.

5.2 Overview of ARDI

As illustrated in Figure 5.3, the BS has N antennas, and the UE has M antennas,
from which only m antennas can transmit (M = 4 and m = 2 in the example given in
Figure 5.3). The aim of this chapter is to design a scheme that increases the downlink
channel capacity by expanding the downlink channel from m×N to M×N .

The key idea of ARDI is to reconstruct the full M ×N DL channel based on
the spatial information such as propagation paths, locations, and orientations of the
antennas inferred based on the UL signals from the transmitting antennas at the UE
to the antennas at the BS. Figure 5.4 shows the flowchart of ARDI. Firstly, the BS
estimates the propagation parameters of the transmitting antennas such as propagation
paths, antenna location, and Doppler effect, and then it reconstructs orientations of
the transmitting antennas based on the estimated propagation parameters. Based on
the orientations and the propagation parameters, the BS further infers the multipath
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BS

UE

ARDI

Environment Channel

Link
Tx/Rx antennas

nonTx antennas

Figure 5.2: The BS is observing channels |H1| and |H2| from the two transmitting
antennas depicted in red. Using the observation, ARDI links the propagation environ-
ment with the channel and becomes capable of inferring channels for non-transmitting
antennas depicted in orange.

𝐍𝐋𝐨𝐒𝑙𝑛
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𝑘 BS
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𝒒1

𝒒𝑁

UE 𝒑𝑘

𝒗𝑘

Known orientation
Unknown orientation Tx/Rx

Unknown orientation Rx

Figure 5.3: Communication between a UE and a BS.

propagation parameters and orientations for the non-transmitting antennas, and finally
reconstruct the fullM×N DL channel based on the estimated propagation parameters.

The description of the flowchart starts from the basic antenna theory (Orfanidis,
2014) and then transitions to the standard wireless communication theory. At first,
the basics on generation and reception of signals by antennas are introduced to design
a solution for reconstruction of orientation of a transmitting antenna. Then, the con-
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Input: Uplink signals
from m Tx antennas

Propagation parameters and orientations
inference for m Tx antennas

Propagation parameters and orientations
inference for M − m nonTx antennas

Output: Full M ×N Down-
link channel reconstruction

Figure 5.4: Steps for reconstructing the full downlink channel.

structed solution is integrated into a massive MIMO LTE system. For this purpose, an
advancement in the massive MIMO channel modeling will be required to complement
the described channel model from Chapter 3.

5.3 Antenna Orientation Reconstruction

This section describes the derivation of the solution for a massive MIMO BS to recon-
struct the orientation of a transmitting antenna of a UE based on only the measure-
ments of the uplink signals. The solution is motivated by the strong relation between the
voltage induced at a receiving antenna and the mutual orientation of the transmitting
and receiving antennas (Afraimovich et al., 1999). This relation is illustrated in Fig-
ure 5.5 where black and blue segments represent transmitting and receiving antennas,
respectively.

As shown in Figure 5.5, a transmitting antenna centered at Tx with orientation
p emits an electromagnetic signal that is received by a receiving antenna centered at
Rx with orientation q, where p and q are unit length vectors. Let TxRx be the line
that connects the centers of the two antennas. Sp is the plane determined by p and
TxRx, and Sq is the plane determined by q and TxRx. θtx is the angle between p and
TxRx, and θrx is the angle between q and TxRx. The electric field generated by the
transmitting antenna is propagated in the Sp plane (the black sinusoid) and attenuated
according to θtx. However, only the portion of the electric field that is projected to
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Figure 5.5: Definition of the effective lengths and the electric field projections.

plane Sq (the green sinusoid) can contribute to the voltage induction at the receiving
antenna, and that portion is further attenuated according to angle θrx. The projection
from Sp to Sq is illustrated by thin yellow lines. Consequently, the mutual orientation
of the communicating antennas has a big impact on the voltage induced at the receiving
antenna.

The key idea of the proposed solution is to reconstruct the orientation of a trans-
mitting antenna based on the voltage measurements by exploring the above relation.
For a BS with a massive MIMO antenna array, the voltages induced from the uplink
signals can be measured on the distributed antenna elements. The spatially diversified
voltage measurements allow reconstructing the orientation of the transmitting antenna.

Based on the Hertzian dipole antenna model with the length of d (Orfanidis, 2014),
closed-form equations for the reconstruction of antenna orientation in the single-path
LoS scenario is derived and then extended the reconstruction methodology to the mul-
tipath propagation scenario.

5.3.1 Single-Path LoS Case

Let r be the Euclidean distance between the two communicating antennas. As il-
lustrated in Figure 5.5, the notation etxr is used to represent the unit vector for the
direction of the wave propagation from Tx to Rx, and etxθ is used to represent the
unit vector for signal polarization that is always perpendicular to etxr (Orfanidis, 2014;
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Stratton, 1941). In the same way, vectors erxr and erxθ are defined for the receiving
antenna. The triples (etxr , e

tx
θ , e

tx
ϕ ) and (erxr , e

rx
θ , e

rx
ϕ ) are constructed according to the

local spherical coordinates defined relative to the transmitting and receiving antennas,
respectively (Figure 3.4). Since the dipole antenna model is considered, the observed
electric field from angle θtx is oscillating within plane Sp. It means that the observed
electric field can be considered as if it is transmitted from an antenna p(θtx) with ori-
entation etxθ and length d sin θtx. In Figure 5.5, p(θtx) is represented by the red line in
plane Sp. In the antenna theory, vector

p(θtx) = d sin θtxetxθ

is called as the effective length of the transmitting antenna at Tx, and firstly was
introduced by George Sinclair in 1950 (Sinclair, 1950). Let E(Rx) be the electric field
oscillating in Sp near the receiving antenna. E(Rx) can be defined as

E(Rx) =
jκη

4πr
Iine

−jκrp(θtx) = E(r)d sin θtxetxθ , (5.1)

where E(r) = jκη
4πr

Iine
−jκr is the scalar part of the electric field measured in Volts/meter2,

and it is a function of the propagation distance r between the two communicating an-
tennas and the amplitude of the input current to the transmitting antenna Iin; κ = ω/c

is the wavenumber, ω is the frequency of the signal’s carrier in radians (ω = 2πF), c is
the speed of light, η is the characteristic impedance of air (Orfanidis, 2014).

