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Populärvetenskaplig sammanfattning

CERN, Europas ledande laboratorium för partikelfysik, annonserade år 2012 bevis för en
ny typ av partikel: higgspartikeln . Denna partikel upptäcktes i kollisioner av protoner
vid Large Hadron Collider (LHC) i Geneve. Higgspartikeln är den sista pusselbiten i par-
tikelfysikens standardmodell och experimentalister har letat efter den i decennier. Stan-
dardmodellen är en otroligt framgångsrik modell inom kvantfältsteorin och innefattar idag
den elektromagnetiska kraften mellan elektroner och protoner; den starka kraften som
binder samman kvarkar till protoner och neutroner; samt den svaga kraften som bland an-
nat kopplar samman elektroner och neutriner. Higgspartikeln är speciell; dess tillhörande
kvantfält ger de andra partiklarna massa genom den så kallade higgsmekanismen. I en
partikelkollision sönderfaller den i princip omedelbart och man kan därför endast studera
restprodukterna. Än så länge är det inte bekräftat att signalen vid LHCmotsvarar standard-
modellens higgspartikeln till hundra procent. Genom att mäta hur partikeln interagerar
med andra partiklar så kan man säga att den liknar en standardmodell higgspartikeln, men
det finns fortfarande utrymme för en mer komplicerad higgsmekanism.

Bortsett från några få undantag så stämmer standardmodellen idag överens med alla ex-
periment gjorda vid acceleratorer på jorden. Trots detta så finns det goda indikationer för
att det måste existera ny fysik; vilket skulle kräva en utökning av standardmodellen. Från
astronomiska observationer så beräknas det att 85  av universums materia måste vara i en
hitintills okänd form. Denna materia reagerar ej med ljus och benämns som mörk materia.
Detta är en av partikelfysikens största olösta gåtor; då ingen av partiklarna i standardmod-
ellen passar helt in i beskrivningen. Även om de svagt växelverkande neutriner uppfyller
vissa kriterier så har de för liten massa för att kunna utgöra all mörk materia.

Medan experimentallister söker efter nya partiklar i acceleratorer så jobbar teoretiker på
att dels hitta på modeller för ny fysik, men också på att förbättra beräkningar av vad man
förväntar sig observera i experimenten. En sådan observabel är till exempel sannolikheten
för att producera en higgspartikeln vid LHC. Beräkningar inom kvantfältsteorin är dock
väldigt komplicerade; kvantfluktuationer möjliggör att partiklar hela tiden skapas, trans-
muteras, annihileras och interagerar med varandra. Inom kvantmekaniken talar man om
sannolikheter för att någonting ska ske. Dessa sannolikheter beräknas genom att summera
alla kvantmekaniska amplituder; en amplitud för varje gestaltning en process kan anta.
Senare i denna avhandling visualiseras sådana amplituder i form av Feynman diagram.
För att få kvantitativa resultat används ofta Monte Carlo metoder och datorkraft för att
kunna simulera kvantmekaniska processer. Ett annat vanligt verktyg inom svagt växelverkande
modeller är störningsteori där man kan förlita sig på enbart analytiska beräkningar. Genom
att uttrycka partikelkollisioner som en summa av processer med minskande sannolikhet så
kan man göra olika nivåer av approximationer; beroende på den mängd av kvantfluktua-
tioner man tar hänsyn till.

ii



Kvantfluktuationer har mer eller mindre betydelse beroende på vilken längdskala som un-
dersöks. Ett exempel är vakuumpolarisation av elektronens laddning. Elektronen kan ses
som en punktpartikel med ett moln av elektron-positron-par omkring sig som skapas och
annihileras hela tiden. Studerar man elektronen närmare, på en mindre längdskala, så
tränger man igenom detta moln som omger elektronen och elektronen växelverkar därmed
starkare. Detta fenomen ger upphov till ett skalberoende för modeller inom kvantfältteorin
och dess beteende vid en ändring av längdskala bestäms utav deras ”renormeringsgruppekva-
tioner” (RGEer).

Denna avhandlingen utgörs av arbeten såväl inom som bortom standarmodellen. Gemen-
samt för alla är att de fokuserar på att härleda och använda RGEer i olika modeller.

Det första projektet beräknar effekten avmjuk strålningmellan starkt växelverkande kvarkar
och gluoner i en protonkollision. Denna beräkning utförs i den effektiva fältteorin ”Soft-
Collinear-Effective Theory”. I en typisk partikelkollsion finns det en uppsjö av olika fysik-
fenomen vid olika längdskalor. Genom att härleda RGEer för de olika faktorer som bidrar
får man en ökad precision och kontroll över osäkerheten i själva beräkningen.

Det andra projektet förklarar hur man härleder RGEer i olika ramverk för modeller som
innehåller flera identiska higgsfält. Då fält med samma kvanttal blandar sig ständigt måste
man systematiskt ta hänsyn till detta.

De övriga projekten sysslar alla med ett specifikt scenario: standardmodellen plus ett ex-
tra higgsfält; eller ”2-Higgs-Dublett-Modellen” (2HDM). Detta är en populär modell att
studera då bland annat teorin om supersymmetri kräver ett extra higgsfält, men 2HDM
existerar också som en effektiv teori för många andra exotiska modeller. I 2HDM finns
det fem stycken higgspartiklar och en utökad higgsmekanism ger ett betydligt större pa-
rameterområde. RGEer är ett effektivt verktyg för att undersöka vilken skepnad 2HDM
kan ta. Genom att lösa dem ser man hur modellen beter sig vid olika längdskalor och man
kan till exempel kontrollera om modellen är instabil och bryter samman vid en specifik
skala. Att modellen bryter samman skulle betyda att det måste finnas ytterligare ny fysik
som är relevant vid mindre skalor. I denna avhandlingens projekt härleds andra ordningens
RGEer för 2HDM och programvaran, beskriven i projekt fyra, utvecklas för att kunna lösa
dem numeriskt. Projekt tre och fem fokuserar på att med dessa verktyg i hand undersöka
2HDM.
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Introduction

”Confusion is a fantastic state of mind!”
Carl-Erik Magnusson

This thesis is composed out of five papers that all deal with different problems in high energy
particle physics. To properly understand their content requires a working knowledge of
quantum field theory. However, it is still possible to follow the broader ideas of the scientific
field itself without such an expertise. A thorough introduction that is suitable for all readers
is beyond the format of this thesis; as well as the capabilities of the writer. Therefore, the
level of detail here starts out low, but increases dramatically.

The introduction is structured such that the first section is somewhat self-contained in that
it gives a short introduction to the field of particle physics and the standard model, while
at the same time also introducing the work that is presented in the papers. After the first
section, the reader is assumed to be comfortable with doing tree-level calculations in quan-
tum field theory. In section 2, the concept of the renormalization group evolution and
resummation is explained by deriving the renormalization group equation for the electro-
magnetic charge in quantum electrodynamics. The specific Two-Higgs-Doublet Model that
is relevant for paper III to V is presented in section 3; while the framework of paper I - Soft-
Collinear-Effective Theory - is briefly described in section 4. After some concluding words
in section 5 there is finally a compact summary of the papers and the author’s contributions
in section 6.

1.1. The frontier of fundamental science

Theoretical physics deals with finding the fundamental mathematical laws of nature; a quest
which humankind has made great progress in. Today, we have theories that span a huge
range of length scales. These agree with observations of the cosmos on galactic scales all
the way down to collisions of particles in accelerators on sub-nuclear scales. There are
two pillars of fundamental physics that deal with the respective ends of the probed length



scales. One is the theory of general relativity; an elegant theory that explains gravitation as
things moving according to the shortest paths in four dimensional space-time. In general
relativity, space-time is no longer static and flat but rather dynamical and curved by energy.
The theory has been very successful in explaining, for example, the motions of the planets;
time dilation effects in gravitational fields; as well as predicting the existence of gravitational
waves.

The other frontier of fundamental physics is the theory of quantum fields, which is the
unification of two great breakthroughs in the 20th century: the theory of special relativity
and quantummechanics. Quantum field theory (QFT) describes particles as excitations in
their corresponding quantum fields that permeate space-time. Throughout the last approx-
imately 100 years, physicists have found more and more particles. These were discovered in
a range of different experiments. Some have been tabletop ones in small laboratories, others
are studies of cosmic rays. More recently the frontier has been huge underground particle
accelerators that collide particles at ever increasing energies. All these particles are collected
in one model in the framework of QFT: the Standard Model (SM) of particle physics.
This model has had unprecedented success when it comes to making precise quantitative
predictions of measurements and explains essentially all earthbound high energy physics
phenomenology; there are presently a few anomalies where it is currently unclear whether
new physics is needed to explain the disagreement between experiments and theory.

1.2. The Standard Model of particle physics

The SM’s particle content is displayed in figure 1 and can be divided into three groups:

• Fermions are the quarks and leptons and correspond essentially to matter particles.
The familiar electron belongs to this group. Also the u and d quarks that form protons
and neutrons are fermions; which together with the electron make up atoms. There
are also twomore generations of these mentioned fermions as well as three neutrinos.

• Gauge bosons refer to force carriers. The SM contains three gauge forces. One is the
familiar electromagnetic force; with the photon being the gauge boson. Another is
the weak force that is responsible for nuclear β-decay. Its gauge bosons are massive
and are called the W± and Z bosons. The third one is the strong force that holds
the quarks of the proton together with the corresponding gluons. They are massless,
but, unlike the photon, they can interact with themselves.

• The last puzzle piece that was discovered in 2012 is the Higgs boson. It is special
in that its quantum field gives masses to all the other particles through the Higgs
mechanism.
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Quarks:
up (. MeV) charm (. GeV) top ( GeV)

down (. MeV) strange ( MeV) bottom ( GeV)

Leptons:
electron (. MeV) muon ( MeV) tau (. GeV)
νe (< 2.2 eV) νµ (< 0.17 MeV) ντ (< 18 MeV)

Vector bosons:
photon () gluon ()
Z ( GeV) W± ( GeV)

Scalar bosons: Higgs ( GeV)

Figure 1: The particle content of the SM with their masses in parentheses [1]. Because of neutrino
mixing, their flavor states do not have definite masses.