Since the receiving antenna can receive the electric field oscillating within plane
Sq, only the portion of the electric field projected from Sp to plane Sq can be received
by the receiving antenna and contribute to voltage induction. The amplitude of the
projection of the electric field from Sp into Sq is the scalar product of E(Rx) with erxθ .
Due to the reception angle θrx, the maximum energy reception is further restricted by
the effective length of the receiving antenna

q(θrx) = d sin θrxerxθ , (5.2)

which is represented by the green line in Figure 5.5. Hence, the voltage induced at the
receiving antenna, denoted by V , can be derived by the scalar product of electric field
E(Rx) and receiver’s effective length q(θrx) as follows:

V = E(Rx) · q(θrx). (5.3)

Substituting formulas Eqn. (5.1) and Eqn. (5.2) into Eqn. (5.3), the induced voltage
can be represented as follows:

V = d2E(r) sin θtx sin θrx (etxθ · erxθ ). (5.4)
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Remarks: It can be seen from Eqn. (5.4) that no voltage can be induced when sin θtx =

0 and (or) sin θrx = 0, thereby zeroing out the signal at the receiving antenna. The
maximum amplitude for the induced voltage over a given distance r can be obtained
if the two antennas are in the same plane and both sin θtx and sin θrx are equal to 1 or
−1. Hence, the mutual orientations and locations of the communicating antennas have
a direct impact on the measured voltage through distance r, observation and reception
angles θtx and θrx.

The target is to extract the orientation of the transmitting antenna from the mea-
sured voltage. In the current expression Eqn. (5.4), the orientation does not take part.
However, etxθ can be represented via orientation vector p and radius vector etxr . Fol-
lowing the rules of the vector product and the illustration in Figure 5.5, it is well seen
that the unit vector etxθ can be defined as follows:

etxθ =
(p× etxr )× etxr
‖(p× etxr )× etxr ‖

. (5.5)

The numerator in Eqn. (5.5) can be rewritten using the properties of triple product
properties (Gel’fand, 1989) as follows:

(p× etxr )× etxr = (p · etxr ) etxr − p. (5.6)

The same result can be obtained from a geometrical representation of vectors. As
illustrated in Figure 5.6, vector pθ that is parallel to etxθ can be represented through
subtraction p from its projection pr to radius vector etxr . The projection of p to etxr
can be represented as pr = (p · etxr ) etxr , consequently, pθ = (p · etxr ) etxr − p. The value
of denominator in Eqn. (5.5) is nothing but the length of ‖pθ‖ = sin θtx, as illustrated
in Figure 5.6. Consequently, etxθ can be represented as follows:

etxθ =
(p · etxr ) etxr − p

sin θtx
. (5.7)

Further, it can be noted that for any nonzero column vectors e = (e1, e2, e3)T and
p = (p1, p2, p3)T the equality is held:

(p · e)e = (eeT )p. (5.8)
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Figure 5.6: Definition of projections pr and pθ to etxr and etxθ , respectively.

The element-wise derivation of (p · e)e gives the following:


(p1, p2, p3)



e1

e2

e3







e1

e2

e3


 =




p1e1 e1 p2e2 e1 p3e3 e1

p1e1 e2 p2e2 e2 p3e3 e2

p1e1 e3 p2e2 e3 p3e3 e3


 =

=




e2
1 e2e1 e3e1

e2e1 e2
2 e3e2

e3e1 e3e2 e2
3






p1

p2

p3


 =





e1

e2

e3


 (e1, e2, e3)





p1

p2

p3


 ,

which is exactly equal to (eeT )p.

Following this rule, the equation (5.7) can be transformed as follows:

etxθ =
(
etxr (etxr )T − I

) 1

sin θtx
p, (5.9)

where I is the identity matrix. For the sake of writing simplicity, the following projec-
tion matrix is defined:

Prtx = etxr (etxr )T − I,

which projects vectors to etxθ . Finally, unit vector etxθ can be expressed through trans-
mitter’s orientation vector p as follows:

etxθ = Prtx
1

sin θtx
p. (5.10)

In the same way, unit vector erxθ can be expressed through receiver’s orientation vector
q as follows:

erxθ = Prrx
1

sin θrx
q, (5.11)

where Prrx = erxr (erxr )T − I is projection matrix that projects vectors to erxθ .
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By substituting etxθ and erxθ in (5.4), the induced voltage can be represented as
follows:

V = d2E(r)
(
Prrxq · Prtxp

)
= qT Prrxd2E(r)Prtx p, (5.12)

since scalar product a · b = aT b and (Prrx)T = Prrx.
Let Vn be the voltage measured from the n-th antenna, and

Pathn = qTn Prrxn d2E(rn) Prtxn

where rn is the distance between the transmitting antenna at the UE and the n-th an-
tenna at the BS. The notation “Path” is chosen because it represents the transformation
that a signal is experiencing during the propagation from a transmitting antenna to a
receiving antenna. For a massive MIMO antenna array with N elements, Eqn. (5.12)
can be rewritten as follows:




V1

V2
...
VN


 =




Path1

Path2
...

PathN


p. (5.13)

It can be seen from the system of equations (5.13) that the left side of the system
consists of the real measurements on voltages from the massive MIMO antenna array,
whereas the right side consists of the reconstructed voltages based on location Tx

and orientation p of the transmitting antenna. Hence, the problem to find both the
location and orientation of the transmitting antenna can be formulated as the following
minimization problem:

min
Tx,p
‖V −Pathp‖2, (5.14)

where Path = (PathT1 , ..,PathTN)T and V = (V1, .., VN)T . Since both the location and
orientation of each receiving antenna at the BS are known, the unknown parameters
in Eqn. (5.14) include: 3 parameters for the location of the transmitting antenna and
another 3 parameters for its orientation.

Theoretically, both the location and the orientation can be obtained if N ≥ 6.
However, it is worth noting that both Prtx and Prrx are nonlinear functions of the
location of the transmitting antenna. Hence, problem (5.14) becomes a nonlinear
optimization problem, which is much harder to solve than linear programs. In practice,
the problem (5.14) can be solved in two stages. The first stage is to find the location of
the transmitting antenna. The location can be found based on the localization solution
described in Chapter 4. Once the location is known, matrix Path becomes known and
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the only unknown in Eqn. (5.13) is p. In this case, orientation p can be found using
the standard least squares method as follows:

p̃ = Re{(PathTPath)−1PathTV }. (5.15)

The real part of the solution is extracted since an antenna orientation is a real valued
vector by the definition and the least squares method may give a complex valued
solution.

The solution given in Eqn. (5.15) is a closed-form solution for the reconstruction
of the antenna orientation in the case of a LoS propagation. To my knowledge, this
is the first time when a closed-form solution for antenna orientation reconstruction is
derived.

5.3.2 Multi-Path Case

In a multipath propagation environment, an antenna can receive a number of copies
of the transmitted signal due to signal reflections from reflecting objects. In the same
way as in Chapter 3, in this chapter, the ray tracing approach is also used for modeling
multipath propagation, by which the orientation of the transmitting antenna can be
explicitly tracked during reflection. In the same way as in Chapter 3, reflections with
two or more bounces are not considered because in most practical cases the energy of
a transmitted signal drops sharply after the second reflection according to the Fresnel
coefficients of reflection (Landron et al., 1996; Raschkowski et al., 2015).

As illustrated in Figure 5.7, a transmitted signal is reflected from surface S1 with
normal vector n1. According to the Law of Reflection, the reflection is proceeding in S2

with normal vector n2, and K is the reflection point. Superscript “b” is used to indicate
vectors corresponding to the signal before reflection and superscript “a” is used for the
vectors corresponding to the signal after reflection. For a LoS path, etxr = −erxr . For
a NLoS path, etxr = ebr and erxr = −ear . This reflection model is slightly differ from
the model described in Chapter 3. The main difference is that the reflected signal
is bearing the information about the transmitting antenna orientation, which can be
extracted at the receiver side.

The main challenge for the antenna orientation reconstruction in the multipath
case is to take into account the transformation of the electric field vector (5.1) during
reflection. The electric field Eb(K) at point K before the reflection can be decom-
posed into the following two components that transform differently due to the physical
properties of the reflecting surface: (1) the perpendicular component Eb

⊥(K) that is
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Figure 5.7: Definition of vectors in the case of reflection.

perpendicular to S2, and (2) the parallel component Eb
‖(K) that is within S2. The

perpendicular component of the electric field has the following expression:

Eb
⊥(K) = (Eb(K) · n2)n2,

and the parallel component is simply represented as follows:

Eb
‖(K) = Eb(K)−Eb

⊥(K).

Based on the property of the scalar product Eqn. (5.8), the perpendicular component
can be transformed as

Eb
⊥(K) = (n2n

T
2 )Eb(K).

According to the electric field vector given in Eqn. (5.1) and taking into account
Eqn. (5.10), the two components of the electric field at point K before reflection can
be computed as follows:

Eb
⊥(K) = dE(rK)(n2n

T
2 )Prbp, (5.16)

Eb
‖(K) = dE(rK)(I − n2n

T
2 )Prbp, (5.17)
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where rK is the distance from Tx to reflection point K, and Prb = ebr(e
b
r)
T − I is the

projection matrix as in Eqn. (5.10).
After reflection, the perpendicular component attenuates with Fresnel reflection co-

efficient Γ⊥(α) (Raschkowski et al., 2015) where α is the angle of incident. The parallel
component rotates in plane S2 clockwise with angle π − 2α to become perpendicu-
lar to the propagation direction ear and attenuates with Fresnel reflection coefficient
Γ‖(α) (Raschkowski et al., 2015). Hence, the two components after reflection can be
represented as follows:

Ea
⊥(K) = Γ⊥(α)Eb

⊥(K) (5.18)

= Γ⊥(α) dE(rK)(n2n
T
2 )Prbp,

Ea
‖(K) = Γ‖(α)W (n2, π − 2α)Eb

‖(K) (5.19)

= Γ‖(α)W (n2, π − 2α)dE(rK)(I − n2n
T
2 )Prbp,

where W (n2, π − 2α) is the rotation matrix that rotates vectors around the normal
vector n2 with angle π − 2α (Gel’fand, 1989). The main observation is that, in the
case of NLoS propagation, in addition to the propagation attenuation, the electric field
experiences additional attenuation caused by the reflection phenomenon. The Fresnel
coefficients Γ⊥(α) and Γ‖(α) depend on angle of incident α and the physical properties
of a reflecting surface (Raschkowski et al., 2015).

The transformed electric field defined by Ea
⊥(K) and Ea

‖(K) experiences further
attenuation during the propagation in the direction ear from the reflection point K to
the receiver point Rx. The portion of the electric field received by the receiving antenna
is restricted by the effective length of the receiving antenna, which can be expressed as

q(θar ) = dPra q

based on the definition of the effective length and (5.11). Here, the projection matrix
Pra is expressed as Pra = ear(e

a
r)
T − I. In the same way as that in the LoS path

case, the voltage induced by the electric field propagating along an NLoS path can be
computed as follows:

V NLoS = qTPraEa(Rx) = qTNLoSp, (5.20)

where Ea(Rx) = Ea
⊥(Rx) + Ea

‖(Rx), and NLoS is the electric field transformation
matrix defined as follows:

NLoS = d2 PraE(rNLoS)
[
Γ⊥(α)(n2n

T
2 ) +

+ Γ‖(α)W (n2, π − 2α)(I − n2n
T
2 )
]

Prb. (5.21)
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Here rNLoS is the total covered distance of the NLoS path.
For the LoS path, its transformation matrix is LoS = d2PrrxE(rLoS) Prtx, and

(5.12) can be written as:

V LoS = qT LoSp. (5.22)

Assume the multipath signal propagation has L NLoS paths. For each NLoS path
and the LoS path, the receiving antenna has the corresponding vector of effective length.
Consequently, the total voltage produced on the receiving antenna can be represented
as follows:

V = qT

[
LoS +

L∑

l=1

NLoSl

]
p =

= V LoS +
L∑

l=1

V NLoS
l , (5.23)

where NLoSl is the transformation matrix for the l-th NLoS path. Let

MultiPathn = qTn
[
LoSn +

L∑

l=1

NLoSln
]
, n ∈ [1, .., N ]. (5.24)

In the same way as in the LoS case, for a massive MIMO antenna array with N

antennas, Eqn. (5.23) can be written as follows:



V1

V2
...
VN


 =




MultiPath1

MultiPath2
...

MultiPathN


p. (5.25)

After defining Path = (MultiPathT1 , ..,MultiPathTN)T , both the location and orienta-
tion of the transmitting antenna can be obtained by solving problem (5.14) using the
same least square approach as for the LoS case.

5.3.3 Constrained Least Square Method

In the presence of noise, the equations (5.13) and (5.25) can be represented as follows:

V = Pathp+ ξ, (5.26)

where ξ is noise vector ξ = (ξ1, .., ξN)T . The standard least squares solution does not
take into account the fact that orientation vector p has unit length. Let us add the
unit length constraint and formulate a constrained least square problem as follows:

min
p
||Pathp− V ||2 subject to ||p||2 = 1. (5.27)
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Here, the solution is searched on a unit spheres. Since the type of the constrain is
simple, the exact solution can be derived straight forward using Lagrange multipliers
(Lorenz and Boyd, 2005).

The first step in the solution search is in performing a singular value decomposition
(SVD) of matrix Path as follows:

Path = AΛBH

where AN×N and B3×3 are unitary matrices, and Λ is a diagonal real matrix of the same
dimension as Path. Using the fact that the multiplication on a unitary matrix does
not change the length of a vector (Gel’fand, 1989), problem (5.27) can be reformulated
as follows:

min
p̃
||Λ p̃− y||2 subject to ||p̃||2 = 1, (5.28)

where p̃ = BHp and y = AHV . By applying the method of Lagrange multipliers,
Lagrangian L(p̃, λ) is defined as follows:

L(p̃, λ) = (Λ p̃− y)H(Λ p̃− y) + λ(p̃H p̃− 1),

where λ is the Lagrange multiplier. To calculate the stationary points, L(p̃, λ) has to
be differentiated with respect to p̃H and λ and set the partial derivatives equal to zeros
as follows:

ΛHΛp̃− ΛHy + λp̃ = 0, (5.29)

and
p̃H p̃− 1 = 0. (5.30)

It can be noted that Eqn. (5.29) has an analytical solution:

p̃ = (ΛHΛ + λI)−1ΛHy. (5.31)

Plugging the analytical solution into Eqn. (5.30) gives

yHΛ(ΛHΛ + λI)−1(ΛHΛ + λI)−1ΛHy − 1 = 0.