We can get an overview of the entire SM by writing down all the quantum fields that are
present in its Lagrangian density. These are fancy words in the field of analytical mechanics,
but even if one does not understand what the symbols mean - one should appreciate that
it appears very compact. The structure is completely fixed by a mathematical symmetry:
a so called gauge symmetry. After identifying the correct symmetry that gives rise to the
interactions in nature, one simply writes down all of the terms that obey this symmetry.
The SM can thus be written as

L =
∑
F

1
4
FµνFµν︸ ︷︷ ︸

Gauge forces

+
∑
ψ

ψ̄i /Dψ︸ ︷︷ ︸
Matter fields

+ (DµH)†(DµH) + m2H†H− λ

4!
(H†H)2︸ ︷︷ ︸

Higgs field

+ Yijψ̄iψjH+ h.c.︸ ︷︷ ︸
Higgs-matter interactions

(1)

and contains only about 20 parameters that need to be measured, i.e. they are not pre-
dicted by the theory. When those are fixed by experiments, one should in principle be able
to use the SM to explain everything around us in our daily lives. In practice, it is highly
impractical, if not impossible, to use the SM to calculate anything other than particle inter-
actions on subatomic distances; even a single proton is immensely complicated because of
the strong force that holds it together. What one does is instead to employ effective theo-
ries that contain the appropriate degrees of freedom at each length scale. Thus, to describe
living organisms one would be better off using theories in psychology and neuroscience;
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which, in principle, should be derivable from more fundamental sciences such as biology
and chemistry. At the bottom of the inverted pyramid lies the SM.

In situations where the SM can be employed to calculate observables in experiments, the
results are often impressive. One such an example of an observable that has unprecedented
agreement between experiment and theory is the magnetic dipole moment of the electron.
This is often parametrized in terms of ae ≡ (g − 2)/2, where g is a dimensionless factor
that is fixed to 2 in quantum mechanics. Including quantum corrections alter this value
and ae is consequently non-zero, although very small. Recent measurements and theoretical
calculations¹ give the values [2–4]

aexperiment
e = 1159652180.73(28)× 10−12,

atheorye = 1159652181.643(25)(23)(16)(763)× 10−12,

which agree to one part in 10−12! The accuracy of this agreement is a great scientific
achievement as well as a precision test of the SM and this is just a single example. The
Particle Data Group is an international collaboration that every two years compiles a huge
database of ∼ 40 000 [1] different measurements of the properties of elementary particles.
This number should be compared to the∼ 20 parameters of the SM to appreciate the SM’s
simplicity.

1.3. The missing pieces

Today, the SM has been tested in a wealth of different scenarios. Even though there are
some anomalies that still need to be investigated, the SM largely explains all collider exper-
iments. However, there are indications that the SM is not the full picture and that there
are missing pieces. First off, the structure of the SM is very mysterious in itself in that it is
not self explanatory; there are an infinite number of so called local gauge invariant QFTs
that one can fill with some particle content of one’s choice. Thus there are some theoretical
issues that physicists try to solve by making the SM to be a mere puzzle piece in a greater
mathematical structure. In the SM, the electromagnetic and weak force are unified under
a single greater electroweak gauge symmetry of the theory. During the Higgs mechanism,
the Higgs field acquires a vacuum expectation value which spontaneously breaks this sym-
metry. Afterwards, the electroweak gauge bosons mix into the massless photon as well as
the massive W± and Z. The strong force is, however, independent and there are great ef-
forts to construct grand unification theories that would unify all forces of the SM in a single
framework.

¹The four different theoretical uncertainties in atheorye are from perturbation theory (first two); hadronic and
electroweak sectors; and the fine-structure constant respectively.
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There is also another force that is totally absent in the SM: gravity. The quanta of gravity
- the graviton - would have spin 2 and, for reasons that will not be covered here, no one
knows how to construct such a theory that is valid on all energy scales. Thus there is a
problem of quantizing gravity and unifying all the fundamental forces.

It is not only the number and types of forces that are seemingly ad-hoc in the SM. In the
SM, there are three generations of fermions; the first one being the up and down quarks
together with the electron and its neutrino. The second and third generation are identical
to the first one, except that the particles are heavier for each step up. Also, the ∼ 20 free
parameters in the SM exhibit some hierarchies that could be explained by an embedding of
the SM in some larger framework, where the hierarchies arise from a dynamical mechanism.
For example, the masses of the fermions in figure 1 vary by many orders of magnitude; even
though they receive their masses from the same Higgs mechanism.

While a greater framework that could explain some of these mentioned mysterious features
is desirable from a theoretical viewpoint, there are also indications of new physics that the
SM cannot explain. From experiments, we know that neutrinos are massive and that they
oscillate from one type to another. This can be incorporated into the SM e.g. by adding
right-handed uncharged neutrinos.

From astronomical observations, it is now established that 85 of the matter in the universe
is made up out of something other than the particles in the SM. It is electromagnetically
neutral and hence dubbed darkmatter. Today, there is a huge number of models beyond the
SM that have a dark matter candidate in them. A popular characteristic for the candidate
is that it is a weakly interacting massive particle and there is a lot of effort in searching for
signals of such particles in ground based experiments.

1.4. Investigating the particle physics frontier

With the SM being so successful, it is increasingly important to test it at higher precision.
Even though there are indications of the SM not being complete, there is little guidance
of where to look for new physics and any disagreement of theory and data is worth inves-
tigating. Ever since its discovery, the Higgs boson has been of major interest. To see if
the signal actually corresponds to the SM’s Higgs boson, one must measure its interactions
with itself and other particles. So far, it resembles the SM Higgs boson, but there is still
room for deviations that would imply an extended scalar sector. Plenty of work is left to
be done at the Higgs physics frontier; both experimentally and theoretically.

As previously mentioned, the SM is mostly used for calculations of processes at subatomic
distances; such as collisions of high energy protons at the LHC. Such particle collisions
are in a way very clean and simple, e.g. compared to the inner workings of the human
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brain, but it can still be very difficult to make reliable calculations with the SM. Especially
in processes that involve the strong force. Quarks and gluons carry color charge and bind
together into color neutral hadrons such as the proton and it is impossible to observe a free
quark. If one were to pull the quarks apart in such a hadronic state, it will be energetically
favorable at a separation of about 1 fm (10−15 m) to produce a quark-antiquark from the
vacuum so that one ends up with two hadrons instead. Thus, no matter how much force
one uses, there is no way to separate the quarks in a hadron. This phenomenon is referred
to as confinement; the quarks are confined into hadrons at large distances while behaving as,
almost, free particles at sub-nuclear scales. Since the LHC is colliding hadrons, a thorough
understanding of the strong force is essential in any search for new physics in such collisions.

To describe particle collisions, people often rely on computational power and Monte Carlo
algorithms to simulate the scattering processes. A typical proton-proton collision exhibits
multiple disparate energy scales which is a complication. Just for starters, the protons are
bound objects and the hard scattering is mainly between some of its constituents. In ad-
dition to this hard process, there are soft particles with low invariant mass as well as hard
jets composed out of collinear particles. Analytic calculations are possible, but require so-
phisticated methods of dealing with all the different phenomena in a collision. Effective
field theories are employed to identify the relevant degrees of freedom and hence simplify
the calculations. Recently, physicists have developed the Soft-Collinear-Effective Theory
(SCET) framework, that, as the naming suggests, splits up the quantum fields according to
the typical momenta of particles participating in a collision; excitations in collinear fields
correspond to particles with collinear momenta for example. Each field then deals with
a distinct region of phase space. An advantage of SCET is that it provides a clear power
counting scheme at the level of the Lagrangian. This makes it possible to systematically
factorize the cross section; effectively separating the hard, soft and collinear radiation into
independent factors.

A specific observable that one can use SCET for is the transverse momentum spectrum
of Higgs production; i.e. the cross section for creating a Higgs boson as a function of
its momentum transverse to the beam axis. The main goal and result of paper I is the
calculation of one piece of this cross section: the soft function. This function contains
all the information coming from soft radiation in the scattering and can be calculated with
perturbation theory. When using perturbation theory, one has to decide the level of radiation
to include; higher levels give finer and finer approximations. Every order of approximation
can be thought of as summing up all the Feynman diagrams with the number of loops being
equal to the order of perturbation theory. The exact result then corresponds to summing
an infinite number of diagrams ranging from having zero to an infinite number of loops.
Usually one limits the calculation to zero, one or two loops; zero can be done on paper, 1-
loop calculations are automatized, while 2-loop calculations are a research paper. In figure 2,
a 1-loop Feynman diagram that contributes to the soft function is shown.
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Figure 2: The contributing Feynman diagram to the soft function at 1-loop order. The double lines
represent Wilson lines and the dotted line represents the final state cut. Every cut propa-
gator corresponds to a real emission.

By using so called Renormalization Group Equations² (RGEs) one can obtain the loga-
rithmic contributions at every loop order. This is not simply a better approximation, but
vital in certain situations where disparate energy scales produce large logarithms that spoil
the convergence of perturbation theory. The process of summing up these large logarithms
is referred to as resummation. In paper I, we calculate the soft function to 2-loop order,
which produce the ingredients of next-to-next-to-leading logarithm resummation for the
mentioned observable.

1.5. Going beyond the standard model

Most observables get radiative corrections when they are calculated at higher orders in
perturbation theory. In an interacting quantum field theory, quantum fields are coupled
together which enables particles to be created and annihilated as well as morph into each
other. Even in the vacuum there are quantum fluctuations where particle and antiparticle
pairs are being created and destroyed constantly. This has a vacuum polarization effect that
can have drastic consequences for a particular model. An example is the electric charge that
sets the interaction strength of the electron. The electron can be seen as a point particle that
is surrounded by a cloud of virtual particle-antiparticle pairs that make the vacuum behave
as a dielectric medium. These pairs are effectively dipoles that screen the true charge, as
illustrated in figure 3. When probing the electron at smaller length scales, the electromag-
netic interaction strength grows as one penetrates the cloud of virtual particles. This effect
will be discussed in greater detail in section 2, where we derive the RGE for the electromag-
netic interaction strength in quantum electrodynamics.

The energy dependence of quantum fluctuations is governed by the previously mentioned

²Such renormalization group equations are essential for this thesis and are described in more detail in the
following sections.
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Figure 3: (a): Feynman diagram that leads to the vacuum polarization of the electromagnetic field.
(b): Radiative corrections cause the vacuum to behave like a dielectricmedium. The charge
of the electron is shielded by a cloud of virtual electron-positron pairs, which consequen-
tially leads to one measuring a stronger electromagnetic interaction at smaller distances.

RGEs. By solving them, one performs a resummation of large logarithms and achieves
predictability in regions where fixed order perturbation theory breaks down. When ana-
lyzing models beyond the SM, this is a very powerful tool. Using these equations, one can
extrapolate models to energy regimes well outside of the available experimental reach.

Papers III to V, deal with a specific model beyond the SM: the Two-Higgs-Doublet Model
(2HDM). This model is a minimalistic extension of the SM; it simply adds an additional
Higgs field to the scalar sector. There are many motivations for investigating the 2HDM
that make it one of the most studied model beyond the SM. Perhaps the biggest motivation
comes from low energy supersymmetry; which requires two Higgs fields to be mathemat-
ically consistent. But it is also interesting to study a non-minimal scalar sector in its own
right; much like there are interesting consequences from having non-minimal fermion sec-
tor with multiple fermion generations in the SM.