Since Λ is diagonal matrix with the singular values of matrix Path, the last expression
can be reduced as following:

3∑

i=1

σ2
i

(σ2
i + λ)2

|yi|2 = 1, (5.32)

where σi, i = 1, 2, 3 are diagonal elements of matrix Λ.
Note, Eqn. (5.32) has more than one solutions. Among all the solutions, the solution

λ∗ that brings the minimum value for problem (5.28) is chosen. Once λ∗ is found,
orientation vector p can be reconstructed from p̃ as following: p = Bp̃.
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Figure 5.8: The orientation of a UE in the global coordinate system OG.

5.4 UE Orientation Reconstruction

In order to enable the reconstruction of channels for non-transmitting antennas, at first,
ARDI has to calculate positions and orientation of each antenna in the global coordinate
system OG. It can be done using the location of the UE and its orientation in the global
coordinate system. This section describes how ARDI estimates the orientation of the
UE during an arbitrary movement.

Relative orientations and positions of antennas in a UE are considered as known due
to a known hardware design of the UE. Using the described approach from Section 5.3,
orientations of the transmitting antennas can be reconstructed at the BS side via UL
signals. Consequently, using the estimated orientations of the transmitting antennas,
the orientation of the UE’s coordinate system (or simply the orientation of UE) can
be reconstructed. In an ideal situation when the m orientations are estimated without
errors, the orientations of two non-parallel antennas are enough for reconstructing the
UE’s orientation. However, in the presence of estimation error, it is preferable to use
all the estimated m orientations in order to incorporate all the observed information.

As illustrated in Figure 5.8, orientations pk of the UE’s transmitting antennas are
defined in its local coordinate system OUE as follows:

pk = pk1e
UE
x + pk2e

UE
y + pk3e

UE
z , k = 1, ..,M, (5.33)

where (eUE
x , eUE

y , eUE
z ) is the orthonormal basis of UE’s coordinate system OUE.

During an arbitrary movement of a mobile user, the orientation of the UE can be
arbitrarily changed. The orientation change can be represented through a rotation
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matrix Ω as illustrated in Figure 5.8. The UE together with its antennas is moving
as a rigid body. If the basis (eUE

x , eUE
y , eUE

z ) rotates with the rotation matrix Ω, then
orientations of antennas also rotate with the same rotation matrix. The rotation of M
antennas can represented as follows:

p′k = Ωpk = pk1Ω eUE
x + pk2Ω eUE

y + pk3Ω eUE
z , k = 1, ..,M.

These equations can be rewritten via the projection of the rotation matrix Ω to the
orthonormal basis (eUE

x , eUE
y , eUE

z ) as follows:

p′k = Ωpk = pk1ω1 + pk2ω2 + pk3ω3, k = 1, ..,M, (5.34)

where (ω1,ω2,ω3) are the projection vectors of Ω to the local coordinate system. If
the initial orientation of OUE is taken to coincide with the orientation of the global
coordinate system OG, then the rotation matrix Ω = (ω1,ω2,ω3) can be represented
through its projections.

The estimated orientations p′k of the m transmitting antennas can be used as mea-
surements in the system of m equations (5.34). The aim is to extract the elements of
rotation matrix Ω from this system of m equations. The elementwise representation of
Eqn. (5.34) can be written as follows:



p′k1

p′k2

p′k3


 =



pk1 ω11 + pk2 ω12 + pk3 ω13

pk1 ω21 + pk2 ω22 + pk3 ω23

pk1 ω31 + pk2 ω32 + pk3 ω33


 , k = 1, ..,m (5.35)

These equation can be written in a way that the vector that consists of the rotation
matrix elements ωij is separated from the matrix that consists of the orientation vector
elements pki:



p′k1

p′k2

p′k3


=




pk1 0 0 pk2 0 0 pk3 0 0

0 pk1 0 0 pk2 0 0 pk3 0

0 0 pk1 0 0 pk2 0 0 pk3






ω1

ω2

ω3


 , k = 1, ..,m. (5.36)

In a compact form these equations can be represented through the Kronecker multipli-
cation ⊗ (Henderson and Searle, 1981):



p′k1

p′k2

p′k3


 = pTk ⊗ I3



ω1

ω2

ω3


 , k = 1, ..,m, (5.37)
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where I3 is the unit matrix of size 3 × 3. For all m transmitting antennas, the above
can be represented as follows:



p′1
...
p′m


 =




pT1
...
pTm


⊗ I3



ω1

ω2

ω3


 , (5.38)

Let P = [p1,p2, ..,pm]T and Π = P ⊗ I3. If P has the full rank, then the rank Π is
also full since (Brewer, 1978)

rank Π = rankP rank I3.

Hence, the system of equations (5.38) can be solved through a standard least squares
method as follows: 


ω̃1

ω̃2

ω̃3


 = (ΠHΠ)−1ΠH



p′1
...
p′m


 (5.39)

since ΠHΠ is invertible.
In the case when rankP = 2, the matrix ΠHΠ becomes non-invertible. In this case,

a special vector has to be constructed that makes P a full-rank matrix and keeps the
relations with the rows of P during any movement. Since the rank is two, all pk are in
a plane and consequently they define this plane. The normal vector of the plane can be
found using SVD of P . The smallest singular value of the decomposition corresponds
to the vector port that is perpendicular to the plane (Gel’fand, 1989), and all pk are
perpendicular to port. Due to the fact that the UE is a rigid body, P does not change
its rank during an arbitrary movement. This means that port stays perpendicular to
the plane generated by the m transmitting antennas. Consequently, port can be taken
as an additional measurement in (5.38) as follows:




p′1
...
p′m

p′ort


=




pT1
...
pTm

port



⊗ I3



ω1

ω2

ω3


 . (5.40)

In this case, the updated matrix Π becomes full ranked and the least squares method
(5.39) can be used to find the elements of the rotation matrix.

The case where rankP < 2 means that all transmitting antennas are oriented along
one direction, i.e. parallel to each other, or there is only one transmitting antenna. In
this case, the orientation cannot be reconstructed since there is uncertainty regarding
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the other two directions. This special case should be considered in a combination with
additional assumptions regarding the orientation, for example, a rough orientation
measurements can be provided by an onboard inertial measurement unit (IMU). The
investigation of this case falls to the scope of the future study, which is not considered
in this thesis.

5.4.1 Recovery of the Global Orientations and Locations of M

Antennas

Since the relative orientations and locations of antennas are fixed inside of a UE and
known due to manufacturing documentation, the spatial information about the anten-
nas can be reconstructed from the estimated location (from Chapter 4) and orientation
(Section 5.3) of the UE. The coordinates of the UE are found based on the localization
scheme described in Chapter 4. The averaged location of the m transmitting antennas
is treated as the coordinates of the UE’s center of gravity UEcg = (xcg, ycg, zcg)

T . Note
that the orientations of the m transmitting antennas are estimated using the coordi-
nates of the center of gravity, which means that for all transmitting antennas radius
vectors etxr are originated from the center of gravity in Section 5.3.

Once the orientation of the UE is defined, i.e. orientation matrix Ω in (5.34), the
orientation of M antennas in the global coordinate system OG can be reconstructed
directly using (5.34) for all k = 1, ..,M . Let T kx represents the location of k-th antenna
of the UE in the local coordinate system OUE. The locations of antennas can be
calculated directly from the orientation and the coordinates of the center of gravity. At
first, the coordinates of M antennas are rotated using the estimated rotation matrix
Ω. Then, the resulting coordinates are transitioned to new locations by adding the
estimated location of the center of gravity UEcg as follows:

T kx
′
= ΩT kx + UEcg,

where T kx
′ is the location of k-th antenna in the global coordinate system. Hence, as a

result of this step, ARDI obtains locations T kx
′ and orientations p′k of all M antennas

of the UE, and is ready to infer the full DL channel.
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5.5 Full Downlink Channel Reconstruction

5.5.1 Channel Modeling

Let us consider the case where transmitting antennas of a UE transmit UL signals
simultaneously but use different radio resource blocks (Sesia et al., 2011). Hence, they
do not interfere with each other at the reception side. At the physical level, signals are
transmitted via the emission of electromagnetic waves from a transmitting antenna.
The control of output electric field defined in (5.1) is done by controlling the input
current in the time domain

I(t) = Iin

Nsym∑

m=1

symm(t)ejωt,

where Nsym is the number of transmitting symbols, symm(t) is nonzero in period [(m−
1)∆t,m∆t] where ∆t is the system’s sampling duration, and Iin is the amplitude of the
input current to the transmitting antenna. The LoS observation of the electric field at
any point X, denoted by E(t,X), is

E(t,X) =
jκη

4πr
I(t− r/c)p(θtx) =

=Iin
jκη

4πr

Nsym∑

m=1

symm(t−r/c)ejω(t−r/c)p(θtx),

where r is the distance between an antenna and the observation point. At the receiving
antenna with orientation q, this electric field induces voltage

V (t) = E(t,X) · q(θrx)

according to Eqn. (5.4). By processing the measured voltage, the BS can reconstruct
the transmitted symbols symm by removing the carrier wave ejωt and then estimating
channel to equalize the distorted symbols. Through the procedure of channel estimation
(CE) based on the reference symbols (Sesia et al., 2011), the downlink channel can be
represented as follows:

H = Iin
jκη

4πr
e−jκrp(θtx) · q(θrx) = Iinµκe

−jκr, (5.41)

where µ = jη
4πr
q(θrx) · p(θtx) can be considered as a complex-valued channel attenua-

tion coefficient. This is another interpretation of the propagation attenuation, which
differs from the massive MIMO channel modeling approach described in Chapter 3. In
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accordance with Eqn. (5.4) and Eqn. (5.1), channel given in Eqn. (5.41) has the volt
unit.

In mobility scenarios, the modeling of the downlink channel becomes more compli-
cated due to the Doppler effect since an arbitrary movement in 3D space causes different
velocities on each antenna. Hence, the signals sent from different antennas can experi-
ence different Doppler shifts depending on the propagation path and receiving antenna
(Kihei et al., 2017):

νkln = (vk · ekln)
ω

c
= Dk

lnκ, (5.42)

where vk is the velocity vector of the k-th antenna, κ = ω/c is the wavenumber, and ekln
is the unit length radius vector that indicates the direction from the k-th transmitting
antenna to the n-th receiving antenna through the l-th path. Hence, in a dynamic
multipath propagation environment, the channel for the signal that travels from the k-
th transmitting antenna to the n-th receiving antenna can be modeled based on (5.41)
and (5.42) as:

Hk
n = Iin

L∑

l=0

µklnκ e
−jκrkln e−jν

k
ln(rkln/c), (5.43)

where L is the number of propagation paths. To enable the channel reconstruction,
the multipath propagation parameters {µkln, rkln, νkln} for each propagation path l from
the k-th transmitting antenna to the n-th receiving antenna have to be identified.
The total number of unknown multipath propagation parameters becomes larger than
the number of the measured channels since there is only m (m < M) transmitting
antennas. To find all the parameters, in the same way as in Chapter 4, the OFDM
nature of the UL signals is used to increase the number of measurements (Salmi et al.,
2009). Consequently, the channel at subcarrier fi = ω + i∆f can be represented as
follows:

Hk
n(fi)=Iin

L∑

l=0

µklnκi e
−jκi rkln e−jD

k
lnκi(r

k
ln/c), (5.44)

where rkln and Dk
ln are the frequency independent parameters of distance and Doppler

shift, respectively. Channel attenuation coefficients µkln are frequency dependent; κi =

fi/c, fi ∈ Fk and Fk is the subset of subcarriers that is allocated for the k-th trans-
mitting antenna, and ∪mk=1Fk is the total given radio resource.

Observation: The BS can reconstruct the downlink channels once the multipath
propagation parameters {µkln, rkln, Dk

ln} are obtained from (5.44) (Vasisht et al., 2016).
While the parameters for the transmitting antennas can be easily inferred based on the
measurements of the UL signals, it is challenging to infer them for the non-transmitting
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antennas. The following explains how to infer these parameters.

5.5.2 Parameter Estimation for Transmitting Antennas

In the same way as optimization problem (4.25) in Chapter 4, the propagation param-
eters {µkln, rkln, Dk

ln} can be estimated by solving the following optimization problem:

min
{µkln,r

k
ln,D

k
ln}

Nk
s∑

i=1

N∑

n=1

m∑

k=1

∥∥∥Hk
n

′
(fi)−Hk

n(fi)
∥∥∥

2

, (5.45)

where Nk
s is the total number of subcarriers in Fk. This optimization problem can be

solved using the approaches discussed in Chapter 4.
The main obstacle in estimating the propagation parameters is that rkln and Dk

ln

have to be estimated as one parameter rkln +Dk
ln(rkln/c) since they cannot be separated

from the exponential function e−jκi(rkln+Dkln(rkln/c)). Hence, the solution of optimization
problem (5.45) gives µkln and rkln + Dk

ln(rkln/c). To further separate rkln and Dk
ln, the

parameters estimation has to be done twice with a time gap τ . In fact, UL channel
estimation is performed twice every millisecond in LTE (Sesia et al., 2011), which gives
the required time diversity in the estimated parameters. Suppose the estimation for
the first CE is est1 = rkln +Dk

ln(rkln/c), and at the second is est2 = rkln +Dk
ln(rkln/c− τ).