The 2HDM has a rich scalar phenomenology sector with three neutral and one charged
pair of Higgs bosons. While the experimental community searches for new scalar particles
using colliders, there is plenty of work for the theorists to do. To guide the experiments
and for its own interest, one can investigate the parameter space of the 2HDM using all the
theoretical tools available. The RGEs that govern the model’s energy dependence contain
a wealth of information. By solving them, one can probe the models behavior at different
length scales. One of the goals of this thesis is therefore to investigate the behavior of
different scenarios for the 2HDM under renormalization group evolution.

One of the main subject of paper III is the derivation and usage of the 2-loop RGEs for the
general 2HDM.The 2-loop RGEs for a general renormalizable QFT in four dimensions are
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known [5–8]. However, there are some subtleties when working with models that exhibit
multiple identical scalar fields and the results of refs. [5–8] need some careful generalization.
Paper II describes how one can construct different renormalization schemes that handle this
case. The paper is not specifically about the 2HDM, but focuses on models that exhibit
multiple identical scalar fields.

While paper III deals with the CP conserving 2HDM, paper V completes the analysis by
also investigating CP violation effects. During this work we developed the open-source
software 2HDME that, among other things, can solve the RGEs for 2HDM numerically.
Paper IV is a manual for this code.

2. Quantum fluctuations

All the papers of this thesis deal with RGEs in one way or the other. These equations are a
powerful tool to investigate new physics models, as well as resumming large logarithms in
calculations of observables at colliders. Since they are of such importance, we will in this
section go through where they come from in more detail.

As a first investigation of the renormalization group, we will study the familiar force of
electrodynamics; more specifically, we will calculate the effect on the strength of electro-
magnetic interactions from quantum fluctuations. The interactions of electrons, positrons
and photons are all governed by the theory of quantum electrodynamics; with the basic
U(1)em gauge invariant Lagrangian

L =
1
4
FµνFµν + ψ̄(i/∂ + eb /A− m)ψ. (2)

This describes most of the everyday macroscopic phenomena, in principle, with only two
free parameters: the electron mass, m ≈ 0.5 MeV, and the electromagnetic charge³, eb.
It is worth emphasizing that the parameters of the Lagrangian do not correspond directly
to observables and one must in general employ a renormalization scheme when perform-
ing loop calculations in QFT. The whole procedure of renormalization is essentially the
process of relating physical observables to other observables. Therefore, we will begin by
investigating one such familiar measurable quantity: the Coulomb force.

2.1. The Coulomb potential

The charge sets the strength of the electromagnetic interactions between two particles. At
macroscopic distances it should reduce to the Coulomb force, which we will first derive.

³In this section we only denote the bare electromagnetic charge with a subscript b in order not to clutter
the formulas. In reality, the mass will also get radiative corrections and hence should also be renormalized.
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The system we will investigate is that of two static sources that we label as

Jµa (⃗x) :
{

J0a (⃗x) = ebδ(3)(⃗x− x⃗a),
Jia(⃗x) = 0.

Jµa (⃗q) :
{

J0a (⃗q) = ebe−i⃗q·⃗xa ,
Jia(⃗q) = 0. (3)

for a = 1, 2 in position and momentum space respectively. To get to the Coulomb force,
we start off with the energy functional E[J] = −i log Z[J], where Z[J] is

Z[J] =
∫
Dψ̄DψDA exp

[
i
∫

d4xL+ JµAµ

]
. (4)

The energy functional is a generating functional for connected Green functions,

δE
δJµδJν

= −iDµν = ⟨Ω|T{AµAν} |Ω⟩connected . (5)

It can thus be expressed as

E[J] = − i
2

∫
d4q
(2π)4

Jµ (⃗q)∗Dµν(q2)Jν (⃗q), (6)

where J denotes the sum of all currents. Plugging in the currents in eq. (3), it becomes a
function of r⃗ = x⃗1 − x⃗2,

E(⃗r) = −ie2b
∫

d4q
(2π)4

e−iq·rD00(q2) + (r independent terms). (7)

Since it gives the energy in the system as a functional of the sources, we identify the
Coulomb potential as the r-dependent term. In momentum space, we arrive at the simple
expression for the Coulomb potential:

Ṽ(q2) = ie2bD00(q2). (8)

To proceed, we need to compute the 2-point correlation function: the propagator. The
photon propagator can be written as a series of connecting 1-Particle Irreducible (1PI) di-
agrams,

iΠµν(q2) ≡ 1PIµ ν ≡ i(q2gµν − qµqν)Π(q2), (9)

where the tensor structure follows from Lorentz invariance. The full propagator form a
geometric series that can be summed up to give

Dµν(q2) = µ ν+ 1PIµ ν+ 1PI 1PIµ ν+ . . .

=
−i

q2[1−Π(q2)]

(
gµν −

qµqν
q2

)
+
−i
q2

(
qµqν
q2

)
. (10)

10



The terms proportional to momentum components are in fact gauge dependent and we
can omit them from here on for our computation.

To 1-loop order, we define Π(q2) = Π2(q2) +O
(
e4b
)
which corresponds to the Feynman

diagram

iΠµν
2 (q2) ≡ µ ν = i(q2gµν − qµqν)Π2(q2)

= − e2bµ
4−d
∫

ddk
(2π)d

Tr
[
γµ(/k + m)γν(/k + /q + m)

]
(k2 − m2) [(k+ q)2 − m2]

. (11)

Here, we use dimensional regularization in d = 4 − 2ϵ dimensions and µ is a renormal-
ization scale that is introduced for dimensional reasons; it will cancel out in all physical
observables. In the high energy limit, −q2 ≫ m2, a straightforward calculation gives

Π2(−q2 = Q2) = −
e2b

12π2

[
1
ϵ
+

5
3
+ log

(
µ2/Q2)]+O (m2/Q2) . (12)

With the results from the 1-loop computation of the propagator, the Coulomb potential in
momentum space is

Ṽ(q2) =
e2b

q2 [1−Π2(q2)]
. (13)

Now, we have an expression for the Coulomb potential in terms of the bare electromagnetic
charge. One must now define the electromagnetic coupling in the Lagrangian through
some renormalization condition; that relates it to something measurable. A natural choice
here is to define it so that the Coulomb potential at some reference scale Q2

0, or r0, reduces
to the ordinary classical result V(r0) = e(r0)2/(4πr0) in position space and Ṽ(Q2

0) =
e(Q0)

2/Q2
0 in momentum space. The parameter e(Q0) is then a measurable quantity that

we have an expression for from the above 1-loop calculation,

e(Q0)
2 ≡ e2b

[
1+Π2(Q2

0)
]
+O

(
e6b
)
. (14)

This is so far not a very useful formula. If the right hand side of eq. (14) actually was known,
it would be incredible since we then could calculate the fine structure constant from first
principles. Sadly this is not so since we do not know eb and furthermore Π2(Q2

0) contains
1/ϵ poles and the unphysical renormalization scale µ. However, what we can compute is
the coupling strength e(Q) at another energy scale by relating it to the measured e(Q0). By
iteratively solving e(Q) in terms of e(Q0) with eq. (14), we end up with the result

e(Q)2 = e(Q0)
2 {1+ [Π(Q2)−Π(Q2

0)
]}

+O[e(Q0)
6]

= e(Q0)
2
[
1+

e(Q0)
2

12π2
log
(
Q2/Q2

0
)]

+O[e(Q0)
6]. (15)
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This definition of the coupling parameter is often referred to as a running coupling since it
depends on the energy scale of the physical process at which it is used to calculate observ-
ables. It actually grows logarithmically as one goes to higher energies; equivalently, smaller
distances.

2.2. Large logarithms calls for resummation

µ ν µ ν µ ν

Figure 4: Examples of higher order loop corrections to the vacuum polarization in quantum elec-
trodynamics.

With eq. (15), we can compute e at another energy scale. However, we only calculated the
1-loop diagram; at higher loop levels there are additional diagrams like the ones in figure 4.
Denoting e(Q) ≡ e, e(Q0) ≡ e0 and log(Q2/Q2

0) ≡ L, we can sketch what the result
would be to higher orders

e2 ∼ e20 + e40L+ e60L
2 + e80L

3 + . . . (LL)

+ e40 + e60L + e80L
2 + . . . (NLL)

+ e60 + e80L + . . . (NNLL), (16)

where we have grouped the perturbation series in powers of e0 as well as powers of L.
When e0 and L are much smaller than 1, the first few terms should be sufficient to get
a reliable prediction of e. There is a problem though if one deals with disparate energy
scales. If L ∼ 1/e0, large logarithms spoil the convergence of perturbation theory since
the first row contains O (1) terms⁴. There is however an easy way to sum up all of these
terms that contain logarithms. Summing up the first row is referred to as Leading-Log
(LL) resummation; including the logarithmic terms in the second row would correspond
to Next-to-LL (NLL) and so on. We know the energy dependence of e(Q) from eq. (15)
and by taking the derivative with respect to log(Q) we end up with

βe ≡
d

d logQ
e(Q) =

e(Q)3

12π2
. (17)

This is an example of a RGE that was mentioned in the introduction. The RGE for the run-
ning coupling e(Q) is also referred to as the coupling’s beta function. Equations such as this

⁴This is more often the case when one deals with the strong force because of the large αs coupling.
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one governs the energy dependence of theories and a tremendous amount of information
about the theory can be said by analyzing it.

In this simple case where there is just a single RGE with one variable, one can solve eq. (17)
analytically, which gives the electromagnetic charge at one scale in terms of it at another
scale,

e(Q) =
e(Q0)√

1− e(Q0)2

12π2 log
(
Q2/Q2

0
) . (18)

This corresponds to the LL resummation as can be seen if one Taylor expands eq. (18) and
compares with eq. (16).

To summarize, we have defined a parameter e(Q0), that is fixed to some measured value at
a particular energy scale Q0; where the experiment is performed. Then we used perturba-
tion theory to calculate this parameter at a different scale Q. Furthermore, this leads to a
differential equation that can be integrated, which yields the running coupling e(Q). The
renormalization scaleQ should be chosen to be the characteristic energy scale of the process
under consideration in calculations of cross sections and decay rates.

2.3. Renormalization group evolution

Since e(Q) is the only parameter in the Lagrangian of quantum electrodynamics, except the
electron mass, we have all the ingredients necessary to investigate how the theory behaves
at length scales that have not yet been probed experimentally. When we renormalized the
electric charge, we defined it so that quantum electrodynamics reduces to the Coulomb law
at large distances; where the charge e(Q) gets no radiative corrections by definition. Since βe
in eq. (17) is positive, the electromagnetic strength grows when performing experiments at
higher energies; or equivalently smaller distances. That the charge grows as one probes the
electron at smaller scales was already mentioned in section 1.5 and is physically illustrated
in figure 3. There, the electron is seen as a point particle surrounded by a cloud of virtual
e−e+ pairs that shield the bare charge and consequently make the vacuum behave like a
dielectric medium.