The difference between the two estimations is est1−est2 = Dk
lnτ . Since τ is known, Dk

ln

can be extracted from the difference of two consecutive CEs. Once Dk
ln is extracted,

rkln can also be obtained.
Based on the SWP model, the locations of the transmitting antennas T kx and their

images Iml(T
k
x ) can be found from the extracted rkln using the Bancroft method for

each image as it is done in Chapter 4. As illustrated in Figure 5.9 (a), based on the
estimated locations, the reflecting plane Sl can be determined because it has to go
through the middle of the segments [T kx , Iml(T

k
x )] and be perpendicular to them. Now,

to calculate the NLoS transformation matrices in (5.21), ARDI needs to calculate the
angle of incidence αkln, which can be obtained based on the location of the receiving
antenna and the reflecting plane Sl. Hence, by doing the same operations for each pair
of antennas (T kx , R

n
x) and each l-th path, ARDI can calculate the incidence angles αkln

for each NLoS path.
The CE given in (5.43) can be represented in a convenient form for orientation

reconstruction as follows:

Hk
n = qTn

[
LoSDk

n +
L∑

l=1

NLoSDk
ln

]
pk, (5.46)
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where the multipath transformation matrices incorporate the estimated Doppler shifts
LoSDk

n = LoSkn e
−jDk0nκ(rcg0n/c) and NLoSDk

ln = NLoSkln e
−jDklnκ(rcgln/c).

5.5.3 Parameter Estimation for Non-transmitting Antennas
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Figure 5.9: (a) Derivation of the reflection plane from a transmitting antenna location
and its image location. (b) Mobility of UE, its antennas’ orientation and location.

As illustrated in Figure 5.9 (b), it is assumed that at least two of them transmitting
antennas are not parallel. During the CE procedure, ARDI can obtain the coordinates
and orientations of them transmitting antennas using the method introduced in Section
5.3, from which the orientation of the UE Ω can be estimated using the steps derived in
Section 5.4. Suppose the layout the antennas in UE is a priori knowledge based on the
UE design, both the positions and orientations of the non-transmitting antennas can
then be calculated based on their relative positions/orientations to the transmitting
antennas.

Inference of rkln: For the LoS path, rkln can be easily calculated based on the
calculated locations of non-transmitting antennas described in Section 5.4.1. For the
NLoS path, suppose nonT kx represents the location for a non-transmitting antenna, as
illustrated in Figure 5.9 (a). Based on the reflecting plane Sl, the image of nonT kx ,
denoted by Iml(nonT

k
x ), can be calculated since the location of nonT kx is known. Then

rkln can be obtained by calculating the distance from the image to the receiving antenna,
and the incident angle αkln can also be obtained.
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Inference of µkln: Once rkln and the orientations of the non-transmitting antennas
have been found, µkln for non-transmitting antennas can be inferred since

µkln =
jη

4πrkln
q(θrx) · p(θtx).

Inference of Dk
ln: To infer the Doppler effects, ARDI needs to obtain at least two

measurements of the location and orientation of the UE. Using these measurements,
it calculates the speed and the angular velocity as follows:

vcg =
UEcg(t2)− UEcg(t1)

t2 − t1
, Ω̇ =

Ω(t2)− Ω(t1)

t2 − t1
,

where t1 and t2 are moments when the location and orientation measurements have
been obtained. Consequently, speeds of antennas are inferred as vk = vcg + Ω̇T kx , and
Doppler shifts are calculated according to (5.42).

After the inference of multipath propagation parameters {µkln, rkln, Dk
ln} for non-

transmitting antennas, ARDI reconstructs the DL channels using (5.44) for non-trans-
mitting antennas. Figure 5.10 gives an example with 2 transmitting antennas and 2
non-transmitting antennas, where the red lines represent the measured channels and
the black lines represent the reconstructed channels. For the uplink transmission, the
full radio resource is equally allocated to the two transmitting antennas. For the DL
channel inference, each antenna occupies the full radio resource.

UE's Subcarriers

Tx #1 Channel Est/Rec

Rec
Est

UE's Subcarriers

Tx #2 Channel Est/Rec

Rec
Est

UE's Subcarriers

non-Tx #3 Channel Rec

Rec

UE's Subcarriers

non-Tx #4 Channel Rec

Rec

Figure 5.10: Example with estimated and inferred channels for a user equipment with
four antennas two of them are transmitting in the LTE TDD transmission mode.
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5.5.4 Feasibility for FDD and TDD Modes

It can be seen that the proposed scheme reconstructs the full DL channel based on
the environmental parameters: propagation paths, mobility, location, and orientation
of the UE’s antennas. Based on the incomplete uplink channel measurements, ARDI
infers these parameters and reconstructs the channels separately for all UE antennas.
This means that ARDI creates a separate model of the environment for each antenna
where the antenna is the only transmitting antenna. In this way, without interference
from other antennas, each antenna can occupy the full radio resource and transmit
signals from its estimated position with estimated orientation. This feature makes
ARDI capable of inferring the DL channel in both TDD and FDD transmission modes.

5.6 Performance Evaluation

This section presents the results of a simulation-based evaluation of ARDI considering
a realistic 3D movement of a user equipment.

5.6.1 Simulation Setup

As shown in Figure 5.11, the UE is kept in the human’s right hand. A well-known
eigenwalker model has been used to model a realistic movement of a human body
(Troje, 2002). The yellow lines represent propagation paths. During a random walk,
in addition to the ground reflection, six reflecting planes are simulated by randomly
positioning and arbitrarily orienting them in the 3D space. However, only one reflector
is depicted in the example since adding the other planes, and propagation paths can
make the plot messy. The signals are propagated according to the SWP assumption
and reflected based on the law of reflection described in Chapter 3 by taking into
account the orientation of the transmitting antennas.

Signal Specification

A typical TDD LTE network with carrier frequency ω = 2.6 GHz is simulated. The UE
is a cellphone with four omnidirectional antennas, and only two of them can transmit.
The LTE signals from two transmitting antennas occupy 100 resource blocks, with 12

subcarriers in each and 15 kHz separation between subcarriers (Sesia et al., 2011). In
total, 1200 subcarriers are equally shared by the two transmitting antennas. Additive
Gaussian noise with zero mean value is applied at the BS side. The intensity of the
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Figure 5.11: Simulation environment for signal propagation.

noise is defined by the SNR relative to the strength of the LoS signal. Even in the
case where the LoS path is blocked, the noise intensity is calculated relative to the LoS
signal as if it has been delivered to the BS.

Geometry Specification

As illustrated in Figure 5.11, the BS has a planar antenna array that consists of 256

antennas, 16 rows in horizontal and 16 columns in vertical directions. Antennas are half
wavelength separated in both directions. Orientations of antennas are set in the way
that each next antenna has alternated orientation {East, North, Up}. The location of
the BS is fixed, and the height is 20 meters above the ground. The UE is modeled as a
red rectangular polygon with 120× 70 millimeters in length and width. Four antennas
are located on the edges of the polygon in two parallel pairs, as shown in Figure 5.9
(b). The height of the human is 1.61 meters (probably Larisa Latynina, the second
most decorated Olympian of all time (Wikipedia contributors, 2019a)). The distance
between the BS and UE varies from 50 to 100 meters. The average moving speed is
set to 5 kilometers per hour. Due to a realistic motion of the human’s model and
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3D motion of the UE, the speeds of antennas on the UE differ from each other. This
creates different Doppler effects for different antennas. Note, the movement of the red
polygon is a complex 3D movement that consists of a 3D rotation and 3D translation.