Even though one now can extrapolate e(Q) to very large energies, at one point e(Q) will
become too large and we loose any predictability since perturbation theory then breaks
down. In quantum electrodynamics, this scale is however enormous and way beyond any
energy scale that is experimentally interesting. The Landau pole is defined as the singularity
where e(Q) goes to infinity, i.e where the denominator of eq. (18) is zero,

ΛLandau = me exp
[
6π2/e(me)

2] ≈ 10286 eV. (19)
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Its presence is a sign that the theory becomes strongly coupled or is incomplete and new
physics should enter at some energy scale below ΛLandau.

Another characteristic behavior under renormalization group evolution is exhibited in the
SM. The strong interaction strength of quarks and gluons is fixed by the SU(3)c coupling
g3, with the 1-loop beta function⁵

βg3 = −
7g33
16π2

. (20)

That the sign of βg3 is negative is of crucial importance; it means that the strong inter-
action is only strongly coupled at large distances. The Landau pole ΛQCD ≈ 200 MeV
gives the energy scale where this occurs. This corresponds to a distance 1/ΛQCD ∼ 10−15

m, which is roughly the size of light hadrons. Below that scale, one has to resort to some
effective theory or non-perturbative lattice computations to make predictions. At the op-
posite end, one can use perturbation theory at energies above µ ∼ 1 GeV. The quarks and
gluons are thus weakly coupled when going to smaller distance; a phenomenon known as
asymptotic freedom. In figure 5 all the gauge couplings in the SM are plotted as functions
of the renormalization scale.

103 108 1013 1018

µ [GeV]

0.4

0.6

0.8

1.0

1.2 Gauge couplings
g1

g2

g3

Figure 5: The running gauge couplings g1,2,3 for the SM’s gauge groupsU(1)Y, SU(2)W and SU(3)c
respectively as functions of the renormalization scale. The running is performed at 2-loop
order with the default SM class in 2HDME [9].

By studying the RGEs of a theory, one can extrapolate its behavior to energies that have not
yet been probed experimentally. In this way, it is a powerful tool when investigating new
models in QFT; their behavior under the RG evolution tells us the models’ energy range
of validity. If the RG evolution is very sensitive to the choice of parameters at one scale,

⁵The beta function for g3 actually depends on the number of active quark flavors, which itself depends on
the energy scale. The given βg3 is valid for six quark flavors.
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it would be sign that the model is either fine-tuned or unstable. A Landau pole is a clear
indication that a model breaks down, but one can also investigate other features as well.
Any inconsistency gives valuable information about the model under consideration.

2.4. Renormalization group: the general picture

In the previous section we saw examples of running couplings with an energy dependence
governed by their respective RGE. Here, we sketch the general process of renormalization
that gives a system of such equations.

As explained in the beginning of this section, one needs to match the parameters in the
Lagrangian to physical observables with some renormalization scheme when calculating
something in quantum field theory. Each parameter will be fixed at a certain energy scale
by a renormalization condition. The choice of renormalization scale is completely arbitrary;
physical observables do not care at which scale you define your parameters.

Say we have a simple theory consisting of a single scalar field,

L =
1
2
(∂ϕb)

2 − 1
2
m2
bϕ

2
b −

λb
4!
ϕ4b, (21)

where we now have written all bare (unrenormalized) quantities with a subscript b. All
bare parameters in the Lagrangian can be factorized into a renormalization factor, Z, and a
renormalized running coupling/field, like

ϕb = Z(µ)ϕ(µ), λb = µ2ϵZλ(µ)λ(µ), (22)

where the µ2ϵ factor is inserted to make the renormalized coupling dimensionless⁶. The
renormalization scale µ will play the same role as the scale Q in section 2. Any object that
is expressed with bare quantities is of course µ-independent. This, almost trivial, statement
is used when deriving the RGEs for renormalized quantities.

If we for example look at the bare n-point correlation function, which will depend on the
bare Lagrangian parameters, it is related to the renormalized n-point function as

G(n)
b ({xi},mb, λb) = Z(µ)n/2G(n)({xi},m(µ), λ(µ), µ). (23)

Since the LHS does not depend on µ, we take the derivative with respect to µ, which gives

0 = µ
d

dµ
Gb =

n
2
Z

n
2−1
(
µ
d

dµ
Z
)
G(n) + Zn/2µ

d

dµ
G(n). (24)

⁶In dimensional regularization, the dimensionless action is
∫
ddxL which changes the dimensionality of

the fields; from [L] = d, one derives [ϕ] = (d− 2)/2 = 1− ϵ.
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If we rearrange this equation, we arrive at the so called Callan-Symanzik equation,[
µ
∂

∂µ
+ βm

∂

∂m
+ βλ

∂

∂λ
+

n
2
γ

]
G(n)({xi},m(µ), λ(µ), µ) = 0, (25)

where we have defined the beta functions for the running parameters,

βλ ≡ µ
d

dµ
λ(µ), βm ≡ µ

d

dµ
m(µ). (26)

The corresponding beta function for the scalar fields in eq. (25) is referred to as the anoma-
lous dimension, which is similarly defined as

µ
d

dµ
ϕ(µ) ≡ γϕ(µ). (27)

In the end, all renormalized parameters have their own RGE. We have previously seen
examples of the RGEs of gauge couplings to 1-loop order that only depend on the gauge
coupling itself. In such scenarios it is easy to solve the RGEs analytically like in eq. (18).
The Yukawa sector and scalar potential RGEs are in general more complicated and all the
RGEs form a system of coupled ordinary differential equations. Thus, one needs to rely on
numerical solutions when performing the RG evolution.
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3. Two-Higgs-Doublet Model

”I’m Mr.Meeseeks! Look at me!”
Mr.Meeseeks, Rick and Morty

While the gauge and fermion sectors of the SM are by now well established, the scalar sector
has just, in recent years, begun to be probed phenomenologically. Contrary to the fermion
sector, with its multiple families and mixings, which is seemingly more complicated than
necessary without any apparent reason, the scalar sector of the SM is minimalistic with a
single SU(2) doublet.

Although the 125 GeV scalar particle at the LHC [10, 11] so far resembles the SM’s Higgs
boson [12], its true nature is not yet fully explored. There is still room for an extended
and more complicated scalar sector; it is not hard to imagine a bigger scalar sector with the
minimal choice existing as a limit of it.

There is, however, one parameter that severely constrains the choice of scalar fields to use
for a SU(2)W × U(1)Y gauge theory. At tree-level this parameter is [13]

ρ =

∑
i
[
Ii(Ii + 1)− Y 2

i /4
]
vi∑

i Y
2
i vi/2

, (28)

where the Ii, Yi and vi are the weak isospin, hypercharge and Vacuum Expectation Value
(VEV) respectively, for all the scalar multiplets labeled by the index i in the theory. Exper-
imentally, this parameter is measured to be ρ = 1.00039±0.00019 [1]; in agreement with
the SM’s prediction, ρ = 1. This can be used to constrain higher dimensional representa-
tions of scalar fields; though, all extensions with doublets that have Ii = 1/2 and Yi = ±1
preserve ρ = 1. The minimal choice of adding one extra scalar doublet to the SM gives the
2HDM [14]. It is thus one of the simplest extensions of the SM’s scalar sector.

Even though the addition of a single Higgs doublet might seem like a small change, the
consequences can be drastic. In the SM, going from two to three fermion families opens
up for CP violation in the Yukawa sector by having a phase in the CKM matrix after
diagonalizing the Yukawa matrices. In the 2HDM there are many more Yukawa couplings
that are potentially complex even after going to the fermion mass basis. Similarly, the
2HDM exhibits the possibility of explicit as well as spontaneous CP violation in the scalar
potential [14]. These new sources of CP violation make up an attractive feature of the
2HDM and was the motivation for studying the 2HDM in the first place [14].

There are other motivations for choosing to study the 2HDM in addition to investigat-
ing a non-minimalistic theory. Perhaps the greatest motivation comes from low-energy
supersymmetry [15, 16]. In the minimal supersymmetric SM, the scalar fields belong to chiral
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multiplets while their complex conjugates are in a multiplet of opposite chirality; hence,
a single scalar field cannot give masses to both up and down type quarks. Because of this
reason, supersymmetry requires at least two Higgs doublets; it also solves the problem of
cancelling anomalies in the minimal supersymmetric SM.

Many non-supersymmetric models beyond the SM also exhibit two Higgs doublets. For
example, the Peccei-Quinn mechanism [17] in axion models requires two Higgs doublets
making the 2HDM into a low-energy effective theory [18].

Given the popularity of the 2HDM, there is a huge amount of work that has been done in
the literature. For more details, see the review in ref. [19].

3.1. The Standard Model revisited

The content of the SM was briefly covered in section 1.2. Here, we will revisit it with more
details to prepare for the 2HDM. The SM is a SU(3)c × SU(2)W × U(1)Y gauge theory
that is spontaneously broken down to SU(3)c ×U(1)em. Its potential and Yukawa sectors
are

VSM = m2
11Φ

†
1Φ1 +

1
2
λ1

(
Φ†
1Φ1

)2
(29)

and

LYSM =− Q̄L · Φ̃1η
U
1 UR − Q̄L · Φ1η

D†
1 DR − L̄L · Φ1η

L†
1 ER + h.c. (30)

respectively, where Φ̃i ≡ iσ2Φ∗
i and the left-handed fermion fields are

QL ≡
(

UL
DL

)
, LL ≡

(
νL
EL

)
. (31)

The 3-by-3 ηF1 matrices are the Yukawa couplings in the fermion flavor space. These will be
diagonalized when going to the fermion mass-eigenstate basis. The Φ1 field is a SU(2)W
doublet that acquires a vacuum expectation value, v, during the Higgs mechanism. With
a gauge transformation, it can be brought into the form

Φ1 =
1√
2

( √
2G+

v+ h(x) + iG0

)
. (32)

Of the four degrees of freedom of the Higgs field, the three G+,0 are ”eaten” byW± and Z
while one corresponds to a physical Higgs boson, h(x), with the masses

mW± = vg/2, mZ = v
√

g2 + g′2/2, mh = v
√
λ1, (33)
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where g and g′ denote the gauge couplings of SU(2)W and U(1)Y respectively.

Imposing that the ground state is in a minimum of the potential gives the relation v =√
−2m2

11/λ1, which removes one of the three free parameters. If one fixes v = 1/
√
GF ≈

246 GeV, one is left with a single parameter that is fixed by the mass of the Higgs boson.

So far the minimal scalar sector of the SM is sufficient to explain the phenomenology at
the current colliders. However, not all interactions have been probed experimentally. One
interaction that will be of paramount importance is the triple Higgs boson interaction
vertex that is predicted to

h

h

h = −3i
m2
h
v
. (34)

Measuring this interaction will be a rigorous test of the structure of the electroweak symme-
try breaking. It is, however, not an easy experiment to perform; the best channel is through
double Higgs production. This is therefore left as a challenge for future colliders [20].

3.2. Adding a doublet

The 2HDM simply extends the scalar sector of the SM with an additional scalar doublet,
Φ2. This results in the potential

V2HDM =m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.) +

1
2
λ1

(
Φ†
1Φ1

)2
+

1
2
λ2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
1
2
λ5

(
Φ†
1Φ2

)2
+ λ6

(
Φ†
1Φ1

)(
Φ†
1Φ2

)
+ λ7

(
Φ†
2Φ2

)(
Φ†
1Φ2

)
+ h.c.

]
.

(35)

In general, the parameters m2
12 and λ5,6,7 are complex. The potential then exhibits 14

degrees of freedom. Out of these, three are removed by the tadpole equations while one
can be removed by a re-phasing of one of the Higgs fields.

After a gauge transformation, the Higgs fields’ VEVs acquire the forms⁷

⟨Φ1⟩ =
v√
2

(
0
cβ

)
, ⟨Φ2⟩ =

v√
2

(
0

sβeiξ

)
. (36)

⁷cβ (sβ) is short notation for cosβ (sinβ).
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There are different Higgs flavor bases that all are related by U(2) field redefinitions that
leave the kinetic terms invariant. This implies that only invariant quantities under such
a transformation in the 2HDM can correspond to something physical and it is therefore
convenient to use the Higgs flavor base-independent methods of refs. [21–23]. We mostly
employ their notation in the following.

The Higgs basis [21, 24] is one particular convenient basis; in it, only one Higgs field gets a
VEV. By defining the transformation matrix

Û =

(
v̂∗1 v̂∗2
ŵ∗
1 ŵ∗

2

)
=

(
cβ e−iξsβ
−eiξsβ cβ

)
, (37)

one can express the Higgs fields in the Higgs basis in terms of the fields in the generic basis
as Ha = Ûab̄Φb, with the inverse Φa = Û†

ab̄Hb. These fields take the form

H1 =

(
G±

1√
2
(v+ φ1 + iG0)

)
, H2 =

(
H±

1√
2
(φ2 + ia0)

)
. (38)

After electroweak symmetry breaking, the G± and G0 are the Goldstone bosons that are
eaten by the W± and Z. The H± is a charged scalar field, while φ1,2 and a0 all mix into
three neutral Higgs particles, hk; of indefinite CP properties if the scalar potential exhibits
CP violation. The scalar potential in the Higgs basis is of the same form as in the generic
basis,

−LV = Y1H
†
1H1 + Y2H

†
2H2 +

(
Y3H

†
1H2 + h.c.

)
+

1
2
Z1(H

†
1H1)

2 +
1
2
Z2(H

†
2H2)

2

+
1
2
Z3(H

†
1H1)(H

†
2H2) +

1
2
Z4(H

†
1H2)(H

†
2H1)

+

{
1
2
Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}
.. (39)

The Yukawa sector is, in the generic basis,

LY2HDM =

2∑
i=1

[
−Q̄L · Φ̃iη

U
i UR − Q̄L · Φiη

D†
i DR − L̄L · Φiη

L†
i ER + h.c.

]
. (40)

It is, however, more convenient to write it in the Higgs basis, where it similarly is

−LY = Q̄LH̃1κ
UUR + Q̄LH1κ

D†DR + L̄LH1κ
L†ER

+ Q̄LH̃2ρ
UUR + Q̄LH2ρ

D†DR + L̄LH2ρ
L†ER + h.c. . (41)

20



The Yukawa κF matrices are the diagonal mass matrices,

κU = v̂∗āη
U
a =

√
2
v
diag(mu,mc,mt),

κD = v̂∗āη
D
a =

√
2
v
diag(md,ms,mb),

κL = v̂∗āη
L
a =

√
2
v
diag(me,mµ,mτ ). (42)

Here, we have assumed a biunitary transformation of the right and left handed fermion
fields such that the κF matrices are diagonal. It is in the general case impossible to diago-
nalize all the Yukawa matrices and ρF = ŵ∗

āη
F
a are left as arbitrary complex 3× 3 matrices.

In short, the scalar sector of the 2HDM contains several more scalar couplings as well as
three new Yukawa matrices for the additional Higgs doublet, compared to the SM. In the
general 2HDM, there is the possibility of explicit CP violation since the parameters ρF,
m2
12 and λ5,6,7 are allowed to be complex.

3.3. Scalar kinetic mixing

When considering the general 2HDM, or any model with indistinguishable scalar fields,
there is one step of diagonalizing the kinetic term that often is being overlooked. If one
were to write down every gauge invariant term there is, one should also include the term

L = κ∂µΦ
†
1∂

µΦ2 + h.c.+ . . . (43)

in the Lagrangian from the start. There is good reason for not doing so, since it is well
known that this kinetic mixing term can be diagonalized with a field redefinition at tree-
level, as described in sec.12.5 of ref. [25]. However, things are not so trivial when dealing
with loop corrections and the renormalization group. In the general 2HDM, there are
infinites in the 2-point Green functions,

Φ1 Φ2 ∼
1
ϵ
Tr(ηF†1 η

F
2) + . . . . (44)

For the diagonal case, these can be absorbed into the field strength renormalization of Φ1
and Φ2; however, one must also introduce a non-diagonal renormalization to absorb the ϵ
pole in the non-diagonal diagrams simultaneously. In ref. [26], they regard the parameter
κ as a parameter that must be renormalized and hence get a RGE of its own. There, the
motivation is that since κ is being induced in the RG evolution, one cannot diagonalize
the kinetic terms at all renormalization scales. But only physical parameters are in need
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of renormalization and κ does not correspond to any such quantity. That the 2-point
function is containing unphysical divergences is not a problem since 2-point functions
do not correspond to physical quantities directly. They do, however, contain information
about the physical masses of the theory.

To analyze the analytic structure of the 2-point function, we can make use of the Källen-
Lehmann spectral representation. Taking the Fourier transform of the 2-point function of p2

in the complex plane gives

Gij(p2) ≡
∫

d4xeipx ⟨Ω|T(ΦiΦj) |Ω⟩ =
∫ ∞

0

dM2

2π
ρij(M2)

i
p2 −M2 + iϵ

. (45)

Although this is a general non-perturbative formula, we do not know the spectral density
function ρij(M2) from first principles. It should, however, contain isolated delta functions
corresponding to single particle states⁸. In terms of matrix elements, it is

ρij(M2) = 2π
∑
k

δ(M2 − m2
k) ⟨Ω|Φi(0) |mk;p = 0⟩ ⟨mk;p = 0|Φj |Ω⟩+ . . . . (46)

The massesmk are the physical pole masses of the particles. Given that the scalar fields have
the same quantum numbers, a particle state will in general have an overlap with all the
scalar operators; meaning that all the components of ρij are non-zero. Except for isolated
single particle states, there are other contributions to the spectral density corresponding to
bound states; which would occur atM2 ≳ (2mk)

2. However, near the single particle states,
where the momentum goes on-shell, the 2-point function takes the form

Gij(p2)→
iZ(k)

ij

p2 − m2
k + iϵ

, as p2 → m2
k , (47)

where the residue is parameterized by Z(k)
ij , i.e.

Z(k)
ij = −i lim

p2→m2
k

(p2 − m2
k)Gij(p2). (48)

Green functions are related to physical scattering amplitudes through the Lehmann-Symanzik-
Zimmermann theorem. It takes general n-point Green functions and isolates scatterings of
physical on-shell external particles to arrive at S-matrix elements. In a theory with non-
diagonal 2-point functions, there are mixings on the legs as illustrated in figure 6. and thus

⁸For a proof of this, see the polology section 10.2 in ref. [25].
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Aijkl = b

a

d

c

Gjb

Gia

Gld

Gkc

Γ
amp
abcd

j

i

l

k

Figure 6: Scattering amplitude for scalar particles with non-diagonal 2-point functions. Γamp
abcd is the

amputated fully connected Green function.

the amplitude for 2-by-2 scalar scattering takes the form

Aijkl =
1√

Z(i)
ii Z

(j)
jj Z

(k)
kk Z

(l)
ll

× lim
p21→m2

i

(p21 − m2
i )Gia(p21)× lim

p22→m2
j

(p22 − m2
j )Gjb(p22)

× lim
p23→m2

k

(p23 − m2
k)Gkc(p23)× lim

p24→m2
l

(p24 − m2
l )Gld(p24)

× Γ
amp
abcd(p1, p2, p3, p4), (49)

The key point of this discussion is that there is no need to introduce and renormalize param-
eters such as κ in eq. (43) in order to deal with infinities in non-diagonal 2-point functions.
Even though the 2-point functions contain divergences, the physical quantities, like the
scattering amplitude in eq. (49), are finite after renormalization; it is just a matter of pick-
ing a renormalization scheme. In eq. (49), all the infinities can be absorbed into the counter
term for the 4-scalar interaction term.

This problem is further discussed in paper II, where we calculate the 1-loop RGEs in
three different renormalization schemes for a toy model and explicitly show how all of
the schemes are related through renormalization scale dependent field redefinitions.

This subtlety with scalar kinetic mixing is easy to overlook when deriving the RGEs. In
the conventional scheme most often used in the literature, the kinetic mixing term is com-
pensated for by having multidimensional anomalous dimensions for the scalar fields. The
2-loop RGEs for any renormalizable QFT in 4 dimensions were already derived in the
80s [5–7] and later extended to also include massive parameters as well as fixing some small
errors in ref. [8]. Strictly speaking, the formulas presented there are written in an irreducible
representation for the scalar fields, but they can be generalized somewhat straightforwardly
to also be valid for theories with multiple indistinguishable scalar fields⁹.

⁹The same issue is also discussed in ref. [27, 28].
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3.4. Flavor-changing-neutral currents

W W
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(a) (b)

Figure 7: Contributions to neutral Kaon oscillation in the SM (a) and the general 2HDM (b) which
exhibits FCNCs at tree-level.

There is one immediate problem with the general 2HDM: the presence of tree-level Flavor-
Changing-Neutral Currents (FCNCs). For example, in the CP conserving 2HDM, the
interaction of the lightest neutral CP even Higgs boson with down type quarks is

−LY =
1√
2
D̄
[
κDsβ−α + (ρD†PR + ρDPL)cβ−α

]
Dh1, (50)

where α is an angle arising from diagonalizing the CP even neutral Higgs mass matrix.
Looking at eq. (50), it is evident that since ρF are arbitrary complex 3-by-3 matrices, the
2HDM exhibits non-diagonal couplings of fermions to neutral Higgs bosons. As men-
tioned previously, these FCNCs arise because one cannot diagonalize all the Yukawa ma-
trices with a biunitary transformation of the fermion fields like one does in the SM. Such
tree-level couplings are absent in the SM and gives rise to processes that otherwise are loop
suppressed. For example, neutral Kaon meson oscillation is a process that occurs at the
1-loop level in the SM. In the general 2HDM, this process receives contributions at tree-
level, see figure 7, from the interactions in eq. (50). Since the SM is in agreement with
experiments, these FCNCs must be severely suppressed for the model not to be ruled out.