Physical Parameters of the Environment

The ground is assumed to be bricked. The reflectors are made from concrete. Relative
permittivity and conductivity parameters of these materials are taken from the Material
properties Table in (Raschkowski et al., 2015). The air attenuation is considered as a
free space attenuation.

In the same way as in Chapter 4, a standard Matlab function lsqnonlin is used to
extract the propagation parameters from (5.45). Once the algorithm converges, the
extracted results are fed to ARDI to analyze the accuracy of the antenna orientation
reconstruction and channel inference. Two propagation scenarios are considered: sce-
nario 1 - a multipath propagation with LoS when the LoS path is observable; scenario
2 - a multipath propagation without LoS when the LoS path and the path reflected
from the ground are blocked.

5.6.2 Results on Antenna Orientation Reconstruction

Figure 5.12 plots the median and standard deviation of the antenna orientation re-
construction error measured in degrees under different setting of SNR. Each point is
calculated based on the results of 500 iterations. It is well seen that the antenna orien-
tation reconstruction error tends to converge to zero with the increase of SNR in both
scenarios. The accuracy of the antenna orientation reconstruction is worse in scenario
2. This is an expected result caused by the blockage of the strong LoS path, which
leads to a less accurate estimation of the propagation parameters. In addition, transfor-
mation matrix Path in Eqn. (5.23) accumulates less observation, which additionally
degrades the overall reconstruction performance. However, such kind of accuracy is
enough to achieve good performance on the DL channel reconstruction, which will be
demonstrated in the following subsection. Figure 5.13 shows the cumulative distribu-
tion function (CDF) of the orientation reconstruction errors for the considered SNRs.
The median estimation error is less than 2◦ even for scenario 2. This capability can be
used in different types of applications such as the elimination of DL channel feedback
in beamforming, human motion tracking, localization refining, etc.
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Figure 5.12: Accuracy of the antenna orientation estimation.

5.6.3 Results on Full Downlink Channel Reconstruction

In this section, the evaluation of ARDI performance in the DL channel reconstruction
is analyzed. In the simulation, at first, the channels are measured separately for each
pair of communicating antennas Hk

n = (Hk
n(f1), .., Hk

n(fNs))
T where n ∈ [1, ..., 256],

k ∈ [1, ..., 4], Ns = 1200, and Hk
n(fi) is defined in Eqn. (5.43). Then, the measured

channels for the two transmitting antennas (H1
n,H

2
n) are cropped by providing each

antenna with 600 subcarriers. As illustrated in Figure 5.10, the first antenna occupies
the first 600 subcarriers, and the second occupies the rest part of the subcarriers. Af-
ter the crop, ARDI extracts propagation parameters {µkln, rkln, Dk

ln} from the cropped
channels. Then, ARDI performs the antenna orientation reconstruction and DL chan-
nel inference for the non-transmitting antennas (H3

n,H
4
n), which are further compared

with the measured channels (H3
n,H

4
n). To analyze the accuracy of the DL channel

reconstruction, the ARDI’s results are compared with an "old" approach in which the
BS just uses the measured channels for the transmitting antennas as predictions for the
corresponding parallel non-transmitting ones. In other words, the measured channels
H1

n are used to predict channels for non-transmitting antenna #3, and H2
n is used to
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predict channels for non-transmitting antenna #4.
The aim is to analyze the difference between the reconstructed channel and the

measured channel in terms of both amplitude and phase. However, the absolute dif-
ference between the measured and reconstructed channels is not representative since
the absolute values of the channels for different distances may differ by the orders of
magnitudes. The channel differences for locations that are far from the BS can be
much smaller than the differences for locations that are close to the BS. Due to this,
the following metric is proposed, which can be considered as a normalized difference
between reconstructed and measured channels (Zhou and Giannakis, 2004):

εkn =
‖Hk

n −Hk
n‖

‖Hk
n‖

, n ∈ [1, .., 256], k ∈ [3, 4], (5.47)

where Hk
n is the measured channel and Hk

n is the reconstructed channel. It can be
seen that the closer the reconstructed channel to the measured channel, the smaller
the value of ε. This metric takes into account not only the correlation of the channels
but also the similarity of amplitudes and complex phases of the channels. For example,
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Figure 5.14: Accuracy of the DL channel reconstruction.

the channels may be well correlated with coefficient of correlation ρ(Hk
n,H

k
n) ≈ 1 while

Hk
n = βHk

n where β can be any complex number. It is also critical to make β close to
one especially in a precoding procedure (Sesia et al., 2011), which means the difference
‖Hk

n −Hk
n‖ has to be close to zero.

Let us consider the case where the amplitudes of Hk
n and Hk

n are quite similar,
which is possible when the localization is performed accurately. Let Hk

n = ΦHk
n where

Φ is a unitary matrix in the vector space CNs . The metric Eqn. (5.47) can be re-written
as

εkn =
‖(INs − Φ)Hk

n‖
‖Hk

n‖
, n ∈ [1, .., 256], k ∈ [3, 4].

Since the amplitudes are similar, the difference on phases will dominate the reconstruc-
tion error. Hence, if Φ = INs , εkn = 0, which indicates that the channel is accurately
reconstructed. If Φ = −INs , εkn = 2, which is the worst case. Consequently, if the
amplitudes of the measured and the reconstructed channels are similar, εkn ∈ [0, 2].
Significantly different amplitudes indicate that the localization has been possibly per-
formed with a big error. In this case, the difference in amplitude can dominate in the
reconstruction error, and εkn can be any positive value fenced from zero.

To examine the overall channel reconstruction performance, the DL channel re-
construction scheme has been executed 100 times under different settings on SNR.
For each iteration, median and standard deviation values have been calculated for
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{εkn} n ∈ [1, ..256], k ∈ [3, 4], and then all the obtained medians and standard devia-
tions have been averaged over 100 iterations. Figure 5.14 shows the average medians
and standard deviations under different settings on SNR. It can be seen that the re-
constructed channels converge to the measured channels in both scenarios with the
increase of SNR. One observation from this figure is that the "old" approach does not
give good channel prediction for any SNR. Note, if the metric is far above zero, the
reconstructed channel is less likely related to the real channel. Another interesting
observation can be seen from the standard deviation. For lower SNRs, ARDI has a
larger standard deviation than the "old" approach. This is because, for lower SNRs,
ARDI reconstructs the DL channel inaccurately because of the large errors in the esti-
mating the propagation parameters, orientations and locations of antennas. Instead of
reconstructing the channel near the UE, ARDI reconstructs the channel for a distant
place from the UE. In such kind of situations, the value of εkn can significantly increase
and can be higher than 2. However, in most cases, ARDI can still correctly reconstruct
DL channel, and this is why the median is lower than that in the "old" approach.
As expected, the performance of the DL channel reconstruction is slightly weaker in
Scenario 2. For higher SNRs starting from 15 dB, ARDI performs similarly in both
scenarios. Based on the obtained results it can be concluded that ARDI is capable of
reconstructing the full DL channel with a reasonable accuracy for SNRs higher than 15

dB. This revolutionary ability of ARDI can become very helpful in the reconstruction
of the full massive MIMO channel from incomplete channel measurements.