A popular solution to get rid of the tree-level FCNCs is to impose a discrete symmetry on
the model. The simplest symmetry is a Z2 one [29, 30], where one Higgs doublet is even
and the other is odd. There are four different choices one can make for the right handed
fermion fields under the Z2 symmetry as listed in table 1. The effect is that the up type
quarks only acquire masses from one Higgs doublet; similarly for the down type quarks and
leptons. Then, it is possible to diagonalize all the matrices and ρF becomes proportional to
κF as in table 1. This effectively gets rid of three Yukawa matrices.

Imposing aZ2 symmetry also forbids them2
12 and λ6,7 parameters in the potential; making

λ5 the only potentially complex parameter. However, one always has the freedom to absorb
one phase into the fields with a Higgs flavor basis transformation, which consequently
makes the Z2 symmetric 2HDM also CP conserving.
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Table 1: Different Z2 symmetries that can be imposed on the 2HDM. Φ1 is odd(−1) and Φ2 is
even(+1). For every type of Z2 symmetry, the ρF matrices become proportional to the
diagonal mass matrices, ρF = aFκF.

Type UR DR LR aU aD aL

I + + + cotβ cotβ cotβ
II + − − cotβ − tanβ − tanβ
Y + − + cotβ − tanβ cotβ
X + + − cotβ cotβ − tanβ

3.5. Electric dipole moment and flavor physics

hiZ/γ

t

e e

γ

H±W±

hi/H±

e e

γ

(a) (b)

Figure 8: Typical Barr-Zee diagrams in the 2HDM that contribute to the electric dipole moment of
the electron. In (a) there are also diagrams with W± or H± instead of the fermion loop.
In (b) there is an additional fermion loop diagram as well that contributes if the Yukawa
sector is not Z2 symmetric.

One way to explain the cosmic baryon asymmetry of the universe is through electroweak
baryogenesis [31–33]. However, to fulfill Sakharov’s criteria for baryogenesis [34], one needs
a strong first order phase transition and a source of CP violation for this to work and the SM
fails on both account. The Higgs boson mass is too high for a first order phase transition
[35,36] and the amount of CP violation in the CKMmatrix is too low [37–39]. The 2HDM
can be a remedy for electroweak baryogenesis, since it exhibits the possibility of a first order
phase transition [40], while also offering new sources of CP violation. It is thus interesting
to investigate how large the CP violation can be. The new sources cannot be arbitrarily
large because of severe constraints coming from electric dipole moments. Currently there
is no direct evidence for a non-zero electric dipole moment for any fundamental particle
and the task of measuring one is a challenging problem. Still, there exist upper limits that
are easily violated in the 2HDM. The cleanest particle to probe to date is the electron and,
recently, the ACMEII collaboration [41] placed a new bound on the electric dipole moment
of the electron to be

|de| < 1.1× 10−29 e cm, (51)
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using a system of ThO molecules. Even though the SM predicts a non-zero de, it is many
orders of magnitude lower than the current bound. But the 2HDM, with complex parame-
ters, can easily produce de in the range of 10−26 to 10−30 e cm; making it vital to check the
parameter points. The largest contribution to de comes from 2-loop Barr-Zee diagrams [42]
as the ones shown in figure 8.

There are many other observables that can be used to constrain the parameter space of the
2HDM. Of course, there are the direct searches of new scalar particles at colliders, but the
extra Higgs particles can also influence calculations in flavor physics that are in agreement
with the SM. For example, the charged Higgs boson interacts with quarks through

−LY = Ū
(
VCKMρ

D†PR − ρU†VCKMPL
)
DH+ + h.c. . (52)

Thus, the charged Higgs contributes to the process b → sγ through so called penguin
diagrams, shown in figure 9. As a consequence, weak radiative B-meson decays put a lower
bound on the mass of the charged Higgs boson [43–47]. If one has a type I Z2 symmetry
there is a tanβ dependent bound when tanβ ≲ 2; while with a type II Z2 symmetry one
gets the conservative bound mH± ≳ 580 GeV [47]. We do not apply these limits in our
studies of the 2HDM, but one should keep in mind that they exist.

Wb s

γ

H±
b s

γ
(a) (b)

Figure 9: Diagrams for b→ sγ in the SM (a) and the general 2HDM (b).

3.6. Breaking the symmetry

Since the exact Z2 symmetry is a very constraining requirement, one often breaks the sym-
metry softly by allowing for m2

12 ̸= 0. This softly broken Z2 symmetric 2HDM is by far
the most studied scenario, e.g. the 2HDM as the effective theory of the minimal supersym-
metric SM is of such a type at tree-level. Having a non-zerom2

12 is regarded as soft breaking
since the consequences are not that bad; it induces no symmetry breaking Yukawa interac-
tions. If one breaks the symmetry hard, by having λ6,7 ̸= 0 or a non-symmetric Yukawa
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sector, the results are quite different. One phenomenon that arises is that the symmetry
breaking spreads under RG evolution. The soft breaking mass term m2

12 does not enter
the massless parameters’ RGEs, while the opposite is not true. Thus a small hard breaking
of the Z2 symmetry can generate more symmetry breaking during the RG evolution of
the 2HDM. Moreover, the symmetry breaking can spread across the sectors, e.g. a flavor
conserving Yukawa sector at one scale might get FCNCs at another scale if λ6,7 ̸= 0.

At 1-loop order, the Yukawa sector’s RGEs are independent of the scalar quartic couplings.
Therefore, one has to employ 2-loop RGEs for the 2HDM to fully see how the symmetry
breaking spreads throughout all sectors. It is a central goal of both papers III and V to give
a quantitative answer to how much the hard breaking spreads during RG evolution in the
CP conserving and violating scenarios respectively.

3.7. Renormalization group evolution

”A man’s got to have a code.”
Omar, The Wire

Generalizing the results of ref. [8], we derived the 2-loop RGEs for the general complex
2HDM. Since these are very long, we omit writing them out in this thesis. The RGEs are
practically impossible to solve analytically and, in the end, their usage is mainly to perform
numerical calculations. Since deriving the 2-loop RGEs and writing code to perform the
RG evolution is a tedious and error prone task, we developed the public code 2HDME that
is described in paper IV. It can perform the RG evolution of the 2HDM and the interested
reader can find the RGEs in the source code.

When investigating the parameter space of the 2HDM we make sure to only consider
parameter points that are not excluded by collider data. Out of the four Higgs bosons, one
of them has to resemble the 125 GeV signal at the LHC, while the others must not violate
any exclusion bounds coming from collider searches. We make use of HiggsBounds [48–
50] and HiggsSignals [51] to implement these constraints. HiggsBounds determines if
a certain parameter point is allowed or excluded by comparing to experimental cross section
limits coming from LEP, Tevatron and LHC. HiggsSignals performs a statistical χ2 fit
to the measurements of the 125 GeV signal. All these codes require the calculations of decay
widths and rates for all Higgs bosons, for which we use a modified version of 2HDMC [52];
that is extended to also be valid for the complex CP violating 2HDM.

In the work of papers III and V, we investigate the RG effects of breaking the Z2 symmetry
at one particular scale. As already hinted in section 2.3, there is a wealth of information
in the RG evolution of a model. The 2HDM exhibits a large parameter space with sub-
stantial freedom in choosing a physical scenario. By being able to evolve the 2HDM in
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renormalization scale one has a powerful tool to investigate how stable specific parameter
configurations are at e.g. the electroweak scale. At some energy scale in the evolution, the
model might break down which would point to the need of new physics for the specific
scenario. The RG evolution results can then give a hint of any fine tuning in the choice of
parameters.

There are several consistency checks of the 2HDM that can be performed to make sure
that one deals with a ”good” model. One such constraint is to require unitarity of the
scattering matrix of scalar particles at high energies; effectively putting an upper bound
on the quartic couplings. Another theoretical constraint is to make sure that one is in a
stable global minimum of the potential; or at least in a metastable minimum with a lifetime
greater than the age of the universe. Finally, one immediately runs into trouble during the
RG evolution if one hits a Landau pole as explained in section 2.3. In such a case, all
parameters goes to infinity since the RGEs form a coupled system of equations. Near the
pole, perturbation theory breaks down and one would either need some new physics to
remedy this or the theory becomes strongly coupled.

All these consistency checks are implemented at tree-level in 2HDME. In the numerical evolu-
tions, the presence of Landau poles is implemented as a tree-level perturbativity constraint;
meaning a simple higher bound on the parameters in the Lagrangian.

With these tools at hand, paper III and V analyze the parameter space of 2HDM. Among
the results are quantitative measures of how large FCNCs, as well as λ6,7, can be generated
in cases with a broken Z2 symmetry. Also, what parameter regions contain consistent
models all the way up to the Planck scale. Paper III deals solely with the CP conserved
2HDM, while paper V completes the study by allowing for CP violation. In CP violating
scenarios, complex phases also spread during RG running. To constrain the amount of
CP violation we calculate the electron’s EDM, by summing up all of the relevant Barr-Zee
diagrams. The focus of the study is to provide the general characteristics of RG running in
the 2HDM. Furthermore, the effects studied here should be similar in other multi scalar
models.
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4. Soft-Collinear-Effective Theory

In section 3, we introduced the 2HDM as a proposed extension of the SM. The 2HDM
contains the SM in a certain decoupling limit; e.g. when the BSM scalar particles are much
heavier than the lightest one. Any deviation of the 125 GeV scalar particle from the SM’s
characteristics would be of immense importance. While experimentalists gather more data,
a lot of work is being done to calculate all the observables that are being measured at the
LHC to ever increasing accuracies. An example of such an observable that can be calculated
analytically is the transverse momentum spectrum of the Higgs boson; which is the focus
of attention in paper I. However, before we actually get to this calculation, we first take a
few steps back and introduce the concept of effective field theories as well as the framework
of SCET.

Pn Pn̄

ℓ

ℓ

Bn̄ Bn

Soft

Soft

H

Figure 10: A typical hadron collision with a lepton-pair final state. Each Pn denotes an incoming
proton along the directions nµ and n̄µ. In SCET, these are described by beam functions,
Bn, that contain all the collinear radiation along the corresponding beam axis. The soft
radiation is described by the soft function. There is also a hard function denoted as H
for the hard interaction in the process.

In hadron colliders, such as LHC, a good understanding and description of the phenomena
arising from the strong force is absolutely necessary. Collimated collections of particles in
the form of jets are ubiquitous. The very thing that is being accelerated - the proton - is
itself a soup of quarks and gluons and the resulting collision event is bound to be messy. All
these processes have all different characteristic energy scales which is a further complication.
At energy scales belowΛQCD, the quarks and gluons are interacting strongly rendering only
non-perturbative techniques applicable. On the opposite end, two partons in the collision
will make up a hard process that will have s ≈ m2

h; for Higgs production. All the particles
will also emit additional particles that have momentum components in the entire energy
range. It is vital to disentangle all these processes to make any calculation possible. A typical
proton collision is shown in figure 10, where the collinear radiation along the beam axis is
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colored green, while the soft radiation in all directions is orange. SCET disentangles these
different types of radiation at the level of the Lagrangian.

Originally, SCET was developed in the field of low-energy quantum chromodynamics; in
particular B-meson flavor physics [53–58]. Now, there are plenty of applications of SCET
to high-energy collider physics as well and in this section we will only briefly sketch out the
basics of the framework. For a more detailed summary of SCET, see the review in ref. [59]
or chap.36 of the introductory textbook in ref. [60].

4.1. Effective Field Theories

W
→ (53)

Figure 11: Integrating out the W boson yields a low energy EFT.

In previous sections, we have introduced the concept of how RGEs describe a theory’s
change in behavior when probing another length scale. When the change in behavior is
more dramatic and one passes thresholds where certain degrees of freedom cease to be
dynamic ones, it is more illuminating and easier to construct a so called Effective Field
Theory (EFT). For example, a particular model can contain a particle that is too massive
to be excited as a dynamical degree of freedom in the low energy regime. Then, one talks
about ”integrating out” the particle which yields an EFT. In the path integral formalism,
we can sketch the process as

Z[J] =
∫
DϕlightDϕheavyeiS[ϕlight,ϕheavy] =

∫
DϕlighteiSEFT[ϕlight], (54)

where SEFT is the action of the EFT, which then has an energy regime of validity ranging
up to roughly the mass of the heavy particle that was integrated out.

A classic example of an EFT in particle physics is the one that emerges due to integrating
out theW boson. Since theW boson is relatively heavy at around 80 GeV, it is not created
as a real on-shell particle in low energy processes. One can then simplify all internal W
propagators by expanding in momentum like

−i
(
gµν − pµpν/m2

W
)

p2 − m2
W

=
−igµν

m2
W

+O
(
p2/m4

W

)
. (55)

This yields a low energy EFT that is valid for p2 ≪ m2
W. The EFT will then contain

non-renormalizable 4-fermion operators as illustrated in figure 11; where the propagator is

30



simply collapsing to a single point. As an example, muon decay is precisely such a process
where one can employ this EFT.

4.2. Momenta regions and power expansion

A proper EFT should contain a power counting parameter λ ≪ 1. In the example in
section 4.1, of integrating out the W, this would correspond to m−2

W . SCET does not
integrate out full particles but rather divides the participating particles of a collision into
different regions depending on the scaling of their momenta. If one considers the radiation
off a highly energetic particle it can take two forms: the particle can split into collinear
particles along the same trajectory; or there is a soft particle emission at a wider angle.

It is very convenient to work in light-cone coordinates when dealing with high energy
particles with a small invariant mass. In such a system one substitutes the time axis and
one space axis for the light-cone boundary axes. Using the light-like reference vectors nµ =
(1, 0, 0, 1) and n̄µ = (1, 0, 0,−1), any four vector can be decomposed as

pµ = (n · p) n̄
µ

2
+ (n̄ · p)n

µ

2
+ pµ⊥ ≡ pµ+ + pµ− + pµ⊥ : (p+, p−, p⊥). (56)

For the sake of simplicity we will discuss the specific observable of interest in paper I: the
transverse momentum spectrum of Higgs production in proton collisions. Evenmore specifically,
we will only deal with the phase space region of small transverse momentum compared to
the hard interaction scale, Λ2

QCD ≪ p2
⊥ ≪ m2

h, and we will thus set the power expansion
parameter to be λ = |p⊥|/mh.

This region of small transverse momentum is suffering from large double logarithms of the
form log2(m2

h/p
2
⊥). These cause fixed order perturbation theory to break down just as in

section 2.2. Therefore, it is essential to resum these logarithmic terms.

Table 2: The momenta scaling modes in light-cone coordinates.

Four-momenta Invariant mass Mode
pµh ∼ mh(1, 1, λ) p2 ∼ m2

h hard
pµn ∼ mh(λ

2, 1, λ) p2 ∼ m2
hλ

2 n-collinear
pµn̄ ∼ mh(1, λ2, λ) p2 ∼ m2

hλ
2 n̄-collinear

pµs ∼ mh(λ, λ, λ) p2 ∼ m2
hλ

2 soft

Using light-cone coordinates, the produced Higgs boson will have a momentum that scales
as pµ ∼ mh(1, 1, λ). Any radiation that recoils against such a state will have a similar p⊥
scaling. The relevant scaling modes in light-cone coordinates are listed in table 2. While
the hard modes have an invariant mass of O

(
m2
h
)
, both the soft and collinear modes live

on the same invariant mass hyperbola in the {p+, p−} plane as sketched out in figure 12.
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Figure 12: The characteristic energy scales for the light-cone momentum components for the hard,
beam and soft sectors. The invariant mass is set by p−p+; hence, they all lie on a hyper-
bola. The fact that the beam and soft functions lie on the same hyperbola, gives rise to
rapidity divergences.

4.3. The SCET ingredients

Traditional QCD computations containing multiple energy scales resort to a diagrammatic
expansion such as the method of regions. But with such amethod, disentangling the contri-
butions coming from each phase space region is increasingly difficult when going to higher
orders in perturbation theory. SCET is formulated already with a proper power counting
at the level of the Lagrangian. This allows for a systematic organization of the power cor-
rections, i.e. the higher order terms in the expansion parameter λ. It also makes it easier to
ensure features such as gauge invariance; which is not manifest on the level of individual di-
agrams. However, in the end, the diagrams of SCET will be in one-to-one correspondence
with the QCD expanded ones.

To properly construct SCET is a complicated procedure that will not be covered in detail
in this thesis. In short, one splits up the quark and gluon fields in separate collinear and
soft fields,

q(x) = χn(x) + χn̄(x) + χs(x) + . . . , Aµ(x) = An
µ(x) + An̄

µ(x) + As
µ(x) + . . . , (57)

where every field excitation then has a definite momentum scaling. The Lagrangian will in
the end be a sum of collinear and soft sectors,

L = Ln + Ln̄ + Ls + . . . , (58)

which allows for a factorization of particle states in matrix elements.
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4.4. Collinear-soft interactions

Although we will not go through the derivation of the SCET Lagrangian, we will work
backwards and motivate the final results by looking at the soft-collinear limit of QCD.

Hard fluctuations are integrated out and appear inWilson coefficients of the EFT operators.
In SCET, one can perform a systematic counting of powers of λ to see what should be
included. The interaction of soft gluon fields with collinear quark fields is of order λ0 and
one must include an infinite number of soft gluon emissions from the collinear particles.
However, the soft limit of QCD is simple in that for every soft emission one gets an eikonal
factor to the matrix element. Taking the simplest example of some process with an external
quark, we define the matrix element as

ū(p)M(p) ≡

p

. (59)

Now, say the external quark is emitting a soft gluon with momentum k. In the soft emission
limit one can expand the intermediate quark propagator, which yields the result

p

−−−−−−−−−→
soft emission limit

k

p

= −g3ū(p)ta
p · ϵ
p · k
M(p),

(60)

where ta is a group factor of SU(3)c. The same expression of the soft emission limit can be
reproduced by introducing path ordered Wilson lines,

S†n(x) = P exp

[
ig3
∫ ∞

0
ds n · A(x+ sn)e−εs

]
. (61)

Evaluating the matrix element with a soft gluon gives

⟨k| S†n(0) |Ω⟩ = ig3
∫ ∞

0
ds e−εs ⟨k| n · A(sn) |Ω⟩+O(g23)

≈ ig3n · ϵta
∫ ∞

0
ds ei(k·n+iε)s

=

(
−g3n · ϵta

n · k+ iε

)
, (62)
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where we used

⟨k|Aa
µ(x)t

a |Ω⟩ = eik·xϵµ(k)ta. (63)

Although the formulas get more cumbersome, the above matrix element reproduces the soft
limit of an arbitrary number of soft gluons; one simply expands the Wilson line to higher
order in g3. All the interactions of soft gluons with the energetic quarks can be described
completely by introducing one Wilson line for every quark. In the end, the matrix element
factorizes as

⟨p1, . . . ; k1, . . . km| q̄n · · · qn |. . . , pn⟩ −−−−−−−−−→
soft emission limit

⟨p1, . . .| q̄n · · · qn |. . . , pn⟩

× ⟨k1, . . . , km| S†n1 · · · Snn |Ω⟩ .
(64)

This factorization is useful, since one then can calculate the effect of soft radiation by purely
computing the vacuum matrix element of Wilson lines. Such matrix elements are referred
to as soft functions.

4.5. Factorization and soft function

With the framework of SCET in place, one can factorize the cross section into a hard, two
beam and a soft function. Schematically, we write it as

dσ
d2p⊥

∼ H(mh)× B(p⊥)⊗⊥ B(p⊥)⊗⊥ S(p⊥). (65)

The soft-collinear emissions recoil against the Higgs boson and thus have a combined trans-
verse momentum in the opposite direction. This manifests itself in the differential cross
section as a convolution in the transverse momentum. All the soft interactions are moved
into the soft function, which is similar to the one sketched out in previous section, but
now contains a measurement delta function for the transverse momentum. The explicit
soft function for quarks going into the hard interaction is

Sq(p⊥) =
1
Nc
⟨Ω|Tr

{
T̄
[
S†nSn̄

]
δ(2)(p⊥ − P⊥)T

[
S†n̄Sn

]}
|Ω⟩ , (66)

where P⊥ is a projection operator that picks up the transverse momentum of the real emis-
sions and Nc = 3 for QCD. To compute the soft function, one expands the Wilson lines.
At 1-loop order, there is only one kind of diagram contributing, which is displayed in fig-
ure 2. All 2-loop diagrams are shown in paper I.

To recap: Although very sketchy, we have described the process of factorizing a cross section
into separate functions. The soft function only depends on the number of incoming and
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outgoing colored states. It does not depend on the internal collinear radiation of those beam
or jet functions. In this way, both the soft and the beam functions are process independent
and only depend on whether one matches onto a quark or gluon current going into the
hard interaction.