5.7 Conclusion

In this chapter, a smart scheme ARDI is introduced, the scheme is capable of recon-
structing the full downlink channel in massive MIMO systems from incomplete UL
channel measurements in both FDD and TDD communication modes. Consequently,
ARDI enables the increase of a massive MIMO channel capacity without further growth
of the number of transmitting antennas. The results of this work can have implication
for other types of wireless communication systems such as WiFi and mmWave net-
works since the same physical principles are used in all of them. Further development
of this research lays in the extension of the antenna orientation reconstruction method
towards realistic antenna models and experimental validation.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has discussed challenging issues regarding radio channel modeling, user lo-
calization, and channel reconstruction for non-transmitting antennas. New practical
solutions for these issues are essential for the further development of both existing and
next-generation networks. As discussed, one of the main inhibitory factors for the de-
velopment of modern networks is the increasing complexity of the CE procedure. Due
to the formation of the procedure under the stochastic channel paradigm, CE also gives
an outdated state of the channel, which is a critical drawback especially for the next-
generation networks. That is why this thesis focuses on designing channel acquisition
schemes that rely not only on the channel response but also the spatial information
about the propagation environment. Note, in this thesis, the concept of the propaga-
tion environment goes a little further than just the surrounding environment. It also
incorporates the location, orientation, and mobility information of the communicating
BSs and UEs.

Similar to the transition between the time and frequency domains, the main idea of
the thesis is to enable the transition between the channel and environment domains. As
illustrated in Figure 6.1, the transition from the channel domain to the environmental
domain is performed using the observed channel; the required manipulations with the
spatial information about the propagation environment are made in the environment
domain; the transition back to the channel domain is then performed by reconstructing
the resulting channel. Such an approach in channel processing obviates the reception
of the channel response, which is time consuming, and reconstructs channels even for
non-transmitting antennas. Hence, the transition between the channel and environment
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domains becomes helpful in developing solutions that mitigate the CE challenges in
both existing and next-generation networks: excessive energy consumption at the UE
side; an ineffective mechanism of channel feedback; the outdated state of the channel;
and inability to provide channel state information for non-transmitting antennas.

EnvironmentChanel
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channel

Reconstructed 

channel

Manipulations
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Figure 6.1: Channel and environment domains. Notations are taken from Chapter 5.

However, to enable a correct transition back and forth, a spatially consistent channel
model has to be designed. Thus, Chapter 3 presents the methodology for creating a
spatially consistent channel model for Massive MIMO systems. The main contributions
of this research are the incorporation of the SWP model in the channel model and the
complete derivation of the reflection of the wireless signal from arbitrarily inclined
surfaces. The channel model designed correctly links the propagation environment
with the observed channels. Further, to realize the transition from the channel domain
to the environment domain, a novel localization solution has been designed. Chapter
4 describes in detail the user localization solution in massive MIMO networks. The
main contributions of this piece of work are user localization based on only UL signals
including LTE RACH signals under the SWP assumption, phase noise elimination, and
carrying out proof-of-concept localization experiments on the Otago University massive
MIMO testbed. The designed solution is capable of accurately localizing UEs in both
single-path and multipath environments.

To realize the transition back from the environment domain to channel domain, a
novel solution in channel reconstruction for non-transmitting antennas has been de-
veloped. Chapter 5 describes in detail the channel reconstruction scheme. The main
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challenge in designing the solution was to obtain the orientation information of non-
transmitting antennas. Knowledge about orientation becomes essential, especially in
the inference of spatial characteristics of the non-transmitting antennas. This inference
can be considered as “manipulations” in the environment domain. Thus, the central
contribution of this study is the orientation reconstruction of a single transmitting an-
tenna in both single-path and multipath propagation environments. The locations and
orientations of non-transmitting antennas can be inferred from the estimated locations
and orientations of transmitting antennas using the known layout design of the UE.
Another contribution of this work is in the advancement of the channel modeling ap-
proaches described in Chapter 3 by incorporating a mechanism for signal polarization
change that is consistent with any 3D movement. Once locations and orientations of all
antennas are known, the propagation paths can be inferred, which means that channels
for non-transmitting antennas can also be reconstructed.

6.2 Limitations

Due to the lack of a full-size testbed, all the results on channel simulation have been
evaluated theoretically and compared with the available publications in terms of logi-
cal correctness, and hence there might be incorrectness in describing the real channel
effects. Although the proof-of-concept localization experiments have been conducted
on the Otago University massive MIMO testbed, this was a small testbed that consists
of only two radios. All the time alignment procedures have been done offline. Conse-
quently, some essential effects of simultaneous reception might have been unobserved.
Also, due to the lack of a full-size testbed, it was impossible to examine which hard-
ware impairment has a dominant negative effect in localization performance. Thus,
only phase noise has been considered, since the effect of a nonideal synchronization is
observable even for the Otago testbed. This limitation can be addressed by access-
ing full-sized testbeds in larger research laboratories such as Lund, Bristol, or Rice
Universities, and hence this topic falls to future studies.

The antenna orientation reconstruction was developed by considering the Hertzian
dipole antenna model. Although the model has non-zero size and orientation, that is,
the antenna cannot be considered as a point source, this is still an idealized model.
However, this solution can become helpful in developing solutions for other antenna
models. Addressing this limitation transforms into an even larger research question
that may have fundamental impacts on future wireless technologies.
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6.3 Future Work

Further development of the channel modeling project lies in the experimental valida-
tion of the proposed approaches and enhancement of the variety of simulation scenarios
by considering other areas for which accurate geometrical representations are available.
This will give an excellent platform for collecting channel statistics that can be used, for
example, in finding optimal positions for BSs. Simultaneously with the incorporation
of new scenarios, it will be interesting to analyze the performance of the localization so-
lution in different environments. The main direction of future work for the localization
solution is to conduct field experiments with a full-sized massive MIMO prototype.
For this purpose, it is worth look for a postdoc opportunity in the leading research
laboratories such as Lund, Bristol, or Rice Universities. Another interesting future
direction for the localization project is to implement Machine Learning approaches in
the nonlinear data-fitting optimization problem to increase the localization accuracy
and robustness.

The future development of the antenna reconstruction and channel reconstruction
– like the localization – lies in extensive experimental validation. The first step of the
experiments for validating the correctness of the antenna orientation reconstruction
can be started by conducting proof-of-concept tests using the Otago testbed, and then
extending it to channel reconstruction validation experiments.

6.4 Final Words

It has been an interesting dive into the massive MIMO topic. Each step opened far more
new questions than I was able to cover. It should be a standard situation in science –
each tiny step sheds light on a broader area. I hope that the produced contributions
will find their applications in the real world.
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