4.6. Resummation and rapidity divergences

When calculating the loop diagrams in the hard, beam and soft functions one encounters
the normal infrared and ultraviolet divergences that are regulated with dimensional regu-
larization and manifests themselves as poles as 1/ϵ. In the end these will cancel out in the
renormalization procedure. There is, however, additional divergences that show up after
factorizing the cross section as in eq. (65) that are neither infrared nor ultraviolet in nature.
These so called rapidity divergences are a consequence of the factorization.

These rapidity divergences are related to integrals of the form:

I =
∫ mh

|p⊥|

dp+

p+
= log(mh/|p⊥|), (67)

which range over both the soft and collinear limits. In the factorization process, the re-
sulting soft and collinear sectors share the same invariant mass scaling, see figure 12. The
integral above is split up with a cut-off, Λ, as

I =
∫ Λ

|p⊥|

dp+

p+
+

∫ mh

Λ

dp+

p+
→
∫ ∞

|p⊥|

dp+

p+
+

∫ mh

0

dp+

p+
, (68)

which is taken¹⁰ to∞ or 0. In the calculation, there is only one scale dependence for these
logarithms in each sector, but taking the cut-off limits introduces divergences that need to
be regulated. In paper I, we use the framework of ref. [61, 62] that uses a regulator which
effectively inserts factors of (

ν

|k− − k+|

)η
(69)

in the loop integrals. The divergences show up as 1/η poles and cancel when combining the
beam and soft functions. The ν parameter is a dimensionful renormalization scale similar
to µ in dimensional regularization. In the end, the renormalized soft function will be µ

¹⁰ThatΛ is taken to different limits is similar to cancelling infrared and ultraviolet divergences in dimensional
regularization, i.e. that 1

ϵIR
− 1

ϵUV
= 0.
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and ν dependent and will obey both a RGE as well as a Rapidity RGE (RRGE),

µ
d

dµ
S(µ, ν) = γS,µ(µ, ν) S(µ, ν) , (70)

ν
d

dν
S(µ, ν) = γS,ν(µ) S(µ, ν) . (71)

There is a huge benefit of splitting up the integrals as above. Then every sector only depends
on a single scale and one can effectively minimize all integrals by a suitable renormalization
scale choice. The scenario is a little bit more complicated because of the presence of double
logarithms of the form log2(m2

h/p
2
⊥). The factorization of the cross section effectively splits

up these logarithms into

log2
m2
h

p2
⊥

= log2
m2
h

µ2
+ 2 log

m2
h

µ2
log

µ2

p2
⊥
+ log2

µ2

p2
⊥

= log2
m2
h

µ2
+ 2

(
log

m2
h
ν2

+ log
ν2

µ2

)
log

µ2

p2
⊥
+ log2

µ2

p2
⊥
, (72)

where µ is the usual renormalization scale in dimensional regularization. After the factor-
ization the different logarithms are contained in different sectors and the logarithms can
be minimized with some renormalization scale choice; that is different for every function
as illustrated in figure 13. Then one must run each function using RGEs and RRGEs to
a common point in the renormalization scale space. Evolving each function corresponds
to resumming all the logarithms. Of course the final expression for the cross section is
independent of the final renormalization or rapidity scale.

pT

Q

pT Q

µ 
[G

eV
]

ν [GeV]

BS

H

RRGE

RGE

νS,

µS,

νB,

µB,

µH,

Figure 13: Renormalization and rapidity scale space. The hard, beam and soft functions have dif-
ferent characteristic energy scales associated with each µ and ν. To minimize all the
logarithms, one uses RGEs and RRGEs to run them to an arbitrary common point.

The 2-loop anomalous dimensions γS,µ(ν) in eqs.70 and 71 are some of the main results of
paper I. The main benefit of this framework of introducing a rapidity scale and RRGE is
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that one can achieve a better estimate of the theoretical uncertainty in the resummation
of logarithms by varying both the renormalization and rapidity scale independently of one
another.

5. Final words

”One must imagine Sisyphus happy.”
Albert Camus, The Myth of Sisyphus

After the Higgs particle discovery, no one knows what is next in the field of particle physics.
With the LHC working full time to probe the high energy frontier, people are waiting for
the results to come in. Perhaps is new physics just around the corner or maybe there is
nothing new that will be discovered at the current generation of accelerators.

What is certain, is that the current experiments will test the SM intensely. Precision cal-
culations will be essential when looking for anomalies. In this introduction, we have gone
over the techniques of employing the renormalization group to perform resummation, but
also how to use it when investigating models beyond the SM. Hopefully, the interested
reader will now be more ready to continue reading the following publications.

6. Overview of the papers

Below is a short summary of each paper in this thesis together with a description of my
contributions. The author list of each paper is ordered alphabetically.

Paper I: Rapidity renormalized TMD soft and beam functions at two loops

Thomas Lübbert, Joel Oredsson and Maximilian Stahlhofen.
e-print: arXiv:1602.01829 [hep-ph]. JHEP, 03 (2016) 168.

This paper concerns the analytic calculation of the transverse momentum spectrum of a
heavy color-neutral final state in proton collisions using SCET. In the low p⃗T region, this
observable suffers from large logarithms that need to be resummed. Furthermore, the fac-
torization of the cross section into hard, beam and soft functions gives rise to so-called
rapidity divergences that are not regulated with dimensional regularization.
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Ourmain result is the calculation of the soft function toNNLOusing the rapidity regulator
of ref. [61, 62]. Using this scheme, we derive RGEs as well as Rapidity RGEs (RRGE) for
the separate functions in the cross section; that then can be used for resumming all the large
logarithms. An advantage of the RRGE is that one can systematically study the perturbative
uncertainties by independent variations of all the factorization/renormalization scales.

With the full NNLO soft function at our disposal, we also derive the NNLO beam func-
tions in the same RRG scheme by comparing to the results of ref. [63,64]; thus making all
ingredients available for NNLL’ resummation.

This project is based on the work I did during my master thesis at DESY, Hamburg. The
project was suggested by Frank Tackmann; who also supervised the majority of the project
in the beginning. All the analytical calculations were performed by me with extensive help
from Thomas Lübbert and Maximilian Stahlhofen. Thomas Lübbert also cross checked a
lot of the results. I wrote the first draft of the paper, which was then improved and extended
by the others.

Paper II: Kinetic mixing

Johan Bijnens, Joel Oredsson, Johan Rathsman.
e-print: arXiv:1810.04483 [hep-ph]. Phys.Lett., B792 (2019) 238-243.

In theories with multiple scalar fields that have equal quantum numbers, there is the pos-
sibility to include a kinetic mixing term in the Lagrangian,

L = κ(∂µϕ1)(∂
µϕ2) + . . . . (73)

Although it is well known that such a term can be removed by diagonalizing the kinetic
terms with a field redefinition, it was claimed in ref. [26, 65] that the parameter κ needs to
be included when performing a RGE analysis.

The main goal of this paper is to show that this is not necessary since κ is not a physical
parameter; it all depends on the renormalization scheme if one should include scalar ki-
netic mixing or not. To show this, we perform a 1-loop calculation of the RGEs in a toy
model using three different renormalization schemes: one with scalar kinetic mixing; one
that only renormalizes physical observables; and the standard scheme. We also derive the
renormalization scale dependent transformations that relate each of these schemes to one
another.

This is also relevant when using the formalism in ref. [5–8] for deriving 2-loop RGEs. They
express their formulas in an irreducible representation of the scalar fields and one must be
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careful and generalize their results in theories with scalar fields thatmix under RG evolution.
This has also been discussed independently by ref. [27, 28].

This paper started off as a side project when me and Johan Rathsman worked on deriving
the general 2-loop RGEs for the 2HDM for paper III. It was during that process, that we
discovered subtleties and confusion in the literature when it came to RGEs for theories with
multiple identical scalar fields. Johan Bijnens then joined the project and came up with the
idea of a pedagogical example using three renormalization schemes. I and Johan Bijnens
performed the calculations independently and he also wrote the first draft; which was later
improved and extended by me and subsequently Johan Rathsman.

Paper III: Z2 breaking effects in 2-loop RG evolution of 2HDM

Joel Oredsson, Johan Rathsman.
e-print: arXiv:1810.02588 [hep-ph]. JHEP, 02 (2019) 152.

This paper studies how a small breaking of a Z2 symmetry spreads in the RG evolution of
the general CP conserved 2HDMs. Since the Yukawa sector is independent of the scalar
sector at 1-loop order, one has to work with 2-loop RGEs to see any effects of the symmetry
breaking spreading across the Yukawa and scalar sectors.

In order to do this analysis, we first derived the general 2-loop RGEs for the 2HDM us-
ing the general formalism in ref. [5–8]. To perform the RG evolution, we created a C++
code that numerically solves the RGEs; which grew into the open-source program 2HDME
described in paper IV. For doing experimental checks of parameter points, we also imple-
mented an interface to HiggsBounds and HiggsSignals.

Using 2HDME, we perform some parameter scans of four scenarios with different kinds ofZ2
symmetry. Then we performed a bottom-up RG evolution, where we checked for violation
of tree-level unitarity or stability as well as the emergence of Landau poles.

The idea for this project was Johan Rathsman’s, who also provided constant help and guid-
ance throughout the process. I performed all the analytical derivations of the 2-loop RGEs.
The code was written by me, but some parts are inspired by the code 2HDMC [52]; which
Johan Rathsman is a coauthor of. I also wrote the paper, with Johan Rathsman providing
corrections and improvements.
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Paper IV: 2 Higgs Doublet Model Evolver - Manual

Joel Oredsson.
e-print: arXiv:1811.08215 [hep-ph]. CPC 2019.05.021.

This paper is a manual for the open-source code 2HDME. The code performs the RG evo-
lution of the general, potentially CP violating, 2HDM using 2-loop RGEs. It does so by
solving a system of 129 coupled ordinary differential equations numerically. Furthermore,
calculations of the oblique parameters S, T andU, as well as simple tree-level tests of pertur-
bativity, unitarity and stability are implemented. The manual goes through the structure
of the code and contains instructions for how to use it.

This project is a documentation of the code that I developed as a tool for performing the
analysis in paper III. The manual is written by me, but Johan Rathsman provided helpful
corrections, suggestions and comments.

Paper V: 2-loop RG evolution of CP violating 2HDM

Joel Oredsson, Johan Rathsman.
e-print: arXiv:1909.05735 [hep-ph]. Submitted to JHEP.

This is an extension of our previous work in paper III. While paper III focuses solely on the
CP conserving 2HDM, we here allow for CP violation. We similarly investigate RG effects
in the 2HDM and especially the consequences of having a small Z2 symmetry breaking.
In the CP violating scenario, one also gets phases that spread during RG evolution. To
constrain the amount of CP violation, we implement a calculation of the electron’s EDM
in our code.

I have performed all the programming, created the plots and written the paper with
constant guidance from Johan Rathsman; who also corrected, as well as, provided
suggestions and improvements to the manuscript.
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